WO2023223683A1 - 電気抵抗式溶融炉における炭素電極長の測定装置及び測定方法、当該測定装置に使用されるテーパーユニオン、並びにテーパーユニオンと金属製パイプとの接続方法 - Google Patents

電気抵抗式溶融炉における炭素電極長の測定装置及び測定方法、当該測定装置に使用されるテーパーユニオン、並びにテーパーユニオンと金属製パイプとの接続方法 Download PDF

Info

Publication number
WO2023223683A1
WO2023223683A1 PCT/JP2023/013032 JP2023013032W WO2023223683A1 WO 2023223683 A1 WO2023223683 A1 WO 2023223683A1 JP 2023013032 W JP2023013032 W JP 2023013032W WO 2023223683 A1 WO2023223683 A1 WO 2023223683A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon electrode
union
metal pipe
tapered
length
Prior art date
Application number
PCT/JP2023/013032
Other languages
English (en)
French (fr)
Inventor
早衛 萱野
幸一 松本
Original Assignee
株式会社Wadeco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Wadeco filed Critical 株式会社Wadeco
Publication of WO2023223683A1 publication Critical patent/WO2023223683A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/08Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces heated electrically, with or without any other source of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/28Arrangement of controlling, monitoring, alarm or the like devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more

Definitions

  • the present invention measures the length of the carbon electrode in an electric resistance melting furnace in which a carbon electrode hanging down into the furnace is inserted into the material to be melted deposited in the furnace, and electricity is applied to the carbon electrode to melt the material to be melted.
  • the present invention relates to an apparatus and a measuring method.
  • the present invention also relates to a taper union used in the measuring device, and a method for connecting the taper union and a metal pipe.
  • Electric resistance melting furnaces are used in which materials to be melted, such as iron ore, are put into the furnace, a carbon electrode is inserted into the accumulated material to be melted, the material is discharged, the material to be melted is melted, and the molten material is recovered. .
  • the carbon electrode gradually becomes shorter as discharge occurs, so it is necessary to measure the length of the carbon electrode and control the position of the carbon electrode.
  • Patent Document 1 the applicant inserts a metal pipe as a waveguide reaching the lower end of the carbon electrode inside the carbon electrode, and attaches a microwave transmitter/receiver to the upper end of the metal pipe. , the length of the metal pipe is measured by transmitting microwaves and receiving the microwaves reflected at the bottom end of the metal pipe, and the measured length of the metal pipe is determined as the length of the carbon electrode.
  • Electrical resistance A method for measuring electrode length in a type melting furnace is proposed.
  • the present invention provides a measuring device and method for measuring the length of a carbon electrode by inserting a metal pipe inside a carbon electrode and receiving microwaves reflected at the lower end of the metal pipe. It is an object of the present invention to provide a measuring device and a measuring method that accurately measure the length of a carbon electrode by eliminating measurement errors caused by the outer shape of a melted union.
  • the present invention provides the following.
  • a carbon electrode hanging down into the furnace is inserted into the material to be melted deposited in the furnace, and the carbon electrode is energized to melt the material to be melted.
  • a device for measuring the A plurality of metal pipes are formed with two tapered surfaces continuously extending from the center portion having the maximum diameter to both ends so as to be inserted through at least one of the carbon electrodes and reach the lower end of the carbon electrode.
  • a cavity is formed by melting down the metal pipe, the tapered union, or both the metal pipe and the tapered union, and the group of metal pipes other than the cavity.
  • a carbon electrode length measuring device in an electric resistance melting furnace which measures the length of the carbon electrode by receiving the microwave reflected from the melt surface of the object to be melted.
  • a taper union used to connect the metal pipes A tapered union that has an external shape with two tapered surfaces that extend continuously from the center portion, which is the maximum diameter, to both ends.
  • the tapered union according to (2) above characterized in that the tapered union has a screw hole reaching the inner peripheral surface through which the metal pipe is inserted, and a set screw is attached to the screw hole.
  • a method for connecting the tapered union according to (3) above and the metal pipe comprising: After inserting the metal pipe into the taper union and installing the set screw in the screw hole, a portion of the set screw protruding from the outer circumferential surface of the taper union is removed. Connection method.
  • a carbon electrode hanging down into the furnace is inserted into the material to be melted deposited in the furnace, and the carbon electrode is energized to melt the material to be melted.
  • one metal pipe group is constructed by connecting a plurality of metal pipes with a tapered union having an external shape with no stepped portion so as to reach the lower end of the carbon electrode inside the carbon electrode. Insert. Therefore, the cavity of the carbon electrode that is formed when the metal pipe or tapered union melts down also has a shape without a stepped portion. As a result, there is no problem in the propagation of microwaves in this cavity, and the length of the carbon electrode can be accurately measured.
  • FIG. 1 is a diagram showing an example of the overall structure of an electric resistance melting furnace.
  • FIG. 2 is a cross-sectional view showing a carbon electrode inserted through a group of metal pipes.
  • FIG. 3(A) is a cross-sectional view showing the tapered union, and
  • FIG. 3(B) is a plan view seen from the AA direction in FIG. 3(A).
  • FIG. 4(A) is a side view showing the set screw, and FIG. 4(B) is a plan view seen from the BB direction in FIG. 4(A).
  • FIG. 1 is a diagram showing an example of the overall structure of an electric resistance melting furnace.
  • a carbon electrode 101 hanging inside an electric resistance melting furnace 100 is inserted into deposited iron ore 102 using a lifting device 120, and power is supplied to the carbon electrode 101 from a power source 110 to melt the iron ore.
  • Three layers of melted and unmelted iron ore 102, a molten slag layer 103, and a molten iron layer 104 are formed, and the molten slag is collected from the slag discharge port 105, and the molten iron is collected from the tap port 106.
  • FIG. 1 is a diagram showing an example of the overall structure of an electric resistance melting furnace.
  • a carbon electrode 101 hanging inside an electric resistance melting furnace 100 is inserted into deposited iron ore 102 using a lifting device 120, and power is supplied to the carbon electrode 101 from a power source 110 to melt the iron ore.
  • the carbon electrode 101 has an electrode case 150 filled with an electrode body 160 made of a mixture of carbon lumps and coal tar pitch, and is powered by a power source 110 through an electrode holder 180 shown in FIG. Ru. Further, the lower end 201 of the carbon electrode 101 is in contact with the liquid surface of the molten iron layer 104.
  • the carbon electrode 101a is made to function as an electrode for measuring electrode length. Then, when the microwave is transmitted from the transceiver 300, the microwave propagates inside the metal pipe group 200 and is reflected by the liquid surface of the molten iron layer 104 when it reaches the lower end 201 of the carbon electrode 101a. Then, the reflected microwave propagates again inside the metal pipe group 200 and is received by the transceiver 300. Then, the length of the metal pipe group 200 is determined from the time difference between transmission and reception of microwaves.
  • nitrogen gas or inert Gas may be supplied to increase the internal pressure of the pipe. Note that the internal pressure is adjusted by a pressure regulator 250.
  • the method of adding a short metal pipe is to add a short metal pipe 200a from above the carbon electrode 101a, connect it with a tapered union 230 made of the same material as the short metal pipe 200a, and make one long metal pipe. They are configured as a group 200, and are added sequentially from the top.
  • the short metal pipe 200a located at the lower end 201 of the carbon electrode 101a of the metal pipe group 200 and furthermore the tapered union 230 melt down
  • the short metal pipe 200a located at the lower end 201 of the carbon electrode 101a of the metal pipe group 200 melts down, and the short metal pipe 200a located at the lower end 201 of the carbon electrode 101a is melted down.
  • a cavity 240 corresponding to the external shape of the pipe 200a and the tapered union 230 is formed.
  • the tapered union 230 melts down together with the metal pipe 200a, but either the metal pipe 200a or the tapered union 230 may melt down, and the shape of the cavity 240 also changes accordingly. It will be as per your requirement.
  • FIGS. 3(A) and 3(B) the outer shape of the union is made to have no stepped portion.
  • FIG. 3(A) is a cross-sectional view of the tapered union 230 according to this embodiment in which the external shape of the union is a shape without a stepped portion
  • FIG. 3(B) is a cross-sectional view of A- It is a top view seen from the A direction.
  • the tapered union 230 according to the present embodiment is formed into a cylindrical shape with a central portion 231 having the maximum outer diameter and a predetermined width, and is continuous from the central portion 231 to both ends. Two tapered surfaces 232, 232 are formed which extend as shown in FIG.
  • a step-shaped stopper 233 having the same width as the wall thickness of the metal pipe 200a protrudes in an annular shape from the inner peripheral surface of the center portion in the longitudinal direction of the tapered union 230, and the metal pipe 200a is The part is inserted so as to come into contact with the stopper 233.
  • the stopper 233 since the stopper 233 has the same thickness as the metal pipe 200a, it does not interfere with the propagation of microwaves.
  • the longitudinal dimensions H1 and H2 of the central portion 231 and the tapered surface 232 are each longer than the wavelength of the microwave. If each of the dimensions H1 and H2 is within this range, propagation of microwaves in the tapered union 230 and the cavity 240 will not be hindered. Note that the lengths H2 of the two tapered surfaces 232 may be the same or different.
  • the maximum outer diameter D of the tapered union 230 becomes the inner diameter of the cavity 240, it is preferably a dimension that does not convert the microwave mode, that is, a dimension that does not generate higher-order microwave modes.
  • the center portion 231 of the tapered union 230 has screw holes 235 at multiple locations at equal intervals along the circumferential direction for mounting the set screws 270 shown in FIG. It is formed to penetrate to the inner peripheral surface.
  • the set screw 270 has a longitudinal length L longer than the wall thickness of the central portion 231 of the tapered union 230, and has a screw 272 formed on its outer circumferential surface that engages with the thread of the threaded hole 235 of the tapered union 230. There is. Further, a hexagonal hole 275 is formed in one end surface.
  • the set screw 270 is made of the same material as the taper union 230 and the metal pipe 200a.
  • the metal pipe 200a can be fixed and connected. That is, after inserting a new metal pipe 200a until it contacts the stopper 233 of the taper union 230, the set screw 270 is installed in the threaded hole 235 of the taper union 230, so that the end surface of the set screw 270 is aligned with the outer periphery of the metal pipe 200a. Fix the metal pipe 200a by inserting screws until it reaches the surface. Thereafter, the portion of the set screw 270 protruding from the threaded hole 235 of the tapered union 230 is cut off using a sander or the like, and the outer peripheral surface of the tapered union 230 is processed so as not to have any unevenness.
  • the tapered union 230 which has an external shape with no stepped portion, as a union for connecting a plurality of short metal pipes, there is no stepped portion in the cavity 240 of the carbon electrode 101a, and the length of the carbon electrode 101a is eliminated. can be determined accurately.
  • the cavity 240 of the carbon electrode 101a also includes the outer peripheral surface of the melted metal pipe 200a, so the interface between the lower end of the melted metal pipe 200a and the upper end 240a of the cavity 240 A step 245 corresponding to the thickness of the metal pipe 200a is formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

金属製パイプとともに溶け落ちたユニオンの外形形状に由来する測定誤差を無くし、炭素電極の長さを正確に測定する。少なくとも1本の炭素電極に挿通され、炭素電極の下端に達するように、複数の金属製パイプを、最大径である中央部分から両端に連続して延びる2つのテーパー面が形成されている外形形状のテーパーユニオンで繋いで構成された1本の金属製パイプ群と、金属製パイプ群の上端に装着されるマイクロ波の送受信装置と、を備えるとともに、送受信装置からマイクロ波を送信し、炭素電極の下端部にて、金属製パイプまたはテーパーユニオン、もしくは金属製パイプ及びテーパーユニオンの両方が溶け落ちて形成される空洞と、空洞以外の金属製パイプ群とで構成される伝搬経路にマイクロ波を伝搬させ、被溶融物の溶融液面で反射されたマイクロ波を受信して炭素電極の長さを求める。

Description

電気抵抗式溶融炉における炭素電極長の測定装置及び測定方法、当該測定装置に使用されるテーパーユニオン、並びにテーパーユニオンと金属製パイプとの接続方法
 本発明は、炉内に堆積した被溶融物に、炉内に垂下する炭素電極を差し入れ、炭素電極に通電して被溶融物を溶融する電気抵抗式溶融炉における、炭素電極の長さを測定する装置及び測定方法に関する。また、本発明は、当該測定装置に用いられるテーパーユニオン、及びテーパーユニオンと金属製パイプとの接続方法に関する。
 鉄鉱石等の被溶融物を炉内に投入し、堆積した被溶融物に炭素電極を差し入れて放電して被溶融物を溶融し、溶融物を回収する電気抵抗式溶融炉が使用されている。この電気抵抗式溶融炉では、放電に伴って炭素電極が徐々に短くなるため、炭素電極の長さを測定して、炭素電極の位置を制御する必要がある。
 ここで、本出願人は、特許文献1において、炭素電極の内部に、導波管として炭素電極の下端に達する金属製パイプを挿通し、金属製パイプの上端にマイクロ波送受信器を装着するとともに、マイクロ波を送信し、金属製パイプの下端で反射されたマイクロ波を受信して金属製パイプの長さを計測し、計測した金属製パイプの長さを炭素電極の長さとして求める電気抵抗式溶融炉における電極長の測定方法を提案している。
 上記したように、炭素電極は放電により徐々に短くなるが、それに伴って下端の金属製パイプも溶け落ちていく。そのため、例えば特許文献2に記載されているように、短い金属製パイプを複数、ユニオン(同文献の図4の符号78)で繋いで一本の金属製パイプ群にするとともに、上端側に短い金属製パイプを継ぎ足しながら運用することが求められる。
 しかしながら、金属製パイプとともにユニオンも溶け落ち、これらが溶け落ちた後には、炭素電極に金属製パイプ及びユニオンの外形形状に相当する空洞が残る。この場合、この空洞にもマイクロ波が伝搬するため、空洞に段差があると、段差部分でマイクロ波が反射して炭素電極の長さを正確に測定できない。 特に、上記特許文献2に示すような、金属製パイプを接続する一般的なユニオンは、その外形形状が複雑で、ナットの角部などに段差があり、溶け落ちた後の空洞部分に段差ができてしまうため、炭素電極長の長さを測定するには適さない。
日本国特許第5671744号公報 欧州特許第3295209号明細書
 そこで本発明は、炭素電極の内部に金属製パイプを挿通し、金属製パイプの下端で反射したマイクロ波を受信して炭素電極の長さを測定する測定装置及び測定方法において、金属製パイプとともに溶け落ちたユニオンの外形形状に由来する測定誤差を無くし、炭素電極の長さを正確に測定する測定装置及び測定方法を提供することを目的とする。
 上記課題を解決するために本発明は、下記を提供する。
(1)炉内に堆積した被溶融物に、前記炉内に垂下する炭素電極を差し入れ、前記炭素電極に通電して前記被溶融物を溶融する電気抵抗式溶融炉における、前記炭素電極の長さを測定する装置であって、
 少なくとも1本の前記炭素電極に挿通され、前記炭素電極の下端に達するように、複数の金属製パイプを、最大径である中央部分から両端に連続して延びる2つのテーパー面が形成されている外形形状のテーパーユニオンで繋いで構成された1本の金属製パイプ群と、
 前記金属製パイプ群の上端に装着されるマイクロ波の送受信装置と、を備えるとともに、
 前記送受信装置から前記マイクロ波を送信し、
 前記炭素電極の下端部にて、前記金属製パイプまたは前記テーパーユニオン、もしくは前記金属製パイプ及び前記テーパーユニオンの両方が溶け落ちて形成される空洞と、前記空洞以外の前記金属製パイプ群とで構成される伝搬経路に前記マイクロ波を伝搬させ、
 前記被溶融物の溶融液面で反射された前記マイクロ波を受信して前記炭素電極の長さを求める、電気抵抗式溶融炉における炭素電極長の測定装置。
(2)上記(1)に記載の電気抵抗式溶融炉における炭素電極長の測定装置において、前記金属製パイプを繋ぐために使用されるテーパーユニオンであって、
 最大径である中央部分から両端に連続して延びる2つのテーパー面が形成されている外形形状を有する、テーパーユニオン。
(3)前記金属製パイプが挿通される内周面に達するネジ孔を有し、前記ネジ孔にセットスクリューが装着されることを特徴とする上記(2)に記載のテーパーユニオン。
(4)上記(3)に記載のテーパーユニオンと、前記金属製パイプとの接続方法であって、
 前記テーパーユニオンに前記金属製パイプを挿通し、前記ネジ孔に前記セットスクリューを装着した後、前記セットスクリューの前記テーパーユニオンの外周面からの突出部分を切除する、テーパーユニオンと金属製パイプとの接続方法。
(5)炉内に堆積した被溶融物に、前記炉内に垂下する炭素電極を差し入れ、前記炭素電極に通電して前記被溶融物を溶融する電気抵抗式溶融炉における、前記炭素電極の長さを測定する方法であって、
 上記(1)に記載の電気抵抗式溶融炉における炭素電極長の測定装置を用い、
 前記送受信装置から送信され、前記伝搬経路を伝搬し、前記被溶融物の溶融液面で反射された前記マイクロ波を受信して前記炭素電極の長さを求める、電気抵抗式溶融炉における炭素電極長の測定方法。
 本発明では、炭素電極の内部に対し、炭素電極の下端に達するように、複数の金属製パイプを、段差部分の無い外形形状のテーパーユニオンで繋いで構成された、1本の金属製パイプ群を挿通する。そのため、金属製パイプやテーパーユニオンが溶け落ちた際に形成される炭素電極の空洞も、段差部分の無い形状になる。その結果、この空洞において、マイクロ波の伝搬には支障が無くなり、炭素電極の長さを正確に測定することができる。
図1は、電気抵抗式溶融炉の全体構造の一例を示す図である。 図2は、金属製パイプ群を挿通した炭素電極を示す断面図である。 図3(A)は、テーパーユニオンを示す断面図であり、図3(B)は、図3(A)のA-A方向から見た平面図である。 図4(A)は、セットスクリューを示す側面図であり、図4(B)は、図4(A)のB-B方向から見た平面図である。
 図1は、電気抵抗式溶融炉の全体構造の一例を示す図である。図示されるように、電気抵抗式溶融炉100の内部に垂下する炭素電極101を、昇降装置120により、堆積している鉄鉱石102に差し入れ、電源110から炭素電極101に給電して鉄鉱石を溶融して未溶融の鉄鉱石102、溶融スラグ層103及び溶融鉄層104の3層を形成し、スラグ排出口105から溶融スラグを回収し、出鋼口106から溶融鉄を回収する。
 炭素電極101は、図2に示すように、電極ケース150にカーボン塊とコールタールピッチとの混合物からなる電極本体160を充填したものであり、図1に示す電極ホルダー180を通じて電源110から給電される。また、炭素電極101の下端201が溶融鉄層104の液面と接触している。
 また、少なくとも1本の炭素電極101aの内部に、炭素電極101aの下端に達する金属製パイプ群200を挿通し、更に金属製パイプ群200の上端にマイクロ波の送受信器300を装着することで、炭素電極101aを電極長測定用電極として機能させる。そして、送受信器300からマイクロ波を送信すると、マイクロ波は金属製パイプ群200の内部を伝播し、炭素電極101aの下端201に達した時点で、溶融鉄層104の液面で反射される。そして、反射されたマイクロ波が金属製パイプ群200の内部を再度伝搬して送受信器300で受信される。そして、マイクロ波の送受信の時間差から金属製パイプ群200の長さが求められる。
 また、金属製パイプ群200の下端は開口しているため、溶融スラグや溶融鉄が流入するのを防ぐために、パイプの上方部分、例えば継手210と送受信器300との間に窒素ガスや不活性ガスを供給してパイプの内圧を高めてもよい。なお、内圧の調整は、圧力調整器250で行う。
 金属製パイプ群200の下端は溶融時に消耗するため、送受信器300との間に継手210を挿入し、消耗分を継ぎ足すように構成されている。継ぎ足し方法としては、図2に示すように、短い金属製パイプ200aを炭素電極101aの上方から継ぎ足し、短い金属製パイプ200aと同材質からなるテーパーユニオン230で繋いで、1本の長い金属製パイプ群200として構成されており、上方から順次継ぎ足す。
 また、金属製パイプ群200の炭素電極101aの下端201に位置する短い金属製パイプ200a、更にはテーパーユニオン230が溶け落ちると、炭素電極101aの下端201の近傍には、溶け落ちた短い金属製パイプ200a及びテーパーユニオン230の外形形状に相当する空洞240が形成される。
 なお、図示の例では、金属製パイプ200aとともにテーパーユニオン230が溶け落ちた場合を示しているが、金属製パイプ200a、テーパーユニオン230の何れかが溶け落ちる場合もあり、空洞240の形状もそれに応じたものとなる。
 ここで、仮に、短い金属製パイプ200aを複数繋ぎ合わせるユニオンとして、上記したような一般的なユニオン(特許文献2の図4の符号78を参照)を用いた場合、ユニオンの外形形状に段差部分があることで、この段差部分が炭素電極101aの空洞240にも形成される。金属製パイプ群200を伝搬してきたマイクロ波は、引き続き炭素電極101aに形成された空洞240を伝搬するが、その際、空洞240の段差部分で反射されてしまうこととなる。その結果、上記マイクロ波は、溶融鉄層104の液面で反射されるべきところ、当該液面で反射されなくなってしまうことから、本来の炭素電極101aの長さが正確に測定されないこととなる。
 そこで、本実施形態では、図3(A)及び図3(B)に示すように、ユニオンの外形形状を段差部分の無い形状とする。尚、図3(A)は、ユニオンの外形形状を段差部分の無い形状とした本実施形態に係るテーパーユニオン230の断面図であり、図3(B)は、図3(A)のA-A方向から見た平面図である。図3(A)に示すように、本実施形態に係るテーパーユニオン230は、中央部分231が最大外径で、所定の幅にて筒状に形成されているとともに、中央部分231から両端に連続して延びる2つのテーパー面232、232が形成されており、その全体がほぼ樽状の外形形状を呈することから、その外形形状において段差部分を有さない。
 また、テーパーユニオン230の長手方向の中心部の内周面には、金属製パイプ200aの肉厚と同じ幅の段状のストッパー233が円環状に突出しており、金属製パイプ200aは、その端部がストッパー233に当接するように挿通される。ここで、ストッパー233は金属製パイプ200aの肉厚と同じであるから、マイクロ波の伝搬に支障をきたすことがない。
 なお、中央部分231及びテーパー面232におけるそれぞれの長手方向の寸法H1及びH2、即ち金属製パイプ200aの軸線に沿った各部の長さは、それぞれマイクロ波の波長以上とすることが好ましい。寸法H1及びH2それぞれがこの範囲であれば、テーパーユニオン230及び空洞240におけるマイクロ波の伝搬に支障をきたすことがなくなる。なお、2つのテーパー面232の長さH2は、同一でも、それぞれ異なっていてもよい。
 また、テーパーユニオン230の最大外径Dが、空洞240の内径になるため、マイクロ波のモードが変換しない寸法、すなわち、マイクロ波の高次モードを発生させない寸法とすることが好ましい。
 さらに、図3(B)に示すように、テーパーユニオン230の中央部分231には、周方向に沿って等間隔で複数個所に、図4に示すセットスクリュー270を装着するためのネジ孔235が内周面まで貫通して形成されている。
 セットスクリュー270は、長手方向の長さLが、テーパーユニオン230の中央部分231の肉厚よりも長く、外周面にテーパーユニオン230のネジ孔235のネジ山と係合するネジ272が形成されている。また、一方の端面には、六角穴275が形成されている。尚、セットスクリュー270の材質は、テーパーユニオン230及び金属製パイプ200aと同材質である。
 このようなテーパーユニオン230とセットスクリュー270により、金属製パイプ200aを固定し、連結することができる。即ち、新たな金属製パイプ200aをテーパーユニオン230のストッパー233に当接するまで挿入した後、テーパーユニオン230のネジ孔235にセットスクリュー270を装着し、セットスクリュー270の端面が金属製パイプ200aの外周面に達するまでネジ入れて金属製パイプ200aを固定する。その後、セットスクリュー270のテーパーユニオン230のネジ孔235から突出している部分を、サンダー等で切り落とし、テーパーユニオン230の外周面に凹凸ができないように加工する。
 以上のように、短い金属製パイプを複数繋ぎ合わせるユニオンとして、段差部分の無い外形形状を有するテーパーユニオン230を用いることにより、炭素電極101aの空洞240にも段差部分がなくなり、炭素電極101aの長さを正確に求めることができる。
 また、図2に示すように、炭素電極101aの空洞240は、溶け落ちた金属製パイプ200aの外周面も含むため、溶け落ちた金属製パイプ200aの下端と、空洞240の上端240aとの界面には、金属製パイプ200aの肉厚に相当する段差245が形成される。金属製パイプ200aの肉厚が厚くなるほど、段差245も大きくなるため、マイクロ波の伝搬に影響しないように、肉厚が2mm以下の金属製パイプ200aを使用することが好ましい。
 以上、各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 なお、本出願は、2022年5月18日出願の日本特許出願(特願2022-081614)に基づくものであり、その内容は本出願の中に参照として援用される。
100 電気抵抗式溶融炉
101、101a 炭素電極
200 金属製パイプ群
200a 金属製パイプ
201 (金属製パイプ群の)下端
230 テーパーユニオン
231 中央部分
232 テーパー面
233 ストッパー
235 ネジ孔
240 空洞
270 セットスクリュー
300 送受信器

Claims (5)

  1.  炉内に堆積した被溶融物に、前記炉内に垂下する炭素電極を差し入れ、前記炭素電極に通電して前記被溶融物を溶融する電気抵抗式溶融炉における、前記炭素電極の長さを測定する装置であって、
     少なくとも1本の前記炭素電極に挿通され、前記炭素電極の下端に達するように、複数の金属製パイプを、最大径である中央部分から両端に連続して延びる2つのテーパー面が形成されている外形形状のテーパーユニオンで繋いで構成された1本の金属製パイプ群と、
     前記金属製パイプ群の上端に装着されるマイクロ波の送受信装置と、を備えるとともに、
     前記送受信装置から前記マイクロ波を送信し、
     前記炭素電極の下端部にて、前記金属製パイプまたは前記テーパーユニオン、もしくは前記金属製パイプ及び前記テーパーユニオンの両方が溶け落ちて形成される空洞と、前記空洞以外の前記金属製パイプ群とで構成される伝搬経路に前記マイクロ波を伝搬させ、
     前記被溶融物の溶融液面で反射された前記マイクロ波を受信して前記炭素電極の長さを求める、電気抵抗式溶融炉における炭素電極長の測定装置。
  2.  請求項1に記載の電気抵抗式溶融炉における炭素電極長の測定装置において、前記金属製パイプを繋ぐために使用されるテーパーユニオンであって、
     最大径である中央部分から両端に連続して延びる2つのテーパー面が形成されている外形形状を有する、テーパーユニオン。
  3.  前記金属製パイプが挿通される内周面に達するネジ孔を有し、前記ネジ孔にセットスクリューが装着されることを特徴とする請求項2に記載のテーパーユニオン。
  4.  請求項3に記載のテーパーユニオンと、前記金属製パイプとの接続方法であって、
     前記テーパーユニオンに前記金属製パイプを挿通し、前記ネジ孔に前記セットスクリューを装着した後、前記セットスクリューの前記テーパーユニオンの外周面からの突出部分を切除する、テーパーユニオンと金属製パイプとの接続方法。
  5.  炉内に堆積した被溶融物に、前記炉内に垂下する炭素電極を差し入れ、前記炭素電極に通電して前記被溶融物を溶融する電気抵抗式溶融炉における、前記炭素電極の長さを測定する方法であって、
     請求項1に記載の電気抵抗式溶融炉における炭素電極長の測定装置を用い、
     前記送受信装置から送信され、前記伝搬経路を伝搬し、前記被溶融物の溶融液面で反射された前記マイクロ波を受信して前記炭素電極の長さを求める、電気抵抗式溶融炉における炭素電極長の測定方法。
PCT/JP2023/013032 2022-05-18 2023-03-29 電気抵抗式溶融炉における炭素電極長の測定装置及び測定方法、当該測定装置に使用されるテーパーユニオン、並びにテーパーユニオンと金属製パイプとの接続方法 WO2023223683A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-081614 2022-05-18
JP2022081614A JP7173649B1 (ja) 2022-05-18 2022-05-18 電気抵抗式溶融炉における炭素電極長の測定装置及び測定方法、当該測定装置に使用されるテーパーユニオン、並びにテーパーユニオンと金属製パイプとの接続方法

Publications (1)

Publication Number Publication Date
WO2023223683A1 true WO2023223683A1 (ja) 2023-11-23

Family

ID=84082859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013032 WO2023223683A1 (ja) 2022-05-18 2023-03-29 電気抵抗式溶融炉における炭素電極長の測定装置及び測定方法、当該測定装置に使用されるテーパーユニオン、並びにテーパーユニオンと金属製パイプとの接続方法

Country Status (2)

Country Link
JP (1) JP7173649B1 (ja)
WO (1) WO2023223683A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7347889B1 (ja) * 2023-07-14 2023-09-20 株式会社Wadeco 電気抵抗式溶融炉における炭素電極の電極長の測定装置及び電気抵抗式溶融炉の操業方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0894060A (ja) * 1994-09-28 1996-04-12 Takuma Co Ltd 電気抵抗式溶融炉内の溶融スラグ層と溶融塩層の境界検出方法
JP2013535003A (ja) * 2010-06-01 2013-09-09 ダンゴ ウント ディーネンタール マシーネンバオ ゲーエムベーハー 電極の長さ測定方法及び装置
WO2014002192A1 (ja) * 2012-06-26 2014-01-03 株式会社ワイヤーデバイス 電気抵抗式溶融炉における電極長の測定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0894060A (ja) * 1994-09-28 1996-04-12 Takuma Co Ltd 電気抵抗式溶融炉内の溶融スラグ層と溶融塩層の境界検出方法
JP2013535003A (ja) * 2010-06-01 2013-09-09 ダンゴ ウント ディーネンタール マシーネンバオ ゲーエムベーハー 電極の長さ測定方法及び装置
WO2014002192A1 (ja) * 2012-06-26 2014-01-03 株式会社ワイヤーデバイス 電気抵抗式溶融炉における電極長の測定方法

Also Published As

Publication number Publication date
JP2023170124A (ja) 2023-12-01
JP7173649B1 (ja) 2022-11-16

Similar Documents

Publication Publication Date Title
WO2023223683A1 (ja) 電気抵抗式溶融炉における炭素電極長の測定装置及び測定方法、当該測定装置に使用されるテーパーユニオン、並びにテーパーユニオンと金属製パイプとの接続方法
KR101463590B1 (ko) 전극 길이 측정 방법 및 장치
US6888473B1 (en) Repeatable reference for positioning sensors and transducers in drill pipe
US10705196B2 (en) Method and apparatus for measuring the length of an electrode in an electric arc furnace
JP2011169917A (ja) 溶融金属温度の測定装置
WO2014002192A1 (ja) 電気抵抗式溶融炉における電極長の測定方法
CA2314027A1 (en) Waveguide for a microwave fill-level measuring device
CN110931994B (zh) 一种高硅铸铁电极及端站海洋地
JP5248099B2 (ja) 耐火物の厚み測定用端子および耐火物の厚み測定方法
JP7347889B1 (ja) 電気抵抗式溶融炉における炭素電極の電極長の測定装置及び電気抵抗式溶融炉の操業方法
US2800016A (en) Magnetic flow measuring apparatus
CA2236630C (en) Conductor probe sensor apparatus
CN210916139U (zh) 一种分体转炉用钢口套管
US20090120783A1 (en) Securing device for a sputtering source
JP2007205717A (ja) 損耗部材の残存厚み測定方法、及び残存厚み測定用プローブ
CN111323610A (zh) 一种检测连铸结晶器内钢水流速的方法
CN213498953U (zh) 一种lf炉电极接长专用工具
EP1565040B1 (en) Nipple for arc furnace electrodes
CN110343871B (zh) 用自焙石墨电极替换铜冶炼沉降炉预焙石墨电极的方法
CN210978797U (zh) 一种用于给水钢塑管连接的专用焊接接头
JP2004138317A (ja) 耐火物厚さ測定方法と異常検知方法、及びその装置
CN212718620U (zh) 一种热融焊接hdpe管材
CN211235162U (zh) 沥青热刮刀装置
CN218564716U (zh) 一种高密封耐热耐压pb电熔管件
CN218263467U (zh) 一种与波纹管螺纹旋合连接的锚垫板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807298

Country of ref document: EP

Kind code of ref document: A1