WO2023223752A1 - 微小粒子分取装置及び微小粒子分取方法 - Google Patents

微小粒子分取装置及び微小粒子分取方法 Download PDF

Info

Publication number
WO2023223752A1
WO2023223752A1 PCT/JP2023/015500 JP2023015500W WO2023223752A1 WO 2023223752 A1 WO2023223752 A1 WO 2023223752A1 JP 2023015500 W JP2023015500 W JP 2023015500W WO 2023223752 A1 WO2023223752 A1 WO 2023223752A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
pressure change
drive waveform
sorting device
microparticle
Prior art date
Application number
PCT/JP2023/015500
Other languages
English (en)
French (fr)
Inventor
真彦 中村
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2023223752A1 publication Critical patent/WO2023223752A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass

Definitions

  • the present technology relates to a microparticle sorting device and a microparticle sorting method.
  • a microparticle sorting device can be used for the purpose of separating and collecting specific microparticles from a sample.
  • a microparticle sorting device for example, forms a sheath flow containing microparticles in a flow path, irradiates light onto the microparticles in the sheath flow, and detects fluorescence and/or scattered light generated from the microparticles. Thereby, microparticle groups (population) exhibiting predetermined optical characteristics are separated and collected.
  • a flow cytometer which is an example of a microparticle sorting device, separates and collects only specific types of cells by optically identifying each cell labeled with a fluorescent dye.
  • Patent Documents 1 and 2 listed below disclose microchip-type microparticle sorting devices that separate microparticles by forming a sheath flow in a main channel formed in a microchip.
  • the microparticle sorting devices disclosed in Patent Documents 1 and 2 include a branch channel that communicates with the main channel, and an actuator that generates negative pressure in the branch channel.
  • the microparticle sorting device disclosed in Patent Document 1 applies a voltage having a step waveform component with an undershoot waveform and a pulse waveform to an actuator.
  • the microparticle sorting device disclosed in Patent Document 2 applies a drive waveform of a pulse waveform, a step waveform, or a step waveform with undershoot to an actuator, and divides the application of the pulse waveform into a falling waveform portion and a rising waveform portion. The waveform section is controlled separately.
  • the microparticle sorting devices of Patent Documents 1 and 2 create a negative pressure in the branch flow path by applying a falling drive waveform to the actuator. As a result, a flow is formed from the main channel toward the branch channel, and the microparticles are taken into the branch channel from the main channel. Furthermore, these microparticle sorting devices apply a rising drive waveform to the actuator to generate positive pressure within the branch flow path, thereby returning the inside of the branch flow path to its original state. That is, in these microparticle sorting devices, application of the rising drive waveform is performed as a return operation of the actuator.
  • the present inventor considered that in a conventional microparticle sorting device, the operating time when a rising drive waveform is applied is time during which microparticles are not sorted, and is wasted time from the perspective of sorting efficiency.
  • the present inventor thought that the fractionation efficiency of microparticles could be improved by reducing such wasted time.
  • the main purpose of the present technology is to provide a microparticle fractionation device and a microparticle fractionation method that can fractionate target microparticles with high efficiency.
  • the present inventor has repeatedly studied a device that can perform fractionation of microparticles at a specific time when conventional microparticle fractionation devices were not able to fractionate microparticles, and as a result, , we have completed this technology.
  • a channel including a main channel through which a first liquid containing microparticles flows, a recovery channel through which particles to be collected among the microparticles are collected, and a connection channel that connects the main channel and the recovery channel.
  • structure and a control unit that applies a pressure change in the recovery channel and recovers the particles to be recovered into the recovery channel, The control unit applies the pressure change in a positive direction, generates a pressure vibration PVr in the recovery channel, and collects the particles to be collected by the pressure change in a negative direction generated by the pressure vibration PVr. perform the collection operation Cr; Provides a microparticle sorting device.
  • the control unit may perform a collection operation Cf that applies the pressure change in the negative direction within the collection channel and collects the particles to be collected by the pressure change in the negative direction.
  • the control unit may be configured to alternately perform the recovery operation Cf and the recovery operation Cr.
  • the microparticle sorting device may further include a particle detection unit that detects the microparticles that have passed through a predetermined position in the main flow path, The control unit may be configured to perform the recovery operation Cf or the recovery operation Cr depending on an interval TIx between times when the particle detection unit detects two successive microparticles.
  • the control unit collects the first detected microparticle among the two consecutive microparticles by the collection operation Cf, and when the time interval TIx is shorter than a predetermined value, The microparticles detected later among the two microparticles may be collected by the collection operation Cf.
  • the microparticle sorting device further includes a particle detection unit that detects the microparticles that have passed through a predetermined position in the main flow path, The control section performs the collection operation Cf after a time DTf from the time when the particle detection section detects the microparticle, and performs the collection operation Cr after a time DTr from the time when the particle detection section detects the microparticle. It may be configured to perform the following. The time DTf and the time DTr may be different from each other.
  • the time DTr may be shorter than the time DTf.
  • the control unit applies the pressure change in the positive direction, it takes a time T2 before the flow of liquid in a predetermined section in the flow path structure returns to the state before the pressure change in the positive direction was applied.
  • a time interval TIz from when the control section applies the pressure change in the positive direction until it applies the next pressure change may be the same as or longer than the time T2.
  • the control unit applies the pressure change in the negative direction, it takes a time T1 for the flow of liquid in a predetermined section in the channel structure to return to the state before the pressure change in the negative direction was applied.
  • a time interval TIy from when the control section applies the pressure change in the negative direction to when it applies the next pressure change may be equal to or longer than the time T1.
  • the microparticle sorting device may further include an actuator, The control unit may apply the pressure change within the recovery channel by applying a drive waveform to the actuator.
  • the microparticle sorting device may further include an actuator, The control unit may apply the rising drive waveform Wr to the actuator to apply the pressure change in the positive direction and perform the recovery operation Cr.
  • the microparticle sorting device may further include an actuator,
  • the control unit applies a falling drive waveform Wf to the actuator to apply the pressure change in the negative direction, and performs the recovery operation Cf, moreover,
  • the control unit may apply the rising drive waveform Wr to the actuator to apply the pressure change in the positive direction and perform the recovery operation Cr.
  • the rising drive waveform Wr may be a rising drive waveform Wfr with a falling waveform.
  • the diameter of the connecting channel may be 60 ⁇ m or more.
  • the channel structure further includes a liquid supply channel connected to the connecting channel so as to be able to supply a second liquid,
  • the second liquid is immiscible with the first liquid
  • the control unit may recover an emulsion in which the first liquid containing the particles to be recovered is included in the second liquid.
  • the microparticle sorting device may include a microchip for separating microparticles, and the microchip for separating microparticles may have the channel structure.
  • this technology A flow path including a main flow path through which a first liquid containing microparticles flows, a collection flow path through which particles to be collected among the microparticles are collected, and a connection flow path that connects the main flow path and the recovery flow path.
  • the control step includes applying the pressure change in a positive direction to generate a pressure vibration PVr in the recovery channel, and
  • the recovery step includes performing a recovery operation Cr for recovering the particles to be recovered by a negative pressure change caused by the pressure vibration PVr.
  • a method for separating small particles is also provided.
  • FIG. 1 is a schematic diagram showing the configuration of a microparticle sorting device according to a first embodiment.
  • FIG. 3 is an enlarged view of a particle sorting section.
  • FIG. 2 is a schematic diagram showing how a laminar flow is formed from a sample liquid and a sheath liquid.
  • 1 is a block diagram showing the functional configuration of a microparticle sorting device according to a first embodiment.
  • FIG. FIG. 2 is a plan view showing an example of a microchip for separating microparticles.
  • FIG. 2 is a perspective view showing an example of a microchip for separating microparticles.
  • 6 is a sectional view taken along the line XX in FIG. 5.
  • FIG. FIG. 3 is a diagram showing an example of a drive waveform applied to an actuator.
  • FIG. 6 is a diagram showing analysis results in a simulation regarding pressure changes in a pressure chamber and flow velocity changes in a connecting channel.
  • FIG. 2 is a schematic diagram showing a part of the channel structure shown in FIG. 1.
  • FIG. 3 is a diagram showing the time relationship between an event signal in a particle detection unit, a piezo drive voltage, and a change in flow velocity in a connecting channel.
  • FIG. 3 is a block diagram for explaining the configuration of a control section.
  • FIG. 3 is a diagram for explaining the waveform of an electrical signal read by an event detection circuit.
  • FIG. 3 is a conceptual diagram for explaining an event data packet.
  • FIG. 3 is a diagram for explaining gating on a histogram chart and a 2D chart.
  • 3 is a schematic diagram for explaining pulse waveforms including a falling drive waveform and a rising drive waveform. It is a 1st flowchart which shows an example of the algorithm which embodies the collection
  • FIG. 3 is a diagram showing a rising drive waveform with a falling waveform.
  • FIG. 6 is a diagram showing analysis results in a simulation of a flow velocity change in a connecting channel when a rising drive waveform and a rising drive waveform with a falling waveform are applied.
  • First embodiment (microparticle sorting device) 1-1. Overview 1-2. Basic configuration 1-3. Detailed configuration 1-4. Simulation regarding pressure change and flow rate change 1-5. Collection operation of microparticles 1-5-1. Flow of microparticle collection operation 1-5-2. Configuration of control section for performing collection operation of microparticles 1-5-3. Algorithm 2 that embodies the collection operation of microparticles.
  • Second embodiment (emulsion generating device) 2-1. Overview 2-2. Configuration and operation 3.
  • Third embodiment microparticle separation method
  • Fourth embodiment (emulsion generation method)
  • the microparticle sorting device includes a main channel through which a first liquid containing microparticles flows, a collection channel through which particles to be collected among the microparticles are collected, a main channel and a collection channel.
  • a flow path structure including a connection flow path that connects the flow paths.
  • the microparticle sorting device further includes a control unit that applies a pressure change within the recovery channel and recovers particles to be recovered into the recovery channel. The control unit applies a pressure change in the positive direction to generate pressure vibration PVr in the recovery channel, and performs a collection operation Cr in which particles to be collected are collected by the pressure change in the negative direction generated by the pressure vibration PVr. .
  • the microparticle sorting device utilizes the pressure vibration PVr generated by applying a pressure change in the positive direction within the recovery channel for microparticle fractionation. As a result, the dead time (time when microparticles are not separated) that occurs in conventional microparticle sorting devices is reduced, and more efficient fractionation becomes possible.
  • the channel structure including the main channel, the recovery channel, and the connecting channel may be formed, for example, in a microchip for separating microparticles. That is, the microparticle sorting device according to the present embodiment may include, for example, a microchip for separating microparticles, and the microchip for separating microparticles may have a channel structure.
  • the microparticle sorting device according to the present embodiment may include, for example, a microchip for separating microparticles, and the microchip for separating microparticles may have a channel structure.
  • this embodiment will be described with reference to the drawings, taking as an example a microparticle sorting device equipped with a microchip for separating microparticles.
  • FIG. 1 is a schematic diagram showing the configuration of a microparticle sorting device 100.
  • the microparticle sorting device 100 includes a microchip 150 for separating microparticles (hereinafter also simply referred to as "microchip 150").
  • the microchip 150 may be attached to the microparticle sorting device 100 in a replaceable manner.
  • the microchip 150 includes a main channel 155 through which a first liquid containing microparticles flows, a recovery channel 159 in which particles to be recovered among the microparticles are collected, and a connection channel that connects the main channel 155 and the recovery channel 159. It has a flow path structure including.
  • the connection channel is included in a particle sorting section 157 provided in the microchip 150 for sorting microparticles.
  • FIG. 2 is an enlarged view of the particle sorting section 157.
  • a connecting channel 170 is provided between the main channel 155 and the recovery channel 159.
  • particles to be collected are collected into the collection channel 159.
  • a control unit executes a recovery step of recovering particles to be recovered into the recovery channel 159.
  • Microchip 150 may be manufactured by methods known in the art. For example, it can be manufactured by bonding together two substrates on which the above-mentioned channels are formed.
  • the flow path may be formed on both of the two substrates, or may be formed only on one substrate. In order to more easily adjust the position when bonding the substrates, the flow path may be formed only on one substrate.
  • materials known in the art can be used. Examples include, but are not limited to, polycarbonate, cycloolefin polymer, polypropylene, polydimethylsiloxane (PDMS), polymethyl methacrylate (PMMA), polyethylene, polystyrene, glass, and silicon.
  • polymeric materials such as polycarbonate, cycloolefin polymer, and polypropylene are particularly preferred because they have excellent processability and can be used to manufacture microchips at low cost using molding equipment.
  • the microparticle sorting device 100 includes a light irradiation section 101, a particle detection section 102, and a control section 103.
  • the light irradiation unit 101 irradiates the microparticles flowing through the main channel 155 with light (for example, excitation light). That is, the light irradiation unit 101 executes a light irradiation step in which the microparticles flowing through the main channel 155 are irradiated with light.
  • the light irradiation unit 101 may include a light source that emits light and an objective lens that focuses excitation light on microparticles flowing through the detection region.
  • the light source may be appropriately selected by a person skilled in the art depending on the purpose of analysis, and may be, for example, a laser diode, an SHG laser, a solid-state laser, a gas laser, a high-intensity LED, or a halogen lamp, or two of these. A combination of the above may also be used.
  • the light irradiation unit 101 may include other optical elements as necessary.
  • the particle detection unit 102 detects microparticles that have passed through a predetermined position within the main flow path 155. That is, the particle detection unit 102 executes a particle detection step of detecting microparticles that have passed through a predetermined position within the main channel 155. More specifically, the particle detection unit 102 detects scattered light and/or fluorescence generated from microparticles by light irradiation by the light irradiation unit 101.
  • the particle detection unit 102 may include a condenser lens and a detector that condense fluorescence and/or scattered light generated from microparticles. As the detector, a PMT, a photodiode, a CCD, a CMOS, etc. can be used, but the detector is not limited thereto.
  • the particle detection unit 102 may include other optical elements as necessary.
  • the particle detection section 102 may further include, for example, a spectroscopic section.
  • optical components constituting the spectroscopic section include a grating, a prism, and an optical filter.
  • the spectroscopic section can separate and detect light of a wavelength to be detected from light of other wavelengths.
  • the particle detection unit 102 converts the detected light into an analog electrical signal by photoelectric conversion.
  • Particle detection section 102 transmits the analog electrical signal to control section 103.
  • the control unit 103 determines whether the microparticles are particles to be collected based on the characteristics of the light detected by the particle detection unit 102. That is, the control unit 103 executes a determination step of determining whether the microparticle is a particle to be collected based on the characteristics of the light detected by the particle detection unit 102. More specifically, the control unit 103 processes the acquired analog electrical signal to generate information regarding the characteristics of the light. For example, the control unit 103 can make a determination based on scattered light such as forward scattered light, side scattered light, and back scattered light, a determination based on fluorescence having the same or multiple wavelengths, or an image (for example, a dark field image and/or or bright field images).
  • control unit 103 operates to collect microparticles based on the determination result. Specifically, the control unit 103 applies a pressure change to the recovery channel 159 based on the determination result in the determination step, and recovers the particles to be recovered into the recovery channel 159. That is, the control unit 103 executes a control step of applying a pressure change in the recovery channel 159 and a recovery step of recovering particles to be recovered into the recovery channel 159 based on the determination result in the determination step. . This controls the flow through the microchip 150 so that microparticles can be collected.
  • the microchip 150 is provided with a sample liquid inlet 151 and a sheath liquid inlet 153. From these inlets, a sample liquid consisting of a first liquid containing microparticles and a sheath liquid consisting of a first liquid not containing microparticles are introduced into a sample liquid flow path 152 and a sheath liquid flow path 154, respectively.
  • the microchip 150 has a flow path structure in which a sample liquid flow path 152 through which a sample liquid flows and a sheath liquid flow path 154 through which a sheath liquid flows merge at a confluence portion 162 to form a main flow path 155 .
  • a laminar flow is formed from the sample liquid and the sheath liquid.
  • FIG. 3 is a schematic diagram showing how a laminar flow is formed from the sample liquid and the sheath liquid.
  • the sample liquid flow path 152 and the sheath liquid flow path 154 merge at a merging portion 162 to form, for example, a laminar flow in which the sample liquid is surrounded by the sheath liquid.
  • the microparticles are arranged substantially in a line in the laminar flow. In this manner, the flow path structure forms a laminar flow containing microparticles flowing substantially in a line.
  • the laminar flow flows through the main channel 155 toward the particle separation section 157.
  • the microparticles flow in a line within the main channel 155. This makes it easier to distinguish between light generated by light irradiation to one microparticle and light generated by light irradiation to other microparticles in light irradiation in the particle detection region 156, which will be described below.
  • the microchip 150 has a particle detection area 156.
  • the light irradiation unit 101 irradiates light onto the microparticles flowing through the main channel 155.
  • the particle detection unit 102 detects the light generated by the light irradiation.
  • the control unit 103 determines whether the microparticles are particles to be collected.
  • the control unit 103 applies a pressure change in the recovery channel 159 based on the determination result to recover particles to be recovered.
  • FIG. 4 is a block diagram showing the functional configuration of the microparticle sorting device 100.
  • the microparticle sorting device 100 includes a light irradiation section 101, a particle detection section 102, and a control section 103 as functional sections.
  • the microparticle sorting device 100 may further include an actuator 107.
  • the control unit 103 can apply a pressure change in the recovery channel 159 (see FIG. 1) by applying a drive waveform to the actuator. Details of the actuator 107 and the control unit 103 will be explained later with reference to other figures.
  • the channel structure of the microchip 150 includes a main channel 155 through which a first liquid containing microparticles flows, a recovery channel 159 in which particles to be collected among the microparticles are collected, and a channel in which microparticles not to be collected are discarded. and a waste flow path 158.
  • a flow is formed that enters the collection channel 159 from the main channel 155 through the connecting channel 170 (see FIG. 2), and the particles to be collected are collected. It is collected into the collection channel 159.
  • the particle sorting section 157 includes a connection channel 170 that connects the main channel 155 through which the microparticles P flow and the recovery channel 159.
  • the particles Po to be recovered flow through the connection channel 170 to the recovery channel 159, as shown in FIG. 2B.
  • the microparticles Pw that are not to be collected flow into the waste channel 158, as shown in FIG. 2C.
  • the laminar flow that has flowed through the main channel 155 flows to the waste channel 158.
  • the particle separation section 157 only when the particles Po to be recovered flow, a flow to the recovery channel 159 is formed and the particles Po to be recovered are recovered.
  • the sample liquid forming the laminar flow or the sample liquid and sheath liquid forming the laminar flow may also flow into the recovery channel 159.
  • the liquid supply channel 161 may be connected to the connection channel 170, as shown in FIG. 2A.
  • the liquid supply channel 161 is provided, for example, in the vertical direction of the connection channel 170 (approximately perpendicular to the axial direction of the connection channel 170).
  • the liquid supply channel 161 may be parallel to the direction of arrow Z in FIG.
  • the liquid supply channel 161 is configured to intersect with the connection channel 170 near its center.
  • a second liquid (a liquid other than the first liquid containing microparticles) is introduced from the liquid supply channel 161 into the connection channel 170 .
  • the second liquid is supplied to the connection channel 170 from above and below.
  • the second liquid supplied to the connection channel 170 flows to both the main channel 155 and the recovery channel 159.
  • fine particles Pw that are not to be collected are prevented from entering the recovery channel 159.
  • the collection of the particles to be collected into the collection channel 159 is performed, for example, by driving the actuator 107 (see FIG. 4).
  • the actuator 107 may be an actuator using a pressure element such as a piezo element, for example.
  • FIGS. 5 to 7 are a plan view and a perspective view, respectively, of the microchip 150a.
  • FIG. 7 is a sectional view taken along the line XX in FIG.
  • the microchip 150a shown in FIGS. 5-7 differs from the microchip 150 shown in FIG. 1 in that a pressure chamber 165 is depicted, but is otherwise the same.
  • the actuator 107 is arranged at a position corresponding to the recovery channel 159 on the surface of the microchip 150a so that the wall of the recovery channel 159 can be deformed. Actuator 107 is in contact with the surface of microchip 150a.
  • the recovery channel 159 may have, for example, a pressure chamber 165 that is an area with an expanded inner space.
  • the actuator 107 may be placed at a position corresponding to the pressure chamber 165 on the surface of the microchip 150a.
  • the inner space of the pressure chamber 165 is expanded in the planar direction (width direction of the recovery channel 159) as shown in FIGS. It has also been extended in the horizontal direction. That is, the recovery channel 159 is expanded in the width direction and the height direction in the pressure chamber 165. In other words, the recovery flow path 159 is formed so that the vertical cross section of the pressure chamber 165 with respect to the flow direction of the sample liquid and the sheath liquid is large.
  • the actuator 107 deforms the recovery flow path 159 (pressure chamber 165) by an expansion/contraction force generated as a result of changes in the applied driving voltage. Due to the deformation, the volume of the recovery channel 159 (pressure chamber 165) changes, and a pressure change occurs within the recovery channel 159 (pressure chamber 165). For example, when the actuator 107 contracts, the volume of the pressure chamber 165 increases, and the pressure within the pressure chamber 165 changes in a negative direction. For example, when the actuator 107 extends, the volume of the pressure chamber 165 decreases, and the pressure within the pressure chamber 165 changes in the positive direction.
  • the surface of the microchip 150a is recessed at a position corresponding to the pressure chamber 165, as shown in FIG.
  • the actuator 107 is placed within the recess.
  • the displacement plate 167 that contacts the actuator 107 and forms part of the pressure chamber 165 can be made thinner.
  • the displacement plate 167 is easily displaced as the actuator 107 expands and contracts, so that the volume of the pressure chamber 165 can be easily changed.
  • FIG. 8 is a diagram showing an example of a drive waveform applied to the actuator 107.
  • the drive waveform may include a falling drive waveform Wf (falling slope) and a rising drive waveform Wr (rising slope).
  • control unit 103 applies a falling drive waveform Wf to the actuator 107.
  • the actuator 107 shown in FIGS. 6 and 7 contracts and the pressure chamber 165 is deformed in a direction in which the volume increases, creating a negative pressure change within the pressure chamber 165.
  • control unit 103 applies a rising drive waveform Wr to the actuator 107.
  • the actuator 107 shown in FIGS. 6 and 7 is extended and the pressure chamber 165 is deformed in a direction that decreases in volume, creating a positive pressure change within the pressure chamber 165.
  • the falling drive waveform Wf shown in FIG. 8 is applied to give a pressure change in the negative direction immediately after the application of the drive waveform.
  • the rising drive waveform Wr shown in FIG. 8 is applied to give a pressure change in the positive direction immediately after the application of the drive waveform.
  • the drive height (voltage) of the falling waveform Wf the drive height (voltage) of the rising drive waveform Wr
  • the drive voltage application time (falling slope) of the falling drive waveform Wf and the rising drive waveform
  • the driving voltage application time (rising slope) of Wr and the time interval Th (driving time interval Th) between the falling driving waveform Wf and the rising waveform Wr can be used as control parameters.
  • FIG. 9 is a diagram showing the analysis results in the simulation.
  • the left diagram (I) shows the analysis results when the falling drive waveform Wf is applied.
  • the diagram (II) on the right shows the analysis results when the rising drive waveform Wr is applied. Further, in FIG.
  • the upper row (A) shows the piezo drive voltage
  • the middle row (B) shows the pressure change in the pressure chamber 165
  • the lower row (C) shows the flow velocity change in the connection channel 170.
  • the flow in the connection channel 170 is such that the upper direction of the lower stage (C) is the direction of the pressure chamber 165 (the direction of the recovery channel 159), and the lower direction of the lower stage (C) is the direction of the main flow channel 155. It is.
  • the pressure chamber 165 When the falling drive waveform Wf is applied, the pressure chamber 165 is deformed in a direction in which the volume increases. Immediately after the application of the falling drive waveform Wf, a negative pressure change occurs in the pressure chamber 165 as shown in (BI) in FIG. 9, and the flow in the connecting channel 170 changes as shown in (CI). Accelerate toward the pressure chamber 165. At this time, the inner wall surface of the flow path is elastically deformed due to the pressure change accompanying the fluid suction, causing elastic vibration. Due to the elastic vibration, a volume change in the pressure chamber 165 occurs, and pressure vibration occurs within the pressure chamber 165.
  • an oscillating flow is generated in the connection channel 170 in which a flow toward the recovery channel 159 in the suction direction and a flow in the opposite direction in the discharge direction are alternately repeated. Therefore, when applying the falling drive waveform Wf that causes a pressure change in the negative direction in the pressure chamber 165, an oscillating flow toward the recovery channel 159 is generated immediately after application, and then an oscillating flow toward the main channel 155 is generated. do.
  • the oscillating flow toward the recovery channel 159 that occurs immediately after application is indicated by an arrow F1 in (CI).
  • the pressure chamber 165 When the rising drive waveform Wr is applied, the pressure chamber 165 is deformed in a direction in which the volume decreases. Immediately after the application of the rising drive waveform Wr, a positive pressure change occurs in the pressure chamber 165 as shown in (BII) in FIG. Accelerate in the direction of road 155. At this time, the inner wall surface of the channel is elastically deformed and causes elastic vibration. Pressure vibration occurs due to the elastic vibration. The pressure vibration generates an oscillating flow. The vibration characteristics of the oscillating flow when the rising drive waveform Wr is applied are opposite to the vibration characteristics of the oscillating flow that occurs when the falling drive waveform Wf is applied.
  • the diameter of the connecting channel 170 (see FIG. 7) in the microchip 150a is preferably 60 ⁇ m or more.
  • a connecting channel in a microchip generally used in a conventional microparticle sorting device may be, for example, about 30 ⁇ m.
  • the diameter of the microparticles flowing through the connection channel may be, for example, about 10 ⁇ m.
  • it is preferable that the diameter of the connection channel 170 in this embodiment is larger than that in the conventional case.
  • the diameter of the microparticles flowing through the connection channel 170 in this embodiment may be, for example, 20 ⁇ m or more and 30 ⁇ m or less. In this way, the diameter of the microparticles may be larger than conventionally.
  • the upper limit of the diameter of the connecting channel 170 may be, for example, 90 ⁇ m or less.
  • Elements that can affect the suction force when the rising drive waveform Wr is applied are not limited to the diameter of the connection flow path 170 described above.
  • the size of the pressure chamber 165 and/or the recovery channel 159 shown in FIG. 7, as well as the properties of the liquid flowing through the microchip e.g., the kinematic viscosity and flow rate of the liquid
  • I can give it.
  • the microparticle sorting device 100 collects microparticles using the oscillating flow (see arrow F2 in FIG. 9) that flows into the collection channel 159 that is generated after applying the rising drive waveform Wr.
  • the microparticle sorting device 100 generates an oscillating flow flowing to the recovery channel 159 immediately after applying the falling drive waveform Wf (see arrow F1 in FIG. 9), and an oscillating flow that flows into the recovery channel 159 after applying the rising drive waveform Wr.
  • the microparticles are collected using both the oscillating flow (see arrow F2 in FIG. 9) that flows into the resulting collection channel 159.
  • control unit 103 applies a pressure change in the positive direction within the recovery channel 159 to generate pressure vibration PVr within the recovery channel 159.
  • the control unit 103 performs a collection operation Cr that collects particles to be collected using a negative pressure change (particularly the first negative pressure change) caused by the pressure vibration PVr. That is, the control process executed by the control unit 103 includes applying a pressure change in the positive direction within the recovery channel 159 to generate pressure vibrations PVr within the recovery channel.
  • the collection process executed by the control unit 103 includes performing a collection operation Cr for collecting particles to be collected by a negative pressure change (particularly the first negative pressure change) caused by the pressure vibration PVr.
  • control unit 103 applies a rising drive waveform Wr to the actuator 107 to apply a positive pressure change in the recovery channel 159.
  • control unit 103 generates pressure vibration PVr in the recovery channel 159 and performs the recovery operation Cr.
  • the collection operation Cr collects particles to be collected by a vibrating flow flowing into the collection channel 159 caused by a negative pressure change (especially the first negative pressure change) caused by the pressure vibration PVr. This is a collecting action.
  • control unit 103 may perform a recovery operation Cf in which a negative pressure change is applied to the recovery channel 159, and the particles to be recovered are recovered by the negative pressure change. That is, the control process executed by the control unit 103 may include applying a pressure change in the negative direction within the recovery channel 159. Further, the recovery step executed by the control unit 103 may include performing a recovery operation Cf for recovering particles to be recovered by the pressure change in the negative direction.
  • control unit 103 applies a falling drive waveform Wf to the actuator 107 to apply a pressure change in the negative direction within the recovery channel 159, and performs the recovery operation Cf.
  • the collection operation Cf is an operation of collecting particles to be collected using the oscillating flow flowing to the collection channel 159 that is generated immediately after application of the falling drive waveform Wf.
  • control unit 103 may be configured to alternately perform the collection operation Cf and the collection operation Cr, for example. Thereby, it is possible to reduce the number of failures in collecting target particles and improve the recovery rate.
  • the point that collection failures are reduced by alternately performing the collection operation Cf and the collection operation Cr, that is, by alternately applying the falling drive waveform Wf and the rising drive waveform Wr, will be explained later in FIG. This will be explained again with reference to 20 and 20.
  • the conventional microparticle sorting device performs the application of the rising drive waveform Wr as a return operation of the actuator. Therefore, the operating time when the rising drive waveform Wr is applied is a wasted time in which microparticles are not collected.
  • the microparticle sorting device 100 according to the present embodiment utilizes the application of the rising drive waveform Wr in the microparticle collection operation. That is, the microparticle sorting device 100 according to the present embodiment can collect particles to be collected during the operating time when the rising drive waveform Wr is applied. As a result, the conventional wasted time is reduced, and the particles to be collected can be efficiently collected. That is, the target microparticles can be fractionated with high efficiency.
  • FIG. 10 is a schematic diagram showing a part of the flow path structure shown in FIG. 1.
  • the actuator 107 In order to accurately collect the particles Po to be collected into the collection channel 159, it is necessary to drive the actuator 107 at optimal timing. Specifically, after the particles Po to be collected in the main flow path 155 shown in FIG. 10 are detected by the particle detection unit 102 (see FIG. 1) in the particle detection region 156, It is necessary to drive the actuator 107 so as to form a flow toward the recovery channel 159 at the point where the connecting channel 170 and the main channel 155 communicate with each other.
  • the time from detection of microparticles to application of the drive waveform to the actuator 107 can be optimized by appropriately setting the application conditions of the drive waveform. There is a need to.
  • FIG. 11 is a diagram showing the time relationship between the event signal in the particle detection unit 102, the piezo drive voltage, and the change in flow velocity in the connection channel 170.
  • the left diagram (I) is a diagram showing the time relationship when the falling drive waveform Wf is applied.
  • the diagram (II) on the right side is a diagram showing the time relationship when the rising drive waveform Wr is applied. Further, in FIG. 11
  • the upper row (A) shows the signal intensity
  • the middle row (B) shows the piezo drive voltage
  • the lower row (C) shows the change in flow velocity in the connection channel 170.
  • the flow in the connection channel 170 is such that the upper direction of the lower stage (C) is the direction of the pressure chamber 165 (the direction of the recovery channel 159), and the lower direction of the lower stage (C) is the direction of the main flow channel 155. It is.
  • the optimal collection start time when applying the falling drive waveform Wf is the time DTf shown by (BI) in FIG. 11.
  • the application of the drive waveform starts after a time DTf from the signal detection by the particle detection unit 102, and immediately after the application, the flow velocity in the connection channel 170 accelerates toward the pressure chamber 165 (in the suction direction).
  • the particles to be collected are collected by the flow toward the pressure chamber 165 .
  • the time DTr is shorter than the time DTf, as shown in (BII).
  • the actuator 107 is driven at different collection start times during each application.
  • the control unit 103 performs the collection operation Cf after a time DTf from the time when the particle detection unit 102 detects the microparticle, and when the particle detection unit 102 detects the microparticle.
  • the collection operation Cr may be configured to be performed after a time DTr from the time. In this case, the time DTf and the time DTr may be different from each other, preferably the time DTr is shorter than the time DTf.
  • the control unit 103 shown in FIG. 4 applies a drive voltage to the actuator 107 to control the collection operation of the particles to be collected.
  • the overall configuration of the control unit 103 will be described below with reference to FIG. 12.
  • FIG. 12 is a diagram showing the configuration of the control section 103.
  • the control unit 103 has a plurality of circuits 2302 to 2309 each connected to a bus 2301.
  • a circuit indicated by the reference numeral 2302 in the figure is an analog-to-digital conversion circuit 2302.
  • a circuit indicated by the reference numeral 2303 is an event detection circuit 2303.
  • a circuit indicated by reference numeral 2304 is a collection start time calculation circuit 2304.
  • a circuit indicated by the reference numeral 2305 is a gating circuit 2305.
  • the circuit designated by reference numeral 2306 is an output queue circuit 2306.
  • a circuit indicated by the reference numeral 2307 is an output timing generation circuit 2307.
  • a circuit indicated by reference numeral 2308 is an output signal generation circuit 2308.
  • a circuit designated by the reference numeral 2309 is an MPU (microprocessing unit) 2309 . Note that the analog-to-digital conversion circuit 2302 is expressed as "A/D" in the same figure.
  • the control unit 103 further includes a clock counter 2310.
  • This clock counter 2310 is connected to an event detection circuit 2303, a collection start time calculation circuit 2304, a gating circuit 2305, an output queue circuit 2306, an output timing generation circuit 2307, and an output signal generation circuit 2308.
  • the control unit 103 further includes a PC I/O unit (Input/Output Interface circuit for connecting to a personal computer) 2311 connected to the MPU 2309 and a control PC 2312 connected to the PC I/O unit 2311. .
  • PC I/O unit Input/Output Interface circuit for connecting to a personal computer
  • the control unit 103 further includes a digital-to-analog conversion circuit 2313 connected to the output signal generation circuit 2308. Note that the digital-to-analog conversion circuit 2313 is expressed as "D/A" in the same figure.
  • control unit 1-5-2-2. Detailed configuration of control unit
  • control unit 103 Continuing to refer to FIG. 12, the detailed configuration of the control unit 103 will be described.
  • the analog-digital conversion circuit 2302 is a circuit at the subsequent stage (output side) of the particle detection section 102 (see FIG. 4), and is connected to the particle detection section 102. Further, a plurality of analog-digital conversion circuits 2302 are arranged. Here, the analog-digital conversion circuits 2302 are arranged in the same number as the number of channels (Ch in FIG. 12) of the particle detection unit 102 so as to correspond to the plurality of lights (wavelength regions) detected by the particle detection unit 102. You can leave it there. Alternatively, the same number of analog-digital conversion circuits 2302 as the number of sensors of the particle detection unit 102 may be arranged.
  • each analog-to-digital conversion circuit 2302 An electrical signal corresponding to each analog-to-digital conversion circuit 2302 output from the particle detection unit 102 is input to each analog-to-digital conversion circuit 2302.
  • the electrical signal is an analog signal obtained by photoelectrically converting light (fluorescence and scattered light) detected by the particle detection unit 102.
  • Each analog-to-digital conversion circuit 2302 converts each input electrical signal from an analog signal to a digital signal. Further, each analog-to-digital conversion circuit 2302 outputs an electrical signal converted into a digital signal to a subsequent stage.
  • the event detection circuit 2303 is a circuit subsequent to each analog-to-digital conversion circuit 2302, and is connected to each analog-to-digital conversion circuit 2302.
  • the electrical signals output from each analog-to-digital conversion circuit 2302 are input to the event detection circuit 2303. Then, the event detection circuit 2303 uses a specific signal among the input electric signals as a trigger signal for recognizing microparticles. That is, the event detection circuit 2303 recognizes that each electrical signal is detected from a microparticle when the value of the trigger signal satisfies a predetermined condition.
  • the trigger signal may be an electrical signal of the light with the highest intensity (for example, forward scattered light) among the plurality of lights detected by the particle detection unit 102, but is not limited to this. .
  • the event detection circuit 2303 reads the waveform of each input electrical signal and calculates the width, height, and area of the read waveform. Furthermore, the event detection circuit 2303 uses the calculated values of the waveform to create an event data packet in which each electrical signal is associated with one corresponding microparticle, as shown in FIG. . This event data packet is an example of measurement data for one microparticle. Then, the event detection circuit 2303 outputs the created event data packet to the subsequent stage.
  • the event data packet includes an item (hereinafter referred to as the first item) for which data recording is completed when the packet is created. Furthermore, the event data packet includes an item (hereinafter referred to as a second item) that is updated as processing regarding the electrical signal corresponding to the packet progresses after the packet is created.
  • the first item includes, for example, the following items. ⁇ Width, height, and area of the electrical signal waveform ⁇ Number of recognized microparticles (event number) - Number of the electrical signal that became the trigger signal - Detection time of the trigger signal Note that the number of the electrical signal that became the trigger signal may be a channel number. Furthermore, a signal input from the clock counter 2310 may be used to record the detection time of the trigger signal. This signal may be obtained by the clock counter 2310 counting clock signals from a clock generation circuit (not shown) input thereto.
  • the second item includes, for example, the following items. ⁇ Time when microparticles should be collected. ⁇ First flag indicating whether or not to collect microparticles. - Second flag indicating whether or not to collect microparticles. This flag is set by the timing circuit 2305.
  • the second flag is a flag set by the output queue circuit 2306.
  • the first flag and the second flag may basically be set to 1 or 0, and may be used to determine whether or not to collect the corresponding microparticles. Further details of each flag will be described later.
  • the collection start time calculation circuit 2304 is a circuit subsequent to the event detection circuit 2303, and is connected to the event detection circuit 2303.
  • the event data packet output from the event detection circuit 2303 is input to the collection start time calculation circuit 2304. Then, based on the input event data packet, the collection start time calculation circuit 2304 determines the time when the microparticles included in the second item should be collected when the microparticles (collection target particles) reach the communication port 169. At that point, the time to start driving the actuator 107 is calculated in order to generate a flow in the connection channel 170 toward the recovery channel 159.
  • the collection start time calculation circuit 2304 calculates both the collection start time for collection by applying the falling drive waveform Wf and the collection start time for collection by applying the rising drive waveform Wr.
  • the collection start time for each drive waveform calculated by calculation is recorded in an event data packet, and the recorded event data packet is output to a subsequent stage.
  • the collection start time may be calculated by adding a predetermined time from particle detection to drive waveform application (delay time) to the trigger signal detection time included in the first item. . Alternatively, the collection start time may be calculated using a clock counter
  • the gating circuit 2305 is a circuit subsequent to the event detection circuit 2303 and is connected to the event detection circuit 2303.
  • the event data packet output from the event detection circuit 2303 is input to the gating circuit 2305. Then, the gating circuit 2305 sets a first flag for the input event data packet. Furthermore, the gating circuit 2305 outputs the event data packet after setting the first flag to a subsequent stage.
  • the first flag may be set based on a preset threshold for each electrical signal parameter included in the event data packet.
  • the threshold value may be at least one of the width, height, and area of the waveform. Then, when the parameter satisfies the threshold value, the value of the first flag may be set to a value (for example, "1") indicating that the microparticles are to be collected. On the other hand, if the parameter does not satisfy the threshold value, the value of the first flag may be set to a value (for example, "0") indicating that the collection of microparticles is not performed.
  • the threshold value may be a range preset by gating.
  • gating is a process of enclosing and specifying a range corresponding to particles to be collected on a distribution map representing the characteristic distribution of microparticles in a microparticle population. This gating is performed before starting the collection operation of the particles to be collected.
  • the distribution map may be created using a GUI (graphical user interface) on the control PC 2312. Further, gating may be performed by the gating circuit 2305.
  • FIG. 15A shows the results of gating on a histogram chart as an example of a distribution chart.
  • the horizontal axis shows the parameters
  • the vertical axis shows the number of particles.
  • the parameter in the figure is the area of the waveform of the electrical signal corresponding to channel number 1 (Ch1), but other parameters may be used.
  • the rectangular frame in the figure is a gate that specifies a range corresponding to particles to be collected, and this range may be used as a threshold for setting the first flag.
  • FIG. 15B shows the results of gating on a 2D (two-dimensional) chart as another example of a distribution diagram.
  • this 2D chart different parameters are assigned to the horizontal and vertical axes.
  • the parameter on the horizontal axis is the area of the waveform of the electrical signal corresponding to channel number 2 (Ch2)
  • the parameter on the vertical axis is the area of the waveform of the electrical signal corresponding to channel number 3 (Ch3). It is.
  • parameters other than the area of the waveforms of these two electric signals may be used.
  • the rectangular frame in the figure is a gate that specifies a range corresponding to particles to be collected, and this range may be used as a threshold for setting the first flag.
  • the output queue circuit 2306 is a circuit subsequent to the collection start time calculation circuit 2304 and the gating circuit 2305, and is connected to the collection start time calculation circuit 2304 and the gating circuit 2305.
  • the event data packet output from the collection start time calculation circuit 2304 and the event data packet output from the gating circuit 2305 are input to the output queue circuit 2306.
  • the output queue circuit 2306 then integrates (synthesizes) both input event data packets that indicate the same microparticle (that is, the same event number) into one event data packet.
  • This integrated event data packet has both the delay time and the first flag written therein. Note that the integration of event data packets may be performed by either of the collection start time calculation circuit 2304 and the gating circuit 2305 through communication between the two circuits 2304 and 2305. Further, the collection start time calculation circuit 2304 and the gating circuit 2305 may be connected in series.
  • the output queue circuit 2306 arranges the successively inputted event data packets of different microparticles in descending order of collection start time included in the event data packets.
  • the event data packets input to the output queue circuit 2306 and waiting for the output of the drive waveform for collection of the corresponding microparticles are defined as an "output queue.”
  • the output queue is updated in response to the input of new event data packets to the output queue circuit 2306.
  • the output queue circuit 2306 determines whether or not to collect microparticles corresponding to each event data packet according to the purity priority mode or the acquisition rate priority mode.
  • the purity priority mode and the acquisition rate priority mode are operation modes of the control unit 103 that are selectively set in advance before starting the collection operation of microparticles.
  • the mode setting may be performed by the control PC 2312 via various user interfaces.
  • the purity priority mode refers to a case where particles to be collected and particles not to be collected flow through the flow in close proximity to each other, and when there is a high possibility that both particles will be captured together.
  • This is a mode in which the particles to be collected are regarded as "particles not to be collected (not acquired)" and the purity of the captured particles is increased.
  • particles to be collected that are close to particles not to be collected are not collected and are discarded.
  • the acquisition rate priority mode is when particles to be collected and particles not to be collected are flowing in close proximity to each other, and there is a high possibility that both particles will be captured together. This mode increases the number of captured particles even if the purity of captured particles decreases.
  • the output queue circuit 2306 sets the second flag based on the result of determining whether or not microparticles are collected according to the set mode. At this time, if the output queue circuit 2306 determines that microparticles are to be collected, it may set the second flag to "1". On the other hand, if the output queue circuit 2306 determines that the microparticles are not to be collected, the output queue circuit 2306 may set the second flag to "0". Note that the setting of the flag is not limited to this manner.
  • the output queue circuit 2306 writes the application timing of the drive waveform to be applied to the actuator 107 in the memory.
  • This memory may be RAM (Random Access Memory). Further, the memory may be connected to the bus 2301, or may be built into the circuit of the control unit 103 or the control PC 2312. Furthermore, when writing out the application timing, the set values of the first flag and the second flag may be referred to. In this case, when both flags are set to values indicating collection execution, the application timing may be written such that the corresponding microparticles are collected.
  • the drive waveform may be a drive voltage.
  • the output queue circuit 2306 when applying the pulse waveform Wp as the drive waveform, writes the application timing of the falling drive waveform Wf and the application timing of the rising drive waveform Wr in the memory.
  • the falling drive waveform Wf and the rising drive waveform Wr may be part of the pulse waveform Wp, as illustrated in FIG. 16, and the falling drive waveform Wf forms the front part of the pulse waveform Wp, and the rising drive waveform Wr forms the rear part of the pulse waveform Wp. Further, the height (amplitude) of the falling drive waveform Wf and the height of the rising drive waveform Wr are the same.
  • the falling drive waveform Wf is applied to deform the pressure chamber 165 in a direction in which the volume increases, and to give a pressure change in the negative direction immediately after application of the drive waveform.
  • the force generated on the actuator by the application of the falling drive waveform Wf may be a force that weakens the pressure on the displacement plate 167 (see FIG. 7) in order to increase the volume inside the pressure chamber 165.
  • the drive waveform may be such that the drive voltage applied to the piezo element being extended is reduced to cause the piezo element to contract.
  • the rising drive waveform Wr is applied to deform the pressure chamber 165 in a direction in which the volume decreases and to give a pressure change in the positive direction immediately after application of the drive waveform.
  • the force generated on the actuator by the application of the rising drive waveform Wr may be a force that increases the pressure on the displacement plate 167 (see FIG. 7) in order to reduce the volume inside the pressure chamber 165.
  • the drive waveform may be such that the drive voltage applied to the piezo element that is being contracted is increased to extend the piezo element.
  • the output queue circuit 2306 uses event data as the application timing of the falling drive waveform Wf and the application timing of the rising drive waveform Wr.
  • the collection start time included in the packet may be written out.
  • the output timing generation circuit 2307 is connected to the output queue circuit 2306.
  • the output timing generation circuit 2307 reads from the RAM the collection start time of the event data packet arranged at the head of the output queue written to the RAM by the output queue circuit 2306. Then, the output timing generation circuit 2307 compares the read collection start time with the value of the signal from the clock counter 2310, and generates an output timing signal at the collection start time.
  • the output timing signal is a signal for assigning the output timing of the drive waveform.
  • the output timing generation circuit 2307 outputs the generated output timing signal to the subsequent stage. Furthermore, after outputting the output timing signal, the output timing generation circuit 2307 may send a completion signal to the output queue circuit 2306 to prompt the output queue to be updated.
  • the output timing generation circuit 2307 refers to the memory in which the application timings of the falling drive waveform Wf and the rising drive waveform Wr are written by the output queue circuit 2306. Then, the output timing generation circuit 2307 compares the application timing of the falling drive waveform Wf and the rising drive waveform Wr in the memory with the value of the signal from the clock counter 2310, and generates an output timing signal for each drive waveform. do. Further, the output timing generation circuit 2307 outputs the generated output timing signal to a subsequent stage.
  • the output signal generation circuit 2308 is a circuit subsequent to the output timing generation circuit 2307 and is connected to the output timing generation circuit 2307.
  • the output timing signal output from the output timing generation circuit 2307 is input to the output signal generation circuit 2308. Then, the output signal generation circuit 2308 generates a drive waveform (output signal) corresponding to the inputted output timing signal and outputs it to a subsequent stage. Further, the output signal generation circuit 2308 updates the step counter and the output status signal after outputting the drive waveform. Note that the output status signal is a signal representing a state in which the waveform is stopped/outputting (output enabled/disabled).
  • the step counter indicates the stepwise output level of the drive waveform.
  • the step counter indicates the variation value of the drive waveform from the reference value, which varies in steps as the number of times the drive waveform is applied increases.
  • the difference in output for each level difference of one stage of this step counter is constant.
  • the step counter and output status signal may be input to the output queue circuit 2306 or the output timing generation circuit 2307 and used for processing in each circuit 2306 and 2307.
  • the output signal generation circuit 2308 separately generates and outputs a falling drive waveform Wf and a rising drive waveform Wr.
  • the drive waveform output from the output signal generation circuit 2308 is input to the digital-to-analog conversion circuit 2313. Then, the digital-to-analog conversion circuit 2313 converts the input drive waveform from a digital signal to an analog signal and outputs it to the drive circuit of the actuator 31.
  • control unit 103 in FIG. 12 may be applied to the application of drive waveforms other than pulse waveforms.
  • FIGS. 17 and 18 are flowcharts mainly showing the operation of the output queue circuit.
  • FIG. 17 shows the overall operation
  • FIG. 18 shows the calculation of the application timing of the falling drive waveform Wf and the rising drive waveform Wr.
  • step S101-1 it is determined whether an event (event data packet) is input. This determination utilizes the event data packet input from the preceding stage circuit (for example, the collection start time calculation circuit and the gating circuit). If a positive determination result is obtained in step S101-1 (step S101-1: Yes), the process proceeds to step S101-2, and if a negative determination result is obtained (step S101: Yes), the process proceeds to step S101-2. -1: No), step S101-1 is repeated.
  • step S101-1 determines whether an event (event data packet) is input. This determination utilizes the event data packet input from the preceding stage circuit (for example, the collection start time calculation circuit and the gating circuit). If a positive determination result is obtained in step S101-1 (step S101-1: Yes), the process proceeds to step S101-2, and if a negative determination result is obtained (step S101: Yes), the process proceeds to step S101-2. -1: No), step S101-1 is repeated.
  • step S101-2 the output queue is updated by adding the new event determined to be "input" in step S101-1 to the output queue.
  • step S101-3 based on the output queue updated in step S101-2, whether or not to collect microparticles (acquisition/non-acquisition) is re-evaluated, and the process returns to step S101-1.
  • the reason why the expression "re-evaluation" is used here is that the evaluation in this step corresponds to the process of re-evaluating an event that is already in the queue (an event that has already been evaluated and the second flag has been set). be. In the case of purity priority, the processing in this step works effectively because an event added to the queue later may be close to an event added earlier.
  • step S102 for the event to be acquired next (particles to be collected), a selection is made as to whether to collect by applying the falling drive waveform Wf or by applying the rising drive waveform Wr, and the selection is recorded in the event data packet.
  • the collection start time of the generated drive waveform is written to memory.
  • FIG. 18 shows details of the drive waveform selection and application timing calculation in step S102.
  • step S111 it is determined whether the value of the step counter is 0 or not. If a positive determination result is obtained (step S111: Yes), proceed to steps S112 and S113, and if a negative determination result is obtained (step S111: No), proceed to step S114 and step S115. . If a positive determination result is obtained, that is, if the value of the step counter is 0, this corresponds to a case where the value of the drive waveform is the reference value. It may also be a hold value of the drive waveform. This corresponds to a state where the actuator is applying the maximum value of the drive waveform.
  • step counter If the value of the step counter is 0, the application of the maximum value of the drive waveform proceeds to the application of the falling drive waveform Wf, and the step counter is updated by +1 step. On the other hand, if the step counter is not 0, the application of the rising drive waveform Wr proceeds and the step counter is updated by -1 step. In the case of this algorithm (a preferred embodiment of the present technology), since the value of the step counter alternates between 0 and +1, the application of the falling drive waveform Wf and the application of the rising drive waveform Wr are alternately selected. becomes.
  • T2 described in step S112 and T1 described in S114 will be explained.
  • the timing of the pressure change may be as follows, for example.
  • T1 be the time until the flow returns after the application of the falling drive waveform Wf. More specifically, the time required for the flow of liquid in a predetermined section within the channel structure to return to the state before the negative pressure change was applied after the control unit 103 applies a negative pressure change. Let be T1. The time interval TIy from when the control unit 103 applies a pressure change in the negative direction until it applies the next pressure change is preferably equal to or longer than the time T1. Furthermore, the time until the flow returns after application of the rising drive application Wr is set to T2. More specifically, after the control unit 103 applies a pressure change in the positive direction, the time required for the flow of liquid in a predetermined section within the channel structure to return to the state before the pressure change in the positive direction was applied.
  • time T2 is defined as time T2.
  • the time interval TIz from when the control unit 103 applies a pressure change in the positive direction until it applies the next pressure change is preferably equal to or longer than the time T2.
  • the times T1 and T2 may be a value obtained by adding the operation margin time of the circuit to the time required to restore the flow.
  • step S111 since the value of the step counter is 0, an affirmative determination is made (step S111: Yes), and when proceeding to application of the falling drive waveform Wf, the time interval from the previous acquisition event is determined. Only when TIz is greater than or equal to time T2 (step S112: Yes), the process advances to step S113 and the falling timing is written.
  • step S103-1 the falling drive waveform Wf for the event to be acquired by applying the falling drive waveform Wf is applied. Write the application timing to memory. This written application timing will be referenced by the output timing generation circuit.
  • step S103-2 it is determined whether the falling trigger output of the falling drive waveform Wf has been completed.
  • the falling trigger output is the output of the output timing signal of the falling drive waveform Wf generated by the output timing generation circuit to the output signal generation circuit.
  • step S103-3 the output queue is updated by deleting the event for which the falling trigger output has been completed from the output queue, and the process returns to step S103-1.
  • step S104-1 the application timing of the rising drive waveform Wr for the event to be acquired by applying the rising drive waveform Wr is determined. Write to memory. This written application timing will be referenced by the output timing generation circuit.
  • step S104-2 it is determined whether the rising trigger output of the rising drive waveform Wr has been completed.
  • the rising trigger output is the output timing signal of the rising drive waveform Wr generated by the output timing generating circuit to the output signal generating circuit.
  • step S104-3 the output queue is updated by deleting the event for which the rising trigger output has been completed from the output queue, and the process returns to step S104-1.
  • a drive waveform (drive signal) as shown in the time chart of FIG. 19 is applied.
  • the figure shows event detection time (A in the figure), fall timing (B in the figure), rise timing (C in the figure), drive signal (D in the figure), and symbols indicating success or failure of acquisition of particles to be collected ( E) is shown in the figure.
  • event detection time A in the figure
  • fall timing B in the figure
  • rise timing C in the figure
  • drive signal D in the figure
  • symbols indicating success or failure of acquisition of particles to be collected E
  • the application of the falling drive waveform Wf to the actuator starts after a certain time DTf from event detection.
  • the application of the rising drive waveform Wr to the actuator starts at a time DTr shorter than the time DTf from event detection.
  • FIG. 20 shows an example of a drive waveform obtained in a conventional microparticle sorting device, that is, an example of a drive waveform obtained when only a basic pulse waveform is applied.
  • the rising waveform included in the pulse waveform is applied for the return operation of the actuator, and is not used for fractionating the particles to be collected.
  • the next falling timing may occur before the application of the previous pulse waveform ends (see B and D in the figure). However, in this case, the next falling timing is logically aborted or ignored as the previous pulse waveform is being output.
  • acquisition failure ⁇ occurs for events that are close to each other before and after, as shown by E in the figure.
  • FIG. 23 is a flowchart showing the second process in this modification. If the step counter is 0 in step S141 (step S141: Yes), the process advances to steps S142 and S143 to write the falling timing. If the step counter is not 0 in step S141 (step S141: No), the process advances to step S144. If the value of the step counter is max in step S144 (negative determination in step S144) (step S144: No), the process proceeds to steps S148 and S149, and the process proceeds to write the rise timing.
  • step S144 the value of the step counter is less than max (step S144: Yes)
  • step S145 the previous acquisition execution is the falling drive waveform Wf (BR>Istep S145: Yes)
  • step S146 the previous acquisition If the execution timing is less than or equal to time T3 (step S146: Yes), the process advances to step S143, and the falling timing is written. That is, in this case, the falling drive waveform Wf is applied continuously from the previous acquisition execution.
  • step S145 step S145: No
  • step S146 step S146: No
  • step S148 step S149
  • step S148 step S149
  • the control unit 103 performs collection operation Cf or collection according to the time interval TIx between when the particle detection unit 102 detects two consecutive microparticles. It may be configured to perform operation Cr. Further, the control unit 103 collects the first detected microparticle among the two consecutive microparticles by the collection operation Cf, and when the time interval TIx is shorter than a predetermined value, The microparticles detected later among the particles may be collected by the collection operation Cf.
  • the case where the time interval TIx is shorter than a predetermined value may be, for example, the case where the time interval TIx is less than or equal to the time T3 (that is, the case where TIx ⁇ T3).
  • the microparticle sorting device also provides a microparticle sorting device that collects an emulsion containing particles to be collected.
  • the channel structure further includes a liquid supply channel connected to the connecting channel so as to be able to supply the second liquid.
  • the second liquid is immiscible with the first liquid.
  • the particle sorting section collects an emulsion in which a first liquid containing particles to be collected is included in a second liquid. Therefore, the microparticle sorting device according to this embodiment may be an emulsion generating device.
  • microparticle sorting device according to the second embodiment will be explained, focusing on the differences from the microparticle sorting device according to the first embodiment.
  • Components that are the same or equivalent to those of the first embodiment are given the same reference numerals.
  • Configurations and operations that are not explained are in 1. above.
  • the configuration and operation may be the same as those of the first embodiment described in .
  • the microparticle sorting device includes a particle sorting section 157 shown in FIG.
  • the liquid supply channel 161 is connected to the connection channel 170 so as to be able to supply the second liquid.
  • the second liquid is immiscible with the first liquid containing the microparticles.
  • an emulsion is formed in which the first liquid containing the particles to be collected is included in the second liquid. Specifically, an emulsion containing particles to be recovered and an emulsion not containing particles to be recovered are formed. The emulsion containing the particles to be collected is collected into the collection channel 159.
  • one of the first liquid and second liquid used in this embodiment may be a hydrophilic liquid, and the other may be a hydrophobic liquid. That is, as an example, the first liquid may be a hydrophilic liquid, and the second liquid may be a hydrophobic liquid. In this case, an emulsion containing a hydrophobic liquid as a dispersion medium and a hydrophilic liquid as a dispersoid can be formed in the particle separation section 157. As another example, the first liquid may be a hydrophobic liquid, and the second liquid may be a hydrophilic liquid. In this case, an emulsion containing a hydrophilic liquid as a dispersion medium and a hydrophobic liquid as a dispersoid can be formed in the particle separation section 157.
  • control unit 103 collects the emulsion containing the particles to be collected in the collection operation Cr. That is, the collection process executed by the control unit 103 may include collecting the emulsion containing the particles to be collected in the collection operation Cr.
  • control unit 103 collects the emulsion containing the particles to be collected in the collection operation Cf. That is, preferably, the collection step executed by the control unit 103 may include collecting the emulsion containing the particles to be collected in the collection operation Cf.
  • FIG. 24 shows the emulsion generated in the recovery channel by applying the falling drive waveform Wf and the rising drive waveform Wr.
  • A shows the emulsion when the falling drive waveform Wf is applied
  • B shows the emulsion when the rising drive waveform Wr is applied.
  • an emulsion containing microparticles can be generated by applying each of the falling drive waveform Wf and the rising drive waveform Wr. Therefore, the production of unnecessary emulsions that do not contain microparticles is reduced, and emulsions containing microparticles can be produced with high efficiency.
  • the application of the rising drive waveform Wr is performed as a return operation of the actuator as in the prior art, the emulsion generated when the rising drive waveform Wr is applied becomes an unnecessary emulsion that does not contain microparticles.
  • the emulsion size differs slightly and is smaller when the rising drive waveform Wr is applied. This is because the flow toward the recovery channel caused by the oscillating flow when the rising drive waveform Wr is applied is weaker than the flow toward the recovery channel that occurs immediately after the falling drive waveform Wf is applied. Therefore, in order to make the emulsion size more uniform when the falling drive waveform Wf and the rising drive waveform Wr are applied, preferably a rising drive waveform as shown in FIG. 25 is applied.
  • the rising drive waveform in FIG. 25 includes, in chronological order, a second falling waveform w1, a flat waveform w2, and a rising waveform w3.
  • the rising drive waveform in FIG. 25 is referred to as a "rising drive waveform with falling waveform Wfr.”
  • FIG. 26 shows the analysis results of the simulation of the flow velocity change in the connecting flow path when the rising drive waveform Wr is applied and the flow velocity change in the connecting flow path when the rising drive waveform Wfr with a falling waveform is applied.
  • the rising drive waveform Wfr with falling waveform may be employed not only in this second embodiment but also in the first embodiment. That is, in the first embodiment, the rising drive waveform may be a rising drive waveform Wfr with a falling waveform.
  • the amount of the first liquid sucked from the main channel can be increased compared to when the rising drive waveform Wr is applied. Thereby, it is possible to reduce the difference in the amount of suction when applying the falling drive waveform Wf and when applying the rising drive waveform Wr, and to perform fractionation of microparticles more stably.
  • the present technology also provides a microparticle sorting method executed in the microparticle sorting device according to the first embodiment.
  • the microparticle sorting method includes a control step of applying a pressure change in the recovery channel in the microparticle sorting device according to the first embodiment, and a recovery step of recovering particles to be recovered into the recovery channel.
  • the control step includes applying a pressure change in the positive direction to generate pressure vibrations PVr in the recovery channel.
  • the recovery step includes performing a recovery operation Cr that recovers particles to be recovered by a negative pressure change caused by the pressure vibration PVr.
  • microparticle sorting device used in the microparticle sorting method according to the present technology is based on the above-mentioned 1. This is the same as the apparatus described in , and the explanation also applies to the microparticle fractionation method according to the present technology.
  • the present technology also provides an emulsion generation method executed in the emulsion generation device according to the second embodiment.
  • the emulsion production method includes a recovery step of recovering an emulsion containing particles to be recovered.
  • the emulsion generation device used in the emulsion generation method according to the present technology is based on the above 2. This is the same as the device described in , and the explanation also applies to the emulsion production method according to the present technology.
  • a channel including a main channel through which a first liquid containing microparticles flows, a recovery channel through which particles to be collected among the microparticles are collected, and a connection channel that connects the main channel and the recovery channel.
  • structure and a control unit that applies a pressure change in the recovery channel and recovers the particles to be recovered into the recovery channel, The control unit applies the pressure change in a positive direction, generates a pressure vibration PVr in the recovery channel, and collects the particles to be collected by the pressure change in a negative direction generated by the pressure vibration PVr. perform the collection operation Cr; Microparticle sorting device.
  • the control unit applies the pressure change in the negative direction in the collection flow path, and performs a collection operation Cf for collecting the particles to be collected by the pressure change in the negative direction. Particle separation device.
  • the microparticle sorting device according to [2] wherein the control unit is configured to alternately perform the collection operation Cf and the collection operation Cr.
  • the microparticle sorting device further includes a particle detection unit that detects the microparticles that have passed through a predetermined position in the main flow path, The control unit is configured to perform the recovery operation Cf or the recovery operation Cr depending on an interval TIx between times when the particle detection unit detects two successive microparticles, [2] Or the microparticle sorting device according to [3].
  • the control unit collects the first detected microparticle among the two consecutive microparticles by the collection operation Cf, and when the time interval TIx is shorter than a predetermined value,
  • the microparticle sorting device further includes a particle detection unit that detects the microparticles that have passed through a predetermined position in the main flow path, The control section performs the collection operation Cf after a time DTf from the time when the particle detection section detects the microparticle, and performs the collection operation Cr after a time DTr from the time when the particle detection section detects the microparticle.
  • the microparticle sorting device according to any one of [2] to [5], which is configured to perform the following. [7] The microparticle sorting device according to [6], wherein the time DTf and the time DTr are different from each other. [8] The microparticle sorting device according to [6] or [7], wherein the time DTr is shorter than the time DTf. [9] After the control unit applies the pressure change in the positive direction, it takes a time T2 before the flow of liquid in a predetermined section in the flow path structure returns to the state before the pressure change in the positive direction was applied.
  • any one of [1] to [8], wherein the time interval TIz from when the control unit applies the pressure change in the positive direction to when it applies the next pressure change is the same as or longer than the time T2.
  • the microparticle sorting device according to any one of the above. [10] After the control unit applies the pressure change in the negative direction, it takes a time T1 for the flow of liquid in a predetermined section in the channel structure to return to the state before the pressure change in the negative direction was applied. In cases where it is necessary, Any one of [2] to [8], wherein the time interval TIy from when the control unit applies the pressure change in the negative direction to when it applies the next pressure change is equal to or longer than the time T1.
  • the microparticle sorting device according to any one of the above.
  • the microparticle sorting device further includes an actuator, The microparticle sorting device according to any one of [1] to [10], wherein the control unit applies a drive waveform to the actuator to apply the pressure change in the recovery channel.
  • the microparticle sorting device further includes an actuator, According to any one of [1] to [11], the control unit applies the rising drive waveform Wr to the actuator to apply the pressure change in the positive direction and perform the recovery operation Cr. microparticle sorting device.
  • the microparticle sorting device further includes an actuator, The control unit applies a falling drive waveform Wf to the actuator to apply the pressure change in the negative direction, and performs the recovery operation Cf, moreover, According to any one of [2] to [8], the control unit applies the rising drive waveform Wr to the actuator to apply the pressure change in the positive direction and perform the recovery operation Cr. microparticle sorting device.
  • the channel structure further includes a liquid supply channel connected to the connecting channel so as to be able to supply a second liquid, The second liquid is immiscible with the first liquid,
  • the control unit according to any one of [1] to [15], wherein, in the recovery operation Cr, the first liquid containing the particles to be recovered is included in the second liquid.
  • Microparticle sorting device includes a microchip for sorting microparticles, The microparticle sorting device according to any one of [1] to [16], wherein the microchip for separating microparticles has the channel structure.
  • a flow path including a main flow path through which a first liquid containing microparticles flows, a collection flow path through which particles to be collected among the microparticles are collected, and a connection flow path that connects the main flow path and the recovery flow path.
  • a control step of applying a pressure change in the recovery channel a recovery step of recovering the particles to be recovered into the recovery channel; including;
  • the control step includes applying the pressure change in a positive direction to generate a pressure vibration PVr in the recovery channel, and
  • the recovery step includes performing a recovery operation Cr for recovering the particles to be recovered by a negative pressure change caused by the pressure vibration PVr.
  • Microparticle sorting device 101 Light irradiation section 102 Particle detection section 103 Control section 107 Actuator 109 Second light irradiation section 150, 150a Microchip for microparticle sorting 155 Main channel 156 Particle detection region 157 Particle sorting section 158 Waste stream Channel 159 Recovery channel 165 Pressure chamber 170 Connection channel

Abstract

本技術は、目的の微小粒子を高効率で分取できる微小粒子分取装置及び微小粒子分取方法を提供することを主目的とする。 本技術では、微小粒子を含む第一液体が流れる主流路と、前記微小粒子のうち回収対象粒子が回収される回収流路と、前記主流路及び前記回収流路を接続する接続流路と、を含む流路構造と、前記回収流路内に圧力変化を与え、且つ、前記回収流路内へ前記回収対象粒子を回収する制御部と、を備え、前記制御部は、正方向の前記圧力変化を与え、前記回収流路内に圧力振動PVrを発生させ、且つ、前記圧力振動PVrによって生じた負方向の圧力変化により、前記回収対象粒子を回収する回収動作Crを行う、微小粒子分取装置などを提供する。

Description

微小粒子分取装置及び微小粒子分取方法
 本技術は、微小粒子分取装置及び微小粒子分取方法に関する。
 微小粒子分取装置は、サンプルの中から特定の微小粒子を分取し回収する目的で用いられうる。微小粒子分取装置は、例えば、流路内に微小粒子を含むシースフローを形成し、シースフロー中の微小粒子に光を照射して微小粒子から発生する蛍光及び/又は散乱光を検出する。これにより、所定の光学特性を示す微小粒子群(ポピュレーション)を分別及び回収する。微小粒子分取装置の一例であるフローサイトメータは、蛍光色素によって標識された各細胞を光学的に識別することによって、特定の種類の細胞のみを分別及び回収する。
 下記特許文献1及び2には、マイクロチップに形成された主流路内にシースフローを形成して微小粒子を分取する、マイクロチップ型の微小粒子分取装置が開示されている。特許文献1及び2に開示される微小粒子分取装置は、主流路に連通する分岐流路と、分岐流路内に負圧を発生させるアクチュエータと、を備える。
 特許文献1に開示される微小粒子分取装置は、アクチュエータにアンダーシュート波形付きステップ波形成分及びパルス波形の電圧を印加する。特許文献2に開示される微小粒子分取装置は、アクチュエータにパルス波形、ステップ波形、又はアンダーシュート付ステップ波形のいずれかの駆動波形を印加し、パルス波形の印加を、立下り波形部と立上り波形部とで個別に制御する。
 特許文献1及び2の微小粒子分取装置は、アクチュエータに立下り駆動波形を印加することによって、分岐流路内を負圧とする。これにより、主流路から分岐流路に向かう流れが形成されて、微小粒子は主流路から分岐流路へと取り込まれる。さらに、これらの微小粒子分取装置は、アクチュエータに立上り駆動波形を印加して、分岐流路内に正圧を発生させて、分岐流路内を元の状態に復帰させる。すなわち、これらの微小粒子分取装置において、立上り駆動波形の印加は、アクチュエータの復帰動作として行われる。
国際公開第2014/013802号パンフレット 特開2014-039534号公報
 本発明者は、従来の微小粒子分取装置において立上り駆動波形印加時の動作時間は微小粒子を分取しない時間であり、分取効率の観点からは無駄時間であると考えた。本発明者は、このような無駄時間を削減することによって微小粒子の分取効率を向上できると考えた。
 そこで、本技術は、目的の微小粒子を高効率で分取できる微小粒子分取装置及び微小粒子分取方法を提供することを主目的とする。
 本発明者は、上記課題を解決するため、従来の微小粒子分取装置では微小粒子の分取を行っていなかった特定の時間において分取を行うことが可能な装置について検討を重ね、その結果、本技術を完成させるに至った。
 すなわち、本技術は、
 微小粒子を含む第一液体が流れる主流路と、前記微小粒子のうち回収対象粒子が回収される回収流路と、前記主流路及び前記回収流路を接続する接続流路と、を含む流路構造と、
 前記回収流路内に圧力変化を与え、且つ、前記回収流路内へ前記回収対象粒子を回収する制御部と、を備え、
 前記制御部は、正方向の前記圧力変化を与え、前記回収流路内に圧力振動PVrを発生させ、且つ、前記圧力振動PVrによって生じた負方向の圧力変化により、前記回収対象粒子を回収する回収動作Crを行う、
 微小粒子分取装置を提供する。
 前記制御部は、前記回収流路内に負方向の前記圧力変化を与え、且つ、前記負方向の圧力変化により、前記回収対象粒子を回収する回収動作Cfを行いうる。
 前記制御部は、前記回収動作Cfと前記回収動作Crとを交互に行うように構成されていてよい。
 前記微小粒子分取装置は、前記主流路内の所定の位置を通過した前記微小粒子を検出する粒子検出部をさらに備えていてよく、
 前記制御部は、前記粒子検出部が、連続する2つの前記微小粒子を検出した時刻の間隔TIxに応じて、前記回収動作Cf又は前記回収動作Crを行うように構成されていてよい。
 前記制御部は、前記連続する2つの微小粒子のうち先に検出された微小粒子を前記回収動作Cfによって回収し、且つ、前記時刻の間隔TIxが所定の値より短い場合に、前記連続する2つの微小粒子のうち後に検出された微小粒子を前記回収動作Cfによって回収するように構成されていてよい。
 前記微小粒子分取装置は、前記主流路内の所定の位置を通過した前記微小粒子を検出する粒子検出部をさらに備え、
 前記制御部は、前記粒子検出部が前記微小粒子を検出した時刻から時間DTf後に前記回収動作Cfを行い、且つ、前記粒子検出部が前記微小粒子を検出した時刻から時間DTr後に前記回収動作Crを行うように構成されていてよい。
 前記時間DTf及び前記時間DTrは、互いに異なっていてよい。
 前記時間DTrは、前記時間DTfより短くてよい。
 前記制御部が前記正方向の圧力変化を与えた後、前記流路構造内の所定の区間における液体の流れが、前記正方向の圧力変化が与えられる前の状態に戻るまでに、時間T2を要する場合において、
 前記制御部が前記正方向の圧力変化を与えてから次の圧力変化を与えるまでの時間の間隔TIzは、前記時間T2と同じであるか又はそれより長くてよい。
 前記制御部が前記負方向の圧力変化を与えた後、前記流路構造内の所定の区間における液体の流れが、前記負方向の圧力変化が与えられる前の状態に戻るまでに、時間T1を要する場合において、
 前記制御部が前記負方向の圧力変化を与えてから次の圧力変化を与えるまでの時間の間隔TIyは、前記時間T1と同じであるか又はそれより長くてよい。
 前記微小粒子分取装置は、アクチュエータをさらに備えていてよく、
 前記制御部は、前記アクチュエータに駆動波形を印加することにより、前記回収流路内に前記圧力変化を与えうる。
 前記微小粒子分取装置は、アクチュエータをさらに備えていてよく、
 前記制御部は、前記アクチュエータに立上り駆動波形Wrを印加することにより、前記正方向の圧力変化を与え、且つ、前記回収動作Crを行いうる。
 前記微小粒子分取装置は、アクチュエータをさらに備えていてよく、
 前記制御部は、前記アクチュエータに立下り駆動波形Wfを印加することにより、前記負方向の圧力変化を与え、且つ、前記回収動作Cfを行い、
 さらに、
 前記制御部は、前記アクチュエータに立上り駆動波形Wrを印加することにより、前記正方向の圧力変化を与え、且つ、前記回収動作Crを行いうる。
 前記立上り駆動波形Wrは、立下り波形付き立上り駆動波形Wfrであってよい。
 前記接続流路の直径は、60μm以上であってよい。
 前記流路構造は、前記接続流路に第二液体を供給可能に接続されている液体供給流路をさらに含み、
 前記第二液体は、前記第一液体と非混和性であり、
 前記制御部は、前記回収動作Crにおいて、前記回収対象粒子を含む前記第一液体が前記第二液体に包含されたエマルションを回収してよい。
 前記微小粒子分取装置は、微小粒子分取用マイクロチップを備えていてよく、前記微小粒子分取用マイクロチップは、前記流路構造を有していてよい。
 また、本技術は、
 微小粒子を含む第一液体が流れる主流路と、前記微小粒子のうち回収対象粒子が回収される回収流路と、前記主流路と前記回収流路とを接続する接続流路と、を含む流路構造を備える微小粒子分取装置において、前記回収流路内に圧力変化を与える制御工程と、
 前記回収流路内へ前記回収対象粒子を回収する回収工程と、
 を含み、
 前記制御工程は、正方向の前記圧力変化を与え、前記回収流路内に圧力振動PVrを発生させることを含み、且つ、
 前記回収工程は、前記圧力振動PVrによって生じた負方向の圧力変化により、前記回収対象粒子を回収する回収動作Crを行うことを含む、
 微小粒子分取方法も提供する。
第1実施形態に係る微小粒子分取装置の構成を示す模式図である。 粒子分取部の拡大図である。 サンプル液及びシース液から層流が形成される様子を示す摸式図である。 第1実施形態に係る微小粒子分取装置の機能構成を示すブロック図である。 微小粒子分取用マイクロチップの一例を示す平面図である。 微小粒子分取用マイクロチップの一例を示す斜視図である。 図5中のX-X線矢視方向断面図である。 アクチュエータに印加される駆動波形の例を示す図である。 圧力室の圧力変化と接続流路内の流速変化に関するシミュレーションにおける解析結果を示す図である。 図1に示される流路構造の一部を示す模式図である。 粒子検出部でのイベントシグナルと、ピエゾ駆動電圧と、接続流路内の流速変化との時間関係を示す図である。 制御部の構成を説明するためのブロック図である。 イベント検出回路によって読み込まれた電気信号の波形を説明するための図である。 イベントデータパケットを説明するための概念図である。 ヒストグラムチャート及び2Dチャートに対するゲーティングを説明するための図である。 立下り駆動波形及び立上り駆動波形を含むパルス波形を説明するための模式図である。 微小粒子の回収動作を具現化するアルゴリズムの一例を示す第1のフローチャートである。 微小粒子の回収動作を具現化するアルゴリズムの一例を示す第2のフローチャートである。 微小粒子の回収動作を説明するためのタイムチャートである。 比較例を説明するためのタイムチャートである。 微小粒子の回収動作の変形例を説明するためのタイムチャートである。 微小粒子の回収動作の変形例を説明するためのタイムチャートである。 微小粒子の回収動作の変形例における第2の処理を示すフローチャートである。 立下り駆動波形及び立上り駆動波形の印加により、回収流路内に生成されたエマルションを示す図面代用写真である。 立下り波形付き立上り駆動波形を示す図である。 立上り駆動波形及び立下り波形付き立上り駆動波形印加時の接続流路内の流速変化のシミュレーションにおける解析結果を示す図である。
 以下、本技術を実施するための好適な形態について図面を参照しながら説明する。以下に説明する実施形態は、本技術の代表的な実施形態を示したものであり、本技術の範囲がこれらの実施形態のみに限定されることはない。本技術の説明は以下の順序で行う。
1.第1の実施形態(微小粒子分取装置)
1-1.概要
1-2.基本構成
1-3.詳細構成
1-4.圧力変化及び流速変化に関するシミュレーション
1-5.微小粒子の回収動作
1-5-1.微小粒子の回収動作の流れ
1-5-2.微小粒子の回収動作を行うための制御部の構成
1-5-3.微小粒子の回収動作を具現化するアルゴリズム
2.第2の実施形態(エマルション生成装置)
2-1.概要
2-2.構成及び動作
3.第3の実施形態(微小粒子分取方法)
4.第4の実施形態(エマルション生成方法)
1.第1の実施形態(微小粒子分取装置)
1-1.概要
 本技術の第1の実施形態に係る微小粒子分取装置は、微小粒子を含む第一液体が流れる主流路と、微小粒子のうち回収対象粒子が回収される回収流路と、主流路及び回収流路を接続する接続流路と、を含む流路構造を備える。当該微小粒子分取装置は、回収流路内に圧力変化を与え、且つ、回収流路内へ回収対象粒子を回収する制御部をさらに備える。制御部は、正方向の圧力変化を与え、回収流路内に圧力振動PVrを発生させる、且つ、圧力振動PVrによって生じた負方向の圧力変化により、回収対象粒子を回収する回収動作Crを行う。
 本実施形態に係る微小粒子分取装置は、回収流路内に正方向の圧力変化を与えることによって発生する圧力振動PVrを、微小粒子分取のために利用する。これにより、従来の微小粒子分取装置において生じていた無駄時間(微小粒子を分取しない時間)が低減され、より高効率な分取が可能となる。
 主流路と、回収流路と、接続流路とを含む流路構造は、例えば、微小粒子分取用マイクロチップに形成されていてよい。すなわち、本実施形態に係る微小粒子分取装置は一例として微小粒子分取用マイクロチップを備えていてよく、微小粒子分取用マイクロチップは流路構造を有していてよい。以下、微小粒子分取用マイクロチップを備える微小粒子分取装置を例に挙げて、図を参照しながら本実施形態の一例を説明する。
1-2.基本構成
 まず、第1の実施形態に係る微小粒子分取装置の基本構成について説明する。図1は、微小粒子分取装置100の構成を示す模式図である。微小粒子分取装置100は、微小粒子分取用マイクロチップ150(以下単に「マイクロチップ150」ともいう。)を備える。マイクロチップ150は、交換可能に微小粒子分取装置100に取り付けられてよい。
 マイクロチップ150は、微小粒子を含む第一液体が流れる主流路155と、微小粒子のうち回収対象粒子が回収される回収流路159と、主流路155及び回収流路159を接続する接続流路と、を含む流路構造を有する。当該接続流路は、微小粒子分取用マイクロチップ150に設けられた粒子分取部157に含まれる。
 図2は、粒子分取部157の拡大図である。図2に示されるように、主流路155と回収流路159との間に、接続流路170が設けられている。粒子分取部157において、回収対象粒子が回収流路159内へ回収される。具体的には、制御部(詳細は後述)によって、回収流路159内へ回収対象粒子を回収する回収工程が実行される。
 マイクロチップ150は、当技術分野で既知の方法により製造されうる。例えば、上述した流路が形成された2枚の基板を貼り合わせることにより製造されうる。流路は、2枚の基板の両方に形成されていてよく、又は、一方の基板にのみ形成されていてもよい。基板の貼り合わせ時における位置の調整をより容易にするために、流路は、一方の基板にのみ形成されうる。
 マイクロチップ150を形成する材料として、当技術分野で既知の材料が用いられうる。例えば、ポリカーボネート、シクロオレフィンポリマー、ポリプロピレン、PDMS(polydimethylsiloxane)、ポリメタクリル酸メチル(PMMA)、ポリエチレン、ポリスチレン、ガラス、及びシリコンが挙げられるがこれらに限定されない。特に、加工性に優れており且つ成形装置を使用して安価にマイクロチップを製造することができることから、ポリカーボネート、シクロオレフィンポリマー、及びポリプロピレンなどの高分子材料が特に好ましい。
 再度図1を参照する。微小粒子分取装置100は、光照射部101、粒子検出部102、及び制御部103を備える。
 光照射部101は、主流路155を流れる微小粒子に光(例えば励起光)を照射する。すなわち、光照射部101によって、主流路155を流れる微小粒子に光を照射する光照射工程が実行される。光照射部101は、光を出射する光源と、検出領域を流れる微小粒子に対して励起光を集光する対物レンズとを含みうる。光源は、分析の目的に応じて当業者により適宜選択されてよく、例えばレーザダイオード、SHGレーザ、固体レーザ、ガスレーザ、高輝度LED、若しくはハロゲンランプであってよく、又は、これらのうちの2つ以上の組み合わせであってもよい。光照射部101は、光源及び対物レンズに加えて、必要に応じて他の光学素子を含んでいてもよい。
 粒子検出部102は、主流路155内の所定の位置を通過した微小粒子を検出する。すなわち、粒子検出部102によって、主流路155内の所定の位置を通過した微小粒子を検出する粒子検出工程が実行される。より詳細には、粒子検出部102は、光照射部101による光照射によって微小粒子から生じた散乱光及び/又は蛍光を検出する。粒子検出部102は、微小粒子から生じた蛍光及び/又は散乱光を集光する集光レンズと検出器とを含みうる。当該検出器として、PMT、フォトダイオード、CCD、及びCMOSなどが用いられうるがこれらに限定されない。粒子検出部102は、集光レンズ及び検出器に加えて、必要に応じて他の光学素子を含んでいてもよい。粒子検出部102は、例えば分光部をさらに含みうる。分光部を構成する光学部品として、例えばグレーティング、プリズム、及び光フィルタを挙げることができる。分光部によって、例えば検出されるべき波長の光を、他の波長の光から分けて検出することができる。粒子検出部102は、検出された光を光電変換によって、アナログ電気信号に変換する。粒子検出部102は、当該アナログ電気信号を制御部103に伝送する。
 制御部103は、粒子検出部102により検出された光の特徴に基づいて、微小粒子が回収対象粒子であるかを判定する。すなわち、制御部103によって、粒子検出部102で検出された光の特徴に基づいて、微小粒子が回収対象粒子であるかを判定する判定工程が実行される。より詳細には、制御部103は、取得したアナログ電気信号を処理して、光の特徴に関する情報を生成する。例えば、制御部103は、前方散乱光、側方散乱光、後方散乱光などの散乱光に基づく判定、同一若しくは複数の波長を有する蛍光に基づく判定、又は、画像(例えば、暗視野画像及び/又は明視野画像など)に基づく判定を行いうる。
 さらに、制御部103は、判定結果に基づいて、微小粒子を回収するために動作する。具体的には、制御部103は、判定工程における判定結果に基づいて、回収流路159内に圧力変化を与え、且つ、回収流路159内へ回収対象粒子を回収する。すなわち、制御部103によって、判定工程における判定結果に基づいて、回収流路159内に圧力変化を与える制御工程と、回収流路159内へ回収対象粒子を回収する回収工程と、が実行される。これにより、マイクロチップ150中の流れが制御され、その結果、微小粒子が回収されうる。
1-3.詳細構成
 次に、微小粒子分取装置100の詳細構成について説明する。図1に示されるように、マイクロチップ150には、サンプル液インレット151及びシース液インレット153が設けられている。これらインレットから、微小粒子を含む第一液体からなるサンプル液及び微小粒子を含まない第一液体からなるシース液が、それぞれサンプル液流路152及びシース液流路154に導入される。
 マイクロチップ150は、サンプル液が流れるサンプル液流路152及びシース液が流れるシース液流路154が合流部162で合流して主流路155となる流路構造を有する。主流路155において、サンプル液及びシース液から層流が形成される。
 図3は、サンプル液及びシース液から層流が形成される様子を示す模式図である。図3に示されるように、サンプル液流路152及びシース液流路154が合流部162で合流して、例えばサンプル液の周囲がシース液で囲まれた層流が形成される。好ましくは、層流中には微小粒子が略一列に並んでいる。このように、上記流路構造によって、略一列に並んで流れる微小粒子を含む層流が形成される。
 上記層流は、主流路155を、粒子分取部157に向かって流れる。好ましくは、微小粒子は、主流路155内を一列に並んで流れる。これにより、以下で説明する粒子検出領域156での光照射において、1つの微小粒子への光照射により生じた光と他の微小粒子への光照射により生じた光とを区別しやすくなる。
 図1、3に示されるように、マイクロチップ150は、粒子検出領域156を有する。図1に示されるように、粒子検出領域156において、光照射部101は主流路155を流れる微小粒子に光を照射する。粒子検出部102は当該光照射により生じた光を検出する。粒子検出部102により検出された光の特徴に基づいて、制御部103は微小粒子が回収対象粒子であるかを判定する。制御部103は判定結果に基づいて回収流路159内に圧力変化を与えて回収対象粒子を回収する。
 図4は、微小粒子分取装置100の機能構成を示すブロック図である。上述のとおり、微小粒子分取装置100は、機能部として、光照射部101、粒子検出部102、及び制御部103を有している。図4に示されるように、微小粒子分取装置100は、アクチュエータ107をさらに備えていてよい。この場合、制御部103は、アクチュエータに駆動波形を印加することにより、回収流路159(図1参照)内に圧力変化を与えることができる。アクチュエータ107及び制御部103の詳細については、後段において他の図を参照して説明する。
 再度図1を参照する。マイクロチップ150が有する流路構造は、微小粒子を含む第一液体が流れる主流路155と、微小粒子のうち回収対象粒子が回収される回収流路159と、回収対象ではない微小粒子が廃棄される廃棄流路158とを含む。粒子分取部157において、回収対象粒子が流れてきた場合にのみ、主流路155から接続流路170(図2参照)を通って回収流路159へ入る流れが形成されて、回収対象粒子が回収流路159内へ回収される。
 図2を参照しながら、粒子分取部157における微小粒子の分取制御について説明する。図2Aに示されるとおり、粒子分取部157は、微小粒子Pが通流される主流路155と回収流路159とを接続する接続流路170を含む。微小粒子Pのうち回収対象粒子Poは、図2Bに示されるとおり、接続流路170を通って、回収流路159へと流れる。回収対象ではない微小粒子Pwは、図2Cに示されるとおり、廃棄流路158へと流れる。
 粒子分取部157において、主流路155を流れてきた層流は、廃棄流路158へと流れる。粒子分取部157において、回収対象粒子Poが流れてきた場合にのみ、回収流路159への流れが形成されて、回収対象粒子Poが回収される。回収対象粒子Poが回収流路159へと吸い込まれる際には、層流を構成するサンプル液又は層流を構成するサンプル液及びシース液も回収流路159へと流れうる。
 回収対象ではない微小粒子Pwが回収流路159へと入ることを防ぐために、図2Aに示されるとおり、液体供給流路161が接続流路170に接続されていてよい。液体供給流路161は、例えば、接続流路170の上下方向に(接続流路170の軸方向に対して略垂直になるように)設けられている。例えば、接続流路170が図2中の矢印X方向と平行である場合、液体供給流路161は、図2中の矢印Z方向と平行であってよい。液体供給流路161は、その中央付近において、接続流路170と交差するように構成されている。液体供給流路161から、第二液体(微小粒子を含む第一液体以外の液体)が接続流路170へと導入される。これにより、接続流路170に対して上下方向から第二液体が供給される。接続流路170に供給された第二液体は、主流路155及び回収流路159の両方へ流れる。接続流路170から主流路155への上流方向へ向かう流れが形成されることで、回収対象ではない微小粒子Pwが回収流路159へと入ることが防がれる。
 回収流路159への回収対象粒子の回収は、例えば、アクチュエータ107(図4参照)を駆動させることによって行われる。アクチュエータ107は、例えばピエゾ素子などの圧力素子を利用したアクチュエータであってよい。
 以下、図5~7を参照しながら、アクチュエータ107及び微小粒子分取用マイクロチップ150a(以下単に「マイクロチップ150a」ともいう。)について説明する。図5及び6は、それぞれ、マイクロチップ150aの平面図及び斜視図である。図7は、図5中のX-X線矢視方向断面図である。図5~7に示されるマイクロチップ150aは、圧力室165が描写されている点において図1に示されるマイクロチップ150と相違しているが、他の点は同一である。
 図6及び7に示されるように、アクチュエータ107は、回収流路159の壁を変形させることできるように、マイクロチップ150aの表面上の回収流路159に対応する位置に配置されている。アクチュエータ107は、マイクロチップ150aの表面と接触している。
 回収流路159は、例えば、内空が拡張された領域である圧力室165を有していてよい。この場合、アクチュエータ107は、マイクロチップ150aの表面上の圧力室165に対応する位置に配置されていてよい。
 圧力室165の内空は、図5及び6に示されるように平面方向(回収流路159の幅方向)に拡張されるとともに、図7に示されるように断面方向(回収流路159の高さ方向)にも拡張されている。すなわち、回収流路159は、圧力室165において幅方向及び高さ方向に拡張されている。換言すると、回収流路159は、圧力室165においてサンプル液及びシース液の流れ方向に対する垂直断面が大きくなるように形成されている。
 アクチュエータ107は、印加される駆動電圧の変化に伴って発生する伸縮力によって、回収流路159(圧力室165)を変形させる。当該変形によって、回収流路159(圧力室165)の体積が変化し、回収流路159(圧力室165)内に圧力変化が生じる。例えば、アクチュエータ107が収縮すると、圧力室165の体積が増大して、圧力室165内の圧力が負方向に変化する。例えば、アクチュエータ107が伸長すると、圧力室165の体積が減少して、圧力室165内の圧力が正方向に変化する。
 アクチュエータ107の伸縮力を効率よく回収流路159(圧力室165)内へ伝達するため、図7に示されるように、マイクロチップ150aの表面を圧力室165に対応する位置において陥凹させ、該陥凹内にアクチュエータ107を配置することが好ましい。これにより、アクチュエータ107と接触し且つ圧力室165の一部を構成する変位板167を薄くできる。変位板167が薄いと、アクチュエータ107の伸縮に伴って変位板167が容易に変位するため、圧力室165の体積を容易に変化させることができる。
 アクチュエータ107に伸縮力を発生させるため、制御部103(図4参照)は、アクチュエータ107に所定の駆動波形を印加する。図8は、アクチュエータ107に印加される駆動波形の例を示す図である。図8に示されるように、駆動波形は、立下り駆動波形Wf(立下り傾斜)と立上り駆動波形Wr(立上り傾斜)とを含みうる。
 例えば、制御部103がアクチュエータ107に立下り駆動波形Wfを印加する。図6及び7に示されるアクチュエータ107は収縮し、圧力室165は体積が増大する方向に変形させられて、圧力室165内に負方向の圧力変化が生じる。また、例えば、制御部103がアクチュエータ107に立上り駆動波形Wrを印加する。図6及び7に示されるアクチュエータ107は伸展し、圧力室165は体積が減少する方向に変形させられて、圧力室165内に正方向の圧力変化が生じる。
 上述のように、図8に示される立下り駆動波形Wfは、駆動波形の印加直後に負方向の圧力変化を与えるために印加される。図8に示される立上り駆動波形Wrは、駆動波形の印加直後に正方向の圧力変化を与えるために印加される。これらの駆動波形においては、立下り波形Wfの駆動高さ(電圧)、立上り駆動波形Wrの駆動高さ(電圧)、立下り駆動波形Wfの駆動電圧印加時間(立下り傾斜)、立上り駆動波形Wrの駆動電圧印加時間(立上り傾斜)、及び立下り駆動波形Wfと立上り波形Wrの時間間隔Th(駆動時間間隔Th)が、制御パラメータとして用いられうる。
1-4.圧力変化及び流速変化に関するシミュレーション
 マイクロチップ150aの材料としてプラスチックを使用し、アクチュエータ107(ピエゾアクチュエータ)の駆動波形として立下り駆動波形Wf及び立上り駆動波形Wrを印加した場合における、圧力室165の圧力変化と接続流路170内の流速変化に関するシミュレーションを行った。図9は、当該シミュレーションにおける解析結果を示す図である。図9において、左側の図(I)は、立下り駆動波形Wfを印加した場合の解析結果である。右側の図(II)は、立上り駆動波形Wrを印加した場合の解析結果である。また、図9において、上段(A)はピエゾ駆動電圧、中段(B)は圧力室165の圧力変化、下段(C)は接続流路170内の流速変化を示す。下段(C)の図において接続流路170内の流れは、下段(C)の上方向が圧力室165方向(回収流路159方向)であり、下段(C)の下方向が主流路155方向である。
 立下り駆動波形Wfの印加時において、圧力室165は体積が増大する方向に変形させられる。立下り駆動波形Wfの印加直後、図9中の(BI)に示されるように圧力室165に負方向の圧力変化が起きて、(CI)に示されるように接続流路170内の流れは圧力室165方向に加速する。このとき、流体吸引に伴う圧力変化により、流路内壁面は弾性変形し弾性振動を引き起こす。当該弾性振動により、圧力室165の体積変動が発生し圧力室165内に圧力振動が発生する。当該圧力振動により、接続流路170内において、回収流路159へ向かう吸引方向の流れとその逆の吐出方向の流れとを交互に繰り返す振動流が発生する。したがって、圧力室165内に負方向の圧力変化を与える立下り駆動波形Wfを印加する場合、印加直後に回収流路159へ向かう振動流が発生し、次に主流路155へ向かう振動流が発生する。印加直後に発生する回収流路159へ向かう振動流は、(CI)において矢印F1で示されている。
 立上り駆動波形Wrの印加時において、圧力室165は体積が減少する方向に変形させられる。立上り駆動波形Wrの印加直後、図9中の(BII)に示されるように圧力室165に正方向の圧力変化が起きて、(CII)に示されるように接続流路170内の流れは主流路155方向に加速する。このとき、流路内壁面は弾性変形し弾性振動を引き起こす。当該弾性振動により圧力振動が発生する。当該圧力振動により振動流が発生する。立上り駆動波形Wr印加時の振動流の振動特性は、立下り駆動波形Wf印加時に発生する振動流の振動特性と逆の特性になる。
 立上り駆動波形Wrの印加直後に上記正方向の圧力変化が起きると、当該圧力変化に起因して圧力振動が発生する。当該圧力振動によって次に負方向の圧力変化が起きる。当該負方向の圧力変化により回収流路159へ向かう振動流が発生する。したがって、圧力室165内に正方向の圧力変化を与える立上り駆動波形Wrを印加する場合、印加直後に主流路155へ向かう振動流が発生し、次に回収流路159へ向かう振動流が発生する。回収流路159へ向かう当該振動流は、(CII)において矢印F2で示されている。
 図9を参照して上記で述べたとおり、立下り駆動波形Wf及び立上り駆動波形Wrのそれぞれの印加時において、回収流路159へと流れる振動流が発生する。これらの振動流をより効果的に発生させるため、マイクロチップ150a内の接続流路170(図7参照)の直径は、好ましくは60μm以上である。従来の微小粒子分取装置において一般に用いられるマイクロチップ内の接続流路は、例えば30μm程度でありうる。当該接続流路を流れる微小粒子の直径は、例えば10μm程度でありうる。これに対して本実施形態における接続流路170の直径は、従来と比べて大きいことが好ましい。これにより、立上り駆動波形Wrを印加した後に生じる回収流路159へ向かう振動流(図9の矢印F2参照)の流速のピークを増加させることができる。その結果、立上り駆動波形Wr印加時における液体の吸引量を増加させて、微小粒子の吸引力を高めることができる。本実施形態における接続流路170を流れる微小粒子の直径は、例えば20μm以上30μm以下であってよい。このように、微小粒子の直径は、従来と比べて大きくてもよい。接続流路170の直径の上限は、一例として90μm以下であってよい。
 立上り駆動波形Wr印加時における吸引力に影響を与えうる要素は、上述した接続流路170の直径に限られない。例えば、図7に示される圧力室165及び/又は回収流路159のサイズ、並びに、マイクロチップ内を通流する液体の性質(例えば、液体の動粘度及び流速)も、上記吸引力に影響を与えうる。
1-5.微小粒子の回収動作
1-5-1.微小粒子の回収動作の流れ
 本実施形態に係る微小粒子分取装置100は、立上り駆動波形Wrを印加した後に生じる回収流路159へと流れる振動流(図9の矢印F2参照)を用いて、微小粒子を回収する。好ましくは、微小粒子分取装置100は、立下り駆動波形Wfを印加した直後に発生する回収流路159へと流れる振動流(図9の矢印F1参照)と、立上り駆動波形Wrを印加した後に生じる回収流路159へと流れる振動流(図9の矢印F2参照)と、の両方を用いて、微小粒子を回収する。
 具体的には、制御部103は、回収流路159内に正方向の圧力変化を与え、回収流路159内に圧力振動PVrを発生させる。制御部103は、圧力振動PVrによって生じた負方向の圧力変化(特には最初の負方向の圧力変化)により、回収対象粒子を回収する回収動作Crを行う。すなわち、制御部103によって実行される制御工程は、回収流路159内に正方向の圧力変化を与え、回収流路内に圧力振動PVrを発生させることを含む。制御部103によって実行される回収工程は、圧力振動PVrによって生じた負方向の圧力変化(特には最初の負方向の圧力変化)により、回収対象粒子を回収する回収動作Crを行うことを含む。
 好ましくは、制御部103は、アクチュエータ107に立上り駆動波形Wrを印加することにより、回収流路159内に正方向の圧力変化を与える。これにより、制御部103は、回収流路159内に圧力振動PVrを発生させ、且つ、上記回収動作Crを行う。
 上記回収動作Crは、より詳細には、圧力振動PVrによって生じた負方向の圧力変化(特には最初の負方向の圧力変化)に起因する回収流路159へ流れる振動流により、回収対象粒子を回収する動作である。
 また、制御部103は、回収流路159内に負方向の圧力変化を与え、且つ、当該負方向の圧力変化により、回収対象粒子を回収する回収動作Cfを行ってよい。すなわち、制御部103によって実行される制御工程は、回収流路159内に負方向の圧力変化を与えることを含んでいてよい。また、制御部103によって実行される回収工程は、当該負方向の圧力変化により、回収対象粒子を回収する回収動作Cfを行うことを含んでいてよい。
 好ましくは、制御部103は、アクチュエータ107に立下り駆動波形Wfを印加することにより、回収流路159内に負方向の圧力変化を与え、且つ、上記回収動作Cfを行う。
 上記回収動作Cfは、より詳細には、立下り駆動波形Wf印加直後に発生する回収流路159へ流れる振動流により、回収対象粒子を回収する動作である。
 微小粒子分取装置100において、制御部103は、一例として、回収動作Cfと回収動作Crとを交互に行うように構成されていてよい。これにより、回収対象粒子の回収に失敗する回数を低減させて、回収率を向上させることができる。回収動作Cfと回収動作Crとを交互に行うことによって、すなわち、立下り駆動波形Wfと立上り駆動波形Wrの印加を交互に行うことによって、回収失敗が低減される点については、後段で図19及び20を参照しながら改めて説明する。
 従来の微小粒子分取装置は、立上り駆動波形Wrの印加をアクチュエータの復帰動作として行っている。そのため、立上り駆動波形Wr印加時の動作時間は、微小粒子を回収しない無駄時間となっている。しかしながら、本実施形態に係る微小粒子分取装置100は、立上り駆動波形Wrの印加を微小粒子の回収動作において利用する。すなわち、本実施形態に係る微小粒子分取装置100は、立上り駆動波形Wr印加時の動作時間に回収対象粒子を回収できる。これにより、従来の無駄時間が削減されて、回収対象粒子が効率的に回収されうる。すなわち、目的の微小粒子が高効率で分取されうる。
 図10は、図1に示される流路構造の一部を示す模式図である。回収流路159に回収対象粒子Poを精度よく回収するためには、アクチュエータ107を最適なタイミングで駆動する必要がある。具体的には、図10に示される主流路155中の回収対象粒子Poが、粒子検出領域156において粒子検出部102(図1参照)によって検出されてから、接続流路170の連通口169(接続流路170と主流路155とが連通している部分)へ到達した時点で、回収流路159へ向かう流れを形成するように、アクチュエータ107を駆動する必要がある。精度よく回収対象粒子Poを回収するためには、駆動波形の印加条件を適切に設定することにより、微小粒子の検出からアクチュエータ107に駆動波形を印加するまでの時間(回収開始時間)を最適化する必要がある。
 以下、図11を参照しながら、立下り駆動波形Wf及び立上り駆動波形Wrの両方の駆動において微小粒子を回収可能な場合の、駆動波形と回収時間との関係を説明する。図11は、粒子検出部102でのイベントシグナルと、ピエゾ駆動電圧と、接続流路170内の流速変化と、の時間関係を示す図である。図11において、左側の図(I)は、立下り駆動波形Wfを印加した場合の時間関係を示す図である。右側の図(II)は、立上り駆動波形Wrを印加した場合の時間関係を示す図である。また、図11において、上段(A)はシグナル強度、中段(B)はピエゾ駆動電圧、下段(C)は接続流路170内の流速変化を示す。下段(C)の図において接続流路170内の流れは、下段(C)の上方向が圧力室165方向(回収流路159方向)であり、下段(C)の下方向が主流路155方向である。
 立下り駆動波形Wf印加時の最適な回収開始時間を、図11中の(BI)に示される時間DTfとする。粒子検出部102によるシグナル検出から時間DTf後に駆動波形の印加が始まり、印加直後に接続流路170内の流速はすぐに圧力室165側へ(吸引方向へ)加速する。圧力室165へ向かう流れによって回収対象粒子が回収される。
 一方、立上り駆動波形Wrを印加した場合の接続流路170内の流速の時間変化(CII)を見ると、立上り駆動波形Wr印加時は、まず主流路155側へ加速し、その後、圧力室165側へ加速する。そのため、立上り駆動波形Wr印加時は、立下り駆動波形Wf印加時と比べて、駆動波形の印加開始から圧力室165側へ向かう流れが発生するまでに時間を要する。したがって、立上り駆動波形Wrを印加して回収対象粒子を回収する場合、立下り駆動波形Wfを印加する場合と比べて、イベント検出から駆動波形を印加するタイミングを早くする必要がある。立上り駆動波形Wr印加時の最適な回収開始時間を時間DTrとすると、(BII)に示されるように、時間DTrは時間DTfよりも短い時間となる。立下り駆動波形Wf印加時及び立上り駆動波形Wr印加時の両方で回収対象粒子を回収するため、好ましくは、それぞれの印加時に互いに異なる回収開始時間でアクチュエータ107を駆動させる。
 上述したタイミングでアクチュエータ107を駆動させるため、制御部103は、粒子検出部102が微小粒子を検出した時刻から時間DTf後に上記回収動作Cfを行い、且つ、粒子検出部102が微小粒子を検出した時刻から時間DTr後に上記回収動作Crを行うように構成されていてよい。この場合、時間DTf及び時間DTrは互いに異なっていてよく、好ましくは、時間DTrは時間DTfより短い。
1-5-2.微小粒子の回収動作を行うための制御部の構成
1-5-2-1.制御部の全体構成
 図4に示される制御部103は、アクチュエータ107に駆動電圧を印加して、回収対象粒子の回収動作を制御する。以下、図12を参照しながら、制御部103の全体構成について説明する。
 図12は、制御部103の構成を示す図である。制御部103は、バス2301にそれぞれ接続された複数の回路2302~2309を有している。具体的には、同図中の符号2302で示される回路は、アナログ-デジタル変換回路2302である。符号2303で示される回路は、イベント検出回路2303である。符号2304で示される回路は、回収開始時間計算回路2304である。符号2305で示される回路は、ゲーティング回路2305である。符号2306で示される回路は、出力待ち行列回路2306である。符号2307で示される回路は、出力タイミング生成回路2307である。符号2308で示される回路は、出力信号生成回路2308である。符号2309で示される回路は、MPU(マイクロプロセッシングユニット)2309である。なお、アナログ-デジタル変換回路2302は、同図において「A/D」と表されている。
 制御部103は、クロックカウンタ2310をさらに有している。このクロックカウンタ2310は、イベント検出回路2303、回収開始時間計算回路2304、ゲーティング回路2305、出力待ち行列回路2306、出力タイミング生成回路2307及び出力信号生成回路2308に接続されている。
 制御部103は、MPU2309に接続されたPC I/O部(パーソナルコンピュータ接続用のInput/Output Interface回路)2311と、このPC I/O部2311に接続された制御PC2312とをさらに有している。
 制御部103は、出力信号生成回路2308に接続されたデジタル-アナログ変換回路2313をさらに有している。なお、デジタル-アナログ変換回路2313は、同図において「D/A」と表されている。
1-5-2-2.制御部の詳細構成
 引き続き図12を参照しながら、制御部103の詳細構成について説明する。
[アナログ-デジタル変換回路]
 アナログ-デジタル変換回路2302は、粒子検出部102(図4参照)の後段(出力側)の回路であり、粒子検出部102と接続されている。また、アナログ-デジタル変換回路2302は、複数配置されている。ここで、アナログ-デジタル変換回路2302は、粒子検出部102によって検出される複数の光(波長領域)にそれぞれ対応するように、粒子検出部102のチャンネル(図12におけるCh)数と同数配置されていてもよい。あるいは、アナログ-デジタル変換回路2302は、粒子検出部102のセンサ数と同数配置されていてもよい。
 各アナログ-デジタル変換回路2302には、粒子検出部102から出力された、各アナログ-デジタル変換回路2302に対応する電気信号が入力される。該電気信号は、粒子検出部102によって検出された光(蛍光及び散乱光)が粒子検出部102によって光電変換されたアナログ信号である。そして、各アナログ-デジタル変換回路2302は、入力された各電気信号をそれぞれアナログ信号からデジタル信号へと変換する。さらに、各アナログ-デジタル変換回路2302は、デジタル信号に変換された電気信号を後段に出力する。
[イベント検出回路]
 イベント検出回路2303は、各アナログ-デジタル変換回路2302の後段の回路であり、各アナログ-デジタル変換回路2302と接続されている。
 イベント検出回路2303には、各アナログ-デジタル変換回路2302から出力された電気信号が入力される。そして、イベント検出回路2303は、入力された各電気信号のうちの特定の信号を、微小粒子を認知するためのトリガ信号として用いる。すなわち、イベント検出回路2303は、トリガ信号の値が所定の条件を満足する場合に、各電気信号が微小粒子から検出されたものであることを認知する。なお、トリガ信号は、粒子検出部102によって検出される複数の光のうちの強度が最大の光(例えば、前方散乱光)の電気信号であってもよいが、これに限定されなくてもよい。
 また、イベント検出回路2303は、図13に示されるように、入力された各電気信号の波形を読み込み、読み込まれた波形の幅、高さ及び面積を計算する。さらに、イベント検出回路2303は、算出された該波形の各値等を用いて、図14に示されるように、各電気信号をこれらに対応する1つの微小粒子に関連付けたイベントデータパケットを作成する。このイベントデータパケットは、1つの微小粒子に対する測定データの一例である。そして、イベント検出回路2303は、作成されたイベントデータパケットを後段に出力する。
 ここで、イベントデータパケットには、該パケットの作成時にデータの記録が完了する項目(以下、第1の項目と称する)が含まれている。また、イベントデータパケットには、該パケットの作成後における該パケットに対応する電気信号に関する処理が進むにつれて更新される項目(以下、第2の項目と称する)が含まれている。
 第1の項目には、例えば、以下の項目が含まれている。
 ・電気信号の波形の幅、高さ及び面積
 ・認知された微小粒子の番号(イベント番号)
 ・トリガ信号となった電気信号の番号
 ・トリガ信号の検出時刻
 なお、トリガ信号となった電気信号の番号は、チャンネル番号であってもよい。また、トリガ信号の検出時刻の記録には、クロックカウンタ2310から入力される信号を用いてもよい。この信号は、クロックカウンタ2310が、自身に入力されたクロック生成回路(図示せず)からのクロック信号を計数したものであってもよい。
 一方、第2の項目には、例えば、以下の項目が含まれている。
 ・微小粒子の回収を行うべき時刻
 ・微小粒子の回収を行うか否かを示す第1のフラグ
 ・微小粒子の回収を行うか否かを示す第2のフラグ
 なお、第1のフラグは、ゲーティング回路2305によって設定されるフラグである。一方、第2のフラグは、出力待ち行列回路2306によって設定されるフラグである。これら第1のフラグ及び第2のフラグは、基本的に1または0に設定されていて、対応する微小粒子の回収を行うか否かの判断に供されるようにしてもよい。各フラグの更なる詳細については後述する。
[回収開始時間計算回路]
 図12に示されるように、回収開始時間計算回路2304は、イベント検出回路2303の後段の回路であり、イベント検出回路2303と接続されている。
 回収開始時間計算回路2304には、イベント検出回路2303から出力されたイベントデータパケットが入力される。そして、回収開始時間計算回路2304は、入力されたイベントデータパケットに基づいて、第2の項目に含まれる微小粒子の回収を行うべき時刻として、微小粒子(回収対象粒子)が連通口169に到達した時点で、接続流路170内に回収流路159へ向かう流れを生成するためにアクチュエータ107の駆動開始時刻を計算する。回収開始時間計算回路2304は、立下り駆動波形Wfの印加により回収する回収開始時刻と、立上り駆動波形Wrの印加により回収する回収開始時刻と、の両方を計算する。計算によって算出された各駆動波形での回収開始時刻をイベントデータパケットに記録し、この記録後のイベントデータパケットを後段に出力する。回収開始時刻の計算は、第1の項目に含まれるトリガ信号の検出時刻に、あらかじめ決めておいた粒子検出から駆動波形印加までの時間(遅れ時間)を加算することによって行うようにしてもよい。また、回収開始時刻をクロックカウンタ値として計算してもよい。
[ゲーティング回路]
 ゲーティング回路2305は、イベント検出回路2303の後段の回路であり、イベント検出回路2303と接続されている。
 ゲーティング回路2305には、イベント検出回路2303から出力されたイベントデータパケットが入力される。そして、ゲーティング回路2305は、入力されたイベントデータパケットに対して、第1のフラグの設定を行う。さらに、ゲーティング回路2305は、第1のフラグを設定した後のイベントデータパケットを後段に出力する。
 第1のフラグの設定は、イベントデータパケットに含まれる各電気信号のパラメータについての予め設定されている閾値に基づいて行うようにしてもよい。この場合、閾値は、波形の幅、高さ及び面積の少なくとも1つであってもよい。そして、パラメータが閾値を満足する場合には、第1のフラグの値を、微小粒子の回収を行うことを示す値(例えば、「1」)に設定してもよい。一方、パラメータが閾値を満足しない場合には、第1のフラグの値を、微小粒子の回収を行わないことを示す値(例えば、「0」)に設定してもよい。
 また、閾値は、ゲーティングによって予め設定された範囲であってもよい。ここで、ゲーティングは、微小粒子集団中における微小粒子の特性分布を表す分布図上において、回収対象粒子に該当する範囲を囲い込んで指定する処理である。このゲーティングは、回収対象粒子の回収動作の開始前に行われる。なお、分布図は、制御PC2312上のGUI(グラフィカルユーザインターフェース)によって作成するようにしてもよい。また、ゲーティングは、ゲーティング回路2305によって行うようにしてもよい。
 ここで、図15Aは、分布図の一例としてのヒストグラムチャートに対するゲーティングの結果を示したものである。このヒストグラムチャートは、横軸がパラメータを示し、縦軸が粒子数を示す。同図におけるパラメータは、チャンネル番号1番(Ch1)に該当する電気信号の波形の面積であるが、これ以外のパラメータを用いてもよい。そして、同図における矩形枠が、回収対象粒子に該当する範囲を指定したゲートであり、該範囲が第1のフラグの設定のための閾値として用いられてもよい。
 一方、図15Bは、分布図の他の一例としての2D(2次元)チャートに対するゲーティングの結果を示したものである。この2Dチャートは、横軸及び縦軸に互いに異なるパラメータが割り当てられている。同図における横軸のパラメータは、チャンネル番号2番(Ch2)に該当する電気信号の波形の面積であり、縦軸のパラメータは、チャンネル番号3番(Ch3)に該当する電気信号の波形の面積である。しかし、これら両電気信号の波形の面積以外のパラメータを用いてもよい。そして、同図における矩形枠が、回収対象粒子に該当する範囲を指定したゲートであり、該範囲が第1のフラグの設定のための閾値として用いられてもよい。
[出力待ち行列回路]
 再度図12を参照する。出力待ち行列回路2306は、回収開始時間計算回路2304及びゲーティング回路2305の後段の回路であり、これら回収開始時間計算回路2304及びゲーティング回路2305と接続されている。
 出力待ち行列回路2306には、回収開始時間計算回路2304から出力されたイベントデータパケット及びゲーティング回路2305から出力されたイベントデータパケットが入力される。そして、出力待ち行列回路2306は、入力された両イベントデータパケットであって、互いに同一の微小粒子(すなわち同一のイベント番号)を示すもの同士を、1つのイベントデータパケットに統合(合成)する。この統合されたイベントデータパケットは、遅延時刻及び第1のフラグの双方が書き込まれたものである。なお、イベントデータパケットの統合は、回収開始時間計算回路2304とゲーティング回路2305との間での通信によって、両回路2304、2305のいずれかで行うようにしてもよい。また、回収開始時間計算回路2304とゲーティング回路2305とは直列に接続されていてもよい。
 また、出力待ち行列回路2306は、逐次入力された互いに異なる微小粒子のイベントデータパケットを、イベントデータパケットに含まれる回収開始時刻が早い順に並べる。ここで、出力待ち行列回路2306に入力されたイベントデータパケットであって、該当する微小粒子の回収のための駆動波形の出力待ちのものを、「出力待ち行列」と定義する。出力待ち行列は、出力待ち行列回路2306への新たなイベントデータパケットの入力に応じて更新される。
 さらに、出力待ち行列回路2306は、純度優先モード又は取得率優先モードに応じて、各イベントデータパケットに対応する微小粒子の回収を行うか否かを判断する。なお、純度優先モード及び取得率優先モードは、微小粒子の回収動作の開始前に予め選択的に設定されている制御部103の動作モードである。該モードの設定は、各種のユーザインターフェースを介して制御PC2312によって行うようにしてもよい。
 ここで、純度優先モードとは、回収対象粒子と非回収対象粒子とが互いに近接した状態で通流してきた場合であって、両粒子が一緒に捕捉される可能性が高い場合に、敢えて当該回収対象粒子を「非回収対象粒子(非取得)」とみなして捕獲粒子の純度を高めるモードである。つまり、純度優先モードが設定されている場合には、非回収対象粒子に近接する回収対象粒子は回収されず廃棄されることになる。
 一方、取得率優先モードとは、回収対象粒子と非回収対象粒子とが互いに近接した状態で通流してきた場合であって、両粒子が一緒に捕捉される可能性が高い場合に、両粒子をともに取得し、捕獲粒子の純度が下がっても取得粒子数をより多くするモードである。
 そして、出力待ち行列回路2306は、設定されているモードに応じた微小粒子の回収の有無の判断の結果に基づいて、第2のフラグの設定を行う。このとき、出力待ち行列回路2306は、微小粒子の回収を行うと判断した場合には、第2のフラグを「1」に設定してもよい。一方、出力待ち行列回路2306は、微小粒子の回収を行わないと判断した場合には、第2のフラグを「0」に設定してもよい。なお、このようなフラグの設定の態様に限定されなくてもよい。
 さらにまた、出力待ち行列回路2306は、アクチュエータ107に印加すべき駆動波形の印加タイミングをメモリに書き出す。このメモリは、RAM(ランダムアクセスメモリ)であってもよい。また、メモリは、バス2301に接続されていてもよく、また、制御部103の回路や制御PC2312に内蔵されていてもよい。さらに、印加タイミングを書き出すにあたっては、第1のフラグ及び第2のフラグの設定値を参照してもよい。この場合、両フラグがともに回収実行を示す値に設定されている場合に、該当する微小粒子を回収するような印加タイミングを書き出してもよい。さらにまた、駆動波形は、駆動電圧であってもよい。
 ここで、出力待ち行列回路2306は、駆動波形としてパルス波形Wpを印加する場合には、立下り駆動波形Wfの印加タイミングと立上り駆動波形Wrの印加タイミングとをメモリに書き込む。立下り駆動波形Wf及び立上り駆動波形Wrは、図16に例示するように、パルス波形Wpの一部であってよく、立下り駆動波形Wfは、パルス波形Wpの前部をなし、立上り駆動波形Wrは、パルス波形Wpの後部をなす。さらに、立下り駆動波形Wfの高さ(振幅)と立上り駆動波形Wrの高さとは、互いに同一とされている。
 立下り駆動波形Wfは、圧力室165を体積が増大する方向に変形させ、駆動波形の印加直後に負方向の圧力変化を与えるために印加される。立下り駆動波形Wfの印加によってアクチュエータに生じる力は、圧力室165内の体積を増大させるために変位板167(図7参照)への押圧を弱める力であってもよい。アクチュエータ107がピエゾ素子である場合、伸長されているピエゾ素子に印加されている駆動電圧を低減させて、ピエゾ素子を収縮させる駆動波形であってもよい。
 一方、立上り駆動波形Wrは、圧力室165を体積が減少する方向に変形させ、駆動波形の印加直後に正方向の圧力変化を与えるために印加される。立上り駆動波形Wrの印加によってアクチュエータに生じる力は、圧力室165内の体積を減少させるために変位板167(図7参照)への押圧を強める力であってもよい。アクチュエータ107がピエゾ素子である場合、収縮されているピエゾ素子に印加されている駆動電圧を増大させて、ピエゾ素子を伸長させる駆動波形であってもよい。
 出力待ち行列回路2306は、以上のような立下り駆動波形Wf及び立上り駆動波形Wrの印加タイミングをメモリに書き出す場合、立下り駆動波形Wfの印加タイミングと立上り駆動波形Wrの印加タイミングとして、イベントデータパケットに含まれる回収開始時刻を書き出してもよい。
[出力タイミング生成回路]
 図12に示されるように、出力タイミング生成回路2307は、出力待ち行列回路2306と接続されている。出力タイミング生成回路2307は、出力待ち行列回路2306がRAMに書き出した出力待ち行列の最も先頭に配列されたイベントデータパケットの回収開始時刻を、該RAMから読み出す。そして、出力タイミング生成回路2307は、読み出された回収開始時刻をクロックカウンタ2310からの信号の値と比較して、該回収開始時刻に出力タイミング信号を生成する。ここで、出力タイミング信号は、駆動波形の出力タイミングを割り当てるための信号である。出力タイミング生成回路2307は、生成された出力タイミング信号を後段に出力する。さらに、出力タイミング生成回路2307は、出力タイミング信号の出力後、出力待ち行列回路2306に完了信号を送信して、出力待ち行列の更新を促してもよい。
 駆動波形がパルス波形の場合、出力タイミング生成回路2307は、出力待ち行列回路2306によって立下り駆動波形Wf及び立上り駆動波形Wrの印加タイミングが書き出されたメモリを参照する。そして、出力タイミング生成回路2307は、メモリ内の立下り駆動波形Wf及び立上り駆動波形Wrの印加タイミングと、クロックカウンタ2310からの信号の値とを比較して、駆動波形ごとの出力タイミング信号を生成する。さらに、出力タイミング生成回路2307は、生成された出力タイミング信号を後段に出力する。
[出力信号生成回路]
 出力信号生成回路2308は、出力タイミング生成回路2307の後段の回路であり、出力タイミング生成回路2307と接続されている。
 出力信号生成回路2308には、出力タイミング生成回路2307から出力された出力タイミング信号が入力される。そして、出力信号生成回路2308は、入力された出力タイミング信号に対応する駆動波形(出力信号)を生成して後段に出力する。さらに、出力信号生成回路2308は、駆動波形の出力後、ステップカウンタおよび出力ステータス信号を更新する。なお、出力ステータス信号は、波形停止中/出力中(出力可(enable)/不可(disable))の状態を表す信号である。
 ここで、ステップカウンタは、駆動波形の段階的な出力レベルを示す。換言すれば、ステップカウンタは、駆動波形の印加の回数の増加にともなって段階的に変動する駆動波形の基準値からの変動値を示す。このステップカウンタの1段分のレベル差ごとの出力の差は一定である。ステップカウンタ及び出力ステータス信号は、出力待ち行列回路2306又は出力タイミング生成回路2307に入力されて各回路2306、2307の処理に利用されてもよい。
 駆動波形がパルス波形の場合には、出力信号生成回路2308は、立下り駆動波形Wfと立上り駆動波形Wrとを個別に生成して出力する。
[デジタル-アナログ変換回路]
 デジタル-アナログ変換回路2313には、出力信号生成回路2308から出力された駆動波形が入力される。そして、デジタル-アナログ変換回路2313は、入力された駆動波形をデジタル信号からアナログ信号に変換して、アクチュエータ31の駆動回路へと出力する。
 なお、図12の制御部103を、パルス波形以外の駆動波形の印加に適用してもよい。
1-5-3.微小粒子の回収動作を具現化するアルゴリズム
 微小粒子の回収動作を具現化するアルゴリズムの一例を図17及び18のフローチャートを参照しながら説明する。図17及び18は、主として出力待ち行列回路の動作を示すフローチャートである。図17は動作全般を、図18は立下り駆動波形Wf及び立上り駆動波形Wrの印加タイミングの計算を示す。
[動作全般]
 図17のフローチャートにおいて、以下の第1~第4の処理を個別且つ並列して行う。
[第1の処理]
 第1の処理について説明する。まず、ステップS101-1において、イベント(イベントデータパケット)の入力の有無を判定する。この判定には、前段回路(例えば、回収開始時間計算回路及びゲーティング回路)から入力されたイベントデータパケットを利用する。そして、ステップS101-1において肯定的な判定結果が得られた場合には(ステップS101-1:Yes)、ステップS101-2に進み、否定的な判定結果が得られた場合には(ステップS101-1:No)、ステップS101-1を繰り返す。
 次いで、ステップS101-2において、ステップS101-1において「入力有り」と判定された新たなイベントを出力待ち行列に追加することによって、出力待ち行列を更新する。
 最後に、ステップS101-3において、ステップS101-2において更新された出力待ち行列に基づいて、微小粒子を回収するか否か(取得/非取得)を再評価して、ステップS101-1に戻る。ここで、「再評価」と表現している理由は、本ステップにおける評価が、既に待ち行列にあるイベント(既に評価され第2のフラグが設定されているイベント)を再び評価する処理に当たるためである。純度優先の場合、後から待ち行列に加わるイベントが前に加えられたイベントと近接している可能性があるため、本ステップの処理が有効にはたらく。
[第2の処理]
 第2の処理について説明する。ステップS102において、次に取得すべきイベント(回収対象粒子)について、立下り駆動波形Wfの印加によって回収するか、立上り駆動波形Wrによって回収するかの選択を行い、イベントデータパケットに記録した、選択した駆動波形の回収開始時刻をメモリに書き出す。
 図18は、ステップS102の駆動波形の選択と印加タイミングの計算の詳細を示したものである。図18のフローチャートにおいては、S111において、ステップカウンタの値が0か否かを判定する。肯定的な判定結果が得られた場合は(ステップS111:Yes)、ステップS112及びS113に進み、否定的な判定結果が得られた場合は(ステップS111:No)、ステップS114及びステップS115に進む。肯定的な判定結果が得られた、すなわちステップカウンタの値が0の場合は、駆動波形の値が基準値である場合に相当する。駆動波形のホールド値であってもよい。アクチュエータが駆動波形の最大値を印加している状態に相当する。ステップカウンタの値が0の場合は、駆動波形の最大値を印加している状態から、立下り駆動波形Wfの印加に進み、ステップカウンタが+1段更新される。反対にステップカウンタが0でない場合、立上り駆動波形Wrの印加に進み、ステップカウンタが-1段更新される。本アルゴリズム(本技術の好ましい一態様)の場合は、ステップカウンタの値が0と+1とを交互にとるため、立下り駆動波形Wfの印加と立上り駆動波形Wrの印加が交互に選択される処理となる。
 ここで、ステップS112に記載されているT2及びS114に記載されているT1について説明する。回収対象粒子をアクチュエータ駆動によって分取した場合、流れに乱れが生じるため、次の回収対象粒子を回収するタイミングまでに流れ場の復帰時間が確保されている必要がある。当該復帰時間を確保するために、圧力変化のタイミングは例えば次のとおりであってよい。
 立下り駆動波形Wfの印加後に流れが復帰するまでの時間をT1とする。より詳細には、制御部103が負方向の圧力変化を与えた後、流路構造内の所定の区間における液体の流れが、負方向の圧力変化が与えられる前の状態に戻るまでに要する時間をT1とする。制御部103が負方向の圧力変化を与えてから次の圧力変化を与えるまでの時間の間隔TIyは、好ましくは時間T1と同じであるか又はそれより長い。また、立上り駆動印加Wrの印加後に流れが復帰するまでの時間をT2とする。より詳細には、制御部103が正方向の圧力変化を与えた後、流路構造内の所定の区間における液体の流れが、正方向の圧力変化が与えられる前の状態に戻るまでに要する時間を時間T2とする。制御部103が正方向の圧力変化を与えてから次の圧力変化を与えるまでの時間の間隔TIzは、好ましくは時間T2と同じであるか又はそれより長い。なお、時間T1及びT2は、流れの復帰に要する所要時間に回路の動作マージン時間を加算した値であってもよい。
 本アルゴリズム(本技術の好ましい一態様)の場合、立下り駆動波形Wfの印加と立上り駆動波形Wrの印加を交互に行う。そのため、ステップS111においてステップカウンタの値が0であるために肯定的な判定がなされ(ステップS111:Yes)、立下り駆動波形Wfの印加に進む場合においては、前の取得イベントからの時間の間隔TIzが時間T2以上である場合にのみ(ステップS112:Yes)、ステップS113に進み、立下りタイミングの書き出しを行う。
[第3の処理]
 第3の処理について説明する。再度図17を参照する。第2の処理(ステップS102)において立下り駆動波形Wfの印加が選択された場合、まず、ステップS103-1において、立下り駆動波形Wfの印加により取得すべきイベントについての立下り駆動波形Wfの印加タイミングをメモリに書き出す。この書き出された印加タイミングは、出力タイミング生成回路によって参照されることになる。次いで、ステップS103-2において、立下り駆動波形Wfの立下りトリガ出力が完了したかを判定する。立下りトリガ出力は、出力タイミング生成回路によって生成された立下り駆動波形Wfの出力タイミング信号が出力信号生成回路に出力されたことである。最後に、ステップS103-3において、立下りトリガ出力が完了したイベントを出力待ち行列から削除することによって出力待ち行列を更新してステップS103-1に戻る。
[第4の処理]
 第4の処理について説明する。第2の処理(ステップS102)において立上り駆動波形Wrの印加を選択された場合、まず、ステップS104-1において、立上り駆動波形Wrの印加により取得すべきイベントについての立上り駆動波形Wrの印加タイミングをメモリに書き出す。この書き出された印加タイミングは、出力タイミング生成回路によって参照されることになる。次いで、ステップS104-2において、立上り駆動波形Wrの立上りトリガ出力が完了したかを判定する。立上りトリガ出力は、出力タイミング生成回路によって生成された立上り駆動波形Wrの出力タイミング信号が出力信号生成回路に出力されたことである。最後に、ステップS104-3において、立上りトリガ出力が完了したイベントを出力待ち行列から削除することによって出力待ち行列を更新してステップS104-1に戻る。
 本技術の好ましい一態様によれば、図19のタイムチャートに示されるような駆動波形(駆動信号)の印加が行われる。同図に、イベント検出時刻(図中A)、立下りタイミング(図中B)、立上りタイミング(図中C)、駆動信号(図中D)、及び回収対象粒子の取得の成否を示す記号(図中E)が示されている。立下り駆動波形Wfの印加により回収対象粒子を分取する場合は、イベント検出から一定の時間DTf後にアクチュエータへの立下り駆動波形Wfの印加がスタートしている。立上り駆動波形Wrの印加により回収対象粒子を分取する場合は、イベント検出から時間DTfより短い時間DTrによりアクチュエータへの立上り駆動波形Wrの印加がスタートしている。立下り駆動波形Wfと立上り駆動波形Wrの印加は交互に繰り返されている。駆動波形がこのように印加されることにより、図中Eに示されるように、駆動波形の印加のタイミングごとの回収対象粒子の取得の成否がいずれも成功(〇)となる。
 本実施形態の比較例として、図20に、従来の微小粒子分取装置において得られる駆動波形、すなわち基本的なパルス波形のみを印加する場合に得られる駆動波形の一例を示す。当該パルス波形に含まれる立上り波形は、アクチュエータの復帰動作のために印加されるものであり、回収対象粒子の分取に利用されない。図20に示される比較例においては、前のパルス波形の印加が終了する前に次の立下りタイミングが来る場合がある(図中B及びD参照)。しかし、この場合、次の立下りタイミングが論理的にアボートされるか、又は前のパルス波形の出力中として無視されることになる。この結果、前後で近接するイベントについては、図中Eに示されるように取得失敗(×)になる。
1-5-3-1.アルゴリズムの変形例
 次に、上述したアルゴリズムの変形例について説明する。本変形例は、出力待ち行列回路の第2の処理の処理内容が上述したアルゴリズムと異なる。図21の区間Aに示すような隣接する二つのイベントを考える。上述したアルゴリズムに従い、区間Aの先行のイベントを立下り駆動波形Wfの印加で分取し、後方のイベントを立上り駆動波形Wrの印加で分取する場合において、イベント検出から回収動作開始までの時間は、立下り駆動波形Wfより立上り駆動波形Wrの方が短いため、イベント間隔に比べて、分取駆動タイミングの間隔が小さくなる。ここで、イベント間隔をTIxとする。すなわち、連続する2つの微小粒子を粒子検出部102が検出した時刻の間隔をTIxとする。また、(時間DTf)-(時間DTr)+(時間T1)を時間T3とする(すなわち、T3=DTf-DTr+T1とする)。上記時刻の間隔TIxがT3以下の場合(すなわち、TIx≦T3の場合)、各々の分取駆動タイミングが近接又は逆転してしまい、後方のイベントの立上り駆動波形Wrの印加による分取が失敗する。その結果、回収対象粒子の取得率が低下する。これを回避するために、図22に示されるように、区間Aのような近接したイベントが到来した場合、連続して立下り駆動波形Wfを印加して分取を行う。これにより、立下り駆動波形Wfと立上り駆動波形Wrの分取駆動タイミングの近接又は逆転による分取失敗を回避して、回収対象粒子の取得率をさらに向上させることができる。
 図23は本変形例における第2の処理を示すフローチャートである。ステップS141においてステップカウンタが0である場合には(ステップS141:Yes)、ステップS142及びS143に進み、立下りタイミングの書き出しに進む。ステップS141においてステップカウンタが0ではない場合には(ステップS141:No)、ステップS144に進む。ステップS144においてステップカウンタの値がmax(ステップS144で否定的な判定)の場合には(ステップS144:No)、ステップS148及びS149に進み、立上りタイミングの書き出しに進む。ステップS144でステップカウンタの値がmax未満であり(ステップS144:Yes)、ステップS145で前の取得実行が立下り駆動波形Wfであり・BR>IステップS145:Yes)、ステップS146で前の取得実行のタイミングが時間T3以下である場合(ステップS146:Yes)、ステップS143に進み、立下りタイミングの書き出しを行う。つまりこの場合、前の取得実行から連続して立下り駆動波形Wfの印加を行う。
 一方で、ステップS145で否定的な判定が得られた場合は(ステップS145:No)、ステップS147からS149に進み、立上りタイミングの書き出しを行う。ステップS146で否定的な判定が得られた場合は(ステップS146:No)、ステップS148からS149に進み、立上りタイミングの書き出しを行う。本変形例においても、フローチャートを経て、立下り駆動波形Wfの印加と立上り駆動波形Wrの印加のどちらかを選ぶことになり、ステップカウンタの値、前の取得実行イベントの駆動波形、前の取得実行したイベントとの時間間隔により連続した立下り駆動波形Wfの印加による分取を行う。
 上述した本変形例によって実現される微小粒子分取装置の一例として、制御部103は、粒子検出部102が連続する2つの微小粒子を検出した時刻の間隔TIxに応じて、回収動作Cf又は回収動作Crを行うように構成されていてよい。また、制御部103は、連続する2つの微小粒子のうち先に検出された微小粒子を回収動作Cfによって回収し、且つ、時刻の間隔TIxが所定の値より短い場合に、連続する2つの微小粒子のうち後に検出された微小粒子を回収動作Cfによって回収するように構成されていてよい。時刻の間隔TIxが所定の値より短い場合とは、例えば、時刻の間隔TIxが時間T3以下の場合(すなわち、TIx≦T3の場合)であってよい。
2.第2の実施形態(エマルション生成装置)
2-1.概要
 本技術の第2の実施形態に係る微小粒子分取装置は、回収対象粒子を含むエマルションを回収する微小粒子分取装置も提供する。第2の実施形態に係る微小粒子分取装置において、上記流路構造は、接続流路に第二液体を供給可能に接続されている液体供給流路をさらに含む。当該第二液体は、上記第一液体と非混和性である。粒子分取部は、回収動作Crにおいて、回収対象粒子を含む第一液体が第二液体に包含されたエマルションを回収する。したがって、本実施形態に係る微小粒子分取装置は、エマルション生成装置であってよい。
2-2.構成及び動作
 第2の実施形態に係る微小粒子分取装置の構成及び動作について、第1の実施形態に係る微小粒子分取装置との相違点を中心に説明する。第1の実施形態と同一又は同等の構成には、同一の符号を付す。説明がない構成及び動作は、上記1.において説明した第1の実施形態の構成及び動作と同一であってよい。
 本実施形態に係る微小粒子分取装置は、図3に示される粒子分取部157を備える。粒子分取部157において、液体供給流路161は、第二液体を供給可能に接続流路170に接続されている。第二液体は、微小粒子を含む第一液体と非混和性である。粒子分取部157に含まれる接続流路170内において、回収対象粒子を含む第一液体が第二液体に包含されたエマルションが形成される。具体的には、回収対象粒子を含むエマルションと回収対象粒子を含まないエマルションとが形成される。回収対象粒子を含むエマルションは、回収流路159内に回収される。
 本実施形態において用いられる第一液体及び第二液体は、例えば、一方が親水性の液体であり、且つ、他方が疎水性の液体であってよい。すなわち、一例として、第一液体が親水性の液体であり、且つ、第二液体が疎水性の液体であってよい。この場合、粒子分取部157内に、疎水性の液体を分散媒とし且つ親水性の液体を分散質とするエマルションが形成されうる。他の一例として、第一液体が疎水性の液体であり、且つ、第二液体が親水性の液体であってよい。この場合、粒子分取部157内に、親水性の液体を分散媒とし且つ疎水性の液体を分散質とするエマルションが形成されうる。
 本実施形態において、制御部103は、上記回収動作Crにおいて回収対象粒子を含むエマルションを回収する。すなわち、制御部103によって実行される回収工程は、上記回収動作Crにおいて回収対象粒子を含むエマルションを回収することを含んでいてよい。
 好ましくは、制御部103は、上記回収動作Cfにおいて回収対象粒子を含むエマルションを回収する。すなわち、好ましくは、制御部103によって実行される回収工程は、上記回収動作Cfにおいて回収対象粒子を含むエマルションを回収することを含んでいてよい。
 本実施形態において、立下り駆動波形Wfと立上り駆動波形Wrの印加により、回収流路内に生成されたエマルションを図24に示す。図24に示されるA及びBの図面代用写真のうち、Aは立下り駆動波形Wf印加時のエマルションを示し、Bは立上り駆動波形Wr印加時のエマルションを示す。図示されるように、立下り駆動波形Wfと立上り駆動波形Wrのそれぞれの印加によって、微小粒子を含むエマルションが生成されうる。そのため、微小粒子を含まない不要なエマルションの生成が低減され、微小粒子を含むエマルションが高効率で生成されうる。なお、従来技術のように、立上り駆動波形Wrの印加をアクチュエータの復帰動作として行った場合、立上り駆動波形Wrの印加時に生成されるエマルションは、微小粒子を含まない不要なエマルションとなる。
 本実施形態に係る微小粒子分取装置において、図8に示されるような立下り駆動波形Wfと立上り駆動波形Wrの印加を行う場合、立下り駆動波形Wfと立上り駆動波形Wrの印加時に生成されるエマルションサイズは若干異なり、立上り駆動波形Wrの印加時の方が小さい。これは、立上り駆動波形Wrの印加時の振動流による回収流路へ向かう流れが、立下り駆動波形Wf印加時の直後に発生する回収流路へ向かう流れと比較して、弱いためである。そこで、立下り駆動波形Wfと立上り駆動波形Wrの印加時のエマルションサイズをより均一化するために、好ましくは、図25に示されるような立上り駆動波形を印加する。
 図25の立上り駆動波形は、時系列的に順に、第二立下り波形w1、平坦波形w2、立上り波形w3を含んでいる。本明細書において、図25の立上り駆動波形を「立下り波形付き立上り駆動波形Wfr」という。
 図26に、立上り駆動波形Wr印加時の接続流路内の流速変化と、立下り波形付き立上り駆動波形Wfr印加時の接続流路内の流速変化のシミュレーションにおける解析結果を示す。立下り波形付き立上り駆動波形Wfrの印加時の方が、立上り駆動波形Wrの印加時に比べ、圧力室方向へ向かう流速のピークが増加していることがわかる。したがって、立下り波形付き立上り駆動波形Wfrの印加により、主流路からの第一液体の吸引量を増加させて、エマルションサイズを増加させることが可能である。これにより、立下り駆動波形Wfの印加時と立上り駆動波形Wrの印加時に生成されるエマルションの不均一性を低減し、一定品質のエマルションをより精度よく生成することが可能である。
 なお、立下り波形付き立上り駆動波形Wfrは、この第2の実施形態だけではなく、上記第1の実施形態において採用されてもよい。すなわち、第1の実施形態において、立上り駆動波形は、立下り波形付き立上り駆動波形Wfrであってよい。
 立下り波形付き立上り駆動波形Wfrの印加時の方が、立上り駆動波形Wrの印加時に比べ、主流路からの第一液体の吸引量を増加されうる。これにより、立下り駆動波形Wfの印加時と立上り駆動波形Wrの印加時における吸引量の差を小さくし、微小粒子の分取をより安定して行うことが可能である。
3.第3の実施形態(微小粒子分取方法)
 本技術は、第1の実施形態に係る微小粒子分取装置において実行される微小粒子分取方法も提供する。当該微小粒子分取方法は、第1の実施形態に係る微小粒子分取装置において回収流路内に圧力変化を与える制御工程と、回収流路内へ回収対象粒子を回収する回収工程と、を含む。当該微小粒子分取方法において、制御工程は、正方向の圧力変化を与え、回収流路内に圧力振動PVrを発生させることを含む。回収工程は、圧力振動PVrによって生じた負方向の圧力変化により、回収対象粒子を回収する回収動作Crを行うことを含む。
 本技術に係る微小粒子分取方法において用いられる微小粒子分取装置は、上記1.において述べた装置と同じであり、その説明が本技術に係る微小粒子分取方法にも当てはまる。
4.第4の実施形態(エマルション生成方法)
 本技術は、第2の実施形態に係るエマルション生成装置において実行されるエマルション生成方法も提供する。当該エマルション生成方法は、回収対象粒子を含むエマルション回収する回収工程を含む。
 本技術に係るエマルション生成方法において用いられるエマルション生成装置は、上記2.において述べた装置と同じであり、その説明が本技術に係るエマルション生成方法にも当てはまる。
 本技術では、以下の構成をとることもできる。
[1]
 微小粒子を含む第一液体が流れる主流路と、前記微小粒子のうち回収対象粒子が回収される回収流路と、前記主流路及び前記回収流路を接続する接続流路と、を含む流路構造と、
 前記回収流路内に圧力変化を与え、且つ、前記回収流路内へ前記回収対象粒子を回収する制御部と、を備え、
 前記制御部は、正方向の前記圧力変化を与え、前記回収流路内に圧力振動PVrを発生させ、且つ、前記圧力振動PVrによって生じた負方向の圧力変化により、前記回収対象粒子を回収する回収動作Crを行う、
 微小粒子分取装置。
[2]
 前記制御部は、前記回収流路内に負方向の前記圧力変化を与え、且つ、前記負方向の圧力変化により、前記回収対象粒子を回収する回収動作Cfを行う、[1]に記載の微小粒子分取装置。
[3]
 前記制御部は、前記回収動作Cfと前記回収動作Crとを交互に行うように構成されている、[2]に記載の微小粒子分取装置。
[4]
 前記微小粒子分取装置は、前記主流路内の所定の位置を通過した前記微小粒子を検出する粒子検出部をさらに備え、
 前記制御部は、前記粒子検出部が、連続する2つの前記微小粒子を検出した時刻の間隔TIxに応じて、前記回収動作Cf又は前記回収動作Crを行うように構成されている、[2]又は[3]に記載の微小粒子分取装置。
[5]
 前記制御部は、前記連続する2つの微小粒子のうち先に検出された微小粒子を前記回収動作Cfによって回収し、且つ、前記時刻の間隔TIxが所定の値より短い場合に、前記連続する2つの微小粒子のうち後に検出された微小粒子を前記回収動作Cfによって回収するように構成されている、[4]に記載の微小粒子分取装置。
[6]
 前記微小粒子分取装置は、前記主流路内の所定の位置を通過した前記微小粒子を検出する粒子検出部をさらに備え、
 前記制御部は、前記粒子検出部が前記微小粒子を検出した時刻から時間DTf後に前記回収動作Cfを行い、且つ、前記粒子検出部が前記微小粒子を検出した時刻から時間DTr後に前記回収動作Crを行うように構成されている、[2]から[5]のいずれか一つに記載の微小粒子分取装置。
[7]
 前記時間DTf及び前記時間DTrは、互いに異なる、[6]に記載の微小粒子分取装置。
[8]
 前記時間DTrは、前記時間DTfより短い、[6]又は[7]に記載の微小粒子分取装置。
[9]
 前記制御部が前記正方向の圧力変化を与えた後、前記流路構造内の所定の区間における液体の流れが、前記正方向の圧力変化が与えられる前の状態に戻るまでに、時間T2を要する場合において、
 前記制御部が前記正方向の圧力変化を与えてから次の圧力変化を与えるまでの時間の間隔TIzは、前記時間T2と同じであるか又はそれより長い、[1]から[8]のいずれか一つに記載の微小粒子分取装置。
[10]
 前記制御部が前記負方向の圧力変化を与えた後、前記流路構造内の所定の区間における液体の流れが、前記負方向の圧力変化が与えられる前の状態に戻るまでに、時間T1を要する場合において、
 前記制御部が前記負方向の圧力変化を与えてから次の圧力変化を与えるまでの時間の間隔TIyは、前記時間T1と同じであるか又はそれより長い、[2]から[8]のいずれか一つに記載の微小粒子分取装置。
[11]
 前記微小粒子分取装置は、アクチュエータをさらに備え、
 前記制御部は、前記アクチュエータに駆動波形を印加することにより、前記回収流路内に前記圧力変化を与える、[1]から[10]のいずれか一つに記載の微小粒子分取装置。
[12]
 前記微小粒子分取装置は、アクチュエータをさらに備え、
 前記制御部は、前記アクチュエータに立上り駆動波形Wrを印加することにより、前記正方向の圧力変化を与え、且つ、前記回収動作Crを行う、[1]から[11]のいずれか一つに記載の微小粒子分取装置。
[13]
 前記微小粒子分取装置は、アクチュエータをさらに備え、
 前記制御部は、前記アクチュエータに立下り駆動波形Wfを印加することにより、前記負方向の圧力変化を与え、且つ、前記回収動作Cfを行い、
 さらに、
 前記制御部は、前記アクチュエータに立上り駆動波形Wrを印加することにより、前記正方向の圧力変化を与え、且つ、前記回収動作Crを行う、[2]から[8]のいずれか一つに記載の微小粒子分取装置。
[14]
 前記立上り駆動波形Wrは、立下り波形付き立上り駆動波形Wfrである、[12]又は[13]に記載の微小粒子分取装置。
[15]
 前記接続流路の直径は、60μm以上である、[1]から[14]のいずれか一つに記載の微小粒子分取装置。
[16]
 前記流路構造は、前記接続流路に第二液体を供給可能に接続されている液体供給流路をさらに含み、
 前記第二液体は、前記第一液体と非混和性であり、
 前記制御部は、前記回収動作Crにおいて、前記回収対象粒子を含む前記第一液体が前記第二液体に包含されたエマルションを回収する、[1]から[15]のいずれか一つに記載の微小粒子分取装置。
[17]
 前記微小粒子分取装置は、微小粒子分取用マイクロチップを備え、
 前記微小粒子分取用マイクロチップは、前記流路構造を有している、[1]から[16]のいずれか一つに記載の微小粒子分取装置。
[18]
 微小粒子を含む第一液体が流れる主流路と、前記微小粒子のうち回収対象粒子が回収される回収流路と、前記主流路と前記回収流路とを接続する接続流路と、を含む流路構造を備える微小粒子分取装置において、前記回収流路内に圧力変化を与える制御工程と、
 前記回収流路内へ前記回収対象粒子を回収する回収工程と、
 を含み、
 前記制御工程は、正方向の前記圧力変化を与え、前記回収流路内に圧力振動PVrを発生させることを含み、且つ、
 前記回収工程は、前記圧力振動PVrによって生じた負方向の圧力変化により、前記回収対象粒子を回収する回収動作Crを行うことを含む、
 微小粒子分取方法。
100 微小粒子分取装置
101 光照射部
102 粒子検出部
103 制御部
107 アクチュエータ
109 第二光照射部
150,150a 微小粒子分取用マイクロチップ
155 主流路
156 粒子検出領域
157 粒子分取部
158 廃棄流路
159 回収流路
165 圧力室
170 接続流路
  

Claims (18)

  1.  微小粒子を含む第一液体が流れる主流路と、前記微小粒子のうち回収対象粒子が回収される回収流路と、前記主流路及び前記回収流路を接続する接続流路と、を含む流路構造と、
     前記回収流路内に圧力変化を与え、且つ、前記回収流路内へ前記回収対象粒子を回収する制御部と、を備え、
     前記制御部は、正方向の前記圧力変化を与え、前記回収流路内に圧力振動PVrを発生させ、且つ、前記圧力振動PVrによって生じた負方向の圧力変化により、前記回収対象粒子を回収する回収動作Crを行う、
     微小粒子分取装置。
  2.  前記制御部は、前記回収流路内に負方向の前記圧力変化を与え、且つ、前記負方向の圧力変化により、前記回収対象粒子を回収する回収動作Cfを行う、請求項1に記載の微小粒子分取装置。
  3.  前記制御部は、前記回収動作Cfと前記回収動作Crとを交互に行うように構成されている、請求項2に記載の微小粒子分取装置。
  4.  前記微小粒子分取装置は、前記主流路内の所定の位置を通過した前記微小粒子を検出する粒子検出部をさらに備え、
     前記制御部は、前記粒子検出部が、連続する2つの前記微小粒子を検出した時刻の間隔TIxに応じて、前記回収動作Cf又は前記回収動作Crを行うように構成されている、請求項2に記載の微小粒子分取装置。
  5.  前記制御部は、前記連続する2つの微小粒子のうち先に検出された微小粒子を前記回収動作Cfによって回収し、且つ、前記時刻の間隔TIxが所定の値より短い場合に、前記連続する2つの微小粒子のうち後に検出された微小粒子を前記回収動作Cfによって回収するように構成されている、請求項4に記載の微小粒子分取装置。
  6.  前記微小粒子分取装置は、前記主流路内の所定の位置を通過した前記微小粒子を検出する粒子検出部をさらに備え、
     前記制御部は、前記粒子検出部が前記微小粒子を検出した時刻から時間DTf後に前記回収動作Cfを行い、且つ、前記粒子検出部が前記微小粒子を検出した時刻から時間DTr後に前記回収動作Crを行うように構成されている、請求項2に記載の微小粒子分取装置。
  7.  前記時間DTf及び前記時間DTrは、互いに異なる、請求項6に記載の微小粒子分取装置。
  8.  前記時間DTrは、前記時間DTfより短い、請求項6に記載の微小粒子分取装置。
  9.  前記制御部が前記正方向の圧力変化を与えた後、前記流路構造内の所定の区間における液体の流れが、前記正方向の圧力変化が与えられる前の状態に戻るまでに、時間T2を要する場合において、
     前記制御部が前記正方向の圧力変化を与えてから次の圧力変化を与えるまでの時間の間隔TIzは、前記時間T2と同じであるか又はそれより長い、請求項1に記載の微小粒子分取装置。
  10.  前記制御部が前記負方向の圧力変化を与えた後、前記流路構造内の所定の区間における液体の流れが、前記負方向の圧力変化が与えられる前の状態に戻るまでに、時間T1を要する場合において、
     前記制御部が前記負方向の圧力変化を与えてから次の圧力変化を与えるまでの時間の間隔TIyは、前記時間T1と同じであるか又はそれより長い、請求項2に記載の微小粒子分取装置。
  11.  前記微小粒子分取装置は、アクチュエータをさらに備え、
     前記制御部は、前記アクチュエータに駆動波形を印加することにより、前記回収流路内に前記圧力変化を与える、請求項1に記載の微小粒子分取装置。
  12.  前記微小粒子分取装置は、アクチュエータをさらに備え、
     前記制御部は、前記アクチュエータに立上り駆動波形Wrを印加することにより、前記正方向の圧力変化を与え、且つ、前記回収動作Crを行う、請求項1に記載の微小粒子分取装置。
  13.  前記微小粒子分取装置は、アクチュエータをさらに備え、
     前記制御部は、前記アクチュエータに立下り駆動波形Wfを印加することにより、前記負方向の圧力変化を与え、且つ、前記回収動作Cfを行い、
     さらに、
     前記制御部は、前記アクチュエータに立上り駆動波形Wrを印加することにより、前記正方向の圧力変化を与え、且つ、前記回収動作Crを行う、請求項2に記載の微小粒子分取装置。
  14.  前記立上り駆動波形Wrは、立下り波形付き立上り駆動波形Wfrである、請求項12に記載の微小粒子分取装置。
  15.  前記接続流路の直径は、60μm以上である、請求項1に記載の微小粒子分取装置。
  16.  前記流路構造は、前記接続流路に第二液体を供給可能に接続されている液体供給流路をさらに含み、
     前記第二液体は、前記第一液体と非混和性であり、
     前記制御部は、前記回収動作Crにおいて、前記回収対象粒子を含む前記第一液体が前記第二液体に包含されたエマルションを回収する、請求項1に記載の微小粒子分取装置。
  17.  前記微小粒子分取装置は、微小粒子分取用マイクロチップを備え、
     前記微小粒子分取用マイクロチップは、前記流路構造を有している、請求項1に記載の微小粒子分取装置。
  18.  微小粒子を含む第一液体が流れる主流路と、前記微小粒子のうち回収対象粒子が回収される回収流路と、前記主流路と前記回収流路とを接続する接続流路と、を含む流路構造を備える微小粒子分取装置において、前記回収流路内に圧力変化を与える制御工程と、
     前記回収流路内へ前記回収対象粒子を回収する回収工程と、
     を含み、
     前記制御工程は、正方向の前記圧力変化を与え、前記回収流路内に圧力振動PVrを発生させることを含み、且つ、
     前記回収工程は、前記圧力振動PVrによって生じた負方向の圧力変化により、前記回収対象粒子を回収する回収動作Crを行うことを含む、
     微小粒子分取方法。
      
PCT/JP2023/015500 2022-05-16 2023-04-18 微小粒子分取装置及び微小粒子分取方法 WO2023223752A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022079978 2022-05-16
JP2022-079978 2022-05-16

Publications (1)

Publication Number Publication Date
WO2023223752A1 true WO2023223752A1 (ja) 2023-11-23

Family

ID=88834947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015500 WO2023223752A1 (ja) 2022-05-16 2023-04-18 微小粒子分取装置及び微小粒子分取方法

Country Status (1)

Country Link
WO (1) WO2023223752A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004169706A (ja) * 2004-02-02 2004-06-17 Konica Minolta Holdings Inc 流体輸送システム
WO2014013802A1 (ja) * 2012-07-18 2014-01-23 ソニー株式会社 微小粒子分取装置、微小粒子分取用マイクロチップ及び微小粒子分取方法
JP2014036604A (ja) * 2012-08-16 2014-02-27 Sony Corp 微小粒子分取方法及び微小粒子分取用マイクロチップ
JP2014039534A (ja) * 2012-07-24 2014-03-06 Sony Corp 微小粒子分取方法
WO2019098126A1 (ja) * 2017-11-14 2019-05-23 ソニー株式会社 微粒子分取用マイクロチップ及び微粒子分取装置
JP2019174192A (ja) * 2018-03-27 2019-10-10 ソニー株式会社 微小粒子分取方法、微小粒子分取用プログラム及び微小粒子分取用システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004169706A (ja) * 2004-02-02 2004-06-17 Konica Minolta Holdings Inc 流体輸送システム
WO2014013802A1 (ja) * 2012-07-18 2014-01-23 ソニー株式会社 微小粒子分取装置、微小粒子分取用マイクロチップ及び微小粒子分取方法
JP2014039534A (ja) * 2012-07-24 2014-03-06 Sony Corp 微小粒子分取方法
JP2014036604A (ja) * 2012-08-16 2014-02-27 Sony Corp 微小粒子分取方法及び微小粒子分取用マイクロチップ
WO2019098126A1 (ja) * 2017-11-14 2019-05-23 ソニー株式会社 微粒子分取用マイクロチップ及び微粒子分取装置
JP2019174192A (ja) * 2018-03-27 2019-10-10 ソニー株式会社 微小粒子分取方法、微小粒子分取用プログラム及び微小粒子分取用システム

Similar Documents

Publication Publication Date Title
JP6642637B2 (ja) マイクロチップ
EP2876427B1 (en) Microparticle isolation device and microparticle isolation method
JP6958650B2 (ja) 液滴分取装置、液滴分取方法及びプログラム
US11666946B2 (en) Microparticle sorting method and microchip for sorting microparticles
JP6597762B2 (ja) マイクロチップ型光学測定装置及び該装置における光学位置調整方法
JP6729597B2 (ja) 画像処理装置、微小粒子分取装置及び画像処理方法
JP7059747B2 (ja) 微小粒子分取方法、微小粒子分取用プログラム及び微小粒子分取用システム
JP5534214B2 (ja) フローサイトメータおよびフローサイトメトリ方法
JP7415953B2 (ja) 微小粒子分取装置、微小粒子分取システム、液滴分取装置、及び液滴制御装置、並びに、液滴制御用プログラム
EP4024027A1 (en) Sampling control device, particle sampling device and particle sampling system in which sampling control device is used, method for controlling sampling, and control program
WO2023223752A1 (ja) 微小粒子分取装置及び微小粒子分取方法
EP3633347B1 (en) Method for optimizing suction conditions for microparticles, and microparticle separation device
CN114450574A (zh) 生物粒子分析装置和微粒分析装置
JP2019063798A (ja) 粒子分取装置、粒子分取方法及びプログラム
WO2022201959A1 (ja) 生体粒子分取装置及び生体粒子分取装置における分取条件調整方法
JP2020190575A (ja) 粒子分取装置及び粒子分取方法
WO2023176329A1 (ja) 微小粒子分取装置及び微小粒子分取方法
JP2022087281A (ja) 微小粒子分取方法、微小粒子分取用プログラム及び微小粒子分取用システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807364

Country of ref document: EP

Kind code of ref document: A1