WO2023223778A1 - Member for forming wiring, laminated film for forming wiring, and method for manufacturing semiconductor device - Google Patents

Member for forming wiring, laminated film for forming wiring, and method for manufacturing semiconductor device Download PDF

Info

Publication number
WO2023223778A1
WO2023223778A1 PCT/JP2023/016236 JP2023016236W WO2023223778A1 WO 2023223778 A1 WO2023223778 A1 WO 2023223778A1 JP 2023016236 W JP2023016236 W JP 2023016236W WO 2023223778 A1 WO2023223778 A1 WO 2023223778A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal layer
wiring
resin
curable resin
Prior art date
Application number
PCT/JP2023/016236
Other languages
French (fr)
Japanese (ja)
Inventor
裕紀子 井上
哲也 榎本
笑 宮澤
雄太 赤須
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Publication of WO2023223778A1 publication Critical patent/WO2023223778A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present disclosure relates to a member for forming wiring, a laminated film for forming wiring, and a method for manufacturing a semiconductor device.
  • the FO-WLP Fluorescence-WLP (Fan-Out Wafer Level Packaging) is known as one of the advanced packages that can be mounted at high density.
  • the FO-WLP is a package having a structure in which a fine redistribution layer (RDL) formed on a chip is extended outside the outer shape of the chip.
  • RDL redistribution layer
  • the FO-WLP assembly process can be roughly divided into two. One method is to first mount a chip and then form a rewiring layer, which is called the Chip First method. The other method is to first form a redistribution layer and then mount the chip, which is called the RDL-First (Redistribution Layer-First) method.
  • Patent Document 1 discloses a carrier-attached copper foil (wiring forming member) that includes a carrier (supporting member), a nickel alloy layer, a carbon layer, and an ultra-thin copper layer.
  • a metal layer on the outermost surface of a support member is processed to form a wiring layer (rewiring layer), or a wiring layer (rewiring layer) is formed on the metal layer. It is necessary to separate the support member and the semiconductor member with a wiring layer after providing a rewiring layer) and, if necessary, mounting a semiconductor chip and producing a package (semiconductor member with a wiring layer).
  • a wiring layer rewiring layer
  • the wiring forming member includes a support member, a first metal layer, a first resin layer, and a second metal layer in this order.
  • the first resin layer contains a first curable resin composition or a cured product thereof.
  • the wiring forming member may further include a second resin layer between the supporting member and the first metal layer. In this case, the second resin layer contains the second curable resin composition or a cured product thereof.
  • a wiring forming member it can be suitably used in the manufacturing process of a package (semiconductor member with a wiring layer), and by irradiating light containing at least infrared light from the supporting member side, It becomes possible to easily separate the support member and the semiconductor member with a wiring layer.
  • the laminated film for wiring formation includes a first metal layer, a first curable resin layer containing a first curable resin composition provided on one surface of the first metal layer, a second curable resin layer containing a second curable resin composition provided on the other surface of the first metal layer; and a first metal layer of the first curable resin layer. and a second metal layer provided on the opposite surface.
  • Another aspect of the present disclosure relates to a method for manufacturing a semiconductor device.
  • One embodiment of the method for manufacturing the semiconductor device includes the steps of preparing the above wiring forming member, processing the second metal layer to form the wiring layer, and arranging the semiconductor member on the wiring layer. , a step of manufacturing a laminate including a semiconductor member with a wiring layer; and a step of separating the members.
  • Another embodiment of the method for manufacturing the semiconductor device includes the steps of preparing the above wiring forming member, forming a wiring layer on the second metal layer, arranging the semiconductor member on the wiring layer, A step of manufacturing a laminate including a semiconductor member with a wiring layer, and irradiating a first metal layer of the laminate with light containing at least infrared light from the side of the support member to produce the support member and the semiconductor member with the wiring layer. and a step of separating the.
  • a wiring forming member that can be used in the manufacturing process of a semiconductor member with a wiring layer and that can easily separate a supporting member and a semiconductor member with a wiring layer. Further, according to the present disclosure, a laminated film for wiring formation useful for forming such a member for wiring formation is provided. Furthermore, according to the present disclosure, a method of manufacturing a semiconductor device using such a wiring forming member is provided.
  • FIGS. 1A and 1B are schematic cross-sectional views showing one embodiment of a wiring forming member.
  • FIG. 2 is a schematic cross-sectional view showing one embodiment of a laminated film for wiring formation.
  • FIG. 3 is a schematic cross-sectional view for explaining one embodiment of a method for manufacturing a semiconductor device, and FIGS. 3(a), (b), and (c) are schematic cross-sectional views showing each step.
  • FIG. 4 is a schematic cross-sectional view for explaining one embodiment of a method for manufacturing a semiconductor device, and FIGS. 4(a), (b), (c), and (d) are schematic cross-sectional views showing each step. It is a diagram. FIG.
  • FIG. 5 is a schematic cross-sectional view for explaining another embodiment of the method for manufacturing a semiconductor device
  • FIGS. 5(a), (b), and (c) are schematic cross-sectional views showing each process.
  • FIG. 6 is a schematic cross-sectional view for explaining another embodiment of the method for manufacturing a semiconductor device
  • FIGS. 6(a), (b), (c), (d), and (e) each It is a schematic cross-sectional view showing a process.
  • a numerical range indicated using "-" indicates a range that includes the numerical values written before and after "-" as the minimum and maximum values, respectively.
  • the upper limit value or lower limit value described in one numerical range may be replaced with the upper limit value or lower limit value of another numerical range described step by step. good.
  • the upper limit or lower limit of the numerical range may be replaced with the value shown in the Examples.
  • the term “layer” includes a structure that is formed on the entire surface as well as a structure that is formed on a part of the layer when observed as a plan view.
  • the term “process” does not only refer to an independent process, but also refers to a process that cannot be clearly distinguished from other processes, as long as the intended effect of the process is achieved. included.
  • (meth)acrylate means acrylate or a methacrylate corresponding thereto.
  • the materials exemplified below may be used alone or in combination of two or more within the range applicable to the conditions.
  • the content of each component means the total amount of the multiple substances, unless otherwise specified.
  • FIGS. 1A and 1B are schematic cross-sectional views showing one embodiment of a wiring forming member.
  • the wiring forming member 10A shown in FIG. 1(a) includes a support member 1, a first metal layer 3a, a first resin layer 5a, and a second metal layer 3b in this order.
  • the support member 1 is a plate-shaped body that has high transmittance and can withstand the load received during wiring formation.
  • Examples of the support member 1 include an inorganic glass substrate, a transparent resin substrate, and the like.
  • the thickness of the support member 1 may be, for example, 0.1 to 2.0 mm. When the thickness of the support member 1 is 0.1 mm or more, handling tends to be easier. When the thickness of the support member 1 is 2.0 mm or less, material costs tend to be suppressed.
  • the first metal layer 3a is a layer that absorbs light including infrared light and generates heat.
  • the metal constituting the first metal layer 3a is not particularly limited as long as it absorbs light including infrared light and generates heat.
  • Examples of such metals include metals such as chromium, copper, titanium, silver, platinum, and gold, alloys such as nickel-chromium, stainless steel, and copper-zinc, indium tin oxide (ITO), zinc oxide, and niobium oxide. Examples include metal oxides such as.
  • the metal constituting the first metal layer 3a may be chromium, titanium, copper, aluminum, silver, gold, or platinum.
  • the first metal layer 3a may be composed of multiple metal layers. Such a first metal layer 3a may include, for example, a layer including a metal layer (1) and a metal layer (2) in this order from the support member 1.
  • the metal constituting the metal layer (1) may be titanium from the viewpoints of adhesion with the supporting member, film formability, thermal conductivity, low heat capacity, and the like.
  • the metal constituting the metal layer (2) may be copper, aluminum, silver, gold, or platinum, or may be copper or aluminum, from the viewpoint of high expansion coefficient, high thermal conductivity, etc.
  • the first metal layer 3a may be a metal layer formed using metal foil, or a metal layer formed by physical vapor deposition (PVD) such as vacuum evaporation or sputtering.
  • the first metal layer 3a is preferably a metal layer formed by PVD from the viewpoint of adhesion to the support member.
  • the thickness of the first metal layer 3a may be 1 to 5000 nm (0.001 to 5 ⁇ m) or 50 to 3000 nm (0.05 to 3 ⁇ m) from the viewpoint of easy peelability.
  • the thickness of the metal layer (1) is 1 to 1000 nm (0.001 to 1 ⁇ m), 5 ⁇ 500 nm (0.005-0.5 ⁇ m), or 10-100 nm (0.01-0.1 ⁇ m)
  • the thickness of the metal layer (2) is 1-5000 nm (0.001-5 ⁇ m) , 10 to 500 nm (0.01 to 0.5 ⁇ m), or 50 to 200 nm (0.05 to 0.2 ⁇ m).
  • the first resin layer 5a contains a first curable resin composition or a cured product thereof.
  • the first curable resin composition may be a curable resin composition that is cured by heat or light. That is, the first resin layer 5a may be at least partially cured, go through a semi-cured (B stage) state, and then be able to become a cured (C stage) state by heat treatment.
  • the B stage is an intermediate stage in the reaction of certain thermosetting resins, where the material swells when in contact with certain liquids and softens when heated, but does not completely dissolve or melt.
  • C-stage refers to the final stage in the reaction of certain thermosetting resins, when the material becomes virtually insoluble and infusible.
  • the first curable resin composition includes a thermoplastic resin and a thermosetting resin.
  • the first curable resin composition may further contain a curing accelerator, a polymerizable monomer, a polymerization initiator, and other components.
  • the thermoplastic resin may be a thermoplastic resin, or a resin that has thermoplasticity at least in an uncured state and forms a crosslinked structure after heating.
  • the thermoplastic resin include hydrocarbon resin, polycarbonate, polyphenylene sulfide, polyether sulfone, polyetherimide, polyimide, petroleum resin, and novolac resin. These may be used alone or in combination of two or more.
  • the thermoplastic resin may be a hydrocarbon resin.
  • Hydrocarbon resin is a resin whose main skeleton is composed of hydrocarbon.
  • hydrocarbon resins include ethylene/propylene copolymer, ethylene/1-butene copolymer, ethylene/propylene/1-butene copolymer elastomer, ethylene/1-hexene copolymer, and ethylene/1-hexene copolymer.
  • 1-octene copolymer ethylene/styrene copolymer, ethylene/norbornene copolymer, propylene/1-butene copolymer, ethylene/propylene/non-conjugated diene copolymer, ethylene/1-butene/non-conjugated diene copolymer Copolymer, ethylene/propylene/1-butene/non-conjugated diene copolymer, polyisoprene, polybutadiene, styrene/butadiene/styrene block copolymer (SBS), styrene/isoprene/styrene block copolymer (SIS), Examples include styrene/ethylene/butylene/styrene block copolymer (SEBS), styrene/ethylene/propylene/styrene block copolymer (SEPS), and the like.
  • SEBS
  • hydrocarbon resins may be subjected to hydrogenation treatment. Further, these hydrocarbon resins may be carboxy-modified with maleic anhydride or the like.
  • the hydrocarbon resin may include a hydrocarbon resin containing monomer units derived from styrene (styrenic resin), and may include a styrene-ethylene-butylene-styrene block copolymer (SEBS). Good too.
  • the Tg of the thermoplastic resin may be -100 to 500°C, -50 to 300°C, or -50 to 50°C.
  • the Tg of the thermoplastic resin is 500° C. or lower, when a film-like temporary fixing material is formed, flexibility is easily ensured and low-temperature adhesion properties tend to be improved.
  • the Tg of the thermoplastic resin is ⁇ 100° C. or higher, when a film-like temporary fixing material is formed, it tends to be possible to suppress deterioration in handleability and releasability due to excessive flexibility.
  • the Tg of a thermoplastic resin is the midpoint glass transition temperature value obtained by differential scanning calorimetry (DSC). Specifically, the Tg of the thermoplastic resin is determined by measuring the change in heat value under the conditions of a temperature increase rate of 10°C/min and a measurement temperature of -80 to 80°C, and is calculated by a method based on JIS K 7121. is the transition temperature.
  • the weight average molecular weight (Mw) of the thermoplastic resin may be 10,000 to 5 million or 100,000 to 2 million. When the weight average molecular weight is 10,000 or more, it tends to be easier to ensure the heat resistance of the resin layer. When the weight average molecular weight is 5,000,000 or less, when a film-like resin layer is formed, a decrease in flow and adhesiveness tends to be easily suppressed. Note that the weight average molecular weight is a polystyrene equivalent value obtained by gel permeation chromatography (GPC) using a standard polystyrene calibration curve.
  • GPC gel permeation chromatography
  • the content of the thermoplastic resin may be 40 to 90 parts by mass based on 100 parts by mass of the first curable resin composition.
  • the content of the thermoplastic resin may be 50 parts by mass or more or 60 parts by mass or more, and 85 parts by mass or less or 80 parts by mass or less, based on 100 parts by mass of the total amount of the first curable resin composition. It's okay.
  • the content of the thermoplastic resin is within the above range, the resin layer tends to have better thin film forming properties and flatness.
  • Thermosetting resin means a resin that is cured by heat, and is a concept that does not include the above-mentioned hydrocarbon resins.
  • the thermosetting resin include epoxy resin, acrylic resin, silicone resin, phenol resin, thermosetting polyimide resin, polyurethane resin, melamine resin, and urea resin. These may be used alone or in combination of two or more.
  • the thermosetting resin may be an epoxy resin because it is superior in heat resistance, workability, and reliability.
  • the thermosetting resin may be used in combination with a thermosetting resin curing agent (when an epoxy resin is used as the thermosetting resin, an epoxy resin curing agent).
  • the epoxy resin is not particularly limited as long as it hardens and has heat resistance.
  • epoxy resins include bifunctional epoxy resins such as bisphenol A epoxy, phenol novolak epoxy resins, novolak epoxy resins such as cresol novolac epoxy resins, and alicyclic epoxy resins such as dicyclopentadiene epoxy resins. can be mentioned.
  • the epoxy resin may be, for example, a polyfunctional epoxy resin, a glycidylamine type epoxy resin, or a heterocycle-containing epoxy resin.
  • the epoxy resin may include an alicyclic epoxy resin from the viewpoint of heat resistance and weather resistance.
  • the first curable resin composition may contain an epoxy resin curing agent.
  • an epoxy resin curing agent commonly used known curing agents can be used.
  • epoxy resin curing agents include amines, polyamides, acid anhydrides, polysulfides, boron trifluoride, bisphenols having two or more phenolic hydroxyl groups in one molecule, such as bisphenol A type, bisphenol F type, and bisphenol S type. , phenol novolak resin, bisphenol A type novolak resin, cresol novolak resin, phenol aralkyl resin, and the like.
  • the total content of the thermosetting resin and thermosetting resin curing agent may be 10 to 60 parts by mass based on 100 parts by mass of the total amount of the first curable resin composition.
  • the total content of the thermosetting resin and the thermosetting resin curing agent may be 15 parts by mass or more or 20 parts by mass or more with respect to 100 parts by mass of the total amount of the first curable resin composition, It may be 50 parts by mass or less or 40 parts by mass or less.
  • the resin layer tends to have better thin film forming properties, flatness, heat resistance, etc.
  • the first curable resin composition may further contain a curing accelerator.
  • the curing accelerator include imidazole derivatives, dicyandiamide derivatives, dicarboxylic acid dihydrazide, triphenylphosphine, tetraphenylphosphonium tetraphenylborate, 2-ethyl-4-methylimidazole-tetraphenylborate, 1,8-diazabicyclo[5, 4,0] undecene-7-tetraphenylborate and the like. These may be used alone or in combination of two or more.
  • the content of the curing accelerator may be 0.01 to 5 parts by mass based on 100 parts by mass of the total amount of the thermosetting resin and thermosetting resin curing agent.
  • the content of the curing accelerator is within the above range, the curability tends to improve and the heat resistance tends to be better.
  • the first curable resin composition may further contain a polymerizable monomer and a polymerization initiator.
  • the polymerizable monomer is not particularly limited as long as it can be polymerized by heating or irradiation with ultraviolet light or the like.
  • the polymerizable monomer may be, for example, a compound having a polymerizable functional group such as an ethylenically unsaturated group from the viewpoint of material selectivity and availability.
  • Examples of the polymerizable monomer include (meth)acrylate, vinylidene halide, vinyl ether, vinyl ester, vinylpyridine, vinylamide, and arylated vinyl.
  • the polymerizable monomer may be (meth)acrylate.
  • the (meth)acrylate may be monofunctional (monofunctional), bifunctional, or trifunctional or more functional, but from the viewpoint of obtaining sufficient curability, it may be a difunctional or more functional (meth)acrylate. good.
  • the content of the polymerizable monomer may be 1 to 60 parts by mass based on 100 parts by mass of the total amount of the first curable resin composition.
  • the polymerization initiator is not particularly limited as long as it can initiate polymerization by heating or irradiation with ultraviolet light or the like.
  • the polymerization initiator may be a thermal radical polymerization initiator or a photoradical polymerization initiator.
  • the content of the polymerization initiator may be 0.01 to 5 parts by weight based on 100 parts by weight of the total amount of polymerizable monomers.
  • the first curable resin composition may further contain other components such as an insulating filler, a sensitizer, and an antioxidant.
  • An insulating filler may be added for the purpose of imparting low thermal expansion and low hygroscopicity to the resin layer.
  • the insulating filler include nonmetallic inorganic fillers such as silica, alumina, boron nitride, titania, glass, and ceramic. These insulating fillers may be used alone or in combination of two or more. From the viewpoint of dispersibility with a solvent, the insulating filler may be a particle whose surface is treated with a surface treatment agent.
  • the surface treatment agent may be, for example, a silane coupling agent.
  • the content of the insulating filler may be 5 to 20 parts by mass based on 100 parts by mass of the first curable resin composition.
  • heat resistance tends to be further improved without interfering with light transmission.
  • the content of the insulating filler is within the above range, it may also contribute to easy releasability.
  • sensitizer examples include anthracene, phenanthrene, chrysene, benzopyrene, fluoranthene, rubrene, pyrene, xanthone, indanthrene, thioxanthene-9-one, 2-isopropyl-9H-thioxanthene-9-one, 4- Examples include isopropyl-9H-thioxanthene-9-one and 1-chloro-4-propoxythioxanthone.
  • the content of the sensitizer may be 0.01 to 10 parts by mass based on 100 parts by mass of the first curable resin composition. When the content of the sensitizer is within the above range, it tends to have little influence on the properties and thin film properties of the first curable resin composition.
  • antioxidants examples include quinone derivatives such as benzoquinone and hydroquinone, phenol derivatives (hindered phenol derivatives) such as 4-methoxyphenol and 4-t-butylcatechol, and 2,2,6,6-tetramethylpiperidine.
  • quinone derivatives such as benzoquinone and hydroquinone
  • phenol derivatives hindered phenol derivatives
  • 2,2,6,6-tetramethylpiperidine examples include aminoxyl derivatives such as 1-oxyl and 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl
  • hindered amine derivatives such as tetramethylpiperidyl methacrylate.
  • the content of the antioxidant may be 0.1 to 10 parts by mass based on 100 parts by mass of the first curable resin composition.
  • the content of the antioxidant is within the above range, the decomposition of the thermoplastic resin and the thermosetting resin tends to be suppressed and contamination can be prevented.
  • the cured product of the first curable resin composition can be obtained by thermally curing (or photocuring) the first curable resin composition.
  • the heat curing conditions may be, for example, 300° C. or lower or 100 to 250° C. for 1 to 180 minutes or 1 to 120 minutes.
  • the first curable resin composition and its cured product may be the main components of the first resin layer 5a.
  • the total content of the first curable resin composition and its cured product is 80% by mass or more, 85% by mass or more, 90% by mass or more, 95% by mass or more, based on the total amount of the first resin layer 5a. , or 100% by mass.
  • the first resin layer 5a may be made of a first curable resin composition and a cured product thereof.
  • the thickness of the first resin layer 5a may be, for example, 200 ⁇ m or less from the viewpoint of stress relaxation.
  • the thickness of the first resin layer 5a may be 1 to 150 ⁇ m or 10 to 100 ⁇ m.
  • the second metal layer 3b is a layer that is processed to become a wiring layer or a layer that becomes a base for plating, etc.
  • the metal constituting the second metal layer 3b may be copper or titanium, or may be copper.
  • the second metal layer 3b may be a metal layer formed using metal foil, or a metal layer formed by physical vapor deposition (PVD) such as vacuum evaporation or sputtering.
  • the metal foil may be copper foil or titanium foil, or may be copper foil.
  • the thickness of the second metal layer 3b is 1 to 40 ⁇ m, 3 to 35 ⁇ m, or 5 to 30 ⁇ m from the viewpoint of handleability. It's fine.
  • the thickness of the second metal layer 3b is 1 to 5000 nm (0.001 to 5 ⁇ m) or 50 to 3000 nm ( 0.05 to 3 ⁇ m).
  • the method of manufacturing the wiring forming member 10A shown in FIG. 1(a) is not particularly limited as long as a member having a predetermined configuration can be obtained.
  • the wiring forming member 10A includes, for example, a step of providing the first metal layer 3a on the support member 1 (step 1A) and a step of providing the first resin layer 5a on the first metal layer 3a (step 1B). and a step of providing the second metal layer 3b on the first resin layer 5a (step 1C).
  • the first metal layer 3a can be provided on the support member 1 by performing physical vapor deposition (PVD) such as vacuum deposition or sputtering.
  • PVD physical vapor deposition
  • the first metal layer 3a can also be provided on the support member 1 by electrolytic plating or electroless plating. According to physical vapor deposition, even if the support member 1 has a large area, the first metal layer 3a covering the surface of the support member 1 can be efficiently formed.
  • Examples of the method for providing the first resin layer 5a on the first metal layer 3a include the following method. First, each component of the first curable resin composition is dissolved or dispersed by stirring, kneading, etc. in a solvent to form a first resin varnish containing the first curable resin composition. Prepare. Next, the first resin varnish is applied onto the release-treated support film using a knife coater, roll coater, applicator, comma coater, die coater, etc., and then the solvent is evaporated by heating to form the support film. A first resin film is formed on the film. At this time, the thickness of the first resin film (first resin layer 5a) can be adjusted by adjusting the coating amount of the first resin varnish. The thickness of the first resin film may be the same as the thickness of the first resin layer 5a described above. Next, the first resin layer 5a can be provided by attaching the obtained first resin film (first resin layer 5a) to the first metal layer 3a.
  • the solvent used in the first resin varnish is not particularly limited as long as it has the property of uniformly dissolving or dispersing each component.
  • solvents include aromatic hydrocarbons such as toluene, xylene, mesitylene, cumene, and p-cymene; aliphatic hydrocarbons such as hexane and heptane; cyclic alkanes such as methylcyclohexane; tetrahydrofuran, 1,4- Cyclic ethers such as dioxane; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone; methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, ⁇ -butyrolactone, etc.
  • carbonate esters such as ethylene carbonate and propylene carbonate
  • amides such as N,N-dimethylformamide, N,N-dimethylacetamide, and N-methyl-2-pyrrolidone.
  • concentration of solid components in the varnish may be from 10 to 80% by weight, based on the total weight of the varnish.
  • Stirring or kneading during the preparation of the first resin varnish can be carried out using, for example, a stirrer, a miller, a three-roll mill, a ball mill, a bead mill, a homodisper, or the like.
  • supporting films include polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate; polyolefins such as polyethylene and polypropylene; polycarbonate, polyamide, polyimide, polyamideimide, polyetherimide, polyether sulfide, and polyether.
  • polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate
  • polyolefins such as polyethylene and polypropylene
  • polycarbonate polyamide, polyimide, polyamideimide, polyetherimide, polyether sulfide, and polyether.
  • Examples include sulfone, polyether ketone, polyphenylene ether, polyphenylene sulfide, poly(meth)acrylate, polysulfone, and liquid crystal polymer films.
  • the thickness of the support film may be, for example, from 1 to 250 ⁇ m.
  • the heating conditions for volatilizing the solvent from the first resin varnish applied to the support film can be appropriately set according to the type of solvent used, etc.
  • the heating conditions may be, for example, 40 to 120° C. for 0.1 to 30 minutes.
  • Examples of methods for attaching the first resin film (first resin layer 5a) to the first metal layer 3a include methods such as hot pressing, roll lamination, and vacuum lamination. Lamination can be performed, for example, at a temperature of 0 to 120°C.
  • a first resin varnish is directly applied on the first metal layer 3a, and the solvent is volatilized by heating.
  • a method of forming the first resin layer 5a in this manner may be mentioned.
  • the second metal layer 3b can be formed by placing metal foil on the first resin layer 5a.
  • the second metal layer 3b can also be formed by performing physical vapor deposition (PVD) such as vacuum deposition or sputtering on the first resin layer 5a.
  • PVD physical vapor deposition
  • the first resin layer 5a is preferably in a B-stage state.
  • the first resin layer 5a is formed by curing the first curable resin composition before processing the second metal layer 3b, so that the first resin layer 5a may contain a large amount of cured product of the first curable resin composition. Preferably, it is in a stage state.
  • the first resin layer 5a is made of the first curable resin composition even in the B stage state. Although it may be in a C-stage state that can contain a large amount of cured material, it is preferable to be in a C-stage state from the viewpoint of suppressing volatilization of low-molecular components.
  • the conditions for thermally curing (or photocuring) the first curable resin composition in the first resin layer 5a may be the same as those described above.
  • the wiring forming member 10A includes, for example, a step (step 1D) of producing a laminate A including the support member 1 and the first metal layer 3a, and a step of forming the first resin layer 5a and the second metal layer 3b. It can also be obtained by a method comprising a step of producing a laminate B containing the laminate B (step 1E), and a step of pasting the first resin layer 5a of the laminate B on the first metal layer 3a of the laminate A (step 1F). be able to.
  • the laminate A can be obtained by forming the first metal layer 3a on the support member 1 in the same manner as in step 1A.
  • Step 1E Laminated body B is produced by forming a first resin film (first resin layer 5a) on a support film in the same manner as in step 1B, and forming a first resin film (first resin layer 5a) on the first resin layer 5a in the same manner as in step 1C. This can be obtained by forming the second metal layer 3b.
  • the wiring forming member 10A can be obtained by attaching the first resin layer 5a of the laminate B to the first metal layer 3a of the laminate A.
  • the method of attaching the first resin layer 5a of the laminate B to the first metal layer 3a of the laminate A is the same as the method of attaching the first resin film to the first metal layer 3a described above. good.
  • the wiring forming member 10B shown in FIG. 1(b) includes a support member 1, a second resin layer 5b, a first metal layer 3a, a first resin layer 5a, and a second metal layer 3b. and in this order.
  • the second resin layer 5b contains a second curable resin composition or a cured product thereof.
  • the wiring forming member 10B can be said to be the wiring forming member 10A that further includes a second resin layer 5b between the supporting member 1 and the first metal layer 3a.
  • the second resin layer 5b contains a second curable resin composition or a cured product thereof.
  • the second curable resin composition may be a curable resin composition that is cured by heat or light. That is, the second resin layer 5b may be in a semi-cured (B stage) state in which at least a portion thereof is cured, and then can be brought into a hardened (C stage) state by heat treatment.
  • the second curable resin composition may be the same as or different from the first curable resin composition, but is preferably the same.
  • the second curable resin composition includes a thermoplastic resin and a thermosetting resin. At this time, the second curable resin composition may further contain a curing accelerator, a polymerizable monomer, a polymerization initiator, and other components.
  • each component of the second curable resin composition examples include the same components as those of the first curable resin composition. Moreover, the content of each component of the second curable resin composition is the same as the content of each component of the first curable resin composition. Therefore, redundant explanation will be omitted here.
  • the second curable resin composition or its cured product may be the main component of the second resin layer 5b.
  • the total content of the second curable resin composition and its cured product is 80% by mass or more, 85% by mass or more, 90% by mass or more, 95% by mass or more, based on the total amount of the second resin layer 5b. , or 100% by mass.
  • the second resin layer 5b may be made of a second curable resin composition and a cured product thereof.
  • the thickness of the second resin layer 5b may be, for example, 200 ⁇ m or less from the viewpoint of light transmittance.
  • the thickness of the second resin layer 5b may be 1 to 150 ⁇ m or 10 to 100 ⁇ m.
  • the first metal layer 3a is a metal layer formed using metal foil, or a metal layer formed by vacuum deposition or sputtering.
  • the metal layer may be formed by physical vapor deposition (PVD) such as, for example, and is preferably formed using metal foil.
  • the metal foil is not particularly limited as long as it is made of a metal that absorbs light including infrared light and generates heat.
  • Metals constituting such metal foil include, for example, single metals such as silver, gold, platinum, copper, titanium, nickel, molybdenum, chromium, and aluminum; SUS, nichrome, duralumin, bronze, cupronickel, brass, and steel. Examples include alloys such as The metal constituting the metal foil may be at least one selected from the group consisting of silver, gold, platinum, copper, titanium, nickel, molybdenum, chromium, and aluminum from the viewpoint of high expansion coefficient, high thermal conductivity, etc. , may be copper.
  • the thickness of the first metal layer 3a is 1 to 40 ⁇ m, 3 to 35 ⁇ m, or 5 to 30 ⁇ m from the viewpoint of handleability. It may be.
  • the thickness of the first metal layer 3a is 1 to 5000 nm (0.001 to 5 ⁇ m) or 50 to 3000 nm ( 0.05 to 3 ⁇ m).
  • the method for manufacturing the wiring forming member 10B shown in FIG. 1(b) is not particularly limited as long as a member having a predetermined configuration can be obtained.
  • the wiring forming member 10B includes, for example, a step of providing the second resin layer 5b on the support member 1 (step 2A) and a step of providing the first metal layer 3a on the second resin layer 5b (step 2B).
  • a method comprising: a step of providing a first resin layer 5a on the first metal layer 3a (step 2C); and a step of providing a second metal layer 3b on the first resin layer 5a (step 2D). can be obtained by
  • Step 2A As a method for providing the second resin layer 5b on the support member 1, a second resin varnish containing the second curable resin composition is prepared in the same manner as in step 1B above, and the second resin layer 5b is Form a film.
  • the second resin layer 5b can be provided by attaching the obtained second resin film (second resin layer 5b) to the support member 1.
  • the thickness of the second resin film may be the same as the thickness of the second resin layer 5b described above.
  • the second resin varnish is directly applied on the support member 1, the solvent is volatilized by heating, and the second resin layer 5b is formed on the support member 1.
  • a method for forming the resin layer 5b may be mentioned.
  • the first metal layer 3a can be formed by placing metal foil on the second resin layer 5b.
  • the first metal layer 3a can also be formed on the second resin layer 5b by performing physical vapor deposition (PVD) such as vacuum deposition or sputtering.
  • PVD physical vapor deposition
  • the method of arranging the metal foil on the second resin layer 5b may be the same as the method of arranging the metal foil on the first resin layer 5a.
  • the second resin layer 5b is preferably in a B-stage state.
  • the second resin layer 5b is formed by curing the second curable resin composition before processing the second metal layer 3b, and may contain a large amount of cured product of the second curable resin composition. Preferably, it is in a stage state.
  • the first curable resin composition can also be cured, so when the second resin layer 5b is in the C stage state, the first resin layer 5a is also cured. It may be in C stage condition.
  • the conditions for thermosetting may be the same as above.
  • the second resin layer 5b is formed of the second curable resin composition even in the B stage state. Although it may be in a C-stage state that can contain a large amount of cured material, it is preferable to be in a C-stage state from the viewpoint of suppressing volatilization of low-molecular components.
  • the conditions for thermally curing (or photocuring) the second curable resin composition in the second resin layer 5b may be the same as those described above.
  • Step 2C The method of providing the first resin layer 5a on the first metal layer 3a may be the same as the above step 1B.
  • the second metal layer 3b can be formed on the first resin layer 5a in the same manner as in step 1C.
  • FIG. 2 is a schematic cross-sectional view showing one embodiment of a laminated film for wiring formation.
  • the wiring forming laminated film 20 shown in FIG. a second curable resin layer 7b containing a second curable resin composition provided on the other surface of the first metal layer 3a;
  • a second metal layer 3b is provided on the surface of the curable resin layer 7a opposite to the first metal layer 3a.
  • the wiring forming laminated film 20 includes a second curable resin layer 7b, a first metal layer 3a, a first curable resin layer 7a, and a second metal layer 3b in this order.
  • the first curable resin composition contained in the first curable resin layer 7a is the same as the first curable resin composition contained in the first resin layer 5a
  • the second curable resin composition is the same as the first curable resin composition contained in the first resin layer 5a
  • the second curable resin composition contained in the resin layer 7b is the same as the second curable resin composition contained in the second resin layer 5b.
  • the wiring forming member 10B includes, for example, the step of producing the wiring forming laminated film 20 (step 2E) and the step of pasting the second curable resin layer 7b of the wiring forming laminated film 20 on the supporting member 1 (step 2F).
  • Step 2E The wiring forming laminated film 20 is produced by, for example, forming the second curable resin layer 7b on the support film in the same manner as in step 2A, and forming the second curable resin layer 7b on the second curable resin layer 7b in the same manner as in step 2B.
  • a first metal layer 3a is formed, a first curable resin layer 7a is formed on the first metal layer 3a, and a first curable resin layer 7a is further formed on the first curable resin layer 7a in the same manner as in step 2C. This can be obtained by forming the metal layer 3a of.
  • the wiring forming member 10B can be obtained by attaching the second curable resin layer 7b of the wiring forming laminated film 20 to the supporting member 1.
  • the method of attaching the second curable resin layer 7b of the wiring-forming laminated film 20 to the support member 1 may be the same as the method of attaching the first resin film to the first metal layer 3a described above.
  • the first resin layer 5a preferably contains a cured product of the first curable resin composition
  • the second resin layer 5b contains the second curable resin composition. It is preferable to contain a cured product of the product. That is, the first resin layer 5a and the second resin layer 5b are preferably in a C-stage state.
  • Such wiring forming members 10A and 10B can be suitably used in the manufacturing process of packages (semiconductor members with wiring layers), and can be irradiated with light containing at least infrared light from the support member side. This makes it possible to easily separate the support member and the semiconductor member with wiring layer.
  • FIG. 3 and 4 are schematic cross-sectional views for explaining one embodiment of a method for manufacturing a semiconductor device.
  • One embodiment of the method for manufacturing a semiconductor device includes the step of preparing the above wiring forming member 10B (step 3A, see FIG. 3(a)) and forming the wiring layer 11 by processing the second metal layer 3b. (step 3B, see FIG. 3(b)), and a step of arranging the semiconductor member 15 on the wiring layer 11 to produce a laminate 40 including the semiconductor member 30 with wiring layer (step 3C, FIG.
  • Step 3D see FIGS. 4(a) and 4(b)).
  • Step 3A In this step, the above wiring forming member is prepared. Below, an embodiment using the wiring forming member 10B will be mainly described in detail.
  • the second metal layer 3b is processed to form the wiring layer 11.
  • Examples of the method for forming the wiring layer 11 by processing the second metal layer 3b include a subtractive method (etching method).
  • an etching resist layer with a shape corresponding to the desired pattern is formed on the metal layer, and then the metal layer in the area where the resist was removed is dissolved with a chemical solution and removed through a subsequent development process.
  • This method forms a wiring layer having a desired circuit.
  • the subtractive method as a method of processing the second metal layer 3b to form the wiring layer 11, conventionally known resists, chemicals, etc. can be used.
  • the second metal layer 3b may be a metal layer formed using metal foil.
  • Step 3C the semiconductor member 15 is placed on the wiring layer 11, and a laminate 40 including the semiconductor member 30 with wiring layer is produced.
  • the semiconductor member 15 include a semiconductor wafer, a semiconductor chip obtained by dividing a semiconductor wafer, and the like.
  • the number of semiconductor members 15 arranged on the wiring layer 11 may be one or more.
  • the thickness of the semiconductor member 15 is 1 to 1000 ⁇ m, 10 to 500 ⁇ m, or 20 to 200 ⁇ m from the viewpoint of reducing the size and thickness of the semiconductor device as well as suppressing cracking during transportation, processing, etc. good.
  • the insulating layer 13 may be formed on the surface where the semiconductor member 15 is placed where the wiring layer 11 is not formed.
  • the semiconductor member 15 may be subjected to desired processing after being placed on the wiring layer 11.
  • Processing of a semiconductor member can include, for example, thinning a semiconductor wafer or semiconductor chip, dividing the semiconductor member (dicing), forming through electrodes, etching processing, plating reflow processing, sputtering processing, or a combination thereof.
  • the processed semiconductor member may be sealed with a sealing layer.
  • the sealing layer can be formed using a sealing material commonly used for manufacturing semiconductor members (semiconductor devices). After forming the sealing layer, the sealing layer and the wiring layer may be divided into a plurality of parts each containing one semiconductor member.
  • the first metal layer 3a of the laminate 40 is irradiated with light A containing at least infrared light from the support member 1 side to separate the support member 1 and the semiconductor member 30 with wiring layers.
  • the first metal layer 3a absorbs the light and instantaneously generates heat.
  • the generated heat may cause melting of the first resin layer 5a, thermal stress between the support member 1 and the semiconductor member 30 with a wiring layer, and the like.
  • interfacial peeling for example, interfacial peeling at the interface between the first metal layer 3a and the first resin layer 5a
  • cohesive peeling for example, the first resin layer 5a Cohesion and peeling
  • a slight stress may be applied to the semiconductor member 30 with a wiring layer in addition to the irradiation with the light A.
  • Light A includes at least infrared light.
  • the wavelength of infrared light is usually 700 nm to 1 mm.
  • the light A may be coherent light.
  • Coherent light is an electromagnetic wave that has properties such as high coherence, high directivity, and high monochromaticity. Coherent light tends to have high intensity because light having the same wavelength and the same phase is reinforced and combined with each other.
  • Laser light is generally coherent light. Examples of laser light include YAG laser, fiber laser, semiconductor laser, helium-neon laser, argon laser, excimer laser, and the like.
  • the wavelength of the laser light may be 1300 nm or less. When the wavelength is 1300 nm or less, the light absorption of the supporting member 1 is suppressed and the light absorption of the first metal layer 3a is increased, so that it is possible to peel off with lower light irradiation energy.
  • the coherent light may be pulsed light.
  • the light A may be incoherent light.
  • Incoherent light is non-coherent light, and is an electromagnetic wave that does not generate interference fringes, has low coherence, and has low directivity. Incoherent light tends to be attenuated as the optical path length becomes longer. Light such as sunlight and fluorescent light is incoherent light. Incoherent light can also be said to be light other than laser light. Since the irradiation area of incoherent light is generally much wider than that of coherent light (ie, laser light), it is possible to reduce the number of times of irradiation. For example, one irradiation can cause separation of a plurality of semiconductor members 30 with wiring layers.
  • the incoherent light may be pulsed light.
  • the light source is not particularly limited, but may be a xenon lamp.
  • a xenon lamp is a lamp that utilizes light emission by application and discharge in an arc tube filled with xenon gas. Since a xenon lamp discharges while repeating ionization and excitation, it stably has continuous wavelengths from the ultraviolet light region to the infrared light region. Since a xenon lamp requires less time to start than a lamp such as a metal halide lamp, the time required for the process can be significantly shortened. Furthermore, since it is necessary to apply a high voltage to emit light, high heat is generated instantaneously, but xenon lamps are also advantageous in that they have a short cooling time and can be used continuously.
  • All or part of the first resin layer 5a may adhere as a residue on the wiring layer 11 of the semiconductor member 30 with a wiring layer.
  • the attached residue is removed as shown in FIG. 4(c).
  • the attached residue may be peeled off, for example, or may be removed by washing with a solvent.
  • the solvent include ethanol, methanol, toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, hexane, and the like.
  • the semiconductor member 30 with wiring layer may be immersed in a solvent or may be subjected to ultrasonic cleaning. Further, in order to remove the adhered residue, the semiconductor member 30 with wiring layer may be heated at a low temperature of about 100° C. or lower, if necessary.
  • solder balls 17 may be provided on the wiring layer 11 of the semiconductor member 30 with a wiring layer, for example, as shown in FIG. 4(d).
  • Another embodiment of the method for manufacturing a semiconductor device includes the step of preparing the above wiring forming member 10B (step 4A, see FIG. 5(a)) and forming the wiring layer 12 on the second metal layer 3b. a step (step 4B, see FIG. 5(b)) and a step (step 4C, FIG. 5(c)) of arranging the semiconductor member 15 on the wiring layer 12 and producing a laminate 70 including the semiconductor member 60 with the wiring layer. ) and a step of irradiating the first metal layer 3a of the laminate 70 with light A containing at least infrared light from the support member 1 side to separate the support member 1 and the semiconductor member 60 with wiring layer. (Step 4D, see FIGS. 6(a) and 6(b)).
  • Step 4A In this step, the above wiring forming member is prepared. Below, an embodiment using the wiring forming member 10B will be mainly described in detail.
  • Step 4B In this step, a wiring layer 12 is formed on the second metal layer 3b.
  • Examples of the method for forming the wiring layer 12 on the second metal layer 3b include a semi-additive method.
  • a plating resist layer with a shape corresponding to a desired pattern is formed on a metal layer, a wiring layer is then formed by electrolytic plating, and the resist layer is removed to form a desired circuit.
  • This is a method of forming a wiring layer.
  • the unnecessary metal layer may be removed using a chemical solution or the like, or after producing the semiconductor member with the wiring layer.
  • a semi-additive method as a method of forming the wiring layer 12 on the second metal layer 3b, conventionally known resists, chemicals, etc. can be used.
  • the second metal layer 3b may be a metal layer formed by PVD.
  • Step 4C In this step, the semiconductor member 15 is placed on the wiring layer 12, and a stacked body 70 including the semiconductor member 60 with wiring layer is manufactured. Since this step is similar to step 3C, overlapping explanation will be omitted.
  • Step 4D the first metal layer 3a of the laminate 70 is irradiated with light A containing at least infrared light from the support member 1 side to separate the support member 1 and the semiconductor member 60 with wiring layers. Since this step is similar to step 3D, overlapping explanation will be omitted.
  • the second metal layer 3b may be attached on the wiring layer 12 of the semiconductor member 60 with wiring layer.
  • the second metal layer 3b is removed as shown in FIG. 6(d).
  • the second metal layer 3b may be removed, for example, by etching using a chemical solution, plasma, or the like.
  • solder balls 17 may be provided on the wiring layer 12 of the semiconductor member 60 with a wiring layer, for example, as shown in FIG. 6(e).
  • the wiring forming member of the present disclosure can be used in the manufacturing process of a semiconductor member with a wiring layer, and the support member and the semiconductor member with a wiring layer can be easily separated. Further, according to the present disclosure, it is possible to provide a laminated film for wiring formation that is useful for forming such a member for wiring formation. Furthermore, according to the present disclosure, it is possible to provide a method of manufacturing a semiconductor device using such a wiring forming member.
  • SYMBOLS 1 SYMBOLS 1...Supporting member, 3a...First metal layer, 3b...Second metal layer, 5a...First resin layer, 5b...Second resin layer, 7a...First curable resin layer, 7b...Second metal layer 2 curable resin layer, 10A, 10B... Member for wiring formation, 11, 12... Wiring layer, 13... Insulating layer, 15... Semiconductor member, 17... Solder ball, 20... Laminated film for wiring formation, 30, 60... Semiconductor member with wiring layer, 40, 70... Laminated body, 50, 80... Semiconductor device.

Abstract

Provided is a member for forming wiring. This member for forming wiring comprises a support member, a first metal layer, a first resin layer, and a second metal layer in this order. The first resin layer contains a first curable resin composition or a cured product thereof.

Description

配線形成用部材、配線形成用積層フィルム、及び半導体装置の製造方法Wiring forming member, wiring forming laminated film, and semiconductor device manufacturing method
 本開示は、配線形成用部材、配線形成用積層フィルム、及び半導体装置の製造方法に関する。 The present disclosure relates to a member for forming wiring, a laminated film for forming wiring, and a method for manufacturing a semiconductor device.
 高密度実装可能な先端パッケージの1つとして、FO-WLP(Fan-Out Wafer Level Packaging)が知られている。FO-WLPは、チップ上に形成された微細な再配線層(RDL:Redistribution Layer)が、チップの外形より外側に拡張されて形成されている構造のパッケージである。FO-WLPの組み立て工程は、2つに大別することができる。1つは、チップをはじめに搭載してから再配線層を形成する方法であり、Chip First法と呼ばれる。もう1つは、再配線層をはじめに形成してからチップを搭載する方法であり、RDL-First(Redistribution Layer-First)法と呼ばれる。 FO-WLP (Fan-Out Wafer Level Packaging) is known as one of the advanced packages that can be mounted at high density. The FO-WLP is a package having a structure in which a fine redistribution layer (RDL) formed on a chip is extended outside the outer shape of the chip. The FO-WLP assembly process can be roughly divided into two. One method is to first mount a chip and then form a rewiring layer, which is called the Chip First method. The other method is to first form a redistribution layer and then mount the chip, which is called the RDL-First (Redistribution Layer-First) method.
 近年、RDL-First法によるパッケージ(配線層付き半導体部材)の製造プロセスに好適に使用される配線形成用部材の開発が進められている。例えば、特許文献1には、キャリア(支持部材)と、ニッケル合金層と、炭素層と、極薄銅層とを備えるキャリア付銅箔(配線形成用部材)が開示されている。 In recent years, progress has been made in the development of wiring forming members suitable for use in the manufacturing process of packages (semiconductor members with wiring layers) using the RDL-First method. For example, Patent Document 1 discloses a carrier-attached copper foil (wiring forming member) that includes a carrier (supporting member), a nickel alloy layer, a carbon layer, and an ultra-thin copper layer.
特開2017-114070号公報Japanese Patent Application Publication No. 2017-114070
 RDL-First法による配線層付き半導体部材の製造プロセスにおいては、支持部材上の最表面にある金属層を加工して配線層(再配線層)を形成し、又は、金属層上に配線層(再配線層)を設け、必要に応じて、半導体チップを搭載してパッケージ(配線層付き半導体部材)を作製した後に、支持部材と配線層付き半導体部材とを分離する必要がある。しかしながら、従来の配線形成用部材では、支持部材と配線層付き半導体部材との分離が容易ではなく、この点の改善が求められている。 In the manufacturing process of a semiconductor member with a wiring layer using the RDL-First method, a metal layer on the outermost surface of a support member is processed to form a wiring layer (rewiring layer), or a wiring layer (rewiring layer) is formed on the metal layer. It is necessary to separate the support member and the semiconductor member with a wiring layer after providing a rewiring layer) and, if necessary, mounting a semiconductor chip and producing a package (semiconductor member with a wiring layer). However, in the conventional wiring forming member, it is not easy to separate the supporting member and the semiconductor member with a wiring layer, and there is a need for improvement in this point.
 そこで、本開示は、配線層付き半導体部材の製造プロセスに使用することが可能であり、支持部材と配線層付き半導体部材とを容易に分離することが可能な配線形成用部材を提供することを主な目的とする。 Therefore, it is an object of the present disclosure to provide a wiring forming member that can be used in the manufacturing process of a semiconductor member with a wiring layer and that can easily separate a supporting member and a semiconductor member with a wiring layer. Main purpose.
 本開示の一側面は、配線形成用部材に関する。当該配線形成用部材は、支持部材と、第1の金属層と、第1の樹脂層と、第2の金属層とをこの順に備える。第1の樹脂層は、第1の硬化性樹脂組成物又はその硬化物を含有する。配線形成用部材は、支持部材と第1の金属層との間に、第2の樹脂層をさらに備えていてもよい。この場合、第2の樹脂層は、第2の硬化性樹脂組成物又はその硬化物を含有する。このような配線形成用部材によれば、パッケージ(配線層付き半導体部材)の製造プロセスに好適に使用することが可能であり、支持部材側から少なくとも赤外光を含む光を照射することによって、支持部材と配線層付き半導体部材とを容易に分離することが可能となる。 One aspect of the present disclosure relates to a wiring forming member. The wiring forming member includes a support member, a first metal layer, a first resin layer, and a second metal layer in this order. The first resin layer contains a first curable resin composition or a cured product thereof. The wiring forming member may further include a second resin layer between the supporting member and the first metal layer. In this case, the second resin layer contains the second curable resin composition or a cured product thereof. According to such a wiring forming member, it can be suitably used in the manufacturing process of a package (semiconductor member with a wiring layer), and by irradiating light containing at least infrared light from the supporting member side, It becomes possible to easily separate the support member and the semiconductor member with a wiring layer.
 本開示の他の側面は、配線形成用積層フィルムに関する。当該配線形成用積層フィルムは、第1の金属層と、第1の金属層の一方の面上に設けられた、第1の硬化性樹脂組成物を含有する第1の硬化性樹脂層と、第1の金属層の他の一方の面上に設けられた、第2の硬化性樹脂組成物を含有する第2の硬化性樹脂層と、第1の硬化性樹脂層の第1の金属層とは反対側の面上に設けられた第2の金属層とを備える。 Another aspect of the present disclosure relates to a laminated film for forming wiring. The laminated film for wiring formation includes a first metal layer, a first curable resin layer containing a first curable resin composition provided on one surface of the first metal layer, a second curable resin layer containing a second curable resin composition provided on the other surface of the first metal layer; and a first metal layer of the first curable resin layer. and a second metal layer provided on the opposite surface.
 本開示の他の側面は、半導体装置の製造方法に関する。当該半導体装置の製造方法の一実施形態は、上記の配線形成用部材を準備する工程と、第2の金属層を加工して配線層を形成する工程と、配線層上に半導体部材を配置し、配線層付き半導体部材を備える積層体を作製する工程と、積層体の第1の金属層に対して支持部材側から少なくとも赤外光を含む光を照射して、支持部材と配線層付き半導体部材とを分離する工程とを備える。当該半導体装置の製造方法の他の実施形態は、上記の配線形成用部材を準備する工程と、第2の金属層上に配線層を形成する工程と、配線層上に半導体部材を配置し、配線層付き半導体部材を備える積層体を作製する工程と、積層体の第1の金属層に対して支持部材側から少なくとも赤外光を含む光を照射して、支持部材と配線層付き半導体部材とを分離する工程とを備える。 Another aspect of the present disclosure relates to a method for manufacturing a semiconductor device. One embodiment of the method for manufacturing the semiconductor device includes the steps of preparing the above wiring forming member, processing the second metal layer to form the wiring layer, and arranging the semiconductor member on the wiring layer. , a step of manufacturing a laminate including a semiconductor member with a wiring layer; and a step of separating the members. Another embodiment of the method for manufacturing the semiconductor device includes the steps of preparing the above wiring forming member, forming a wiring layer on the second metal layer, arranging the semiconductor member on the wiring layer, A step of manufacturing a laminate including a semiconductor member with a wiring layer, and irradiating a first metal layer of the laminate with light containing at least infrared light from the side of the support member to produce the support member and the semiconductor member with the wiring layer. and a step of separating the.
 本開示によれば、配線層付き半導体部材の製造プロセスに使用することが可能であり、支持部材と配線層付き半導体部材とを容易に分離することが可能な配線形成用部材が提供される。また、本開示によれば、このような配線形成用部材を形成するために有用な配線形成用積層フィルムが提供される。さらに、本開示によれば、このような配線形成用部材を用いた半導体装置の製造方法が提供される。 According to the present disclosure, there is provided a wiring forming member that can be used in the manufacturing process of a semiconductor member with a wiring layer and that can easily separate a supporting member and a semiconductor member with a wiring layer. Further, according to the present disclosure, a laminated film for wiring formation useful for forming such a member for wiring formation is provided. Furthermore, according to the present disclosure, a method of manufacturing a semiconductor device using such a wiring forming member is provided.
図1(a)及び(b)は、配線形成用部材の一実施形態を示す模式断面図である。FIGS. 1A and 1B are schematic cross-sectional views showing one embodiment of a wiring forming member. 図2は、配線形成用積層フィルムの一実施形態を示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing one embodiment of a laminated film for wiring formation. 図3は、半導体装置の製造方法の一実施形態を説明するための模式断面図であり、図3(a)、(b)、及び(c)は、各工程を示す模式断面図である。FIG. 3 is a schematic cross-sectional view for explaining one embodiment of a method for manufacturing a semiconductor device, and FIGS. 3(a), (b), and (c) are schematic cross-sectional views showing each step. 図4は、半導体装置の製造方法の一実施形態を説明するための模式断面図であり、図4(a)、(b)、(c)、及び(d)は、各工程を示す模式断面図である。FIG. 4 is a schematic cross-sectional view for explaining one embodiment of a method for manufacturing a semiconductor device, and FIGS. 4(a), (b), (c), and (d) are schematic cross-sectional views showing each step. It is a diagram. 図5は、半導体装置の製造方法の他の実施形態を説明するための模式断面図であり、図5(a)、(b)、及び(c)は、各工程を示す模式断面図である。FIG. 5 is a schematic cross-sectional view for explaining another embodiment of the method for manufacturing a semiconductor device, and FIGS. 5(a), (b), and (c) are schematic cross-sectional views showing each process. . 図6は、半導体装置の製造方法の他の実施形態を説明するための模式断面図であり、図6(a)、(b)、(c)、(d)、及び(e)は、各工程を示す模式断面図である。FIG. 6 is a schematic cross-sectional view for explaining another embodiment of the method for manufacturing a semiconductor device, and FIGS. 6(a), (b), (c), (d), and (e) each It is a schematic cross-sectional view showing a process.
 以下、図面を適宜参照しながら、本開示の実施形態について説明する。ただし、本開示は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(ステップ等も含む)は、特に明示した場合を除き、必須ではない。各図における構成要素の大きさは概念的なものであり、構成要素間の大きさの相対的な関係は各図に示されたものに限定されない。 Hereinafter, embodiments of the present disclosure will be described with appropriate reference to the drawings. However, the present disclosure is not limited to the following embodiments. In the following embodiments, the constituent elements (including steps, etc.) are not essential unless otherwise specified. The sizes of the components in each figure are conceptual, and the relative size relationships between the components are not limited to those shown in each figure.
 本開示における数値及びその範囲についても同様であり、本開示を制限するものではない。本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。 The same applies to the numerical values and their ranges in the present disclosure, and they do not limit the present disclosure. In this specification, a numerical range indicated using "-" indicates a range that includes the numerical values written before and after "-" as the minimum and maximum values, respectively. In the numerical ranges described step by step in this specification, the upper limit value or lower limit value described in one numerical range may be replaced with the upper limit value or lower limit value of another numerical range described step by step. good. Further, in the numerical ranges described in this specification, the upper limit or lower limit of the numerical range may be replaced with the value shown in the Examples.
 本明細書において「層」との語は、平面図として観察したときに、全面に形成されている形状の構造に加え、一部に形成されている形状の構造も包含される。また、本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。 In this specification, the term "layer" includes a structure that is formed on the entire surface as well as a structure that is formed on a part of the layer when observed as a plan view. In addition, in this specification, the term "process" does not only refer to an independent process, but also refers to a process that cannot be clearly distinguished from other processes, as long as the intended effect of the process is achieved. included.
 本明細書において、(メタ)アクリレートは、アクリレート又はそれに対応するメタクリレートを意味する。(メタ)アクリロイル基、(メタ)アクリル共重合体等の他の類似表現についても同様である。 As used herein, (meth)acrylate means acrylate or a methacrylate corresponding thereto. The same applies to other similar expressions such as (meth)acryloyl group and (meth)acrylic copolymer.
 本明細書中、以下で例示する材料は、特に断らない限り、条件に該当する範囲で、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。各成分の含有量は、各成分に該当する物質が複数存在する場合、特に断らない限り、当該複数の物質の合計量を意味する。 In this specification, unless otherwise specified, the materials exemplified below may be used alone or in combination of two or more within the range applicable to the conditions. When there are multiple substances corresponding to each component, the content of each component means the total amount of the multiple substances, unless otherwise specified.
[配線形成用部材及び配線形成用積層フィルム]
 図1(a)及び(b)は、配線形成用部材の一実施形態を示す模式断面図である。図1(a)に示される配線形成用部材10Aは、支持部材1と、第1の金属層3aと、第1の樹脂層5aと、第2の金属層3bとをこの順に備える。
[Member for wiring formation and laminated film for wiring formation]
FIGS. 1A and 1B are schematic cross-sectional views showing one embodiment of a wiring forming member. The wiring forming member 10A shown in FIG. 1(a) includes a support member 1, a first metal layer 3a, a first resin layer 5a, and a second metal layer 3b in this order.
 支持部材1は、高い透過率を有し、配線形成時に受ける負荷に耐え得る板状体である。支持部材1としては、例えば、無機ガラス基板、透明樹脂基板等が挙げられる。 The support member 1 is a plate-shaped body that has high transmittance and can withstand the load received during wiring formation. Examples of the support member 1 include an inorganic glass substrate, a transparent resin substrate, and the like.
 支持部材1の厚さは、例えば、0.1~2.0mmであってよい。支持部材1の厚さが0.1mm以上であると、ハンドリングが容易となる傾向にある。支持部材1の厚さが2.0mm以下であると、材料費を抑制することができる傾向にある。 The thickness of the support member 1 may be, for example, 0.1 to 2.0 mm. When the thickness of the support member 1 is 0.1 mm or more, handling tends to be easier. When the thickness of the support member 1 is 2.0 mm or less, material costs tend to be suppressed.
 第1の金属層3aは、赤外光を含む光を吸収して熱を発生する層である。第1の金属層3aを構成する金属は、赤外光を含む光を吸収して熱を発生する金属であれば特に制限されない。このような金属としては、例えば、クロム、銅、チタン、銀、白金、金等の金属、ニッケル-クロム、ステンレス鋼、銅-亜鉛等の合金、酸化インジウムスズ(ITO)、酸化亜鉛、酸化ニオブ等の金属酸化物などが挙げられる。これらの中でも、第1の金属層3aを構成する金属は、クロム、チタン、銅、アルミニウム、銀、金、又は白金であってよい。 The first metal layer 3a is a layer that absorbs light including infrared light and generates heat. The metal constituting the first metal layer 3a is not particularly limited as long as it absorbs light including infrared light and generates heat. Examples of such metals include metals such as chromium, copper, titanium, silver, platinum, and gold, alloys such as nickel-chromium, stainless steel, and copper-zinc, indium tin oxide (ITO), zinc oxide, and niobium oxide. Examples include metal oxides such as. Among these, the metal constituting the first metal layer 3a may be chromium, titanium, copper, aluminum, silver, gold, or platinum.
 第1の金属層3aは、複数の金属層から構成されていてもよい。このような第1の金属層3aとしては、例えば、金属層(1)と金属層(2)とを支持部材1からこの順に含む層等が挙げられる。金属層(1)を構成する金属は、支持部材との密着性、成膜性、熱伝導性、低熱容量等の観点から、チタンであってよい。金属層(2)を構成する金属は、高膨張係数、高熱伝導等の観点から、銅、アルミニウム、銀、金、又は白金であってよく、銅又はアルミニウムであってもよい。 The first metal layer 3a may be composed of multiple metal layers. Such a first metal layer 3a may include, for example, a layer including a metal layer (1) and a metal layer (2) in this order from the support member 1. The metal constituting the metal layer (1) may be titanium from the viewpoints of adhesion with the supporting member, film formability, thermal conductivity, low heat capacity, and the like. The metal constituting the metal layer (2) may be copper, aluminum, silver, gold, or platinum, or may be copper or aluminum, from the viewpoint of high expansion coefficient, high thermal conductivity, etc.
 第1の金属層3aは、金属箔を用いて形成される金属層、又は、真空蒸着、スパッタリング等の物理気相成長(PVD)によって形成される金属層であってよい。第1の金属層3aは、支持部材との密着性の観点から、PVDによって形成される金属層であることが好ましい。 The first metal layer 3a may be a metal layer formed using metal foil, or a metal layer formed by physical vapor deposition (PVD) such as vacuum evaporation or sputtering. The first metal layer 3a is preferably a metal layer formed by PVD from the viewpoint of adhesion to the support member.
 第1の金属層3aの厚さは、軽剥離性の観点から、1~5000nm(0.001~5μm)又は50~3000nm(0.05~3μm)であってよい。第1の金属層3aが金属層(1)と金属層(2)とから構成される層である場合、金属層(1)の厚さは、1~1000nm(0.001~1μm)、5~500nm(0.005~0.5μm)、又は10~100nm(0.01~0.1μm)であってよく、金属層(2)の厚さは、1~5000nm(0.001~5μm)、10~500nm(0.01~0.5μm)、又は50~200nm(0.05~0.2μm)であってよい。 The thickness of the first metal layer 3a may be 1 to 5000 nm (0.001 to 5 μm) or 50 to 3000 nm (0.05 to 3 μm) from the viewpoint of easy peelability. When the first metal layer 3a is a layer composed of a metal layer (1) and a metal layer (2), the thickness of the metal layer (1) is 1 to 1000 nm (0.001 to 1 μm), 5 ~500 nm (0.005-0.5 μm), or 10-100 nm (0.01-0.1 μm), and the thickness of the metal layer (2) is 1-5000 nm (0.001-5 μm) , 10 to 500 nm (0.01 to 0.5 μm), or 50 to 200 nm (0.05 to 0.2 μm).
 第1の樹脂層5aは、第1の硬化性樹脂組成物又はその硬化物を含有する。第1の硬化性樹脂組成物は、熱又は光によって硬化する硬化性樹脂組成物であり得る。すなわち、第1の樹脂層5aは、少なくとも一部が硬化し、半硬化(Bステージ)状態を経て、その後に加熱処理によって硬化(Cステージ)状態となり得るものであってよい。 The first resin layer 5a contains a first curable resin composition or a cured product thereof. The first curable resin composition may be a curable resin composition that is cured by heat or light. That is, the first resin layer 5a may be at least partially cured, go through a semi-cured (B stage) state, and then be able to become a cured (C stage) state by heat treatment.
 Bステージとは、ある種の熱硬化性樹脂の反応において、材料がある種の液体に接触する場合には膨潤しかつ加熱する場合には軟化するが、しかし完全には溶解又は溶融しない中間段階を意味し、Cステージとは、ある種の熱硬化性樹脂の反応において、その材料が事実上不溶不融となる最終段階を意味する。 The B stage is an intermediate stage in the reaction of certain thermosetting resins, where the material swells when in contact with certain liquids and softens when heated, but does not completely dissolve or melt. C-stage refers to the final stage in the reaction of certain thermosetting resins, when the material becomes virtually insoluble and infusible.
 第1の硬化性樹脂組成物は、一実施形態において、熱可塑性樹脂及び熱硬化性樹脂を含む。このとき、第1の硬化性樹脂組成物は、硬化促進剤、重合性モノマー、重合開始剤、その他の成分等をさらに含んでいてもよい。 In one embodiment, the first curable resin composition includes a thermoplastic resin and a thermosetting resin. At this time, the first curable resin composition may further contain a curing accelerator, a polymerizable monomer, a polymerization initiator, and other components.
 熱可塑性樹脂は、熱可塑性を有する樹脂、又は少なくとも未硬化状態において熱可塑性を有し、加熱後に架橋構造を形成する樹脂であってよい。熱可塑性樹脂としては、例えば、炭化水素樹脂、ポリカーボネート、ポリフェニレンスルフィド、ポリエーテルスルホン、ポリエーテルイミド、ポリイミド、石油樹脂、ノボラック樹脂等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらのうち、熱可塑性樹脂は、炭化水素樹脂であってよい。 The thermoplastic resin may be a thermoplastic resin, or a resin that has thermoplasticity at least in an uncured state and forms a crosslinked structure after heating. Examples of the thermoplastic resin include hydrocarbon resin, polycarbonate, polyphenylene sulfide, polyether sulfone, polyetherimide, polyimide, petroleum resin, and novolac resin. These may be used alone or in combination of two or more. Among these, the thermoplastic resin may be a hydrocarbon resin.
 炭化水素樹脂は、主骨格が炭化水素で構成される樹脂である。このような炭化水素樹脂としては、例えば、エチレン・プロピレン共重合体、エチレン・1-ブテン共重合体、エチレン・プロピレン・1-ブテン共重合体エラストマー、エチレン・1-ヘキセン共重合体、エチレン・1-オクテン共重合体、エチレン・スチレン共重合体、エチレン・ノルボルネン共重合体、プロピレン・1-ブテン共重合体、エチレン・プロピレン・非共役ジエン共重合体、エチレン・1-ブテン・非共役ジエン共重合体、エチレン・プロピレン・1-ブテン・非共役ジエン共重合体、ポリイソプレン、ポリブタジエン、スチレン・ブタジエン・スチレンブロック共重合体(SBS)、スチレン・イソプレン・スチレンブロック共重合体(SIS)、スチレン・エチレン・ブチレン・スチレンブロック共重合体(SEBS)、スチレン・エチレン・プロピレン・スチレンブロック共重合体(SEPS)等が挙げられる。これらの炭化水素樹脂は、水添処理が施されていてもよい。また、これらの炭化水素樹脂は、無水マレイン酸等によってカルボキシ変性されていてもよい。これらのうち、炭化水素樹脂は、スチレンに由来するモノマー単位を含む炭化水素樹脂(スチレン系樹脂)を含んでいてもよく、スチレン・エチレン・ブチレン・スチレンブロック共重合体(SEBS)を含んでいてもよい。 Hydrocarbon resin is a resin whose main skeleton is composed of hydrocarbon. Examples of such hydrocarbon resins include ethylene/propylene copolymer, ethylene/1-butene copolymer, ethylene/propylene/1-butene copolymer elastomer, ethylene/1-hexene copolymer, and ethylene/1-hexene copolymer. 1-octene copolymer, ethylene/styrene copolymer, ethylene/norbornene copolymer, propylene/1-butene copolymer, ethylene/propylene/non-conjugated diene copolymer, ethylene/1-butene/non-conjugated diene copolymer Copolymer, ethylene/propylene/1-butene/non-conjugated diene copolymer, polyisoprene, polybutadiene, styrene/butadiene/styrene block copolymer (SBS), styrene/isoprene/styrene block copolymer (SIS), Examples include styrene/ethylene/butylene/styrene block copolymer (SEBS), styrene/ethylene/propylene/styrene block copolymer (SEPS), and the like. These hydrocarbon resins may be subjected to hydrogenation treatment. Further, these hydrocarbon resins may be carboxy-modified with maleic anhydride or the like. Among these, the hydrocarbon resin may include a hydrocarbon resin containing monomer units derived from styrene (styrenic resin), and may include a styrene-ethylene-butylene-styrene block copolymer (SEBS). Good too.
 熱可塑性樹脂のTgは、-100~500℃、-50~300℃、又は-50~50℃であってよい。熱可塑性樹脂のTgが500℃以下であると、フィルム状の仮固定材を形成したときに、柔軟性を確保し易く、低温貼付性を向上させることができる傾向にある。熱可塑性樹脂のTgが-100℃以上であると、フィルム状の仮固定材を形成したときに、柔軟性が高くなり過ぎることによる取扱性及び剥離性の低下を抑制できる傾向にある。 The Tg of the thermoplastic resin may be -100 to 500°C, -50 to 300°C, or -50 to 50°C. When the Tg of the thermoplastic resin is 500° C. or lower, when a film-like temporary fixing material is formed, flexibility is easily ensured and low-temperature adhesion properties tend to be improved. When the Tg of the thermoplastic resin is −100° C. or higher, when a film-like temporary fixing material is formed, it tends to be possible to suppress deterioration in handleability and releasability due to excessive flexibility.
 熱可塑性樹脂のTgは、示差走査熱量測定(DSC)によって得られる中間点ガラス転移温度値である。熱可塑性樹脂のTgは、具体的には、昇温速度10℃/分、測定温度-80~80℃の条件で熱量変化を測定し、JIS K 7121に準拠した方法によって算出される中間点ガラス転移温度である。 The Tg of a thermoplastic resin is the midpoint glass transition temperature value obtained by differential scanning calorimetry (DSC). Specifically, the Tg of the thermoplastic resin is determined by measuring the change in heat value under the conditions of a temperature increase rate of 10°C/min and a measurement temperature of -80 to 80°C, and is calculated by a method based on JIS K 7121. is the transition temperature.
 熱可塑性樹脂の重量平均分子量(Mw)は、1万~500万又は10万~200万であってよい。重量平均分子量が1万以上であると、樹脂層の耐熱性を確保し易くなる傾向にある。重量平均分子量が500万以下であると、フィルム状の樹脂層を形成したときに、フローの低下及び貼付性の低下を抑制し易い傾向にある。なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)で標準ポリスチレンによる検量線を用いたポリスチレン換算値である。 The weight average molecular weight (Mw) of the thermoplastic resin may be 10,000 to 5 million or 100,000 to 2 million. When the weight average molecular weight is 10,000 or more, it tends to be easier to ensure the heat resistance of the resin layer. When the weight average molecular weight is 5,000,000 or less, when a film-like resin layer is formed, a decrease in flow and adhesiveness tends to be easily suppressed. Note that the weight average molecular weight is a polystyrene equivalent value obtained by gel permeation chromatography (GPC) using a standard polystyrene calibration curve.
 熱可塑性樹脂の含有量は、第1の硬化性樹脂組成物の総量100質量部に対して、40~90質量部であってよい。熱可塑性樹脂の含有量は、第1の硬化性樹脂組成物の総量100質量部に対して、50質量部以上又は60質量部以上であってもよく、85質量部以下又は80量部以下あってもよい。熱可塑性樹脂の含有量が上記範囲にあると、樹脂層の薄膜形成性及び平坦性により優れる傾向にある。 The content of the thermoplastic resin may be 40 to 90 parts by mass based on 100 parts by mass of the first curable resin composition. The content of the thermoplastic resin may be 50 parts by mass or more or 60 parts by mass or more, and 85 parts by mass or less or 80 parts by mass or less, based on 100 parts by mass of the total amount of the first curable resin composition. It's okay. When the content of the thermoplastic resin is within the above range, the resin layer tends to have better thin film forming properties and flatness.
 熱硬化性樹脂は、熱により硬化する樹脂を意味し、上記炭化水素樹脂を包含しない概念である。熱硬化性樹脂としては、例えば、エポキシ樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、熱硬化型ポリイミド樹脂、ポリウレタン樹脂、メラミン樹脂、ユリア樹脂等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらのうち、熱硬化性樹脂は、耐熱性、作業性、及び信頼性により優れることから、エポキシ樹脂であってよい。熱硬化性樹脂は、熱硬化性樹脂硬化剤(熱硬化性樹脂としてエポキシ樹脂を用いる場合、エポキシ樹脂硬化剤)と組み合わせて用いてもよい。 Thermosetting resin means a resin that is cured by heat, and is a concept that does not include the above-mentioned hydrocarbon resins. Examples of the thermosetting resin include epoxy resin, acrylic resin, silicone resin, phenol resin, thermosetting polyimide resin, polyurethane resin, melamine resin, and urea resin. These may be used alone or in combination of two or more. Among these, the thermosetting resin may be an epoxy resin because it is superior in heat resistance, workability, and reliability. The thermosetting resin may be used in combination with a thermosetting resin curing agent (when an epoxy resin is used as the thermosetting resin, an epoxy resin curing agent).
 エポキシ樹脂は、硬化して耐熱作用を有するものであれば特に限定されない。エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ等の二官能エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂等の脂環式エポキシ樹脂などが挙げられる。また、エポキシ樹脂は、例えば、多官能エポキシ樹脂、グリシジルアミン型エポキシ樹脂、又は複素環含有エポキシ樹脂であってもよい。これらの中でも、エポキシ樹脂は、耐熱性及び耐候性の観点から、脂環式エポキシ樹脂を含んでいてもよい。 The epoxy resin is not particularly limited as long as it hardens and has heat resistance. Examples of epoxy resins include bifunctional epoxy resins such as bisphenol A epoxy, phenol novolak epoxy resins, novolak epoxy resins such as cresol novolac epoxy resins, and alicyclic epoxy resins such as dicyclopentadiene epoxy resins. can be mentioned. Further, the epoxy resin may be, for example, a polyfunctional epoxy resin, a glycidylamine type epoxy resin, or a heterocycle-containing epoxy resin. Among these, the epoxy resin may include an alicyclic epoxy resin from the viewpoint of heat resistance and weather resistance.
 熱硬化性樹脂としてエポキシ樹脂を用いる場合、第1の硬化性樹脂組成物は、エポキシ樹脂硬化剤を含んでいてもよい。エポキシ樹脂硬化剤は、通常用いられている公知の硬化剤を使用することができる。エポキシ樹脂硬化剤としては、例えば、アミン、ポリアミド、酸無水物、ポリスルフィド、三フッ化ホウ素、ビスフェノールA型、ビスフェノールF型、ビスフェノールS型等のフェノール性水酸基を1分子中に2個以上有するビスフェノール、フェノールノボラック樹脂、ビスフェノールA型ノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂等のフェノール樹脂などが挙げられる。 When using an epoxy resin as the thermosetting resin, the first curable resin composition may contain an epoxy resin curing agent. As the epoxy resin curing agent, commonly used known curing agents can be used. Examples of epoxy resin curing agents include amines, polyamides, acid anhydrides, polysulfides, boron trifluoride, bisphenols having two or more phenolic hydroxyl groups in one molecule, such as bisphenol A type, bisphenol F type, and bisphenol S type. , phenol novolak resin, bisphenol A type novolak resin, cresol novolak resin, phenol aralkyl resin, and the like.
 熱硬化性樹脂及び熱硬化性樹脂硬化剤の合計の含有量は、第1の硬化性樹脂組成物の総量100質量部に対して、10~60質量部であってよい。熱硬化性樹脂及び熱硬化性樹脂硬化剤の合計の含有量は、第1の硬化性樹脂組成物の総量100質量部に対して、15質量部以上又は20質量部以上であってもよく、50質量部以下又は40質量部以下であってもよい。熱硬化性樹脂及び熱硬化性樹脂硬化剤の合計の含有量が上記範囲にあると、樹脂層の薄膜形成性、平坦性、耐熱性等により優れる傾向にある。 The total content of the thermosetting resin and thermosetting resin curing agent may be 10 to 60 parts by mass based on 100 parts by mass of the total amount of the first curable resin composition. The total content of the thermosetting resin and the thermosetting resin curing agent may be 15 parts by mass or more or 20 parts by mass or more with respect to 100 parts by mass of the total amount of the first curable resin composition, It may be 50 parts by mass or less or 40 parts by mass or less. When the total content of the thermosetting resin and the thermosetting resin curing agent is within the above range, the resin layer tends to have better thin film forming properties, flatness, heat resistance, etc.
 第1の硬化性樹脂組成物は、硬化促進剤をさらに含んでいてもよい。硬化促進剤としては、例えば、イミダゾール誘導体、ジシアンジアミド誘導体、ジカルボン酸ジヒドラジド、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、2-エチル-4-メチルイミダゾール-テトラフェニルボレート、1,8-ジアザビシクロ[5,4,0]ウンデセン-7-テトラフェニルボレート等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。 The first curable resin composition may further contain a curing accelerator. Examples of the curing accelerator include imidazole derivatives, dicyandiamide derivatives, dicarboxylic acid dihydrazide, triphenylphosphine, tetraphenylphosphonium tetraphenylborate, 2-ethyl-4-methylimidazole-tetraphenylborate, 1,8-diazabicyclo[5, 4,0] undecene-7-tetraphenylborate and the like. These may be used alone or in combination of two or more.
 硬化促進剤の含有量は、熱硬化性樹脂及び熱硬化性樹脂硬化剤の総量100質量部に対して、0.01~5質量部であってよい。硬化促進剤の含有量が上記範囲内であると、硬化性が向上し、耐熱性がより優れる傾向にある。 The content of the curing accelerator may be 0.01 to 5 parts by mass based on 100 parts by mass of the total amount of the thermosetting resin and thermosetting resin curing agent. When the content of the curing accelerator is within the above range, the curability tends to improve and the heat resistance tends to be better.
 第1の硬化性樹脂組成物は、重合性モノマー及び重合開始剤をさらに含んでいてもよい。重合性モノマーは、加熱又は紫外光等の照射によって重合するものであれば特に制限されない。重合性モノマーは、材料の選択性及び入手の容易さの観点から、例えば、エチレン性不飽和基等の重合性官能基を有する化合物であってよい。重合性モノマーとしては、例えば、(メタ)アクリレート、ハロゲン化ビニリデン、ビニルエーテル、ビニルエステル、ビニルピリジン、ビニルアミド、アリール化ビニル等が挙げられる。これらのうち、重合性モノマーは、(メタ)アクリレートであってもよい。(メタ)アクリレートは、単官能(1官能)、2官能、又は3官能以上のいずれであってもよいが、充分な硬化性を得る観点から、2官能以上の(メタ)アクリレートであってもよい。 The first curable resin composition may further contain a polymerizable monomer and a polymerization initiator. The polymerizable monomer is not particularly limited as long as it can be polymerized by heating or irradiation with ultraviolet light or the like. The polymerizable monomer may be, for example, a compound having a polymerizable functional group such as an ethylenically unsaturated group from the viewpoint of material selectivity and availability. Examples of the polymerizable monomer include (meth)acrylate, vinylidene halide, vinyl ether, vinyl ester, vinylpyridine, vinylamide, and arylated vinyl. Among these, the polymerizable monomer may be (meth)acrylate. The (meth)acrylate may be monofunctional (monofunctional), bifunctional, or trifunctional or more functional, but from the viewpoint of obtaining sufficient curability, it may be a difunctional or more functional (meth)acrylate. good.
 重合性モノマーの含有量は、第1の硬化性樹脂組成物の総量100質量部に対して、1~60質量部であってよい。 The content of the polymerizable monomer may be 1 to 60 parts by mass based on 100 parts by mass of the total amount of the first curable resin composition.
 重合開始剤は、加熱又は紫外光等の照射によって重合を開始させるものであれば特に制限されない。例えば、重合性モノマーとして、エチレン性不飽和基を有する化合物を用いる場合、重合性開始剤は熱ラジカル重合開始剤又は光ラジカル重合開始剤であってよい。 The polymerization initiator is not particularly limited as long as it can initiate polymerization by heating or irradiation with ultraviolet light or the like. For example, when a compound having an ethylenically unsaturated group is used as the polymerizable monomer, the polymerization initiator may be a thermal radical polymerization initiator or a photoradical polymerization initiator.
 重合開始剤の含有量は、重合性モノマーの総量100質量部に対して、0.01~5質量部であってよい。 The content of the polymerization initiator may be 0.01 to 5 parts by weight based on 100 parts by weight of the total amount of polymerizable monomers.
 第1の硬化性樹脂組成物は、絶縁性フィラー、増感剤、酸化防止剤等のその他の成分をさらに含んでいてもよい。 The first curable resin composition may further contain other components such as an insulating filler, a sensitizer, and an antioxidant.
 絶縁性フィラーは、樹脂層に低熱膨張性、低吸湿性を付与する目的で添加され得る。絶縁性フィラーとしては、例えば、シリカ、アルミナ、窒化ホウ素、チタニア、ガラス、セラミック等の非金属無機フィラーなどが挙げられる。これらの絶縁性フィラーは、1種を単独で又は2種以上を組み合わせて用いてもよい。絶縁性フィラーは、溶剤との分散性の観点から、その表面が表面処理剤で処理された粒子であってもよい。表面処理剤は、例えば、シランカップリング剤であってよい。 An insulating filler may be added for the purpose of imparting low thermal expansion and low hygroscopicity to the resin layer. Examples of the insulating filler include nonmetallic inorganic fillers such as silica, alumina, boron nitride, titania, glass, and ceramic. These insulating fillers may be used alone or in combination of two or more. From the viewpoint of dispersibility with a solvent, the insulating filler may be a particle whose surface is treated with a surface treatment agent. The surface treatment agent may be, for example, a silane coupling agent.
 絶縁性フィラーの含有量は、第1の硬化性樹脂組成物の総量100質量部に対して、5~20質量部であってよい。絶縁性フィラーの含有量が上記範囲内であると、光透過を妨げることなく耐熱性をより向上させることができる傾向にある。また、絶縁性フィラーの含有量が上記範囲内であると、軽剥離性にも寄与する可能性がある。 The content of the insulating filler may be 5 to 20 parts by mass based on 100 parts by mass of the first curable resin composition. When the content of the insulating filler is within the above range, heat resistance tends to be further improved without interfering with light transmission. Furthermore, when the content of the insulating filler is within the above range, it may also contribute to easy releasability.
 増感剤としては、例えば、アントラセン、フェナントレン、クリセン、ベンゾピレン、フルオランテン、ルブレン、ピレン、キサントン、インダンスレン、チオキサンテン-9-オン、2-イソプロピル-9H-チオキサンテン-9-オン、4-イソプロピル-9H-チオキサンテン-9-オン、1-クロロ-4‐プロポキシチオキサントン等が挙げられる。 Examples of the sensitizer include anthracene, phenanthrene, chrysene, benzopyrene, fluoranthene, rubrene, pyrene, xanthone, indanthrene, thioxanthene-9-one, 2-isopropyl-9H-thioxanthene-9-one, 4- Examples include isopropyl-9H-thioxanthene-9-one and 1-chloro-4-propoxythioxanthone.
 増感剤の含有量は、第1の硬化性樹脂組成物の総量100質量部に対して、0.01~10質量部であってよい。増感剤の含有量が上記範囲内であると、第1の硬化性樹脂組成物の特性及び薄膜性への影響が少ない傾向にある。 The content of the sensitizer may be 0.01 to 10 parts by mass based on 100 parts by mass of the first curable resin composition. When the content of the sensitizer is within the above range, it tends to have little influence on the properties and thin film properties of the first curable resin composition.
 酸化防止剤としては、例えば、ベンゾキノン、ハイドロキノン等のキノン誘導体、4-メトキシフェノール、4-t-ブチルカテコール等のフェノール誘導体(ヒンダードフェノール誘導体)、2,2,6,6-テトラメチルピペリジン-1-オキシル、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル等のアミノキシル誘導体、テトラメチルピペリジルメタクリレート等のヒンダードアミン誘導体などが挙げられる。 Examples of antioxidants include quinone derivatives such as benzoquinone and hydroquinone, phenol derivatives (hindered phenol derivatives) such as 4-methoxyphenol and 4-t-butylcatechol, and 2,2,6,6-tetramethylpiperidine. Examples include aminoxyl derivatives such as 1-oxyl and 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl, and hindered amine derivatives such as tetramethylpiperidyl methacrylate.
 酸化防止剤の含有量は、第1の硬化性樹脂組成物の総量100質量部に対して、0.1~10質量部であってよい。酸化防止剤の含有量が上記範囲内であると、熱可塑性樹脂及び熱硬化性樹脂の分解を抑制し、汚染を防ぐことができる傾向にある。 The content of the antioxidant may be 0.1 to 10 parts by mass based on 100 parts by mass of the first curable resin composition. When the content of the antioxidant is within the above range, the decomposition of the thermoplastic resin and the thermosetting resin tends to be suppressed and contamination can be prevented.
 第1の硬化性樹脂組成物の硬化物は、第1の硬化性樹脂組成物を熱硬化(又は光硬化)させることによって得ることができる。熱硬化の条件は、例えば、300℃以下又は100~250℃で、1~180分間又は1~120分間であってよい。 The cured product of the first curable resin composition can be obtained by thermally curing (or photocuring) the first curable resin composition. The heat curing conditions may be, for example, 300° C. or lower or 100 to 250° C. for 1 to 180 minutes or 1 to 120 minutes.
 第1の硬化性樹脂組成物及びその硬化物は、第1の樹脂層5aの主成分であり得る。第1の硬化性樹脂組成物及びその硬化物の合計の含有量は、第1の樹脂層5aの総量を基準として、80質量%以上、85質量%以上、90質量%以上、95質量%以上、又は100質量%であってよい。第1の樹脂層5aは、第1の硬化性樹脂組成物及びその硬化物からなるものであってよい。 The first curable resin composition and its cured product may be the main components of the first resin layer 5a. The total content of the first curable resin composition and its cured product is 80% by mass or more, 85% by mass or more, 90% by mass or more, 95% by mass or more, based on the total amount of the first resin layer 5a. , or 100% by mass. The first resin layer 5a may be made of a first curable resin composition and a cured product thereof.
 第1の樹脂層5aの厚さは、応力緩和の観点から、例えば、200μm以下であってよい。第1の樹脂層5aの厚さは、1~150μm又は10~100μmであってもよい。 The thickness of the first resin layer 5a may be, for example, 200 μm or less from the viewpoint of stress relaxation. The thickness of the first resin layer 5a may be 1 to 150 μm or 10 to 100 μm.
 第2の金属層3bは、加工されて配線層となる層又はめっき等の下地となる層である。第2の金属層3bを構成する金属は、銅又はチタンであってよく、銅であってもよい。 The second metal layer 3b is a layer that is processed to become a wiring layer or a layer that becomes a base for plating, etc. The metal constituting the second metal layer 3b may be copper or titanium, or may be copper.
 第2の金属層3bは、金属箔を用いて形成される金属層、又は、真空蒸着、スパッタリング等の物理気相成長(PVD)によって形成される金属層であってよい。金属箔は、銅箔又はチタン箔であってよく、銅箔であってもよい。 The second metal layer 3b may be a metal layer formed using metal foil, or a metal layer formed by physical vapor deposition (PVD) such as vacuum evaporation or sputtering. The metal foil may be copper foil or titanium foil, or may be copper foil.
 第2の金属層3bが金属箔から形成される金属層である場合、第2の金属層3bの厚さは、取扱性の観点から、1~40μm、3~35μm、又は5~30μmであってよい。第2の金属層3bがPVDによって形成される金属層である場合、第2の金属層3bの厚さは、取扱性の観点から、1~5000nm(0.001~5μm)又は50~3000nm(0.05~3μm)であってよい。 When the second metal layer 3b is a metal layer formed from metal foil, the thickness of the second metal layer 3b is 1 to 40 μm, 3 to 35 μm, or 5 to 30 μm from the viewpoint of handleability. It's fine. When the second metal layer 3b is a metal layer formed by PVD, the thickness of the second metal layer 3b is 1 to 5000 nm (0.001 to 5 μm) or 50 to 3000 nm ( 0.05 to 3 μm).
 図1(a)に示される配線形成用部材10Aの製造方法は、所定の構成を有する部材を得ることができるのであれば特に制限されない。配線形成用部材10Aは、例えば、支持部材1上に第1の金属層3aを設ける工程(工程1A)と、第1の金属層3a上に第1の樹脂層5aを設ける工程(工程1B)と、第1の樹脂層5a上に第2の金属層3bを設ける工程(工程1C)とを備える方法によって得ることができる。 The method of manufacturing the wiring forming member 10A shown in FIG. 1(a) is not particularly limited as long as a member having a predetermined configuration can be obtained. The wiring forming member 10A includes, for example, a step of providing the first metal layer 3a on the support member 1 (step 1A) and a step of providing the first resin layer 5a on the first metal layer 3a (step 1B). and a step of providing the second metal layer 3b on the first resin layer 5a (step 1C).
(工程1A)
 第1の金属層3aは、支持部材1上に、真空蒸着、スパッタリング等の物理気相成長(PVD)を実施することによって設けることができる。第1の金属層3aは、支持部材1上に、電解めっき又は無電解めっきを実施することによっても設けることができる。物理気相成長によれば、支持部材1が大きな面積を有していても、支持部材1の表面を覆う第1の金属層3aを効率的に形成することができる。
(Step 1A)
The first metal layer 3a can be provided on the support member 1 by performing physical vapor deposition (PVD) such as vacuum deposition or sputtering. The first metal layer 3a can also be provided on the support member 1 by electrolytic plating or electroless plating. According to physical vapor deposition, even if the support member 1 has a large area, the first metal layer 3a covering the surface of the support member 1 can be efficiently formed.
(工程1B)
 第1の金属層3a上に第1の樹脂層5aを設ける方法としては、例えば、以下の方法が挙げられる。まず、第1の硬化性樹脂組成物の各成分を、溶剤中で撹拌、混錬等を行うことによって、溶解又は分散させ、第1の硬化性樹脂組成物を含有する第1の樹脂ワニスを調製する。次いで、離型処理を施した支持フィルム上に、第1の樹脂ワニスをナイフコーター、ロールコーター、アプリケーター、コンマコーター、ダイコーター等を用いて塗工した後、加熱によって溶剤を揮発させて、支持フィルム上に、第1の樹脂フィルムを形成する。このとき、第1の樹脂ワニスの塗工量を調整することによって、第1の樹脂フィルム(第1の樹脂層5a)の厚さを調整することができる。第1の樹脂フィルムの厚さは、上記の第1の樹脂層5aの厚さと同様であってよい。次いで、第1の金属層3aに、得られた第1の樹脂フィルム(第1の樹脂層5a)を貼り付けることによって、第1の樹脂層5aを設けることができる。
(Process 1B)
Examples of the method for providing the first resin layer 5a on the first metal layer 3a include the following method. First, each component of the first curable resin composition is dissolved or dispersed by stirring, kneading, etc. in a solvent to form a first resin varnish containing the first curable resin composition. Prepare. Next, the first resin varnish is applied onto the release-treated support film using a knife coater, roll coater, applicator, comma coater, die coater, etc., and then the solvent is evaporated by heating to form the support film. A first resin film is formed on the film. At this time, the thickness of the first resin film (first resin layer 5a) can be adjusted by adjusting the coating amount of the first resin varnish. The thickness of the first resin film may be the same as the thickness of the first resin layer 5a described above. Next, the first resin layer 5a can be provided by attaching the obtained first resin film (first resin layer 5a) to the first metal layer 3a.
 第1の樹脂ワニスで使用される溶剤は、各成分を均一に溶解又は分散し得る特性を有するものであれば特に制限されない。このような溶剤としては、例えば、トルエン、キシレン、メシチレン、クメン、p-シメン等の芳香族炭化水素;ヘキサン、ヘプタン等の脂肪族炭化水素;メチルシクロヘキサン等の環状アルカン;テトラヒドロフラン、1,4-ジオキサン等の環状エーテル;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、4-ヒドロキシ-4-メチル-2-ペンタノン等のケトン;酢酸メチル、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、γ-ブチロラクトン等のエステル;エチレンカーボネート、プロピレンカーボネート等の炭酸エステル;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミドなどが挙げられる。これらの溶剤は、1種を単独で又は2種以上を組み合わせて用いてもよい。ワニス中の固形成分濃度は、ワニスの全質量を基準として、10~80質量%であってよい。 The solvent used in the first resin varnish is not particularly limited as long as it has the property of uniformly dissolving or dispersing each component. Examples of such solvents include aromatic hydrocarbons such as toluene, xylene, mesitylene, cumene, and p-cymene; aliphatic hydrocarbons such as hexane and heptane; cyclic alkanes such as methylcyclohexane; tetrahydrofuran, 1,4- Cyclic ethers such as dioxane; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone; methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, γ-butyrolactone, etc. carbonate esters such as ethylene carbonate and propylene carbonate; amides such as N,N-dimethylformamide, N,N-dimethylacetamide, and N-methyl-2-pyrrolidone. These solvents may be used alone or in combination of two or more. The concentration of solid components in the varnish may be from 10 to 80% by weight, based on the total weight of the varnish.
 第1の樹脂ワニスを調製する際の撹拌又は混錬は、例えば、撹拌機、らいかい機、3本ロールミル、ボールミル、ビーズミル、ホモディスパー等を用いて行うことができる。 Stirring or kneading during the preparation of the first resin varnish can be carried out using, for example, a stirrer, a miller, a three-roll mill, a ball mill, a bead mill, a homodisper, or the like.
 支持フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィン;ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルスルフィド、ポリエーテルスルホン、ポリエーテルケトン、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリ(メタ)アクリレート、ポリスルホン、液晶ポリマのフィルム等が挙げられる。支持フィルムの厚さは、例えば、1~250μmであってよい。 Examples of supporting films include polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate; polyolefins such as polyethylene and polypropylene; polycarbonate, polyamide, polyimide, polyamideimide, polyetherimide, polyether sulfide, and polyether. Examples include sulfone, polyether ketone, polyphenylene ether, polyphenylene sulfide, poly(meth)acrylate, polysulfone, and liquid crystal polymer films. The thickness of the support film may be, for example, from 1 to 250 μm.
 支持フィルムへ塗工した第1の樹脂ワニスから溶剤を揮発させる際の加熱条件は、使用する溶剤の種類等に合わせて適宜設定することができる。加熱条件は、例えば、40~120℃で0.1~30分間であってよい。 The heating conditions for volatilizing the solvent from the first resin varnish applied to the support film can be appropriately set according to the type of solvent used, etc. The heating conditions may be, for example, 40 to 120° C. for 0.1 to 30 minutes.
 第1の金属層3aに第1の樹脂フィルム(第1の樹脂層5a)を貼り付ける方法としては、例えば、加熱プレス、ロールラミネート、真空ラミネート等の方法が挙げられる。ラミネートは、例えば、0~120℃の温度条件下で行うことができる。 Examples of methods for attaching the first resin film (first resin layer 5a) to the first metal layer 3a include methods such as hot pressing, roll lamination, and vacuum lamination. Lamination can be performed, for example, at a temperature of 0 to 120°C.
 第1の金属層3a上に第1の樹脂層5aを設ける方法の他の例としては、例えば、第1の樹脂ワニスを第1の金属層3a上に直接塗工し、溶剤を加熱によって揮発させて、第1の樹脂層5aを形成する方法が挙げられる。 As another example of the method of providing the first resin layer 5a on the first metal layer 3a, for example, a first resin varnish is directly applied on the first metal layer 3a, and the solvent is volatilized by heating. For example, a method of forming the first resin layer 5a in this manner may be mentioned.
(工程1C)
 第2の金属層3bは、第1の樹脂層5a上に金属箔を配置することによって形成することができる。第2の金属層3bは、第1の樹脂層5a上に真空蒸着、スパッタリング等の物理気相成長(PVD)を実施することによっても形成することができる。
(Step 1C)
The second metal layer 3b can be formed by placing metal foil on the first resin layer 5a. The second metal layer 3b can also be formed by performing physical vapor deposition (PVD) such as vacuum deposition or sputtering on the first resin layer 5a.
 第1の樹脂層5a上に金属箔を用いて第2の金属層3bを形成する場合、第1の樹脂層5aは、Bステージ状態であることが好ましい。また、第1の樹脂層5aは、第2の金属層3bを加工する前に、第1の硬化性樹脂組成物を硬化させ、第1の硬化性樹脂組成物の硬化物を多く含み得るCステージ状態とすることが好ましい。 When forming the second metal layer 3b using metal foil on the first resin layer 5a, the first resin layer 5a is preferably in a B-stage state. In addition, the first resin layer 5a is formed by curing the first curable resin composition before processing the second metal layer 3b, so that the first resin layer 5a may contain a large amount of cured product of the first curable resin composition. Preferably, it is in a stage state.
 第1の樹脂層5a上にPVDを実施することによって第2の金属層3bを形成する場合、第1の樹脂層5aは、Bステージ状態であっても、第1の硬化性樹脂組成物の硬化物を多く含み得るCステージ状態であってもよいが、低分子成分の揮発を抑制する観点から、Cステージ状態であることが好ましい。第1の樹脂層5a中の第1の硬化性樹脂組成物を熱硬化(又は光硬化)させる条件は、上記と同様であってよい。 When forming the second metal layer 3b by performing PVD on the first resin layer 5a, the first resin layer 5a is made of the first curable resin composition even in the B stage state. Although it may be in a C-stage state that can contain a large amount of cured material, it is preferable to be in a C-stage state from the viewpoint of suppressing volatilization of low-molecular components. The conditions for thermally curing (or photocuring) the first curable resin composition in the first resin layer 5a may be the same as those described above.
 配線形成用部材10Aは、例えば、支持部材1と第1の金属層3aとを含む積層体Aを作製する工程(工程1D)と、第1の樹脂層5aと第2の金属層3bとを含む積層体Bを作製する工程(工程1E)と、積層体Aの第1の金属層3aに積層体Bの第1の樹脂層5aを貼り付ける工程(工程1F)とを備える方法によっても得ることができる。 The wiring forming member 10A includes, for example, a step (step 1D) of producing a laminate A including the support member 1 and the first metal layer 3a, and a step of forming the first resin layer 5a and the second metal layer 3b. It can also be obtained by a method comprising a step of producing a laminate B containing the laminate B (step 1E), and a step of pasting the first resin layer 5a of the laminate B on the first metal layer 3a of the laminate A (step 1F). be able to.
(工程1D)
 積層体Aは、工程1Aと同様にして、支持部材1上に第1の金属層3aを形成することによって得ることができる。
(Process 1D)
The laminate A can be obtained by forming the first metal layer 3a on the support member 1 in the same manner as in step 1A.
(工程1E)
 積層体Bは、工程1Bと同様にして、支持フィルム上に第1の樹脂フィルム(第1の樹脂層5a)を形成し、工程1Cと同様にして、第1の樹脂層5a上に、第2の金属層3bを形成することによって得ることができる。
(Step 1E)
Laminated body B is produced by forming a first resin film (first resin layer 5a) on a support film in the same manner as in step 1B, and forming a first resin film (first resin layer 5a) on the first resin layer 5a in the same manner as in step 1C. This can be obtained by forming the second metal layer 3b.
(工程1F)
 配線形成用部材10Aは、積層体Aの第1の金属層3aに積層体Bの第1の樹脂層5aを貼り付けることによって得ることができる。積層体Aの第1の金属層3aに積層体Bの第1の樹脂層5aを貼り付ける方法は、上記の第1の金属層3aに第1の樹脂フィルムを貼り付ける方法と同様であってよい。
(Process 1F)
The wiring forming member 10A can be obtained by attaching the first resin layer 5a of the laminate B to the first metal layer 3a of the laminate A. The method of attaching the first resin layer 5a of the laminate B to the first metal layer 3a of the laminate A is the same as the method of attaching the first resin film to the first metal layer 3a described above. good.
 図1(b)に示される配線形成用部材10Bは、支持部材1と、第2の樹脂層5bと、第1の金属層3aと、第1の樹脂層5aと、第2の金属層3bとをこの順に備える。第2の樹脂層5bは、第2の硬化性樹脂組成物又はその硬化物を含有する。配線形成用部材10Bは、配線形成用部材10Aにおいて、支持部材1と第1の金属層3aとの間に、第2の樹脂層5bをさらに備えるものということができる。 The wiring forming member 10B shown in FIG. 1(b) includes a support member 1, a second resin layer 5b, a first metal layer 3a, a first resin layer 5a, and a second metal layer 3b. and in this order. The second resin layer 5b contains a second curable resin composition or a cured product thereof. The wiring forming member 10B can be said to be the wiring forming member 10A that further includes a second resin layer 5b between the supporting member 1 and the first metal layer 3a.
 第2の樹脂層5bは、第2の硬化性樹脂組成物又はその硬化物を含有する。第2の硬化性樹脂組成物は、熱又は光によって硬化する硬化性樹脂組成物であり得る。すなわち、第2の樹脂層5bは、少なくとも一部が硬化した、半硬化(Bステージ)状態を経て、その後に加熱処理によって硬化(Cステージ)状態となり得るものであってよい。第2の硬化性樹脂組成物は、第1の硬化性樹脂組成物と同一であっても異なっていてもよいが、同一であることが好ましい。第2の硬化性樹脂組成物は、一実施形態において、熱可塑性樹脂及び熱硬化性樹脂を含む。このとき、第2の硬化性樹脂組成物は、硬化促進剤、重合性モノマー、重合開始剤、その他の成分等をさらに含んでいてもよい。第2の硬化性樹脂組成物の各成分としては、第1の硬化性樹脂組成物の各成分と同様のものが例示される。また、第2の硬化性樹脂組成物の各成分の含有量は、第1の硬化性樹脂組成物の各成分の含有量と同様である。したがって、ここでは、重複する説明を省略する。 The second resin layer 5b contains a second curable resin composition or a cured product thereof. The second curable resin composition may be a curable resin composition that is cured by heat or light. That is, the second resin layer 5b may be in a semi-cured (B stage) state in which at least a portion thereof is cured, and then can be brought into a hardened (C stage) state by heat treatment. The second curable resin composition may be the same as or different from the first curable resin composition, but is preferably the same. In one embodiment, the second curable resin composition includes a thermoplastic resin and a thermosetting resin. At this time, the second curable resin composition may further contain a curing accelerator, a polymerizable monomer, a polymerization initiator, and other components. Examples of each component of the second curable resin composition include the same components as those of the first curable resin composition. Moreover, the content of each component of the second curable resin composition is the same as the content of each component of the first curable resin composition. Therefore, redundant explanation will be omitted here.
 第2の硬化性樹脂組成物又はその硬化物は、第2の樹脂層5bの主成分であり得る。第2の硬化性樹脂組成物及びその硬化物の合計の含有量は、第2の樹脂層5bの総量を基準として、80質量%以上、85質量%以上、90質量%以上、95質量%以上、又は100質量%であってよい。第2の樹脂層5bは、第2の硬化性樹脂組成物及びその硬化物からなるものであってよい。 The second curable resin composition or its cured product may be the main component of the second resin layer 5b. The total content of the second curable resin composition and its cured product is 80% by mass or more, 85% by mass or more, 90% by mass or more, 95% by mass or more, based on the total amount of the second resin layer 5b. , or 100% by mass. The second resin layer 5b may be made of a second curable resin composition and a cured product thereof.
 第2の樹脂層5bの厚さは、光透過性の観点から、例えば、200μm以下であってよい。第2の樹脂層5bの厚さは、1~150μm又は10~100μmであってもよい。 The thickness of the second resin layer 5b may be, for example, 200 μm or less from the viewpoint of light transmittance. The thickness of the second resin layer 5b may be 1 to 150 μm or 10 to 100 μm.
 支持部材1と第1の金属層3aとの間に第2の樹脂層5bをさらに備える場合、第1の金属層3aは、金属箔を用いて形成される金属層、又は、真空蒸着、スパッタリング等の物理気相成長(PVD)によって形成される金属層であってよく、金属箔を用いて形成される金属層であることが好ましい。 When the second resin layer 5b is further provided between the support member 1 and the first metal layer 3a, the first metal layer 3a is a metal layer formed using metal foil, or a metal layer formed by vacuum deposition or sputtering. The metal layer may be formed by physical vapor deposition (PVD) such as, for example, and is preferably formed using metal foil.
 金属箔は、赤外光を含む光を吸収して熱を発生する金属からなる金属箔であれば特に制限されない。このような金属箔を構成する金属としては、例えば、銀、金、白金、銅、チタン、ニッケル、モリブデン、クロム、アルミニウム等の単一金属;SUS、ニクロム、ジュラルミン、青銅、白銅、黄銅、鋼等の合金などが挙げられる。金属箔を構成する金属は、高膨張係数、高熱伝導等の観点から、銀、金、白金、銅、チタン、ニッケル、モリブデン、クロム、及びアルミニウムからなる群より選ばれる少なくとも1種であってよく、銅であってもよい。 The metal foil is not particularly limited as long as it is made of a metal that absorbs light including infrared light and generates heat. Metals constituting such metal foil include, for example, single metals such as silver, gold, platinum, copper, titanium, nickel, molybdenum, chromium, and aluminum; SUS, nichrome, duralumin, bronze, cupronickel, brass, and steel. Examples include alloys such as The metal constituting the metal foil may be at least one selected from the group consisting of silver, gold, platinum, copper, titanium, nickel, molybdenum, chromium, and aluminum from the viewpoint of high expansion coefficient, high thermal conductivity, etc. , may be copper.
 第1の金属層3aが金属箔を用いて形成される金属層である場合、第1の金属層3aの厚さは、取扱性の観点から、1~40μm、3~35μm、又は5~30μmであってよい。第1の金属層3aがPVDによって形成される金属層である場合、第1の金属層3aの厚さは、取扱性の観点から、1~5000nm(0.001~5μm)又は50~3000nm(0.05~3μm)であってよい。 When the first metal layer 3a is a metal layer formed using metal foil, the thickness of the first metal layer 3a is 1 to 40 μm, 3 to 35 μm, or 5 to 30 μm from the viewpoint of handleability. It may be. When the first metal layer 3a is a metal layer formed by PVD, the thickness of the first metal layer 3a is 1 to 5000 nm (0.001 to 5 μm) or 50 to 3000 nm ( 0.05 to 3 μm).
 図1(b)に示される配線形成用部材10Bの製造方法は、所定の構成を有する部材を得ることができるのであれば特に制限されない。配線形成用部材10Bは、例えば、支持部材1上に第2の樹脂層5bを設ける工程(工程2A)と、第2の樹脂層5b上に第1の金属層3aを設ける工程(工程2B)と、第1の金属層3a上に第1の樹脂層5aを設ける工程(工程2C)と、第1の樹脂層5a上に第2の金属層3bを設ける工程(工程2D)とを備える方法によって得ることができる。 The method for manufacturing the wiring forming member 10B shown in FIG. 1(b) is not particularly limited as long as a member having a predetermined configuration can be obtained. The wiring forming member 10B includes, for example, a step of providing the second resin layer 5b on the support member 1 (step 2A) and a step of providing the first metal layer 3a on the second resin layer 5b (step 2B). A method comprising: a step of providing a first resin layer 5a on the first metal layer 3a (step 2C); and a step of providing a second metal layer 3b on the first resin layer 5a (step 2D). can be obtained by
(工程2A)
 支持部材1上に第2の樹脂層5bを設ける方法としては、上記の工程1Bと同様にして、第2の硬化性樹脂組成物を含有する第2の樹脂ワニスを調製し、第2の樹脂フィルムを形成する。次いで、支持部材1に、得られた第2の樹脂フィルム(第2の樹脂層5b)を貼り付けることによって、第2の樹脂層5bを設けることができる。第2の樹脂フィルムの厚さは、上記の第2の樹脂層5bの厚さと同様であってよい。支持部材1上に第2の樹脂層5bを設ける方法の他の例としては、例えば、第2の樹脂ワニスを支持部材1上に直接塗工し、溶剤を加熱によって揮発させて、第2の樹脂層5bを形成する方法が挙げられる。
(Step 2A)
As a method for providing the second resin layer 5b on the support member 1, a second resin varnish containing the second curable resin composition is prepared in the same manner as in step 1B above, and the second resin layer 5b is Form a film. Next, the second resin layer 5b can be provided by attaching the obtained second resin film (second resin layer 5b) to the support member 1. The thickness of the second resin film may be the same as the thickness of the second resin layer 5b described above. As another example of the method of providing the second resin layer 5b on the support member 1, for example, the second resin varnish is directly applied on the support member 1, the solvent is volatilized by heating, and the second resin layer 5b is formed on the support member 1. A method for forming the resin layer 5b may be mentioned.
(工程2B)
 第1の金属層3aは、第2の樹脂層5b上に金属箔を配置することによって形成することができる。第1の金属層3aは、第2の樹脂層5b上に真空蒸着、スパッタリング等の物理気相成長(PVD)を実施することによっても形成することができる。
(Process 2B)
The first metal layer 3a can be formed by placing metal foil on the second resin layer 5b. The first metal layer 3a can also be formed on the second resin layer 5b by performing physical vapor deposition (PVD) such as vacuum deposition or sputtering.
 第2の樹脂層5b上に金属箔を配置する方法は、第1の樹脂層5a上に金属箔を配置する方法と同様であってよい。金属箔を配置する場合、第2の樹脂層5bは、Bステージ状態であることが好ましい。また、第2の樹脂層5bは、第2の金属層3bを加工する前に、第2の硬化性樹脂組成物を硬化させ、第2の硬化性樹脂組成物の硬化物を多く含み得るCステージ状態とすることが好ましい。第2の硬化性樹脂組成物を硬化させる場合、第1の硬化性樹脂組成物も硬化し得ることから、第2の樹脂層5bがCステージ状態である場合は、第1の樹脂層5aもCステージ状態であり得る。熱硬化の条件は、上記と同様であってよい。 The method of arranging the metal foil on the second resin layer 5b may be the same as the method of arranging the metal foil on the first resin layer 5a. When disposing metal foil, the second resin layer 5b is preferably in a B-stage state. Further, the second resin layer 5b is formed by curing the second curable resin composition before processing the second metal layer 3b, and may contain a large amount of cured product of the second curable resin composition. Preferably, it is in a stage state. When the second curable resin composition is cured, the first curable resin composition can also be cured, so when the second resin layer 5b is in the C stage state, the first resin layer 5a is also cured. It may be in C stage condition. The conditions for thermosetting may be the same as above.
 第2の樹脂層5b上にPVDを実施することによって第1の金属層3aを形成する場合、第2の樹脂層5bは、Bステージ状態であっても、第2の硬化性樹脂組成物の硬化物を多く含み得るCステージ状態であってもよいが、低分子成分の揮発を抑制する観点から、Cステージ状態であることが好ましい。第2の樹脂層5b中の第2の硬化性樹脂組成物を熱硬化(又は光硬化)させる条件は、上記と同様であってよい。 When forming the first metal layer 3a on the second resin layer 5b by performing PVD, the second resin layer 5b is formed of the second curable resin composition even in the B stage state. Although it may be in a C-stage state that can contain a large amount of cured material, it is preferable to be in a C-stage state from the viewpoint of suppressing volatilization of low-molecular components. The conditions for thermally curing (or photocuring) the second curable resin composition in the second resin layer 5b may be the same as those described above.
(工程2C)
 第1の金属層3a上に第1の樹脂層5aを設ける方法は、上記の工程1Bと同様であってよい。
(Step 2C)
The method of providing the first resin layer 5a on the first metal layer 3a may be the same as the above step 1B.
(工程2D)
 第2の金属層3bは、工程1Cと同様にして、第1の樹脂層5a上に形成することができる。
(Process 2D)
The second metal layer 3b can be formed on the first resin layer 5a in the same manner as in step 1C.
 図2は、配線形成用積層フィルムの一実施形態を示す模式断面図である。図2に示される配線形成用積層フィルム20は、第1の金属層3aと、第1の金属層3aの一方の面上に設けられた、第1の硬化性樹脂組成物を含有する第1の硬化性樹脂層7aと、第1の金属層3aの他の一方の面上に設けられた、第2の硬化性樹脂組成物を含有する第2の硬化性樹脂層7bと、第1の硬化性樹脂層7aの第1の金属層3aとは反対側の面上に設けられた第2の金属層3bとを備える。配線形成用積層フィルム20は、第2の硬化性樹脂層7bと、第1の金属層3aと、第1の硬化性樹脂層7aと、第2の金属層3bとをこの順に備える。第1の硬化性樹脂層7aに含有される第1の硬化性樹脂組成物は、第1の樹脂層5aに含有される第1の硬化性樹脂組成物と同一であり、第2の硬化性樹脂層7bに含有される第2の硬化性樹脂組成物は、第2の樹脂層5bに含有される第2の硬化性樹脂組成物と同一である。 FIG. 2 is a schematic cross-sectional view showing one embodiment of a laminated film for wiring formation. The wiring forming laminated film 20 shown in FIG. a second curable resin layer 7b containing a second curable resin composition provided on the other surface of the first metal layer 3a; A second metal layer 3b is provided on the surface of the curable resin layer 7a opposite to the first metal layer 3a. The wiring forming laminated film 20 includes a second curable resin layer 7b, a first metal layer 3a, a first curable resin layer 7a, and a second metal layer 3b in this order. The first curable resin composition contained in the first curable resin layer 7a is the same as the first curable resin composition contained in the first resin layer 5a, and the second curable resin composition is the same as the first curable resin composition contained in the first resin layer 5a. The second curable resin composition contained in the resin layer 7b is the same as the second curable resin composition contained in the second resin layer 5b.
 配線形成用部材10Bは、例えば、配線形成用積層フィルム20を作製する工程(工程2E)と、支持部材1に配線形成用積層フィルム20の第2の硬化性樹脂層7bを貼り付ける工程(工程2F)とを備える方法によっても得ることができる。 The wiring forming member 10B includes, for example, the step of producing the wiring forming laminated film 20 (step 2E) and the step of pasting the second curable resin layer 7b of the wiring forming laminated film 20 on the supporting member 1 (step 2F).
(工程2E)
 配線形成用積層フィルム20は、例えば、工程2Aと同様にして、支持フィルム上に第2の硬化性樹脂層7bを形成し、工程2Bと同様にして、第2の硬化性樹脂層7b上に第1の金属層3aを形成し、工程2Cと同様にして、第1の金属層3a上に第1の硬化性樹脂層7aを形成し、さらに第1の硬化性樹脂層7a上に第1の金属層3aを形成することによって得ることができる。
(Step 2E)
The wiring forming laminated film 20 is produced by, for example, forming the second curable resin layer 7b on the support film in the same manner as in step 2A, and forming the second curable resin layer 7b on the second curable resin layer 7b in the same manner as in step 2B. A first metal layer 3a is formed, a first curable resin layer 7a is formed on the first metal layer 3a, and a first curable resin layer 7a is further formed on the first curable resin layer 7a in the same manner as in step 2C. This can be obtained by forming the metal layer 3a of.
(工程2F)
 配線形成用部材10Bは、支持部材1に配線形成用積層フィルム20の第2の硬化性樹脂層7bを貼り付けることによって得ることができる。支持部材1に配線形成用積層フィルム20の第2の硬化性樹脂層7bを貼り付ける方法は、上記の第1の金属層3aに第1の樹脂フィルムを貼り付ける方法と同様であってよい。
(Process 2F)
The wiring forming member 10B can be obtained by attaching the second curable resin layer 7b of the wiring forming laminated film 20 to the supporting member 1. The method of attaching the second curable resin layer 7b of the wiring-forming laminated film 20 to the support member 1 may be the same as the method of attaching the first resin film to the first metal layer 3a described above.
 このようにして、配線形成用部材10A,10Bを得ることができる。配線形成用部材10A,10Bにおいて、第1の樹脂層5aは、第1の硬化性樹脂組成物の硬化物を含有することが好ましく、第2の樹脂層5bは、第2の硬化性樹脂組成物の硬化物を含有することが好ましい。すなわち、第1の樹脂層5a及び第2の樹脂層5bは、Cステージ状態にあることが好ましい。 In this way, wiring forming members 10A and 10B can be obtained. In the wiring forming members 10A and 10B, the first resin layer 5a preferably contains a cured product of the first curable resin composition, and the second resin layer 5b contains the second curable resin composition. It is preferable to contain a cured product of the product. That is, the first resin layer 5a and the second resin layer 5b are preferably in a C-stage state.
 このような配線形成用部材10A,10Bによれば、パッケージ(配線層付き半導体部材)の製造プロセスに好適に使用することが可能であり、支持部材側から少なくとも赤外光を含む光を照射することによって、支持部材と配線層付き半導体部材とを容易に分離することが可能となる。 Such wiring forming members 10A and 10B can be suitably used in the manufacturing process of packages (semiconductor members with wiring layers), and can be irradiated with light containing at least infrared light from the support member side. This makes it possible to easily separate the support member and the semiconductor member with wiring layer.
[半導体装置の製造方法]
 図3及び図4は、半導体装置の製造方法の一実施形態を説明するための模式断面図である。半導体装置の製造方法の一実施形態は、上記の配線形成用部材10Bを準備する工程(工程3A、図3(a)参照)と、第2の金属層3bを加工して配線層11を形成する工程(工程3B、図3(b)参照)と、配線層11上に半導体部材15を配置し、配線層付き半導体部材30を備える積層体40を作製する工程(工程3C、図3(c)参照)と、積層体40の第1の金属層3aに対して支持部材1側から少なくとも赤外光を含む光Aを照射して、支持部材1と配線層付き半導体部材30とを分離する工程(工程3D、図4(a)、(b)参照)とを備える。
[Method for manufacturing semiconductor device]
3 and 4 are schematic cross-sectional views for explaining one embodiment of a method for manufacturing a semiconductor device. One embodiment of the method for manufacturing a semiconductor device includes the step of preparing the above wiring forming member 10B (step 3A, see FIG. 3(a)) and forming the wiring layer 11 by processing the second metal layer 3b. (step 3B, see FIG. 3(b)), and a step of arranging the semiconductor member 15 on the wiring layer 11 to produce a laminate 40 including the semiconductor member 30 with wiring layer (step 3C, FIG. 3(c) ), and the first metal layer 3a of the laminate 40 is irradiated with light A containing at least infrared light from the support member 1 side, thereby separating the support member 1 and the semiconductor member 30 with wiring layer. (Step 3D, see FIGS. 4(a) and 4(b)).
(工程3A)
 本工程では、上記の配線形成用部材を準備する。以下では、主に、配線形成用部材10Bを用いた態様について詳細に説明する。
(Step 3A)
In this step, the above wiring forming member is prepared. Below, an embodiment using the wiring forming member 10B will be mainly described in detail.
(工程3B)
 本工程では、第2の金属層3bを加工して配線層11を形成する。第2の金属層3bを加工して配線層11を形成する方法としては、例えば、サブトラクティブ法(エッチング法)等が挙げられる。
(Process 3B)
In this step, the second metal layer 3b is processed to form the wiring layer 11. Examples of the method for forming the wiring layer 11 by processing the second metal layer 3b include a subtractive method (etching method).
 サブトラクティブ法は、金属層上に、所望のパターン形状に対応した形状のエッチングレジスト層を形成し、その後の現像処理によって、レジストの除去された部分の金属層を薬液で溶解して除去することによって、所望の回路を有する配線層を形成する方法である。第2の金属層3bを加工して配線層11を形成する方法としてサブトラクティブ法を適用する場合、従来公知のレジスト、薬液等を使用することができる。また、サブトラクティブ法を適用する場合、第2の金属層3bは、金属箔を用いて形成される金属層であってよい。 In the subtractive method, an etching resist layer with a shape corresponding to the desired pattern is formed on the metal layer, and then the metal layer in the area where the resist was removed is dissolved with a chemical solution and removed through a subsequent development process. This method forms a wiring layer having a desired circuit. When applying the subtractive method as a method of processing the second metal layer 3b to form the wiring layer 11, conventionally known resists, chemicals, etc. can be used. Furthermore, when applying the subtractive method, the second metal layer 3b may be a metal layer formed using metal foil.
(工程3C)
 本工程では、配線層11上に半導体部材15を配置し、配線層付き半導体部材30を備える積層体40を作製する。半導体部材15としては、例えば、半導体ウェハ、半導体ウェハを分割して得られる半導体チップ等が挙げられる。配線層11上に配置される半導体部材15の数は、1個であってもよく、複数であってもよい。半導体部材15の厚さは、半導体装置の小型化、薄型化に加えて、搬送時、加工工程等の際の割れ抑制の観点から、1~1000μm、10~500μm、又は20~200μmであってよい。
(Step 3C)
In this step, the semiconductor member 15 is placed on the wiring layer 11, and a laminate 40 including the semiconductor member 30 with wiring layer is produced. Examples of the semiconductor member 15 include a semiconductor wafer, a semiconductor chip obtained by dividing a semiconductor wafer, and the like. The number of semiconductor members 15 arranged on the wiring layer 11 may be one or more. The thickness of the semiconductor member 15 is 1 to 1000 μm, 10 to 500 μm, or 20 to 200 μm from the viewpoint of reducing the size and thickness of the semiconductor device as well as suppressing cracking during transportation, processing, etc. good.
 半導体部材15を配線層11上に配置する場合、半導体部材15が配置される面における配線層11が形成されていない部分には、絶縁層13が形成されていてもよい。 When the semiconductor member 15 is placed on the wiring layer 11, the insulating layer 13 may be formed on the surface where the semiconductor member 15 is placed where the wiring layer 11 is not formed.
 半導体部材15は、配線層11上に配置した後に所望の加工が実施されてもよい。半導体部材の加工は、例えば、半導体ウェハ又は半導体チップの薄化、半導体部材の分割(ダイシング)、貫通電極の形成、エッチング処理、めっきリフロー処理、スパッタリング処理、又はこれらの組み合わせを含むことができる。加工された半導体部材は、封止層で封止されていてもよい。封止層は、半導体部材(半導体装置)の製造のために通常用いられる封止材を用いて形成することができる。封止層を形成した後、封止層及び配線層を、半導体部材を1個ずつ含む複数の部分に分割してもよい。 The semiconductor member 15 may be subjected to desired processing after being placed on the wiring layer 11. Processing of a semiconductor member can include, for example, thinning a semiconductor wafer or semiconductor chip, dividing the semiconductor member (dicing), forming through electrodes, etching processing, plating reflow processing, sputtering processing, or a combination thereof. The processed semiconductor member may be sealed with a sealing layer. The sealing layer can be formed using a sealing material commonly used for manufacturing semiconductor members (semiconductor devices). After forming the sealing layer, the sealing layer and the wiring layer may be divided into a plurality of parts each containing one semiconductor member.
(工程3D)
 本工程では、積層体40の第1の金属層3aに対して支持部材1側から少なくとも赤外光を含む光Aを照射して、支持部材1と配線層付き半導体部材30とを分離する。光Aの照射によって、第1の金属層3aが光を吸収して熱を瞬間的に発生する。発生した熱によって、第1の樹脂層5aの溶融、支持部材1と配線層付き半導体部材30との間に生じる熱応力等が発生し得る。これらの現象が主な原因となって、例えば、界面剥離(例えば、第1の金属層3aと第1の樹脂層5aとの界面における界面剥離)、凝集剥離(例えば、第1の樹脂層5aにおける凝集剥離)などが発生して、支持部材1と配線層付き半導体部材30とを分離し得る。支持部材1と配線層付き半導体部材30とを分離するために、光Aの照射とともに、配線層付き半導体部材30に対して応力をわずかに加えてもよい。
(Process 3D)
In this step, the first metal layer 3a of the laminate 40 is irradiated with light A containing at least infrared light from the support member 1 side to separate the support member 1 and the semiconductor member 30 with wiring layers. When irradiated with light A, the first metal layer 3a absorbs the light and instantaneously generates heat. The generated heat may cause melting of the first resin layer 5a, thermal stress between the support member 1 and the semiconductor member 30 with a wiring layer, and the like. These phenomena are the main causes, for example, interfacial peeling (for example, interfacial peeling at the interface between the first metal layer 3a and the first resin layer 5a), cohesive peeling (for example, the first resin layer 5a Cohesion and peeling) may occur, and the supporting member 1 and the semiconductor member 30 with a wiring layer may be separated. In order to separate the supporting member 1 and the semiconductor member 30 with a wiring layer, a slight stress may be applied to the semiconductor member 30 with a wiring layer in addition to the irradiation with the light A.
 光Aは、少なくとも赤外光を含む。赤外光の波長は、通常、700nm~1mmである。 Light A includes at least infrared light. The wavelength of infrared light is usually 700 nm to 1 mm.
 光Aは、コヒーレント光であってよい。コヒーレント光は、可干渉性が高い、指向性が高い、単色性が高いといった性質を有する電磁波である。コヒーレント光は、同一波長で同位相の光が互いに強め合って合成されるため、強度が高い傾向を有する。レーザー光は、一般にコヒーレント光である。レーザー光は、YAGレーザー、ファイバレーザー、半導体レーザー、ヘリウムーネオンレーザー、アルゴンレーザー、エキシマレーザー等が挙げられる。レーザー光の波長は、1300nm以下であってもよい。波長が1300nm以下であることにより、支持部材1の光吸収が抑制され、かつ、第1の金属層3aの光吸収が高くなるため、より低い光照射エネルギーで剥離することが可能である。コヒーレント光は、パルス光であってもよい。 The light A may be coherent light. Coherent light is an electromagnetic wave that has properties such as high coherence, high directivity, and high monochromaticity. Coherent light tends to have high intensity because light having the same wavelength and the same phase is reinforced and combined with each other. Laser light is generally coherent light. Examples of laser light include YAG laser, fiber laser, semiconductor laser, helium-neon laser, argon laser, excimer laser, and the like. The wavelength of the laser light may be 1300 nm or less. When the wavelength is 1300 nm or less, the light absorption of the supporting member 1 is suppressed and the light absorption of the first metal layer 3a is increased, so that it is possible to peel off with lower light irradiation energy. The coherent light may be pulsed light.
 光Aは、インコヒーレント光であってよい。インコヒーレント光は、コヒーレントでない光であり、干渉縞が発生しない、可干渉性が低い、指向性が低いといった性質を有する電磁波である。インコヒーレント光は、光路長が長くなるほど、減衰する傾向を有する。太陽光、蛍光灯の光等の光は、インコヒーレント光である。インコヒーレント光は、レーザー光を除く光ということもできる。インコヒーレント光の照射面積は、一般にコヒーレント光(すなわち、レーザー光)よりも圧倒的に広いため、照射回数を少なくすることが可能である。例えば、1回の照射により、複数の配線層付き半導体部材30の分離を生じさせ得る。インコヒーレント光は、パルス光であってもよい。 The light A may be incoherent light. Incoherent light is non-coherent light, and is an electromagnetic wave that does not generate interference fringes, has low coherence, and has low directivity. Incoherent light tends to be attenuated as the optical path length becomes longer. Light such as sunlight and fluorescent light is incoherent light. Incoherent light can also be said to be light other than laser light. Since the irradiation area of incoherent light is generally much wider than that of coherent light (ie, laser light), it is possible to reduce the number of times of irradiation. For example, one irradiation can cause separation of a plurality of semiconductor members 30 with wiring layers. The incoherent light may be pulsed light.
 光の光源は、特に制限されないが、キセノンランプであってよい。キセノンランプは、キセノンガスを封入した発光管での印加・放電による発光を利用したランプである。キセノンランプは、電離及び励起を繰り返しながら放電するため、紫外光領域から赤外光領域までの連続波長を安定的に有する。キセノンランプは、メタルハライドランプ等のランプと比較して始動に要する時間が短いため、工程に係る時間を大幅に短縮することができる。また、発光には、高電圧を印加する必要があるため、高熱が瞬間的に生じるが、冷却時間が短く、連続的な作業が可能な点でも、キセノンランプは有利である。 The light source is not particularly limited, but may be a xenon lamp. A xenon lamp is a lamp that utilizes light emission by application and discharge in an arc tube filled with xenon gas. Since a xenon lamp discharges while repeating ionization and excitation, it stably has continuous wavelengths from the ultraviolet light region to the infrared light region. Since a xenon lamp requires less time to start than a lamp such as a metal halide lamp, the time required for the process can be significantly shortened. Furthermore, since it is necessary to apply a high voltage to emit light, high heat is generated instantaneously, but xenon lamps are also advantageous in that they have a short cooling time and can be used continuously.
 配線層付き半導体部材30の配線層11上には、第1の樹脂層5aの全部又は一部が残渣として付着することがある。付着した残さは、図4(c)に示されるように除去される。付着した残さは、例えば、ピールにより剥離されてもよいし、溶剤で洗浄することにより除去されてもよい。溶剤としては、エタノール、メタノール、トルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ヘキサン等が挙げられる。付着した残さの除去のために、配線層付き半導体部材30を溶剤に浸漬させてもよいし、超音波洗浄を行ってもよい。また、付着した残さの除去のために、必要に応じて、100℃以下程度の低温で配線層付き半導体部材30を加熱してもよい。 All or part of the first resin layer 5a may adhere as a residue on the wiring layer 11 of the semiconductor member 30 with a wiring layer. The attached residue is removed as shown in FIG. 4(c). The attached residue may be peeled off, for example, or may be removed by washing with a solvent. Examples of the solvent include ethanol, methanol, toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, hexane, and the like. In order to remove the adhered residue, the semiconductor member 30 with wiring layer may be immersed in a solvent or may be subjected to ultrasonic cleaning. Further, in order to remove the adhered residue, the semiconductor member 30 with wiring layer may be heated at a low temperature of about 100° C. or lower, if necessary.
 このようにして、配線層付き半導体部材30(半導体装置50)を得ることができる。配線層付き半導体部材30には、例えば、図4(d)に示されるように、配線層付き半導体部材30の配線層11上にはんだボール17が設けられていてもよい。 In this way, the semiconductor member 30 with wiring layer (semiconductor device 50) can be obtained. In the semiconductor member 30 with a wiring layer, solder balls 17 may be provided on the wiring layer 11 of the semiconductor member 30 with a wiring layer, for example, as shown in FIG. 4(d).
 半導体装置の製造方法の他の実施形態は、上記の配線形成用部材10Bを準備する工程(工程4A、図5(a)参照)と、第2の金属層3b上に配線層12を形成する工程(工程4B、図5(b)参照)と、配線層12上に半導体部材15を配置し、配線層付き半導体部材60を備える積層体70を作製する工程(工程4C、図5(c)参照)と、積層体70の第1の金属層3aに対して支持部材1側から少なくとも赤外光を含む光Aを照射して、支持部材1と配線層付き半導体部材60とを分離する工程(工程4D、図6(a)、(b)参照)とを備える。 Another embodiment of the method for manufacturing a semiconductor device includes the step of preparing the above wiring forming member 10B (step 4A, see FIG. 5(a)) and forming the wiring layer 12 on the second metal layer 3b. a step (step 4B, see FIG. 5(b)) and a step (step 4C, FIG. 5(c)) of arranging the semiconductor member 15 on the wiring layer 12 and producing a laminate 70 including the semiconductor member 60 with the wiring layer. ) and a step of irradiating the first metal layer 3a of the laminate 70 with light A containing at least infrared light from the support member 1 side to separate the support member 1 and the semiconductor member 60 with wiring layer. (Step 4D, see FIGS. 6(a) and 6(b)).
(工程4A)
 本工程では、上記の配線形成用部材を準備する。以下では、主に、配線形成用部材10Bを用いた態様について詳細に説明する。
(Step 4A)
In this step, the above wiring forming member is prepared. Below, an embodiment using the wiring forming member 10B will be mainly described in detail.
(工程4B)
 本工程では、第2の金属層3b上に配線層12を形成する。第2の金属層3b上に配線層12を形成する方法としては、例えば、セミアディティブ法等が挙げられる。
(Step 4B)
In this step, a wiring layer 12 is formed on the second metal layer 3b. Examples of the method for forming the wiring layer 12 on the second metal layer 3b include a semi-additive method.
 セミアディティブ法は、金属層上に所望のパターンに対応した形状のめっきレジスト層を形成し、次いで、電解めっき法によって配線層を形成した後、レジスト層を除去することによって、所望の回路を有する配線層を形成する方法である。不要な金属層は、薬液等を用いてもよいし、配線層付き半導体部材を作製した後に除去してもよい。第2の金属層3b上に配線層12を形成する方法としてセミアディティブ法を適用する場合、従来公知のレジスト、薬液等を使用することができる。また、セミアディティブ法を適用する場合、第2の金属層3bは、PVDによって形成される金属層であってよい。 In the semi-additive method, a plating resist layer with a shape corresponding to a desired pattern is formed on a metal layer, a wiring layer is then formed by electrolytic plating, and the resist layer is removed to form a desired circuit. This is a method of forming a wiring layer. The unnecessary metal layer may be removed using a chemical solution or the like, or after producing the semiconductor member with the wiring layer. When applying a semi-additive method as a method of forming the wiring layer 12 on the second metal layer 3b, conventionally known resists, chemicals, etc. can be used. Further, when applying a semi-additive method, the second metal layer 3b may be a metal layer formed by PVD.
(工程4C)
 本工程では、配線層12上に半導体部材15を配置し、配線層付き半導体部材60を備える積層体70を作製する。本工程は、工程3Cと同様であることから、重複する説明を省略する。
(Step 4C)
In this step, the semiconductor member 15 is placed on the wiring layer 12, and a stacked body 70 including the semiconductor member 60 with wiring layer is manufactured. Since this step is similar to step 3C, overlapping explanation will be omitted.
(工程4D)
 本工程では、積層体70の第1の金属層3aに対して支持部材1側から少なくとも赤外光を含む光Aを照射して、支持部材1と配線層付き半導体部材60とを分離する。本工程は、工程3Dと同様であることから、重複する説明を省略する。
(Process 4D)
In this step, the first metal layer 3a of the laminate 70 is irradiated with light A containing at least infrared light from the support member 1 side to separate the support member 1 and the semiconductor member 60 with wiring layers. Since this step is similar to step 3D, overlapping explanation will be omitted.
 配線層付き半導体部材60の配線層12上には、第2の金属層3bが付着することがある。第2の金属層3bは、図6(d)に示されるように除去される。第2の金属層3bは、例えば、薬液;プラズマ等によるエッチングなどにより除去されてもよい。 The second metal layer 3b may be attached on the wiring layer 12 of the semiconductor member 60 with wiring layer. The second metal layer 3b is removed as shown in FIG. 6(d). The second metal layer 3b may be removed, for example, by etching using a chemical solution, plasma, or the like.
 このようにして、配線層付き半導体部材60(半導体装置80)を得ることができる。配線層付き半導体部材60には、例えば、図6(e)に示されるように、配線層付き半導体部材60の配線層12上にはんだボール17が設けられていてもよい。 In this way, the semiconductor member 60 with wiring layer (semiconductor device 80) can be obtained. In the semiconductor member 60 with a wiring layer, solder balls 17 may be provided on the wiring layer 12 of the semiconductor member 60 with a wiring layer, for example, as shown in FIG. 6(e).
 本開示の配線形成用部材は、配線層付き半導体部材の製造プロセスに使用することが可能であり、支持部材と配線層付き半導体部材とを容易に分離することが可能となる。また、本開示によれば、このような配線形成用部材を形成するために有用な配線形成用積層フィルムを提供することができる。さらに、本開示によれば、このような配線形成用部材を用いた半導体装置の製造方法を提供することができる。 The wiring forming member of the present disclosure can be used in the manufacturing process of a semiconductor member with a wiring layer, and the support member and the semiconductor member with a wiring layer can be easily separated. Further, according to the present disclosure, it is possible to provide a laminated film for wiring formation that is useful for forming such a member for wiring formation. Furthermore, according to the present disclosure, it is possible to provide a method of manufacturing a semiconductor device using such a wiring forming member.
 1…支持部材、3a…第1の金属層、3b…第2の金属層、5a…第1の樹脂層、5b…第2の樹脂層、7a…第1の硬化性樹脂層、7b…第2の硬化性樹脂層、10A,10B…配線形成用部材、11,12…配線層、13…絶縁層、15…半導体部材、17…はんだボール、20…配線形成用積層フィルム、30,60…配線層付き半導体部材、40,70…積層体、50,80…半導体装置。 DESCRIPTION OF SYMBOLS 1...Supporting member, 3a...First metal layer, 3b...Second metal layer, 5a...First resin layer, 5b...Second resin layer, 7a...First curable resin layer, 7b...Second metal layer 2 curable resin layer, 10A, 10B... Member for wiring formation, 11, 12... Wiring layer, 13... Insulating layer, 15... Semiconductor member, 17... Solder ball, 20... Laminated film for wiring formation, 30, 60... Semiconductor member with wiring layer, 40, 70... Laminated body, 50, 80... Semiconductor device.

Claims (5)

  1.  支持部材と、第1の金属層と、第1の樹脂層と、第2の金属層とをこの順に備え、
     前記第1の樹脂層が、第1の硬化性樹脂組成物又はその硬化物を含有する、
     配線形成用部材。
    comprising a support member, a first metal layer, a first resin layer, and a second metal layer in this order,
    the first resin layer contains a first curable resin composition or a cured product thereof;
    Wiring forming member.
  2.  前記支持部材と前記第1の金属層との間に、第2の樹脂層をさらに備え、
     前記第2の樹脂層が、第2の硬化性樹脂組成物又はその硬化物を含有する、
     請求項1に記載の配線形成用部材。
    further comprising a second resin layer between the support member and the first metal layer,
    the second resin layer contains a second curable resin composition or a cured product thereof;
    The wiring forming member according to claim 1.
  3.  第1の金属層と、
     前記第1の金属層の一方の面上に設けられた、第1の硬化性樹脂組成物を含有する第1の硬化性樹脂層と、
     前記第1の金属層の他の一方の面上に設けられた、第2の硬化性樹脂組成物を含有する第2の硬化性樹脂層と、
     前記第1の硬化性樹脂層の前記第1の金属層とは反対側の面上に設けられた第2の金属層と、
    を備える、
     配線形成用積層フィルム。
    a first metal layer;
    a first curable resin layer containing a first curable resin composition provided on one surface of the first metal layer;
    a second curable resin layer containing a second curable resin composition provided on the other surface of the first metal layer;
    a second metal layer provided on a surface of the first curable resin layer opposite to the first metal layer;
    Equipped with
    Laminated film for wiring formation.
  4.  請求項1又は2に記載の配線形成用部材を準備する工程と、
     前記第2の金属層を加工して配線層を形成する工程と、
     前記配線層上に半導体部材を配置し、配線層付き半導体部材を備える積層体を作製する工程と、
     前記積層体の前記第1の金属層に対して前記支持部材側から少なくとも赤外光を含む光を照射して、前記支持部材と前記配線層付き半導体部材とを分離する工程と、
    を備える、
     半導体装置の製造方法。
    A step of preparing the wiring forming member according to claim 1 or 2;
    processing the second metal layer to form a wiring layer;
    arranging a semiconductor member on the wiring layer to produce a laminate including a semiconductor member with a wiring layer;
    irradiating the first metal layer of the laminate with light containing at least infrared light from the supporting member side to separate the supporting member and the semiconductor member with wiring layer;
    Equipped with
    A method for manufacturing a semiconductor device.
  5.  請求項1又は2に記載の配線形成用部材を準備する工程と、
     前記第2の金属層上に配線層を形成する工程と、
     前記配線層上に半導体部材を配置し、配線層付き半導体部材を備える積層体を作製する工程と、
     前記積層体の前記第1の金属層に対して前記支持部材側から少なくとも赤外光を含む光を照射して、前記支持部材と前記配線層付き半導体部材とを分離する工程と、
    を備える、
     半導体装置の製造方法。
    A step of preparing the wiring forming member according to claim 1 or 2;
    forming a wiring layer on the second metal layer;
    arranging a semiconductor member on the wiring layer to produce a laminate including a semiconductor member with a wiring layer;
    irradiating the first metal layer of the laminate with light containing at least infrared light from the supporting member side to separate the supporting member and the semiconductor member with wiring layer;
    Equipped with
    A method for manufacturing a semiconductor device.
PCT/JP2023/016236 2022-05-19 2023-04-25 Member for forming wiring, laminated film for forming wiring, and method for manufacturing semiconductor device WO2023223778A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022082146A JP2023170412A (en) 2022-05-19 2022-05-19 Member for wiring formation, laminate film for wiring formation, and method for manufacturing semiconductor device
JP2022-082146 2022-05-19

Publications (1)

Publication Number Publication Date
WO2023223778A1 true WO2023223778A1 (en) 2023-11-23

Family

ID=88835008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016236 WO2023223778A1 (en) 2022-05-19 2023-04-25 Member for forming wiring, laminated film for forming wiring, and method for manufacturing semiconductor device

Country Status (2)

Country Link
JP (1) JP2023170412A (en)
WO (1) WO2023223778A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017098481A (en) * 2015-11-27 2017-06-01 日立化成株式会社 Semiconductor device manufacturing method
JP2020023086A (en) * 2018-08-07 2020-02-13 東京応化工業株式会社 Method for manufacturing laminate, laminate, and method for manufacturing electronic device
WO2020111146A1 (en) * 2018-11-29 2020-06-04 日立化成株式会社 Semiconductor device manufacturing method and layered film for temporary fixing material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017098481A (en) * 2015-11-27 2017-06-01 日立化成株式会社 Semiconductor device manufacturing method
JP2020023086A (en) * 2018-08-07 2020-02-13 東京応化工業株式会社 Method for manufacturing laminate, laminate, and method for manufacturing electronic device
WO2020111146A1 (en) * 2018-11-29 2020-06-04 日立化成株式会社 Semiconductor device manufacturing method and layered film for temporary fixing material

Also Published As

Publication number Publication date
JP2023170412A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
JP7414005B2 (en) Manufacturing method for semiconductor devices and laminated film for temporary fixing material
TWI805655B (en) Manufacturing method of semiconductor device, curable resin composition for temporary fixing material, film for temporary fixing material, and laminated film for temporary fixing material
WO2020111146A1 (en) Semiconductor device manufacturing method and layered film for temporary fixing material
JP7331351B2 (en) METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE AND LAMINATED FILM FOR TEMPORARY FIXING MATERIAL
WO2020111193A1 (en) Semiconductor device manufacturing method, light-absorbing layered body, and temporary-fixing-use layered body
WO2023223778A1 (en) Member for forming wiring, laminated film for forming wiring, and method for manufacturing semiconductor device
JP7388004B2 (en) Manufacturing method of semiconductor device
CN113840891B (en) Method for manufacturing semiconductor device
JP2023170414A (en) Member for wiring formation, laminate film for wiring formation, and method for manufacturing semiconductor device
JP7447493B2 (en) Resin composition for temporary fixing, resin film, and method for manufacturing semiconductor device
JP2023177095A (en) Temporary fixing laminate, temporary fixing laminate film, and manufacturing method of semiconductor device
WO2021241459A1 (en) Temporary fixation layered film and production method therefor, temporary fixation layered body, and semiconductor device production method
WO2023032981A1 (en) Film for temporary fixation, layered product for temporary fixation, and method for producing semiconductor device
WO2024024566A1 (en) Film for temporary fixing, laminate for temporary fixing, method for manufacturing semiconductor device, composition for temporary fixing
JP2024058261A (en) Wiring forming member, method for manufacturing semiconductor device, and curable resin film
WO2022071150A1 (en) Film for temporary fixation, layered product for temporary fixation, and method for producing semiconductor device
TW202412122A (en) Film for temporary fixation, laminate for temporary fixation, manufacturing method of semiconductor device, and composition for temporary fixation
JP2003197817A (en) Semiconductor package equipped with heat spreader

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807390

Country of ref document: EP

Kind code of ref document: A1