WO2023223740A1 - 熱成形装置 - Google Patents

熱成形装置 Download PDF

Info

Publication number
WO2023223740A1
WO2023223740A1 PCT/JP2023/015399 JP2023015399W WO2023223740A1 WO 2023223740 A1 WO2023223740 A1 WO 2023223740A1 JP 2023015399 W JP2023015399 W JP 2023015399W WO 2023223740 A1 WO2023223740 A1 WO 2023223740A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin film
heating device
heating
speed
pulp mold
Prior art date
Application number
PCT/JP2023/015399
Other languages
English (en)
French (fr)
Inventor
靖 小熊
Original Assignee
株式会社浅野研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社浅野研究所 filed Critical 株式会社浅野研究所
Priority to CN202380009687.2A priority Critical patent/CN117412850A/zh
Publication of WO2023223740A1 publication Critical patent/WO2023223740A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/10Forming by pressure difference, e.g. vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/12Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor of articles having inserts or reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/16Lining or labelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/26Component parts, details or accessories; Auxiliary operations
    • B29C51/46Measuring, controlling or regulating

Definitions

  • the present invention includes a radiant heating device, a base that faces the radiant heating device with a resin film in between, and a heating step for radiantly heating the resin film to a predetermined temperature at which the resin film can be molded by the radiant heating device;
  • the present invention relates to a thermoforming apparatus for performing an adhesion process of adhering a radiation-heated resin film to a fiber molded article placed on a base.
  • Plastic containers have traditionally been used as food packaging containers, but plastic containers do not decompose naturally when discarded, and are thought to cause environmental pollution. Under these circumstances, fiber molded products such as pulp molds, which naturally decompose even when discarded, are expected to reduce environmental pollution and are increasingly being used as food packaging containers. .
  • Patent Document 1 discloses a paper container to which a resin film is adhered.
  • the adhesion of the resin film to the fiber molded article is carried out using, for example, a radiant heating device 6 for heating the resin film 4 and a pulp mold 10 (an example of the fiber molded article) as shown in FIG. This is carried out using a thermoforming apparatus 100 that includes a lower mold 5.
  • the thermoforming device 100 uses a radiation heating device 6 to radiantly heat the resin film 4 to a predetermined temperature at which it can be molded, and adheres the radiantly heated and softened resin film 4 to a pulp mold 10 placed on a lower mold 5. It is a device for Note that the process of radiant heating the resin film 4 by the radiant heating device 6 to a predetermined temperature at which it can be molded is called a heating process, and the resin film 4 softened by radiation heating is placed in the pulp mold 10 placed on the lower mold 5. The process of bonding is called the bonding process.
  • the shape of the pulp mold 10 is, for example, an elliptical bottom 101 in a plan view (viewed from above in FIG. 6), a peripheral wall 102 rising from the periphery of the bottom 101, and a pulp mold extending from the upper end of the peripheral wall 102. 10 and a flange portion 103 projecting outward. Further, the inner surface of the pulp mold 10 on the radiant heating device 6 side (upper side in FIG. 6) is an adhesive surface 104 to which the resin film 4 is adhered.
  • the resin film 4 is, for example, a thermoplastic film made of polypropylene (PP).
  • the thickness is, for example, 80 ⁇ m.
  • the melting point of the resin film 4 is, for example, 167° C., and in the heating step, it is heated to 160° C. (temperature C21 (see FIG. 7(d))), which is a predetermined temperature at which it can be molded.
  • An adhesive layer (not shown) made of a heat sealant or the like is provided on the surface of the resin film 4 facing the pulp mold 10 in order to improve adhesiveness with the pulp mold 10.
  • the lower mold 5 consists of a mold 51, a pedestal 53, and a base 52.
  • the formwork 51 includes a pedestal 512 and a peripheral wall 511 erected on the pedestal 512.
  • the pedestal 512 has a vent 512a penetrating in the vertical direction VT, and the vacuum pump 7 is connected to the vent 512a.
  • the vacuum pump 7 can vacuum the inside of the formwork 51 through the vent 512a.
  • a pedestal 53 on which the base 52 is mounted is fixed above the pedestal 512 and surrounded by a peripheral wall 511.
  • the pedestal 53 has a plurality of communication passages 531 passing through the pedestal 53 in the vertical direction VT.
  • a base 52 on which the pulp mold 10 is placed is mounted on the upper end surface of the base 53 in the vertical direction VT, surrounded by a peripheral wall 511.
  • a mounting surface 521 matching the shape of the pulp mold 10 is bored in the end surface of the base 52 on the side of the radiant heating device 6 (upper side in the vertical direction VT). Further, the base 52 includes a plurality of vacuum vents 522 that open to the mounting surface 521.
  • the mounting surface 521 side can be vacuum-suctioned through the communication path 531 and the vacuum vent 522.
  • vacuum suction By applying vacuum suction to the mounting surface 521 side in the state shown in FIG. 6, it becomes possible to adhere the resin film 4 to the adhesive surface 104 of the pulp mold 10 without any gaps. Since the pulp mold 10 has air permeability, even if the pulp mold 10 is placed on the placement surface 521, vacuum suction on the placement surface 521 side is not hindered.
  • the radiant heating device 6 is located opposite the lower mold 5 with the resin film 4 in between.
  • the position of the radiation heating device 6 shown in FIG. 1 is a heating position for performing radiation heating of the resin film 4 in the heating process.
  • the distance D11 of the radiant heating device 6 with respect to the base 52 at the heating position is determined based on the output of the radiant heating device 6, the material of the resin film 4, the target time for the heating process and the bonding process, and the like.
  • FIG. 7(a) is a time chart of the output of the radiation heating device 6 in the bonding process and the heating process.
  • FIG. 7(b) is a time chart regarding the pumping speed of the vacuum pump 7 in the bonding process and the heating process.
  • FIG. 7C is a time chart regarding the position of the radiant heating device 6 (distance D11 of the radiant heating device 6 with respect to the base 52) in the bonding process and the heating process.
  • FIG. 7(d) is a graph showing the temperature change of the resin film 4 during the adhesion process and the heating process.
  • the output of the radiation heating device 6 is started from time t1, and the heating process is started.
  • the output of the radiation heating device 6 is constant at the temperature C11 throughout the heating process and the bonding process.
  • the value of the temperature C11 is arbitrarily set depending on the performance of the radiant heating device 6, the material of the resin film 4 to be heated, etc., but here, the temperature of the radiant heating device 6 is set to 600°C. .
  • the distance between the radiant heating device 6 and the base 52 is constant at a distance D11 throughout the heating process and the bonding process, as shown in FIG. 7(c).
  • the temperature of the resin film 4 increases over time from time t1 when heating by the radiation heating device 6 starts. Then, the temperature of the resin film 4 reaches a moldable temperature C21 (160° C.) at time t2, and the heating process is completed.
  • the time required for the heating process depends on the output of the radiant heating device 6, the distance of the radiant heating device 6 from the base 52, the thickness and material of the resin film 4, etc. It takes about 8 seconds.
  • the thermoforming apparatus 100 performs a bonding process. Specifically, as shown in FIG. 7B, vacuum suction by the vacuum pump 7 is performed at a maximum pumping speed S11 according to the capacity of the vacuum pump 7 from time t2. By performing this vacuum suction, the resin film 4 is shaped along the shape of the pulp mold 10 and is adhered to the pulp mold 10.
  • the time required for the bonding process depends on the output of the radiant heating device 6, the distance of the radiant heating device 6 to the base 52, the material of the resin film 4, etc. Seconds.
  • the pulp mold 10 to which the resin film 4 is adhered is transported out of the thermoforming apparatus 100 by transporting the resin film 4 along the horizontal direction HZ (for example, from the left side to the right side in FIG. 6). Then, the thermoforming apparatus 100 adheres the resin film 4 to the next pulp mold 10.
  • a plurality of pulp molds 10 are lined up one after the other in the horizontal direction HZ and hang from the resin film 4 that is sent out along the horizontal direction HZ.
  • the state will be as follows.
  • the pulp molds 10 are transported to the trimming process while hanging from the resin film 4, and in the trimming process, the pulp molds 10 lined up one after the other in the horizontal direction HZ are sequentially separated from the resin film 4.
  • This unshaped portion 42 is a portion of the resin film 4 that remains without being shaped.
  • the heating by the radiation heating device 6 in the heating process and the bonding process, and the unmolded portion 42 being carried out from the thermoforming device 100 there is a possibility that minute deformation or change in physical properties may occur in the unformed portion 42.
  • the pitch between the pulp molds 10 arranged one after the other in the horizontal direction HZ may shift, which may adversely affect the accuracy of trimming performed after the resin film 4 is bonded.
  • the tip of the flange portion 103 is cut as shown by a cutting line 15 that hypothetically indicates the position to be trimmed.
  • the pulp mold 10 is separated from the resin film 4. After the pulp mold 10 is cut off, the resin film 4 is wound up and discarded, but since the tip of the cut flange portion 103 remains glued, it is difficult to separate it. If it is difficult to separate, it will be difficult to reuse it as a material, and the environmental burden will be large when it is disposed of.
  • the present invention has been made in view of the current situation, and an object of the present invention is to provide a thermoforming device that can improve trimming accuracy and reduce environmental load.
  • thermoforming apparatus of the present invention has the following configuration.
  • a heating step comprising a radiant heating device and a base facing the radiant heating device with a resin film in between, and radiant heating the resin film to a predetermined temperature at which the resin film can be molded by the radiant heating device. and an adhesion step of adhering the radiation-heated resin film to the fiber molded article placed on the base, in which the resin film undergoes the heating step and the adhesion step.
  • the fiber molded body is cut into a shape along the outer shape of the outer peripheral edge while being adhered to the outer peripheral edge of the adhesive surface to which the resin film is bonded, and the fiber molded body and the resin are comprising a pressure reducing means for vacuum suction between the film and an evacuation speed adjustment section for adjusting an evacuation speed of the pressure reduction means for performing the vacuum suction; adjusting the evacuation speed between a first evacuation speed for performing the vacuum suction in the bonding step and a second evacuation speed for performing the vacuum suction in the bonding step;
  • the first pumping speed is characterized in that the pumping speed is for bringing the film into close contact with the fiber molded body, and the first pumping speed is slower than the second pumping speed.
  • the resin film is bonded to the outer periphery of the bonding surface of the fiber molded article to which the resin film is bonded before the heating step and bonding step are performed. Since the resin film is characterized by being cut into a shape that follows the outer shape of the periphery, the resin film is cut before being heated by the radiant heating device. In other words, the resin film can be cut in a state where the resin film does not undergo minute deformation or change in physical properties due to heating by the radiant heating device. Therefore, trimming accuracy can be improved.
  • the output of the radiation heating device is controlled to a heating temperature necessary for the resin film to reach the predetermined temperature within a predetermined time, and the pressure reduction
  • the means performs the heating step by performing the vacuum suction at the first evacuation speed, and after the completion of the heating step, the decompression means performs the vacuum suction at the second evacuation speed, thereby performing the bonding step. It is preferable to include a control program that performs the following.
  • the resin film Since the resin film is adhered to the outer periphery of the adhesive surface of the fiber molded body to which the resin film is to be bonded before the heating process and the bonding process are performed, there is no air between the fiber molded body and the resin film. Trapped. Therefore, if the heating step is performed as is, the air trapped between the fiber molded body and the resin film will expand due to the heating by the radiant heating device, and the resin film will swell toward the radiant heating device. Then, the distance between the radiation heating device and the resin film becomes narrower, and the resin film is heated excessively, which may cause defects such as holes.
  • thermoforming apparatus for applying vacuum suction between the fiber molded article and the resin film and bringing the resin film into close contact with the fiber molded article, and a vacuum of the pressure reducing means. and an exhaust speed adjustment section that adjusts the exhaust speed for performing suction.
  • the first pumping speed depends on the output of the radiant heating device, the volume of the fiber molded body, etc., but the speed at which the resin film does not swell toward the radiant heating device is determined in advance through experiments. It is something that can be done.
  • thermoforming apparatus of the present invention it is possible to improve trimming accuracy and reduce environmental load.
  • FIG. 1 is a diagram illustrating the configuration of a thermoforming device according to the present embodiment and illustrating a state in which the thermoforming device is in a heating process.
  • FIG. FIG. 2 is a diagram illustrating a state in which the thermoforming apparatus according to the present embodiment is in a bonding process.
  • FIG. 2 is an enlarged view of a flange portion (an example of an outer peripheral edge) of a pulp mold (an example of a fiber molded object).
  • FIG. 3 is a plan view of the radiant heating device as seen from the heat radiation section side.
  • (a) is a time chart regarding the output of the radiation heating device in the bonding process and the heating process.
  • (b) is a time chart regarding the pumping speed of the vacuum pump in the bonding process and the heating process.
  • FIG. 1 is a diagram showing the configuration of a thermoforming apparatus according to the prior art.
  • (a) is a time chart regarding the output of the radiation heating device in the bonding process and the heating process according to the prior art.
  • (b) is a time chart regarding the pumping speed of the vacuum pump in the bonding process and the heating process according to the prior art.
  • (c) is a time chart regarding the position of the radiation heating device in the bonding process and the heating process according to the prior art.
  • FIG. 2 is an enlarged view of a flange portion of a pulp mold to which a resin film is bonded using a conventional thermoforming device.
  • FIG. 1 is a diagram showing the configuration of a thermoforming device 1 according to the present embodiment, and also showing a state in which the thermoforming device 1 is in a heating process.
  • FIG. 2 is a diagram showing a state in which the thermoforming apparatus 1 according to the present embodiment is in a bonding process.
  • FIG. 3 is an enlarged view of the flange portion 103 (an example of the outer periphery) of the pulp mold 10 (an example of a fiber molded object). Note that the resin film 4 in FIG. 3 is before trimming along the outer shape of the flange portion 103 is performed. Further, a cutting line 14 in FIG. 3 is a line that virtually indicates a position where trimming is to be performed.
  • FIG. 4 is a plan view of the radiation heating device 6 viewed from the heat radiation section 6a side.
  • the thermoforming apparatus 1 includes a lower mold 5 and a radiation heating device 6, and the radiation heating device 6 reaches a predetermined temperature at which the resin film 4 can be molded.
  • This is a device for radiant heating and bonding a resin film 4 softened by the radiant heat to a pulp mold 10 placed on a lower mold 5.
  • the process of radiant heating the resin film 4 by the radiant heating device 6 to a predetermined temperature at which it can be molded is called a heating process
  • the resin film 4 softened by radiation heating is placed in the pulp mold 10 placed on the lower mold 5.
  • the process of bonding is called the bonding process.
  • the pulp mold 10 is, for example, a food packaging container molded from pulp material to a thickness of about 0.5 to 3 mm.
  • the shape of the pulp mold 10 is not particularly limited, but includes, for example, a bottom portion 101 that is oval in plan view (viewed from above in FIG. 1), a peripheral wall portion 102 rising from the periphery of the bottom portion 101, and a peripheral wall portion 102.
  • the pulp mold 10 has a flange portion 103 extending outward from the upper end of the pulp mold 10. Further, the inner surfaces of the bottom portion 101 and the peripheral wall portion 102 of the pulp mold 10 on the radiant heating device 6 side (upper side in FIG. 1) are adhesive surfaces 104 to which the resin film 4 is adhered.
  • pulp material wood pulp (limited to virgin materials) and non-wood pulp (limited to virgin materials) using reeds, sugar cane, bamboo, etc. are used.
  • pulp mold 10 is not used for food, in addition to the above, recycled wood pulp and non-wood pulp, and waste paper pulp made from waste paper such as newspapers, magazines, or cardboard may also be used as the pulp material. good. Since the pulp mold 10 is an aggregate of fibers made of pulp material as described above, it has air permeability, and before the resin film 4 is bonded, the upper surface side and the lower surface side in FIG. Air can pass between them.
  • the resin film 4 is a thermoplastic film made of polypropylene (PP).
  • PP polypropylene
  • the material is not limited to polypropylene (PP); for example, if the pulp mold 10 is used for food, any material may be used as long as it meets food hygiene standards (for example, standards set by the Food Sanitation Act).
  • olefin resins such as polyethylene (PE), polyester resins such as polyethylene terephthalate (PET), ethylene vinyl acetate copolymers, etc. can be used.
  • the surface of the resin film 4 facing the pulp mold 10 is the surface that is adhered to the adhesive surface 104 of the pulp mold 10, and an adhesive layer (not shown) is provided to improve the adhesiveness with the pulp mold 10. ing.
  • This adhesive layer is provided by applying a heat-adhesive resin such as a heat-sealing agent, or by extrusion coating a heat-adhesive resin.
  • the thickness of the resin film 4 is desirably less than 100 ⁇ m for the purpose of reducing manufacturing costs, and in this embodiment, for example, a thickness of 80 ⁇ m is used.
  • the thickness of the resin film 4 is shown to be about half the thickness of the pulp mold 10 in the drawing, this is to make the drawing easier to read, and is different from the actual thickness.
  • the melting point of the resin film 4 depends on the material of the resin film 4, and is, for example, 167° C., although it is not particularly limited.
  • the material is heated to a predetermined moldable temperature.
  • the moldable temperature is, for example, 160° C. (temperature C21 (see FIG. 5(d))) in this embodiment.
  • the resin film 4 is cut in advance along the outer shape of the pulp mold 10 in a plan view (viewed from above in FIG. 1). Specifically, as shown in FIG. 1, it is adhered only to the flange portion 103 of the pulp mold 10 and is cut in advance along the outer periphery of the flange portion 103 using, for example, a trimming device.
  • the resin film 4 is cut before being heated by the radiant heating device 6, and the resin film 4 is cut without any slight deformation or change in physical properties due to heating by the radiant heating device 6. Film 4 can be cut. Therefore, trimming accuracy can be improved.
  • thermoforming apparatus 1 can improve trimming accuracy, as shown by the cutting line 14 in FIG. It becomes possible to cut only the resin film 4 with high accuracy, aiming at the boundary with the surrounding resin film 4 that is not bonded. Therefore, no part of the pulp mold remains on the resin film after the fiber molded body (pulp mold 10) is separated. Therefore, it is easy to recycle the resin film as a material after cutting off the fiber molded body (pulp mold 10), and even if recycling as a material is abandoned, the environmental burden at the time of disposal is reduced. be able to.
  • adhesion and cutting of only the flange portion 103 of the resin film 4 may be performed as a preliminary step by a device different from the thermoforming device 1, or the thermoforming device 1 may be equipped with a cutting device such as a Thomson blade.
  • the thermoforming device 1 may adhere the resin film 4 only to the flange portion 103, and the cutting device may cut the resin film 4 along the outer periphery of the flange portion 103.
  • the resin film 4 as described above is heated to about 160° C. by the radiation heating device 6 in the thermoforming device 1, and then shaped along the adhesive surface 104 of the pulp mold 10, as shown in FIG. At the same time, it is adhered to the adhesive surface 104.
  • the pulp mold 10 has water resistance, oil resistance, and heat resistance because the resin film 4 is adhered thereto.
  • the lower mold 5 consists of a mold 51, a pedestal 53, and a base 52.
  • the formwork 51 is made of a metal member such as stainless steel, and includes a pedestal 512 and a peripheral wall 511 erected on the pedestal 512.
  • the pedestal 512 has a vent 512a penetrating in the vertical direction VT, and a vacuum pump 7 (an example of a pressure reducing means) is connected to the vent 512a.
  • the vacuum pump 7 can vacuum the inside of the formwork 51 through the vent 512a.
  • a pedestal 53 on which the base 52 is mounted is fixed above the pedestal 512 and surrounded by a peripheral wall 511.
  • the pedestal 53 has a plurality of communication passages 531 passing through the pedestal 53 in the vertical direction VT.
  • a base 52 on which the pulp mold 10 is placed is mounted on the upper end surface of the base 53 in the vertical direction VT, surrounded by a peripheral wall 511.
  • a mounting surface 521 matching the shape of the pulp mold 10 is bored in the end surface of the base 52 on the side of the radiant heating device 6 (upper side in the vertical direction VT). Further, the base 52 includes a plurality of vacuum vents 522 that open to the mounting surface 521.
  • the mounting surface 521 side can be vacuum-suctioned through the communication path 531 and the vacuum vent 522. Since the pulp mold 10 has air permeability, even if the pulp mold 10 is placed on the placement surface 521, vacuum suction on the placement surface 521 side is not hindered. Therefore, by vacuum suctioning the mounting surface 521 side in the state shown in FIG. This makes it possible to bond without any problems.
  • the vacuum pump 7 is connected to the vent 512a of the lower mold 5 through a first pipe 11A and a second pipe 11B that are arranged in parallel.
  • a first on-off valve 8 is provided on the first pipe 11A.
  • the first pipe 11A is opened, and the vacuum pump 7 can perform vacuum suction through the first pipe 11A.
  • the first on-off valve 8 is closed, the first pipe 11A is shut off.
  • a second on-off valve 9 and a flow rate adjustment valve 13 are arranged on the second pipe 11B in this order from the vacuum pump 7 side.
  • the second on-off valve 9 is opened, the second pipe 11B is opened, and the vacuum pump 7 can perform vacuum suction through the second pipe 11B.
  • the second on-off valve 9 is closed, the second pipe 11B is shut off.
  • the flow rate adjustment valve 13 has an adjustable valve opening degree, and by adjusting the valve opening degree, it is possible to adjust the exhaust speed when vacuum suction is performed by the second pipe 11B.
  • the vacuum pump 7 is always in operation while the thermoforming apparatus 1 is in operation, and when the first on-off valve 8 is opened and the second on-off valve 9 is closed, the vacuum pump 7 is turned off by the first piping 11A.
  • Vacuum suction can be performed at the maximum pumping speed S11 (see FIG. 5(b) (an example of the second pumping speed)) according to the capacity.
  • the second piping 11B will control the exhaust speed according to the opening degree of the flow rate adjustment valve 13 (for example, at a predetermined rate described later).
  • Vacuum suction can be performed at the pumping speed S12 (see FIG. 5(b) (an example of the first pumping speed)).
  • the first piping 11A, the second piping 11B, the first on-off valve 8, the second on-off valve 9, and the flow rate adjustment valve 13 function as an evacuation speed adjustment section that adjusts the evacuation speed of the vacuum pump 7.
  • the radiant heating device 6 is located opposite the lower mold 5 with the resin film 4 in between.
  • the end surface of the radiation heating device 6 on the side of the lower mold 5 is a heat radiation part 6a, and the heat radiation part 6a is formed of a plurality of heater elements 61, as shown in FIG.
  • the radiant heating device 6 has a configuration in which six rows of heater elements 61 (octagonal in plan view) are arranged adjacent to each other in the X direction, and five rows of heater elements 61 are arranged adjacent to each other in the Y direction. There are a total of 30 heater elements 61. These 30 heater elements 61 constitute a heat radiation section 6a.
  • the X direction in FIG. 4 is a direction parallel to the horizontal direction HZ in FIGS. 1 and 2.
  • the number of heater elements 61 is not limited to the above, but is merely an example.
  • the radiant heating device 6 is provided with a temperature sensor 62 so as to be surrounded by four heater elements 61 located in the central region of the radiant heating device 6.
  • the temperature sensor 62 is, for example, a radiation thermometer. This temperature sensor 62 can measure the temperature of the surface of the resin film 4 facing the radiation heating device 6 . Thereby, the thermoforming apparatus 1 can detect the temperature of the resin film 4 during the heating process and the bonding process.
  • the radiant heating device 6 is movable up and down along the vertical direction VT by a lifting means 12 (for example, an air cylinder, etc.), and is movable between a first heating position and a second heating position. .
  • the position of the radiant heating device 6 shown in FIG. 1 is a first heating position for radiant heating of the resin film 4 in the heating process.
  • the position of the radiant heating device 6 shown in FIG. 2 is a second heating position for radiant heating the resin film 4 in the bonding process.
  • the distance D12 between the radiant heating device 6 and the base 52 at the second heating position is set smaller than the distance D11 between the radiant heating device 6 and the base 52 at the first distance heating position.
  • the distance of the radiant heating device 6 with respect to the resin film 4 is variable. Note that the distance D11 of the radiant heating device 6 to the base 52 at the first heating position and the distance D12 of the radiant heating device 6 to the base 52 at the second heating position are determined by the output of the radiant heating device 6 and the distance of the resin film 4. It is determined based on the material, target time for heating process and bonding process, etc.
  • FIG. 5A is a time chart of the output of the radiation heating device 6 in the bonding process and the heating process.
  • FIG. 5(b) is a time chart regarding the pumping speed of the vacuum pump 7 in the bonding process and the heating process.
  • FIG. 5C is a time chart regarding the position of the radiant heating device 6 (distance of the radiant heating device 6 with respect to the base 52) in the bonding process and the heating process.
  • FIG. 5(d) is a graph showing the temperature change of the resin film 4 during the adhesion process and the heating process.
  • the resin film 4 is bonded only to the flange portion 103 of the pulp mold 10, and the resin film 4 is attached along the outer shape of the pulp mold 10 in a plan view. Cut. Then, as shown in FIG. 1, the pulp mold 10 is placed on the placement surface 521 of the base 52. Note that the work of placing the pulp mold 10 on the placing surface 521 may be performed manually by an operator, or may be performed by an automatic conveyance device or the like.
  • the vacuum pump 7 is operated with the first on-off valve 8 and the second on-off valve 9 closed and the first piping 11A and the second piping 11B cut off. put. Further, the opening degree of the flow rate regulating valve 13 is adjusted so that a predetermined exhaust speed S12 (see FIG. 5(b)) is obtained when the second on-off valve 9 is opened. Note that details of the predetermined pumping speed S12 will be described later.
  • the output of the radiation heating device 6 is started from time t1, and the heating process is started.
  • the output of the radiation heating device 6 is constant at the temperature C11 throughout the heating process and the bonding process.
  • the value of the temperature C11 is arbitrarily set depending on the performance of the radiant heating device 6, the material of the resin film 4 to be heated, etc., and is not particularly limited; however, in this embodiment, the value of the radiant heating device The temperature is set at 600°C, which is the maximum output of 6.
  • the distance between the radiant heating device 6 and the base 52 is a distance D11, as shown in FIG. 5(c). This means that the radiant heating device 6 is in the first heating position.
  • vacuum suction by the vacuum pump 7 starts from time t1 at a predetermined pumping speed S12. This vacuum suction is performed by opening the second on-off valve 9 and opening the second pipe 11B while the first on-off valve 8 remains closed.
  • the resin film 4 Since the resin film 4 is adhered to the flange portion 103 of the pulp mold 10, air is trapped between the pulp mold 10 and the resin film 4. Therefore, if heating is performed directly using the radiant heating device 6, the air trapped between the pulp mold 10 and the resin film 4 will expand, causing the resin film 4 to swell toward the radiant heating device 6 (upper side in FIG. 1). Put it away. Then, the distance between the radiant heating device 6 and the resin film 4 becomes narrower, and the resin film 4 is heated excessively, which may cause defects such as holes. Therefore, as described above, by performing vacuum suction at a predetermined pumping speed S12, the resin film 4 is prevented from swelling toward the radiation heating device 6 side, and the resin film 4 is prevented from being excessively heated. ing.
  • the predetermined pumping speed S12 depends on the output of the radiant heating device 6, the volume of the pulp mold 10, etc., but the speed at which the resin film 4 does not swell toward the radiant heating device 6 is determined in advance through experiments. I'll ask for it. Then, the opening degree of the flow rate regulating valve 13 is adjusted in accordance with the predetermined exhaust speed S12 determined through experiments. Note that it is desirable that the resin film 4 be kept as horizontal as possible by performing vacuum suction at a predetermined pumping speed S12. This is to uniformly heat the entire resin film 4. However, it is not necessarily necessary to keep it horizontal, and it is sufficient as long as the resin film 4 does not swell toward the radiation heating device 6 side.
  • the resin film 4 may be deformed into a concave shape toward the pulp mold 10 to such an extent that shaping is not performed.
  • vacuum suction at a predetermined pumping speed S12 is performed from time t1 at the same time as the heating process is started, it does not necessarily have to be done at the same time.
  • the timing at which the air trapped between the pulp mold 10 and the resin film 4 starts to expand after heating starts is confirmed in advance through an experiment, and vacuum suction is performed at a predetermined pumping speed S12 in accordance with the timing. It is also good to do.
  • the temperature of the resin film 4 increases in proportion to the passage of time from time t1 when heating by the radiation heating device 6 starts, as shown in FIG. 5(d). Then, the temperature of the resin film 4 reaches a moldable temperature C21 (160° C.) at time t2, and the heating process is completed.
  • the time required for the heating process depends on the output of the radiant heating device 6, the distance of the radiant heating device 6 from the base 52, the material of the resin film 4, etc., but in this embodiment In this case, the time is about 8 seconds.
  • the distance of the radiant heating device 6 to the base 52 is shifted to a distance D12, as shown in FIG. 5(c). This means that the radiant heating device 6 is in the second heating position. At this time, the output of the radiation heating device 6 is in a constant state as shown in FIG. 5(a).
  • the temperature of the resin film 4 is cooled by the pulp mold 10 when it is shaped and comes into contact with the pulp mold 10, so as shown in FIG. 5(d), the temperature of the resin film 4 decreases to temperature C22. However, since the radiation heating device 6 continues to heat the resin film 4 at the second heating position, the temperature of the resin film 4 recovers to temperature C21 at time t3.
  • the second heating position is closer to the radiant heating device 6 and the resin film 4 than the first heating position, the amount of heat that the radiant heating device 6 gives to the resin film 4 can be increased. Therefore, the time required (time from time t2 to time t3) to radiantly heat the resin film 4, which has cooled down by contacting the pulp mold 10, until it reaches the temperature C21 again is conventionally required. (the time from time t2 to time t5 in FIG. 7(d)). Specifically, this is approximately 20 to 60% shorter than the time required in the past.
  • the amount of heat that the radiation heating device 6 gives to the resin film 4 can be increased. Therefore, the amount of temperature decrease (the amount of decrease from temperature C21 to temperature C22) of the resin film 4 due to contact with the pulp mold 10 can be suppressed. Specifically, compared to the conventional temperature decrease amount (the decrease amount from temperature C21 to temperature C22 in FIG. 7(d)), the decrease amount was about 20 to 60%. This makes it possible to reduce the temperature difference that occurs between the part of the resin film 4 that is in contact with the pulp mold 10 and the part that is not in contact with the fiber molded body, and stabilizes the adhesion of the resin film 4 to the pulp mold 10. It becomes possible to do this by
  • the radiant heating device 6 stops outputting, as shown in FIG. 5(a). At the same time, the radiation heating device 6 returns to the first heating position, as shown in FIG. 5(c). Note that it is not necessarily necessary to return to the first heating position, and it may be moved to a position farther away from the base 52 than the first heating position. Further, at time t4, the first on-off valve 8 is closed and the first pipe 11A is cut off, thereby stopping the vacuum suction as shown in FIG. 5(b). With this, the adhesion process is completed.
  • time required for the bonding process depends on the output of the radiant heating device 6, the distance of the radiant heating device 6 from the base 52, the thickness and material of the resin film 4, and the density (transparent) of the pulp mold 10. In this embodiment, the time is approximately 6 to 10 seconds, although it depends on the weather (temperature) and the like.
  • the time required to radiantly heat the resin film 4 that has cooled down by contacting the pulp mold 10 until it reaches the temperature C21 again (the time from time t2 to time t3) is conventionally required.
  • the time required for the bonding process (from time t2 to time t4) is shorter than the time required for the conventional bonding process (time from time t2 to time t5 in FIG. 7). This is about 20 to 60% shorter than the time (from t2 to time t6), which improves manufacturing efficiency.
  • the pulp mold 10 to which the resin film 4 is bonded is removed from the base 52.
  • This work of removing the pulp mold 10 to which the resin film 4 is adhered may be performed manually by an operator, or may be performed by an automatic conveyance device or the like.
  • thermoforming device 1 The heating process and bonding process described above are automatically performed by a control program stored in a control device (not shown) connected to the thermoforming device 1.
  • thermoforming apparatus According to the second embodiment, only the points different from the thermoforming apparatus 1 according to the first embodiment will be described.
  • thermoforming device has the same configuration as the thermoforming device 1 according to the first embodiment shown in FIG. 1, but the second heating position of the radiant heating device 6 is as shown in FIG.
  • the second heating position of the thermoforming apparatus 1 according to the first embodiment is different from the second heating position of the thermoforming apparatus 1 according to the first embodiment, and the second heating position of the thermoforming apparatus according to the second embodiment is closer to the radiant heating apparatus 6 than the first heating position.
  • the distance from the base 52 is set far. That is, the radiation heating device 6 moves away from the resin film 4 at the stage of transition from the heating process to the bonding process.
  • the pulp mold 10 may be excessively heated and burnt depending on its material. Therefore, in the bonding process, by moving the radiant heating device 6 away from the resin film 4, the amount of heat that the radiant heating device 6 gives to the pulp mold 10 is reduced. Thereby, it is possible to prevent the pulp mold 10 from being heated excessively.
  • the thermoforming apparatus 1 includes (1) the radiant heating device 6 and the base 52 facing the radiant heating device 6 with the resin film 4 interposed therebetween; A heating step for radiant heating the resin film 4 by the heating device 6 to a predetermined temperature C21 at which it can be molded, and a heating step for heating the radiantly heated resin film 4 to a fiber molded body (pulp mold 10) placed on a base 52.
  • the resin film 4 is attached to the adhesion surface 104 of the fiber molded article (pulp mold 10) to which the resin film 4 is adhered before performing the heating step and the adhesion step. It is characterized in that it is cut into a shape that follows the outer shape of the outer circumferential edge (flange portion 103) while being adhered to the outer circumferential edge (flange portion 103).
  • the resin film 4 is attached to the outside of the adhesive surface 104 of the fiber molded article (pulp mold 10) to which the resin film 4 is attached before performing the heating process and the adhesive process. Since the resin film 4 is cut into a shape along the outer shape of the outer circumferential edge (flange portion 103) while being adhered to the outer circumferential edge (flange portion 103), the resin film 4 is heated by the radiant heating device 6. It is cut off before it is removed. That is, the resin film 4 can be cut in a state where the resin film 4 is not subjected to minute deformation or change in physical properties due to heating by the radiant heating device 6. Therefore, trimming accuracy can be improved.
  • a pressure reducing means for vacuum suction between the fiber molded body (pulp mold 10) and the resin film 4; 7) includes an exhaust speed adjustment section (first piping 11A, second piping 11B, first on-off valve 8, second on-off valve 9, flow rate adjustment valve 13) that adjusts the evacuation speed for performing vacuum suction. It is characterized by.
  • the exhaust speed adjustment section (first piping 11A, second piping 11B, first on-off valve 8, second on-off valve 9, flow rate adjustment valve 13)
  • the exhaust speed is adjusted between a first exhaust speed (predetermined exhaust speed S12) for performing vacuum suction in the process and a second exhaust speed (maximum exhaust speed S11) for performing vacuum suction in the bonding process.
  • the second pumping speed (maximum pumping speed S11) is the pumping speed for bringing the resin film 4 into close contact with the fiber molded body (pulp mold 10), and the first pumping speed (predetermined pumping speed S12) is , the pumping speed is slower than the second pumping speed (maximum pumping speed S11).
  • thermoforming apparatus 1 In the thermoforming apparatus 1 described in (3), the output of the radiation heating device 6 is heated to the extent necessary for the resin film 4 to reach a predetermined temperature C21 within a predetermined time (from time t1 to time t2).
  • the heating process is performed by controlling the temperature (temperature C11) and vacuum suction at the first pumping speed (predetermined pumping speed S12) by the pressure reducing means (vacuum pump 7), and after the completion of the heating step, the pressure reducing means
  • the present invention is characterized in that it includes a control program that performs the bonding process by performing vacuum suction using the vacuum pump 7 at a second pumping speed (maximum pumping speed S11).
  • the resin film 4 is in a state of being adhered to the outer periphery (flange portion 103) of the adhesive surface 104 to which the resin film 4 is adhered of the fiber molded body (pulp mold 10) before the heating process and the adhesion process are performed. Air is trapped between the fiber molded body (pulp mold 10) and the resin film 4. Therefore, if the heating process is performed as it is, the air trapped between the fiber molded body (pulp mold 10) and the resin film 4 will expand due to the heating by the radiant heating device 6, and the resin film 4 will move toward the radiant heating device 6 side. It swells up. Then, the distance between the radiant heating device 6 and the resin film 4 becomes narrower, and the resin film 4 is heated excessively, which may cause defects such as holes.
  • thermoforming apparatus 1 According to the thermoforming apparatus 1 described in (2), (3), or (4), vacuum suction is applied between the fiber molded product (pulp mold 10) and the resin film 4, and the resin film 4 is transformed into the fiber molded product ( A depressurizing means (vacuum pump 7) for bringing the pulp mold 10 into close contact with the pulp mold 10) and an evacuation speed adjustment section (first piping 11A, second piping 11B, the first on-off valve 8, the second on-off valve 9, and the flow rate adjustment valve 13).
  • vacuum suction at the first pumping speed (predetermined pumping speed S12)
  • predetermined pumping speed S12 it is possible to prevent the resin film 4 from swelling toward the radiation heating device 6 side. This can prevent the resin film 4 from being excessively heated.
  • thermoforming device 1 one pulp mold 10 is placed on the base 52 and the resin film 4 is bonded thereto. It's good as well.
  • thermoforming apparatus 1 is such that the radiant heating device 6 is located above the lower mold 5, the vertical position may be reversed.
  • resin film 4 is described as having an adhesive layer, a resin film without an adhesive layer may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

輻射加熱装置(6)と、輻射加熱装置(6)に樹脂フィルム(4)を挟んで対向する基台(52)と、を備え、輻射加熱装置(6)により樹脂フィルム(4)を成形可能な所定の温度(C21)まで輻射加熱するための加熱工程と、輻射加熱された樹脂フィルム(4)を基台(52)に載置されたパルプモールド(10)に接着する接着工程と、を行うための熱成形装置(1)において、樹脂フィルム(4)は、加熱工程および接着工程を行う前に、パルプモールド(10)の、樹脂フィルム(4)を接着する接着面(104)のフランジ部(103)に接着された状態で、フランジ部(103)の外形に沿った形状に切断されていること。

Description

熱成形装置
 本発明は、輻射加熱装置と、輻射加熱装置に樹脂フィルムを挟んで対向する基台と、を備え、輻射加熱装置により樹脂フィルムを成形可能な所定の温度まで輻射加熱するための加熱工程と、輻射加熱された樹脂フィルムを、基台に載置された繊維成形体に接着する接着工程と、を行うための熱成形装置に関する。
 食品用の包装用容器として、従来プラスチック製の容器が用いられているが、プラスチック製の容器は、廃棄された場合に自然分解されないため、環境汚染の原因になると考えられている。そのような中、廃棄されたとしても自然分解されるパルプモールド等の繊維成形体が、環境汚染を抑えることが出来るとして期待されており、食品用の包装用容器として用いられるケースが増えている。
 繊維成形体を食品用の包装容器として用いる場合、そのまま食品を充填すると、食品に含まれる水分や油分が繊維成形体に浸透して、漏れが生じるおそれがある。このため、繊維成形体の食品と接触する面に熱可塑性を有する樹脂フィルムを接着し、繊維成形体に耐水性や耐油性を与える処理が行われることが一般的である。例えば、特許文献1には、樹脂フィルムが接着された紙製容器が開示されている。
 繊維成形体への樹脂フィルムの接着は、例えば、図6に示すような、樹脂フィルム4を加熱するための輻射加熱装置6と、パルプモールド10(繊維成形体の一例)を載置するための下型5と、を備える熱成形装置100を用いて行う。
 熱成形装置100は、輻射加熱装置6により樹脂フィルム4を成形可能な所定の温度まで輻射加熱し、輻射加熱されて軟化した樹脂フィルム4を下型5に載置されたパルプモールド10に接着するための装置である。なお、輻射加熱装置6により樹脂フィルム4を成形可能な所定の温度まで輻射加熱する工程を加熱工程といい、輻射加熱されて軟化した樹脂フィルム4を下型5に載置されたパルプモールド10に接着する工程を接着工程という。
 パルプモールド10の形状は、例えば、平面視(図6中の上方から見た状態)で長円状の底部101と、底部101の周縁から立ち上がる周壁部102と、周壁部102の上端からパルプモールド10の外方に張り出すフランジ部103と、を有するものである。また、パルプモールド10の輻射加熱装置6側(図6において上側)の内面は、樹脂フィルム4を接着する接着面104である。
 樹脂フィルム4は、例えば、素材をポリプロピレン(PP)とする熱可塑性のフィルムである。厚みは、例えば80μmとする。樹脂フィルム4の融点は、例えば167℃であり、加熱工程では、成形可能な所定の温度である160℃(温度C21(図7(d)参照))まで加熱される。樹脂フィルム4の、パルプモールド10に対向する面には、パルプモールド10との接着性を向上させるために、ヒートシール剤などによる接着層(不図示)が設けられている。
 下型5は、型枠51と、台座53と、基台52と、からなる。型枠51は、架台512と、架台512に立設される周壁511とを有している。架台512は、上下方向VTに貫通する通気口512aを有しており、この通気口512aには、真空ポンプ7が接続されている。真空ポンプ7は、通気口512aを介して、型枠51内を真空吸引可能である。
 架台512の上方には、周壁511に囲まれて、基台52を搭載するための台座53が固定されている。台座53は、台座53を上下方向VTに貫通する複数の連通路531を有している。台座53の上下方向VTの上側の端面には、周壁511に囲まれて、パルプモールド10を載置するための基台52が搭載されている。
 基台52は、輻射加熱装置6側(上下方向VTの上側)の端面に、パルプモールド10の形状に合わせた載置面521が穿設されている。さらに、基台52は、載置面521に開口する複数の真空通気口522を備える。真空ポンプ7によって型枠51内が真空吸引されると、連通路531および真空通気口522を介して、載置面521側を真空吸引することが出来る。図6に示す状態で、載置面521側を真空吸引することで、樹脂フィルム4を、パルプモールド10の接着面104に隙間なく接着することが可能となる。パルプモールド10は通気性を有するため、載置面521にパルプモールド10が載置されていたとしても、載置面521側の真空吸引が妨げられることがない。
 輻射加熱装置6は、下型5に、樹脂フィルム4を挟んで対向して位置している。図1に示す輻射加熱装置6の位置が、加熱工程において樹脂フィルム4の輻射加熱を行うための加熱位置である。当該加熱位置における輻射加熱装置6の基台52に対する距離D11は、輻射加熱装置6の出力や、樹脂フィルム4の素材、加熱工程や接着工程にかける目標時間等に基づき定められる。
 以上のような構成を有する熱成形装置100を用いて行う加熱工程と接着工程について、図7を用いて説明する。図7(a)は、接着工程および加熱工程における輻射加熱装置6についての出力のタイムチャートである。図7(b)は、接着工程および加熱工程における真空ポンプ7の排気速度についてのタイムチャートである。図7(c)は、接着工程および加熱工程における輻射加熱装置6の位置(輻射加熱装置6の基台52に対する距離D11)についてのタイムチャートである。図7(d)は、接着工程および加熱工程における樹脂フィルム4の温度変化を様子を表すグラフである。
 図7(a)に示すように、時点t1から輻射加熱装置6の出力を開始し、加熱工程が開始される。輻射加熱装置6の出力は、加熱工程、接着工程を通して、温度C11で一定である。なお、温度C11の値は、輻射加熱装置6の性能や、加熱対象の樹脂フィルム4の素材等により任意に設定されるものであるが、ここでは、輻射加熱装置6の温度を600℃とする。また、輻射加熱装置6の基台52に対する距離は、図7(c)に示すように、加熱工程、接着工程を通して、距離D11で一定である。
 樹脂フィルム4の温度は、図7(d)に示すように、輻射加熱装置6による加熱が開始される時点t1から、時間経過とともに上昇していく。そして、樹脂フィルム4の温度は、時点t2で成形可能な温度C21(160℃)に達し、加熱工程が完了する。加熱工程に要する時間(時点t1から時点t2までの時間)は、輻射加熱装置6の出力、輻射加熱装置6の基台52に対する距離、樹脂フィルム4の厚みや素材等に左右されるが、例えば約8秒である。
 熱成形装置100は、加熱工程が完了すると、接着工程を行う。具体的には、図7(b)に示すように、時点t2から真空ポンプ7による真空吸引が、真空ポンプ7の能力に応じた最大排気速度S11で行われる。この真空吸引を行うことで、樹脂フィルム4は、パルプモールド10の形状に沿って賦形されるとともに、パルプモールド10に接着される。接着工程に要する時間(時点t2から時点t6までの時間)は、輻射加熱装置6の出力、輻射加熱装置6の基台52に対する距離、樹脂フィルム4の素材等に左右されるが、例えば約15秒である。
 そして、樹脂フィルム4が接着されたパルプモールド10は、樹脂フィルム4が水平方向HZに沿って(例えば図6中の左側から右側へ)送り出されることで、熱成形装置100から搬出される。そして、熱成形装置100は、次のパルプモールド10に対して樹脂フィルム4の接着を行う。このように連続してパルプモールド4に対して樹脂フィルム4の接着を行うため、水平方向HZに沿って送り出される樹脂フィルム4には、複数のパルプモールド10が水平方向HZにおいて前後に並んでぶら下がった状態となる。パルプモールド10は、樹脂フィルム4にぶら下がった状態でトリミング工程に搬送され、トリミング工程では、水平方向HZにおいて前後に並ぶパルプモールド10が、樹脂フィルム4から順次切り離される。
特開2001-233317号公報
 加熱工程後の接着工程において樹脂フィルム4がパルプモールド10の形状に沿って賦形されると、図8に示すように、樹脂フィルム4の、パルプモールド10の形状に沿って賦形された成形部分41の周囲に、未成形部分42が形成される。この未成形部分42は、樹脂フィルム4の賦形されずに残った部分である。しかし、加熱工程および接着工程における輻射加熱装置6による加熱や、熱成形装置100からの搬出により、未成形部分42に微小な変形、物性の変化が発生するおそれがある。そうすると、水平方向HZにおいて前後に並ぶパルプモールド10同士のピッチがずれ、樹脂フィルム4接着後に行われるトリミングの精度に悪影響を与えるおそれがある。
 また、トリミングを行う際、樹脂フィルム4のみを精度高く切断することが困難であるため、トリミングを行う位置を仮想的に示した切断線15に示すように、フランジ部103の先端部を切断することで、パルプモールド10を樹脂フィルム4から切り離す。パルプモールド10が切り離された後の樹脂フィルム4は巻き取られ、廃棄されるが、切断されたフランジ部103の先端部が接着されて残留しているため、分別が困難である。分別が困難であると、材料として再利用が困難となり、廃棄する際の環境負荷が大きい。
 本発明は、かかる現状に鑑みてなされたものであって、トリミング精度の向上を図るとともに、環境負荷の低減を図ることが可能な熱成形装置を提供することを目的とする。
上記課題を解決するために、本発明の熱成形装置は、次のような構成を有している。

 (1)輻射加熱装置と、前記輻射加熱装置に樹脂フィルムを挟んで対向する基台と、を備え、前記輻射加熱装置により前記樹脂フィルムを成形可能な所定の温度まで輻射加熱するための加熱工程と、輻射加熱された前記樹脂フィルムを前記基台に載置された繊維成形体に接着する接着工程と、を行うための熱成形装置において、前記樹脂フィルムは、前記加熱工程および前記接着工程を行う前に、前記繊維成形体の、前記樹脂フィルムを接着する接着面の外周縁に接着された状態で、外周縁の外形に沿った形状に切断されていること、前記繊維成形体と前記樹脂フィルムとの間を真空吸引するための減圧手段と、前記減圧手段の前記真空吸引を行うための排気速度を調整する排気速度調整部と、を備えること、前記排気速度調整部は、前記加熱工程において前記真空吸引を行うための第1排気速度と、前記接着工程において前記真空吸引を行うための第2排気速度と、の間で排気速度の調整を行うこと、前記第2排気速度は、樹脂フィルムを繊維成形体に密着させるための排気速度であること、前記第1排気速度は、前記第2排気速度よりも排気速度が遅いこと、を特徴とする。 
 (1)に記載の熱成形装置によれば、樹脂フィルムは、加熱工程および接着工程を行う前に、繊維成形体の、樹脂フィルムを接着する接着面の外周縁に接着された状態で、外周縁の外形に沿った形状に切断されていることを特徴とするため、樹脂フィルムは、輻射加熱装置に加熱される前に切断されるものである。つまり、樹脂フィルムに輻射加熱装置の加熱による微小な変形や、物性の変化が発生していない状態で、樹脂フィルムを切断することができる。よって、トリミング精度の向上を図ることができる。
 また、トリミング精度の向上を図ることができれば、トリミングを行う際に、樹脂フィルムのみを精度高く切断することができるようになり、繊維成形体を切り離した後の樹脂フィルムに繊維成形体の一部が残留することもない。よって、繊維成形体を切り離した後の樹脂フィルムの材料としての再生が容易であるし、材料としての再生を断念した場合であっても廃棄する際の環境負荷の低減を図ることができる。
 (2)(1)に記載の熱成形装置において、前記輻射加熱装置の出力を、所定の時間内に前記樹脂フィルムが前記所定の温度に達するために必要な加熱温度に制御するとともに、前記減圧手段により、前記第1排気速度で前記真空吸引を行うことで前記加熱工程を行い、前記加熱工程の完了後に、前記減圧手段により、前記第2排気速度で前記真空吸引を行うことで前記接着工程を行う制御プログラムを備えること、が好ましい。
 樹脂フィルムは、加熱工程および接着工程を行う前に、繊維成形体の、樹脂フィルムを接着する接着面の外周縁に接着された状態であるため、繊維成形体と樹脂フィルムの間には空気が閉じ込められている。したがって、そのまま加熱工程を行うと、輻射加熱装置の加熱により、繊維成形体と樹脂フィルムの間に閉じ込められた空気が膨張し、樹脂フィルムが輻射加熱装置側に膨れてしまう。すると、輻射加熱装置と樹脂フィルムとの距離が狭まり、樹脂フィルムが過剰に加熱され、穴が開いてしまうといった不良が発生するおそれがある。 
 (1)または(2)に記載の熱成形装置によれば、繊維成形体と樹脂フィルムとの間を真空吸引し、樹脂フィルムを繊維成形体に密着させるための減圧手段と、減圧手段の真空吸引を行うための排気速度を調整する排気速度調整部と、を備えるため、例えば、加熱工程において、接着工程における第2排気速度よりも排気速度の遅い第1排気速度で真空吸引を行うことで、樹脂フィルムが輻射加熱装置側に膨れてしまうことを防止することができる。これにより、樹脂フィルムが過剰に加熱されることを防止することができる。なお、第1排気速度とは、輻射加熱装置の出力や、繊維成形体の容積等に左右されるものであるが、樹脂フィルムが輻射加熱装置側に膨れてしまわない速度を、実験により予め求められるものである。
 本発明の熱成形装置によれば、トリミング精度の向上を図るとともに、環境負荷の低減を図ることが可能である。
本実施形態に係る熱成形装置の構成を示すとともに、熱成形装置が加熱工程にある状態を表す図である。 本実施形態に係る熱成形装置が接着工程にある状態を表す図である。 パルプモールド(繊維成形体の一例)のフランジ部(外周縁の一例)を拡大した拡大図である。 輻射加熱装置の放熱部側から見た平面図である。 (a)は、接着工程および加熱工程における輻射加熱装置の出力についてのタイムチャートである。(b)は、接着工程および加熱工程における真空ポンプの排気速度についてのタイムチャートである。(c)は、接着工程および加熱工程における輻射加熱装置の位置についてのタイムチャートである。(d)は、接着工程および加熱工程における樹脂フィルムの温度変化を様子を表すグラフである。 従来技術に係る熱成形装置の構成を示す図である。 (a)は、従来技術に係る接着工程および加熱工程における輻射加熱装置の出力についてのタイムチャートである。(b)は、従来技術に係る接着工程および加熱工程における真空ポンプの排気速度についてのタイムチャートである。(c)は、従来技術に係る接着工程および加熱工程における輻射加熱装置の位置についてのタイムチャートである。(d)は、従来技術に係る接着工程および加熱工程における樹脂フィルムの温度変化を様子を表すグラフである。 従来技術に係る熱成形装置により樹脂フィルムを接着したパルプモールドのフランジ部を拡大した拡大図である。
 本発明の第1の実施形態に係る熱成形装置ついて、図面を参照しつつ説明する。図1は、本実施形態に係る熱成形装置1の構成を示すとともに、熱成形装置1が加熱工程にある状態を表す図である。図2は、本実施形態に係る熱成形装置1が接着工程にある状態を表す図である。図3は、パルプモールド10(繊維成形体の一例)のフランジ部103(外周縁の一例)を拡大した拡大図である。なお、図3中の樹脂フィルム4は、フランジ部103の外形に沿ったトリミングが行われる前のものである。また、図3中の切断線14は、トリミングを行う位置を仮想的に示した線である。図4は、輻射加熱装置6の放熱部6a側から見た平面図である。
<熱成形装置の構成について>
 第1の実施形態に係る熱成形装置1は、図1に示すように、下型5と、輻射加熱装置6と、からなり、輻射加熱装置6により樹脂フィルム4を成形可能な所定の温度まで輻射加熱し、輻射加熱されて軟化した樹脂フィルム4を下型5に載置されたパルプモールド10に接着するための装置である。なお、輻射加熱装置6により樹脂フィルム4を成形可能な所定の温度まで輻射加熱する工程を加熱工程といい、輻射加熱されて軟化した樹脂フィルム4を下型5に載置されたパルプモールド10に接着する工程を接着工程という。
  パルプモールド10は、パルプ材を原料として、厚み0.5~3mm程度に成形された、例えば食品用の包装容器である。パルプモールド10の形状は、特に限定されないが、例えば、平面視(図1中の上方から見た状態)で長円状の底部101と、底部101の周縁から立ち上がる周壁部102と、周壁部102の上端からパルプモールド10の外方に張り出すフランジ部103と、を有するものである。また、パルプモールド10の底部101および周壁部102の輻射加熱装置6側(図1において上側)の内面は、樹脂フィルム4を接着する接着面104である。なお、パルプ材としては、木材パルプ(バージン材に限る)や、葦、サトウキビ、竹等を使用する非木材パルプ(バージン材に限る)が用いられる。ただし、パルプモールド10が食品用途でなければ、パルプ材として、上記の他に、再生材の木材パルプおよび非木材パルプや、新聞、雑誌、又はダンボール等の古紙を使用する古紙パルプを用いても良い。パルプモールド10は、上記したようなパルプ材を用いた繊維の集合体であるため、通気性を有しており、樹脂フィルム4を接着する前においては、図1中の上面側と下面側との間を空気が通ることが出来る。
 樹脂フィルム4は、素材をポリプロピレン(PP)とする熱可塑性のフィルムである。ただし、材質はポリプロピレン(PP)に限定されず、例えば、パルプモールド10が食品用途であれば、食品衛生上の基準(例えば食品衛生法に定められた基準)に合致するものであれば良い。例えば、ポリエチレン(PE)等のオレフィン系樹脂、ポリエチレンテレフタレート(PET)等のポリエステル系樹脂、エチレン酢酸ビニルコポリマーなどを用いることができる。
 樹脂フィルム4の、パルプモールド10に対向する面は、パルプモールド10の接着面104に接着される面であり、パルプモールド10との接着性を向上させるために接着層(不図示)が設けられている。この接着層は、ヒートシール剤などの熱接着性樹脂の塗布や、熱接着性樹脂を押し出しコートするなどして設けられている。
 樹脂フィルム4の厚みは、製造コストを抑える目的から100μm未満であることが望ましく、本実施形態においては、例えば80μmのものを用いている。なお、図面においては、樹脂フィルム4の厚みがパルプモールド10の厚みの半分程度であるように示しているが、これは図面を見やすくするためであり、実際の厚みとは異なる。また、樹脂フィルム4の融点は、樹脂フィルム4の材質によるものであり、特に限定されないが、例えば167℃である。加熱工程では、所定の成形可能な温度まで加熱される。成形可能な温度とは、例えば、本実施形態においては160℃(温度C21(図5(d)参照))である。
 また、樹脂フィルム4は、熱成形装置1によって賦形される前に、パルプモールド10の平面視(図1中の上方から見た状態)における外形に沿って予め切断されている。具体的には、図1に示すように、パルプモールド10のフランジ部103に対してのみ接着された状態で、例えばトリミング装置により、フランジ部103の外周に沿って予め切断されている。つまり、樹脂フィルム4は輻射加熱装置6に加熱される前に切断されるのであり、樹脂フィルム4に輻射加熱装置6の加熱による微小な変形や、物性の変化が発生していない状態で、樹脂フィルム4を切断することができる。よって、トリミング精度の向上を図ることができる。
 また、トリミング精度の向上を図ることができれば、トリミングを行う際に、樹脂フィルム4のみを精度高く切断することができるようになる。具体的に説明すると、従来は、樹脂フィルム4のみを精度高く切断することが困難であったため、図8の切断線15に示すように、フランジ部103の先端部においてトリミングを行っていた。しかし、本実施形態に係る熱成形装置1は、トリミング精度の向上を図ることができるため、図3の切断線14に示すように、樹脂フィルム4のフランジ部103に接着されている部分と、その周囲の樹脂フィルム4の接着されていない部分との境界部分を狙って、樹脂フィルム4のみを精度高く切断することができるようになる。よって、繊維成形体(パルプモールド10)を切り離した後の樹脂フィルムにパルプモールドの一部が残留することもない。よって、繊維成形体(パルプモールド10)を切り離した後の樹脂フィルムの材料としての再生が容易であるし、材料としての再生を断念した場合であっても廃棄する際の環境負荷の低減を図ることができる。
 なお、樹脂フィルム4のフランジ部103のみへの接着および切断は、事前工程として熱成形装置1とは別の装置によって行うものとしても良いし、熱成形装置1がトムソン刃等の切断装置を備えるものとして、熱成形装置1で、樹脂フィルム4を、フランジ部103に対してのみ接着し、切断装置によって、フランジ部103の外周に沿って切断するものとしても良い。
 以上のような樹脂フィルム4は、熱成形装置1内において、輻射加熱装置6によって約160℃まで加熱された後、図2に示すように、パルプモールド10の接着面104に沿って賦形されるとともに、接着面104に接着される。パルプモールド10は、樹脂フィルム4が接着されることで、耐水性や耐油性、耐熱性を具備する。
 下型5は、型枠51と、台座53と、基台52と、からなる。型枠51は、ステンレス等の金属製の部材からなっており、架台512と、架台512に立設される周壁511とを有している。架台512は、上下方向VTに貫通する通気口512aを有しており、この通気口512aには、真空ポンプ7(減圧手段の一例)が接続されている。真空ポンプ7は、通気口512aを介して、型枠51内を真空吸引可能である。
 架台512の上方には、周壁511に囲まれて、基台52を搭載するための台座53が固定されている。台座53は、台座53を上下方向VTに貫通する複数の連通路531を有している。台座53の上下方向VTの上側の端面には、周壁511に囲まれて、パルプモールド10を載置するための基台52が搭載されている。
 基台52は、輻射加熱装置6側(上下方向VTの上側)の端面に、パルプモールド10の形状に合わせた載置面521が穿設されている。さらに、基台52は、載置面521に開口する複数の真空通気口522を備える。真空ポンプ7によって型枠51内が真空吸引されると、連通路531および真空通気口522を介して、載置面521側を真空吸引することが出来る。パルプモールド10は通気性を有するため、載置面521にパルプモールド10が載置されていたとしても、載置面521側の真空吸引が妨げられることがない。よって、図1に示す状態で、載置面521側を真空吸引することで、パルプモールド10と樹脂フィルム4との間が真空吸引され、樹脂フィルム4を、パルプモールド10の接着面104に隙間なく接着することが可能となる。
 下型5の通気口512aには、並列する第1配管11Aと第2配管11Bとにより、真空ポンプ7が接続されている。
 第1配管11A上には、第1開閉弁8が配設されている。第1開閉弁8を開弁すれば第1配管11Aは開放され、真空ポンプ7は、第1配管11Aによって、真空吸引を行うことができる。一方、第1開閉弁8を閉弁すれば第1配管11Aは遮断される。
 第2配管11B上には、真空ポンプ7側から順に、第2開閉弁9、流量調整弁13が配設されている。第2開閉弁9を開弁すれば第2配管11Bは開放され、真空ポンプ7は、第2配管11Bによって、真空吸引を行うことができる。一方で、第2開閉弁9を閉弁すれば第2配管11Bは遮断される。また、流量調整弁13は、弁開度が調整可能であり、弁開度を調整することで、第2配管11Bにより、真空吸引を行う際の排気速度を調整することが可能である。
 真空ポンプ7は、熱成形装置1の動作中は常に動作しており、第1開閉弁8を開弁し、第2開閉弁9を閉弁すれば、第1配管11Aによって、真空ポンプ7の能力に応じた最大排気速度S11(図5(b)参照(第2排気速度の一例))で真空吸引を行うことができる。一方で、第1開閉弁8を閉弁し、第2開閉弁9を開弁すれば、第2配管11Bによって、流量調整弁13の弁開度に応じた排気速度(例えば、後述の所定の排気速度S12(図5(b)参照(第1排気速度の一例)))で真空吸引を行うことができる。つまり、第1配管11Aと、第2配管11Bと、第1開閉弁8と、第2開閉弁9と、流量調整弁13は真空ポンプ7の排気速度を調整する排気速度調整部として機能する。
 輻射加熱装置6は、下型5に、樹脂フィルム4を挟んで対向して位置している。輻射加熱装置6は、下型5側の端面が、放熱部6aであり、この放熱部6aは、図4に示すように、複数のヒータ要素61により形成されている。具体的には、輻射加熱装置6は、X方向に6個のヒータ要素61(平面視八角形)が隣接して配置されたヒータ要素61の列が、Y方向に5列隣接して並ぶ態様で、合計30個のヒータ要素61を有する。これら30個のヒータ要素61によって、放熱部6aが構成されている。なお、なお、図4中のX方向とは、図1および図2における水平方向HZと平行な方向である。また、ヒータ要素61の個数は、上記に限定されるものでなく、あくまで一例である。
 また、輻射加熱装置6には、図4に示すように、輻射加熱装置6の中央領域に位置する4つのヒータ要素61に囲まれるようにして、温度センサ62が設けられている。温度センサ62は、例えば放射温度計である。この温度センサ62は、樹脂フィルム4の輻射加熱装置6に対向する面の温度を計測することができる。これにより、熱成形装置1は、加熱工程および接着工程における樹脂フィルム4の温度を検知することができる。
 輻射加熱装置6は、昇降手段12(例えば、エアシリンダ等)により上下方向VTに沿って上下動可能となっており、第1加熱位置と第2加熱位置との間を移動可能となっている。図1に示す輻射加熱装置6の位置が、加熱工程において樹脂フィルム4の輻射加熱を行うための第1加熱位置である。図2に示す輻射加熱装置6の位置が、接着工程において樹脂フィルム4の輻射加熱を行うための第2加熱位置である。そして、第2加熱位置における輻射加熱装置6の基台52に対する距離D12は、距離第1加熱位置における輻射加熱装置6の基台52に対するD11よりも小さく設定されている。このように、輻射加熱装置6が第1加熱位置と第2加熱位置との間を移動可能であることで、輻射加熱装置6の樹脂フィルム4に対する距離が可変となっている。なお、第1加熱位置における輻射加熱装置6の基台52に対する距離D11と、第2加熱位置における輻射加熱装置6の基台52に対する距離D12は、輻射加熱装置6の出力や、樹脂フィルム4の素材、加熱工程や接着工程にかける目標時間等に基づき定められる。
<加熱工程および接着工程について>
 以上のような構成を有する熱成形装置1を用いて行う加熱工程と接着工程について、図5を用いて説明する。図5(a)は、接着工程および加熱工程における輻射加熱装置6についての出力のタイムチャートである。図5(b)は、接着工程および加熱工程における真空ポンプ7の排気速度についてのタイムチャートである。図5(c)は、接着工程および加熱工程における輻射加熱装置6の位置(輻射加熱装置6の基台52に対する距離)についてのタイムチャートである。図5(d)は、接着工程および加熱工程における樹脂フィルム4の温度変化を様子を表すグラフである。
 加熱工程および接着工程を始める前に、樹脂フィルム4を、パルプモールド10のフランジ部103に対してのみ樹脂フィルム4を接着した状態とし、当該樹脂フィルム4をパルプモールド10の平面視における外形に沿って切断する。そして、図1に示すように、パルプモールド10を基台52の載置面521に載置しておく。なお、パルプモールド10を載置面521に載置する作業は、作業者が手作業によって行うこととしても良いし、自動搬送装置等により行うこととしても良い。
 また、加熱工程および接着工程を始める前に、第1開閉弁8および第2開閉弁9を閉弁し、第1配管11Aおよび第2配管11Bを遮断した状態で、真空ポンプ7を動作させておく。さらに、第2開閉弁9を開弁したときに所定の排気速度S12(図5(b)参照)が得られるように、流量調整弁13の弁開度を調整しておく。なお、所定の排気速度S12の詳細については後述する。
 まず、加熱工程について説明する。図5(a)に示すように、時点t1から輻射加熱装置6の出力を開始し、加熱工程が開始される。輻射加熱装置6の出力は、加熱工程、接着工程を通して、温度C11で一定である。なお、温度C11の値は、輻射加熱装置6の性能や、加熱対象の樹脂フィルム4の素材等により任意に設定されるものであって、特に限定されないが、本実施形態においては、輻射加熱装置6の最大出力である600℃としている。また、輻射加熱装置6の基台52に対する距離は、図5(c)に示すように、距離D11となっている。これは、輻射加熱装置6が第1加熱位置に位置した状態であることを意味する。
 真空ポンプ7による真空吸引は、図5(b)に示すように、時点t1から、所定の排気速度S12により真空吸引を開始する。この真空吸引は、第1開閉弁8は閉弁した状態のまま、第2開閉弁9を開弁し、第2配管11Bを開放することで行われる。
 樹脂フィルム4をパルプモールド10のフランジ部103に接着した状態であるため、パルプモールド10と樹脂フィルム4の間に空気が閉じ込められている。したがって、そのまま輻射加熱装置6により加熱を行うと、パルプモールド10と樹脂フィルム4の間に閉じ込められた空気が膨張し、樹脂フィルム4が輻射加熱装置6側(図1中の上方)に膨れてしまう。すると、輻射加熱装置6と樹脂フィルム4との距離が狭まり、樹脂フィルム4が過剰に加熱され、穴が開いてしまうといった不良が発生するおそれがある。そこで、上記の通り、所定の排気速度S12により真空吸引を行うことで、樹脂フィルム4が輻射加熱装置6側に膨れてしまうことを防止し、樹脂フィルム4が過剰に加熱されることを防止している。
 所定の排気速度S12は、輻射加熱装置6の出力や、パルプモールド10の容積等に左右されるものであるが、樹脂フィルム4が輻射加熱装置6側に膨れてしまわない速度を、実験により予め求めておく。そして、実験により求められた所定の排気速度S12に応じて、流量調整弁13の弁開度が調整されるのである。なお、所定の排気速度S12で真空吸引を行うことにより、可能な限り樹脂フィルム4が水平に保たれていることが望ましい。これは、樹脂フィルム4全体を均一に加熱するためである。しかし、必ずしも水平に保たれる必要はなく、樹脂フィルム4が輻射加熱装置6側に膨れてしまわなければ良い。例えば、所定の排気速度S12で真空吸引が行われることによって、樹脂フィルム4が、賦形が行われない程度に、パルプモールド10側に凹状に変形していても良い。また、所定の排気速度S12による真空吸引は、加熱工程が開始されると同時に時点t1から行うこととしているが、必ずしも同時でなくとも良い。例えば、加熱を開始してからパルプモールド10と樹脂フィルム4の間に閉じ込められた空気が膨張し始めるタイミングを予め実験により確認しておき、そのタイミングに合わせて所定の排気速度S12による真空吸引を行うこととしても良い。
 図5の説明に戻ると、樹脂フィルム4の温度は、図5(d)に示すように、輻射加熱装置6による加熱が開始される時点t1から、時間経過に比例して上昇していく。そして、樹脂フィルム4の温度は、時点t2で成形可能な温度C21(160℃)に達し、加熱工程が完了する。加熱工程に要する時間(時点t1から時点t2までの時間)は、輻射加熱装置6の出力、輻射加熱装置6の基台52に対する距離、樹脂フィルム4の素材等に左右されるが、本実施形態においては、約8秒である。
 次に、接着工程について説明する。加熱工程が完了すると、図5(b)に示すように、真空ポンプ7による真空吸引が、最大排気速度S11で行われる。この真空吸引は、第2開閉弁9は閉弁することで第2配管11Bを遮断し、同時に第1開閉弁8を開弁し、第1配管11Aを開放することで行われる。最大排気速度S11による真空吸引を行うことで、樹脂フィルム4は、図2に示すように、パルプモールド10の形状に沿って賦形される。
 また、時点t2において、輻射加熱装置6の基台52に対する距離は、図5(c)に示すように、距離D12へ移行される。これは、輻射加熱装置6が第2加熱位置に位置した状態であることを意味する。この際、輻射加熱装置6の出力は図5(a)に示すように、一定状態である。
 樹脂フィルム4の温度は、賦形され、パルプモールド10に接触することで、パルプモールド10によって冷やされるため、図5(d)に示すように、温度C22まで低下する。しかし、輻射加熱装置6が第2加熱位置において、樹脂フィルム4を加熱し続けているため、時点t3で樹脂フィルム4温度が温度C21に回復する。
 第2加熱位置は、第1加熱位置よりも、輻射加熱装置6と樹脂フィルム4との距離が近いため、輻射加熱装置6が樹脂フィルム4に対して与える熱量を増加させることができる。よって、パルプモールド10に接触することで冷めてしまった樹脂フィルム4を、再び温度C21に達するまで輻射加熱するために必要な時間(時点t2から時点t3までの時間)が、従来必要であった時間(図7(d)における時点t2から時点t5までの時間)よりも短い。具体的には、従来必要であった時間に比べ20~60%程度短くなっている。
 また、樹脂フィルム4をパルプモールド10に接着する際に、輻射加熱装置6が樹脂フィルム4に対して与える熱量を増加させることができる。よって、樹脂フィルム4の、パルプモールド10に接触することによる温度低下量(温度C21から温度C22への低下量)を抑えることができる。具体的には、従来の温度低下量(図7(d)における温度C21から温度C22への低下量)に比べ、低下量が20~60%程度となった。これにより、樹脂フィルム4のパルプモールド10に接触した箇所と繊維成形体に接触していない箇所との間に生じる温度差を緩和することができ、パルプモールド10に対する樹脂フィルム4の接着を安定して行うことが可能となる。
 図5の説明に戻ると、接着工程が開始された後、時点t4まで、輻射加熱装置6による加熱および真空ポンプ7による真空吸引が継続される。これは、樹脂フィルム4を、パルプモールド10に対して、より確実に密着および接着するためである。
 時点t4で、輻射加熱装置6は、図5(a)に示すように、出力を停止する。同時に、輻射加熱装置6は、図5(c)に示すように、第1加熱位置に戻る。なお、必ずしも第1加熱位置に戻る必要はなく、第1加熱位置よりも基台52から離れる位置まで移動することとしても良い。さらに、時点t4で、第1開閉弁8を閉弁し、第1配管11Aを遮断することで、図5(b)に示すように、真空吸引が停止される。以上で、接着工程が完了する。接着工程に要する時間(時点t2から時点t4までの時間)は、輻射加熱装置6の出力、輻射加熱装置6の基台52に対する距離、樹脂フィルム4の厚みや素材、パルプモールド10の密度(透気度)等に左右されるが、本実施形態においては、約6~10秒である。
 上述した通り、パルプモールド10に接触することで冷めてしまった樹脂フィルム4を、再び温度C21に達するまで輻射加熱するために必要な時間(時点t2から時点t3までの時間)が、従来必要であった時間(図7(d)における時点t2から時点t5までの時間)よりも短いため、接着工程に要する時間(時点t2から時点t4)が、従来の接着工程に要する時間(図7における時点t2から時点t6までの時間)よりも20~60%程度短くなっており、製造効率の向上が図られている。
 接着工程が完了した後は、樹脂フィルム4が接着されたパルプモールド10を、基台52から取り除く。この、樹脂フィルム4が接着されたパルプモールド10を取り除く作業は、作業者が手作業によって行うこととしても良いし、自動搬送装置等により行うこととしても良い。
 以上説明した加熱工程および接着工程は、熱成形装置1に接続される制御装置(不図示)に記憶される制御プログラムにより、自動的に行われるものである。
<第2の実施形態> 
 第2の実施形態に係る熱成形装置について、第1の実施形態に係る熱成形装置1と異なる点のみ説明する。
 第2の実施形態に係る熱成形装置は、図1に示す第1の実施形態に係る熱成形装置1と同様の構成を有するが、輻射加熱装置6の第2加熱位置が、図1に示す第1の実施形態に係る熱成形装置1の第2加熱位置と異なっており、第2の実施形態に係る熱成形装置の第2加熱位置は、第1加熱位置よりも、輻射加熱装置6と基台52との距離が遠く設定されている。つまり、輻射加熱装置6は、加熱工程から接着工程に移る段階で樹脂フィルム4から遠ざかる。
 接着工程において輻射加熱装置6が樹脂フィルム4を輻射加熱する際、パルプモールド10が、その材質によっては過剰に熱せられて焦げるおそれがある。そこで、接着工程において、輻射加熱装置6を樹脂フィルム4から遠ざけることで、輻射加熱装置6がパルプモールド10に対して与える熱量を低下させる。これにより、パルプモールド10が過剰に熱せられることを防ぐことが可能である。
 以上説明したように、本実施形態に係る熱成形装置1によれば、(1)輻射加熱装置6と、輻射加熱装置6に樹脂フィルム4を挟んで対向する基台52と、を備え、輻射加熱装置6により樹脂フィルム4を成形可能な所定の温度C21まで輻射加熱するための加熱工程と、輻射加熱された樹脂フィルム4を基台52に載置された繊維成形体(パルプモールド10)に接着する接着工程と、を行うための熱成形装置1において、樹脂フィルム4は、加熱工程および接着工程を行う前に、繊維成形体(パルプモールド10)の、樹脂フィルム4を接着する接着面104の外周縁(フランジ部103)に接着された状態で、外周縁(フランジ部103)の外形に沿った形状に切断されていること、を特徴とする。
 (1)に記載の熱成形装置1によれば、樹脂フィルム4は、加熱工程および接着工程を行う前に、繊維成形体(パルプモールド10)の、樹脂フィルム4を接着する接着面104の外周縁(フランジ部103)に接着された状態で、外周縁(フランジ部103)の外形に沿った形状に切断されていることを特徴とするため、樹脂フィルム4は、輻射加熱装置6に加熱される前に切断されるものである。つまり、樹脂フィルム4に輻射加熱装置6の加熱による微小な変形や、物性の変化が発生していない状態で、樹脂フィルム4を切断することができる。よって、トリミング精度の向上を図ることができる。
 また、トリミング精度の向上を図ることができれば、トリミングを行う際に、樹脂フィルム4のみを精度高く切断することができるようになり、繊維成形体(パルプモールド10)を切り離した後の樹脂フィルムにパルプモールドの一部が残留することもない。よって、繊維成形体(パルプモールド10)を切り離した後の樹脂フィルムの材料としての再生が容易であるし、材料としての再生を断念した場合であっても廃棄する際の環境負荷の低減を図ることができる。
 (2)(1)に記載の熱成形装置1において、繊維成形体(パルプモールド10)と樹脂フィルム4との間を真空吸引するための減圧手段(真空ポンプ7)と、減圧手段(真空ポンプ7)の真空吸引を行うための排気速度を調整する排気速度調整部(第1配管11A,第2配管11B,第1開閉弁8,第2開閉弁9,流量調整弁13)と、を備えること、を特徴とする。
 (3)(2)に記載の熱成形装置1において、排気速度調整部(第1配管11A,第2配管11B,第1開閉弁8,第2開閉弁9,流量調整弁13)は、加熱工程において真空吸引を行うための第1排気速度(所定の排気速度S12)と、接着工程において真空吸引を行うための第2排気速度(最大排気速度S11)と、の間で排気速度の調整を行うこと、第2排気速度(最大排気速度S11)は、樹脂フィルム4を繊維成形体(パルプモールド10)に密着させるための排気速度であること、第1排気速度(所定の排気速度S12)は、第2排気速度(最大排気速度S11)よりも排気速度が遅いこと、を特徴とする。
 (4)(3)に記載の熱成形装置1において、輻射加熱装置6の出力を、所定の時間内(時点t1から時点t2)に樹脂フィルム4が所定の温度C21に達するために必要な加熱温度(温度C11)に制御するとともに、減圧手段(真空ポンプ7)により、第1排気速度(所定の排気速度S12)で真空吸引を行うことで加熱工程を行い、加熱工程の完了後に、減圧手段(真空ポンプ7)により、第2排気速度(最大排気速度S11)で真空吸引を行うことで接着工程を行う制御プログラムを備えること、を特徴とする。
 樹脂フィルム4は、加熱工程および接着工程を行う前に、繊維成形体(パルプモールド10)の、樹脂フィルム4を接着する接着面104の外周縁(フランジ部103)に接着された状態であるため、繊維成形体(パルプモールド10)と樹脂フィルム4の間には空気が閉じ込められている。したがって、そのまま加熱工程を行うと、輻射加熱装置6の加熱により、繊維成形体(パルプモールド10)と樹脂フィルム4の間に閉じ込められた空気が膨張し、樹脂フィルム4が輻射加熱装置6側に膨れてしまう。すると、輻射加熱装置6と樹脂フィルム4との距離が狭まり、樹脂フィルム4が過剰に加熱され、穴が開いてしまうといった不良が発生するおそれがある。
 (2)または(3)または(4)に記載の熱成形装置1によれば、繊維成形体(パルプモールド10)と樹脂フィルム4との間を真空吸引し、樹脂フィルム4を繊維成形体(パルプモールド10)に密着させるための減圧手段(真空ポンプ7)と、減圧手段(真空ポンプ7)の真空吸引を行うための排気速度を調整する排気速度調整部(第1配管11A,第2配管11B,第1開閉弁8,第2開閉弁9,流量調整弁13)と、を備えるため、例えば、加熱工程において、接着工程における第2排気速度(最大排気速度S11)よりも排気速度の遅い第1排気速度(所定の排気速度S12)で真空吸引を行うことで、樹脂フィルム4が輻射加熱装置6側に膨れてしまうことを防止することができる。これにより、樹脂フィルム4が過剰に加熱されることを防止することができる。
 なお、本実施形態は単なる例示にすぎず、本発明を何ら限定するものではない。したがって本発明は当然に、その要旨を逸脱しない範囲内で様々な改良、変形が可能である。例えば、熱成形装置1は、基台52に1つのパルプモールド10を載置し、樹脂フィルム4の接着を行うものとしているが、複数個のパルプモールドに対して同時に樹脂フィルムの接着を行うものとしても良い。さらに、熱成形装置1は、下型5の上方に輻射加熱装置6が位置するものとしているが、上下位置は逆転されたものであっても良い。また、樹脂フィルム4は接着層を備えるものとして説明しているが、接着層を備えない樹脂フィルムを用いても良い。
 1・・・・熱成形装置
 4・・・・樹脂フィルム
 6・・・・輻射加熱装置
 10・・・・パルプモールド(繊維成形体の一例)
 104・・接着面
 103・・フランジ部(外周縁の一例)
 

Claims (2)


  1.  輻射加熱装置と、前記輻射加熱装置に樹脂フィルムを挟んで対向する基台と、を備え、前記輻射加熱装置により前記樹脂フィルムを成形可能な所定の温度まで輻射加熱するための加熱工程と、輻射加熱された前記樹脂フィルムを前記基台に載置された繊維成形体に接着する接着工程と、を行うための熱成形装置において、
     前記樹脂フィルムは、前記加熱工程および前記接着工程を行う前に、前記繊維成形体の、前記樹脂フィルムを接着する接着面の外周縁に接着された状態で、外周縁の外形に沿った形状に切断されていること、
     前記繊維成形体と前記樹脂フィルムとの間を真空吸引するための減圧手段と、
     前記減圧手段の前記真空吸引を行うための排気速度を調整する排気速度調整部と、
     を備えること、
     前記排気速度調整部は、前記加熱工程において前記真空吸引を行うための第1排気速度と、前記接着工程において前記真空吸引を行うための第2排気速度と、の間で排気速度の調整を行うこと、
     前記第2排気速度は、樹脂フィルムを繊維成形体に密着させるための排気速度であること、
     前記第1排気速度は、前記第2排気速度よりも排気速度が遅いこと、
     を特徴とする熱成形装置。

  2.  請求項1に記載の熱成形装置において、
     前記輻射加熱装置の出力を、所定の時間内に前記樹脂フィルムが前記所定の温度に達するために必要な加熱温度に制御するとともに、前記減圧手段により、前記第1排気速度で前記真空吸引を行うことで前記加熱工程を行い、
     前記加熱工程の完了後に、前記減圧手段により、前記第2排気速度で前記真空吸引を行うことで前記接着工程を行う制御プログラムを備えること、
     を特徴とする熱成形装置。 
PCT/JP2023/015399 2022-05-16 2023-04-18 熱成形装置 WO2023223740A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380009687.2A CN117412850A (zh) 2022-05-16 2023-04-18 热成型装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-080213 2022-05-16
JP2022080213A JP7249070B1 (ja) 2022-05-16 2022-05-16 熱成形装置

Publications (1)

Publication Number Publication Date
WO2023223740A1 true WO2023223740A1 (ja) 2023-11-23

Family

ID=85772208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015399 WO2023223740A1 (ja) 2022-05-16 2023-04-18 熱成形装置

Country Status (3)

Country Link
JP (1) JP7249070B1 (ja)
CN (1) CN117412850A (ja)
WO (1) WO2023223740A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529472A (en) * 1994-04-22 1996-06-25 Jenkins; Henry H. Vacuum molding apparatus for forming a sheet of plastic material into a predetermined shape
US20110214803A1 (en) * 2010-03-04 2011-09-08 Faurecia Interior Systems, Inc. Vacuum thermoforming of thermoplastic sheets with decorative inserts
CN206383489U (zh) * 2016-12-01 2017-08-08 上海卡豹汽车科技有限公司 一种自动化吸塑板材一体成型设备
US20190193323A1 (en) * 2010-06-15 2019-06-27 Pakit International Trading Company Inc. A method for applying a film on moulded fibrous product and a product produced by said method
WO2020158664A1 (ja) * 2019-01-28 2020-08-06 本田技研工業株式会社 貼付装置及び貼付方法
JP6897923B1 (ja) * 2021-01-27 2021-07-07 株式会社浅野研究所 熱成形装置および熱成形方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529472A (en) * 1994-04-22 1996-06-25 Jenkins; Henry H. Vacuum molding apparatus for forming a sheet of plastic material into a predetermined shape
US20110214803A1 (en) * 2010-03-04 2011-09-08 Faurecia Interior Systems, Inc. Vacuum thermoforming of thermoplastic sheets with decorative inserts
US20190193323A1 (en) * 2010-06-15 2019-06-27 Pakit International Trading Company Inc. A method for applying a film on moulded fibrous product and a product produced by said method
CN206383489U (zh) * 2016-12-01 2017-08-08 上海卡豹汽车科技有限公司 一种自动化吸塑板材一体成型设备
WO2020158664A1 (ja) * 2019-01-28 2020-08-06 本田技研工業株式会社 貼付装置及び貼付方法
JP6897923B1 (ja) * 2021-01-27 2021-07-07 株式会社浅野研究所 熱成形装置および熱成形方法

Also Published As

Publication number Publication date
JP2023168858A (ja) 2023-11-29
CN117412850A (zh) 2024-01-16
JP7249070B1 (ja) 2023-03-30

Similar Documents

Publication Publication Date Title
RU2701824C2 (ru) Способ и устройство для глубокой вытяжки лотка из листового материала
RU2466915C2 (ru) Способ и устройство для вакуумной упаковки в пленку
RU2471628C2 (ru) Способ образования упаковки и упаковка
CN108349150B (zh) 形成的具有平滑边缘的热塑性制品
AU2002249196B2 (en) Methods and apparatus for manufacturing a diffusion-tight plastic container
WO2023223740A1 (ja) 熱成形装置
AU2002249196A1 (en) Methods and apparatus for manufacturing a diffusion-tight plastic container
JP6966134B1 (ja) 熱成形装置
WO2023223575A1 (ja) 熱成形装置
TW202411052A (zh) 熱成型裝置
CN107214931B (zh) 容器口制作方法
JP2006503729A (ja) ポリウレタン製品の製造方法および関連装置
JP4678804B2 (ja) 紙製包装容器並びにその成形方法及び装置
JP4916149B2 (ja) 複合成形体の製造方法
JP2007061859A (ja) チューブ容器の頭部閉鎖膜の製造方法及び頭部閉鎖膜
KR100948321B1 (ko) 펄프몰드의 필름지 접착장치
PT1112172E (pt) Metodo para fabricar recipientes compositos sob pressao e produtos fabricados atraves desse metodo
KR20200061636A (ko) 프리폼 성형 장치 및 방법
JPH046890Y2 (ja)
KR100567415B1 (ko) 고강도 스티로폼재 완충재 및 그 제조방법
JP2002001839A (ja) 紙製密封容器の製造方法
JPS5950B2 (ja) 深絞り成形方法
RU97115561A (ru) Устранение морщин поверхности в формованных изделиях
JPH01271204A (ja) 木質系成形体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202380009687.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807353

Country of ref document: EP

Kind code of ref document: A1