WO2023223698A1 - 絶縁抵抗検出装置および絶縁抵抗検出方法 - Google Patents
絶縁抵抗検出装置および絶縁抵抗検出方法 Download PDFInfo
- Publication number
- WO2023223698A1 WO2023223698A1 PCT/JP2023/013815 JP2023013815W WO2023223698A1 WO 2023223698 A1 WO2023223698 A1 WO 2023223698A1 JP 2023013815 W JP2023013815 W JP 2023013815W WO 2023223698 A1 WO2023223698 A1 WO 2023223698A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- node
- insulation resistance
- measurement unit
- measured
- Prior art date
Links
- 238000009413 insulation Methods 0.000 title claims abstract description 169
- 238000001514 detection method Methods 0.000 title claims abstract description 122
- 238000005259 measurement Methods 0.000 claims abstract description 122
- 238000003745 diagnosis Methods 0.000 claims description 7
- 230000007423 decrease Effects 0.000 description 15
- 230000004048 modification Effects 0.000 description 14
- 238000012986 modification Methods 0.000 description 14
- 230000002159 abnormal effect Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 241000156302 Porcine hemagglutinating encephalomyelitis virus Species 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
- G01R27/16—Measuring impedance of element or network through which a current is passing from another source, e.g. cable, power line
- G01R27/18—Measuring resistance to earth, i.e. line to ground
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/50—Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
- G01R31/52—Testing for short-circuits, leakage current or ground faults
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present disclosure relates to an insulation resistance detection device and an insulation resistance detection method for detecting insulation resistance in a path through which current from a battery flows.
- Patent Document 1 describes a device that can detect insulation resistance in a path through which current from a battery flows.
- the insulation resistance is detected by measuring the voltage at one node, and the voltage measured at the node becomes low due to a drop in battery voltage or during the measurement control process. In this case, the measurement error of the voltage at the node increases, and the accuracy of detecting the insulation resistance decreases.
- the present disclosure provides an insulation resistance detection device and the like that can suppress a decrease in insulation resistance detection accuracy even if the voltage at a node where the voltage is measured decreases.
- An insulation resistance detection device includes a plurality of voltage dividing resistors connected between a positive terminal and a negative terminal of a battery, and detects insulation resistance in a path through which current from the battery flows.
- a voltage measuring section that measures a voltage at a first node among a plurality of nodes between a plurality of voltage dividing resistors included in an insulation detection circuit for the purpose of the present invention; a determination unit that determines whether the voltage at the first node is equal to or less than a predetermined voltage; and a determination unit that determines whether the voltage at the first node measured by the voltage measurement unit is equal to or less than a predetermined voltage, the voltage measurement unit measures and a switching unit that switches a switch connected to a second node of the plurality of nodes so that the voltage exceeds the predetermined voltage.
- An insulation resistance detection method detects insulation resistance in a path through which current from the battery flows, using a plurality of voltage dividing resistors connected between a positive terminal and a negative terminal of a battery.
- a voltage measurement step of measuring a voltage at a first node among a plurality of nodes between a plurality of voltage dividing resistors included in an insulation detection circuit for the purpose of the present invention and a voltage measurement step in which the voltage at the first node measured in the voltage measurement step is determined to be a determination step of determining whether the voltage at the first node measured in the voltage measurement step is equal to or less than a predetermined voltage; and a switching step of switching a switch connected to a second node of the plurality of nodes so that the voltage exceeds the predetermined voltage.
- the insulation resistance detection device and the like even if the voltage at the node where the voltage is measured decreases, a decrease in insulation resistance detection accuracy can be suppressed.
- FIG. 1 is a configuration diagram showing an example of an insulation resistance detection device according to Embodiment 1.
- FIG. 3 is a diagram for explaining the effects of the insulation resistance detection device according to the first embodiment.
- FIG. 3 is a configuration diagram showing an example of an insulation resistance detection device according to a modification of the first embodiment.
- FIG. 3 is a configuration diagram showing an example of an insulation resistance detection device according to a second embodiment.
- 7 is a flowchart illustrating an example of an insulation resistance detection method according to another embodiment.
- Embodiment 1 Insulation resistance detection device 1 in Embodiment 1 will be described below with reference to FIG. 1.
- FIG. 1 is a configuration diagram showing an example of an insulation resistance detection device 1 according to the first embodiment.
- FIG. 1 shows a battery Bat, insulation resistances Riso1 and Riso2 in a path through which a current from the battery Bat flows, and an insulation detection circuit 100.
- the battery Bat or the insulation detection circuit 100 may be a component of the insulation resistance detection device 1.
- the insulation resistance detection device 1 is mounted, for example, on a vehicle such as an electric vehicle that uses electric power for propulsion.
- a vehicle such as an electric vehicle is equipped with a high-voltage battery Bat, and power is supplied from the battery Bat to a drive load such as a motor to propel the vehicle such as an electric vehicle.
- the battery Bat is a battery for HV, PHEV, EV, or the like.
- Insulation resistance refers to the insulation between the path through which current flows and the ground, and if the insulation resistance becomes low, electrical leakage may occur, which may result in electric shock or fire. Therefore, by detecting the insulation resistance, a dangerous state of the vehicle can be detected in advance.
- FIG. 1 shows an insulation resistance Riso1 between a path connected to the positive terminal t1 of the battery Bat and the ground GND, and an insulation resistance Riso2 between the path connected to the negative terminal t2 of the battery Bat and the ground GND. It is shown.
- the ground GND is, for example, the potential of the chassis of the vehicle.
- the insulation detection circuit 100 is a circuit for detecting the insulation resistances Riso1 and Riso2, and includes a plurality of voltage dividing resistors connected between the positive terminal t1 and the negative terminal t2 of the battery Bat.
- resistors R1, R2, R3, R4, R5, and R6 are shown as the plurality of voltage dividing resistors. Specifically, resistors R1, R2, and R3 are connected in series between the positive terminal t1 and the ground GND, and resistors R4, R5, and R6 are connected in series between the ground GND and the negative terminal t2.
- the positive terminal t1 is connected to the ground GND through at least one of the plurality of voltage dividing resistors
- the negative terminal t2 is connected to the ground GND through at least one of the plurality of voltage dividing resistors. It is connected to ground GND through the ground.
- at least one resistor is resistor R1, R2, and R3, and at least one other resistor is resistor R4, R5, and R6.
- nodes N1, N2, N3, N4, and N5 are shown as a plurality of nodes between the plurality of voltage dividing resistors.
- Node N1 is a node between resistors R1 and R2
- node N2 is a node between resistors R2 and R3
- node N3 is a node between resistors R3 and R4
- node N4 is a node between resistors R3 and R4.
- node N5 is a node between resistor R5 and resistor R6.
- the insulation detection circuit 100 may include one or more switches connected to one or more of the plurality of voltage dividing resistors. By controlling one or more switches included in the insulation detection circuit 100, the voltage at any one of the plurality of nodes can be changed. Then, the insulation resistance detection device 1 can accurately calculate the values of the insulation resistances Riso1 and Riso2 from the voltages before and after the change.
- the insulation detection circuit 100 does not need to include one or more switches as shown in FIG. It is possible to determine whether the resistor Riso1 or Riso2 is abnormal (that is, whether a current leakage is occurring). This is because if the insulation resistance Riso1 or Riso2 is abnormal and its value is low, the voltage at any one of the nodes will also be an abnormal value.
- the insulation resistance detection device 1 is a device for detecting insulation resistances Riso1 and Riso2, and includes a voltage measurement section 10 and a control section 20.
- the insulation resistance detection device 1 is realized by, for example, a microcontroller unit (MCU).
- MCU microcontroller unit
- the insulation resistance detection device 1 uses the potential of the ground GND (node N3) as the reference potential.
- the voltage measurement unit 10 is capable of measuring voltages at a plurality of nodes between a plurality of voltage dividing resistors included in the insulation detection circuit 100.
- the voltage measurement unit 10 includes an A/D converter and measures voltages at a plurality of nodes using the A/D converter.
- the voltage measurement unit 10 includes A/D converters 11 and 12, and the A/D converter 11 can measure the voltage at the node N1, and the A/D converter 12 can measure the voltage at the node N2. It becomes.
- Node N1 is an example of a second node
- node N2 is an example of a first node.
- the voltage measurement unit 10 measures the voltages at the nodes N1 and N2 with reference to the potential of the ground GND.
- the control unit 20 determines whether the voltage at the node N2 measured by the voltage measurement unit 10 is below a predetermined voltage.
- the control unit 20 is an example of a determination unit.
- the predetermined voltage is not particularly limited, but may be, for example, 1/2 or 1/5 of the absolute maximum rating of the voltage measuring section 10 (A/D converters 11 and 12).
- control unit 20 controls the voltage measured by the voltage measurement unit 10 to exceed the predetermined voltage when it is determined that the voltage at the node N2 measured by the voltage measurement unit 10 is equal to or lower than the predetermined voltage.
- Switch SW1 connected to node N1 among the plurality of nodes is switched.
- the control unit 20 is an example of a switching unit.
- the node N1 is a node to which a higher voltage is applied than the node N2. Specifically, a voltage corresponding to two resistors R2 and R3 is applied to node N1, and a voltage corresponding to one resistor R3 is applied to node N2, so that node N1 has a higher voltage than node N2. High voltage is applied.
- the switch SW1 is connected between the node N1 and the voltage measurement unit 10, and the control unit 20 controls the voltage measurement unit 10 so that the voltage at the node N2 measured by the voltage measurement unit 10 is equal to or lower than a predetermined voltage. If it is determined that this is the case, the switch SW1 is switched to connect the node N1 and the voltage measuring section 10. Specifically, in this case, the control unit 20 switches the switch SW1 from a non-conducting state to a conducting state. When the switch SW1 is turned on, the A/D converter 11 of the voltage measuring section 10 can measure the voltage at the node N1.
- control unit 20 detects the insulation resistances Riso1 and Riso2 based on the voltage measured by the voltage measurement unit 10. For example, the control unit 20 can determine that the insulation resistance Riso1 or Riso2 is abnormal when the voltage measured by the voltage measurement unit 10 is an abnormal value. For example, when controlling the switch SW1 to be non-conductive, the control unit 20 detects the insulation resistances Riso1 and Riso2 using the voltage at the node N2 measured by the A/D converter 12, and makes the switch SW1 conductive. When the voltage at the node N1 is controlled by the A/D converter 11, the insulation resistances Riso1 and Riso2 are detected.
- the control unit 20 uses a predetermined algorithm to perform insulation from the voltage at the node N1 or N2, which is measured before and after the switching of the one or more switches.
- the values of resistors Riso1 and Riso2 can be calculated.
- the voltage measurement unit 10 may include only one A/D converter, and the A/D converter may measure the voltages at the nodes N1 and N2.
- a switch is also provided between the A/D converter and the node N2, the switch is turned on, the switch SW1 is turned off, and the voltage at the node N2 is measured. If it is determined that the voltage at node N2 is less than or equal to a predetermined voltage, the switch is rendered non-conductive, the switch SW1 is rendered conductive, and the voltage at node N1 is measured.
- control unit 20 may diagnose a failure in the insulation detection circuit 100 or the voltage measurement unit 10 by comparing the voltage at the node N2 measured by the voltage measurement unit 10 with the voltage at the node N1.
- the control unit 20 is an example of a failure diagnosis unit.
- the ratio of the voltage at node N1 and the voltage at node N2 should be a constant ratio depending on the resistance values of resistors R1, R2, and R3, but if the ratio is not constant, It can be determined that at least one of R1, R2, and R3 is out of order, or that the voltage measurement section 10 is out of order.
- four or more voltage dividing resistors may be connected between the positive terminal t1 and the ground GND.
- a voltage higher than the voltage at the node N1 The node to which the voltage is applied may be connected to the voltage measurement unit 10 by a switch, and the voltage at the node may be measured. Then, when the voltage at the node also falls below a predetermined voltage, the voltage at another node with a higher applied voltage may be measured.
- the voltage measurement section 10 may measure the voltage at the node N4 or N5, and the control section 20 may also use the voltage at the node N4 or N5 to adjust the insulation resistances Riso1 and Riso2. May be detected.
- a plurality of voltage dividing resistors may not be connected between the ground GND and the negative terminal t2, and for example, only one resistor may be connected. In this case, the voltage measurement unit 10 does not need to measure the voltage at the node between the ground GND and the negative terminal t2.
- the insulation resistance detection device 1 is a plurality of voltage dividing resistors connected between the positive terminal t1 and the negative terminal t2 of the battery Bat, and is an insulation resistance in the path through which the current from the battery Bat flows.
- a voltage measurement section 10 that measures the voltage at a node N2 among a plurality of nodes between a plurality of voltage dividing resistors included in an insulation detection circuit 100 for detecting Riso1 and Riso2, and a node measured by the voltage measurement section 10.
- a determination unit that determines whether the voltage at node N2 is below a predetermined voltage; , a switching unit (control unit 20) that switches a switch SW1 connected to a node N1 of the plurality of nodes so that the voltage measured by the voltage measurement unit 10 exceeds a predetermined voltage.
- the voltage measured at the node N2 becomes equal to or lower than a predetermined voltage due to a voltage drop of the battery Bat or during the measurement control process
- the voltage measured by the voltage measurement unit 10 is set to exceed the predetermined voltage.
- Switch SW1 is switched. Therefore, the voltage measuring section 10 can measure a voltage higher than a predetermined voltage, and the measurement error of the voltage measuring section 10 can be reduced. Therefore, even if the voltage at the node N2 where the voltage is measured decreases, the detection accuracy of the insulation resistances Riso1 and Riso2 can be prevented from decreasing. This will be explained in detail using FIG. 2.
- FIG. 2 is a diagram for explaining the effects of the insulation resistance detection device 1 according to the first embodiment.
- the switch SW1 when the voltage measured by the voltage measurement unit 10 (the voltage at the node N2 in the first embodiment) exceeds a predetermined voltage, the switch SW1 is in a non-conducting state. be done. After that, the voltage of the battery Bat decreases, and as shown in FIG. . In this case, the ratio of error to the input voltage to the voltage measurement unit 10 (A/D converter 11) increases, and the measurement error of the voltage measurement unit 10 increases. Therefore, the switch SW1 connected between the node N1 and the voltage measuring section 10 is switched from a non-conducting state to a conducting state, and the voltage measuring section 10 measures the voltage at the node N1. As shown in (c) of FIG. 2, since the voltage at node N1 is higher than the voltage at node N2, it is possible to reduce the ratio of error to the input voltage to voltage measurement section 10 (A/D converter 12). Therefore, the measurement error of the voltage measurement section 10 can be reduced.
- the reason why the voltage measuring unit 10 does not measure the voltage at the node N1 before the voltage of the battery Bat decreases, in other words, before the voltage at the node N2 becomes lower than the predetermined voltage is because the voltage at the node N1 is This is because there is a possibility that the absolute maximum rating of the measuring section 10 will be exceeded.
- the node N1 is a node to which a higher voltage is applied than the node N2, the switch SW1 is connected between the node N1 and the voltage measuring section 10, and the switching section (control section 20) is connected to the voltage measuring section
- switch SW1 is switched to connect node N1 and voltage measuring section 10, and voltage measuring section 10 Voltage may also be measured.
- the voltage measuring unit 10 and the node N1 to which a voltage higher than the node N2 is applied are connected by switch SW1. Therefore, the voltage measuring section 10 can measure a voltage higher than the predetermined voltage at the node N1, and the measurement error of the voltage measuring section 10 can be reduced. In this way, when the voltage of the battery Bat decreases, for example, the voltage measurement unit 10 switches the node at which the voltage is measured to a node to which a higher voltage is applied, thereby reducing the detection accuracy of the insulation resistances Riso1 and Riso2. It can be suppressed.
- the voltage measurement unit 10 may measure the voltages at the nodes N1 and N2 with reference to the potential of the ground GND.
- the insulation resistance detection device 1 is realized by a microcomputer, etc., but in the first embodiment, when the reference potential of the microcomputer is set to the potential of the ground GND, the voltages at the nodes N1 and N2 are also set to the potential of the ground GND. It can be measured by
- the insulation resistance detection device 1 further performs a failure diagnosis that diagnoses a failure of the insulation detection circuit 100 or the voltage measurement unit 10 by comparing the voltage at the node N2 measured by the voltage measurement unit 10 with the voltage at the node N1. (control unit 20).
- a failure of the insulation detection circuit 100 or the voltage measurement unit 10 can be diagnosed depending on whether the ratio between the voltage at the node N1 and the voltage at the node N2 is constant.
- FIG. 3 is a configuration diagram showing an example of an insulation resistance detection device 1a according to a modification of the first embodiment.
- FIG. 3 shows a battery Bat, insulation resistances Riso1 and Riso2 in a path through which current from the battery Bat flows, and an insulation detection circuit 100a.
- the battery Bat or the insulation detection circuit 100a may be a component of the insulation resistance detection device 1a.
- the insulation resistance detection device 1a is mounted, for example, on a vehicle such as an electric vehicle that uses electric power for propulsion.
- the insulation detection circuit 100a is a circuit for detecting the insulation resistances Riso1 and Riso2, and includes a plurality of voltage dividing resistors connected between the positive terminal t1 and the negative terminal t2 of the battery Bat.
- resistors R7, R8, R9, and R10 are shown as the plurality of voltage dividing resistors. Specifically, a resistor R7 is connected between the positive terminal t1 and the ground GND, and resistors R8, R9, and R10 are connected in series between the ground GND and the negative terminal t2.
- the positive terminal t1 is connected to the ground GND through at least one of the plurality of voltage dividing resistors
- the negative terminal t2 is connected to the ground GND through at least one of the plurality of voltage dividing resistors. It is connected to ground GND through the ground.
- at least one resistor is resistor R7
- the other at least one resistor is resistors R8, R9, and R10.
- nodes N6, N7, and N8 are shown as a plurality of nodes between the plurality of voltage dividing resistors.
- Node N6 is a node between resistor R7 and resistor R8,
- node N7 is a node between resistor R8 and resistor R9, and
- node N8 is a node between resistor R9 and resistor R10.
- the insulation detection circuit 100a may include one or more switches connected to one or more of the plurality of voltage dividing resistors. By controlling one or more switches included in the insulation detection circuit 100a, the voltage at any one of the plurality of nodes can be changed. Then, the values of the insulation resistances Riso1 and Riso2 can be accurately calculated by the insulation resistance detection device 1a from the voltages before and after the change.
- the insulation detection circuit 100a does not need to include one or more switches as shown in FIG. It is possible to determine whether the resistor Riso1 or Riso2 is abnormal (that is, whether a current leakage is occurring).
- the insulation resistance detection device 1a is a device for detecting insulation resistances Riso1 and Riso2, and includes a voltage measurement section 10a and a control section 20a.
- the insulation resistance detection device 1a is realized by, for example, a microcomputer. In a modification of the first embodiment, the insulation resistance detection device 1a uses the potential of the negative terminal t2 as the reference potential.
- the voltage measurement unit 10a is capable of measuring voltages at multiple nodes between multiple voltage dividing resistors included in the insulation detection circuit 100a.
- the voltage measurement unit 10a includes an A/D converter, and measures voltages at a plurality of nodes using the A/D converter.
- the voltage measurement unit 10a includes A/D converters 11a and 12a, and the A/D converter 11a can measure the voltage at the node N7, and the A/D converter 12a can measure the voltage at the node N8. It becomes.
- Node N7 is an example of a second node
- node N8 is an example of a first node.
- the voltage measurement unit 10a measures the voltages at nodes N7 and N8 with reference to the potential of the negative terminal t2.
- the control unit 20a determines whether the voltage at the node N8 measured by the voltage measurement unit 10a is below a predetermined voltage.
- the control unit 20a is an example of a determination unit.
- the predetermined voltage is not particularly limited, but may be, for example, 1/2 or 1/5 of the absolute maximum rating of the voltage measuring section 10a (A/D converters 11a and 12a).
- control unit 20a controls the voltage measured by the voltage measurement unit 10a to exceed the predetermined voltage when it is determined that the voltage at the node N8 measured by the voltage measurement unit 10a is equal to or lower than the predetermined voltage.
- the switch SW1a connected to the node N7 among the plurality of nodes is switched.
- the control unit 20a is an example of a switching unit.
- Node N7 is an example of a second node.
- node N7 is a node to which a higher voltage is applied than node N8. Specifically, a voltage corresponding to two resistors R9 and R10 is applied to node N7, and a voltage corresponding to one resistor R10 is applied to node N8, so that node N7 has a higher voltage than node N8. High voltage is applied.
- the switch SW1a is connected between the node N7 and the voltage measurement section 10a, and the control section 20a controls the voltage at the node N8 measured by the voltage measurement section 10a to be a predetermined voltage. If it is determined that the voltage is below, the switch SW1a is switched to connect the node N7 and the voltage measuring section 10a. Specifically, in this case, the control unit 20a switches the switch SW1a from a non-conductive state to a conductive state. When the switch SW1a is turned on, the A/D converter 11a of the voltage measuring section 10a can measure the voltage at the node N7.
- control unit 20a detects the insulation resistances Riso1 and Riso2 based on the voltage measured by the voltage measurement unit 10a. For example, the control unit 20a can determine that the insulation resistance Riso1 or Riso2 is abnormal when the voltage measured by the voltage measurement unit 10a is an abnormal value. For example, when controlling the switch SW1a to be non-conductive, the control unit 20a detects the insulation resistances Riso1 and Riso2 using the voltage at the node N8 measured by the A/D converter 12a, and makes the switch SW1a conductive. When the voltage at the node N7 is controlled by the A/D converter 11a, the insulation resistances Riso1 and Riso2 are detected.
- the control unit 20a uses a predetermined algorithm to detect the insulation from the voltage at the node N7 or N8, which is measured before and after the switching of the one or more switches.
- the values of resistors Riso1 and Riso2 can be calculated.
- the voltage measurement unit 10a may include only one A/D converter, and the A/D converter may measure the voltages at nodes N7 and N8.
- a switch is also provided between the A/D converter and the node N8, the switch is turned on, the switch SW1a is turned off, and the voltage at the node N8 is measured. If it is determined that the voltage at node N8 is less than or equal to a predetermined voltage, the switch is rendered non-conductive, the switch SW1a is rendered conductive, and the voltage at node N7 is measured.
- control unit 20a may diagnose a failure in the insulation detection circuit 100a or the voltage measurement unit 10a by comparing the voltage at the node N8 measured by the voltage measurement unit 10a with the voltage at the node N7.
- the control unit 20a is an example of a failure diagnosis unit.
- the ratio between the voltage at node N7 and the voltage at node N8 should be a constant ratio depending on the resistance values of resistors R8, R9, and R10, but if the ratio is not constant, It can be determined that at least one of R8, R9, and R10 is out of order, or that the voltage measurement section 10a is out of order.
- four or more voltage dividing resistors may be connected between the ground GND and the negative terminal t2.
- a voltage higher than the voltage at the node N7 The node to which the voltage is applied may be connected to the voltage measurement unit 10a by a switch, and the voltage at the node may be measured. Then, when the voltage at the node also falls below a predetermined voltage, the voltage at another node with a higher applied voltage may be measured.
- the voltage measurement unit 10a may measure the voltages at the nodes N7 and N8 with reference to the potential of the negative terminal t2.
- the insulation resistance detection device 1a is realized by a microcomputer, etc., but in the modification of the first embodiment, when the reference potential of the microcomputer is set to the potential of the negative terminal t2, the voltages at the nodes N7 and N8 also change to the negative terminal t2. It can be measured based on the potential of
- Embodiment 2 Next, the insulation resistance detection device 1b in Embodiment 2 will be described using FIG. 4. Below, the explanation will focus on the points that are different from the insulation resistance detection device 1 according to the first embodiment, and the explanation on the same points will be omitted.
- FIG. 4 is a configuration diagram showing an example of the insulation resistance detection device 1b according to the second embodiment.
- FIG. 4 shows a battery Bat, insulation resistances Riso1 and Riso2 in a path through which current from the battery Bat flows, and an insulation detection circuit 100b.
- the battery Bat or the insulation detection circuit 100b may be a component of the insulation resistance detection device 1b.
- the insulation resistance detection device 1b is mounted, for example, on a vehicle such as an electric vehicle that uses electric power for propulsion.
- the insulation detection circuit 100b is a circuit for detecting the insulation resistances Riso1 and Riso2, and includes a plurality of voltage dividing resistors connected between the positive terminal t1 and the negative terminal t2 of the battery Bat.
- resistors R11, R12, R13, R14, and R15 are shown as the plurality of voltage dividing resistors.
- the positive terminal t1 is connected to the ground GND through at least one of the plurality of voltage dividing resistors
- the negative terminal t2 is connected to the ground GND through at least one of the plurality of voltage dividing resistors. It is connected to ground GND through the ground.
- at least one resistor is resistor R11 and R14
- at least one other resistor is resistor R12, R13, and R15.
- nodes N9 and N10 are shown as a plurality of nodes between a plurality of voltage dividing resistors.
- Node N9 is a node between the parallel circuit of resistors R11 and R14 and the parallel circuit of resistors R12 and R15
- node N10 is a node between the parallel circuit of resistors R12 and R15 and resistor R13.
- the insulation detection circuit 100b includes switches SW2 and SW3. Switches SW2 and SW3 are connected to node N9 and one of the plurality of voltage dividing resistors.
- switch SW2 is connected between node N9 and resistor R14
- switch SW3 is connected between node N9 and resistor R15.
- Node N9 is an example of a second node.
- the insulation detection circuit 100b further includes one or more switches connected to one or more voltage dividing resistors among the resistors R11, R12, and R13. Good too. By controlling one or more switches further included in the insulation detection circuit 100b, the voltage at the node N10 can be changed.
- the insulation resistance detection device 1b can accurately calculate the values of the insulation resistances Riso1 and Riso2 from the voltages before and after the change.
- the insulation detection circuit 100b may not include any switches other than the switches SW2 and SW3. Even in this case, the voltage at the node N10 determines whether the insulation resistance Riso1 or Riso2 It is possible to determine whether or not there is an abnormality (that is, whether or not an electric leakage is occurring).
- the insulation resistance detection device 1b is a device for detecting insulation resistances Riso1 and Riso2, and includes a voltage measurement section 10b and a control section 20b.
- the insulation resistance detection device 1b is realized by, for example, a microcomputer.
- the insulation resistance detection device 1b uses the potential of the negative terminal t2 as the reference potential.
- the voltage measurement unit 10b measures the voltage at the node N10 among the nodes between the voltage dividing resistors included in the insulation detection circuit 100b.
- the voltage measurement unit 10b includes an A/D converter 13, and the A/D converter 13 measures the voltage at the node N10.
- Node N10 is an example of a first node.
- voltage measuring section 10b measures the voltage at node N10 with reference to the potential of negative terminal t2.
- the control unit 20b determines whether the voltage at the node N10 measured by the voltage measurement unit 10b is below a predetermined voltage.
- the control unit 20b is an example of a determination unit.
- the predetermined voltage is not particularly limited, but may be, for example, 1/2 or 1/5 of the absolute maximum rating of the voltage measuring section 10b (A/D converter 13).
- control unit 20b when it is determined that the voltage at the node N10 measured by the voltage measurement unit 10b is below a predetermined voltage, the control unit 20b causes the voltage at the node N10 measured by the voltage measurement unit 10b to exceed a predetermined voltage. Switches SW2 and SW3 connected to node N9 are switched as follows.
- the control unit 20b is an example of a switching unit.
- the control unit 20b switches at least one of the switches SW2 and SW3 to a conductive state. Thereby, the voltage at node N10 can be increased, and the voltage at node N10 can exceed a predetermined voltage.
- the node at which the voltage measurement section 10 measures the voltage is switched by controlling the switch SW1.
- the voltage is changed by controlling the switches SW2 and SW3. The voltage applied to the node whose voltage is measured by the measurement unit 10b is switched.
- control unit 20b detects the insulation resistances Riso1 and Riso2 based on the voltage measured by the voltage measurement unit 10b. For example, the control unit 20b can determine that the insulation resistance Riso1 or Riso2 is abnormal when the voltage measured by the voltage measurement unit 10b is an abnormal value.
- the control unit 20b calculates a predetermined value from the voltage at the node N10 measured before and after switching of the one or more switches.
- the values of the insulation resistances Riso1 and Riso2 can be calculated using the following algorithm.
- control unit 20b may diagnose a failure in the insulation detection circuit 100b or the voltage measurement unit 10b by comparing the voltage at the node N10 measured by the voltage measurement unit 10b before and after switching the switches SW2 and SW3. .
- the control unit 20b is an example of a failure diagnosis unit.
- the ratio of the voltages at node N10 before and after switching of switches SW2 and SW3 should be a constant ratio depending on the resistance values of resistors R11, R12, R13, R14, and R15, but it is not a constant ratio. If so, it can be determined that at least one of the resistors R11, R12, R13, R14, and R15 is out of order, or that the voltage measurement section 10b is out of order.
- the switches connected to the node N9 are two switches SW2 and SW3, but the present invention is not limited to this.
- the number of switches connected to node N9 may be one, or three or more.
- the voltage measurement unit 10b measures the voltage at the node N10 with reference to the potential of the negative terminal t2, but the voltage measurement unit 10b measures the voltage at the node N10 with reference to the potential of the ground GND. You may.
- a switch is connected between a node to which a voltage higher than node N10 is applied and voltage measuring section 10b, so that the voltage at node N10 reaches a predetermined level.
- the switch may be switched and the voltage at a node to which a voltage higher than node N10 is applied may be measured.
- the switches SW2 and SW3 are connected to the node N9 and one of the plurality of voltage dividing resistors, and the switching unit (control unit 20b) is connected to the voltage measuring unit.
- the switching unit control unit 20b
- switches SW2 and SW3 are switched so that the voltage at node N10 measured by voltage measuring section 10b exceeds the predetermined voltage.
- the switch SW2 and the SW3 is switched. Therefore, the voltage measuring section 10b can measure a voltage higher than the predetermined voltage at the node N10, and the measurement error of the voltage measuring section 10b can be reduced. In this way, when the voltage of the battery Bat decreases, for example, by switching the voltage applied to the node N10 whose voltage is measured by the voltage measurement unit 10b, it is possible to suppress a decrease in the detection accuracy of the insulation resistances Riso1 and Riso2.
- the voltage measurement unit 10b may measure the voltage at the node N10 with reference to the potential of the ground GND.
- the insulation resistance detection device 1b is realized by a microcomputer, etc., but in the second embodiment, when the reference potential of the microcomputer is set to the potential of the ground GND, the voltage at the node N10 is also measured with the potential of the ground GND as a reference. can do.
- the voltage measurement unit 10b may measure the voltage at the node N10 with reference to the potential of the negative terminal t2.
- the insulation resistance detection device 1b is realized by a microcomputer, etc., but in the second embodiment, when the reference potential of the microcomputer is set to the potential of the negative terminal t2, the voltage at the node N10 is also set to the potential of the negative terminal t2. It can be measured by
- the insulation resistance detection device 1b further diagnoses a failure of the insulation detection circuit 100b or the voltage measurement unit 10b by comparing the voltage at the node N10 measured by the voltage measurement unit 10b before and after the switches SW2 and SW3 are switched.
- the system may also include a failure diagnosis section (control section 20b) that performs the following operations.
- the present disclosure can be realized not only as an insulation resistance detection device, but also as an insulation resistance detection method including steps (processing) performed by the components that constitute the insulation resistance detection device.
- FIG. 5 is a flowchart illustrating an example of an insulation resistance detection method according to another embodiment.
- the insulation resistance detection method detects insulation resistance in a path through which current from the battery flows, using a plurality of voltage dividing resistors connected between the positive and negative terminals of the battery.
- a voltage measurement step (step S11) of measuring the voltage at the first node among the plurality of nodes between the plurality of voltage dividing resistors included in the insulation detection circuit for is below a predetermined voltage (step S12), and if it is determined that the voltage at the first node measured in the voltage measurement step is below a predetermined voltage (Yes in step S12).
- step S13 includes a switching step (step S13) of switching a switch connected to a second node among the plurality of nodes so that the voltage measured in the voltage measurement step exceeds a predetermined voltage.
- the steps in the insulation resistance detection method may be performed by a computer (computer system).
- the present disclosure can be realized as a program for causing a computer to execute the steps included in the insulation resistance detection method.
- the present disclosure can be realized as a non-transitory computer-readable recording medium such as a CD-ROM on which the program is recorded.
- each step is executed by executing the program using hardware resources such as a computer's CPU, memory, and input/output circuits. . That is, each step is executed by the CPU acquiring data from a memory or input/output circuit, etc., and performing calculations, and outputting the calculation results to the memory, input/output circuit, etc.
- hardware resources such as a computer's CPU, memory, and input/output circuits.
- each component included in the insulation resistance detection device of the above embodiment may be realized as a dedicated or general-purpose circuit.
- each component included in the insulation resistance detection device of the above embodiment may be realized as an LSI (Large Scale Integration) that is an integrated circuit (IC).
- LSI Large Scale Integration
- IC integrated circuit
- the integrated circuit is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
- a programmable FPGA (Field Programmable Gate Array) or a reconfigurable processor in which connections and settings of circuit cells inside the LSI can be reconfigured may be used.
- the present disclosure can be applied to a device that detects insulation resistance in a path through which current flows from a high-voltage battery mounted on a vehicle or the like.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Measurement Of Resistance Or Impedance (AREA)
Abstract
絶縁抵抗検出装置(1)は、バッテリ(Bat)からの電流が流れる経路における絶縁抵抗(Riso1およびRiso2)を検出するための絶縁検出回路(100)が備える複数の分圧抵抗間の複数のノードのうちの、第1ノード(N2)における電圧を計測する電圧計測部(10)と、電圧計測部(10)で計測された第1ノード(N2)における電圧が所定の電圧以下であるか否かを判定する判定部(制御部(20))と、電圧計測部(10)で計測された第1ノード(N2)における電圧が所定の電圧以下であると判定された場合に、電圧計測部(10)が計測する電圧が所定の電圧を超えるように、複数のノードのうちの第2ノード(N1)に接続されたスイッチ(SW1)を切り替える切替部(制御部(20))とを備える。
Description
本開示は、バッテリからの電流が流れる経路における絶縁抵抗を検出するための絶縁抵抗検出装置および絶縁抵抗検出方法に関する。
特許文献1には、バッテリからの電流が流れる経路における絶縁抵抗を検出できる装置が記載されている。
しかしながら、特許文献1に記載された装置では、1つのノードにおける電圧を計測することで絶縁抵抗を検出しており、バッテリの電圧低下または計測制御過程で、当該ノードにおいて計測される電圧が低くなった場合、当該ノードにおける電圧の計測誤差が大きくなり絶縁抵抗の検出精度が低下してしまう。
そこで、本開示は、電圧が計測されるノードの電圧が低下しても絶縁抵抗の検出精度の低下を抑制できる絶縁抵抗検出装置などを提供する。
本開示の一態様に係る絶縁抵抗検出装置は、バッテリの正極端子と負極端子との間に接続された複数の分圧抵抗であって、前記バッテリからの電流が流れる経路における絶縁抵抗を検出するための絶縁検出回路が備える複数の分圧抵抗間の複数のノードのうちの、第1ノードにおける電圧を計測する電圧計測部と、前記電圧計測部で計測された前記第1ノードにおける電圧が所定の電圧以下であるか否かを判定する判定部と、前記電圧計測部で計測された前記第1ノードにおける電圧が所定の電圧以下であると判定された場合に、前記電圧計測部が計測する電圧が前記所定の電圧を超えるように、前記複数のノードのうちの第2ノードに接続されたスイッチを切り替える切替部と、を備える。
本開示の一態様に係る絶縁抵抗検出方法は、バッテリの正極端子と負極端子との間に接続された複数の分圧抵抗であって、前記バッテリからの電流が流れる経路における絶縁抵抗を検出するための絶縁検出回路が備える複数の分圧抵抗間の複数のノードのうちの、第1ノードにおける電圧を計測する電圧計測ステップと、前記電圧計測ステップで計測された前記第1ノードにおける電圧が所定の電圧以下であるか否かを判定する判定ステップと、前記電圧計測ステップで計測された前記第1ノードにおける電圧が所定の電圧以下であると判定された場合に、前記電圧計測ステップで計測する電圧が前記所定の電圧を超えるように、前記複数のノードのうちの第2ノードに接続されたスイッチを切り替える切替ステップと、を含む。
本開示の一態様に係る絶縁抵抗検出装置などによれば、電圧が計測されるノードの電圧が低下しても絶縁抵抗の検出精度の低下を抑制できる。
以下、実施の形態について、図面を参照しながら具体的に説明する。
なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態などは、一例であり、本開示を限定する主旨ではない。
(実施の形態1)
以下、実施の形態1における絶縁抵抗検出装置1について図1を用いて説明する。
以下、実施の形態1における絶縁抵抗検出装置1について図1を用いて説明する。
図1は、実施の形態1に係る絶縁抵抗検出装置1の一例を示す構成図である。なお、図1には、絶縁抵抗検出装置1の他に、バッテリBat、バッテリBatからの電流が流れる経路における絶縁抵抗Riso1およびRiso2、ならびに、絶縁検出回路100が示されている。なお、バッテリBatまたは絶縁検出回路100は、絶縁抵抗検出装置1の構成要素であってもよい。
絶縁抵抗検出装置1は、例えば、推進駆動に電力が用いられる電気自動車などの車両に搭載される。電気自動車などの車両には、高電圧のバッテリBatが搭載され、バッテリBatからモータなどの駆動負荷に電力が供給されることで、電気自動車などの車両の推進駆動が行われる。バッテリBatは、HV、PHEVまたはEVなどのバッテリである。
絶縁抵抗とは、電流が流れる経路における経路とグランドとの間の絶縁性のことであり、絶縁抵抗が低くなると漏電が発生し、感電および火災などが発生するおそれがある。このため、絶縁抵抗の検出が行われることで、車両の危険な状態を事前に検出することができる。図1には、バッテリBatの正極端子t1に接続された経路とグランドGNDとの間の絶縁抵抗Riso1、および、バッテリBatの負極端子t2に接続された経路とグランドGNDとの間の絶縁抵抗Riso2が示されている。グランドGNDは、例えば、車両のシャーシの電位である。
絶縁検出回路100は、絶縁抵抗Riso1およびRiso2を検出するための回路であり、バッテリBatの正極端子t1と負極端子t2との間に接続された複数の分圧抵抗を備える。実施の形態1では、複数の分圧抵抗として、抵抗R1、R2、R3、R4、R5およびR6が示されている。具体的には、正極端子t1とグランドGNDとの間に抵抗R1、R2およびR3が直列接続され、グランドGNDと負極端子t2との間に抵抗R4、R5およびR6が直列接続される。このように、正極端子t1は、複数の分圧抵抗のうちの少なくとも1つの抵抗を介してグランドGNDと接続され、負極端子t2は、複数の分圧抵抗のうちの他の少なくとも1つの抵抗を介してグランドGNDと接続される。実施の形態1では、少なくとも1つの抵抗は、抵抗R1、R2およびR3であり、他の少なくとも1つの抵抗は、抵抗R4、R5およびR6である。正極端子t1とグランドGND、および、グランドGNDと負極端子t2がそれぞれ少なくとも1つの抵抗を介して接続されることで、グランドGNDの電位を安定させることができる。
また、複数の分圧抵抗間の複数のノードとして、ノードN1、N2、N3、N4およびN5が示されている。ノードN1は抵抗R1と抵抗R2との間のノードであり、ノードN2は抵抗R2と抵抗R3との間のノードであり、ノードN3は抵抗R3と抵抗R4との間のノードであり、ノードN4は抵抗R4と抵抗R5との間のノードであり、ノードN5は抵抗R5と抵抗R6との間のノードである。
ここでは図示されていないが、絶縁検出回路100は、複数の分圧抵抗のうちの1以上の分圧抵抗に接続された1以上のスイッチを備えていてもよい。絶縁検出回路100が備える1以上のスイッチが制御されることで、複数のノードのうちのいずれかのノードにおける電圧を変化させることができる。そして、変化前後の電圧から、絶縁抵抗検出装置1によって絶縁抵抗Riso1およびRiso2の値を正確に算出することができる。
なお、絶縁検出回路100は、図1に示されるように、1以上のスイッチを備えていなくてもよく、この場合であっても、複数のノードのうちのいずれかのノードにおける電圧から、絶縁抵抗Riso1またはRiso2が異常となっている否か(すなわち漏電が発生しているか否か)を判定することができる。絶縁抵抗Riso1またはRiso2が異常となっており、その値が低くなっている場合には、複数のノードのうちのいずれかのノードにおける電圧も異常な値となるためである。
絶縁抵抗検出装置1は、絶縁抵抗Riso1およびRiso2を検出するための装置であり、電圧計測部10および制御部20を備える。絶縁抵抗検出装置1は、例えば、マイコン(MCU:Micro Controller Unit)などによって実現される。実施の形態1では、絶縁抵抗検出装置1は、グランドGND(ノードN3)の電位を基準電位として用いている。
電圧計測部10は、絶縁検出回路100が備える複数の分圧抵抗間の複数のノードにおける電圧を計測可能となっている。例えば、電圧計測部10は、A/Dコンバータを有し、A/Dコンバータによって、複数のノードにおける電圧を計測する。例えば、電圧計測部10は、A/Dコンバータ11および12を有し、A/Dコンバータ11によってノードN1における電圧を計測可能となっており、A/Dコンバータ12によってノードN2における電圧を計測可能となっている。ノードN1は第2ノードの一例であり、ノードN2は第1ノードの一例である。実施の形態1では、電圧計測部10は、グランドGNDの電位を基準としたノードN1およびN2における電圧を計測する。
制御部20は、電圧計測部10で計測されたノードN2における電圧が所定の電圧以下であるか否かを判定する。制御部20は、判定部の一例である。所定の電圧は、特に限定されないが、例えば、電圧計測部10(A/Dコンバータ11および12)の絶対最大定格の1/2または1/5などであってもよい。
また、制御部20は、電圧計測部10で計測されたノードN2における電圧が所定の電圧以下であると判定された場合に、電圧計測部10が計測する電圧が所定の電圧を超えるように、複数のノードのうちのノードN1に接続されたスイッチSW1を切り替える。制御部20は、切替部の一例である。
実施の形態1では、ノードN1は、ノードN2よりも高い電圧が印加されるノードである。具体的には、ノードN1には2つの抵抗R2およびR3に応じた電圧が印加され、ノードN2には1つの抵抗R3に応じた電圧が印加されるため、ノードN1には、ノードN2よりも高い電圧が印加される。
また、実施の形態1では、スイッチSW1は、ノードN1と電圧計測部10との間に接続され、制御部20は、電圧計測部10で計測されたノードN2における電圧が所定の電圧以下であると判定された場合に、ノードN1と電圧計測部10とを接続するようにスイッチSW1を切り替える。具体的には、制御部20は、この場合にスイッチSW1を非導通状態から導通状態に切り替える。スイッチSW1が導通状態に切り替えられたときに、電圧計測部10のA/Dコンバータ11は、ノードN1における電圧を計測することができる。
また、制御部20は、電圧計測部10によって計測された電圧に基づいて、絶縁抵抗Riso1およびRiso2を検出する。例えば、制御部20は、電圧計測部10によって計測された電圧が異常値である場合に、絶縁抵抗Riso1またはRiso2が異常となっていると判定することができる。例えば、制御部20は、スイッチSW1を非導通状態に制御しているときには、A/Dコンバータ12により計測されたノードN2における電圧を使用して絶縁抵抗Riso1およびRiso2を検出し、スイッチSW1を導通状態に制御しているときには、A/Dコンバータ11により計測されたノードN1における電圧を使用して絶縁抵抗Riso1およびRiso2を検出する。
絶縁検出回路100が1以上のスイッチを備えている場合には、制御部20は、1以上のスイッチの切り替えの前後で計測される、ノードN1またはN2における電圧から、所定のアルゴリズムを用いて絶縁抵抗Riso1およびRiso2の値を算出することができる。
なお、電圧計測部10は、A/Dコンバータを1つのみ備えていてもよく、当該A/Dコンバータが、ノードN1およびN2における電圧を計測してもよい。この場合、当該A/DコンバータとノードN2との間にもスイッチが設けられ、当該スイッチが導通状態とされ、かつ、スイッチSW1が非導通状態とされて、ノードN2における電圧が計測される。そして、ノードN2における電圧が所定の電圧以下であると判定された場合には、当該スイッチが非導通状態とされ、かつ、スイッチSW1が導通状態とされて、ノードN1における電圧が計測される。
また、制御部20は、電圧計測部10が計測したノードN2における電圧とノードN1における電圧とを比較することで、絶縁検出回路100または電圧計測部10の故障を診断してもよい。制御部20は、故障診断部の一例である。例えば、ノードN1における電圧とノードN2における電圧との比は、抵抗R1、R2およびR3の抵抗値に応じた一定の比となるはずであるが、一定の比とならなかった場合には、抵抗R1、R2およびR3の少なくともいずれかが故障していること、または、電圧計測部10が故障していることを判定することができる。
また、正極端子t1とグランドGNDとの間に4つ以上の分圧抵抗が接続されていてもよく、例えば、ノードN1における電圧も所定の電圧以下となった場合に、ノードN1よりも高い電圧が印加されるノードと電圧計測部10とがスイッチによって接続され、当該ノードにおける電圧が計測されてもよい。そして、当該ノードにおける電圧も所定の電圧以下となった場合に、印加される電圧がより高い別のノードにおける電圧が計測されていってもよい。
また、図示を省略しているが、電圧計測部10は、ノードN4またはN5における電圧を計測してもよく、制御部20は、ノードN4またはN5における電圧も用いて、絶縁抵抗Riso1およびRiso2を検出してもよい。または、グランドGNDと負極端子t2との間に、図1に示されるように、複数の分圧抵抗が接続されなくてもよく、例えば、1つの抵抗のみが接続されてもよい。この場合、電圧計測部10は、グランドGNDと負極端子t2との間のノードの電圧を計測しなくてもよい。
以上説明したように、絶縁抵抗検出装置1は、バッテリBatの正極端子t1と負極端子t2との間に接続された複数の分圧抵抗であって、バッテリBatからの電流が流れる経路における絶縁抵抗Riso1およびRiso2を検出するための絶縁検出回路100が備える複数の分圧抵抗間の複数のノードのうちの、ノードN2における電圧を計測する電圧計測部10と、電圧計測部10で計測されたノードN2における電圧が所定の電圧以下であるか否かを判定する判定部(制御部20)と、電圧計測部10で計測されたノードN2における電圧が所定の電圧以下であると判定された場合に、電圧計測部10が計測する電圧が所定の電圧を超えるように、複数のノードのうちのノードN1に接続されたスイッチSW1を切り替える切替部(制御部20)と、を備える。
これによれば、バッテリBatの電圧低下または計測制御過程で、ノードN2において計測される電圧が所定の電圧以下になった場合、電圧計測部10が計測する電圧が所定の電圧を超えるように、スイッチSW1が切り替えられる。したがって、電圧計測部10は、所定の電圧よりも高い電圧を計測することができるようになり、電圧計測部10の計測誤差を小さくすることができる。よって、電圧が計測されるノードN2の電圧が低下しても絶縁抵抗Riso1およびRiso2の検出精度の低下を抑制できる。これについて、図2を用いて詳細に説明する。
図2は、実施の形態1に係る絶縁抵抗検出装置1の効果を説明するための図である。
図2の(a)に示されるように、電圧計測部10が計測する電圧(実施の形態1ではノードN2における電圧)が所定の電圧を超えている場合には、スイッチSW1が非導通状態とされる。その後、バッテリBatの電圧が低下し、図2の(b)に示されるように、電圧計測部10が計測する電圧(実施の形態1ではノードN2における電圧)が所定の電圧以下となったとする。この場合、電圧計測部10(A/Dコンバータ11)への入力電圧に対する誤差の割合が大きくなり、電圧計測部10の計測誤差が大きくなる。そこで、ノードN1と電圧計測部10との間に接続されたスイッチSW1が非導通状態から導通状態に切り替えられ、電圧計測部10はノードN1における電圧を計測する。図2の(c)に示されるように、ノードN1における電圧はノードN2における電圧よりも高いため、電圧計測部10(A/Dコンバータ12)への入力電圧に対する誤差の割合を小さくすることができ、電圧計測部10の計測誤差を小さくすることができる。
なお、バッテリBatの電圧が低下する前から、言い換えると、ノードN2における電圧が所定の電圧以下となる前から、電圧計測部10がノードN1における電圧を計測しないのは、ノードN1における電圧が電圧計測部10の絶対最大定格を超えるおそれがあるためである。
例えば、ノードN1は、ノードN2よりも高い電圧が印加されるノードであり、スイッチSW1は、ノードN1と電圧計測部10との間に接続され、切替部(制御部20)は、電圧計測部10で計測されたノードN2における電圧が所定の電圧以下であると判定された場合に、ノードN1と電圧計測部10とを接続するようにスイッチSW1を切り替え、電圧計測部10は、ノードN1における電圧を計測してもよい。
これによれば、バッテリBatの電圧低下または計測制御過程で、ノードN2において計測される電圧が所定の電圧以下になった場合、ノードN2よりも高い電圧が印加されるノードN1と電圧計測部10とがスイッチSW1によって接続される。したがって、電圧計測部10は、ノードN1における、所定の電圧よりも高い電圧を計測することができるようになり、電圧計測部10の計測誤差を小さくすることができる。このように、バッテリBatの電圧が低下した場合などに、電圧計測部10が電圧を計測するノードをより高い電圧が印加されるノードに切り替えることで、絶縁抵抗Riso1およびRiso2の検出精度の低下を抑制できる。
例えば、電圧計測部10は、グランドGNDの電位を基準としたノードN1およびN2における電圧を計測してもよい。
例えば絶縁抵抗検出装置1はマイコンなどにより実現されるが、実施の形態1では、マイコンの基準電位をグランドGNDの電位としている場合に、ノードN1およびN2における電圧も、グランドGNDの電位を基準にして計測することができる。
例えば、絶縁抵抗検出装置1は、さらに、電圧計測部10が計測したノードN2における電圧とノードN1における電圧とを比較することで、絶縁検出回路100または電圧計測部10の故障を診断する故障診断部(制御部20)を備えていてもよい。
これによれば、ノードN1における電圧とノードN2における電圧との比が一定となっているか否かに応じて、絶縁検出回路100または電圧計測部10の故障を診断することができる。
(実施の形態1の変形例)
次に、実施の形態1の変形例における絶縁抵抗検出装置1aについて図3を用いて説明する。以下では、実施の形態1に係る絶縁抵抗検出装置1と異なる点を中心に説明し、同じ点については説明を省略する。
次に、実施の形態1の変形例における絶縁抵抗検出装置1aについて図3を用いて説明する。以下では、実施の形態1に係る絶縁抵抗検出装置1と異なる点を中心に説明し、同じ点については説明を省略する。
図3は、実施の形態1の変形例に係る絶縁抵抗検出装置1aの一例を示す構成図である。なお、図3には、絶縁抵抗検出装置1aの他に、バッテリBat、バッテリBatからの電流が流れる経路における絶縁抵抗Riso1およびRiso2、ならびに、絶縁検出回路100aが示されている。なお、バッテリBatまたは絶縁検出回路100aは、絶縁抵抗検出装置1aの構成要素であってもよい。
絶縁抵抗検出装置1aは、例えば、推進駆動に電力が用いられる電気自動車などの車両に搭載される。
絶縁検出回路100aは、絶縁抵抗Riso1およびRiso2を検出するための回路であり、バッテリBatの正極端子t1と負極端子t2との間に接続された複数の分圧抵抗を備える。実施の形態1の変形例では、複数の分圧抵抗として、抵抗R7、R8、R9およびR10が示されている。具体的には、正極端子t1とグランドGNDとの間に抵抗R7が接続され、グランドGNDと負極端子t2との間に抵抗R8、R9およびR10が直列接続される。このように、正極端子t1は、複数の分圧抵抗のうちの少なくとも1つの抵抗を介してグランドGNDと接続され、負極端子t2は、複数の分圧抵抗のうちの他の少なくとも1つの抵抗を介してグランドGNDと接続される。実施の形態1の変形例では、少なくとも1つの抵抗は、抵抗R7であり、他の少なくとも1つの抵抗は、抵抗R8、R9およびR10である。正極端子t1とグランドGND、および、グランドGNDと負極端子t2がそれぞれ少なくとも1つの抵抗を介して接続されることで、グランドGNDの電位を安定させることができる。
また、複数の分圧抵抗間の複数のノードとして、ノードN6、N7およびN8が示されている。ノードN6は抵抗R7と抵抗R8との間のノードであり、ノードN7は抵抗R8と抵抗R9との間のノードであり、ノードN8は抵抗R9と抵抗R10との間のノードである。
ここでは図示されていないが、絶縁検出回路100aは、複数の分圧抵抗のうちの1以上の分圧抵抗に接続された1以上のスイッチを備えていてもよい。絶縁検出回路100aが備える1以上のスイッチが制御されることで、複数のノードのうちのいずれかのノードにおける電圧を変化させることができる。そして、変化前後の電圧から、絶縁抵抗検出装置1aによって絶縁抵抗Riso1およびRiso2の値を正確に算出することができる。
なお、絶縁検出回路100aは、図3に示されるように、1以上のスイッチを備えていなくてもよく、この場合であっても、複数のノードのうちのいずれかのノードにおける電圧から、絶縁抵抗Riso1またはRiso2が異常となっている否か(すなわち漏電が発生しているか否か)を判定することができる。
絶縁抵抗検出装置1aは、絶縁抵抗Riso1およびRiso2を検出するための装置であり、電圧計測部10aおよび制御部20aを備える。絶縁抵抗検出装置1aは、例えば、マイコンなどによって実現される。実施の形態1の変形例では、絶縁抵抗検出装置1aは、負極端子t2の電位を基準電位として用いている。
電圧計測部10aは、絶縁検出回路100aが備える複数の分圧抵抗間の複数のノードにおける電圧を計測可能となっている。例えば、電圧計測部10aは、A/Dコンバータを有し、A/Dコンバータによって、複数のノードにおける電圧を計測する。例えば、電圧計測部10aは、A/Dコンバータ11aおよび12aを有し、A/Dコンバータ11aによってノードN7における電圧を計測可能となっており、A/Dコンバータ12aによってノードN8における電圧を計測可能となっている。ノードN7は第2ノードの一例であり、ノードN8は第1ノードの一例である。実施の形態1の変形例では、電圧計測部10aは、負極端子t2の電位を基準としたノードN7およびN8における電圧を計測する。
制御部20aは、電圧計測部10aで計測されたノードN8における電圧が所定の電圧以下であるか否かを判定する。制御部20aは、判定部の一例である。所定の電圧は、特に限定されないが、例えば、電圧計測部10a(A/Dコンバータ11aおよび12a)の絶対最大定格の1/2または1/5などであってもよい。
また、制御部20aは、電圧計測部10aで計測されたノードN8における電圧が所定の電圧以下であると判定された場合に、電圧計測部10aが計測する電圧が所定の電圧を超えるように、複数のノードのうちのノードN7に接続されたスイッチSW1aを切り替える。制御部20aは、切替部の一例である。ノードN7は、第2ノードの一例である。
実施の形態1の変形例では、ノードN7は、ノードN8よりも高い電圧が印加されるノードである。具体的には、ノードN7には2つの抵抗R9およびR10に応じた電圧が印加され、ノードN8には1つの抵抗R10に応じた電圧が印加されるため、ノードN7には、ノードN8よりも高い電圧が印加される。
また、実施の形態1の変形例では、スイッチSW1aは、ノードN7と電圧計測部10aとの間に接続され、制御部20aは、電圧計測部10aで計測されたノードN8における電圧が所定の電圧以下であると判定された場合に、ノードN7と電圧計測部10aとを接続するようにスイッチSW1aを切り替える。具体的には、制御部20aは、この場合にスイッチSW1aを非導通状態から導通状態に切り替える。スイッチSW1aが導通状態に切り替えられたときに、電圧計測部10aのA/Dコンバータ11aは、ノードN7における電圧を計測することができる。
また、制御部20aは、電圧計測部10aによって計測された電圧に基づいて、絶縁抵抗Riso1およびRiso2を検出する。例えば、制御部20aは、電圧計測部10aによって計測された電圧が異常値である場合に、絶縁抵抗Riso1またはRiso2が異常となっていると判定することができる。例えば、制御部20aは、スイッチSW1aを非導通状態に制御しているときには、A/Dコンバータ12aにより計測されたノードN8における電圧を使用して絶縁抵抗Riso1およびRiso2を検出し、スイッチSW1aを導通状態に制御しているときには、A/Dコンバータ11aにより計測されたノードN7における電圧を使用して絶縁抵抗Riso1およびRiso2を検出する。
絶縁検出回路100aが1以上のスイッチを備えている場合には、制御部20aは、1以上のスイッチの切り替えの前後で計測される、ノードN7またはN8における電圧から、所定のアルゴリズムを用いて絶縁抵抗Riso1およびRiso2の値を算出することができる。
なお、電圧計測部10aは、A/Dコンバータを1つのみ備えていてもよく、当該A/Dコンバータが、ノードN7およびN8における電圧を計測してもよい。この場合、当該A/DコンバータとノードN8との間にもスイッチが設けられ、当該スイッチが導通状態とされ、かつ、スイッチSW1aが非導通状態とされて、ノードN8における電圧が計測される。そして、ノードN8における電圧が所定の電圧以下であると判定された場合には、当該スイッチが非導通状態とされ、かつ、スイッチSW1aが導通状態とされて、ノードN7における電圧が計測される。
また、制御部20aは、電圧計測部10aが計測したノードN8における電圧とノードN7における電圧とを比較することで、絶縁検出回路100aまたは電圧計測部10aの故障を診断してもよい。制御部20aは、故障診断部の一例である。例えば、ノードN7における電圧とノードN8における電圧との比は、抵抗R8、R9およびR10の抵抗値に応じた一定の比となるはずであるが、一定の比とならなかった場合には、抵抗R8、R9およびR10の少なくともいずれかが故障していること、または、電圧計測部10aが故障していることを判定することができる。
また、グランドGNDと負極端子t2との間に4つ以上の分圧抵抗が接続されていてもよく、例えば、ノードN7における電圧も所定の電圧以下となった場合に、ノードN7よりも高い電圧が印加されるノードと電圧計測部10aとがスイッチによって接続され、当該ノードにおける電圧が計測されてもよい。そして、当該ノードにおける電圧も所定の電圧以下となった場合に、印加される電圧がより高い別のノードにおける電圧が計測されていってもよい。
以上説明したように、実施の形態1の変形例では、電圧計測部10aは、負極端子t2の電位を基準としたノードN7およびN8における電圧を計測してもよい。
例えば絶縁抵抗検出装置1aはマイコンなどにより実現されるが、実施の形態1の変形例では、マイコンの基準電位を負極端子t2の電位としている場合に、ノードN7およびN8における電圧も、負極端子t2の電位を基準にして計測することができる。
なお、実施の形態1の変形例においても、実施の形態1と同じように、バッテリBatの電圧低下または計測制御過程で、ノードN8の電圧が低下しても絶縁抵抗Riso1およびRiso2の検出精度の低下を抑制できる。
(実施の形態2)
次に、実施の形態2における絶縁抵抗検出装置1bについて図4を用いて説明する。以下では、実施の形態1に係る絶縁抵抗検出装置1と異なる点を中心に説明し、同じ点については説明を省略する。
次に、実施の形態2における絶縁抵抗検出装置1bについて図4を用いて説明する。以下では、実施の形態1に係る絶縁抵抗検出装置1と異なる点を中心に説明し、同じ点については説明を省略する。
図4は、実施の形態2に係る絶縁抵抗検出装置1bの一例を示す構成図である。なお、図4には、絶縁抵抗検出装置1bの他に、バッテリBat、バッテリBatからの電流が流れる経路における絶縁抵抗Riso1およびRiso2、ならびに、絶縁検出回路100bが示されている。なお、バッテリBatまたは絶縁検出回路100bは、絶縁抵抗検出装置1bの構成要素であってもよい。
絶縁抵抗検出装置1bは、例えば、推進駆動に電力が用いられる電気自動車などの車両に搭載される。
絶縁検出回路100bは、絶縁抵抗Riso1およびRiso2を検出するための回路であり、バッテリBatの正極端子t1と負極端子t2との間に接続された複数の分圧抵抗を備える。実施の形態2では、複数の分圧抵抗として、抵抗R11、R12、R13、R14およびR15が示されている。具体的には、正極端子t1とグランドGNDとの間に抵抗R11およびR14が並列接続され、グランドGNDと負極端子t2との間に、抵抗R12およびR15が並列接続された回路と、抵抗R13とが直列接続される。このように、正極端子t1は、複数の分圧抵抗のうちの少なくとも1つの抵抗を介してグランドGNDと接続され、負極端子t2は、複数の分圧抵抗のうちの他の少なくとも1つの抵抗を介してグランドGNDと接続される。実施の形態2では、少なくとも1つの抵抗は、抵抗R11およびR14であり、他の少なくとも1つの抵抗は、抵抗R12、R13およびR15である。正極端子t1とグランドGND、および、グランドGNDと負極端子t2がそれぞれ1つ以上の抵抗を介して接続されることで、グランドGNDの電位を安定させることができる。
また、複数の分圧抵抗間の複数のノードとして、ノードN9およびN10が示されている。ノードN9は抵抗R11およびR14の並列回路と抵抗R12およびR15の並列回路との間のノードであり、ノードN10は抵抗R12およびR15の並列回路と抵抗R13との間のノードである。
絶縁検出回路100bは、スイッチSW2およびSW3を備える。スイッチSW2およびSW3は、ノードN9と複数の分圧抵抗のうちのいずれかの抵抗とに接続される。ここでは、スイッチSW2はノードN9と抵抗R14との間に接続され、スイッチSW3はノードN9と抵抗R15との間に接続される。ノードN9は、第2ノードの一例である。スイッチSW2が導通状態の場合、抵抗R11およびR14の並列回路の抵抗値が小さくなり、スイッチSW2が非導通状態の場合、抵抗R11およびR14の並列回路の抵抗値が大きくなる。スイッチSW3が導通状態の場合、抵抗R12およびR15の並列回路の抵抗値が小さくなり、スイッチSW3が非導通状態の場合、抵抗R12およびR15の並列回路の抵抗値が大きくなる。
ここでは図示されていないが、絶縁検出回路100bは、スイッチSW2およびSW3の他に、抵抗R11、R12およびR13のうちの1以上の分圧抵抗に接続された1以上のスイッチをさらに備えていてもよい。絶縁検出回路100bがさらに備える1以上のスイッチが制御されることで、ノードN10における電圧を変化させることができる。そして、変化前後の電圧から、絶縁抵抗検出装置1bによって絶縁抵抗Riso1およびRiso2の値を正確に算出することができる。
なお、絶縁検出回路100bは、図4に示されるように、スイッチSW2およびSW3の他にスイッチを備えていなくてもよく、この場合であっても、ノードN10における電圧から、絶縁抵抗Riso1またはRiso2が異常となっている否か(すなわち漏電が発生しているか否か)を判定することができる。
絶縁抵抗検出装置1bは、絶縁抵抗Riso1およびRiso2を検出するための装置であり、電圧計測部10bおよび制御部20bを備える。絶縁抵抗検出装置1bは、例えば、マイコンなどによって実現される。実施の形態2では、絶縁抵抗検出装置1bは、負極端子t2の電位を基準電位として用いている。
電圧計測部10bは、絶縁検出回路100bが備える複数の分圧抵抗間の複数のノードのうちの、ノードN10における電圧を計測する。例えば、電圧計測部10bは、A/Dコンバータ13を有し、A/Dコンバータ13によってノードN10における電圧を計測する。ノードN10は第1ノードの一例である。実施の形態2では、電圧計測部10bは、負極端子t2の電位を基準としたノードN10における電圧を計測する。
制御部20bは、電圧計測部10bで計測されたノードN10における電圧が所定の電圧以下であるか否かを判定する。制御部20bは、判定部の一例である。所定の電圧は、特に限定されないが、例えば、電圧計測部10b(A/Dコンバータ13)の絶対最大定格の1/2または1/5などであってもよい。
また、制御部20bは、電圧計測部10bで計測されたノードN10における電圧が所定の電圧以下であると判定された場合に、電圧計測部10bが計測するノードN10における電圧が所定の電圧を超えるように、ノードN9に接続されたスイッチSW2およびSW3を切り替える。制御部20bは、切替部の一例である。
例えば、スイッチSW2およびSW3が非導通状態の場合に、ノードN10における電圧が所定の電圧以下であるときには、制御部20bは、スイッチSW2およびSW3の少なくとも一方を導通状態に切り替える。これにより、ノードN10における電圧を高くすることができ、ノードN10における電圧が所定の電圧を超え得る。
実施の形態1では、スイッチSW1を制御することで、電圧計測部10が電圧を計測するノードが切り替えられる例を説明したが、実施の形態2では、スイッチSW2およびSW3を制御することで、電圧計測部10bが電圧を計測するノードに印加される電圧が切り替えられる。
また、制御部20bは、電圧計測部10bによって計測された電圧に基づいて、絶縁抵抗Riso1およびRiso2を検出する。例えば、制御部20bは、電圧計測部10bによって計測された電圧が異常値である場合に、絶縁抵抗Riso1またはRiso2が異常となっていると判定することができる。
なお、絶縁検出回路100bがスイッチSW2およびSW3の他に1以上のスイッチを備えている場合には、制御部20bは、1以上のスイッチの切り替えの前後で計測されるノードN10における電圧から、所定のアルゴリズムを用いて絶縁抵抗Riso1およびRiso2の値を算出することができる。
また、制御部20bは、スイッチSW2およびSW3の切り替え前後の、電圧計測部10bが計測したノードN10における電圧を比較することで、絶縁検出回路100bまたは電圧計測部10bの故障を診断してもよい。制御部20bは、故障診断部の一例である。例えば、スイッチSW2およびSW3の切り替え前後のノードN10における電圧の比は、抵抗R11、R12、R13、R14およびR15の抵抗値に応じた一定の比となるはずであるが、一定の比とならなかった場合には、抵抗R11、R12、R13、R14およびR15の少なくともいずれかが故障していること、または、電圧計測部10bが故障していることを判定することができる。
また、実施の形態2では、ノードN9に接続されたスイッチが、2つのスイッチSW2およびSW3である例を説明したが、これに限らない。例えば、ノードN9に接続されたスイッチは、1つであってもよいし、3つ以上であってもよい。
また、実施の形態2では、電圧計測部10bが、負極端子t2の電位を基準としたノードN10における電圧を計測する例を説明したが、グランドGNDの電位を基準としたノードN10における電圧を計測してもよい。
実施の形態2に係る絶縁抵抗検出装置1bの効果についても、実施の形態1と同じように、図2を用いて説明することができる。
図2の(a)に示されるように、電圧計測部10bが計測する電圧(実施の形態2ではノードN10における電圧)が所定の電圧を超えている場合には、スイッチSW2およびSW3が非導通状態とされる。その後、バッテリBatの電圧が低下し、図2の(b)に示されるように、電圧計測部10bが計測する電圧(実施の形態2ではノードN10における電圧)が所定の電圧以下となったとする。この場合、電圧計測部10b(A/Dコンバータ13)への入力電圧に対する誤差の割合が大きくなり、電圧計測部10bの計測誤差が大きくなる。そこで、スイッチSW2およびSW3が非導通状態から導通状態に切り替えられ、電圧計測部10bはノードN10における電圧を計測する。図2の(c)に示されるように、ノードN10における電圧はスイッチSW2およびSW3の切り替え前の電圧よりも高いため、電圧計測部10b(A/Dコンバータ13)への入力電圧に対する誤差の割合を小さくすることができ、電圧計測部10bの計測誤差を小さくすることができる。
なお、実施の形態2においても、実施の形態1と同じように、ノードN10よりも高い電圧が印加されるノードと電圧計測部10bとの間にスイッチが接続され、ノードN10における電圧が所定の電圧以下であると判定された場合に、当該スイッチが切り替えられて、ノードN10よりも高い電圧が印加されるノードにおける電圧が計測されてもよい。これにより、絶縁抵抗Riso1およびRiso2の検出精度を向上させることができる。
以上説明したように、実施の形態2では、スイッチSW2およびSW3は、ノードN9と複数の分圧抵抗のうちのいずれかの抵抗とに接続され、切替部(制御部20b)は、電圧計測部10bで計測されたノードN10における電圧が所定の電圧以下であると判定された場合に、電圧計測部10bが計測するノードN10における電圧が所定の電圧を超えるように、スイッチSW2およびSW3を切り替える。
これによれば、バッテリBatの電圧低下または計測制御過程で、ノードN10において計測される電圧が所定の電圧以下になった場合、ノードN10に印加される電圧がより高くなるように、スイッチSW2およびSW3が切り替えられる。したがって、電圧計測部10bは、ノードN10における所定の電圧よりも高い電圧を計測することができるようになり、電圧計測部10bの計測誤差を小さくすることができる。このように、バッテリBatの電圧が低下した場合などに、電圧計測部10bが電圧を計測するノードN10に印加される電圧を切り替えることで、絶縁抵抗Riso1およびRiso2の検出精度の低下を抑制できる。
例えば、電圧計測部10bは、グランドGNDの電位を基準としたノードN10における電圧を計測してもよい。
例えば絶縁抵抗検出装置1bはマイコンなどにより実現されるが、実施の形態2では、マイコンの基準電位をグランドGNDの電位としている場合に、ノードN10における電圧も、グランドGNDの電位を基準にして計測することができる。
または、例えば、電圧計測部10bは、負極端子t2の電位を基準としたノードN10における電圧を計測してもよい。
例えば絶縁抵抗検出装置1bはマイコンなどにより実現されるが、実施の形態2では、マイコンの基準電位を負極端子t2の電位としている場合に、ノードN10における電圧も、負極端子t2の電位を基準にして計測することができる。
例えば、絶縁抵抗検出装置1bは、さらに、スイッチSW2およびSW3の切り替え前後の、電圧計測部10bが計測したノードN10における電圧を比較することで、絶縁検出回路100bまたは電圧計測部10bの故障を診断する故障診断部(制御部20b)を備えていてもよい。
これによれば、スイッチSW2およびSW3の切り替え前後のノードN10における電圧の比が一定となっているか否かに応じて、絶縁検出回路100bまたは電圧計測部10bの故障を診断することができる。
(その他の実施の形態)
以上のように、本開示に係る技術の例示として実施の形態を説明した。しかしながら、本開示に係る技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。例えば、以下のような変形例も本開示の一実施の形態に含まれる。
以上のように、本開示に係る技術の例示として実施の形態を説明した。しかしながら、本開示に係る技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。例えば、以下のような変形例も本開示の一実施の形態に含まれる。
例えば、本開示は、絶縁抵抗検出装置として実現できるだけでなく、絶縁抵抗検出装置を構成する構成要素が行うステップ(処理)を含む絶縁抵抗検出方法として実現できる。
図5は、その他の実施の形態に係る絶縁抵抗検出方法の一例を示すフローチャートである。
絶縁抵抗検出方法は、図5に示されるように、バッテリの正極端子と負極端子との間に接続された複数の分圧抵抗であって、バッテリからの電流が流れる経路における絶縁抵抗を検出するための絶縁検出回路が備える複数の分圧抵抗間の複数のノードのうちの、第1ノードにおける電圧を計測する電圧計測ステップ(ステップS11)と、電圧計測ステップで計測された第1ノードにおける電圧が所定の電圧以下であるか否かを判定する判定ステップ(ステップS12)と、電圧計測ステップで計測された第1ノードにおける電圧が所定の電圧以下であると判定された場合(ステップS12でYes)に、電圧計測ステップで計測する電圧が所定の電圧を超えるように、複数のノードのうちの第2ノードに接続されたスイッチを切り替える切替ステップ(ステップS13)と、を含む。
例えば、絶縁抵抗検出方法におけるステップは、コンピュータ(コンピュータシステム)によって実行されてもよい。そして、本開示は、絶縁抵抗検出方法に含まれるステップを、コンピュータに実行させるためのプログラムとして実現できる。
さらに、本開示は、そのプログラムを記録したCD-ROMなどである非一時的なコンピュータ読み取り可能な記録媒体として実現できる。
例えば、本発明が、プログラム(ソフトウェア)で実現される場合には、コンピュータのCPU、メモリおよび入出力回路などのハードウェア資源を利用してプログラムが実行されることによって、各ステップが実行される。つまり、CPUがデータをメモリまたは入出力回路などから取得して演算したり、演算結果をメモリまたは入出力回路などに出力したりすることによって、各ステップが実行される。
また、上記実施の形態の絶縁抵抗検出装置に含まれる各構成要素は、専用または汎用の回路として実現されてもよい。
また、上記実施の形態の絶縁抵抗検出装置に含まれる各構成要素は、集積回路(IC:Integrated Circuit)であるLSI(Large Scale Integration)として実現されてもよい。
また、集積回路はLSIに限られず、専用回路または汎用プロセッサで実現されてもよい。プログラム可能なFPGA(Field Programmable Gate Array)、または、LSI内部の回路セルの接続および設定が再構成可能なリコンフィギュラブル・プロセッサが、利用されてもよい。
さらに、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて、絶縁抵抗検出装置に含まれる各構成要素の集積回路化が行われてもよい。
その他、実施の形態に対して当業者が思いつく各種変形を施して得られる形態、本開示の趣旨を逸脱しない範囲で各実施の形態における構成要素および機能を任意に組み合わせることで実現される形態も本開示に含まれる。
本開示は、車両などに搭載される高電圧のバッテリからの電流が流れる経路における絶縁抵抗を検出する装置に適用できる。
1、1a、1b 絶縁抵抗検出装置
10、10a、10b 電圧計測部
11、11a、12、12a、13 A/Dコンバータ
20、20a、20b 制御部
100、100a、100b 絶縁検出回路
Bat バッテリ
GND グランド
N1、N2、N3、N4、N5、N6、N7、N8、N9、N10 ノード
R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12、R13、R14、R15 抵抗
Riso1、Riso2 絶縁抵抗
SW1、SW1a、SW2、SW3 スイッチ
t1 正極端子
t2 負極端子
10、10a、10b 電圧計測部
11、11a、12、12a、13 A/Dコンバータ
20、20a、20b 制御部
100、100a、100b 絶縁検出回路
Bat バッテリ
GND グランド
N1、N2、N3、N4、N5、N6、N7、N8、N9、N10 ノード
R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12、R13、R14、R15 抵抗
Riso1、Riso2 絶縁抵抗
SW1、SW1a、SW2、SW3 スイッチ
t1 正極端子
t2 負極端子
Claims (10)
- バッテリの正極端子と負極端子との間に接続された複数の分圧抵抗であって、前記バッテリからの電流が流れる経路における絶縁抵抗を検出するための絶縁検出回路が備える複数の分圧抵抗間の複数のノードのうちの、第1ノードにおける電圧を計測する電圧計測部と、
前記電圧計測部で計測された前記第1ノードにおける電圧が所定の電圧以下であるか否かを判定する判定部と、
前記電圧計測部で計測された前記第1ノードにおける電圧が所定の電圧以下であると判定された場合に、前記電圧計測部が計測する電圧が前記所定の電圧を超えるように、前記複数のノードのうちの第2ノードに接続されたスイッチを切り替える切替部と、を備える、
絶縁抵抗検出装置。 - 前記第2ノードは、前記第1ノードよりも高い電圧が印加されるノードであり、
前記スイッチは、前記第2ノードと前記電圧計測部との間に接続され、
前記切替部は、前記電圧計測部で計測された前記第1ノードにおける電圧が前記所定の電圧以下であると判定された場合に、前記第2ノードと前記電圧計測部とを接続するように前記スイッチを切り替え、
前記電圧計測部は、前記第2ノードにおける電圧を計測する、
請求項1に記載の絶縁抵抗検出装置。 - 前記正極端子は、前記複数の分圧抵抗のうちの少なくとも1つの抵抗を介してグランドと接続され、
前記負極端子は、前記複数の分圧抵抗のうちの他の少なくとも1つの抵抗を介して前記グランドと接続され、
前記電圧計測部は、前記グランドの電位を基準とした前記第1ノードおよび前記第2ノードにおける電圧を計測する、
請求項2に記載の絶縁抵抗検出装置。 - 前記電圧計測部は、前記負極端子の電位を基準とした前記第1ノードおよび前記第2ノードにおける電圧を計測する、
請求項2に記載の絶縁抵抗検出装置。 - さらに、前記電圧計測部が計測した前記第1ノードにおける電圧と前記第2ノードにおける電圧とを比較することで、前記絶縁検出回路または前記電圧計測部の故障を診断する故障診断部を備える、
請求項2~4のいずれか1項に記載の絶縁抵抗検出装置。 - 前記スイッチは、前記第2ノードと前記複数の分圧抵抗のうちのいずれかの抵抗とに接続され、
前記切替部は、前記電圧計測部で計測された前記第1ノードにおける電圧が前記所定の電圧以下であると判定された場合に、前記電圧計測部が計測する前記第1ノードにおける電圧が前記所定の電圧を超えるように、前記スイッチを切り替える、
請求項1または2に記載の絶縁抵抗検出装置。 - 前記正極端子は、前記複数の分圧抵抗のうちの少なくとも1つの抵抗を介してグランドと接続され、
前記負極端子は、前記複数の分圧抵抗のうちの他の少なくとも1つの抵抗を介して前記グランドと接続され、
前記電圧計測部は、前記グランドの電位を基準とした前記第1ノードにおける電圧を計測する、
請求項6に記載の絶縁抵抗検出装置。 - 前記電圧計測部は、前記負極端子の電位を基準とした前記第1ノードにおける電圧を計測する、
請求項6に記載の絶縁抵抗検出装置。 - さらに、前記スイッチの切り替え前後の、前記電圧計測部が計測した前記第1ノードにおける電圧を比較することで、前記絶縁検出回路または前記電圧計測部の故障を診断する故障診断部を備える、
請求項6~8のいずれか1項に記載の絶縁抵抗検出装置。 - バッテリの正極端子と負極端子との間に接続された複数の分圧抵抗であって、前記バッテリからの電流が流れる経路における絶縁抵抗を検出するための絶縁検出回路が備える複数の分圧抵抗間の複数のノードのうちの、第1ノードにおける電圧を計測する電圧計測ステップと、
前記電圧計測ステップで計測された前記第1ノードにおける電圧が所定の電圧以下であるか否かを判定する判定ステップと、
前記電圧計測ステップで計測された前記第1ノードにおける電圧が所定の電圧以下であると判定された場合に、前記電圧計測ステップで計測する電圧が前記所定の電圧を超えるように、前記複数のノードのうちの第2ノードに接続されたスイッチを切り替える切替ステップと、を含む、
絶縁抵抗検出方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-083426 | 2022-05-20 | ||
JP2022083426 | 2022-05-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023223698A1 true WO2023223698A1 (ja) | 2023-11-23 |
Family
ID=88834984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/013815 WO2023223698A1 (ja) | 2022-05-20 | 2023-04-03 | 絶縁抵抗検出装置および絶縁抵抗検出方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023223698A1 (ja) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07203601A (ja) * | 1993-12-29 | 1995-08-04 | Matsushita Electric Works Ltd | 漏洩判別方法及びその装置 |
JPH08136602A (ja) * | 1994-11-09 | 1996-05-31 | Tokyo Electric Power Co Inc:The | 直流回路の地絡検出方法並びにその装置 |
JP2010019603A (ja) * | 2008-07-08 | 2010-01-28 | Hitachi Ltd | 電源装置 |
CN105527535A (zh) * | 2016-01-05 | 2016-04-27 | 惠州市蓝微新源技术有限公司 | 基于可变电阻网络的直流漏电绝缘检测系统及方法 |
CN108072846A (zh) * | 2017-12-29 | 2018-05-25 | 河南北瑞电子科技有限公司 | 一种锂电池绝缘电阻在线检测装置 |
EP3660520A1 (en) * | 2018-11-30 | 2020-06-03 | Munich Electrification GmbH | Battery management system for an electric vehicle with leakage resistance detection |
CN210742435U (zh) * | 2019-09-09 | 2020-06-12 | 北京新能源汽车股份有限公司 | 一种电动汽车的绝缘检测系统及汽车 |
CN112858856A (zh) * | 2021-03-04 | 2021-05-28 | 南京市欣旺达新能源有限公司 | 一种低成本绝缘检测电路及检测方法 |
JP2021156673A (ja) * | 2020-03-26 | 2021-10-07 | 日立Astemo株式会社 | 地絡検出装置 |
-
2023
- 2023-04-03 WO PCT/JP2023/013815 patent/WO2023223698A1/ja unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07203601A (ja) * | 1993-12-29 | 1995-08-04 | Matsushita Electric Works Ltd | 漏洩判別方法及びその装置 |
JPH08136602A (ja) * | 1994-11-09 | 1996-05-31 | Tokyo Electric Power Co Inc:The | 直流回路の地絡検出方法並びにその装置 |
JP2010019603A (ja) * | 2008-07-08 | 2010-01-28 | Hitachi Ltd | 電源装置 |
CN105527535A (zh) * | 2016-01-05 | 2016-04-27 | 惠州市蓝微新源技术有限公司 | 基于可变电阻网络的直流漏电绝缘检测系统及方法 |
CN108072846A (zh) * | 2017-12-29 | 2018-05-25 | 河南北瑞电子科技有限公司 | 一种锂电池绝缘电阻在线检测装置 |
EP3660520A1 (en) * | 2018-11-30 | 2020-06-03 | Munich Electrification GmbH | Battery management system for an electric vehicle with leakage resistance detection |
CN210742435U (zh) * | 2019-09-09 | 2020-06-12 | 北京新能源汽车股份有限公司 | 一种电动汽车的绝缘检测系统及汽车 |
JP2021156673A (ja) * | 2020-03-26 | 2021-10-07 | 日立Astemo株式会社 | 地絡検出装置 |
CN112858856A (zh) * | 2021-03-04 | 2021-05-28 | 南京市欣旺达新能源有限公司 | 一种低成本绝缘检测电路及检测方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107643490B (zh) | 电池监控系统 | |
CN105762864B (zh) | 电池监控装置 | |
US8489347B2 (en) | Battery pack monitoring apparatus | |
US10871523B2 (en) | Battery monitoring apparatus | |
US10901036B2 (en) | Assembled battery monitoring system | |
JP6594952B2 (ja) | 電池管理装置、電池監視回路、制御システム | |
US9806520B2 (en) | Inrush current limiting circuit | |
US10288694B2 (en) | Secondary battery monitoring device and method for diagnosing failure | |
JP5326973B2 (ja) | 電池監視装置 | |
JP6652960B2 (ja) | 電池管理装置、電池監視回路、制御システム | |
JP2015008600A (ja) | スイッチ故障診断装置、スイッチ故障診断方法 | |
JP2013219955A (ja) | 電源装置 | |
JP2019066364A (ja) | スイッチの故障検出装置 | |
JP6324333B2 (ja) | セルバランス回路及びその故障診断装置 | |
JP7014565B2 (ja) | 二次電池監視装置及び故障診断方法 | |
WO2023223698A1 (ja) | 絶縁抵抗検出装置および絶縁抵抗検出方法 | |
KR20220049950A (ko) | 릴레이 진단 장치, 릴레이 진단 방법, 배터리 시스템 및 전기 차량 | |
JP4404907B2 (ja) | 出力最終段を検査する装置 | |
JP2011075314A (ja) | 電池監視装置 | |
JP6753730B2 (ja) | 電池監視システム、断線検出機能の自己診断方法 | |
JP5316343B2 (ja) | 電池監視装置 | |
JPWO2020003850A1 (ja) | 集積回路、電池監視装置、及び、電池監視システム | |
KR20210104458A (ko) | 배터리 장치 및 전류 센서 진단 방법 | |
WO2023228718A1 (ja) | 絶縁抵抗検出回路 | |
JP7522783B2 (ja) | ヒューズ溶断検出回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23807313 Country of ref document: EP Kind code of ref document: A1 |