WO2023223670A1 - Polymer and resin composition for optical lens - Google Patents

Polymer and resin composition for optical lens Download PDF

Info

Publication number
WO2023223670A1
WO2023223670A1 PCT/JP2023/011733 JP2023011733W WO2023223670A1 WO 2023223670 A1 WO2023223670 A1 WO 2023223670A1 JP 2023011733 W JP2023011733 W JP 2023011733W WO 2023223670 A1 WO2023223670 A1 WO 2023223670A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
structural unit
polymer
unit represented
Prior art date
Application number
PCT/JP2023/011733
Other languages
French (fr)
Japanese (ja)
Inventor
翔太 今井
勲 安達
拓 加藤
利彦 神山
崇洋 坂口
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Publication of WO2023223670A1 publication Critical patent/WO2023223670A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0227Polyarylenethioethers derived from monomers containing two or more aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Definitions

  • the present invention relates to a polymer, a resin composition for an optical lens, and a microlens obtained from the resin composition.
  • An etchback method is known as one of the methods for manufacturing microlenses for CCD/CMOS image sensors (Patent Document 1 and Patent Document 2). That is, a resist pattern is formed on the microlens resin layer formed on the color filter layer, and this resist pattern is reflowed by heat treatment to form a lens pattern. Using a lens pattern formed by reflowing this resist pattern as an etching mask, the underlying microlens resin layer is etched back, and the lens pattern shape is transferred to the microlens resin layer to produce a microlens.
  • lens moldability by dry etching is important.
  • Such lens moldability largely depends on the material of the microlens resin layer.
  • polyphenylene sulfide having a phenolic hydroxyl group certainly has a high refractive index, it is not necessarily a suitable material from the viewpoint of lens moldability. It has been desired to develop a material that exhibits a high refractive index and has excellent lens moldability.
  • the present invention was made based on the above circumstances, and an object of the present invention is to provide a polymer and a resin composition that have both a high refractive index and excellent lens moldability.
  • the present invention provides the following [1] to [11].
  • [1] A polymer containing a structural unit represented by the following formula (1) (excluding the structural unit represented by the following formula (1a)).
  • X independently represents a methyl group, an ethyl group, a methoxy group, an ethoxy group, or a hydroxy group, and n represents an integer of 1 to 6.
  • [2] The polymer of [1], in which n represents 1 in the structural unit represented by formula (1).
  • X represents a methyl or ethyl group.
  • a resin composition for an optical lens comprising (A) the polymer of [1] or [2] and/or a polymer containing a structural unit represented by the following formula (4), and (B) an organic solvent.
  • Component (B) is ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, ethylene glycol monomethyl ether acetate, Ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, ethyl lactate, n-butyl lactate, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, 2-heptanone , cyclopentanone, cyclohexanone, ⁇ -butyrolactone, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, and N-ethyl-2-pyrrolidone [7] ] Resin composition for optical lenses
  • a resin film containing a polynaphthylene sulfide resin exhibits a high refractive index of 1.75 or more at a wavelength of 550 nm, and forms microlenses with a narrow gap between adjacent lenses by an etch-back method. Is possible.
  • the resin composition for an optical lens of the present invention is characterized by containing a component (A) and a component (B), which will be described later.
  • solid content means components other than the solvent that constitute the resin composition.
  • the polymer of the present invention is not particularly limited as long as it contains a structural unit represented by the following formula (1) (excluding the structural unit represented by the following formula (1a)).
  • X independently represents a methyl group, an ethyl group, a methoxy group, an ethoxy group, or a hydroxy group, and n represents an integer of 1 to 6.
  • Examples of the structural units of the polymer include the following formulas (1ba) to (1bn), formulas (1ca) to (1cn), formulas (1da) to (1dn), and formulas (1ea) to (1en). ), and structural units represented by formulas (1fn) to (1fn).
  • Et represents an ethyl group.
  • the proportion of the structural unit represented by the formula (1) (excluding the structural unit represented by the formula (1a)) in the polymer is preferably 10 mol% or more, more preferably 30 mol%. % or more, even more preferably 50 mol% or more, still more preferably 80 mol% or more.
  • X in the formula (1) represents a methyl group, an ethyl group, a methoxy group, an ethoxy group, or a hydroxy group, and among them, a methyl group, a methoxy group, and a hydroxy group are preferable, and X represents a methyl group, an ethyl group, a methoxy group, an ethoxy group, or a hydroxy group. From this point of view, a hydroxy group is particularly preferred. Further, from the viewpoint of ease of synthesis, n in the formula (1) is preferably 1.
  • the molecular weight of the polymer is preferably 500 to 100,000, more preferably 1,000 to 30,000, even more preferably 1,000 as a polystyrene equivalent weight average molecular weight calculated by gel permeation chromatography (GPC). ⁇ 10,000.
  • the polymer can be produced, for example, by applying various known polyarylene sulfide production methods (polycondensation with an aromatic halogen compound and sodium sulfide, oxidative polymerization of an aromatic thiol compound or an aromatic disulfide compound, etc.) to naphthalene derivatives. It can be synthesized by Polymers having hydroxy groups can be synthesized by applying various known polyarylene sulfide production methods to naphthol derivatives with protected hydroxy groups, and then deprotecting some or all of the protecting groups. good.
  • an oxidative polymerization method is preferable, and in particular, from the viewpoint that it can be produced at room temperature and normal pressure without using a metal catalyst, the quinone-based polymer described in Patent Document 5 and Patent Document 6
  • An oxidative polymerization method using an oxidizing agent and an acid is preferably used.
  • a specific method for producing the polymer includes an aromatic thiol compound containing a methyl group, an ethyl group, a methoxy group, an ethoxy group, or a hydroxy group;
  • An example of a method is to perform oxidative polymerization using a quinone oxidizing agent and an acid as a monomer, and then deprotect some or all of the protecting groups.
  • the protected hydroxy group is not particularly limited as long as polymerization proceeds, but from the viewpoint of stability that does not interfere with quinone oxidizing agents or acids, an alkoxy group is preferable, a methoxy group or an ethoxy group is more preferable, and in the case of a methoxy group is particularly preferable since the deprotection reaction can proceed more easily.
  • the alkoxy group can be converted into a hydroxy group by removing the alkyl group by applying an acid or the like.
  • the acid include trisubstituted boron compounds (boron tribromide, etc.) and Lewis acids such as aluminum chloride, and thiol compounds (dodecanethiol, etc.) and Bronsted acids such as hydrogen bromide. It is not particularly limited as long as it is an acid that can be converted into. All of the protecting groups may be removed or some may remain. Optical properties and solubility can be controlled by appropriately adjusting the deprotection rate.
  • the disulfide monomer represented by the above formula (2) (excluding the disulfide monomer represented by the above formula (2a)) and/or the thiol monomer represented by the above formula (3) (However, the thiol monomer represented by the above formula (3a) is excluded.) can be suitably used.
  • the monomers used in the synthesis of the polymer may be used alone or in combination of two or more. From the viewpoint of adjusting optical properties and solubility in organic solvents, a disulfide monomer not represented by the above formula (2) or a thiol monomer not represented by the above formula (3) may be used as necessary. That is, the polymer only needs to contain at least one kind of structural unit represented by the above formula (1), and may be a homopolymer or a copolymer. When the polymer is a copolymer, its repeating structure is not particularly limited, and it may be any of an alternating copolymer, a block copolymer, a gradient copolymer, and a random copolymer. Moreover, the polymer can be branched depending on the polymerization conditions.
  • Component (A) is a polymer containing a structural unit represented by the above formula (1) (excluding the structural unit represented by the above formula (1a)) and/or a polymer containing a structural unit represented by the above formula (4). It is not particularly limited as long as it is a polymer containing a structural unit. Moreover, other structural units other than the structural unit represented by the formula (1) and the structural unit represented by the formula (4) may be included within a range that does not impair the effects of the present invention. Examples of other structural units include structural units represented by the following formulas (5) to (17).
  • the structural unit represented by the above formula (1) (excluding the structural unit represented by the above formula (1a)) and/or the structural unit represented by the above formula (4) in the component (A)
  • the proportion is preferably 10 mol% or more, more preferably 30 mol% or more, even more preferably 50 mol% or more, even more preferably 80 mol% or more.
  • the structural unit represented by the formula (1) has reduced crystallinity due to the presence of the substituent, and therefore is superior to the structural unit represented by the formula (4) from the viewpoint of solubility in organic solvents.
  • X in the formula (1) represents a methyl group, an ethyl group, a methoxy group, an ethoxy group, or a hydroxy group, and among them, a methyl group, a methoxy group, and a hydroxy group are preferable, and X represents a methyl group, an ethyl group, a methoxy group, an ethoxy group, or a hydroxy group. From this point of view, a hydroxy group is particularly preferred. Further, from the viewpoint of ease of synthesis, n in the formula (1) is preferably 1.
  • the molecular weight of component (A) is preferably 500 to 100,000, more preferably 1,000 to 30,000, even more preferably 1. 000 to 10,000.
  • component (A) for example, various known polyarylene sulfide production methods (polycondensation with aromatic halogen compounds and sodium sulfide, oxidative polymerization of aromatic thiol compounds or aromatic disulfide compounds, etc.) are applied to naphthalene derivatives. It can be synthesized by Polymers having hydroxy groups can be synthesized by applying various known polyarylene sulfide production methods to naphthol derivatives with protected hydroxy groups, and then deprotecting some or all of the protecting groups. good.
  • an oxidative polymerization method is preferable, and in particular, from the viewpoint that it can be produced at room temperature and normal pressure without using a metal catalyst, the quinone described in Patent Document 5 and Patent Document 6
  • An oxidative polymerization method using an oxidizing agent and an acid is preferably used.
  • an aromatic thiol compound that may contain a methyl group, an ethyl group, a methoxy group, an ethoxy group, or a hydroxy group, or an aromatic thiol compound that may contain a methyl group, an ethyl group, a methoxy group, or an ethoxy group.
  • a method of oxidative polymerization using an aromatic disulfide compound that may contain a hydroxy group as a monomer using a quinone oxidizing agent and an acid, or an aromatic thiol compound containing a protected hydroxy group or a protected hydroxy group.
  • An example of a method is to perform oxidative polymerization using an aromatic disulfide compound containing as a monomer using a quinone oxidizing agent and an acid, and then deprotect some or all of the protecting groups.
  • the protected hydroxy group is not particularly limited as long as polymerization proceeds, but from the viewpoint of stability that does not interfere with quinone oxidizing agents or acids, an alkoxy group is preferable, a methoxy group or an ethoxy group is more preferable, and in the case of a methoxy group is particularly preferable since the deprotection reaction can proceed more easily.
  • the alkoxy group can be converted into a hydroxy group by removing the alkyl group by applying an acid or the like.
  • the acid include trisubstituted boron compounds (boron tribromide, etc.) and Lewis acids such as aluminum chloride, and thiol compounds (dodecanethiol, etc.) and Bronsted acids such as hydrogen bromide. It is not particularly limited as long as it is an acid that can be converted into. All of the protecting groups may be removed or some may remain. Optical properties and solubility can be controlled by appropriately adjusting the deprotection rate.
  • the above formula (2) (However, the disulfide monomer represented by the above formula (2a) is excluded.) and/or the thiol monomer represented by the above formula (3) (However, the thiol represented by the above formula (3a) is (excluding monomers) can be suitably used.
  • a disulfide monomer represented by the following formula (18) and/or a disulfide monomer represented by the following formula (19) is synthesized.
  • Thiol monomers can be suitably used.
  • the monomers used in the synthesis of component (A) may be used alone or in combination of two or more. From the viewpoint of adjusting optical properties and solubility in organic solvents, disulfide monomers not represented by the above formula (2) and the above formula (18) (for example, the following formulas (20) to (38)) may be used as necessary. ) or thiol monomers not represented by the formula (3) or formula (19) (for example, thiol monomers represented by the following formulas (39) to (57)). ) may be used. That is, the polymer only needs to contain at least one structural unit represented by the above formula (1) or the above formula (4), and may be a homopolymer or a copolymer. .
  • the polymer is a copolymer
  • its repeating structure is not particularly limited, and it may be any of an alternating copolymer, a block copolymer, a gradient copolymer, and a random copolymer. Further, the polymer may be branched depending on the polymerization conditions.
  • Component (B) is not particularly limited as long as it is an organic solvent that dissolves component (A), but an organic solvent having a melting point of 15° C. or lower and a boiling point of 85° C. or higher is particularly desirable.
  • the melting point and boiling point refer to those under 1 atmosphere. Since the melting point is 15° C. or lower, the resin composition has excellent handling properties at room temperature.
  • the melting point is preferably 10°C or lower, more preferably 5°C or lower, from the viewpoint of storage stability in a cool place. Further, the lower limit of the melting point is not particularly limited, but is preferably -150°C or higher, for example.
  • the boiling point is 85° C.
  • the boiling point is preferably 100°C or higher, more preferably 115°C or higher, particularly from the viewpoint of easily forming a homogeneous coating film. Further, from the viewpoint of organic solvent removability, the upper limit of the boiling point is preferably 300°C or less, more preferably 250°C or less, and even more preferably 220°C or less.
  • component (B) examples include methylcyclohexane, ethylcyclohexane, n-heptane, toluene, o-xylene, m-xylene, mesitylene, chlorobenzene, o-dichlorobenzene, m-dichlorobenzene, anisole, phenetol, di- n-propyl ether, di-n-butyl ether, diisobutyl ether, di-n-pentyl ether, diisopentyl ether, di-n-hexyl ether, n-butyl ethyl ether, methyl-n-pentyl ether, cyclopentyl methyl ether, Tetrahydropyran, 1,3-dioxane, 1,4-dioxane, 1-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 1-pentan
  • Component (B) may include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene, from the viewpoint of improving the leveling properties of the coating film formed by applying the resin composition onto a substrate.
  • the component (B) may be used alone or in combination of two or more. In addition, it may be mixed with a solvent other than component (B) as appropriate. In that case, the content of component (B) is 50% to 100% by mass of the entire solvent including component (B) and other solvents. It is preferably 60% to 100% by weight, even more preferably 70% to 100% by weight.
  • the other solvents include methanol, ethanol, 2-propanol, dichloromethane, 1,2-dichloroethane, chloroform, acetone, 2-butanone, dimethyl sulfoxide (DMSO), tetrahydrofuran (THF), ethyl acetate, and Examples include acetonitrile.
  • the resin composition of the present invention may further contain (C) a polyfunctional epoxy compound for the purpose of improving chemical resistance.
  • the component (C) is not particularly limited as long as it is a compound having at least two oxirane rings in the molecule, and for example, the following products and compounds can be used.
  • TEPIC (registered trademark)-G, TEPIC-L, TEPIC-VL, TEPIC-S, TEPIC-SP, TEPIC-SS, TEPIC-HP (manufactured by Nissan Chemical Co., Ltd.), Marproof (registered trademark) G- 01100, G-0105SA, G-0130SF, G-0130SP, G-0150M, G-0250SF, G-0250SP, G-05100, G-2050M, G-017581.
  • OGSOL registered trademark
  • PG-100 CG-500, EG-200, EG-280 (manufactured by Osaka Gas Chemical Co., Ltd.)
  • GTR-1800 registered trademark
  • EPICLON registered trademark 830, 830-S, 835, 840, 840-S, 850, 850-S, 850-LC, HP-820 (manufactured by Yakuhin Co., Ltd.)
  • DENACOL registered trademark
  • EX-201 EX-211, EX-212, EX-252, EX-810, EX-811, EX-821, EX-830 , EX-832, EX-841, EX-850, EX-851, EX-861, EX-920, EX-931, EX-991L, EX-313, EX-314 , EX-321, EX-321L, EX-411, EX-421, EX-512, EX-521, EX-612, E
  • the component (C) may be used alone or in combination of two or more.
  • the content of component (C) is preferably 5 parts by mass to 50 parts by mass, more preferably 10 parts by mass, based on 100 parts by mass of component (A). parts to 30 parts by mass.
  • the resin composition of the present invention may optionally contain a surfactant for the purpose of improving coating properties.
  • surfactants include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, and polyoxyethylene oleyl ether; polyoxyethylene octylphenyl ether and polyoxyethylene Polyoxyethylene alkylaryl ethers such as nonylphenyl ether; polyoxyethylene/polyoxypropylene block copolymers; sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan triolate, and sorbitan tri Sorbitan fatty acid esters such as stearate; polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan triolate, polyoxyethylene
  • Nonionic surfactants such as polyoxyethylene sorbitan fatty acid esters; EFTOP (registered trademark) EF301, EF303, EF352 (manufactured by Mitsubishi Materials Electronic Chemicals Co., Ltd.), Megafac (registered trademark) F-171 , F-173, R-30, R-40, R-40-LM (manufactured by DIC Corporation), Florado FC430, FC431 (manufactured by Sumitomo 3M Ltd.), Asahi Guard (registered trademark) AG710, Surflon (registered trademark) S-382, Surflon (registered trademark) SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by AGC Corporation), FTX-206D, FTX-212D, FTX- 218, FTX-220D, FTX-230D, FTX-240D, FTX-212P, FTX-220P, FTX-228P, FT
  • the content of the surfactant is preferably 0.001 parts by mass to 3 parts by mass, more preferably 0.005 parts by mass based on 100 parts by mass of total solids. part to 1 part by weight, even more preferably 0.01 part to 0.5 part by weight.
  • the resin composition of the present invention may optionally contain curing aids, antioxidants, light stabilizers (HALS), ultraviolet absorbers, plasticizers, adhesion aids, etc., as long as the effects of the present invention are not impaired.
  • the composition may further include an agent.
  • the method for preparing the resin composition of the present invention is not particularly limited, but includes, for example, a method of mixing components (A) and (B), and optionally component (C) and other components to form a uniform solution. It will be done. Further, if necessary, the obtained solution may be filtered using a filter with a pore size of 0.1 ⁇ m to 10 ⁇ m.
  • the solid content concentration of the resin composition thus obtained is usually 1% by mass to 50% by mass from the viewpoint of applicability to a substrate.
  • a suitable method such as a spinner or a coater is applied onto a base material (for example, a PET film, a TAC film, a semiconductor substrate, a glass substrate, a quartz substrate, a silicon wafer, and a substrate on which various metal films or color filters are formed on the surface).
  • a resin film is produced by baking using a heating means such as a hot plate or an oven.
  • the baking conditions are appropriately selected from baking temperatures of 50° C. to 300° C. and baking times of 0.1 minutes to 360 minutes. Baking when producing the resin film may be performed in two or more steps.
  • the thickness of the resin film formed is 0.001 ⁇ m to 1,000 ⁇ m, preferably 0.01 ⁇ m to 100 ⁇ m, and more preferably 0.1 ⁇ m to 10 ⁇ m.
  • a resist is applied onto the resin film produced through the above [Resin film production method], the resist is exposed through a predetermined mask, and if necessary, post-exposure heating (PEB) is performed, and further alkaline development, A resist pattern is formed on the resin film by rinsing and drying.
  • PEB post-exposure heating
  • the resist pattern is reflowed by heat treatment to form a lens pattern.
  • the resin film below the lens pattern is etched back, and the shape of the lens pattern is transferred to the resin film, thereby producing a microlens.
  • the precipitate generated by the dropping was collected and washed with ethanol, methanol, a 3% by mass aqueous potassium hydroxide solution, and pure water in this order.
  • the precipitate generated by the dropping was collected, washed in the order of methanol, a 3% by mass potassium hydroxide aqueous solution, and pure water, and then dried at 80°C under reduced pressure to obtain the precipitate expressed by the formula (1ca) above.
  • 5.8 g of the polymer of the present invention [poly(2-methoxynaphthylene sulfide)] containing a structural unit of The weight average molecular weight M W of the obtained polymer was 1,300 in terms of polystyrene.
  • ⁇ Polymer synthesis example 3> 4.6 g (20 mmol) of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, 0.8 g (7 mmol) of trifluoroacetic acid, and 7 mL of chloroform were placed in a flask containing a stirring bar and stirred. Thereafter, 5.6 g (20 mmol) of the monomer obtained in Monomer Synthesis Example 2 was added and stirred for 40 hours. Next, 73 mL of chloroform was added to the reaction solution, and the precipitate was removed by filtration, and then the filtrate was dropped into 800 mL of stirred ethanol/12N hydrochloric acid 95/5 (volume ratio).
  • the precipitate generated by the dropping is collected, washed in the order of methanol, a 3% by mass aqueous potassium hydroxide solution, and pure water, and then dried at 80°C under reduced pressure to obtain a structural unit represented by the following formula. 4 g of a polymer containing [poly(2-methoxyphenylene sulfide)] was obtained.
  • the weight average molecular weight M W of the obtained polymer was 3,000 in terms of polystyrene.
  • the precipitate generated by the dropping is collected, washed in the order of methanol, a 3% by mass potassium hydroxide aqueous solution, and pure water, and then dried at 80°C under reduced pressure to form two types represented by the following formulas. 3.0 g of the copolymer of the present invention [poly(2-naphthylene sulfide/2-methoxyphenylene sulfide)] containing the structural unit was obtained. The weight average molecular weight M W of the obtained copolymer was 1,300 in terms of polystyrene.
  • the precipitate generated by the dropping is collected, washed in the order of methanol, a 3% by mass potassium hydroxide aqueous solution, and pure water, and then dried at 80°C under reduced pressure to form two types represented by the following formulas.
  • 2.0 g of the copolymer of the present invention [poly(2-methyl-1-naphthylene sulfide/2-methoxyphenylene sulfide)] containing the structural unit was obtained.
  • the weight average molecular weight M W of the obtained copolymer was 1,700 in terms of polystyrene.
  • Example 2 A resin composition (solid content concentration: 18% by mass) was obtained in the same manner as in Example 1, except that the copolymer obtained in Polymer Synthesis Example 6 was used as the component (A).
  • Example 3 A resin composition (solid content concentration: 18% by mass) was obtained in the same manner as in Example 1 except that the copolymer obtained in Polymer Synthesis Example 8 was used as the component (A).
  • a resist solution THMR-iP1800 (manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied onto a silicon wafer using a spin coater, and heated on a hot plate at 90°C for 1.5 minutes, at 110°C for 1.5 minutes, and then at 180°C. C. for 1 minute to form a resist film with a thickness of 1 ⁇ m.
  • the resist film was dry etched using a dry etching apparatus RIE-10NR (manufactured by Samco Co., Ltd.) (etching gas: CF 4 ), and the dry etching rate of the resist film was measured.
  • each of the resin compositions prepared in Examples 1 to 3 and Comparative Example 1 was applied onto a silicon wafer using a spin coater, and baked on a hot plate at 100° C. for 1 minute. Thereafter, it was baked at 200° C. for 5 minutes to form a resin film with a thickness of 1 ⁇ m, and the dry etching rate was similarly measured. Then, the dry etching rate of the resin films obtained from the resin compositions prepared in Examples 1 to 3 and Comparative Example 1 with respect to the resist film was calculated. The results are shown in Table 1.
  • the lens pattern is removed as an etching mask. After dry-etching the resin film until the end, the width of the formed microlens was measured.
  • the resin film obtained from the resin composition containing the polynaphthylene sulfide resin of the present invention has a high refractive index of 1.75 or more at a wavelength of 550 nm and exhibits excellent lens moldability by an etch-back method. was confirmed. From the above results, the polymer and the resin composition for optical lenses of the present invention are useful for optical lenses, especially microlenses.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

Provided is a polymer which has both a high refractive index and excellent lens moldability and contains a structural unit represented by formula (1) (however, a structural unit represented by formula (1a) is excluded). (In the formula, X each independently represents a methyl group, an ethyl group, a methoxy group, an ethoxy group or a hydroxy group, and n represents an integer of 1-6.)

Description

重合体及び光学レンズ用樹脂組成物Polymers and resin compositions for optical lenses
 本発明は、重合体、光学レンズ用樹脂組成物、及び当該樹脂組成物から得られるマイクロレンズに関するものである。 The present invention relates to a polymer, a resin composition for an optical lens, and a microlens obtained from the resin composition.
 近年、液晶ディスプレイ、有機ELディスプレイ、発光ダイオード、太陽電池、CCD/CMOSイメージセンサ等の電子デバイスの分野において、保護膜、平坦化膜、絶縁膜、反射防止膜、屈折率制御膜、マイクロレンズ、層内レンズ、光導波路、フィルム基材等の光学部材向けに、高い屈折率を有する高分子材料を採用した樹脂組成物が多用されている。例えば、CCD/CMOSイメージセンサ用マイクロレンズに高屈折率材料を適用することで、センサ性能の向上が期待できる。 In recent years, in the field of electronic devices such as liquid crystal displays, organic EL displays, light emitting diodes, solar cells, and CCD/CMOS image sensors, protective films, planarization films, insulating films, antireflection films, refractive index control films, microlenses, Resin compositions employing polymeric materials having a high refractive index are often used for optical members such as intralayer lenses, optical waveguides, and film substrates. For example, by applying a high refractive index material to a microlens for a CCD/CMOS image sensor, improvement in sensor performance can be expected.
 CCD/CMOSイメージセンサ用マイクロレンズの製造方法の1つとして、エッチバック法が知られている(特許文献1及び特許文献2)。すなわち、カラーフィルター層上に形成したマイクロレンズ用樹脂層上にレジストパターンを形成し、熱処理によってこのレジストパターンをリフローしてレンズパターンを形成する。このレジストパターンをリフローして形成したレンズパターンをエッチングマスクとして、下層のマイクロレンズ用樹脂層をエッチバックし、レンズパターン形状をマイクロレンズ用樹脂層に転写することによってマイクロレンズを作製する。 An etchback method is known as one of the methods for manufacturing microlenses for CCD/CMOS image sensors (Patent Document 1 and Patent Document 2). That is, a resist pattern is formed on the microlens resin layer formed on the color filter layer, and this resist pattern is reflowed by heat treatment to form a lens pattern. Using a lens pattern formed by reflowing this resist pattern as an etching mask, the underlying microlens resin layer is etched back, and the lens pattern shape is transferred to the microlens resin layer to produce a microlens.
 エッチバック法においては、ドライエッチングによるレンズ成形性が重要である。例えば、レンズパターン形状を下層のマイクロレンズ用樹脂層へ転写するにあたり、レンズパターンのドライエッチングレートXとマイクロレンズ用樹脂層のドライエッチングレートYが同等(X:Y=1:0.8~1.2)であることが求められる(特許文献3)。加えて、集光効率向上のためには、隣り合うマイクロレンズの間のギャップは狭いことが望ましい。すなわち、ドライエッチング前のレンズパターンの幅よりも、ドライエッチング後に形成されるマイクロレンズの幅が大きくなるような材料が要求される。このようなレンズ成形性は、マイクロレンズ用樹脂層の材料によるところが大きい。 In the etch-back method, lens moldability by dry etching is important. For example, when transferring the lens pattern shape to the lower microlens resin layer, the dry etching rate X of the lens pattern and the dry etching rate Y of the microlens resin layer are equivalent (X:Y=1:0.8 to 1 .2) is required (Patent Document 3). Additionally, in order to improve light collection efficiency, it is desirable that the gap between adjacent microlenses be narrow. That is, a material is required that allows the width of the microlens formed after dry etching to be larger than the width of the lens pattern before dry etching. Such lens moldability largely depends on the material of the microlens resin layer.
 一方、高分子材料を高屈折率化する手段としては、該高分子材料の分子中に、芳香環、フッ素原子以外のハロゲン原子、硫黄原子、金属原子又は水素結合等を導入することが知られている。例えば、最近、フェノール性ヒドロキシ基を有するポリフェニレンスルフィドが、芳香環、硫黄原子及び水素結合を導入した効果により、高い屈折率を有する高分子材料であることが見出された(特許文献4及び非特許文献1)。 On the other hand, as a means of increasing the refractive index of a polymer material, it is known to introduce aromatic rings, halogen atoms other than fluorine atoms, sulfur atoms, metal atoms, hydrogen bonds, etc. into the molecules of the polymer material. ing. For example, it has recently been discovered that polyphenylene sulfide having a phenolic hydroxy group is a polymeric material with a high refractive index due to the effect of introducing an aromatic ring, a sulfur atom, and a hydrogen bond (Patent Document 4 and Patent Document 1).
特開平1-10666号公報Japanese Unexamined Patent Publication No. 1-10666 特開平6-112459号公報Japanese Patent Application Publication No. 6-112459 国際公開第2013/005619号International Publication No. 2013/005619 国際公開第2022/065381号International Publication No. 2022/065381 特開2015-168790号公報Japanese Patent Application Publication No. 2015-168790 特開2017-52834号公報JP2017-52834A
 しかし、本発明者らが実験したところ、フェノール性ヒドロキシ基を有するポリフェニレンスルフィドは、確かに高い屈折率を有するものの、レンズ成形性の観点で必ずしも好適な材料とはいえないことが判明した。高い屈折率を示すとともに、優れたレンズ成形性を有する材料の開発が望まれていた。 However, as a result of experiments conducted by the present inventors, it was found that although polyphenylene sulfide having a phenolic hydroxyl group certainly has a high refractive index, it is not necessarily a suitable material from the viewpoint of lens moldability. It has been desired to develop a material that exhibits a high refractive index and has excellent lens moldability.
 本発明は、上記の事情に基づいてなされたものであり、高い屈折率と優れたレンズ成形性を両立する重合体及び樹脂組成物を提供することを目的とする。 The present invention was made based on the above circumstances, and an object of the present invention is to provide a polymer and a resin composition that have both a high refractive index and excellent lens moldability.
 本発明者らは、前記課題を解決するべく鋭意検討を行った結果、ポリナフチレンスルフィド系樹脂を採用することにより上記課題を解決し得ることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors discovered that the above problems could be solved by employing polynaphthylene sulfide resin, and completed the present invention.
 すなわち、本発明は、以下の[1]~[11]を提供する。
[1] 下記式(1)で表される構造単位(但し、下記式(1a)で表される構造単位を除く。)を含む重合体。
Figure JPOXMLDOC01-appb-C000006
(式中、Xは、互いに独立して、メチル基、エチル基、メトキシ基、エトキシ基又はヒドロキシ基を表し、nは、1~6の整数を表す。)
Figure JPOXMLDOC01-appb-C000007
[2] 前記式(1)で表される構造単位においてnは1を表す[1]の重合体。
[3] 前記式(1)で表される構造単位においてXはメチル又はエチル基を表す[1]又は[2]の重合体。
[4] 前記式(1)で表される構造単位においてXはメトキシ基又はエトキシ基を表す[1]又は[2]の重合体。
[5] 前記式(1)で表される構造単位においてXはヒドロキシ基を表す[1]又は[2]の重合体。
[6] 前記式(1)で表される構造単位を含む重合体の製造方法であって、下記式(2)で表されるジスルフィドモノマー(但し、下記式(2a)で表されるジスルフィドモノマーを除く。)及び/又は下記式(3)で表されるチオールモノマー(但し、下記式(3a)で表されるチオールモノマーを除く。)を酸化重合する工程を含む、[1]又は[2]の重合体の製造方法。
Figure JPOXMLDOC01-appb-C000008
(式中、X及びnは、前記式(1)の定義と同義である。)
Figure JPOXMLDOC01-appb-C000009
[7] (A)[1]又は[2]の重合体及び/又は下記式(4)で表される構造単位を含む重合体並びに(B)有機溶剤を含有する光学レンズ用樹脂組成物。
Figure JPOXMLDOC01-appb-C000010
[8] 前記(B)成分が、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、プロピレングリコールモノメチルエーテルアセタート、エチルラクタート、n-ブチルラクタート、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、2-ヘプタノン、シクロペンタノン、シクロヘキサノン、γ-ブチロラクトン、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン及びN-エチル-2-ピロリドンからなる群より選択される少なくとも1種の有機溶剤を含む[7]の光学レンズ用樹脂組成物。
[9] さらに、(C)多官能エポキシ化合物を含有する[7]の光学レンズ用樹脂組成物。
[10] マイクロレンズ作製用である[7]の光学レンズ用樹脂組成物。
[11] [10]の光学レンズ用樹脂組成物から得られるマイクロレンズ。
That is, the present invention provides the following [1] to [11].
[1] A polymer containing a structural unit represented by the following formula (1) (excluding the structural unit represented by the following formula (1a)).
Figure JPOXMLDOC01-appb-C000006
(In the formula, X independently represents a methyl group, an ethyl group, a methoxy group, an ethoxy group, or a hydroxy group, and n represents an integer of 1 to 6.)
Figure JPOXMLDOC01-appb-C000007
[2] The polymer of [1], in which n represents 1 in the structural unit represented by formula (1).
[3] The polymer of [1] or [2] in which in the structural unit represented by formula (1), X represents a methyl or ethyl group.
[4] The polymer of [1] or [2] in which in the structural unit represented by formula (1), X represents a methoxy group or an ethoxy group.
[5] The polymer of [1] or [2], wherein in the structural unit represented by formula (1), X represents a hydroxy group.
[6] A method for producing a polymer containing a structural unit represented by the formula (1) above, comprising a disulfide monomer represented by the following formula (2) (provided that a disulfide monomer represented by the following formula (2a)) ) and/or a step of oxidatively polymerizing a thiol monomer represented by the following formula (3) (however, excluding a thiol monomer represented by the following formula (3a)) [1] or [2] ] A method for producing a polymer.
Figure JPOXMLDOC01-appb-C000008
(In the formula, X and n have the same meanings as defined in formula (1) above.)
Figure JPOXMLDOC01-appb-C000009
[7] A resin composition for an optical lens, comprising (A) the polymer of [1] or [2] and/or a polymer containing a structural unit represented by the following formula (4), and (B) an organic solvent.
Figure JPOXMLDOC01-appb-C000010
[8] Component (B) is ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, ethylene glycol monomethyl ether acetate, Ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, ethyl lactate, n-butyl lactate, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, 2-heptanone , cyclopentanone, cyclohexanone, γ-butyrolactone, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, and N-ethyl-2-pyrrolidone [7] ] Resin composition for optical lenses.
[9] The resin composition for an optical lens according to [7], further containing (C) a polyfunctional epoxy compound.
[10] The resin composition for optical lenses according to [7], which is used for producing microlenses.
[11] A microlens obtained from the resin composition for optical lenses of [10].
 本発明によれば、ポリナフチレンスルフィド系樹脂を含む樹脂膜は、波長550nmで1.75以上の高い屈折率を示し、かつエッチバック法によって隣り合うレンズ間のギャップの狭いマイクロレンズを形成することが可能である。 According to the present invention, a resin film containing a polynaphthylene sulfide resin exhibits a high refractive index of 1.75 or more at a wavelength of 550 nm, and forms microlenses with a narrow gap between adjacent lenses by an etch-back method. Is possible.
 以下、本発明の重合体及び光学レンズ用樹脂組成物について、より詳細に説明する。本発明の光学レンズ用樹脂組成物は、後述する(A)成分及び(B)成分を含有することを特徴とする。なお、以下の説明において、固形分とは、樹脂組成物を構成する溶剤以外の成分を意味する。 Hereinafter, the polymer and the resin composition for optical lenses of the present invention will be explained in more detail. The resin composition for an optical lens of the present invention is characterized by containing a component (A) and a component (B), which will be described later. In addition, in the following description, solid content means components other than the solvent that constitute the resin composition.
[重合体]
 本発明の重合体は、下記式(1)で表される構造単位(但し、下記式(1a)で表される構造単位を除く。)を含む重合体であれば特に限定されない。
[Polymer]
The polymer of the present invention is not particularly limited as long as it contains a structural unit represented by the following formula (1) (excluding the structural unit represented by the following formula (1a)).
Figure JPOXMLDOC01-appb-C000011
(式中、Xは、互いに独立して、メチル基、エチル基、メトキシ基、エトキシ基又はヒドロキシ基を表し、nは、1~6の整数を表す。)
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000011
(In the formula, X independently represents a methyl group, an ethyl group, a methoxy group, an ethoxy group, or a hydroxy group, and n represents an integer of 1 to 6.)
Figure JPOXMLDOC01-appb-C000012
 前記重合体の構造単位としては、例えば、下記式(1ba)~式(1bn)、式(1ca)~式(1cn)、式(1da)~式(1dn)、式(1ea)~式(1en)、及び式(1fn)~式(1fn)で表される構造単位が挙げられる。 Examples of the structural units of the polymer include the following formulas (1ba) to (1bn), formulas (1ca) to (1cn), formulas (1da) to (1dn), and formulas (1ea) to (1en). ), and structural units represented by formulas (1fn) to (1fn).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
(式中、OMeはメトキシ基を表す。)
Figure JPOXMLDOC01-appb-C000014
(In the formula, OMe represents a methoxy group.)
Figure JPOXMLDOC01-appb-C000015
(式中、OEtはエトキシ基を表す。)
Figure JPOXMLDOC01-appb-C000015
(In the formula, OEt represents an ethoxy group.)
Figure JPOXMLDOC01-appb-C000016
(式中、Meはメチル基を表す。)
Figure JPOXMLDOC01-appb-C000016
(In the formula, Me represents a methyl group.)
Figure JPOXMLDOC01-appb-C000017
(式中、Etはエチル基を表す。)
Figure JPOXMLDOC01-appb-C000017
(In the formula, Et represents an ethyl group.)
 前記重合体中における前記式(1)で表される構造単位(但し、前記式(1a)で表される構造単位を除く。)の割合は、好ましくは10モル%以上、より好ましくは30モル%以上、より一層好ましくは50モル%以上、さらに好ましくは80モル%以上である。該構造単位の割合を上記範囲内とすることで、隣り合うレンズ間のギャップがより狭いマイクロレンズを作製することが可能となる。 The proportion of the structural unit represented by the formula (1) (excluding the structural unit represented by the formula (1a)) in the polymer is preferably 10 mol% or more, more preferably 30 mol%. % or more, even more preferably 50 mol% or more, still more preferably 80 mol% or more. By setting the proportion of the structural units within the above range, it becomes possible to produce microlenses with narrower gaps between adjacent lenses.
 前記式(1)中のXは、メチル基、エチル基、メトキシ基、エトキシ基又はヒドロキシ基を表し、中でもメチル基、メトキシ基、ヒドロキシ基が好ましく、有機溶剤に対する溶解性向上及び屈折率向上の観点では特にヒドロキシ基が好ましい。また、合成の容易さの観点では前記式(1)中のnは1が好ましい。 X in the formula (1) represents a methyl group, an ethyl group, a methoxy group, an ethoxy group, or a hydroxy group, and among them, a methyl group, a methoxy group, and a hydroxy group are preferable, and X represents a methyl group, an ethyl group, a methoxy group, an ethoxy group, or a hydroxy group. From this point of view, a hydroxy group is particularly preferred. Further, from the viewpoint of ease of synthesis, n in the formula (1) is preferably 1.
 前記重合体の分子量は、ゲル浸透クロマトグラフィ(GPC)によって算出されるポリスチレン換算重量平均分子量として、好ましくは500~100,000、より好ましくは1,000~30,000、より一層好ましくは1,000~10,000である。 The molecular weight of the polymer is preferably 500 to 100,000, more preferably 1,000 to 30,000, even more preferably 1,000 as a polystyrene equivalent weight average molecular weight calculated by gel permeation chromatography (GPC). ~10,000.
 前記重合体は、例えば、ナフタレン誘導体に対して各種公知のポリアリーレンスルフィドの製造方法(芳香族ハロゲン化合物と硫化ナトリウムによる重縮合や、芳香族チオール化合物又は芳香族ジスルフィド化合物の酸化重合等)を適用することによって合成することができる。ヒドロキシ基を有する重合体については、ヒドロキシ基が保護されたナフトール誘導体に対して各種公知のポリアリーレンスルフィド製造方法を適用したのち、保護基の一部又は全部を脱保護することによって合成してもよい。 The polymer can be produced, for example, by applying various known polyarylene sulfide production methods (polycondensation with an aromatic halogen compound and sodium sulfide, oxidative polymerization of an aromatic thiol compound or an aromatic disulfide compound, etc.) to naphthalene derivatives. It can be synthesized by Polymers having hydroxy groups can be synthesized by applying various known polyarylene sulfide production methods to naphthol derivatives with protected hydroxy groups, and then deprotecting some or all of the protecting groups. good.
 前記重合体の製造方法としては、酸化重合法が好ましく、特に、金属触媒を用いずに常温常圧下で製造が可能であるという観点からすると、特許文献5及び特許文献6に記載の、キノン系酸化剤と酸を用いた酸化重合法が好ましく用いられる。前記重合体の具体的な製造方法としては、メチル基、エチル基、メトキシ基、エトキシ基もしくはヒドロキシ基を含有する芳香族チオール化合物、又はメチル基、エチル基、メトキシ基、エトキシ基もしくはヒドロキシ基を含有する芳香族ジスルフィド化合物をモノマーとして、キノン系酸化剤と酸を用いて酸化重合する方法や、保護されたヒドロキシ基を含有する芳香族チオール化合物又は保護されたヒドロキシ基を含有する芳香族ジスルフィド化合物をモノマーとして、キノン系酸化剤と酸を用いて酸化重合したのち、保護基の一部又は全部を脱保護する方法が挙げられる。保護されたヒドロキシ基としては、重合が進行する限り特に限定されないが、キノン系酸化剤や酸と干渉しない安定性の観点からアルコキシ基が好ましく、メトキシ基又はエトキシ基がさらに好ましく、メトキシ基の場合、より容易に脱保護反応を進行させることができるため特に好ましい。該アルコキシ基は、酸を作用させる等してアルキル基を脱離することによってヒドロキシ基に変換することが可能となる。前記酸としては、例えば、三置換ホウ素化合物(三臭化ホウ素等)及び塩化アルミニウム等のルイス酸、並びにチオール化合物(ドデカンチオール等)及び臭化水素等のブレンステッド酸が挙げられるが、ヒドロキシ基に変換可能な酸であれば特に限定されない。保護基は全て脱保護しても一部残してもよい。脱保護率を適宜調整することで、光学特性や溶解性を制御することができる。 As a method for producing the polymer, an oxidative polymerization method is preferable, and in particular, from the viewpoint that it can be produced at room temperature and normal pressure without using a metal catalyst, the quinone-based polymer described in Patent Document 5 and Patent Document 6 An oxidative polymerization method using an oxidizing agent and an acid is preferably used. A specific method for producing the polymer includes an aromatic thiol compound containing a methyl group, an ethyl group, a methoxy group, an ethoxy group, or a hydroxy group; A method of oxidative polymerization using an aromatic disulfide compound containing as a monomer using a quinone oxidizing agent and an acid, an aromatic thiol compound containing a protected hydroxy group, or an aromatic disulfide compound containing a protected hydroxy group. An example of a method is to perform oxidative polymerization using a quinone oxidizing agent and an acid as a monomer, and then deprotect some or all of the protecting groups. The protected hydroxy group is not particularly limited as long as polymerization proceeds, but from the viewpoint of stability that does not interfere with quinone oxidizing agents or acids, an alkoxy group is preferable, a methoxy group or an ethoxy group is more preferable, and in the case of a methoxy group is particularly preferable since the deprotection reaction can proceed more easily. The alkoxy group can be converted into a hydroxy group by removing the alkyl group by applying an acid or the like. Examples of the acid include trisubstituted boron compounds (boron tribromide, etc.) and Lewis acids such as aluminum chloride, and thiol compounds (dodecanethiol, etc.) and Bronsted acids such as hydrogen bromide. It is not particularly limited as long as it is an acid that can be converted into. All of the protecting groups may be removed or some may remain. Optical properties and solubility can be controlled by appropriately adjusting the deprotection rate.
 酸化重合法を用いる場合、前記式(2)で表されるジスルフィドモノマー(但し、前記式(2a)で表されるジスルフィドモノマーを除く。)及び/又は前記式(3)で表されるチオールモノマー(但し、前記式(3a)で表されるチオールモノマーを除く。)を好適に使用することができる。 When using the oxidative polymerization method, the disulfide monomer represented by the above formula (2) (excluding the disulfide monomer represented by the above formula (2a)) and/or the thiol monomer represented by the above formula (3) (However, the thiol monomer represented by the above formula (3a) is excluded.) can be suitably used.
 前記重合体の合成に用いるモノマーは、1種単独で使用しても、2種以上を組み合わせて使用してもよい。光学特性や有機溶剤に対する溶解性の調整等の観点から、必要に応じて、前記式(2)で表されないジスルフィドモノマー又は前記式(3)で表されないチオールモノマーを用いてもよい。すなわち、該重合体は、前記式(1)で表される構造単位を少なくとも1種含んでいればよく、単独重合体であっても、共重合体であってもよい。該重合体が共重合体である場合、その繰り返し構造は特に限定されず、交互共重合体、ブロック共重合体、グラジエント共重合体及びランダム共重合体のいずれであってもよい。また、該重合体は、重合条件によっては分岐鎖状となり得る。 The monomers used in the synthesis of the polymer may be used alone or in combination of two or more. From the viewpoint of adjusting optical properties and solubility in organic solvents, a disulfide monomer not represented by the above formula (2) or a thiol monomer not represented by the above formula (3) may be used as necessary. That is, the polymer only needs to contain at least one kind of structural unit represented by the above formula (1), and may be a homopolymer or a copolymer. When the polymer is a copolymer, its repeating structure is not particularly limited, and it may be any of an alternating copolymer, a block copolymer, a gradient copolymer, and a random copolymer. Moreover, the polymer can be branched depending on the polymerization conditions.
[(A)成分]
 (A)成分は、前記式(1)で表される構造単位(但し、前記式(1a)で表される構造単位を除く。)を含む重合体及び/又は前記式(4)で表される構造単位を含む重合体であれば特に限定されない。また、本発明の効果を損なわない範囲において、前記式(1)で表される構造単位及び前記式(4)で表される構造単位以外の、その他の構造単位を含んでもよい。その他の構造単位としては、例えば下記式(5)~式(17)で表される構造単位が挙げられる。
[(A) Component]
Component (A) is a polymer containing a structural unit represented by the above formula (1) (excluding the structural unit represented by the above formula (1a)) and/or a polymer containing a structural unit represented by the above formula (4). It is not particularly limited as long as it is a polymer containing a structural unit. Moreover, other structural units other than the structural unit represented by the formula (1) and the structural unit represented by the formula (4) may be included within a range that does not impair the effects of the present invention. Examples of other structural units include structural units represented by the following formulas (5) to (17).
Figure JPOXMLDOC01-appb-C000018
(式中、OMeはメトキシ基を表す。)
Figure JPOXMLDOC01-appb-C000018
(In the formula, OMe represents a methoxy group.)
 (A)成分中における前記式(1)で表される構造単位(但し、前記式(1a)で表される構造単位を除く。)及び/又は前記式(4)で表される構造単位の割合は、好ましくは10モル%以上、より好ましくは30モル%以上、より一層好ましくは50モル%以上、さらに好ましくは80モル%以上である。該構造単位の割合を上記範囲内とすることで、隣り合うレンズ間のギャップがより狭いマイクロレンズを作製することが可能となる。 (A) The structural unit represented by the above formula (1) (excluding the structural unit represented by the above formula (1a)) and/or the structural unit represented by the above formula (4) in the component (A) The proportion is preferably 10 mol% or more, more preferably 30 mol% or more, even more preferably 50 mol% or more, even more preferably 80 mol% or more. By setting the proportion of the structural units within the above range, it becomes possible to produce microlenses with narrower gaps between adjacent lenses.
 前記式(1)で表される構造単位は、置換基の存在により結晶性が低減するため、前記式(4)で表される構造単位よりも有機溶剤に対する溶解性の観点で優れる。前記式(1)中のXは、メチル基、エチル基、メトキシ基、エトキシ基又はヒドロキシ基を表し、中でもメチル基、メトキシ基、ヒドロキシ基が好ましく、有機溶剤に対する溶解性向上及び屈折率向上の観点では特にヒドロキシ基が好ましい。また、合成の容易さの観点では前記式(1)中のnは1が好ましい。 The structural unit represented by the formula (1) has reduced crystallinity due to the presence of the substituent, and therefore is superior to the structural unit represented by the formula (4) from the viewpoint of solubility in organic solvents. X in the formula (1) represents a methyl group, an ethyl group, a methoxy group, an ethoxy group, or a hydroxy group, and among them, a methyl group, a methoxy group, and a hydroxy group are preferable, and X represents a methyl group, an ethyl group, a methoxy group, an ethoxy group, or a hydroxy group. From this point of view, a hydroxy group is particularly preferred. Further, from the viewpoint of ease of synthesis, n in the formula (1) is preferably 1.
 (A)成分の分子量は、ゲル浸透クロマトグラフィ(GPC)によって算出されるポリスチレン換算重量平均分子量として、好ましくは500~100,000、より好ましくは1,000~30,000、より一層好ましくは1,000~10,000である。 The molecular weight of component (A) is preferably 500 to 100,000, more preferably 1,000 to 30,000, even more preferably 1. 000 to 10,000.
 (A)成分は、例えば、ナフタレン誘導体に対して各種公知のポリアリーレンスルフィド製造方法(芳香族ハロゲン化合物と硫化ナトリウムによる重縮合や、芳香族チオール化合物又は芳香族ジスルフィド化合物の酸化重合等)を適用することによって合成することができる。ヒドロキシ基を有する重合体については、ヒドロキシ基が保護されたナフトール誘導体に対して各種公知のポリアリーレンスルフィド製造方法を適用したのち、保護基の一部又は全部を脱保護することによって合成してもよい。 For component (A), for example, various known polyarylene sulfide production methods (polycondensation with aromatic halogen compounds and sodium sulfide, oxidative polymerization of aromatic thiol compounds or aromatic disulfide compounds, etc.) are applied to naphthalene derivatives. It can be synthesized by Polymers having hydroxy groups can be synthesized by applying various known polyarylene sulfide production methods to naphthol derivatives with protected hydroxy groups, and then deprotecting some or all of the protecting groups. good.
 (A)成分の製造方法としては、酸化重合法が好ましく、特に、金属触媒を用いずに常温常圧下で製造が可能であるという観点からすると、特許文献5及び特許文献6に記載の、キノン系酸化剤と酸を用いた酸化重合法が好ましく用いられる。(A)成分の具体的な製造方法としては、メチル基、エチル基、メトキシ基、エトキシ基もしくはヒドロキシ基を含有してもよい芳香族チオール化合物、又はメチル基、エチル基、メトキシ基、エトキシ基もしくはヒドロキシ基を含有してもよい芳香族ジスルフィド化合物をモノマーとして、キノン系酸化剤と酸を用いて酸化重合する方法や、保護されたヒドロキシ基を含有する芳香族チオール化合物又は保護されたヒドロキシ基を含有する芳香族ジスルフィド化合物をモノマーとして、キノン系酸化剤と酸を用いて酸化重合したのち、保護基の一部又は全部を脱保護する方法が挙げられる。保護されたヒドロキシ基としては、重合が進行する限り特に限定されないが、キノン系酸化剤や酸と干渉しない安定性の観点からアルコキシ基が好ましく、メトキシ基又はエトキシ基がさらに好ましく、メトキシ基の場合、より容易に脱保護反応を進行させることができるため特に好ましい。該アルコキシ基は、酸を作用させる等してアルキル基を脱離することによってヒドロキシ基に変換することが可能となる。前記酸としては、例えば、三置換ホウ素化合物(三臭化ホウ素等)及び塩化アルミニウム等のルイス酸、並びにチオール化合物(ドデカンチオール等)及び臭化水素等のブレンステッド酸が挙げられるが、ヒドロキシ基に変換可能な酸であれば特に限定されない。保護基は全て脱保護しても一部残してもよい。脱保護率を適宜調整することで、光学特性や溶解性を制御することができる。 As a method for producing component (A), an oxidative polymerization method is preferable, and in particular, from the viewpoint that it can be produced at room temperature and normal pressure without using a metal catalyst, the quinone described in Patent Document 5 and Patent Document 6 An oxidative polymerization method using an oxidizing agent and an acid is preferably used. As a specific method for producing component (A), an aromatic thiol compound that may contain a methyl group, an ethyl group, a methoxy group, an ethoxy group, or a hydroxy group, or an aromatic thiol compound that may contain a methyl group, an ethyl group, a methoxy group, or an ethoxy group. Alternatively, a method of oxidative polymerization using an aromatic disulfide compound that may contain a hydroxy group as a monomer using a quinone oxidizing agent and an acid, or an aromatic thiol compound containing a protected hydroxy group or a protected hydroxy group. An example of a method is to perform oxidative polymerization using an aromatic disulfide compound containing as a monomer using a quinone oxidizing agent and an acid, and then deprotect some or all of the protecting groups. The protected hydroxy group is not particularly limited as long as polymerization proceeds, but from the viewpoint of stability that does not interfere with quinone oxidizing agents or acids, an alkoxy group is preferable, a methoxy group or an ethoxy group is more preferable, and in the case of a methoxy group is particularly preferable since the deprotection reaction can proceed more easily. The alkoxy group can be converted into a hydroxy group by removing the alkyl group by applying an acid or the like. Examples of the acid include trisubstituted boron compounds (boron tribromide, etc.) and Lewis acids such as aluminum chloride, and thiol compounds (dodecanethiol, etc.) and Bronsted acids such as hydrogen bromide. It is not particularly limited as long as it is an acid that can be converted into. All of the protecting groups may be removed or some may remain. Optical properties and solubility can be controlled by appropriately adjusting the deprotection rate.
 酸化重合法を用いて前記式(1)で表される構造単位(但し、前記式(1a)で表される構造単位を除く。)を含む重合体を合成する場合、前記式(2)で表されるジスルフィドモノマー(但し、前記式(2a)で表されるジスルフィドモノマーを除く。)及び/又は前記式(3)で表されるチオールモノマー(但し、前記式(3a)で表されるチオールモノマーを除く。)を好適に使用することができる。また、酸化重合法を用いて前記式(4)で表される構造単位を含む重合体を合成する場合、下記式(18)で表されるジスルフィドモノマー及び/又は下記式(19)で表されるチオールモノマーを好適に使用することができる。 When synthesizing a polymer containing the structural unit represented by the above formula (1) (excluding the structural unit represented by the above formula (1a)) using the oxidative polymerization method, the above formula (2) (However, the disulfide monomer represented by the above formula (2a) is excluded.) and/or the thiol monomer represented by the above formula (3) (However, the thiol represented by the above formula (3a) is (excluding monomers) can be suitably used. In addition, when synthesizing a polymer containing a structural unit represented by the formula (4) using an oxidative polymerization method, a disulfide monomer represented by the following formula (18) and/or a disulfide monomer represented by the following formula (19) is synthesized. Thiol monomers can be suitably used.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 (A)成分の合成に用いるモノマーは、1種単独で使用しても、2種以上を組み合わせて使用してもよい。光学特性や有機溶剤に対する溶解性の調整等の観点から、必要に応じて、前記式(2)及び前記式(18)で表されないジスルフィドモノマー(例えば、下記式(20)~式(38)で表されるジスルフィドモノマーが挙げられる。)又は前記式(3)及び前記式(19)で表されないチオールモノマー(例えば、下記式(39)~式(57)で表されるチオールモノマーが挙げられる。)を用いてもよい。すなわち、該重合体は、前記式(1)又は前記式(4)で表される構造単位を少なくとも1種含んでいればよく、単独重合体であっても、共重合体であってもよい。該重合体が共重合体である場合、その繰り返し構造は特に限定されず、交互共重合体、ブロック共重合体、グラジエント共重合体及びランダム共重合体のいずれであってもよい。また、該重合体は、重合条件によっては分岐鎖状となり得る。 The monomers used in the synthesis of component (A) may be used alone or in combination of two or more. From the viewpoint of adjusting optical properties and solubility in organic solvents, disulfide monomers not represented by the above formula (2) and the above formula (18) (for example, the following formulas (20) to (38)) may be used as necessary. ) or thiol monomers not represented by the formula (3) or formula (19) (for example, thiol monomers represented by the following formulas (39) to (57)). ) may be used. That is, the polymer only needs to contain at least one structural unit represented by the above formula (1) or the above formula (4), and may be a homopolymer or a copolymer. . When the polymer is a copolymer, its repeating structure is not particularly limited, and it may be any of an alternating copolymer, a block copolymer, a gradient copolymer, and a random copolymer. Further, the polymer may be branched depending on the polymerization conditions.
Figure JPOXMLDOC01-appb-C000020
(式中、OMeはメトキシ基を表す。)
Figure JPOXMLDOC01-appb-C000020
(In the formula, OMe represents a methoxy group.)
Figure JPOXMLDOC01-appb-C000021
(式中、OMeはメトキシ基を表す。)
Figure JPOXMLDOC01-appb-C000021
(In the formula, OMe represents a methoxy group.)
[(B)成分]
 (B)成分は、前記(A)成分を溶解する有機溶剤である限り特に限定されないが、中でも融点が15℃以下であり、且つ沸点が85℃以上である有機溶剤が望ましい。ここで、融点及び沸点とは1気圧下におけるものをいう。融点が15℃以下であることにより、該樹脂組成物は常温におけるハンドリング性に優れる。前記融点は、冷所での保管性の観点から、10℃以下が好ましく、5℃以下がより好ましい。また、融点の下限は、特に限定されるものではないが、例えば、-150℃以上が好ましい。一方、沸点が85℃以上であることにより、該樹脂組成物を基板上に塗布して形成される塗膜が白化しにくくなる。前記沸点は、特に均質な塗膜を形成しやすい観点から、100℃以上が好ましく、115℃以上がより好ましい。また、沸点の上限は、有機溶剤除去性の観点から、300℃以下が好ましく、250℃以下がより好ましく、220℃以下がさらに好ましい。
[(B) Component]
Component (B) is not particularly limited as long as it is an organic solvent that dissolves component (A), but an organic solvent having a melting point of 15° C. or lower and a boiling point of 85° C. or higher is particularly desirable. Here, the melting point and boiling point refer to those under 1 atmosphere. Since the melting point is 15° C. or lower, the resin composition has excellent handling properties at room temperature. The melting point is preferably 10°C or lower, more preferably 5°C or lower, from the viewpoint of storage stability in a cool place. Further, the lower limit of the melting point is not particularly limited, but is preferably -150°C or higher, for example. On the other hand, when the boiling point is 85° C. or higher, the coating film formed by applying the resin composition onto a substrate becomes less likely to whiten. The boiling point is preferably 100°C or higher, more preferably 115°C or higher, particularly from the viewpoint of easily forming a homogeneous coating film. Further, from the viewpoint of organic solvent removability, the upper limit of the boiling point is preferably 300°C or less, more preferably 250°C or less, and even more preferably 220°C or less.
 (B)成分の具体例としては、メチルシクロヘキサン、エチルシクロヘキサン、n-ヘプタン、トルエン、о-キシレン、m-キシレン、メシチレン、クロロベンゼン、о-ジクロロベンゼン、m-ジクロロベンゼン、アニソール、フェネトール、ジ-n-プロピルエーテル、ジ-n-ブチルエーテル、ジイソブチルエーテル、ジ-n-ペンチルエーテル、ジイソペンチルエーテル、ジ-n-ヘキシルエーテル、n-ブチルエチルエーテル、メチル-n-ペンチルエーテル、シクロペンチルメチルエーテル、テトラヒドロピラン、1,3-ジオキサン、1,4-ジオキサン、1-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、シクロペンタノール、ベンジルアルコール、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、n-ブチルホルマート、イソブチルホルマート、n-ペンチルホルマート、イソペンチルホルマート、n-プロピルアセタート、イソプロピルアセタート、n-ブチルアセタート、イソブチルアセタート、tert-ブチルアセタート、n-ペンチルアセタート、イソペンチルアセタート、n-へキシルアセタート、イソへキシルアセタート、n-ヘプチルアセタート、イソヘプチルアセタート、n-オクチルアセタート、イソオクチルアセタート、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、プロピレングリコールモノメチルエーテルアセタート、プロピレングリコールモノエチルエーテルアセタート、プロピレングリコールモノプロピルエーテルアセタート、プロピレングリコールモノブチルエーテルアセタート、プロピレングリコールジアセタート、トリアセチン、エチルプロピオナート、n-プロピルプロピオナート、イソプロピルプロピオナート、n-ブチルプロピオナート、イソブチルプロピオナート、tert-ブチルプロピオナート、プロピレングリコールモノメチルエーテルプロピオナート、メチルブチラート、エチルブチラート、n-プロピルブチラート、イソプロピルブチラート、n-ブチルブチラート、イソブチルブチラート、tert-ブチルブチラート、メチルイソブチラート、エチルイソブチラート、n-プロピルイソブチラート、イソプロピルイソブチラート、n-ブチルイソブチラート、イソブチルイソブチラート、tert-ブチルイソブチラート、メチルラクタート、エチルラクタート、n-プロピルラクタート、イソプロピルラクタート、n-ブチルラクタート、イソブチルラクタート、tert-ブチルラクタート、メチルアセトアセタート、エチルアセトアセタート、n-プロピルアセトアセタート、イソプロピルアセトアセタート、n-ブチルアセトアセタート、イソブチルアセトアセタート、tert-ブチルアセトアセタート、ジメチルマロナート、ジエチルマロナート、メチルグリコラート、エチルグリコラート、ピルビン酸メチル、ピルビン酸エチル、エトキシ酢酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、ジメチルカーボネート、ジエチルカーボネート、2-ペンタノン、3-ペンタノン、シクロペンタノン、2,4-ペンタンジオン、4-メチル-2-ペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、2-ヘキサノン、3-ヘキサノン、3-メチル-2-ヘキサノン、5-メチル-2-ヘキサノン、2-メチル-3-ヘキサノン、5-メチル-3-ヘキサノン、シクロヘキサノン、2-メチルシクロヘキサノン、3-メチルシクロヘキサノン、4-メチルシクロヘキサノン、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、2-メチル-3-ヘプタノン、5-メチル-3-ヘプタノン、2,6-ジメチル-4-ヘプタノン、シクロヘプタノン、γ-ブチロラクトン、γ-バレロラクトン、γ-カプロラクトン、δ-バレロラクトン、δ-カプロラクトン、ε-カプロラクトン、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルイソブチルアミド、N-メチル-2-ピロリドン及びN-エチル-2-ピロリドン等が挙げられる。 Specific examples of component (B) include methylcyclohexane, ethylcyclohexane, n-heptane, toluene, o-xylene, m-xylene, mesitylene, chlorobenzene, o-dichlorobenzene, m-dichlorobenzene, anisole, phenetol, di- n-propyl ether, di-n-butyl ether, diisobutyl ether, di-n-pentyl ether, diisopentyl ether, di-n-hexyl ether, n-butyl ethyl ether, methyl-n-pentyl ether, cyclopentyl methyl ether, Tetrahydropyran, 1,3-dioxane, 1,4-dioxane, 1-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 1-pentanol, 2-pentanol, 3-pentanol, Cyclopentanol, benzyl alcohol, ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether , diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene Glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, n-butyl formate, isobutyl formate, n-pentyl formate, isopentyl formate, n-propylacetate, isopropylacetate, n-butyl acetate , isobutyl acetate, tert-butyl acetate, n-pentyl acetate, isopentyl acetate, n-hexyl acetate, isohexyl acetate, n-heptyl acetate, isoheptyl acetate, n-octyl acetate, isooctyl Acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, ethylene glycol diacetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate , propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, propylene glycol monobutyl ether acetate, propylene glycol diacetate, triacetin, ethyl propionate, n-propyl propionate, isopropyl propionate, n -butyl propionate, isobutyl propionate, tert-butyl propionate, propylene glycol monomethyl ether propionate, methyl butyrate, ethyl butyrate, n-propyl butyrate, isopropyl butyrate, n-butyl butyrate, Isobutyl butyrate, tert-butyl butyrate, methyl isobutyrate, ethyl isobutyrate, n-propyl isobutyrate, isopropyl isobutyrate, n-butyl isobutyrate, isobutyl isobutyrate, tert-butyl isobutyrate , methyl lactate, ethyl lactate, n-propyl lactate, isopropyl lactate, n-butyl lactate, isobutyl lactate, tert-butyl lactate, methyl acetoacetate, ethyl acetoacetate, n-propyl acetoacetate tert, isopropylacetoacetate, n-butylacetoacetate, isobutylacetoacetate, tert-butylacetoacetate, dimethylmalonate, diethylmalonate, methyl glycolate, ethyl glycolate, methyl pyruvate, ethyl pyruvate, Ethyl acetate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, dimethyl carbonate, diethyl carbonate, 2-pentanone, 3-pentanone, cyclopentanone, 2,4-pentanedione, 4-methyl-2-pentanone, 4-hydroxy-4-methyl-2-pentanone, 2-hexanone, 3-hexanone, 3-methyl-2-hexanone, 5-methyl-2-hexanone , 2-methyl-3-hexanone, 5-methyl-3-hexanone, cyclohexanone, 2-methylcyclohexanone, 3-methylcyclohexanone, 4-methylcyclohexanone, 2-heptanone, 3-heptanone, 4-heptanone, 2-methyl- 3-heptanone, 5-methyl-3-heptanone, 2,6-dimethyl-4-heptanone, cycloheptanone, γ-butyrolactone, γ-valerolactone, γ-caprolactone, δ-valerolactone, δ-caprolactone, ε- Caprolactone, N,N-dimethylformamide, N,N-diethylformamide, N,N-dimethylacetamide, N,N-diethylacetamide, N,N-dimethylisobutyramide, N-methyl-2-pyrrolidone and N-ethyl- Examples include 2-pyrrolidone.
 前記(B)成分としては、該樹脂組成物を基板上に塗布して形成される塗膜のレベリング性の向上の観点から、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、プロピレングリコールモノメチルエーテルアセタート、エチルラクタート、n-ブチルラクタート、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、2-ヘプタノン、シクロペンタノン、シクロヘキサノン、γ-ブチロラクトン、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン及びN-エチル-2-ピロリドンが好ましく、(A)成分の溶解性を考慮すると、特にシクロペンタノン及びγ-ブチロラクトンが好ましい。 Component (B) may include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene, from the viewpoint of improving the leveling properties of the coating film formed by applying the resin composition onto a substrate. Glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, ethyl lactate, n-butyl lactate, pyruvic acid Methyl, ethyl pyruvate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, 2-heptanone, cyclopentanone, cyclohexanone, γ-butyrolactone, N,N-dimethylacetamide, N-methyl-2-pyrrolidone and N -Ethyl-2-pyrrolidone is preferred, and in consideration of the solubility of component (A), cyclopentanone and γ-butyrolactone are particularly preferred.
 前記(B)成分は、1種単独で使用しても、2種以上を組み合わせて使用してもよい。また、(B)成分以外の溶剤と適宜混合してもよく、その場合、(B)成分の含有量は、(B)成分及びその他の溶剤を含む溶剤全体の50質量%~100質量%が好ましく、より好ましくは60質量%~100質量%、より一層好ましくは70質量%~100質量%である。 The component (B) may be used alone or in combination of two or more. In addition, it may be mixed with a solvent other than component (B) as appropriate. In that case, the content of component (B) is 50% to 100% by mass of the entire solvent including component (B) and other solvents. It is preferably 60% to 100% by weight, even more preferably 70% to 100% by weight.
 前記その他の溶剤の具体例としては、メタノール、エタノール、2-プロパノール、ジクロロメタン、1,2-ジクロロエタン、クロロホルム、アセトン、2-ブタノン、ジメチルスルホキシド(DMSO)、テトラヒドロフラン(THF)、エチルアセタート、及びアセトニトリル等が挙げられる。 Specific examples of the other solvents include methanol, ethanol, 2-propanol, dichloromethane, 1,2-dichloroethane, chloroform, acetone, 2-butanone, dimethyl sulfoxide (DMSO), tetrahydrofuran (THF), ethyl acetate, and Examples include acetonitrile.
[(C)多官能エポキシ化合物]
 本発明の樹脂組成物は、耐薬品性を向上させる目的で、さらに(C)多官能エポキシ化合物を含有してもよい。前記(C)成分は、オキシラン環を分子中に少なくとも2つ有する化合物であれば特に限定されず、例えば、以下に示す商品及び化合物を用いることができる。
 TEPIC(登録商標)-G、同-L、同-VL、同-S、同-SP、同-SS、同-HP(以上、日産化学(株)製)、マープルーフ(登録商標)G-01100、同G-0105SA、同G-0130SF、同G-0130SP、同G-0150M、同G-0250SF、同G-0250SP、同G-05100、同G-2050M、同G-017581(以上、日油(株)製)、OGSOL(登録商標)PG-100、同CG-500、同EG-200、同EG-280(以上、大阪ガスケミカル(株)製)、GTR-1800(以上、日本化薬(株)製)、EPICLON(登録商標)830、同830-S、同835、同840、同840-S、同850、同850-S、同850-LC、同HP-820(以上、DIC(株)製)、DENACOL(登録商標)EX-201、同EX-211、同EX-212、同EX-252、同EX-810、同EX-811、同EX-821、同EX-830、同EX-832、同EX-841、同EX-850、同EX-851、同EX-861、同EX-920、同EX-931、同EX-991L、同EX-313、同EX-314、同EX-321、同EX-321L、同EX-411、同EX-421、同EX-512、同EX-521、同EX-612、同EX-614、同EX-614B、同EX-622(以上、ナガセケムテックス(株)製)、jER(登録商標)152、同604、同630、同806、同806H、同807、同825、同827、同828、同828EL、同828US、同828XA、同834、同890、同1031S、同1032H60、同1750、同YL980、同YL983U、同YL6121HA、同YL6677、同YL6810、同YX4000、同YX4000H、同YX4000HS、同YX7700、同YX8000、同YX8034、同YX8800(以上、三菱ケミカル(株)製)、TETRAD(登録商標)-C、同-X(以上、三菱ガス化学(株)製)、セロキサイド(登録商標)2021P、同2081、エポリード(登録商標)GT401、EHPE(登録商標)3150、同3150CE(以上、(株)ダイセル製)、エポトート(登録商標)YD-115、同YD-115CA、同YD-127、同YD-128、同YD-128G、同YD-128S、同YD-128CA、同YD-8125、同YD-825GS、同YDF-170、同YDF-170N、同YDF-8170C、同YDF-870GS、同ZX-1059、同YH-404、同YH-434、同YH-434L、同YH-513、同YH-523、同ST-3000(以上、日鉄ケミカル&マテリアル(株)製)、アデカレジン(登録商標)EP-4100、同EP-4100G、同EP-4100E、同EP-4100TX、同EP-4300E、同EP-4100、同EP-4400、同EP-4520S、同EP-4530、同EP-4901、同EP-4901E、同EP-4000、同EP-4005、同EP-7001、同EP-4080E、同EPU-6、同EPU-7N、同EPU-11F、同EPU-15F、同EPU-1395、同EPU-73B、同EPU-17、同EPU-17T-6、同EPR-1415-1、同EPR-2000、同EPR-2007、アデカグリシロール(登録商標)ED-503、同ED-503G、同ED-506、同ED-523T、同ED-505(以上、(株)ADEKA製)、スミエポキシ(登録商標)ELM-434、同ELM-434L、同ELM-434VL、同ELM-100、同ELM-100H(以上、住友化学(株)製)、エポライトM-1230、同40E,同100E、同200E、同400E、同70P、同200P、同400P、同1500NP、同1600、同80MF、同4000、同3002(N)(以上、共栄社化学(株)製)及びTHI-DE(ENEOS(株)製)等の多官能エポキシ樹脂。
[(C) Polyfunctional epoxy compound]
The resin composition of the present invention may further contain (C) a polyfunctional epoxy compound for the purpose of improving chemical resistance. The component (C) is not particularly limited as long as it is a compound having at least two oxirane rings in the molecule, and for example, the following products and compounds can be used.
TEPIC (registered trademark)-G, TEPIC-L, TEPIC-VL, TEPIC-S, TEPIC-SP, TEPIC-SS, TEPIC-HP (manufactured by Nissan Chemical Co., Ltd.), Marproof (registered trademark) G- 01100, G-0105SA, G-0130SF, G-0130SP, G-0150M, G-0250SF, G-0250SP, G-05100, G-2050M, G-017581. OGSOL (registered trademark) PG-100, CG-500, EG-200, EG-280 (manufactured by Osaka Gas Chemical Co., Ltd.), GTR-1800 (registered trademark) EPICLON (registered trademark) 830, 830-S, 835, 840, 840-S, 850, 850-S, 850-LC, HP-820 (manufactured by Yakuhin Co., Ltd.), DENACOL (registered trademark) EX-201, EX-211, EX-212, EX-252, EX-810, EX-811, EX-821, EX-830 , EX-832, EX-841, EX-850, EX-851, EX-861, EX-920, EX-931, EX-991L, EX-313, EX-314 , EX-321, EX-321L, EX-411, EX-421, EX-512, EX-521, EX-612, EX-614, EX-614B, EX-622 (manufactured by Nagase ChemteX Co., Ltd.), jER (registered trademark) 152, jER (registered trademark) 152, jER (registered trademark) 604, jER (registered trademark) 630, jER (registered trademark) 806, jER (registered trademark) 806H, jER (registered trademark) 807, jER (registered trademark) 825, jER (registered trademark) 825, jER (registered trademark) 827, jER (registered trademark) 828, jER (registered trademark) 828EL, jER (registered trademark) 828US, jER (registered trademark) 828XA, 834, 890, 1031S, 1032H60, 1750, YL980, YL983U, YL6121HA, YL6677, YL6810, YX4000, YX4000H, YX4000HS, YX7700, YX8000 , same YX8034, TETRAD (registered trademark) YX8800 (manufactured by Mitsubishi Chemical Corporation), TETRAD (registered trademark) -C, TETRAD (registered trademark) -X (manufactured by Mitsubishi Gas Chemical Co., Ltd.), Celoxide (registered trademark) 2021P, 2081, Epolead (registered trademark) ) GT401, EHPE (registered trademark) 3150, EHPE (registered trademark) 3150CE (manufactured by Daicel Corporation), EHPE (registered trademark) YD-115, EHPE (registered trademark) YD-115CA, EHPE (registered trademark) YD-127, EHPE (registered trademark) YD-128, EHPE (registered trademark) YD-128G , YD-128S, YD-128CA, YD-8125, YD-825GS, YDF-170, YDF-170N, YDF-8170C, YDF-870GS, ZX-1059, YH-404 , YH-434, YH-434L, YH-513, YH-523, ST-3000 (manufactured by Nippon Steel Chemical & Materials Co., Ltd.), Adekal Resin (registered trademark) EP-4100, EP -4100G, EP-4100E, EP-4100TX, EP-4300E, EP-4100, EP-4400, EP-4520S, EP-4530, EP-4901, EP-4901E, EP -4000, EP-4005, EP-7001, EP-4080E, EPU-6, EPU-7N, EPU-11F, EPU-15F, EPU-1395, EPU-73B, EPU -17, EPU-17T-6, EPR-1415-1, EPR-2000, EPR-2007, ADEKA Glycilol (registered trademark) ED-503, ED-503G, ED-506, ED -523T, ED-505 (manufactured by ADEKA Co., Ltd.), Sumiepoxy (registered trademark) ELM-434, ELM-434L, ELM-434VL, ELM-100, ELM-100H (manufactured by Sumitomo Chemical) Epolite M-1230, 40E, 100E, 200E, 400E, 70P, 200P, 400P, 1500NP, 1600, 80MF, 4000, 3002 (N) ( The above-mentioned polyfunctional epoxy resins include Kyoeisha Kagaku Co., Ltd.) and THI-DE (ENEOS Co., Ltd.).
 前記(C)成分は、1種単独で使用しても、2種以上を組み合わせて使用してもよい。本発明の樹脂組成物が(C)成分を含む場合、(C)成分の含有量は、(A)成分100質量部に対して、好ましくは5質量部~50質量部、より好ましくは10質量部~30質量部である。(C)成分の含有量を前記範囲内とすることで、屈折率を損なうことなく、さらなる耐薬品性向上が可能となる。 The component (C) may be used alone or in combination of two or more. When the resin composition of the present invention contains component (C), the content of component (C) is preferably 5 parts by mass to 50 parts by mass, more preferably 10 parts by mass, based on 100 parts by mass of component (A). parts to 30 parts by mass. By setting the content of component (C) within the above range, further improvement in chemical resistance is possible without impairing the refractive index.
[界面活性剤]
 本発明の樹脂組成物は、塗布性を向上させる目的で、任意で界面活性剤を含有することもできる。界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類;ポリオキシエチレンオクチルフェニルエーテル及びポリオキシエチレンノニルフェニルエーテル等のポリオキシエチレンアルキルアリールエーテル類;ポリオキシエチレン/ポリオキシプロピレンブロックコポリマー類;ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレート、ソルビタントリオレート、及びソルビタントリステアレート等のソルビタン脂肪酸エステル類;ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレート、及びポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル類等のノニオン系界面活性剤;エフトップ(登録商標)EF301、同EF303、同EF352(以上、三菱マテリアル電子化成(株)製)、メガファック(登録商標)F-171、同F-173、同R-30、同R-40、同R-40-LM(以上、DIC(株)製)、フロラードFC430、同FC431(以上、住友スリーエム(株)製)、アサヒガード(登録商標)AG710、サーフロン(登録商標)S-382、同SC101、同SC102、同SC103、同SC104、同SC105、同SC106(AGC(株)製)、FTX-206D、FTX-212D、FTX-218、FTX-220D、FTX-230D、FTX-240D、FTX-212P、FTX-220P、FTX-228P、FTX-240G等のフタージェントシリーズ((株)ネオス製)等のフッ素系界面活性剤、及びオルガノシロキサンポリマーKP341(信越化学工業(株)製)を挙げることができる。これらの界面活性剤は、1種単独で使用しても、2種以上を組み合わせて使用してもよい。
[Surfactant]
The resin composition of the present invention may optionally contain a surfactant for the purpose of improving coating properties. Examples of surfactants include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, and polyoxyethylene oleyl ether; polyoxyethylene octylphenyl ether and polyoxyethylene Polyoxyethylene alkylaryl ethers such as nonylphenyl ether; polyoxyethylene/polyoxypropylene block copolymers; sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan triolate, and sorbitan tri Sorbitan fatty acid esters such as stearate; polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan triolate, polyoxyethylene sorbitan tristearate, etc. Nonionic surfactants such as polyoxyethylene sorbitan fatty acid esters; EFTOP (registered trademark) EF301, EF303, EF352 (manufactured by Mitsubishi Materials Electronic Chemicals Co., Ltd.), Megafac (registered trademark) F-171 , F-173, R-30, R-40, R-40-LM (manufactured by DIC Corporation), Florado FC430, FC431 (manufactured by Sumitomo 3M Ltd.), Asahi Guard (registered trademark) AG710, Surflon (registered trademark) S-382, Surflon (registered trademark) SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by AGC Corporation), FTX-206D, FTX-212D, FTX- 218, FTX-220D, FTX-230D, FTX-240D, FTX-212P, FTX-220P, FTX-228P, FTX-240G, and other fluorine-based surfactants such as the Ftergent series (manufactured by NEOS Co., Ltd.), and Organosiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.) can be mentioned. These surfactants may be used alone or in combination of two or more.
 本発明の樹脂組成物が界面活性剤を含む場合、界面活性剤の含有量は、全固形分100質量部に対し、好ましくは0.001質量部~3質量部、より好ましくは0.005質量部~1質量部、より一層好ましくは0.01質量部~0.5質量部である。 When the resin composition of the present invention contains a surfactant, the content of the surfactant is preferably 0.001 parts by mass to 3 parts by mass, more preferably 0.005 parts by mass based on 100 parts by mass of total solids. part to 1 part by weight, even more preferably 0.01 part to 0.5 part by weight.
[その他添加剤]
 本発明の樹脂組成物は、本発明の効果を損なわない限りにおいて、必要に応じて硬化助剤、酸化防止剤、光安定剤(HALS)、紫外線吸収剤、可塑剤及び密着助剤等の添加剤をさらに含むことができる。
[Other additives]
The resin composition of the present invention may optionally contain curing aids, antioxidants, light stabilizers (HALS), ultraviolet absorbers, plasticizers, adhesion aids, etc., as long as the effects of the present invention are not impaired. The composition may further include an agent.
[樹脂組成物の調製方法]
 本発明の樹脂組成物の調製方法は、特に限定されないが、例えば、(A)成分及び(B)成分、さらに任意で(C)成分やその他成分を混合し、均一な溶液とする方法が挙げられる。また、必要に応じて、得られた溶液を孔径0.1μm~10μmのフィルターを用いて濾過してもよい。このようにして得られる樹脂組成物の固形分濃度は、基板に対する塗布性の観点から、通常1質量%~50質量%である。
[Method for preparing resin composition]
The method for preparing the resin composition of the present invention is not particularly limited, but includes, for example, a method of mixing components (A) and (B), and optionally component (C) and other components to form a uniform solution. It will be done. Further, if necessary, the obtained solution may be filtered using a filter with a pore size of 0.1 μm to 10 μm. The solid content concentration of the resin composition thus obtained is usually 1% by mass to 50% by mass from the viewpoint of applicability to a substrate.
[樹脂膜の作製方法]
 基材(例えば、PETフィルム、TACフィルム、半導体基板、ガラス基板、石英基板、シリコンウエハ及びこれらの表面に各種金属膜又はカラーフィルター等が形成された基板)上に、スピナー又はコーター等の適当な塗布方法により本発明の樹脂組成物を塗布後、ホットプレート又はオーブン等の加熱手段を用いてベークすることにより樹脂膜を作製する。ベーク条件は、ベーク温度50℃~300℃、ベーク時間0.1分~360分間の中から適宜選択される。前記樹脂膜を作製する際のベークは2ステップ以上処理してもよい。形成される樹脂膜の膜厚としては、0.001μm~1,000μm、好ましくは0.01μm~100μm、より好ましくは0.1μm~10μmである。
[Method for producing resin film]
A suitable method such as a spinner or a coater is applied onto a base material (for example, a PET film, a TAC film, a semiconductor substrate, a glass substrate, a quartz substrate, a silicon wafer, and a substrate on which various metal films or color filters are formed on the surface). After applying the resin composition of the present invention by a coating method, a resin film is produced by baking using a heating means such as a hot plate or an oven. The baking conditions are appropriately selected from baking temperatures of 50° C. to 300° C. and baking times of 0.1 minutes to 360 minutes. Baking when producing the resin film may be performed in two or more steps. The thickness of the resin film formed is 0.001 μm to 1,000 μm, preferably 0.01 μm to 100 μm, and more preferably 0.1 μm to 10 μm.
[マイクロレンズの作製方法]
 前記[樹脂膜の作製方法]を経て作製された樹脂膜の上にレジストを塗布し、該レジストを所定のマスクを通して露光し、必要に応じて露光後加熱(PEB)を行い、さらにアルカリ現像、リンス及び乾燥を行うことにより、該樹脂膜上にレジストパターンを形成する。露光する光線としては、例えば、g線、i線、KrFエキシマレーザー及びArFエキシマレーザーを使用することができる。次いで、加熱処理することにより、前記レジストパターンをリフローしてレンズパターンを形成する。該レンズパターンをエッチングマスクとして、該レンズパターンの下層の前記樹脂膜をエッチバックして、該レンズパターンの形状を前記樹脂膜に転写することによってマイクロレンズを作製する。この方法では、レンズパターン形状を下層の樹脂膜(マイクロレンズ用樹脂層)へ転写するにあたり、レジストパターンのドライエッチングレートXとマイクロレンズ用樹脂層のドライエッチングレートYとを同等(X:Y=1:0.8~1.2)にすることを要する。
[Production method of microlens]
A resist is applied onto the resin film produced through the above [Resin film production method], the resist is exposed through a predetermined mask, and if necessary, post-exposure heating (PEB) is performed, and further alkaline development, A resist pattern is formed on the resin film by rinsing and drying. As the light beam for exposure, for example, g-line, i-line, KrF excimer laser, and ArF excimer laser can be used. Next, the resist pattern is reflowed by heat treatment to form a lens pattern. Using the lens pattern as an etching mask, the resin film below the lens pattern is etched back, and the shape of the lens pattern is transferred to the resin film, thereby producing a microlens. In this method, when transferring the lens pattern shape to the underlying resin film (microlens resin layer), the dry etching rate X of the resist pattern and the dry etching rate Y of the microlens resin layer are set to be equivalent (X:Y= 1:0.8 to 1.2).
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。 Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples.
[重合体のポリスチレン換算重量平均分子量の測定]
装置:日本分光(株)製GPCシステム
カラム:Shodex(登録商標)KF-804L及びKF-803L
カラムオーブン:40℃
流量:1mL/分
溶離液:テトラヒドロフラン
試料濃度:10mg/mL
試料注入量:20μL
標準物質:単分散ポリスチレン
検出器:示差屈折計
[Measurement of polystyrene equivalent weight average molecular weight of polymer]
Equipment: GPC system manufactured by JASCO Corporation Column: Shodex (registered trademark) KF-804L and KF-803L
Column oven: 40℃
Flow rate: 1 mL/min Eluent: Tetrahydrofuran Sample concentration: 10 mg/mL
Sample injection volume: 20μL
Standard material: Monodisperse polystyrene Detector: Differential refractometer
[モノマーの製造]
<モノマー合成例1>
 撹拌子の入ったフラスコ内に、氷浴下で、2-メトキシナフタレン44.4g、テトラヒドロフラン800mL、n-ブチルリチウムのヘキサン溶液(1.6mоl/L)184mLの順に加えて1時間撹拌した後、氷点下80℃まで冷却し、硫黄9.0gを加えた。その後、室温で20時間撹拌し、飽和塩化アンモニウム水溶液で分液処理した。得られた有機層を硫酸ナトリウムで脱水し、濾過した後、濾液をエバポレーションすることで黄緑色固体の2-メトキシ-1-ナフタレンチオール53.5gを得た。
[Manufacture of monomer]
<Monomer synthesis example 1>
Into a flask containing a stirring bar under an ice bath, 44.4 g of 2-methoxynaphthalene, 800 mL of tetrahydrofuran, and 184 mL of a hexane solution of n-butyllithium (1.6 mol/L) were added in this order and stirred for 1 hour. It was cooled to -80°C and 9.0 g of sulfur was added. Thereafter, the mixture was stirred at room temperature for 20 hours and subjected to liquid separation treatment with a saturated aqueous ammonium chloride solution. The obtained organic layer was dehydrated with sodium sulfate, filtered, and the filtrate was evaporated to obtain 53.5 g of 2-methoxy-1-naphthalenethiol as a yellow-green solid.
 続いて、撹拌子の入ったフラスコ内に、得られた2-メトキシ-1-ナフタレンチオール53.5g、クロロホルム500mLを入れた後、ヨウ素35.7gを250mLのメタノールに溶解させた溶液を滴下し、室温で20時間撹拌した。次に、1M塩酸、1M水酸化ナトリウム水溶液、ブラインの順で分液処理し、得られた有機層を硫酸ナトリウムで脱水し、濾過した後、濾液をエバポレーションすることで黄色オイルを得た。該オイルをクロロホルム200mLに溶解させた後、メタノール200mLを加えて晶析させ、得られた固体を減圧下で50℃にて3時間乾燥させることで白色固体のモノマー[ビス(2-メトキシナフチル)ジスルフィド]を得た。 Subsequently, 53.5 g of the obtained 2-methoxy-1-naphthalenethiol and 500 mL of chloroform were placed in a flask containing a stirring bar, and then a solution of 35.7 g of iodine dissolved in 250 mL of methanol was added dropwise. and stirred at room temperature for 20 hours. Next, the organic layer was separated using 1M hydrochloric acid, 1M aqueous sodium hydroxide solution, and brine in this order, and the resulting organic layer was dehydrated with sodium sulfate and filtered, and the filtrate was evaporated to obtain a yellow oil. After dissolving the oil in 200 mL of chloroform, 200 mL of methanol was added to cause crystallization, and the resulting solid was dried under reduced pressure at 50°C for 3 hours to obtain a white solid monomer [bis(2-methoxynaphthyl)]. disulfide] was obtained.
<モノマー合成例2>
 撹拌子の入ったフラスコ内に、2-メトキシベンゼンチオール22.4g、クロロホルム300mLを入れた後、ヨウ素20.7gを150mLのメタノールに溶解させた溶液を滴下し、室温で1時間撹拌した。次に、1Nチオ硫酸ナトリウム水溶液20mLを加えて残存するヨウ素を除去した後、1M塩酸、1M水酸化ナトリウム水溶液、ブラインの順で分液処理し、得られた有機層を硫酸ナトリウムで脱水し、濾過した後、濾液をエバポレーションすることで淡黄色固体のモノマー[ビス(2-メトキシフェニル)ジスルフィド]を得た。
<Monomer synthesis example 2>
After putting 22.4 g of 2-methoxybenzenethiol and 300 mL of chloroform into a flask containing a stirring bar, a solution of 20.7 g of iodine dissolved in 150 mL of methanol was added dropwise, and the mixture was stirred at room temperature for 1 hour. Next, 20 mL of 1N sodium thiosulfate aqueous solution was added to remove remaining iodine, followed by liquid separation treatment in the order of 1M hydrochloric acid, 1M sodium hydroxide aqueous solution, and brine, and the resulting organic layer was dehydrated with sodium sulfate. After filtration, the filtrate was evaporated to obtain a pale yellow solid monomer [bis(2-methoxyphenyl)disulfide].
<モノマー合成例3>
 撹拌子の入ったフラスコ内に、2-ナフタレンチオール25.0g、クロロホルム300mLを入れた後、ヨウ素20.2gを150mLのメタノールに溶解させた溶液を滴下し、室温で2時間撹拌した。得られた析出物をメタノールで洗浄し、減圧下で50℃にて3時間乾燥させることで淡黄色固体のモノマー(ジ-2-ナフチルジスルフィド)を得た。
<Monomer synthesis example 3>
After putting 25.0 g of 2-naphthalenethiol and 300 mL of chloroform into a flask containing a stirring bar, a solution of 20.2 g of iodine dissolved in 150 mL of methanol was added dropwise, and the mixture was stirred at room temperature for 2 hours. The obtained precipitate was washed with methanol and dried under reduced pressure at 50° C. for 3 hours to obtain a pale yellow solid monomer (di-2-naphthyl disulfide).
<モノマー合成例4>
 撹拌子の入ったフラスコ内に、硫黄16.0g、テトラヒドロフラン497mLを入れて氷浴下で撹拌した。次に、マグネシウム12.1g及び1-ブロモ-2-メチルナフタレン100gをテトラヒドロフラン452mLに溶解させた溶液を氷浴下で滴下し、1時間撹拌した後、室温で20時間撹拌し、飽和塩化アンモニウム水溶液で分液処理した。得られた有機層を硫酸ナトリウムで脱水し、濾過した後、濾液をエバポレーションすることで2-メチル-1-ナフタレンチオール78.8gを得た。
<Monomer synthesis example 4>
16.0 g of sulfur and 497 mL of tetrahydrofuran were placed in a flask containing a stirring bar and stirred in an ice bath. Next, a solution of 12.1 g of magnesium and 100 g of 1-bromo-2-methylnaphthalene dissolved in 452 mL of tetrahydrofuran was added dropwise in an ice bath, stirred for 1 hour, and then stirred at room temperature for 20 hours. The liquid was separated. The obtained organic layer was dehydrated with sodium sulfate, filtered, and the filtrate was evaporated to obtain 78.8 g of 2-methyl-1-naphthalenethiol.
 続いて、撹拌子の入ったフラスコ内に、得られた2-メチル-1-ナフタレンチオール78.8g、クロロホルム680mLを入れた後、ヨウ素57.4gを340mLのメタノールに溶解させた溶液を滴下し、室温で1時間撹拌した。次に、1M塩酸、1M水酸化ナトリウム水溶液、ブラインの順で分液処理し、得られた有機層を硫酸ナトリウムで脱水し、濾過した後、濾液をエバポレーションすることで黄色オイルを得た。該オイルをクロロホルム450mLに溶解させた後、メタノール900mLを加えて晶析させ、得られた固体を減圧下で50℃にて3時間乾燥させることで黄色固体のモノマー[ビス(2-メチルナフチル)ジスルフィド]を得た。 Subsequently, 78.8 g of the obtained 2-methyl-1-naphthalenethiol and 680 mL of chloroform were placed in a flask containing a stirring bar, and then a solution of 57.4 g of iodine dissolved in 340 mL of methanol was added dropwise. and stirred at room temperature for 1 hour. Next, the organic layer was separated using 1M hydrochloric acid, 1M aqueous sodium hydroxide solution, and brine in this order, and the resulting organic layer was dehydrated with sodium sulfate and filtered, and the filtrate was evaporated to obtain a yellow oil. After dissolving the oil in 450 mL of chloroform, 900 mL of methanol was added to cause crystallization, and the resulting solid was dried at 50°C under reduced pressure for 3 hours to obtain a yellow solid monomer [bis(2-methylnaphthyl)]. disulfide] was obtained.
[重合体又は共重合体の製造]
<重合体合成例1>
 撹拌子の入ったフラスコ内に、2,3-ジクロロ-5,6-ジシアノ-1,4-ベンゾキノン4.6g(20mmоl)、トリフルオロ酢酸2.2g(20mmоl)、クロロホルム10mLを入れて撹拌した後、前記モノマー合成例1で得られたモノマー7.6g(20mmоl)を加え、40時間撹拌した。次いで、反応溶液にトリフルオロ酢酸20.6g(180mmоl)、クロロホルム190mLを加え、さらに24時間撹拌した。沈殿物を濾過により除去した後、攪拌されたエタノール/12N塩酸=95/5(体積比)2000mL内に濾液を滴下した。滴下により生成した沈殿物を回収し、エタノール、メタノール、3質量%濃度の水酸化カリウム水溶液、純水の順で洗浄した。次に、得られた沈殿物を再度クロロホルム100mLに溶解し、攪拌されたメタノール/12N塩酸=95/5(体積比)1000mL内に滴下した。滴下により生成した沈殿物を回収し、メタノール、3質量%濃度の水酸化カリウム水溶液、純水の順で洗浄した後、減圧下80℃にて乾燥させることで、前記式(1ca)で表される構造単位を含む本発明の重合体[ポリ(2-メトキシナフチレンスルフィド)]5.8gを得た。得られた重合体のポリスチレン換算重量平均分子量MWは1,300であった。
[Production of polymer or copolymer]
<Polymer synthesis example 1>
4.6 g (20 mmol) of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, 2.2 g (20 mmol) of trifluoroacetic acid, and 10 mL of chloroform were placed in a flask containing a stirring bar and stirred. Thereafter, 7.6 g (20 mmol) of the monomer obtained in Monomer Synthesis Example 1 was added and stirred for 40 hours. Next, 20.6 g (180 mmol) of trifluoroacetic acid and 190 mL of chloroform were added to the reaction solution, and the mixture was further stirred for 24 hours. After removing the precipitate by filtration, the filtrate was dropped into 2000 mL of stirred ethanol/12N hydrochloric acid=95/5 (volume ratio). The precipitate generated by the dropping was collected and washed with ethanol, methanol, a 3% by mass aqueous potassium hydroxide solution, and pure water in this order. Next, the obtained precipitate was dissolved again in 100 mL of chloroform and added dropwise into 1000 mL of stirred methanol/12N hydrochloric acid=95/5 (volume ratio). The precipitate generated by the dropping was collected, washed in the order of methanol, a 3% by mass potassium hydroxide aqueous solution, and pure water, and then dried at 80°C under reduced pressure to obtain the precipitate expressed by the formula (1ca) above. 5.8 g of the polymer of the present invention [poly(2-methoxynaphthylene sulfide)] containing a structural unit of The weight average molecular weight M W of the obtained polymer was 1,300 in terms of polystyrene.
<重合体合成例2>
 撹拌子の入ったフラスコ内に、窒素雰囲気下で、前記重合体合成例1で得られた重合体5.8g、ジクロロメタン75mLを入れ、氷浴で0℃に冷却した後、三臭化ホウ素のジクロロメタン溶液(1mоl/L)60mLを滴下し、20時間撹拌した。その後、純水60mLを滴下して反応をクエンチし、沈殿物をジクロロメタン及び純水で洗浄した後、減圧下50℃にて乾燥させることで、前記式(1ba)で表される構造単位を含む本発明の重合体[ポリ(2-ヒドロキシナフチレンスルフィド)]3.6gを得た。
<Polymer synthesis example 2>
In a flask containing a stirring bar, 5.8 g of the polymer obtained in Polymer Synthesis Example 1 and 75 mL of dichloromethane were placed in a nitrogen atmosphere, and after cooling to 0°C in an ice bath, boron tribromide was added. 60 mL of dichloromethane solution (1 mol/L) was added dropwise and stirred for 20 hours. Thereafter, 60 mL of pure water was added dropwise to quench the reaction, and the precipitate was washed with dichloromethane and pure water, and then dried at 50°C under reduced pressure, thereby containing the structural unit represented by the formula (1ba). 3.6 g of the polymer of the present invention [poly(2-hydroxynaphthylene sulfide)] was obtained.
<重合体合成例3>
 撹拌子の入ったフラスコ内に、2,3-ジクロロ-5,6-ジシアノ-1,4-ベンゾキノン4.6g(20mmоl)、トリフルオロ酢酸0.8g(7mmоl)、クロロホルム7mLを入れて撹拌した後、前記モノマー合成例2で得られたモノマー5.6g(20mmоl)を加え、40時間撹拌した。次いで、反応溶液にクロロホルム73mLを加え、沈殿物を濾過により除去した後、攪拌されたエタノール/12N塩酸=95/5(体積比)800mL内に濾液を滴下した。滴下により生成した沈殿物を回収し、エタノール、メタノール、3質量%濃度の水酸化カリウム水溶液、純水の順で洗浄した後、再度クロロホルム80mLに溶解し、攪拌されたメタノール/12N塩酸=95/5(体積比)800mL内に滴下した。滴下により生成した沈殿物を回収し、メタノール、3質量%濃度の水酸化カリウム水溶液、純水の順で洗浄した後、減圧下80℃にて乾燥させることで、下記式で表される構造単位を含む重合体[ポリ(2-メトキシフェニレンスルフィド)]4gを得た。得られた重合体のポリスチレン換算重量平均分子量MWは3,000であった。
<Polymer synthesis example 3>
4.6 g (20 mmol) of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, 0.8 g (7 mmol) of trifluoroacetic acid, and 7 mL of chloroform were placed in a flask containing a stirring bar and stirred. Thereafter, 5.6 g (20 mmol) of the monomer obtained in Monomer Synthesis Example 2 was added and stirred for 40 hours. Next, 73 mL of chloroform was added to the reaction solution, and the precipitate was removed by filtration, and then the filtrate was dropped into 800 mL of stirred ethanol/12N hydrochloric acid=95/5 (volume ratio). The precipitate generated by the dropwise addition was collected and washed in the order of ethanol, methanol, a 3% by mass aqueous potassium hydroxide solution, and pure water, and then dissolved again in 80 mL of chloroform and stirred with methanol/12N hydrochloric acid = 95/ 5 (volume ratio) into 800 mL. The precipitate generated by the dropping is collected, washed in the order of methanol, a 3% by mass aqueous potassium hydroxide solution, and pure water, and then dried at 80°C under reduced pressure to obtain a structural unit represented by the following formula. 4 g of a polymer containing [poly(2-methoxyphenylene sulfide)] was obtained. The weight average molecular weight M W of the obtained polymer was 3,000 in terms of polystyrene.
Figure JPOXMLDOC01-appb-C000022
(式中、OMeはメトキシ基を表す。)
Figure JPOXMLDOC01-appb-C000022
(In the formula, OMe represents a methoxy group.)
<重合体合成例4>
 撹拌子の入ったフラスコ内に、窒素雰囲気下で、前記重合体合成例3で得られた重合体4g、ジクロロメタン86mLを入れ、氷浴で0℃に冷却した後、三臭化ホウ素のジクロロメタン溶液(1mоl/L)86mLを滴下し、18時間撹拌した。その後、純水100mLを滴下して反応をクエンチし、沈殿物をジクロロメタン及び純水で洗浄した後、減圧下50℃にて乾燥させることで、下記式で表される構造単位を含む重合体[ポリ(2-ヒドロキシフェニレンスルフィド)]3.6gを得た。
<Polymer synthesis example 4>
4 g of the polymer obtained in Polymer Synthesis Example 3 and 86 mL of dichloromethane were placed in a flask containing a stirrer under a nitrogen atmosphere, and after cooling to 0°C in an ice bath, a dichloromethane solution of boron tribromide was added. (1 mol/L) 86 mL was added dropwise and stirred for 18 hours. Thereafter, 100 mL of pure water was added dropwise to quench the reaction, and the precipitate was washed with dichloromethane and pure water, and then dried at 50°C under reduced pressure to obtain a polymer containing a structural unit represented by the following formula [ 3.6 g of poly(2-hydroxyphenylene sulfide) was obtained.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
<重合体合成例5>
 撹拌子の入ったフラスコ内に、2,3-ジクロロ-5,6-ジシアノ-1,4-ベンゾキノン4.6g(20mmоl)、トリフルオロ酢酸2.2g(20mmоl)、ジクロロメタン20mLを入れて撹拌した後、前記モノマー合成例2で得られたモノマー2.8g(10mmоl)及び前記モノマー合成例3で得られたモノマー3.2g(10mmоl)を加え、70時間撹拌した。次いで、反応溶液にクロロホルム60mLを加え、沈殿物を濾過により除去した後、攪拌されたエタノール/12N塩酸=95/5(体積比)800mL内に濾液を滴下した。滴下により生成した沈殿物を回収し、エタノール、メタノール、3質量%濃度の水酸化カリウム水溶液、純水の順で洗浄した後、再度クロロホルム80mLに溶解し、攪拌されたメタノール/12N塩酸=95/5(体積比)800mL内に滴下した。滴下により生成した沈殿物を回収し、メタノール、3質量%濃度の水酸化カリウム水溶液、純水の順で洗浄した後、減圧下80℃にて乾燥させることで、下記式で表される2種の構造単位を含む本発明の共重合体[ポリ(2-ナフチレンスルフィド/2-メトキシフェニレンスルフィド)]3.0gを得た。得られた共重合体のポリスチレン換算重量平均分子量MWは1,300であった。
<Polymer synthesis example 5>
4.6 g (20 mmol) of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, 2.2 g (20 mmol) of trifluoroacetic acid, and 20 mL of dichloromethane were placed in a flask containing a stirring bar and stirred. Thereafter, 2.8 g (10 mmol) of the monomer obtained in Monomer Synthesis Example 2 and 3.2 g (10 mmol) of the monomer obtained in Monomer Synthesis Example 3 were added and stirred for 70 hours. Next, 60 mL of chloroform was added to the reaction solution, and the precipitate was removed by filtration, and then the filtrate was dropped into 800 mL of stirred ethanol/12N hydrochloric acid=95/5 (volume ratio). The precipitate generated by the dropwise addition was collected and washed in the order of ethanol, methanol, a 3% by mass aqueous potassium hydroxide solution, and pure water, and then dissolved again in 80 mL of chloroform and stirred with methanol/12N hydrochloric acid = 95/ 5 (volume ratio) into 800 mL. The precipitate generated by the dropping is collected, washed in the order of methanol, a 3% by mass potassium hydroxide aqueous solution, and pure water, and then dried at 80°C under reduced pressure to form two types represented by the following formulas. 3.0 g of the copolymer of the present invention [poly(2-naphthylene sulfide/2-methoxyphenylene sulfide)] containing the structural unit was obtained. The weight average molecular weight M W of the obtained copolymer was 1,300 in terms of polystyrene.
Figure JPOXMLDOC01-appb-C000024
(式中、OMeはメトキシ基を表す。)
Figure JPOXMLDOC01-appb-C000024
(In the formula, OMe represents a methoxy group.)
<重合体合成例6>
 撹拌子の入ったフラスコ内に、窒素雰囲気下で、前記重合体合成例5で得られた共重合体2.0g、水酸化ナトリウム0.8g、1-ドデカンチオール2.0g、N-メチル-2-ピロリドン14mLを入れ、130℃で3時間撹拌した。次いで、反応液に希塩酸を加えて中和した後、沈殿物を純水及びヘキサンで洗浄し、減圧下80℃にて乾燥させることで、下記式で表される2種の構造単位を含む本発明の共重合体[ポリ(2-ナフチレンスルフィド/2-ヒドロキシフェニレンスルフィド)]1.8gを得た。
<Polymer synthesis example 6>
In a flask containing a stirring bar under a nitrogen atmosphere, 2.0 g of the copolymer obtained in Polymer Synthesis Example 5, 0.8 g of sodium hydroxide, 2.0 g of 1-dodecanethiol, and N-methyl- 14 mL of 2-pyrrolidone was added and stirred at 130°C for 3 hours. Next, after neutralizing the reaction solution by adding diluted hydrochloric acid, the precipitate was washed with pure water and hexane, and dried at 80°C under reduced pressure to obtain a book containing two types of structural units represented by the following formula. 1.8 g of the copolymer of the invention [poly(2-naphthylene sulfide/2-hydroxyphenylene sulfide)] was obtained.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
<重合体合成例7>
 撹拌子の入ったフラスコ内に、2,3-ジクロロ-5,6-ジシアノ-1,4-ベンゾキノン4.6g(20mmоl)、トリフルオロ酢酸2.2g(20mmоl)、ジクロロメタン20mLを入れて撹拌した後、前記モノマー合成例2で得られたモノマー2.8g(10mmоl)及び前記モノマー合成例4で得られたモノマー3.5g(10mmоl)を加え、70時間撹拌した。次いで、反応溶液にクロロホルム60mLを加え、沈殿物を濾過により除去した後、攪拌されたエタノール/12N塩酸=95/5(体積比)800mL内に濾液を滴下した。滴下により生成した沈殿物を回収し、エタノール、メタノール、3質量%濃度の水酸化カリウム水溶液、純水の順で洗浄した後、再度クロロホルム80mLに溶解し、攪拌されたメタノール/12N塩酸=95/5(体積比)800mL内に滴下した。滴下により生成した沈殿物を回収し、メタノール、3質量%濃度の水酸化カリウム水溶液、純水の順で洗浄した後、減圧下80℃にて乾燥させることで、下記式で表される2種の構造単位を含む本発明の共重合体[ポリ(2-メチル-1-ナフチレンスルフィド/2-メトキシフェニレンスルフィド)]2.0gを得た。得られた共重合体のポリスチレン換算重量平均分子量MWは1,700であった。
<Polymer synthesis example 7>
4.6 g (20 mmol) of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, 2.2 g (20 mmol) of trifluoroacetic acid, and 20 mL of dichloromethane were placed in a flask containing a stirring bar and stirred. Thereafter, 2.8 g (10 mmol) of the monomer obtained in Monomer Synthesis Example 2 and 3.5 g (10 mmol) of the monomer obtained in Monomer Synthesis Example 4 were added and stirred for 70 hours. Next, 60 mL of chloroform was added to the reaction solution, and the precipitate was removed by filtration, and then the filtrate was dropped into 800 mL of stirred ethanol/12N hydrochloric acid=95/5 (volume ratio). The precipitate generated by the dropwise addition was collected and washed in the order of ethanol, methanol, a 3% by mass aqueous potassium hydroxide solution, and pure water, and then dissolved again in 80 mL of chloroform and stirred with methanol/12N hydrochloric acid = 95/ 5 (volume ratio) into 800 mL. The precipitate generated by the dropping is collected, washed in the order of methanol, a 3% by mass potassium hydroxide aqueous solution, and pure water, and then dried at 80°C under reduced pressure to form two types represented by the following formulas. 2.0 g of the copolymer of the present invention [poly(2-methyl-1-naphthylene sulfide/2-methoxyphenylene sulfide)] containing the structural unit was obtained. The weight average molecular weight M W of the obtained copolymer was 1,700 in terms of polystyrene.
Figure JPOXMLDOC01-appb-C000026
(式中、Meはメチル基を表し、OMeはメトキシ基を表す。)
Figure JPOXMLDOC01-appb-C000026
(In the formula, Me represents a methyl group and OMe represents a methoxy group.)
<重合体合成例8>
 撹拌子の入ったフラスコ内に、窒素雰囲気下で、前記重合体合成例7で得られた重合体2.0g、水酸化ナトリウム0.8g、1-ドデカンチオール2.0g、N-メチル-2-ピロリドン14mLを入れ、130℃で3時間撹拌した。次いで、反応液に希塩酸を加えて中和した後、沈殿物を純水及びヘキサンで洗浄し、減圧下80℃にて乾燥させることで、下記式で表される2種の構造単位を含む本発明の共重合体[ポリ(2-メチル-1-ナフチレンスルフィド/2-ヒドロキシフェニレンスルフィド)]1.7gを得た。
<Polymer synthesis example 8>
In a flask containing a stirrer, under a nitrogen atmosphere, 2.0 g of the polymer obtained in Polymer Synthesis Example 7, 0.8 g of sodium hydroxide, 2.0 g of 1-dodecanethiol, and N-methyl-2 - 14 mL of pyrrolidone was added and stirred at 130°C for 3 hours. Next, after neutralizing the reaction solution by adding diluted hydrochloric acid, the precipitate was washed with pure water and hexane, and dried at 80°C under reduced pressure to obtain a book containing two types of structural units represented by the following formula. 1.7 g of the copolymer of the invention [poly(2-methyl-1-naphthylene sulfide/2-hydroxyphenylene sulfide)] was obtained.
Figure JPOXMLDOC01-appb-C000027
(式中、Meはメチル基を表す。)
Figure JPOXMLDOC01-appb-C000027
(In the formula, Me represents a methyl group.)
[樹脂組成物の調製]
<実施例1>
 (A)成分として前記重合体合成例2で得られた重合体を3.6g、(B)成分としてシクロペンタノンを19.7g、(C)成分としてトリグリシジルイソシアヌレートを0.7g((A)成分100質量部に対して20質量部)、界面活性剤としてR-40(DIC(株)製)を0.001g配合し、均一溶液とした。その後、孔径0.2μmのポリエチレン製ミクロフィルターを用いて濾過し、樹脂組成物(固形分濃度18質量%)を得た。
[Preparation of resin composition]
<Example 1>
3.6 g of the polymer obtained in Polymer Synthesis Example 2 as component (A), 19.7 g of cyclopentanone as component (B), and 0.7 g of triglycidyl isocyanurate as component (C) (( 20 parts by weight per 100 parts by weight of component A) and 0.001 g of R-40 (manufactured by DIC Corporation) as a surfactant were blended to form a homogeneous solution. Thereafter, it was filtered using a polyethylene microfilter with a pore size of 0.2 μm to obtain a resin composition (solid content concentration: 18% by mass).
<比較例1>
 (A)成分に該当しない重合体として前記重合体合成例4で得られた重合体を用いた以外は実施例1と同様の手順にて、樹脂組成物(固形分濃度18質量%)を得た。
<Comparative example 1>
A resin composition (solid content concentration 18% by mass) was obtained in the same manner as in Example 1, except that the polymer obtained in Polymer Synthesis Example 4 was used as the polymer that did not fall under component (A). Ta.
<実施例2>
 (A)成分として前記重合体合成例6で得られた共重合体を用いた以外は実施例1と同様の手順にて、樹脂組成物(固形分濃度18質量%)を得た。
<Example 2>
A resin composition (solid content concentration: 18% by mass) was obtained in the same manner as in Example 1, except that the copolymer obtained in Polymer Synthesis Example 6 was used as the component (A).
<実施例3>
 (A)成分として前記重合体合成例8で得られた共重合体を用いた以外は実施例1と同様の手順にて、樹脂組成物(固形分濃度18質量%)を得た。
<Example 3>
A resin composition (solid content concentration: 18% by mass) was obtained in the same manner as in Example 1 except that the copolymer obtained in Polymer Synthesis Example 8 was used as the component (A).
[屈折率評価]
 実施例1~3及び比較例1で調製した樹脂組成物を、それぞれシリコンウエハ上にスピンコーターを用いて塗布し、ホットプレート上において100℃で1分間ベークした。その後、200℃で5分間ベークし、膜厚200nmの樹脂膜を形成した。これらの樹脂膜に対して、分光エリプソメーターM-2000(ジェー・エー・ウーラム・ジャパン(株)製)を用いて波長550nmにおける屈折率を測定した。結果を表1に示す。
[Refractive index evaluation]
The resin compositions prepared in Examples 1 to 3 and Comparative Example 1 were each applied onto a silicon wafer using a spin coater, and baked on a hot plate at 100° C. for 1 minute. Thereafter, it was baked at 200° C. for 5 minutes to form a resin film with a thickness of 200 nm. The refractive index of these resin films at a wavelength of 550 nm was measured using a spectroscopic ellipsometer M-2000 (manufactured by JA Woollam Japan Co., Ltd.). The results are shown in Table 1.
[ドライエッチングレート評価]
 レジスト溶液THMR-iP1800(東京応化工業(株)製)を、シリコンウエハ上にスピンコーターを用いて塗布し、ホットプレート上において90℃で1.5分間、110℃で1.5分間、さらに180℃で1分間ベークし、膜厚1μmのレジスト膜を形成した。該レジスト膜に対して、ドライエッチング装置RIE-10NR(サムコ(株)製)(エッチングガス:CF4)を用いてドライエッチングし、該レジスト膜のドライエッチングレートを測定した。次いで、実施例1~3及び比較例1で調製した樹脂組成物を、それぞれシリコンウエハ上にスピンコーターを用いて塗布し、ホットプレート上において100℃で1分間ベークした。その後、200℃で5分間ベークし、膜厚1μmの樹脂膜を形成し、同様にドライエッチングレートを測定した。そして、実施例1~3及び比較例1で調製した樹脂組成物から得られた樹脂膜の、前記レジスト膜に対するドライエッチングレートを算出した。結果を表1に示す。
[Dry etching rate evaluation]
A resist solution THMR-iP1800 (manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied onto a silicon wafer using a spin coater, and heated on a hot plate at 90°C for 1.5 minutes, at 110°C for 1.5 minutes, and then at 180°C. C. for 1 minute to form a resist film with a thickness of 1 μm. The resist film was dry etched using a dry etching apparatus RIE-10NR (manufactured by Samco Co., Ltd.) (etching gas: CF 4 ), and the dry etching rate of the resist film was measured. Next, each of the resin compositions prepared in Examples 1 to 3 and Comparative Example 1 was applied onto a silicon wafer using a spin coater, and baked on a hot plate at 100° C. for 1 minute. Thereafter, it was baked at 200° C. for 5 minutes to form a resin film with a thickness of 1 μm, and the dry etching rate was similarly measured. Then, the dry etching rate of the resin films obtained from the resin compositions prepared in Examples 1 to 3 and Comparative Example 1 with respect to the resist film was calculated. The results are shown in Table 1.
[レンズ成形性評価]
 実施例1~3及び比較例1で調製した樹脂組成物を、それぞれシリコンウエハ上にスピンコーターを用いて塗布し、ホットプレート上において100℃で1分間ベークした。その後、200℃で5分間ベークし、膜厚1.2μmの樹脂膜を形成した。次いで、レジスト溶液THMR-iP1800(東京応化工業(株)製)を、該樹脂膜上にスピンコーターを用いて塗布し、ホットプレート上において90℃で1.5分間ベークした。その後、i線ステッパー(NSR-2205i12D、NA=0.63、(株)ニコン製)を用い、1μm×1μmの正方形ドットパターンを形成するマスクを介して露光し、110℃で1.5分間ベークした後、2.38質量%濃度の水酸化テトラメチルアンモニウム(TMAH)水溶液を用いて現像を行った。さらに180℃で1分間ベークして、前記樹脂膜上にレンズパターンを形成し、該レンズパターンの幅を測長した。そして、ドライエッチング装置2300 Versys(登録商標)Kiyo(登録商標)45(Lam Research(株)製)(エッチングガス:CHF3)を用いて、前記レンズパターンをエッチングマスクとして、該レンズパターンが消失するまで前記樹脂膜をドライエッチングした後、形成されたマイクロレンズの幅を測長した。
[Lens moldability evaluation]
The resin compositions prepared in Examples 1 to 3 and Comparative Example 1 were each applied onto a silicon wafer using a spin coater, and baked on a hot plate at 100° C. for 1 minute. Thereafter, it was baked at 200° C. for 5 minutes to form a resin film with a thickness of 1.2 μm. Next, a resist solution THMR-iP1800 (manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied onto the resin film using a spin coater, and baked on a hot plate at 90° C. for 1.5 minutes. Thereafter, using an i-line stepper (NSR-2205i12D, NA=0.63, manufactured by Nikon Corporation), it was exposed to light through a mask forming a 1 μm x 1 μm square dot pattern, and baked at 110°C for 1.5 minutes. After that, development was performed using an aqueous solution of tetramethylammonium hydroxide (TMAH) having a concentration of 2.38% by mass. Further, it was baked at 180° C. for 1 minute to form a lens pattern on the resin film, and the width of the lens pattern was measured. Then, using a dry etching device 2300 Versys (registered trademark) Kiyo (registered trademark) 45 (manufactured by Lam Research Co., Ltd.) (etching gas: CHF 3 ), the lens pattern is removed as an etching mask. After dry-etching the resin film until the end, the width of the formed microlens was measured.
 ドライエッチング後のマイクロレンズの幅が、ドライエッチング前のレンズパターンの幅よりも大きい又は同じである場合をレンズ成形性“○”、ドライエッチング後のマイクロレンズ幅が、ドライエッチング前のレンズパターンの幅よりも小さい場合をレンズ成形性“×”と評価した。結果を表1に示す。 If the width of the microlens after dry etching is larger than or the same as the width of the lens pattern before dry etching, the lens formability is "○". Lens formability was evaluated as "x" when it was smaller than the width. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 本発明のポリナフチレンスルフィド系樹脂を含有する樹脂組成物から得られる樹脂膜は、波長550nmで1.75以上の高い屈折率を持ちながら、エッチバック法にて優れたレンズ成形性を示すことが確認された。
 以上の結果より、本発明の重合体及び光学レンズ用樹脂組成物は、光学レンズ、とりわけマイクロレンズ用途として有用である。
The resin film obtained from the resin composition containing the polynaphthylene sulfide resin of the present invention has a high refractive index of 1.75 or more at a wavelength of 550 nm and exhibits excellent lens moldability by an etch-back method. was confirmed.
From the above results, the polymer and the resin composition for optical lenses of the present invention are useful for optical lenses, especially microlenses.

Claims (11)

  1.  下記式(1)で表される構造単位(但し、下記式(1a)で表される構造単位を除く。)を含む重合体。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Xは、互いに独立して、メチル基、エチル基、メトキシ基、エトキシ基又はヒドロキシ基を表し、nは、1~6の整数を表す。)
    Figure JPOXMLDOC01-appb-C000002
    A polymer containing a structural unit represented by the following formula (1) (excluding the structural unit represented by the following formula (1a)).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, X independently represents a methyl group, an ethyl group, a methoxy group, an ethoxy group, or a hydroxy group, and n represents an integer of 1 to 6.)
    Figure JPOXMLDOC01-appb-C000002
  2.  前記式(1)で表される構造単位においてnは1を表す請求項1記載の重合体。 The polymer according to claim 1, wherein n represents 1 in the structural unit represented by formula (1).
  3.  前記式(1)で表される構造単位においてXはメチル基又はエチル基を表す請求項1又は2記載の重合体。 The polymer according to claim 1 or 2, wherein in the structural unit represented by the formula (1), X represents a methyl group or an ethyl group.
  4.  前記式(1)で表される構造単位においてXはメトキシ基又はエトキシ基を表す請求項1又は2記載の重合体。 The polymer according to claim 1 or 2, wherein in the structural unit represented by formula (1), X represents a methoxy group or an ethoxy group.
  5.  前記式(1)で表される構造単位においてXはヒドロキシ基を表す請求項1又は2記載の重合体。 The polymer according to claim 1 or 2, wherein in the structural unit represented by the formula (1), X represents a hydroxy group.
  6.  前記式(1)で表される構造単位を含む重合体の製造方法であって、下記式(2)で表されるジスルフィドモノマー(但し、下記式(2a)で表されるジスルフィドモノマーを除く。)及び/又は下記式(3)で表されるチオールモノマー(但し、下記式(3a)で表されるチオールモノマーを除く。)を酸化重合する工程を含む、請求項1又は2記載の重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (式中、X及びnは、前記式(1)の定義と同義である。)
    Figure JPOXMLDOC01-appb-C000004
    A method for producing a polymer containing a structural unit represented by the formula (1) above, comprising a disulfide monomer represented by the following formula (2) (excluding a disulfide monomer represented by the following formula (2a)). ) and/or the thiol monomer represented by the following formula (3) (however, the thiol monomer represented by the following formula (3a) is excluded). manufacturing method.
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, X and n have the same meanings as defined in formula (1) above.)
    Figure JPOXMLDOC01-appb-C000004
  7.  (A)請求項1又は2記載の重合体及び/又は下記式(4)で表される構造単位を含む重合体並びに(B)有機溶剤を含有する光学レンズ用樹脂組成物。
    Figure JPOXMLDOC01-appb-C000005
    A resin composition for an optical lens, comprising (A) the polymer according to claim 1 or 2 and/or a polymer containing a structural unit represented by the following formula (4), and (B) an organic solvent.
    Figure JPOXMLDOC01-appb-C000005
  8.  前記(B)成分が、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、プロピレングリコールモノメチルエーテルアセタート、エチルラクタート、n-ブチルラクタート、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、2-ヘプタノン、シクロペンタノン、シクロヘキサノン、γ-ブチロラクトン、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン及びN-エチル-2-ピロリドンからなる群より選択される少なくとも1種の有機溶剤を含む請求項7記載の光学レンズ用樹脂組成物。 The component (B) is ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether, Ethyl ether acetate, propylene glycol monomethyl ether acetate, ethyl lactate, n-butyl lactate, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, 2-heptanone, cyclopenta 8. The organic solvent according to claim 7, which contains at least one organic solvent selected from the group consisting of non, cyclohexanone, γ-butyrolactone, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, and N-ethyl-2-pyrrolidone. Resin composition for optical lenses.
  9.  さらに、(C)多官能エポキシ化合物を含有する請求項7記載の光学レンズ用樹脂組成物。 The resin composition for an optical lens according to claim 7, further comprising (C) a polyfunctional epoxy compound.
  10.  マイクロレンズ作製用である請求項7記載の光学レンズ用樹脂組成物。 The resin composition for an optical lens according to claim 7, which is used for producing a microlens.
  11.  請求項10記載の光学レンズ用樹脂組成物から得られるマイクロレンズ。 A microlens obtained from the resin composition for optical lenses according to claim 10.
PCT/JP2023/011733 2022-05-18 2023-03-24 Polymer and resin composition for optical lens WO2023223670A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022081929 2022-05-18
JP2022-081929 2022-05-18
JP2022-159440 2022-10-03
JP2022159440 2022-10-03

Publications (1)

Publication Number Publication Date
WO2023223670A1 true WO2023223670A1 (en) 2023-11-23

Family

ID=88835228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011733 WO2023223670A1 (en) 2022-05-18 2023-03-24 Polymer and resin composition for optical lens

Country Status (2)

Country Link
TW (1) TW202411306A (en)
WO (1) WO2023223670A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570593A (en) * 1991-03-15 1993-03-23 Otsuka Chem Co Ltd Manufacture of aromatic polythioether
JPH0948853A (en) * 1995-08-08 1997-02-18 Res Dev Corp Of Japan Poly(arylene sulfonium salt) compound
CN114181360A (en) * 2021-12-08 2022-03-15 南京工业大学 Ultrasonic wave stimulus response polyurethane and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570593A (en) * 1991-03-15 1993-03-23 Otsuka Chem Co Ltd Manufacture of aromatic polythioether
JPH0948853A (en) * 1995-08-08 1997-02-18 Res Dev Corp Of Japan Poly(arylene sulfonium salt) compound
CN114181360A (en) * 2021-12-08 2022-03-15 南京工业大学 Ultrasonic wave stimulus response polyurethane and preparation method thereof

Also Published As

Publication number Publication date
TW202411306A (en) 2024-03-16

Similar Documents

Publication Publication Date Title
TWI491987B (en) A negative photosensitive resin composition, a hardened embossed pattern, and a semiconductor device
TW201827480A (en) Protective film forming composition
TW200940601A (en) Precursor for heat-resistant resin and photosensitive resin composition containing the same
CN109476898B (en) Resin composition
JP7556263B2 (en) Negative-type photosensitive resin composition, negative-type photosensitive polymer, and uses thereof
KR102302997B1 (en) Organic compound and method of synthesizing thereof
KR102186921B1 (en) Terpolymer, process of synthesizing thepolymer, anti-reflection filim including the terpolymer and application thereof
US6582879B2 (en) Reactive photo acid-generating agent and heat-resistant photoresist composition with polyamide precursor
KR20240051067A (en) High refractive index materials
WO2023223670A1 (en) Polymer and resin composition for optical lens
KR102281050B1 (en) Resin composition for flattened film or microlens
TW202319451A (en) Resin composition, cured product, laminate, method for producing cured product, method for producing laminate, method for producing semiconductor device, semiconductor device, and compound
WO2021075448A1 (en) Resin composition, photosensitive resin composition, and cured product thereof
WO2023162489A1 (en) Resin composition
KR102461668B1 (en) Thermosetting resin composition
CN105874355B (en) Resin composition for forming microlens
KR102414942B1 (en) resin composition
KR20240154004A (en) Resin composition
KR102433079B1 (en) Negative photosensitive resin composition
CN118742607A (en) Resin composition
KR101857148B1 (en) The photosensitive resin composition included novel cross-linking agent, and organic film using the same
TWI834839B (en) Resist underlayer film-forming composition
JP6790826B2 (en) Polymer compound, resin composition, film, solid-state image sensor, method for manufacturing polymer compound, method for manufacturing solid-state image sensor, and optical device
JP2021116406A (en) Polymer solution
CN115951559A (en) Photosensitive resin composition, preparation method thereof, cured film and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807285

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024521581

Country of ref document: JP

Kind code of ref document: A