WO2023223530A1 - Three-dimensional shaping apparatus - Google Patents

Three-dimensional shaping apparatus Download PDF

Info

Publication number
WO2023223530A1
WO2023223530A1 PCT/JP2022/020923 JP2022020923W WO2023223530A1 WO 2023223530 A1 WO2023223530 A1 WO 2023223530A1 JP 2022020923 W JP2022020923 W JP 2022020923W WO 2023223530 A1 WO2023223530 A1 WO 2023223530A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
nozzle
mortar
printing apparatus
dimensional printing
Prior art date
Application number
PCT/JP2022/020923
Other languages
French (fr)
Japanese (ja)
Inventor
辰巳 菱川
裕規 伊藤
亮 水谷
洋太 佐藤
土井原 美桜 田口
Original Assignee
スターテクノ株式会社
鹿島建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スターテクノ株式会社, 鹿島建設株式会社 filed Critical スターテクノ株式会社
Priority to JP2022545846A priority Critical patent/JP7370027B1/en
Priority to PCT/JP2022/020923 priority patent/WO2023223530A1/en
Publication of WO2023223530A1 publication Critical patent/WO2023223530A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/30Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Definitions

  • the present invention relates to a three-dimensional printing apparatus that manufactures a three-dimensional structure by stacking fluid objects while protruding them from a nozzle.
  • Patent Document 1 a material P supplied into a working chamber 41 of a cylinder body 40 is conveyed to the downstream side of the working chamber 41 by rotating a screw 5, and a heater H is It is recognized that the description describes a 3D printer A that manufactures a three-dimensional object P1 (hereinafter referred to as a "three-dimensional object”) by heating and melting it and then ejecting it from a discharge nozzle 43 (see FIG. 1, etc.) .
  • a three-dimensional object manufactures a three-dimensional object P1 (hereinafter referred to as a "three-dimensional object") by heating and melting it and then ejecting it from a discharge nozzle 43 (see FIG. 1, etc.) .
  • the present invention has been made in response to the above-mentioned problems of the prior art, and can be used continuously even with materials such as cement and mortar, and the weight of the fluid discharge part that stores these materials is heavy. It is an object of the present invention to provide a three-dimensional printing apparatus that can smoothly perform maintenance of the three-dimensional printing apparatus without hindering its operation even in the case of a three-dimensional printing apparatus.
  • a first aspect of the present invention includes an articulated robot and an elongated fluid discharge section that is connected to the tip of the articulated robot and discharges a fluid to the outside.
  • the fluid discharge part is vertically oriented by the articulated robot, and the fluid discharge part is configured to move downward toward the It is characterized in that it is capable of discharging fluid objects, and that it can be dismantled in a state where it is turned sideways by the articulated robot.
  • a second aspect of the present invention provides an articulated robot, a support section connected to the tip of the articulated robot, and an elongated fluid discharge section connected to the support section and configured to discharge a fluid to the outside.
  • the fluid discharge section is vertically oriented by the articulated robot and is attached to the support section. In the connected state, the fluid object can be discharged downward, and in the state that the multi-jointed robot turns the robot sideways and is suspended from the support part, it can be dismantled.
  • the fluid ejecting section includes a long hollow housing having a first hollow part, and the first hollow housing. a rotor that rotates and transfers the supplied fluid to the distal end side within the hollow portion of the first embodiment; a drive unit that is connected to the proximal end of the hollow housing and rotates the rotor; and a distal end of the hollow housing. an opening and a second hollow part communicating with the first hollow part, and the fluid transferred by the rotor is transferred to the first hollow part and the second hollow part. a nozzle for discharging from the opening to the outside through a part, the support part supports the drive part, and at least the hollow casing and the nozzle can be removed from the support part. It is characterized by the following.
  • the support portion is formed in an elongated shape along the longitudinal direction of the fluid discharge portion, and the support portion is formed in an elongated shape along the longitudinal direction of the fluid discharge portion.
  • the multi-joint robot is characterized in that it includes a protrusion that protrudes in a direction intersecting the longitudinal direction of the fluid discharge section at the intermediate position in the longitudinal direction, and the articulated robot is connected to the protrusion.
  • the support portion is formed in an elongated shape along the longitudinal direction of the fluid discharge portion, and the support portion is formed in an elongated shape along the longitudinal direction of the fluid discharge portion.
  • the multi-joint robot is characterized in that it includes a protrusion that protrudes in a direction intersecting the longitudinal direction of the fluid discharge section at the intermediate position in the longitudinal direction, and the articulated robot is connected to the protrusion.
  • the fluid ejecting section is tilted by the articulated robot and the fluid is directed downward at least at the time of starting ejection. It is characterized by being able to eject objects.
  • the fluid ejecting section is tilted by the articulated robot and the fluid is directed downward at least at the time of starting the ejection. It is characterized by being able to eject objects.
  • the fluid ejecting section is tilted by the articulated robot and the fluid is directed downward at least at the time of starting ejection. It is characterized by being able to eject objects.
  • the fluid ejecting section is tilted by the articulated robot and the fluid is directed downward at least at the time of starting ejection. It is characterized by being able to eject objects.
  • a tenth aspect of the present invention is characterized in that in the three-dimensional printing apparatus according to any one of the first to ninth aspects, the fluid discharge section includes a fluid regulating section that crosses the inside thereof. .
  • the present invention includes an articulated robot and an elongated fluid discharge section that is connected to the tip of the articulated robot and discharges a fluid to the outside, and the fluid is discharged from the fluid discharge section.
  • the fluid discharge section is capable of discharging the fluid object downward while the articulated robot is vertically oriented. Since it can be dismantled when placed horizontally, the 3D printing device can be used continuously even for materials such as cement and mortar, and the weight of the fluid discharge part that stores these materials is heavy. Even in such cases, maintenance of the three-dimensional printing apparatus can be performed smoothly without any problem in the operation of the three-dimensional printing apparatus.
  • an articulated robot a supporting section connected to the tip of the articulated robot, and a long fluid connected to the supporting section and discharging a fluid to the outside.
  • a three-dimensional printing apparatus that manufactures a three-dimensional object using a fluid discharged from the fluid discharge part, the fluid discharge part being vertically oriented by an articulated robot and connected to a support part. It is possible to discharge fluid downwards in the state, and it can be disassembled by being turned sideways by an articulated robot and suspended from a support, so even materials such as cement and mortar can be disassembled in 3D. To enable continuous use of a three-dimensional printing device and to smoothly perform maintenance of the three-dimensional printing device without interfering with the operation of the three-dimensional printing device even when the weight of the fluid discharge part that stores the materials is heavy. Can be done.
  • the fluid discharge section includes a long hollow housing having a first hollow part and a first hollow housing of the hollow housing.
  • a rotor that rotates and transfers the supplied fluid to the tip side within the hollow part of 1
  • a drive unit that is connected to the base end of the hollow housing and rotates the rotor
  • a drive unit that is connected to the tip of the hollow housing that rotates the rotor.
  • having an opening and a second hollow part communicating with the first hollow part the fluid transferred by the rotor is passed from the opening to the outside through the first hollow part and the second hollow part.
  • the support part supports the drive part, and since at least the hollow casing and the nozzle can be separated from the support part, the three-dimensional printing apparatus of the second aspect In addition to the effect, the fluid can be easily removed from the inside of the fluid discharge section, and clogging can be reliably prevented during subsequent use of the three-dimensional printing apparatus.
  • the support part is formed in an elongated shape along the longitudinal direction of the fluid discharge part, and the support part is formed in an elongated shape along the longitudinal direction of the fluid discharge part.
  • the effect of the three-dimensional printing apparatus of the second aspect is that the three-dimensional printing apparatus of the second aspect is provided with a protrusion that protrudes in a direction intersecting the longitudinal direction of the fluid discharge part at an intermediate position in the longitudinal direction, and the articulated robot is connected to the protrusion.
  • the attitude of the fluid discharge section can be easily changed in a narrow area, so that the operation of the three-dimensional printing apparatus can be performed more smoothly, and the maintenance of the three-dimensional printing apparatus can be performed more smoothly.
  • the support part is formed in an elongated shape along the longitudinal direction of the fluid discharge part.
  • the effect of the three-dimensional printing apparatus of the third aspect is that the multi-joint robot is connected to the protrusion, and is provided with a protrusion that protrudes in a direction intersecting the longitudinal direction of the fluid discharge part at an intermediate position in the longitudinal direction.
  • the attitude of the fluid discharge section can be easily changed in a narrow area, so that the operation of the three-dimensional printing apparatus can be performed more smoothly, and the maintenance of the three-dimensional printing apparatus can be performed more smoothly.
  • the fluid discharge section is tilted by the articulated robot and the fluid is directed downward at least at the start of discharge.
  • the fluid material can be smoothly moved after maintenance, and the fluid material can be smoothly applied to the application position.
  • the fluid discharge section is tilted by the articulated robot and the fluid discharger is directed downward at least at the start of discharge.
  • the fluid material can be smoothly moved after maintenance, and the fluid material can be smoothly applied to the application position.
  • the fluid discharge section is tilted downward by the articulated robot at least at the time of starting discharge. Therefore, in addition to the effects of the three-dimensional printing apparatus of the third aspect, the fluid can be smoothly moved after maintenance, and the fluid can be smoothly applied to the application position.
  • the fluid discharge section is tilted by the articulated robot and the fluid is directed downward at least at the start of discharge.
  • the fluid material can be smoothly moved after maintenance, and the fluid material can be smoothly applied to the application position.
  • the fluid discharge section includes a fluid regulating section that crosses the inside.
  • FIG. 1 is an overall perspective view of a three-dimensional printing apparatus according to a first embodiment of the present invention.
  • FIG. 1 is an overall plan view of a three-dimensional printing apparatus according to a first embodiment.
  • FIG. 1 is an overall front view of a three-dimensional printing apparatus according to a first embodiment.
  • FIG. 3 is a diagram showing a state in which the articulated robot 3 has been moved in the +Y direction from the state in FIG. 2 by the robot slide mechanism 7 that constitutes the three-dimensional modeling apparatus of the first embodiment.
  • FIG. 2 is a front view of a pump that constitutes the three-dimensional printing apparatus of the first embodiment. It is a partially cutaway front view of a pump that constitutes the three-dimensional printing apparatus of the first embodiment.
  • FIG. 1 is an overall perspective view of a three-dimensional printing apparatus according to a first embodiment of the present invention.
  • FIG. 1 is an overall plan view of a three-dimensional printing apparatus according to a first embodiment.
  • FIG. 1 is an overall front view of a
  • FIG. 2 is a right side view of a fluid ejection head that constitutes the three-dimensional printing apparatus of the first embodiment.
  • FIG. 2 is a right side view with a portion of the fluid ejection head constituting the three-dimensional printing apparatus of the first embodiment cut away.
  • FIG. 2 is a perspective view of a nozzle that constitutes the three-dimensional modeling apparatus of the first embodiment.
  • FIG. 2 is a plan view of a nozzle that constitutes the three-dimensional modeling apparatus of the first embodiment.
  • FIG. 11 is a perspective view of a section taken along the line XX in FIG. 10;
  • FIG. 2 is a longitudinal cross-sectional view of a nozzle that constitutes the three-dimensional modeling apparatus of the first embodiment.
  • FIG. 12 is a perspective view similar to FIG.
  • FIG. 1 is a block diagram of a three-dimensional printing apparatus according to a first embodiment.
  • FIG. 2 is a block diagram of a main controller of the three-dimensional printing apparatus according to the first embodiment. It is a flowchart of the three-dimensional printing program in the three-dimensional printing apparatus of the first embodiment. It is a flowchart of the N layer coating program in the three-dimensional modeling apparatus of the first embodiment.
  • FIG. 2 is an explanatory diagram showing a coating state of the three-dimensional modeling apparatus according to the first embodiment when coating is started.
  • FIG. 2 is an explanatory diagram showing a coating state in a normal state of the three-dimensional printing apparatus of the first embodiment. It is a 1st explanatory view explaining the relationship between a nozzle angle and application width in a three-dimensional modeling device of a 1st embodiment.
  • FIG. 7 is a second explanatory diagram illustrating the relationship between the nozzle angle and the application width in the three-dimensional modeling apparatus of the first embodiment.
  • FIG. 7 is a third explanatory diagram illustrating the relationship between the nozzle angle and the application width in the three-dimensional modeling apparatus of the first embodiment.
  • FIG. 7 is a fourth explanatory diagram illustrating the relationship between the nozzle angle and the application width in the three-dimensional modeling apparatus of the first embodiment. It is a 1st explanatory view explaining the application form of the three-dimensional modeling device of a 1st embodiment. It is a 2nd explanatory view explaining the application form of the three-dimensional modeling device of a 1st embodiment.
  • FIG. 2 is a first explanatory diagram showing a coating state during thin film coating by the three-dimensional modeling apparatus of the first embodiment.
  • FIG. 7 is a second explanatory diagram showing a coating state during thin film coating by the three-dimensional modeling apparatus of the first embodiment.
  • FIG. 2 is an explanatory diagram illustrating detection timing of a first pressure sensor and detection timing of a second pressure sensor in the three-dimensional modeling apparatus of the first embodiment. It is a flowchart of the 1st discharge control program in the three-dimensional printing apparatus of 1st Embodiment. It is a flowchart of the 2nd discharge control program in the three-dimensional printing apparatus of 1st Embodiment. It is a flowchart of the instruction value calculation program in the three-dimensional modeling apparatus of the first embodiment. It is a flowchart of the maintenance processing program in the three-dimensional printing apparatus of the first embodiment.
  • FIG. 2 is a front view showing the state of the three-dimensional printing apparatus of the first embodiment before disassembly during maintenance.
  • FIG. 2 is an explanatory diagram showing the state of the three-dimensional printing apparatus of the first embodiment after it is disassembled during maintenance.
  • the three-dimensional printing apparatus of the present embodiment will be described as manufacturing an object P to be installed outdoors as an example of a three-dimensional model, the three-dimensional printing apparatus of the present invention is limited to objects. Rather, any three-dimensional three-dimensional object can be manufactured.
  • FIG. 1 is an overall perspective view of a three-dimensional printing apparatus according to a first embodiment of the present invention
  • FIG. 2 is an overall plan view of the three-dimensional printing apparatus
  • FIG. 3 is an overall perspective view of the three-dimensional printing apparatus. It is a front view.
  • the three-dimensional printing apparatus 1 of this embodiment includes a first layer P1, a second layer P2, a third layer P3, a fourth layer P4, .
  • This is to manufacture a three-dimensional object P consisting of N layers (N is a natural number) of layers PN (not shown), and to move an articulated robot 3 and the articulated robot 3 in the +Y direction and the -Y direction.
  • a robot slide mechanism 7 a pump 5 for supplying mortar M (corresponding to the "fluid material” of the present invention) to a fluid discharge head 10 (corresponding to the "fluid discharge part” of the present invention) described later, and a multi-jointed robot slide mechanism 7; It is composed of a fluid ejection head 10 connected to the tip of the robot 3 and for discharging mortar M to the outside, and a support part 21 for connecting the fluid ejection head 10 to the tip of the articulated robot 3. .
  • a mixer 9 for producing mortar M by kneading cement, sand, and water is shown in FIGS. 1 to 3. .
  • the mortar M used in this embodiment is made of a material that has fluidity before being ejected from the fluid ejecting head 10 and hardens after being ejected from the fluid ejecting head 10, such as cement, sand, and water. ing.
  • the articulated robot 3 is a general 7-axis articulated robot that operates according to commands from the robot controller 4 (see FIG. 17) placed in the control panel 20, and can freely change the position and angle to
  • the fluid ejection head 10 connected to is moved in all three-dimensional directions, including +X and -X directions, +Y and -Y directions, +Z and -Z directions, and combinations of these directions.
  • the articulated robot 3 includes a first base 31, a second base 33 that rotates with respect to the first base 31, and a lower base that rotates back and forth with respect to the second base 33.
  • the articulated robot 3 is electrically connected to the robot controller 4 (see FIG. 17) in the control panel 20 by a cable 77, and the robot controller 4 is connected to the main controller 2 (see FIG. 17) also arranged in the control panel 20. 17)).
  • the robot slide mechanism 7 includes a movable base 73 on which the articulated robot 3 is placed, a long movable rail 75 on which the movable base 73 is movably arranged, and a movable base 73 arranged on the movable base 73.
  • a robot slide motor 79 that moves the robot along the moving rail 75 in the +Y direction and the -Y direction, and seven moving rail covers 71 (71a, 71b, 71c, 71d, 71e, 71f, 71g).
  • the robot slide mechanism 7 has a motor gear (pinion, not shown) fitted to the motor shaft of the robot slide motor 79 that meshes with a rack (not shown) formed inside the moving rail 75.
  • the articulated robot 3 is configured to move on the rack of the moving rail 75 in the +Y direction and the -Y direction by rotating the motor gear of the robot slide motor 79.
  • FIG. 4 is a diagram showing a state in which the articulated robot 3 has been moved in the +Y direction from the state in FIG. 2 by the robot slide mechanism 7 constituting the three-dimensional modeling apparatus of the first embodiment.
  • the three-dimensional modeling apparatus 1 of the present embodiment is configured such that the articulated robot 3 moves in the linear +Y direction and -Y direction on the movement rail 75 from the cover 71a to the cover 71g.
  • the robot slide mechanism 7 can be modified in various ways depending on the specifications of the three-dimensional printing apparatus, and it goes without saying that the length of the moving rail 45 can be changed.
  • the multi-joint robot 3 is not limited to being arranged so that it moves in a straight line direction, but it is also possible to arrange it so that the multi-joint robot 3 moves in a curved direction. It is also possible to arrange it as follows.
  • FIG. 5 is a front view of a pump that constitutes the three-dimensional printing apparatus of the first embodiment
  • FIG. 6 is a front view with a portion of the pump cut away.
  • the pump 5 includes a pump main body 51, a mortar inlet for covering the upper surface of the pump main body 51 with a grid-like mesh, and into which mortar M mixed by a mixer 9 is introduced. 59, a screw pipe 55 for sending the mortar M introduced from the mortar input port 59 to a long transport pipe 61 on the downstream side, and a pump-side rotor drive motor 53 for driving the screw pipe 55. , a first pressure sensor 57 arranged at a connection position between the screw pipe 55 and the transport pipe 61 to detect the pressure within the transport pipe 61 of the mortar M, and a control panel 20 attached to the first pump main body 51. and an operation panel 8 provided on the control panel 20.
  • the screw pipe 55 includes a first stator 55a constituting an outer pipe of the screw pipe 55, and is rotatably arranged inside the first stator 55a, and transports the mortar M into the pipe by rotation of the pump-side rotor drive motor 53.
  • a first rotor 55b is provided with a spiral protrusion for sending out to the 61 side.
  • FIG. 7 is a right side view of the fluid ejection head that constitutes the three-dimensional modeling apparatus of the first embodiment
  • FIG. 8 is a right side view with a portion of the fluid ejection head cut away.
  • FIGS. 1 to 3, FIG. 7, and FIG. A fluid ejection head main body 11 for sending the mortar M delivered to the downstream side, and a head side rotor drive motor 27 (corresponding to the "drive section” of the present invention) for driving the fluid ejection head main body 11. , a nozzle part 13 (corresponding to the "nozzle” of the present invention) rotatably connected to the tip of the fluid ejection head main body 11, a nozzle rotation motor 17 for rotating the nozzle part 13, and the fluid ejection head 11.
  • a second pressure sensor 63 that is arranged at a connection position with the transport pipe 61 to detect the pressure within the transport pipe 61 of the mortar M, and a fluid discharge head cover that covers the fluid discharge head main body 11 and the head side rotor drive motor 27. 80 (shown in dotted line).
  • the fluid ejection head main body 11 has a first hollow portion 11d, and also includes a second stator 11a (corresponding to the "hollow housing” of the present invention) that constitutes an outer tube of the fluid ejection head main body 11, and a second stator 11a (corresponding to the "hollow housing” of the present invention).
  • a second rotor 11b is rotatably disposed inside the stator 11a, and is configured to send mortar M to the nozzle section 13 by rotation of the head-side rotor drive motor 27, and discharge it from an opening 13b of the nozzle section 13, which will be described later. (corresponding to the "rotor" of the present invention).
  • the nozzle part 13 is provided with a nozzle gear part 15 to be described later on its outer periphery, and when the nozzle rotation motor 17 rotates, a motor gear part 19 inserted into the motor shaft of the nozzle rotation motor 17 rotates, and the motor gear part 19 The nozzle gear section 15 that meshes with the nozzle gear section 15 rotates, and as a result, the nozzle section 13 rotates.
  • nozzle rotation motor 17, the motor gear section 19, and the nozzle gear section 15 constitute the "nozzle rotation mechanism" of the present invention.
  • the fluid ejection head main body 11 of this embodiment constitutes a rotary displacement type single-axis eccentric screw pump as a whole, and is formed by a second stator 11a corresponding to a female thread and a second rotor 11b corresponding to a male thread.
  • the cavity 11c which is a sealed space, forward, the mortar M is transported forward and discharged from the opening 13b of the nozzle portion 13.
  • the second stator 11a which corresponds to a female thread, has a cylindrical outer shape, a ridged inner cross section, and a spirally extending inner surface as a whole.
  • the second rotor 11b which corresponds to a male screw, has a spirally extending shape so as to contact the inner surface of the second stator 11a, and when the second rotor 11b rotates with respect to the second stator 11a, The cavity 11c containing the mortar M is moved forward, and the mortar M is discharged from the opening 13b of the nozzle portion 13.
  • FIG. 9 is a perspective view of a nozzle section constituting the three-dimensional printing apparatus of the first embodiment
  • FIG. 10 is a plan view of the nozzle section
  • FIG. 11 shows a section taken along line XX in FIG. 12 is a cutaway perspective view
  • FIG. 12 is a longitudinal sectional view of the nozzle portion.
  • the nozzle portion 13 includes a nozzle body portion 13a, a nozzle gear portion 15 formed on the outer periphery of the nozzle body portion 13a, and a nozzle tip portion connected to the tip of the nozzle body portion 13a. 13e, and an opening 13b formed at the tip of the nozzle tip 13e.
  • the opening 13b of this embodiment has a substantially rectangular shape with a long side V1 and a short side H1 (V1>H1) in plan view, and therefore, the cross section of the mortar M discharged from the opening 13b has a substantially rectangular shape.
  • the nozzle main body 13a has a hollow cylindrical shape, and its inner cavity 13d (corresponding to the "second hollow part” of the present invention) has a cylindrical shape that tapers toward the tip, and the nozzle tip 13e has a cylindrical shape. It has a hollow substantially conical shape, and its inner cavity 13f (corresponding to the "second hollow part” of the present invention) is tapered toward the tip, but there is a gap between the nozzle main body 13a and the nozzle tip 13e.
  • the inner diameter D2 at the base end of the nozzle tip 13e is set to be larger than the inner diameter D1 at the tip of the nozzle main body 13a.
  • the inner diameter D2 of the base end of the nozzle tip 13e larger than the inner diameter D1 of the tip of the nozzle body 13a, when the mortar M flows from the nozzle body 13a to the nozzle tip 13e and is discharged from the opening 13b.
  • the pressure of the mortar M at the opening 13b can be dispersed, and the mortar M can be continuously and smoothly discharged from the opening 13b of the nozzle tip 13e.
  • the nozzle portion 13 includes a restriction bar 13c (corresponding to the “fluid restriction portion” of the present invention) having a circular cross section that crosses the inner cavity 13f of the nozzle tip portion 13e in parallel along the long side of the rectangle of the opening portion 13b. According to the regulating bar 13c, it is possible to prevent the mortar M from leaking out from the opening 13b of the nozzle tip 13e when the three-dimensional modeling apparatus 1 is stopped.
  • a restriction bar 13c (corresponding to the “fluid restriction portion” of the present invention) having a circular cross section that crosses the inner cavity 13f of the nozzle tip portion 13e in parallel along the long side of the rectangle of the opening portion 13b.
  • FIG. 13 is a perspective view similar to FIG. 11 of the nozzle portion of the second embodiment
  • FIG. 14 is a longitudinal cross-sectional view of the nozzle portion of the second embodiment.
  • the nozzle part 23 (corresponding to the "nozzle” of the present invention) includes a nozzle body part 23a, a nozzle gear part 25 formed on the outer periphery of the nozzle body part 23a, and a nozzle body part 23a.
  • the nozzle tip 23e is connected to the tip of the nozzle tip 23a, and the opening 23b is formed at the tip of the nozzle tip 23e.
  • the opening 23b of this embodiment also has a substantially rectangular shape with a long side of V1 and a short side of H1 (V1>H1) in plan view, and therefore, from the opening 23b
  • the discharged mortar M has a substantially rectangular cross section.
  • the nozzle main body 23a has a hollow cylindrical shape, and the inner cavity 23d is tapered toward the tip and has a cylindrical shape (D5>D3), and a bulge with an inner diameter D6 (D6>D5>D3) in the middle.
  • the nozzle tip 23e has a hollow substantially conical shape, and the inner cavity 23f thereof is tapered toward the tip. In this section, an inner diameter D4 at the base end of the nozzle tip 23e is set to be larger than an inner diameter D3 at the tip of the nozzle main body 23a.
  • the longitudinal section of the inner cavity 23d has a streamlined shape.
  • the bulge 23g when the mortar M flows from the nozzle main body 23a to the nozzle tip 23e and is discharged from the opening 23b, the pressure of the mortar M at the opening 23b can be dispersed by the bulge 23g. This allows the mortar M to be continuously and smoothly discharged from the opening 23b of the nozzle tip 23e.
  • the pressure of the mortar M at the opening 23b can be gradually dispersed due to the streamlined shape.
  • the liquid can be continuously and smoothly discharged from the opening 23b of 23e.
  • the mortar M at the opening 23b is The pressure can be further dispersed, and the mortar M can be continuously and more smoothly discharged from the opening 23b of the nozzle tip 23e.
  • the nozzle portion 23 includes a regulating bar 23c (corresponding to the "fluid regulating section" of the present invention) having a circular cross section that crosses the inner cavity 23f of the nozzle tip 23e in parallel along the long side of the rectangle of the opening 23b. According to this regulation bar 23c, it is possible to prevent the mortar M from leaking out from the opening 23b of the nozzle tip 23e when the three-dimensional modeling apparatus 1 is stopped.
  • a regulating bar 23c (corresponding to the "fluid regulating section" of the present invention) having a circular cross section that crosses the inner cavity 23f of the nozzle tip 23e in parallel along the long side of the rectangle of the opening 23b.
  • FIG. 15 is a perspective view similar to FIG. 11 of the nozzle portion of the third embodiment.
  • the nozzle part 83 (corresponding to the "nozzle” of the present invention) includes a nozzle body part 83a, a nozzle gear part 85 formed on the outer periphery of the nozzle body part 83a, and a tip of the nozzle body part 83a.
  • the nozzle tip 83e is connected to the nozzle tip 83e, and the opening 83b is formed at the tip of the nozzle tip 83e.
  • the opening 83b of this embodiment also has a substantially rectangular shape with a long side of V1 and a short side of H1 (V1>H1) in plan view.
  • the discharged mortar M has a substantially rectangular cross section.
  • the nozzle main body 83a has a hollow cylindrical shape, and its inner cavity 83d has a cylindrical shape that tapers toward the tip.
  • the nozzle tip 83e has a hollow, substantially conical shape, and its inner cavity 83f tapers toward the tip.
  • the inner diameter of the base end of the nozzle tip 83e is set to be larger than the inner diameter of the tip of the nozzle body 83a. has been done.
  • the pressure of the mortar M at the opening 83b is dispersed when the mortar M is discharged from the opening 83b. This allows the mortar M to be continuously and smoothly discharged from the opening 83b of the nozzle tip 83e.
  • the nozzle portion 83 includes a restriction bar 83c (corresponding to the "fluid restriction portion” of the present invention) having a circular cross section that crosses the inner cavity 83f of the nozzle tip 83e in parallel along the long side of the rectangle of the opening 83b. and a regulation bar 83g (corresponding to the "fluid regulation section” of the present invention) having a circular cross section that crosses the inner cavity 83d of the nozzle main body 83a, and these regulation bars 83c and 83g.
  • this method it is possible to further prevent the mortar M from leaking from the opening 83b of the nozzle tip 83e when the three-dimensional modeling apparatus 1 is stopped.
  • a restriction bar (in accordance with the present invention) having a circular cross section that crosses the inner cavity of the nozzle tip in parallel along the long side of the rectangle of the opening is used.
  • the nozzle body is configured to include two regulation bars: a regulation bar with a circular cross section (corresponding to the "fluid regulation part" of the present invention) that crosses the inner cavity of the nozzle body. In some cases, three or more regulating bars may be provided.
  • these restriction bars can further prevent the mortar M from leaking from the opening at the nozzle tip when the three-dimensional modeling apparatus 1 is stopped.
  • FIG. 16 is a perspective view similar to FIG. 11 of the nozzle section of the fourth embodiment.
  • the nozzle part 93 (corresponding to the "nozzle” of the present invention) includes a nozzle body part 93a, a nozzle gear part 95 formed on the outer periphery of the nozzle body part 93a, and a tip of the nozzle body part 93a.
  • the nozzle tip 93e is connected to the nozzle tip 93e, and the opening 93b is formed at the tip of the nozzle tip 93e.
  • the opening 93b of this embodiment also has a substantially rectangular shape with a long side of V1 and a short side of H1 (V1>H1) in plan view.
  • the discharged mortar M has a substantially rectangular cross section.
  • the nozzle main body 93a has a hollow cylindrical shape, and its inner cavity 93d has a cylindrical shape that tapers toward the tip.
  • the nozzle tip 93e has a hollow, substantially conical shape, and its inner cavity 93f tapers toward the tip.
  • the inner diameter of the base end of the nozzle tip 93e is set to be larger than the inner diameter of the tip of the nozzle body 93a. has been done.
  • the pressure of the mortar M at the opening 93b is dispersed when the mortar M is discharged from the opening 93b. This allows the mortar M to be continuously and smoothly discharged from the opening 93b of the nozzle tip 93e.
  • the nozzle portion 93 includes a restriction bar 93c (corresponding to the “fluid restriction portion” of the present invention) having a circular cross section that crosses the inner cavity 93d of the nozzle body portion 93a in parallel along the short side of the rectangle of the opening 93b. According to this regulation bar 93c, it is possible to prevent the mortar M from leaking out from the opening 93b of the nozzle tip 93e when the three-dimensional modeling apparatus 1 is stopped.
  • a restriction bar 93c (corresponding to the “fluid restriction portion” of the present invention) having a circular cross section that crosses the inner cavity 93d of the nozzle body portion 93a in parallel along the short side of the rectangle of the opening 93b.
  • the shape of the opening is rectangular in plan view, it is better to provide the regulation bar parallel to the long side of the rectangle of the opening, or to provide the regulation bar parallel to the short side of the rectangle of the opening. It is possible to more effectively prevent leakage from the opening of the mortar M.
  • the restriction bar has been described as being provided so as to cross the inner cavity of the nozzle part, but it does not cross the inner cavity of the nozzle part and does not interfere with the operation of the second rotor 11b.
  • a regulating bar may be provided on the second stator 11a of the outflow discharge head main body 11 at a position downstream of the second rotor 11b so as to cross the first hollow portion 11d.
  • the mortar M leaks from the opening of the nozzle when the three-dimensional modeling apparatus 1 is stopped. can be prevented from coming out.
  • the regulating bar in the above embodiment has a circular cross-sectional shape
  • the cross-sectional shape is not limited to a circular shape, and may have a curved shape along the direction in which the mortar M flows. For example, leakage of the mortar M can be prevented without any trouble when discharging the mortar M.
  • the support section 21 is for connecting the fluid ejection head 10 to the distal end of the articulated robot 3, as described above, and extends in the longitudinal direction of the fluid ejection head 10. It is formed into a long shape along the
  • the support part 21 is connected to the rotating part 43 at the tip of the articulated robot 3 and supports the base end side of the fluid ejection head 10, and includes an upper support part 21a of a right triangle in side view and a tip end of the fluid ejection head 10.
  • a lower support part 21b that supports the side and is disposed adjacent to the lower part of the upper support part 21a and has a right triangular shape in side view.
  • the support portion 21 protrudes in a direction intersecting the longitudinal direction of the fluid ejection head 10 (in the present embodiment, a direction perpendicular to the longitudinal direction of the fluid ejection head 10) at an intermediate position in the longitudinal direction of the fluid ejection head 10.
  • the articulated robot 3 is connected to the protrusion 21c.
  • the attitude of the fluid ejection head 10 can be easily changed in a narrow area, and in addition, the posture of the fluid ejection head 10 can be easily changed without hindering the operation of the three-dimensional printing apparatus 1. Maintenance processing, which will be described later, can be performed smoothly.
  • the articulated robot 3 of this embodiment is connected to the protruding part 21c of the support part 21, it may be connected to the upper support part 21a or the lower support part 21b other than the protrusion part 21c, and the fluid ejection head 10 may be directly connected.
  • the attitude of the fluid ejection head 10 can be easily changed in a narrow area, and in addition, it is possible to easily change the posture of the fluid ejection head 10 in a narrow area. Therefore, maintenance processing of the three-dimensional printing apparatus 1, which will be described later, can be performed smoothly.
  • FIG. 17 is a block diagram of the three-dimensional printing apparatus of the first embodiment
  • FIG. 18 is a block diagram of the main controller of the three-dimensional printing apparatus of the first embodiment.
  • the control panel 20 is operated by an external power source 6, and includes a main controller 2 electrically connected to a first pressure sensor 57 and a second pressure sensor 63, and a main controller 2 that is electrically connected to a first pressure sensor 57 and a second pressure sensor 63.
  • a robot controller 4 is electrically connected to the main controller 2 to drive the articulated robot 3, and is electrically connected to the pump-side rotor drive motor 53, the head-side rotor drive motor 27, the nozzle rotation motor 17, and the robot slide. It includes a driver circuit 12 for driving a motor 79 and an operation panel 8 for receiving input from users of the device.
  • the robot controller 4 In addition to controlling the motion of the articulated robot 3, the robot controller 4 also detects the moving speed of the fluid ejection head 10 when the fluid ejection head 10 produces the object P by ejecting the mortar M from the nozzle part. It outputs the head speed to the CPU 14, which is used when calculating an instruction value 2, which will be described later.
  • the main controller 2 includes a CPU (Central Processing Unit) 14, a RAM (Random Access Memory) 16 connected to the CPU 14 in an input/output manner, and a ROM connected to the CPU 14 in an input/output manner. (Read Only Memory) 18.
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the RAM 16 includes a three-dimensional modeling data table 16a that stores modeling data for a three-dimensional object to be manufactured, a pump-side rotor instruction value table 16b that stores instruction values for the pump-side rotor drive motor 53, and a head-side rotor drive motor 53.
  • the ROM 18 includes a head-side rotor instruction value table 16c that stores instruction values to be instructed to the motor 27, and a 3D printing program 18a that controls the overall operation of the 3D printing apparatus 1 of this embodiment, and The N layer coating program 18b that controls the coating operation for each layer of the three-dimensional modeling apparatus 1, the first discharge control program 18c and the second discharge control program 18d that control a part of the operation of the pump of this embodiment, and the present embodiment It includes an instruction value calculation program 18e that controls the operation of the pump, and a maintenance processing program 18f that maintains the three-dimensional printing apparatus 1 of this embodiment.
  • FIG. 19 is a flowchart of a three-dimensional printing program in the three-dimensional printing apparatus of the first embodiment
  • FIG. 20 is a flowchart of an N-layer application program in the three-dimensional printing apparatus of the first embodiment.
  • the user of the three-dimensional printing apparatus turns on the power switch of the apparatus, selects the object P using the operation buttons on the operation panel 8, and presses the start button. , is set to an initial state (S1), and obtains three-dimensional printing data corresponding to the object P stored in the three-dimensional printing data table 16a of the RAM 16 (S3).
  • the articulated robot 3 is set at the right end of the moving rail 75 in the ⁇ Y direction in the drawing, and the fluid ejection head main body 11 is in a state where it is retracted upward from the position where the three-dimensional object is modeled, that is. , is set at the upper end of the drawing on the +Z direction side (states shown in FIGS. 1 to 3).
  • the parameter N indicating the layer to be modeled by the articulated robot 3 is set to "1" ("1" means the first layer P1) (S5), and the mortar is The coating of M is started (S7), and the N layer coating program 18b is executed (S9).
  • the three-dimensional modeling apparatus 1 of this embodiment is configured to start applying the mortar M with the fluid ejection head 10 tilted, there is no problem due to the material of the fluid such as the mortar M. If so, the application of the mortar M may be started in a vertical position without tilting the fluid ejection head 10.
  • the tilted fluid ejection head 10 is returned vertically (S31), and the object P is placed at a predetermined position of the articulated robot 3 moved by the robot slide mechanism 7. It is determined whether the object P can be modeled within the movable range of the articulated robot 3 (S33), and if it is determined that the object P cannot be modeled within the movable range of the articulated robot 3 (S33: Yes), After the articulated robot 3 is moved by the robot slide mechanism 7 (S35), S37 is executed, and if it is determined that the object P can be modeled within the movable range of the articulated robot 3 (S33: No), the process continues as is. Execute S37.
  • S37 it is determined whether or not it is necessary to rotate the opening 13b of the nozzle section 13 (S37), and if it is determined that it is necessary to rotate the opening 13b of the nozzle section 13 (S37: Yes). ), after adjusting the application width of mortar M by rotating the opening 13b of the nozzle part 13, application of the mortar M is executed by the fluid ejection head 10 (S41), and it is necessary to rotate the opening 13b of the nozzle part 13. If it is determined that there is no mortar (S37: No), application of the mortar M is executed by the fluid ejection head 10 without rotating the opening 13b (S41).
  • FIG. 22 shows how the sixth layer P6 is applied instead of the first layer P1, the same applies to the first layer P1 in that the fluid ejection head 10 is applied vertically. be.
  • N is a natural number
  • the thickness of the mortar M discharged from the nozzle part 13 of the fluid discharge head 10 is as shown in FIGS. 21 and 22.
  • the mortar M ejected from the nozzle part of the fluid ejection head 10 is placed on the lowermost installation surface (for example, when the object P is It is applied so as to be pressed against a reference surface (such as the ground surface to be manufactured) or the surface of the mortar M that has already been applied in the lower layer.
  • the mortar M ejected from the nozzle part of the fluid ejection head 10 is placed so that the thickness is slightly shorter than the thickness to be applied (Z1 ⁇ H1).
  • the adhesive between each layer can be improved by applying the product by pressing it onto a reference surface (such as the ground) or the surface of the mortar M that has already been applied in the first layer below.
  • the rigidity of the three-dimensional structure to be manufactured can be increased.
  • the mortar M discharged from the nozzle portion of the fluid discharge head 10 is placed on the lowest installation surface (for example, the ground surface on which the object P is manufactured, etc.) so that the thickness is slightly shorter than the thickness to be applied.
  • the lowest installation surface for example, the ground surface on which the object P is manufactured, etc.
  • the thickness is slightly shorter than the thickness to be applied.
  • the mortar M discharged from the nozzle part is placed on the lowest installation surface (for example, a reference surface such as the ground on which the object P is manufactured) or By applying it by pressing it onto the surface of the applied mortar M in the lower layer, it is possible to increase the degree of adhesion between each layer when manufacturing a three-dimensional structure in multiple layers, and as a result, the degree of adhesion between each layer can be increased. , the rigidity of the three-dimensional structure to be manufactured can be increased.
  • FIG. 23 is a first explanatory diagram illustrating the relationship between the nozzle angle and the coating width in the three-dimensional modeling apparatus of the first embodiment
  • FIG. 24 is a second explanatory diagram illustrating the relationship between the nozzle angle and the coating width
  • 25 is a third explanatory diagram illustrating the relationship between the nozzle angle and the coating width
  • FIG. 26 is a fourth explanatory diagram illustrating the relationship between the nozzle angle and the coating width.
  • the nozzle portion 13 includes a substantially rectangular opening 13b with a long side of V1 and a short side of H1 (V1>H1) in plan view.
  • the diagonal line D of the opening 13b is at an angle ⁇ 1 with respect to the direction perpendicular to the traveling direction F of the fluid ejecting head 10 ( ⁇ 1 is the angle ⁇ 1 when the long side of the opening 13b is in the traveling direction F of the fluid ejecting head 10.
  • the application width W of the mortar M is the square root of (H1 2 +V1 2 ), and can be made longer than the long side V1 of the opening 13b.
  • the fluid ejection head 10 when the diagonal line D of the opening 13b forms an angle ⁇ 3 (cos ⁇ 2 ⁇ 1) with respect to the direction perpendicular to the traveling direction F of the fluid ejection head 10, the fluid ejection head 10
  • the application width W of the mortar M is the square root of (H1 2 +V1 2 ) x cos ⁇ 3, and can be made shorter than the long side V1 of the opening 13b.
  • the application process of the mortar M is executed by the fluid ejection head 10 (S41). Specifically, first, a predetermined portion of the first layer P1 of the object P (the range where the fluid ejection head 10 writes with one stroke) is applied by scanning with the determined application width of the mortar M. .
  • the mortar M is applied by the method described above with reference to FIGS. 23 to 26. Apply.
  • FIG. 27 is a first explanatory diagram illustrating the application form of the three-dimensional printing apparatus of the first embodiment
  • FIG. 28 is a second explanatory diagram illustrating the application form of the three-dimensional printing apparatus.
  • the three-dimensional printing apparatus 1 of this embodiment manufactures a three-dimensional object by moving the fluid ejection head 10 in a curved direction (for example, in the circumferential direction of radius R), as shown in FIG.
  • the mortar M is applied by operating the articulated robot 3 while rotating the nozzle part 13 by the nozzle rotation motor 17 so that the forward direction of the movement direction of the part 13 is always along the movement direction F of the fluid ejection head 10.
  • FIG. 29 is a first explanatory diagram showing a coating state during thin film coating by the three-dimensional modeling apparatus of the first embodiment. It shows how mortar M is applied with Z2 ⁇ H1 (the length of the short side of the opening 13b of the nozzle part 13).
  • FIG. 30 is a second explanatory view showing the application state during thin film application by the three-dimensional modeling apparatus of the first embodiment, in which while the fluid ejection head 10 is moved in the traveling direction F in an inclined state, It shows how mortar M with a thickness Z3 ⁇ H1 (the length of the short side of the opening 13b of the nozzle part 13) is applied.
  • the mortar M when applying the fluid with the fluid ejection head 10 tilted, the mortar M can be smoothly ejected from the opening 13b of the nozzle 13, and as a result, the end surface of the object P can be smoothly ejected. Finish quality can be improved.
  • the fluid ejection head 10 controls the rotation of the head-side rotor drive motor 27 based on the head-side rotor instruction value stored in the head-side rotor instruction value table 16c of the RAM 16, and controls the rotation of the head-side rotor drive motor 27, and the mortar M fed from the transport pipe 61. is sent to the nozzle 13 and discharged to the outside from the opening 13b of the nozzle 13.
  • the three-dimensional modeling apparatus 1 of this embodiment adjusts the height of the fluid ejection head 10 when applying mortar M with a thickness less than the application width using the nozzle section 13 or the like. Accordingly, the amount of mortar M discharged from the fluid discharge head 10 is adjusted based on the head-side rotor instruction value stored in advance in the head-side rotor instruction value table 16c of the RAM 16. It is something that
  • the detection value of second pressure sensor 63 decreases, and the amount of mortar M applied is larger than the amount of mortar M supplied from pump 5.
  • the detection value of the second pressure sensor 63 increases, so the pump 5 appropriately applies the mortar M to the fluid ejection head 10, taking into consideration the detection value of the second pressure sensor 63. It will be supplied.
  • the N layer application program 18b is repeated until the application of the first layer P1 is completed, and if it is determined that the application of the first layer P1 is completed (S11: Yes), N is increased by 1 and ( S13: means setting from the first layer P1 to the second layer P2), and moves the fluid ejection head 10 upward by one layer (S15).
  • the N layer application program 18b of S9 is executed for the second layer P2 to the Nth layer PN, and if it is determined that the application has been completed for all three-dimensional modeling data (S17 : Yes), after setting N to "1" ("1" means the first layer P1) (S19), move the articulated robot 3 and fluid ejection head 10 to the initial position (S21), The modeling process for the object P is completed (S23).
  • the three-dimensional printing apparatus 1 of this embodiment is shown in FIGS. 1 to 4 because the articulated robot 3 moves in the +Y direction and the ⁇ Y direction on the movement rail 75 of the robot slide mechanism 7, as described above.
  • the pump 5 and the fluid discharge head 10 are connected by a long transport pipe 61, and the fluid discharge head 10 that discharges the mortar M to the outside is located far from the pump 5 that supplies the mortar M. .
  • the three-dimensional modeling apparatus 1 of the present embodiment prevents over-supply and under-supply of the mortar M even when the fluid ejection head 10 is disposed far from the pump 5.
  • the pump 5 is controlled so that the ejection operation of the fluid ejection head 10 is not hindered.
  • FIG. 31 is an explanatory diagram illustrating the detection timing of the first pressure sensor and the detection timing of the second pressure sensor in the three-dimensional modeling apparatus of the first embodiment
  • FIG. 33 is a flowchart of the first ejection control program in the three-dimensional printing apparatus of the first embodiment
  • FIG. 34 is a flowchart of the second ejection control program in the three-dimensional printing apparatus of the first embodiment. It is a flowchart of the instruction value calculation program in .
  • one of the first discharge control program 18c and the second discharge control program 18d is selectively executed, and is executed by interrupt processing executed every predetermined time t0 (msec).
  • t0 predetermined time
  • instruction value calculation program 18e will also be explained as being executed by an interrupt process executed every predetermined time t0 (msec).
  • the three-dimensional modeling apparatus 1 of the present embodiment includes a first pressure sensor that is arranged at the connection position between the screw pipe 55 and the transport pipe 61, and for detecting the pressure within the transport pipe 61 of the mortar M. 57, and a second pressure sensor 63 arranged at a connection position between the fluid ejection head 11 and the transport pipe 61 and for detecting the pressure within the transport pipe 61 of the mortar M.
  • the pump 5 controls the rotation of the pump-side rotor drive motor 53 based on the pump-side rotor instruction value stored in the pump-side rotor instruction value table 16b of the RAM 16, and controls the mortar M fed into the screw pipe 55. is sent to the transport pipe 61 on the downstream side.
  • the pump side rotor instruction value stored in the pump side rotor instruction value table 16b is based on the detection value detected by the first pressure sensor 57 and the detection value detected by the second pressure sensor 63, as described later.
  • the instruction value 1 is determined based on the instruction value 1 calculated based on the above, and the instruction value 2 corresponding to the amount of mortar M discharged from the opening 13b of the nozzle portion 13 by the fluid ejection head 10 to the outside.
  • the pump 5 operates the pump-side rotor drive motor 53 so as to deliver the same amount of mortar M to the transport pipe 61 as the amount of mortar M that is discharged to the outside from the opening 13b of the nozzle portion 13 by the fluid discharge head 10.
  • the mortar M is appropriately delivered to the fluid discharge head 10. This allows mortar M to be discharged appropriately from the fluid discharge head 10.
  • the first pressure sensor 57 detects the pressure in the transport pipe 61 of the mortar M at the connection position between the screw pipe 55 and the transport pipe 61 (S51, upper part of FIG. 31). "S1" indicates the detection timing), and an instruction value 1 is calculated based on the detected value (S53).
  • the pump-side rotor drive motor 53 receives the instruction value 1 calculated in S53 or S59, which will be described later, and the instruction value calculated by an instruction value calculation program 18e, which will be described later, and which is executed separately from the first discharge control program 18c.
  • the rotation is controlled so as to match the pump side rotor instruction value calculated by 2 and stored in the pump side rotor instruction value table 16b of the RAM 16 (S54).
  • time t1 time t1 is longer than time t0, for example, N times time t0 (N is a natural number of 2 or more)
  • N is a natural number of 2 or more
  • the second pressure sensor 63 detects the pressure within the transport pipe 61 of the mortar M at the connection position between the fluid ejection head 11 and the transport pipe 61 (S57, "S2" in FIG. 31 indicates the detection timing ), and after calculating the instruction value 1 based on the detected value (S59), the interrupt processing is completed (S61).
  • FIG. 31 shows the detection timing of the first discharge control program 18c, and as shown in FIG. 31, in the three-dimensional printing apparatus 1 of this embodiment, the time t1 is about 10 times the time t0. It is set.
  • the first pressure sensor 57 detects the pressure within the transport pipe 61 of the mortar M at the connection position between the screw pipe 55 and the transport pipe 61 (S71), and It is determined whether or not a time t1 (time t1 is N times the time t0 (N is a natural number of 2 or more)) has elapsed since the detection of the second pressure sensor 63 (S73), and it is determined whether the time t1 has elapsed. If it is determined that there is no such thing (S73: No), the process waits until the time t1 has elapsed, and if it is determined that the time t1 has elapsed (S73: Yes), S75 is executed.
  • the second pressure sensor 63 detects the pressure within the transport pipe 61 of the mortar M at the connection position between the fluid ejection head 11 and the transport pipe 61 (S75), and the detected value by the first pressure sensor 57 and The instruction value 1 is calculated based on the detected value by the second pressure sensor 63 after time t1 (S77).
  • the pump-side rotor drive motor 53 is driven by the instruction value 1 calculated in S77 and the instruction value 2 calculated by an instruction value calculation program 18e, which will be described later, and which is executed separately from the first discharge control program 18c.
  • the rotation is controlled so as to match the calculated pump-side rotor instruction value stored in the pump-side rotor instruction value table 16b of the RAM 16 (S79), and the interrupt processing is completed (S81).
  • the instruction value calculation program 18e will be explained.
  • the application speed of the fluid ejection head 11 is obtained from the robot controller 4 (S83), and the obtained application speed and the height of the mortar ejected from the fluid ejection head 11 (S85).
  • the instruction value 2 is a value corresponding to the amount of mortar M discharged from the fluid discharge head 10, and when the coating speed of the fluid discharge head 10 is fast, or the height of the mortar discharged from the fluid discharge head 11. (thickness), the value of the instruction value 2 increases, and when the application speed of the fluid ejection head 10 is slow or the height (thickness) of the mortar ejected from the fluid ejection head 11 is small, the value of the instruction value 2 increases. , the value of instruction value 2 decreases.
  • the instruction value 2 calculated in S85 is added to the instruction value 1 calculated by the first discharge control program 18c or the second discharge control program 18d to calculate the instruction value, and the pump side rotor instruction value is stored in the RAM 16. After storing it in the table 16b (S87), the interrupt processing is completed (S89).
  • the pump 5 is connected to the fluid discharge head 10 by a long transport pipe 61, and the fluid discharge head Even when the mortar M is disposed far from the fluid ejection head 10, the mortar M can be appropriately supplied to the fluid ejection head 10, and the mortar M can be appropriately ejected from the fluid ejection head 10.
  • the amount of mortar M supplied from the pump 5 is equal to the amount of mortar M discharged to the outside from the opening 13b by the fluid discharge head 10, and the predetermined amount.
  • the length of the transport pipe 61 is determined based on the detection value detected by the first pressure sensor 57 at the specified time and the detection value detected by the second pressure sensor 63 after the elapse of time t1 from the predetermined time.
  • the fluid ejection head 10 controls the rotation of the head-side rotor drive motor 27 based on the head-side rotor instruction value stored in the head-side rotor instruction value table 16 c of the RAM 16 , and controls the rotation of the head-side rotor drive motor 27 .
  • the mortar M is delivered to the nozzle 13 and discharged from the opening 13b of the nozzle 13 to the outside.
  • the three-dimensional modeling apparatus 1 of this embodiment controls the rotation of the head-side rotor drive motor 27 according to the width, thickness, and application speed of the mortar M to be applied.
  • the detection value of the second pressure sensor 63 decreases, and the amount of mortar M applied is larger than the amount of mortar M supplied from pump 5.
  • the detected value of the second pressure sensor 63 increases.
  • the mortar M can be appropriately supplied to the fluid ejection head 10, and in turn, the mortar M can be appropriately ejected from the fluid ejection head 10.
  • the three-dimensional modeling apparatus 1 of this embodiment discharges the mortar M from the tip of the fluid discharge head 10 to manufacture an object P, which is a three-dimensional model. If the mortar M is left as is after use, there is a possibility that the mortar M will solidify inside the fluid ejection head 10 and become unusable next time.
  • the fluid ejection head 10 should be periodically disassembled to remove the internal mortar M and the parts that make up the fluid ejection head 10 should be cleaned. There is a need.
  • the three-dimensional printing apparatus of this embodiment is large and heavy, and the fluid ejection head 10 itself is also large and heavy. Safety needs to be considered.
  • FIG. 35 is a flowchart of a maintenance processing program in the three-dimensional printing apparatus of the first embodiment
  • FIG. 36 is a front view showing the state of the three-dimensional printing apparatus before disassembly during maintenance
  • FIG. FIG. 38 is a bottom view showing the state of the three-dimensional printing apparatus before disassembly during maintenance
  • FIG. 38 is an explanatory view showing the state after disassembly during maintenance of the three-dimensional printing apparatus.
  • the three-dimensional modeling apparatus 1 of this embodiment includes an articulated robot 3, a fluid ejection head 10 connected to the tip of the articulated robot 3 for discharging mortar M to the outside, and a fluid discharging head 10 for discharging mortar M to the outside.
  • a support part 21 for connecting the ejection head 10 to the tip of the articulated robot 3 is provided.
  • the three-dimensional printing apparatus 1 of the present embodiment has the fluid ejection head 10 oriented vertically by the articulated robot 3 (the fluid ejection head 10 is oriented vertically or in an inclined direction).
  • the mortar M is discharged downward to produce an object P which is a three-dimensional structure.
  • the user of the three-dimensional printing apparatus 1 turns on the power switch of the apparatus, selects maintenance processing using the operation buttons on the operation panel 8, and presses the start button.
  • the three-dimensional printing apparatus 1 retreats the fluid ejection head 10 to the maintenance position (S91), and changes the fluid ejection head 10 from the vertical state during operation (the state where the fluid ejection head 10 is oriented vertically or in an inclined direction). It is rotated to a horizontal state (S93), and the horizontal state is maintained (S95).
  • FIG. 36 is a front view of the fluid ejection head 10 in a horizontal state by the articulated robot 3
  • FIG. 37 is a bottom view of the state.
  • the articulated robot 3 holds the fluid ejection head 10 in a horizontal state by being connected to the protrusion 21c of the support portion 21, and the fluid ejection head 10 , it is suspended by four supports of the support section 21: the first support section 21d, the second support section 21e, the third support section 21f, and the fourth support section 21g.
  • the second stator 11a and the nozzle part 13 that constitute the outer pipe of the fluid ejection head main body 11 are removed, and the head-side rotor drive motor 27 and the second rotor 11b are removed. , the nozzle rotation motor 17 and the motor gear part 19 remain on the support part 21.
  • the three-dimensional modeling apparatus of this embodiment it is possible to remove all parts of the fluid ejection head 10, but if at least the second stator 11a and the nozzle section 13 are removed, the second stator 11a and the nozzle section can be removed. 13 can be washed individually, and the second rotor 11b remaining on the support part 12 is also exposed, so it can be washed.
  • the three-dimensional modeling apparatus 1 includes an articulated robot 3 and a long fluid ejection head 10 that is connected to the tip of the articulated robot 3 and that discharges mortar M to the outside. Intended for manufacturing three-dimensional objects using mortar M discharged from the discharge head 10, in particular, the fluid discharge head 10 is oriented vertically by the articulated robot 3, and the mortar M is discharged downward. Since it can be discharged and disassembled in a state where it is turned sideways by the articulated robot 3, the three-dimensional modeling apparatus 1 can be continuously used even if it is mortar M. Even when the weight of the ejection head 10 is heavy, the operation of the three-dimensional printing apparatus 1 is not hindered, and maintenance of the three-dimensional printing apparatus 1 can be performed smoothly.
  • the three-dimensional modeling apparatus 1 which includes a long fluid ejection head 10 for ejecting fluid, and manufactures a three-dimensional object using the mortar M ejected from the fluid ejection head 10, the fluid ejection head 10 is moved by the articulated robot 3.
  • the mortar M can be discharged downward when it is oriented vertically and connected to the support part 21, and it can be dismantled when it is oriented horizontally by the articulated robot 3 and suspended from the support part 21.
  • the three-dimensional printing apparatus 1 can be used continuously, and even when the weight of the fluid ejection head 10 that stores the mortar M is heavy, the operation of the three-dimensional printing apparatus 1 is not hindered. Maintenance of the three-dimensional printing apparatus 1 can be performed smoothly.
  • the fluid ejection head 10 includes the elongated second stator 11a having the first hollow portion 11d, and the first hollow portion 11d of the second stator 11a.
  • a second rotor 11b that rotates and transfers the supplied mortar M to the tip side;
  • a head-side rotor drive motor 27 that is connected to the base end of the second stator 11a and rotates the second rotor 11b;
  • Second hollow parts 13d, 13f, 23d, 23f, 83d, 83f, 93d, 93f are connected to the tip of the second stator 11a and communicate with the openings 13b, 23b, 83b, 93b and the first hollow part 11d.
  • the mortar M transferred by the second rotor 11b is passed through the first hollow part 11d and the second hollow part 13d, 13f, 23d, 23f, 83d, 83f, 93d, 93f to the opening 13b. , 23b, 83b, 93b to the outside. Since the nozzle parts 13, 23, 83, and 93 are made detachable from the support part 21, the mortar M can be easily removed from the inside of the fluid ejection head 10, and clogging can be prevented during subsequent use of the three-dimensional printing apparatus 1. This can be reliably prevented.
  • the support part 21 is formed in an elongated shape along the longitudinal direction of the fluid ejection head 10, and at an intermediate position in the longitudinal direction of the fluid ejection head 10. Since the articulated robot 3 is provided with a protrusion 21c that protrudes in a direction intersecting the longitudinal direction of the fluid discharge head 10 and is connected to the protrusion 21c, the posture of the fluid discharge head 10 can be easily changed in a narrow area. This allows maintenance of the three-dimensional printing apparatus 1 to be performed more smoothly without any hindrance to the operation of the three-dimensional printing apparatus 1.
  • the fluid ejection head 10 is capable of ejecting the mortar M downward while being tilted by the articulated robot 3 at least when starting ejection.
  • the mortar M can be smoothly moved after maintenance, and the mortar M can be smoothly applied to the application position.
  • the fluid ejection head 10 is provided with the regulation bars 13c, 23c, 83c, 83g, and 93c that cross the inside thereof, so that the mortar M is removed from the fluid ejection head 10 after maintenance. leakage can be prevented.
  • the shape of the opening of the nozzle section in plan view has been described as approximately rectangular, but the shape of the nozzle opening in plan view is limited to approximately rectangular. Instead, it may be approximately circular, approximately elliptical, approximately square, approximately parallelogram, or approximately rhombic.
  • the shape of the opening of the nozzle section in plan view is approximately elliptical or approximately rectangular.
  • the shape of the opening of the nozzle part in plan view is approximately rectangular.
  • the nozzle opening substantially rectangular in plan view in terms of coating width and stability in lamination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)

Abstract

[Problem] To provide a three-dimensional shaping apparatus which can be continuously used even with a materials such as cement, mortar, and the like, and for which maintenance can be smoothly performed without hindering the operations of the three-dimensional shaping apparatus, even when the weight of a fluid discharge part in which such materials are stored is heavy. [Solution] A three-dimensional shaping apparatus 1 comprises: an articulated robot 3; and an elongated fluid discharge head 10 for discharging mortar M to the outside. The three-dimensional shaping apparatus produces a three-dimensional product using the mortar M discharged from the fluid discharge head 10. The fluid discharge head 10, in a state of being oriented vertically by the articulated robot 3, is capable of discharging the mortar M downward, and in a state of being oriented horizontally by the articulated robot 3, is capable of being disassembled.

Description

三次元造形装置3D printing equipment
本発明は、ノズルから流体物を突出しながら積層して、三次元造形物を製造する三次元造形装置に関する。 The present invention relates to a three-dimensional printing apparatus that manufactures a three-dimensional structure by stacking fluid objects while protruding them from a nozzle.
従来から、流体物を突出しながら積層して、三次元造形物を製造する三次元造形装置が知られている。 2. Description of the Related Art Conventionally, three-dimensional modeling apparatuses have been known that manufacture three-dimensional objects by stacking fluid objects while protruding from each other.
例えば、特許文献1には、シリンダ本体40の作動室41内に供給された材料Pを、スクリュー5を回転させることにより作動室41の下流側に搬送し、作動室41の下流側でヒータHによって加熱溶融した後、吐出ノズル43から吐出して、立体造形物P1(以下、「三次元造形物」を記す)を製造する3DプリンタAが記載されていると認められる(図1等参照)。 For example, in Patent Document 1, a material P supplied into a working chamber 41 of a cylinder body 40 is conveyed to the downstream side of the working chamber 41 by rotating a screw 5, and a heater H is It is recognized that the description describes a 3D printer A that manufactures a three-dimensional object P1 (hereinafter referred to as a "three-dimensional object") by heating and melting it and then ejecting it from a discharge nozzle 43 (see FIG. 1, etc.) .
特開2021-30445号公報JP 2021-30445 Publication
特許文献1に記載の3DプリンタAで使用される材料Pは、ヒータHによって加熱溶融されるものであるため、3DプリンタAの使用後において、材料Pが作動室41内に滞留したとしても、その後の3DプリンタAの使用時にヒータHを作動させて材料Pを再度加熱溶融させれば、3DプリンタAを継続して使用可能である。 Since the material P used in the 3D printer A described in Patent Document 1 is heated and melted by the heater H, even if the material P remains in the working chamber 41 after using the 3D printer A, If the heater H is activated to heat and melt the material P again when the 3D printer A is used thereafter, the 3D printer A can be used continuously.
しかしながら、例えば、セメント、モルタル等のように、所定時間放置することによって固化するような材料によって三次元造形物を製造する場合には、従来の3DプリンタAでは一度は製造することができたとしても、継続して使用することができないという問題があった。 However, when manufacturing a three-dimensional object using a material such as cement or mortar that solidifies after being left for a predetermined period of time, conventional 3D printer A may be able to manufacture it once. However, there was a problem that it could not be used continuously.
一方、セメント、モルタル等の材料は重量が重く、それらの材料を貯留するシリンダ本体(以下、「流体吐出部」と記す)の重量も重くなるため、その点も考慮して3Dプリンタを改良する必要がある。 On the other hand, materials such as cement and mortar are heavy, and the cylinder body that stores these materials (hereinafter referred to as the "fluid discharge section") is also heavy, so 3D printers should be improved with this in mind. There is a need.
本発明は、従来技術が有する上述した問題に対応してなされたものであり、セメント、モルタル等の材料であっても継続して使用でき、それらの材料を貯留する流体吐出部の重量が重い場合においても、三次元造形装置の動作に支障なく、三次元造形装置のメンテナンスをスムーズに行うことができる三次元造形装置を提供することを目的とする。 The present invention has been made in response to the above-mentioned problems of the prior art, and can be used continuously even with materials such as cement and mortar, and the weight of the fluid discharge part that stores these materials is heavy. It is an object of the present invention to provide a three-dimensional printing apparatus that can smoothly perform maintenance of the three-dimensional printing apparatus without hindering its operation even in the case of a three-dimensional printing apparatus.
上述した課題を解決するために、本発明の第1の態様は、多関節ロボットと、その多関節ロボットの先端に接続され、外部に流体物を吐出する長尺の流体吐出部と、を備え、前記流体吐出部から吐出された前記流体物によって三次元造形物を製造する三次元造形装置において、前記流体吐出部は、前記多関節ロボットによって縦向きにされた状態で、下方に向かって前記流体物を吐出可能であり、前記多関節ロボットによって横向きにされた状態で、解体可能であることを特徴とする。 In order to solve the above-mentioned problems, a first aspect of the present invention includes an articulated robot and an elongated fluid discharge section that is connected to the tip of the articulated robot and discharges a fluid to the outside. , in the three-dimensional printing apparatus that manufactures a three-dimensional model using the fluid discharged from the fluid discharge part, the fluid discharge part is vertically oriented by the articulated robot, and the fluid discharge part is configured to move downward toward the It is characterized in that it is capable of discharging fluid objects, and that it can be dismantled in a state where it is turned sideways by the articulated robot.
また、本発明の第2の態様は、多関節ロボットと、その多関節ロボットの先端に接続された支持部と、その支持部に接続され、外部に流体物を吐出する長尺の流体吐出部と、を備え、前記流体吐出部から吐出された前記流体物によって三次元造形物を製造する三次元造形装置において、前記流体吐出部は、前記多関節ロボットによって縦向きにされ、前記支持部に接続された状態で、下方に向かって前記流体物を吐出可能であり、前記多関節ロボットによって横向きにされ、前記支持部に吊るされた状態で、解体可能であることを特徴とする。 Further, a second aspect of the present invention provides an articulated robot, a support section connected to the tip of the articulated robot, and an elongated fluid discharge section connected to the support section and configured to discharge a fluid to the outside. In the three-dimensional printing apparatus, which manufactures a three-dimensional object using the fluid material discharged from the fluid discharge section, the fluid discharge section is vertically oriented by the articulated robot and is attached to the support section. In the connected state, the fluid object can be discharged downward, and in the state that the multi-jointed robot turns the robot sideways and is suspended from the support part, it can be dismantled.
また、本発明の第3の態様は、第2の態様の三次元造形装置において、前記流体吐出部は、第1の中空部を有する長尺の中空筐体と、その中空筐体の前記第1の中空部内で、供給された流体物を、回転しながら先端側へ移送するローターと、前記中空筐体の基端に接続され、前記ローターを回転させる駆動部と、前記中空筐体の先端に接続され、開口部と、前記第1の中空部に連通する第2の中空部と、を有し、前記ローターによって移送された前記流体物を前記第1の中空部及び前記第2の中空部を介して前記開口部から外部へ吐出するノズルと、を備え、前記支持部は、前記駆動部を支持するものであって、少なくとも前記中空筐体及び前記ノズルを、前記支持部から離脱可能としたことを特徴とする。 Further, in a third aspect of the present invention, in the three-dimensional printing apparatus according to the second aspect, the fluid ejecting section includes a long hollow housing having a first hollow part, and the first hollow housing. a rotor that rotates and transfers the supplied fluid to the distal end side within the hollow portion of the first embodiment; a drive unit that is connected to the proximal end of the hollow housing and rotates the rotor; and a distal end of the hollow housing. an opening and a second hollow part communicating with the first hollow part, and the fluid transferred by the rotor is transferred to the first hollow part and the second hollow part. a nozzle for discharging from the opening to the outside through a part, the support part supports the drive part, and at least the hollow casing and the nozzle can be removed from the support part. It is characterized by the following.
また、本発明の第4の態様は、第2の態様の三次元造形装置において、前記支持部は、前記流体吐出部の長手方向に沿って長尺状に形成されており、前記流体吐出部の前記長手方向中間位置において、前記流体物吐出部の前記長手方向に交差する方向に突出した突出部を備え、前記多関節ロボットは、前記突出部に接続されていることを特徴とする。 Further, in a fourth aspect of the present invention, in the three-dimensional printing apparatus according to the second aspect, the support portion is formed in an elongated shape along the longitudinal direction of the fluid discharge portion, and the support portion is formed in an elongated shape along the longitudinal direction of the fluid discharge portion. The multi-joint robot is characterized in that it includes a protrusion that protrudes in a direction intersecting the longitudinal direction of the fluid discharge section at the intermediate position in the longitudinal direction, and the articulated robot is connected to the protrusion.
また、本発明の第5の態様は、第3の態様の三次元造形装置において、前記支持部は、前記流体吐出部の長手方向に沿って長尺状に形成されており、前記流体吐出部の前記長手方向中間位置において、前記流体物吐出部の前記長手方向に交差する方向に突出した突出部を備え、前記多関節ロボットは、前記突出部に接続されていることを特徴とする。 Further, in a fifth aspect of the present invention, in the three-dimensional printing apparatus according to the third aspect, the support portion is formed in an elongated shape along the longitudinal direction of the fluid discharge portion, and the support portion is formed in an elongated shape along the longitudinal direction of the fluid discharge portion. The multi-joint robot is characterized in that it includes a protrusion that protrudes in a direction intersecting the longitudinal direction of the fluid discharge section at the intermediate position in the longitudinal direction, and the articulated robot is connected to the protrusion.
また、本発明の第6の態様は、第1の態様の三次元造形装置において、前記流体吐出部は、少なくとも吐出開始時において、前記多関節ロボットによって傾斜された状態で下方に向かって前記流体物を吐出可能であることを特徴とする。 Further, in a sixth aspect of the present invention, in the three-dimensional printing apparatus according to the first aspect, the fluid ejecting section is tilted by the articulated robot and the fluid is directed downward at least at the time of starting ejection. It is characterized by being able to eject objects.
また、本発明の第7の態様は、第2の態様の三次元造形装置において、前記流体吐出部は、少なくとも吐出開始時において、前記多関節ロボットによって傾斜された状態で下方に向かって前記流体物を吐出可能であることを特徴とする。 Further, in a seventh aspect of the present invention, in the three-dimensional printing apparatus according to the second aspect, the fluid ejecting section is tilted by the articulated robot and the fluid is directed downward at least at the time of starting the ejection. It is characterized by being able to eject objects.
また、本発明の第8の態様は、第3の態様の三次元造形装置において、前記流体吐出部は、少なくとも吐出開始時において、前記多関節ロボットによって傾斜された状態で下方に向かって前記流体物を吐出可能であることを特徴とする。 Further, in an eighth aspect of the present invention, in the three-dimensional printing apparatus according to the third aspect, the fluid ejecting section is tilted by the articulated robot and the fluid is directed downward at least at the time of starting ejection. It is characterized by being able to eject objects.
また、本発明の第9の態様は、第4の態様の三次元造形装置において、前記流体吐出部は、少なくとも吐出開始時において、前記多関節ロボットによって傾斜された状態で下方に向かって前記流体物を吐出可能であることを特徴とする。 In a ninth aspect of the present invention, in the three-dimensional printing apparatus according to the fourth aspect, the fluid ejecting section is tilted by the articulated robot and the fluid is directed downward at least at the time of starting ejection. It is characterized by being able to eject objects.
また、本発明の第10の態様は、第1の態様乃至第9の態様の何れかの三次元造形装置において、流体吐出部は、内部を横切る流体物規制部を備えたことを特徴とする。 Further, a tenth aspect of the present invention is characterized in that in the three-dimensional printing apparatus according to any one of the first to ninth aspects, the fluid discharge section includes a fluid regulating section that crosses the inside thereof. .
本発明の第1の態様によれば、多関節ロボットと、その多関節ロボットの先端に接続され、外部に流体物を吐出する長尺の流体吐出部と、を備え、流体吐出部から吐出された流体物によって三次元造形物を製造する三次元造形装置において、流体吐出部は、多関節ロボットによって縦向きにされた状態で、下方に向かって流体物を吐出可能であり、多関節ロボットによって横向きにされた状態で、解体可能であるので、セメント、モルタル等の材料であっても三次元造形装置を継続して使用することができ、それらの材料を貯留する流体吐出部の重量が重い場合においても、三次元造形装置の動作に支障なく、三次元造形装置のメンテナンスをスムーズに行うことができる。 According to a first aspect of the present invention, the present invention includes an articulated robot and an elongated fluid discharge section that is connected to the tip of the articulated robot and discharges a fluid to the outside, and the fluid is discharged from the fluid discharge section. In a 3D printing apparatus that manufactures a 3D object using a fluid object, the fluid discharge section is capable of discharging the fluid object downward while the articulated robot is vertically oriented. Since it can be dismantled when placed horizontally, the 3D printing device can be used continuously even for materials such as cement and mortar, and the weight of the fluid discharge part that stores these materials is heavy. Even in such cases, maintenance of the three-dimensional printing apparatus can be performed smoothly without any problem in the operation of the three-dimensional printing apparatus.
また、本発明の第2の態様によれば、多関節ロボットと、その多関節ロボットの先端に接続された支持部と、その支持部に接続され、外部に流体物を吐出する長尺の流体吐出部と、を備え、流体吐出部から吐出された流体物によって三次元造形物を製造する三次元造形装置において、流体吐出部は、多関節ロボットによって縦向きにされ、支持部に接続された状態で、下方に向かって流体物を吐出可能であり、多関節ロボットによって横向きにされ、支持部に吊るされた状態で、解体可能であるので、セメント、モルタル等の材料であっても三次元造形装置を継続して使用することができ、それらの材料を貯留する流体吐出部の重量が重い場合においても、三次元造形装置の動作に支障なく、三次元造形装置のメンテナンスをスムーズに行うことができる。 Further, according to a second aspect of the present invention, there is provided an articulated robot, a supporting section connected to the tip of the articulated robot, and a long fluid connected to the supporting section and discharging a fluid to the outside. A three-dimensional printing apparatus that manufactures a three-dimensional object using a fluid discharged from the fluid discharge part, the fluid discharge part being vertically oriented by an articulated robot and connected to a support part. It is possible to discharge fluid downwards in the state, and it can be disassembled by being turned sideways by an articulated robot and suspended from a support, so even materials such as cement and mortar can be disassembled in 3D. To enable continuous use of a three-dimensional printing device and to smoothly perform maintenance of the three-dimensional printing device without interfering with the operation of the three-dimensional printing device even when the weight of the fluid discharge part that stores the materials is heavy. Can be done.
また、本発明の第3の態様によれば、第2の態様の三次元造形装置において、流体吐出部は、第1の中空部を有する長尺の中空筐体と、その中空筐体の第1の中空部内で、供給された流体物を、回転しながら先端側へ移送するローターと、中空筐体の基端に接続され、ローターを回転させる駆動部と、中空筐体の先端に接続され、開口部と、第1の中空部に連通する第2の中空部と、を有し、ローターによって移送された流体物を第1の中空部及び第2の中空部を介して開口部から外部へ吐出するノズルと、を備え、支持部は、駆動部を支持するものであって、少なくとも中空筐体及びノズルを、支持部から離脱可能としたので、第2の態様の三次元造形装置の効果に加え、流体吐出部の内部から流体物を除去し易くし、その後の三次元造形装置の使用において、目詰まりを確実に防止することができる。 Further, according to a third aspect of the present invention, in the three-dimensional printing apparatus of the second aspect, the fluid discharge section includes a long hollow housing having a first hollow part and a first hollow housing of the hollow housing. A rotor that rotates and transfers the supplied fluid to the tip side within the hollow part of 1, a drive unit that is connected to the base end of the hollow housing and rotates the rotor, and a drive unit that is connected to the tip of the hollow housing that rotates the rotor. , having an opening and a second hollow part communicating with the first hollow part, the fluid transferred by the rotor is passed from the opening to the outside through the first hollow part and the second hollow part. The support part supports the drive part, and since at least the hollow casing and the nozzle can be separated from the support part, the three-dimensional printing apparatus of the second aspect In addition to the effect, the fluid can be easily removed from the inside of the fluid discharge section, and clogging can be reliably prevented during subsequent use of the three-dimensional printing apparatus.
また、本発明の第4の態様によれば、第2の態様の三次元造形装置において、支持部は、流体吐出部の長手方向に沿って長尺状に形成されており、流体吐出部の長手方向中間位置において、流体物吐出部の長手方向に交差する方向に突出した突出部を備え、多関節ロボットは、突出部に接続されているので、第2の態様の三次元造形装置の効果に加え、流体吐出部の態勢を狭い領域で簡単に変更することができ、三次元造形装置の動作にさらに支障なく、三次元造形装置のメンテナンスをさらにスムーズに行うことができる。 Further, according to a fourth aspect of the present invention, in the three-dimensional printing apparatus of the second aspect, the support part is formed in an elongated shape along the longitudinal direction of the fluid discharge part, and the support part is formed in an elongated shape along the longitudinal direction of the fluid discharge part. The effect of the three-dimensional printing apparatus of the second aspect is that the three-dimensional printing apparatus of the second aspect is provided with a protrusion that protrudes in a direction intersecting the longitudinal direction of the fluid discharge part at an intermediate position in the longitudinal direction, and the articulated robot is connected to the protrusion. In addition, the attitude of the fluid discharge section can be easily changed in a narrow area, so that the operation of the three-dimensional printing apparatus can be performed more smoothly, and the maintenance of the three-dimensional printing apparatus can be performed more smoothly.
また、本発明の第5の態様によれば、第3の態様の三次元造形装置において、支持部は、流体吐出部の長手方向に沿って長尺状に形成されており、流体吐出部の長手方向中間位置において、流体物吐出部の長手方向に交差する方向に突出した突出部を備え、多関節ロボットは、突出部に接続されているので、第3の態様の三次元造形装置の効果に加え、流体吐出部の態勢を狭い領域で簡単に変更することができ、三次元造形装置の動作にさらに支障なく、三次元造形装置のメンテナンスをさらにスムーズに行うことができる。 Further, according to a fifth aspect of the present invention, in the three-dimensional printing apparatus of the third aspect, the support part is formed in an elongated shape along the longitudinal direction of the fluid discharge part. The effect of the three-dimensional printing apparatus of the third aspect is that the multi-joint robot is connected to the protrusion, and is provided with a protrusion that protrudes in a direction intersecting the longitudinal direction of the fluid discharge part at an intermediate position in the longitudinal direction. In addition, the attitude of the fluid discharge section can be easily changed in a narrow area, so that the operation of the three-dimensional printing apparatus can be performed more smoothly, and the maintenance of the three-dimensional printing apparatus can be performed more smoothly.
また、本発明の第6の態様によれば、第1の態様の三次元造形装置において、流体吐出部は、少なくとも吐出開始時において、多関節ロボットによって傾斜された状態で下方に向かって流体物を吐出可能であるので、第1の態様の三次元造形装置の効果に加え、メンテナンス後に流体物をスムーズに移動させ、流体物を塗布位置にスムーズに塗布することができる。 Further, according to the sixth aspect of the present invention, in the three-dimensional printing apparatus of the first aspect, the fluid discharge section is tilted by the articulated robot and the fluid is directed downward at least at the start of discharge. In addition to the effects of the three-dimensional printing apparatus of the first aspect, the fluid material can be smoothly moved after maintenance, and the fluid material can be smoothly applied to the application position.
また、本発明の第7の態様によれば、第2の態様の三次元造形装置において、流体吐出部は、少なくとも吐出開始時において、多関節ロボットによって傾斜された状態で下方に向かって流体物を吐出可能であるので、第2の態様の三次元造形装置の効果に加え、メンテナンス後に流体物をスムーズに移動させ、流体物を塗布位置にスムーズに塗布することができる。 Further, according to the seventh aspect of the present invention, in the three-dimensional printing apparatus of the second aspect, the fluid discharge section is tilted by the articulated robot and the fluid discharger is directed downward at least at the start of discharge. In addition to the effects of the three-dimensional printing apparatus of the second aspect, the fluid material can be smoothly moved after maintenance, and the fluid material can be smoothly applied to the application position.
また、本発明の第8の態様によれば、第3の態様の三次元造形装置において、流体吐出部は、少なくとも吐出開始時において、多関節ロボットによって傾斜された状態で下方に向かって流体物を吐出可能であるので、第3の態様の三次元造形装置の効果に加え、メンテナンス後に流体物をスムーズに移動させ、流体物を塗布位置にスムーズに塗布することができる。 Further, according to an eighth aspect of the present invention, in the three-dimensional printing apparatus of the third aspect, the fluid discharge section is tilted downward by the articulated robot at least at the time of starting discharge. Therefore, in addition to the effects of the three-dimensional printing apparatus of the third aspect, the fluid can be smoothly moved after maintenance, and the fluid can be smoothly applied to the application position.
また、本発明の第9の態様によれば、第4の態様の三次元造形装置において、流体吐出部は、少なくとも吐出開始時において、多関節ロボットによって傾斜された状態で下方に向かって流体物を吐出可能であるので、第4の態様の三次元造形装置の効果に加え、メンテナンス後に流体物をスムーズに移動させ、流体物を塗布位置にスムーズに塗布することができる。 According to a ninth aspect of the present invention, in the three-dimensional printing apparatus of the fourth aspect, the fluid discharge section is tilted by the articulated robot and the fluid is directed downward at least at the start of discharge. In addition to the effects of the three-dimensional printing apparatus of the fourth aspect, the fluid material can be smoothly moved after maintenance, and the fluid material can be smoothly applied to the application position.
さらに、本発明の第10の態様によれば、第1の態様乃至第9の態様の何れかの三次元造形装置において、流体吐出部は、内部を横切る流体物規制部を備えているので、第1の態様乃至第9の態様の何れかの三次元造形装置の効果に加え、メンテナンス後に流体物が流体吐出部から漏れ出すことを防止することができる。 Furthermore, according to the tenth aspect of the present invention, in the three-dimensional printing apparatus according to any one of the first to ninth aspects, the fluid discharge section includes a fluid regulating section that crosses the inside. In addition to the effects of the three-dimensional printing apparatus according to any one of the first to ninth aspects, it is possible to prevent fluid from leaking from the fluid discharge portion after maintenance.
本発明の第1実施形態の三次元造形装置の全体斜視図である。1 is an overall perspective view of a three-dimensional printing apparatus according to a first embodiment of the present invention. 第1実施形態の三次元造形装置の全体平面図である。FIG. 1 is an overall plan view of a three-dimensional printing apparatus according to a first embodiment. 第1実施形態の三次元造形装置の全体正面図である。FIG. 1 is an overall front view of a three-dimensional printing apparatus according to a first embodiment. 第1実施形態の三次元造形装置を構成するロボットスライド機構7によって、多関節ロボット3が図2の状態から+Y方向に移動した状態を示した図である。FIG. 3 is a diagram showing a state in which the articulated robot 3 has been moved in the +Y direction from the state in FIG. 2 by the robot slide mechanism 7 that constitutes the three-dimensional modeling apparatus of the first embodiment. 第1実施形態の三次元造形装置を構成するポンプの正面図である。FIG. 2 is a front view of a pump that constitutes the three-dimensional printing apparatus of the first embodiment. 第1実施形態の三次元造形装置を構成するポンプの一部を切り欠いた正面図である。It is a partially cutaway front view of a pump that constitutes the three-dimensional printing apparatus of the first embodiment. 第1実施形態の三次元造形装置を構成する流体吐出ヘッドの右側面図である。FIG. 2 is a right side view of a fluid ejection head that constitutes the three-dimensional printing apparatus of the first embodiment. 第1実施形態の三次元造形装置を構成する流体吐出ヘッドの一部を切り欠いた右側面図である。FIG. 2 is a right side view with a portion of the fluid ejection head constituting the three-dimensional printing apparatus of the first embodiment cut away. 第1実施形態の三次元造形装置を構成するノズルの斜視図である。FIG. 2 is a perspective view of a nozzle that constitutes the three-dimensional modeling apparatus of the first embodiment. 第1実施形態の三次元造形装置を構成するノズルの平面図である。FIG. 2 is a plan view of a nozzle that constitutes the three-dimensional modeling apparatus of the first embodiment. 図10において、X-X部を切り欠いた斜視図である。FIG. 11 is a perspective view of a section taken along the line XX in FIG. 10; 第1実施形態の三次元造形装置を構成するノズルの縦断面図である。FIG. 2 is a longitudinal cross-sectional view of a nozzle that constitutes the three-dimensional modeling apparatus of the first embodiment. 第2実施形態のノズルの図11と同様の斜視図である。FIG. 12 is a perspective view similar to FIG. 11 of the nozzle of the second embodiment. 第2実施形態のノズルの縦断面図である。FIG. 7 is a longitudinal cross-sectional view of a nozzle according to a second embodiment. 第3実施形態のノズルの図11と同様の斜視図である。FIG. 12 is a perspective view similar to FIG. 11 of the nozzle of the third embodiment. 第4実施形態のノズルの図11と同様の斜視図である。FIG. 12 is a perspective view similar to FIG. 11 of the nozzle of the fourth embodiment. 第1実施形態の三次元造形装置のブロック図である。FIG. 1 is a block diagram of a three-dimensional printing apparatus according to a first embodiment. 第1実施形態の三次元造形装置のメインコントローラのブロック図である。FIG. 2 is a block diagram of a main controller of the three-dimensional printing apparatus according to the first embodiment. 第1実施形態の三次元造形装置における三次元造形プログラムのフローチャートである。It is a flowchart of the three-dimensional printing program in the three-dimensional printing apparatus of the first embodiment. 第1実施形態の三次元造形装置におけるN層塗布プログラムのフローチャートである。It is a flowchart of the N layer coating program in the three-dimensional modeling apparatus of the first embodiment. 第1実施形態の三次元造形装置の塗布開示時における塗布状態を示した説明図である。FIG. 2 is an explanatory diagram showing a coating state of the three-dimensional modeling apparatus according to the first embodiment when coating is started. 第1実施形態の三次元造形装置の通常時における塗布状態を示した説明図である。FIG. 2 is an explanatory diagram showing a coating state in a normal state of the three-dimensional printing apparatus of the first embodiment. 第1実施形態の三次元造形装置におけるノズル角度と塗布幅との関係を説明する第1説明図である。It is a 1st explanatory view explaining the relationship between a nozzle angle and application width in a three-dimensional modeling device of a 1st embodiment. 第1実施形態の三次元造形装置におけるノズル角度と塗布幅との関係を説明する第2説明図である。FIG. 7 is a second explanatory diagram illustrating the relationship between the nozzle angle and the application width in the three-dimensional modeling apparatus of the first embodiment. 第1実施形態の三次元造形装置におけるノズル角度と塗布幅との関係を説明する第3説明図である。FIG. 7 is a third explanatory diagram illustrating the relationship between the nozzle angle and the application width in the three-dimensional modeling apparatus of the first embodiment. 第1実施形態の三次元造形装置におけるノズル角度と塗布幅との関係を説明する第4説明図である。FIG. 7 is a fourth explanatory diagram illustrating the relationship between the nozzle angle and the application width in the three-dimensional modeling apparatus of the first embodiment. 第1実施形態の三次元造形装置の塗布形態を説明する第1説明図である。It is a 1st explanatory view explaining the application form of the three-dimensional modeling device of a 1st embodiment. 第1実施形態の三次元造形装置の塗布形態を説明する第2説明図である。It is a 2nd explanatory view explaining the application form of the three-dimensional modeling device of a 1st embodiment. 第1実施形態の三次元造形装置の薄膜塗布時における塗布状態を示した第1説明図である。FIG. 2 is a first explanatory diagram showing a coating state during thin film coating by the three-dimensional modeling apparatus of the first embodiment. 第1実施形態の三次元造形装置の薄膜塗布時における塗布状態を示した第2説明図である。FIG. 7 is a second explanatory diagram showing a coating state during thin film coating by the three-dimensional modeling apparatus of the first embodiment. 第1実施形態の三次元造形装置における第1圧力センサーの検出タイミングと、第2圧力センサーの検出タイミングとを説明した説明図である。FIG. 2 is an explanatory diagram illustrating detection timing of a first pressure sensor and detection timing of a second pressure sensor in the three-dimensional modeling apparatus of the first embodiment. 第1実施形態の三次元造形装置における第1吐出制御プログラムのフローチャートである。It is a flowchart of the 1st discharge control program in the three-dimensional printing apparatus of 1st Embodiment. 第1実施形態の三次元造形装置における第2吐出制御プログラムのフローチャートである。It is a flowchart of the 2nd discharge control program in the three-dimensional printing apparatus of 1st Embodiment. 第1実施形態の三次元造形装置における指示値算出プログラムのフローチャートである。It is a flowchart of the instruction value calculation program in the three-dimensional modeling apparatus of the first embodiment. 第1実施形態の三次元造形装置におけるメンテナンス処理プログラムのフローチャートである。It is a flowchart of the maintenance processing program in the three-dimensional printing apparatus of the first embodiment. 第1実施形態の三次元造形装置のメンテナンス時の分解前の状態を示した正面図である。FIG. 2 is a front view showing the state of the three-dimensional printing apparatus of the first embodiment before disassembly during maintenance. 第1実施形態の三次元造形装置のメンテナンス時の分解前の状態を示した底面図である。It is a bottom view showing the state before disassembly at the time of maintenance of the three-dimensional printing device of a 1st embodiment. 第1実施形態の三次元造形装置のメンテナンス時の分解後の状態を示した説明図である。FIG. 2 is an explanatory diagram showing the state of the three-dimensional printing apparatus of the first embodiment after it is disassembled during maintenance.
以下、本発明の実施形態について、図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.
なお、本実施形態の三次元造形装置は、三次元造形物の例として、屋外に設置するオブジェPを製造するものとして説明するが、本発明の三次元造形装置は、オブジェに限定されるものではなく、立体化された三次元造形物であれば何れの物であっても製造可能である。 Although the three-dimensional printing apparatus of the present embodiment will be described as manufacturing an object P to be installed outdoors as an example of a three-dimensional model, the three-dimensional printing apparatus of the present invention is limited to objects. Rather, any three-dimensional three-dimensional object can be manufactured.
(実施形態)
先ず、本実施形態の三次元造形装置の構成について説明する。
(Embodiment)
First, the configuration of the three-dimensional printing apparatus of this embodiment will be explained.
図1は、本発明の第1実施形態の三次元造形装置の全体斜視図であり、図2は、その三次元造形装置の全体平面図であり、図3は、その三次元造形装置の全体正面図である。 FIG. 1 is an overall perspective view of a three-dimensional printing apparatus according to a first embodiment of the present invention, FIG. 2 is an overall plan view of the three-dimensional printing apparatus, and FIG. 3 is an overall perspective view of the three-dimensional printing apparatus. It is a front view.
図1乃至図3に示すように、本実施形態の三次元造形装置1は、屋外に設置する、第1層P1、第2層P2、第3層P3、第4層P4・・・第N層PN(図示せず)のN層(Nは自然数)からなる立体のオブジェPを製造するものであり、多関節ロボット3と、その多関節ロボット3を+Y方向及び-Y方向に移動させるためのロボットスライド機構7と、モルタルM(本発明の「流体物」に相当)を後述する流体吐出ヘッド10(本発明の「流体吐出部」に相当)に供給するためのポンプ5と、多関節ロボット3の先端に接続され、モルタルMを外部へ吐出するための流体吐出ヘッド10と、その流体吐出ヘッド10を多関節ロボット3の先端に接続するための支持部21と、から構成されている。 As shown in FIGS. 1 to 3, the three-dimensional printing apparatus 1 of this embodiment includes a first layer P1, a second layer P2, a third layer P3, a fourth layer P4, . This is to manufacture a three-dimensional object P consisting of N layers (N is a natural number) of layers PN (not shown), and to move an articulated robot 3 and the articulated robot 3 in the +Y direction and the -Y direction. a robot slide mechanism 7, a pump 5 for supplying mortar M (corresponding to the "fluid material" of the present invention) to a fluid discharge head 10 (corresponding to the "fluid discharge part" of the present invention) described later, and a multi-jointed robot slide mechanism 7; It is composed of a fluid ejection head 10 connected to the tip of the robot 3 and for discharging mortar M to the outside, and a support part 21 for connecting the fluid ejection head 10 to the tip of the articulated robot 3. .
なお、図1乃至図3には、本実施形態の三次元造形装置1には含まれないものの、セメント、砂及び水を混錬してモルタルMを製造するためのミキサー9が記載されている。 Although not included in the three-dimensional modeling apparatus 1 of this embodiment, a mixer 9 for producing mortar M by kneading cement, sand, and water is shown in FIGS. 1 to 3. .
また、本実施形態に使用するモルタルMは、流体吐出ヘッド10から吐出前は流動性を有し、流体吐出ヘッド10から吐出後は硬化する材料からなり、例えば、セメント、砂及び水から構成されている。 Furthermore, the mortar M used in this embodiment is made of a material that has fluidity before being ejected from the fluid ejecting head 10 and hardens after being ejected from the fluid ejecting head 10, such as cement, sand, and water. ing.
多関節ロボット3は、制御盤20内に配置されたロボットコントローラ4(図17参照)からの指令によって動作する一般の7軸の多関節ロボットであり、位置及び角度を自在に変更して、先端に接続された流体吐出ヘッド10を+X方向及び-X方向、+Y方向及び-Y方向、+Z方向及び-Z方向、並びにそれらの方向を組み合わせた三次元のあらゆる方向に移動させるものである。 The articulated robot 3 is a general 7-axis articulated robot that operates according to commands from the robot controller 4 (see FIG. 17) placed in the control panel 20, and can freely change the position and angle to The fluid ejection head 10 connected to is moved in all three-dimensional directions, including +X and -X directions, +Y and -Y directions, +Z and -Z directions, and combinations of these directions.
多関節ロボット3は、第1の基台31と、その第1の基台31に対して旋回する第2の基台33と、その第2の基台33に対して前後に回動する下腕部(下アーム部)35と、その下腕部35に対して上下に回動する中下腕部(中下アーム部)37と、その中下腕部37に対して上下に回動する中上腕部(中上アーム部)39と、その中上腕部39に対して上下に回動する上腕部(上アーム部)41と、その上腕部41に対して同軸に回転する回転部43と、を備える。 The articulated robot 3 includes a first base 31, a second base 33 that rotates with respect to the first base 31, and a lower base that rotates back and forth with respect to the second base 33. An arm portion (lower arm portion) 35, a middle lower arm portion (middle lower arm portion) 37 that rotates vertically with respect to the lower arm portion 35, and a middle lower arm portion (lower middle arm portion) 37 that rotates vertically with respect to the lower middle arm portion 37. A middle upper arm part (middle upper arm part) 39, an upper arm part (upper arm part) 41 that rotates up and down with respect to the middle upper arm part 39, and a rotating part 43 that rotates coaxially with respect to the upper arm part 41. , is provided.
多関節ロボット3は、ケーブル77によって制御盤20内のロボットコントローラ4(図17参照)に電気的に接続されており、ロボットコントローラ4は、同じく制御盤20内に配置されたメインコントーラ2(図17参照)に電気的に接続されている。 The articulated robot 3 is electrically connected to the robot controller 4 (see FIG. 17) in the control panel 20 by a cable 77, and the robot controller 4 is connected to the main controller 2 (see FIG. 17) also arranged in the control panel 20. 17)).
また、ロボットスライド機構7は、多関節ロボット3を載置する移動台73と、移動台73が移動可能に配置された長尺の移動レール75と、移動台73に配置され、多関節ロボット3を移動レール75に沿って+Y方向及び-Y方向に移動させるロボットスライドモータ79と、移動レール75の前表面を覆う7枚の移動レールカバー71(71a,71b,71c,71d,71e,71f,71g)と、を備える。 Further, the robot slide mechanism 7 includes a movable base 73 on which the articulated robot 3 is placed, a long movable rail 75 on which the movable base 73 is movably arranged, and a movable base 73 arranged on the movable base 73. a robot slide motor 79 that moves the robot along the moving rail 75 in the +Y direction and the -Y direction, and seven moving rail covers 71 (71a, 71b, 71c, 71d, 71e, 71f, 71g).
また、ロボットスライド機構7は、ロボットスライドモータ79のモータ軸に嵌合されたモータギア(ピニオン・図示せず)が移動レール75の内部に形成されたラック(図示せず)に噛み合っており、多関節ロボット3は、ロボットスライドモータ79のモータギアが回転することにより、移動レール75のラック上を+Y方向及び-Y方向に移動するように構成されている。 In addition, the robot slide mechanism 7 has a motor gear (pinion, not shown) fitted to the motor shaft of the robot slide motor 79 that meshes with a rack (not shown) formed inside the moving rail 75. The articulated robot 3 is configured to move on the rack of the moving rail 75 in the +Y direction and the -Y direction by rotating the motor gear of the robot slide motor 79.
図4は、第1実施形態の三次元造形装置を構成するロボットスライド機構7によって、多関節ロボット3が図2の状態から+Y方向に移動した状態を示した図である。 FIG. 4 is a diagram showing a state in which the articulated robot 3 has been moved in the +Y direction from the state in FIG. 2 by the robot slide mechanism 7 constituting the three-dimensional modeling apparatus of the first embodiment.
なお、本実施形態の三次元造形装置1は、多関節ロボット3がカバー71aからカバー71gまでの移動レール75上を直線方向の+Y方向及び-Y方向に移動するように構成されているが、ロボットスライド機構7は、三次元造形装置の仕様によって種々変更することが可能であり、移動レール45の長さを変更することは当然として、移動レール75を本実施形態のように多関節ロボット3が直線方向に移動するように配置することに限らず、多関節ロボット3が曲線方向に移動するように配置することも可能であり、また、多関節ロボット3が直線方向及び曲線方向に移動するように配置することも可能である。 Note that the three-dimensional modeling apparatus 1 of the present embodiment is configured such that the articulated robot 3 moves in the linear +Y direction and -Y direction on the movement rail 75 from the cover 71a to the cover 71g. The robot slide mechanism 7 can be modified in various ways depending on the specifications of the three-dimensional printing apparatus, and it goes without saying that the length of the moving rail 45 can be changed. The multi-joint robot 3 is not limited to being arranged so that it moves in a straight line direction, but it is also possible to arrange it so that the multi-joint robot 3 moves in a curved direction. It is also possible to arrange it as follows.
図5は、第1実施形態の三次元造形装置を構成するポンプの正面図であり、図6は、ポンプの一部を切り欠いた正面図である。 FIG. 5 is a front view of a pump that constitutes the three-dimensional printing apparatus of the first embodiment, and FIG. 6 is a front view with a portion of the pump cut away.
図1乃至図6に示すように、ポンプ5は、ポンプ本体51と、そのポンプ本体51の上面を格子状の網で覆い、ミキサー9で混錬されたモルタルMを投入するためのモルタル投入口59と、そのモルタル投入口59から投入されたモルタルMを下流側の長尺の輸送管61に送出するためのスクリュー管55と、そのスクリュー管55を駆動するためのポンプ側ローター駆動モータ53と、スクリュー管55と輸送管61との接続位置に配置され、モルタルMの輸送管61内での圧力を検出するための第1圧力センサー57と、第1ポンプ本体51に取り付けられた制御盤20と、その制御盤20に備えられた操作パネル8と、を備える。 As shown in FIGS. 1 to 6, the pump 5 includes a pump main body 51, a mortar inlet for covering the upper surface of the pump main body 51 with a grid-like mesh, and into which mortar M mixed by a mixer 9 is introduced. 59, a screw pipe 55 for sending the mortar M introduced from the mortar input port 59 to a long transport pipe 61 on the downstream side, and a pump-side rotor drive motor 53 for driving the screw pipe 55. , a first pressure sensor 57 arranged at a connection position between the screw pipe 55 and the transport pipe 61 to detect the pressure within the transport pipe 61 of the mortar M, and a control panel 20 attached to the first pump main body 51. and an operation panel 8 provided on the control panel 20.
また、スクリュー管55は、スクリュー管55の外管を構成する第1ステータ55aと、その第1ステータ55aの内部に回転可能に配置され、ポンプ側ローター駆動モータ53の回転によってモルタルMを輸送管61側へ送出するために螺旋状の突起が形成された第1ローター55bと、を備える。 Further, the screw pipe 55 includes a first stator 55a constituting an outer pipe of the screw pipe 55, and is rotatably arranged inside the first stator 55a, and transports the mortar M into the pipe by rotation of the pump-side rotor drive motor 53. A first rotor 55b is provided with a spiral protrusion for sending out to the 61 side.
図7は、第1実施形態の三次元造形装置を構成する流体吐出ヘッドの右側面図であり、図8は、流体吐出ヘッドの一部を切り欠いた右側面図である。 FIG. 7 is a right side view of the fluid ejection head that constitutes the three-dimensional modeling apparatus of the first embodiment, and FIG. 8 is a right side view with a portion of the fluid ejection head cut away.
図1乃至図3、図7及び図8に示すように、流体吐出ヘッド10は、輸送管61から輸送されたモルタルMを流体吐出ヘッド10へ送出するための供給口29と、その供給口29へ送出されたモルタルMを下流側に送出するための流体吐出ヘッド本体11と、その流体吐出ヘッド本体11を駆動するためのヘッド側ローター駆動モータ27(本発明の「駆動部」に相当)と、流体吐出ヘッド本体11の先端に回転可能に接続されたノズル部13(本発明の「ノズル」に相当)と、そのノズル部13を回転させるためのノズル回転モータ17と、流体吐出ヘッド11と輸送管61との接続位置に配置され、モルタルMの輸送管61内での圧力を検出するための第2圧力センサー63と、流体吐出ヘッド本体11及びヘッド側ローター駆動モータ27を覆う流体吐出ヘッドカバー80(点線で図示)と、を備える。 As shown in FIGS. 1 to 3, FIG. 7, and FIG. A fluid ejection head main body 11 for sending the mortar M delivered to the downstream side, and a head side rotor drive motor 27 (corresponding to the "drive section" of the present invention) for driving the fluid ejection head main body 11. , a nozzle part 13 (corresponding to the "nozzle" of the present invention) rotatably connected to the tip of the fluid ejection head main body 11, a nozzle rotation motor 17 for rotating the nozzle part 13, and the fluid ejection head 11. A second pressure sensor 63 that is arranged at a connection position with the transport pipe 61 to detect the pressure within the transport pipe 61 of the mortar M, and a fluid discharge head cover that covers the fluid discharge head main body 11 and the head side rotor drive motor 27. 80 (shown in dotted line).
また、流体吐出ヘッド本体11は、第1の中空部11dを有するとともに、流体吐出ヘッド本体11の外管を構成する第2ステータ11a(本発明の「中空筐体」に相当)と、その第2ステータ11aの内部に回転可能に配置され、ヘッド側ローター駆動モータ27の回転によってモルタルMをノズル部13へ送出し、かつ後述するノズル部13の開口部13bから吐出させるための第2ローター11b(本発明の「ローター」に相当)と、を備える。 The fluid ejection head main body 11 has a first hollow portion 11d, and also includes a second stator 11a (corresponding to the "hollow housing" of the present invention) that constitutes an outer tube of the fluid ejection head main body 11, and a second stator 11a (corresponding to the "hollow housing" of the present invention). 2. A second rotor 11b is rotatably disposed inside the stator 11a, and is configured to send mortar M to the nozzle section 13 by rotation of the head-side rotor drive motor 27, and discharge it from an opening 13b of the nozzle section 13, which will be described later. (corresponding to the "rotor" of the present invention).
 また、ノズル部13は、その外周に後述するノズルギア部15を備え、ノズル回転モータ17が回転することによって、ノズル回転モータ17のモータ軸に挿入されたモータギア部19が回転し、そのモータギア部19に噛み合うノズルギア部15が回転し、結果的にノズル部13が回転するように構成されている。 Further, the nozzle part 13 is provided with a nozzle gear part 15 to be described later on its outer periphery, and when the nozzle rotation motor 17 rotates, a motor gear part 19 inserted into the motor shaft of the nozzle rotation motor 17 rotates, and the motor gear part 19 The nozzle gear section 15 that meshes with the nozzle gear section 15 rotates, and as a result, the nozzle section 13 rotates.
なお、ノズル回転モータ17、モータギア部19及びノズルギア部15が本発明の「ノズル回転機構」を構成する。 Note that the nozzle rotation motor 17, the motor gear section 19, and the nozzle gear section 15 constitute the "nozzle rotation mechanism" of the present invention.
 また、本実施形態の流体吐出ヘッド本体11は、全体として回転容積式1軸偏心ねじポンプを構成しており、雌ねじに相当する第2ステータ11aと、雄ねじに相当する第2ローター11bとによって形成された密閉空間であるキャビティー11cの前方への移動によって、モルタルMを前方へ輸送し、かつノズル部13の開口部13bから吐出するように構成されている。 Furthermore, the fluid ejection head main body 11 of this embodiment constitutes a rotary displacement type single-axis eccentric screw pump as a whole, and is formed by a second stator 11a corresponding to a female thread and a second rotor 11b corresponding to a male thread. By moving the cavity 11c, which is a sealed space, forward, the mortar M is transported forward and discharged from the opening 13b of the nozzle portion 13.
さらに詳細に説明すると、図8に示すように、雌ねじに相当する第2ステータ11aは、外形が円筒形状であって、内面断面が畝状、かつ内面が全体として螺旋状に延びた形状を呈しており、雄ねじに相当する第2ローター11bは、第2ステータ11aの内面に接触するように螺旋状に延びた形状を呈しており、第2ローター11bが第2ステータ11aに対して回転すると、モルタルMを含むキャビティー11cを前方へ移動させ、モルタルMをノズル部13の開口部13bから吐出させるようになっている。 More specifically, as shown in FIG. 8, the second stator 11a, which corresponds to a female thread, has a cylindrical outer shape, a ridged inner cross section, and a spirally extending inner surface as a whole. The second rotor 11b, which corresponds to a male screw, has a spirally extending shape so as to contact the inner surface of the second stator 11a, and when the second rotor 11b rotates with respect to the second stator 11a, The cavity 11c containing the mortar M is moved forward, and the mortar M is discharged from the opening 13b of the nozzle portion 13.
図9は、第1実施形態の三次元造形装置を構成するノズル部の斜視図であり、図10は、そのノズル部の平面図であり、図11は、図10において、X-X部を切り欠いた斜視図であり、図12は、そのノズル部の縦断面図である。 FIG. 9 is a perspective view of a nozzle section constituting the three-dimensional printing apparatus of the first embodiment, FIG. 10 is a plan view of the nozzle section, and FIG. 11 shows a section taken along line XX in FIG. 12 is a cutaway perspective view, and FIG. 12 is a longitudinal sectional view of the nozzle portion.
図9乃至図12に示すように、ノズル部13は、ノズル本体部13aと、そのノズル本体部13aの外周に形成されたノズルギア部15と、ノズル本体部13aの先端に接続されたノズル先端部13eと、ノズル先端部13eの先端に形成された開口部13bと、から構成されている。 As shown in FIGS. 9 to 12, the nozzle portion 13 includes a nozzle body portion 13a, a nozzle gear portion 15 formed on the outer periphery of the nozzle body portion 13a, and a nozzle tip portion connected to the tip of the nozzle body portion 13a. 13e, and an opening 13b formed at the tip of the nozzle tip 13e.
なお、本実施形態の開口部13bは、平面視において、長辺がV1、短辺がH1(V1>H1)の略長方形を呈しており、したがって、開口部13bから吐出されるモルタルMの断面は、その略長方形を呈することとなる。 Note that the opening 13b of this embodiment has a substantially rectangular shape with a long side V1 and a short side H1 (V1>H1) in plan view, and therefore, the cross section of the mortar M discharged from the opening 13b has a substantially rectangular shape.
 ノズル本体部13aは、中空円筒形状であって、その内腔13d(本発明の「第2の中空部」に相当)は先端に向かって先細り円筒形状を呈しており、ノズル先端部13eは、中空略円錐形状であって、その内腔13f(本発明の「第2の中空部」に相当)は先端に向かって先細り形状を呈しているが、ノズル本体部13aとノズル先端部13eとの境界部において、ノズル先端部13eの基端の内径D2は、ノズル本体部13aの先端の内径D1よりも大きくなるように設定されている。 The nozzle main body 13a has a hollow cylindrical shape, and its inner cavity 13d (corresponding to the "second hollow part" of the present invention) has a cylindrical shape that tapers toward the tip, and the nozzle tip 13e has a cylindrical shape. It has a hollow substantially conical shape, and its inner cavity 13f (corresponding to the "second hollow part" of the present invention) is tapered toward the tip, but there is a gap between the nozzle main body 13a and the nozzle tip 13e. At the boundary, the inner diameter D2 at the base end of the nozzle tip 13e is set to be larger than the inner diameter D1 at the tip of the nozzle main body 13a.
 ノズル先端部13eの基端の内径D2を、ノズル本体部13aの先端の内径D1よりも大きくすることによって、モルタルMがノズル本体部13aからノズル先端部13eに流れ、開口部13bから吐出する際に、開口部13bでのモルタルMの圧力を分散させることができ、延いては、モルタルMをノズル先端部13eの開口部13bから連続してスムーズに吐出させることができる。 By making the inner diameter D2 of the base end of the nozzle tip 13e larger than the inner diameter D1 of the tip of the nozzle body 13a, when the mortar M flows from the nozzle body 13a to the nozzle tip 13e and is discharged from the opening 13b. In addition, the pressure of the mortar M at the opening 13b can be dispersed, and the mortar M can be continuously and smoothly discharged from the opening 13b of the nozzle tip 13e.
また、ノズル部13は、ノズル先端部13eの内腔13fを、開口部13bの長方形の長辺に沿って平行に横切る断面円形の規制バー13c(本発明の「流体物規制部」に相当)を備えており、この規制バー13cによれば、モルタルMが三次元造形装置1の停止時にノズル先端部13eの開口部13bから漏れ出すことを防止することができる。 Further, the nozzle portion 13 includes a restriction bar 13c (corresponding to the “fluid restriction portion” of the present invention) having a circular cross section that crosses the inner cavity 13f of the nozzle tip portion 13e in parallel along the long side of the rectangle of the opening portion 13b. According to the regulating bar 13c, it is possible to prevent the mortar M from leaking out from the opening 13b of the nozzle tip 13e when the three-dimensional modeling apparatus 1 is stopped.
 次に、本実施形態の三次元造形装置1に使用されるノズル部の変形例について説明する。 Next, a modification of the nozzle section used in the three-dimensional printing apparatus 1 of this embodiment will be described.
図13は、第2実施形態のノズル部の図11と同様の斜視図であり、図14は、第2実施形態のノズル部の縦断面図である。 FIG. 13 is a perspective view similar to FIG. 11 of the nozzle portion of the second embodiment, and FIG. 14 is a longitudinal cross-sectional view of the nozzle portion of the second embodiment.
図13及び図14に示すように、ノズル部23(本発明の「ノズル」に相当)は、ノズル本体部23aと、そのノズル本体部23aの外周に形成されたノズルギア部25と、ノズル本体部23aの先端に接続されたノズル先端部23eと、ノズル先端部23eの先端に形成された開口部23bと、から構成されている。 As shown in FIGS. 13 and 14, the nozzle part 23 (corresponding to the "nozzle" of the present invention) includes a nozzle body part 23a, a nozzle gear part 25 formed on the outer periphery of the nozzle body part 23a, and a nozzle body part 23a. The nozzle tip 23e is connected to the tip of the nozzle tip 23a, and the opening 23b is formed at the tip of the nozzle tip 23e.
なお、本実施形態の開口部23bも、開口部13bと同様に、平面視において、長辺がV1、短辺がH1(V1>H1)の略長方形を呈しており、したがって、開口部23bから吐出されるモルタルMの断面は、その略長方形を呈することとなる。 Note that, similarly to the opening 13b, the opening 23b of this embodiment also has a substantially rectangular shape with a long side of V1 and a short side of H1 (V1>H1) in plan view, and therefore, from the opening 23b The discharged mortar M has a substantially rectangular cross section.
 ノズル本体部23aは、中空円筒形状であって、その内腔23dは先端に向かって先細り円筒形状(D5>D3)であることに加え、その途中に内径D6(D6>D5>D3)の膨隆部23gを備えており、ノズル先端部23eは、中空略円錐形状であって、その内腔23fは先端に向かって先細り形状を呈しているが、ノズル本体部23aとノズル先端部23eとの境界部において、ノズル先端部23eの基端の内径D4は、ノズル本体部23aの先端の内径D3よりも大きくなるように設定されている。 The nozzle main body 23a has a hollow cylindrical shape, and the inner cavity 23d is tapered toward the tip and has a cylindrical shape (D5>D3), and a bulge with an inner diameter D6 (D6>D5>D3) in the middle. The nozzle tip 23e has a hollow substantially conical shape, and the inner cavity 23f thereof is tapered toward the tip. In this section, an inner diameter D4 at the base end of the nozzle tip 23e is set to be larger than an inner diameter D3 at the tip of the nozzle main body 23a.
 また、内腔23dの縦断面は、流線形状を呈している。 Furthermore, the longitudinal section of the inner cavity 23d has a streamlined shape.
膨隆部23gを設けることによって、モルタルMがノズル本体部23aからノズル先端部23eに流れ、開口部23bから吐出する際に、開口部23bでのモルタルMの圧力を膨隆部23gによって分散させることができ、延いては、モルタルMをノズル先端部23eの開口部23bから連続してスムーズに吐出させることができる。 By providing the bulge 23g, when the mortar M flows from the nozzle main body 23a to the nozzle tip 23e and is discharged from the opening 23b, the pressure of the mortar M at the opening 23b can be dispersed by the bulge 23g. This allows the mortar M to be continuously and smoothly discharged from the opening 23b of the nozzle tip 23e.
また、内腔23dの縦断面を流線形状に形成することによって、開口部23bでのモルタルMの圧力を流線形状によって徐々に分散させることができ、延いては、モルタルMをノズル先端部23eの開口部23bから連続してさらにスムーズに吐出させることができる。 Furthermore, by forming the longitudinal section of the inner cavity 23d into a streamlined shape, the pressure of the mortar M at the opening 23b can be gradually dispersed due to the streamlined shape. The liquid can be continuously and smoothly discharged from the opening 23b of 23e.
 また、ノズル先端部23eの基端の内径D4を、ノズル本体部23aの先端の内径D3よりも大きくすることによって、モルタルMが開口部23bから吐出する際に、開口部23bでのモルタルMの圧力をさらに分散させることができ、延いては、モルタルMをノズル先端部23eの開口部23bから連続してさらにスムーズに吐出させることができる。 Furthermore, by making the inner diameter D4 at the base end of the nozzle tip 23e larger than the inner diameter D3 at the tip of the nozzle main body 23a, when the mortar M is discharged from the opening 23b, the mortar M at the opening 23b is The pressure can be further dispersed, and the mortar M can be continuously and more smoothly discharged from the opening 23b of the nozzle tip 23e.
また、ノズル部23は、ノズル先端部23eの内腔23fを、開口部23bの長方形の長辺に沿って平行に横切る断面円形の規制バー23c(本発明の「流体物規制部」に相当)を備えており、この規制バー23cによれば、モルタルMが三次元造形装置1の停止時にノズル先端部23eの開口部23bから漏れ出すことを防止することができる。 In addition, the nozzle portion 23 includes a regulating bar 23c (corresponding to the "fluid regulating section" of the present invention) having a circular cross section that crosses the inner cavity 23f of the nozzle tip 23e in parallel along the long side of the rectangle of the opening 23b. According to this regulation bar 23c, it is possible to prevent the mortar M from leaking out from the opening 23b of the nozzle tip 23e when the three-dimensional modeling apparatus 1 is stopped.
図15は、第3実施形態のノズル部の図11と同様の斜視図である。 FIG. 15 is a perspective view similar to FIG. 11 of the nozzle portion of the third embodiment.
図15に示すように、ノズル部83(本発明の「ノズル」に相当)は、ノズル本体部83aと、そのノズル本体部83aの外周に形成されたノズルギア部85と、ノズル本体部83aの先端に接続されたノズル先端部83eと、ノズル先端部83eの先端に形成された開口部83bと、から構成されている。 As shown in FIG. 15, the nozzle part 83 (corresponding to the "nozzle" of the present invention) includes a nozzle body part 83a, a nozzle gear part 85 formed on the outer periphery of the nozzle body part 83a, and a tip of the nozzle body part 83a. The nozzle tip 83e is connected to the nozzle tip 83e, and the opening 83b is formed at the tip of the nozzle tip 83e.
なお、本実施形態の開口部83bも、開口部13bと同様に、平面視において、長辺がV1、短辺がH1(V1>H1)の略長方形を呈しており、したがって、開口部83bから吐出されるモルタルMの断面は、その略長方形を呈することとなる。 Note that, similarly to the opening 13b, the opening 83b of this embodiment also has a substantially rectangular shape with a long side of V1 and a short side of H1 (V1>H1) in plan view. The discharged mortar M has a substantially rectangular cross section.
 ノズル本体部83aは、中空円筒形状であって、その内腔83dは先端に向かって先細り円筒形状であり、ノズル先端部83eは、中空略円錐形状であって、その内腔83fは先端に向かって先細り形状を呈しているが、ノズル本体部83aとノズル先端部83eとの境界部において、ノズル先端部83eの基端の内径は、ノズル本体部83aの先端の内径よりも大きくなるように設定されている。 The nozzle main body 83a has a hollow cylindrical shape, and its inner cavity 83d has a cylindrical shape that tapers toward the tip.The nozzle tip 83e has a hollow, substantially conical shape, and its inner cavity 83f tapers toward the tip. However, at the boundary between the nozzle body 83a and the nozzle tip 83e, the inner diameter of the base end of the nozzle tip 83e is set to be larger than the inner diameter of the tip of the nozzle body 83a. has been done.
 ノズル先端部83eの基端の内径を、ノズル本体部83aの先端の内径よりも大きくすることによって、モルタルMが開口部83bから吐出する際に、開口部83bでのモルタルMの圧力を分散させることができ、延いては、モルタルMをノズル先端部83eの開口部83bから連続してスムーズに吐出させることができる。 By making the inner diameter of the base end of the nozzle tip 83e larger than the inner diameter of the tip of the nozzle body 83a, the pressure of the mortar M at the opening 83b is dispersed when the mortar M is discharged from the opening 83b. This allows the mortar M to be continuously and smoothly discharged from the opening 83b of the nozzle tip 83e.
また、ノズル部83は、ノズル先端部83eの内腔83fを、開口部83bの長方形の長辺に沿って平行に横切る断面円形の規制バー83c(本発明の「流体物規制部」に相当)と、ノズル本体部83aの内腔83dを横切る断面円形の規制バー83g(本発明の「流体物規制部」に相当)と、の2つの規制バーを備えており、これらの規制バー83c及び83gによれば、モルタルMが三次元造形装置1の停止時にノズル先端部83eの開口部83bから漏れ出すことをさらに防止することができる。 In addition, the nozzle portion 83 includes a restriction bar 83c (corresponding to the "fluid restriction portion" of the present invention) having a circular cross section that crosses the inner cavity 83f of the nozzle tip 83e in parallel along the long side of the rectangle of the opening 83b. and a regulation bar 83g (corresponding to the "fluid regulation section" of the present invention) having a circular cross section that crosses the inner cavity 83d of the nozzle main body 83a, and these regulation bars 83c and 83g. According to this method, it is possible to further prevent the mortar M from leaking from the opening 83b of the nozzle tip 83e when the three-dimensional modeling apparatus 1 is stopped.
なお、上述のノズル部13、ノズル部23、及び後述するノズル部93においても、ノズル先端部の内腔を、開口部の長方形の長辺に沿って平行に横切る断面円形の規制バー(本発明の「流体物規制部」に相当)と、ノズル本体部の内腔を横切る断面円形の規制バー(本発明の「流体物規制部」に相当)と、の2つの規制バーを備えるように構成しても良く、場合によっては、3つ以上の規制バーを備えるように構成しても良い。 In addition, in the above-mentioned nozzle part 13, nozzle part 23, and nozzle part 93 to be described later, a restriction bar (in accordance with the present invention) having a circular cross section that crosses the inner cavity of the nozzle tip in parallel along the long side of the rectangle of the opening is used. The nozzle body is configured to include two regulation bars: a regulation bar with a circular cross section (corresponding to the "fluid regulation part" of the present invention) that crosses the inner cavity of the nozzle body. In some cases, three or more regulating bars may be provided.
ノズル部に複数の規制バーを備えることにより、これらの規制バーによってモルタルMが三次元造形装置1の停止時にノズル先端部の開口部から漏れ出すことをさらに防止することができる。 By providing the nozzle portion with a plurality of restriction bars, these restriction bars can further prevent the mortar M from leaking from the opening at the nozzle tip when the three-dimensional modeling apparatus 1 is stopped.
図16は、第4実施形態のノズル部の図11と同様の斜視図である。 FIG. 16 is a perspective view similar to FIG. 11 of the nozzle section of the fourth embodiment.
図16に示すように、ノズル部93(本発明の「ノズル」に相当)は、ノズル本体部93aと、そのノズル本体部93aの外周に形成されたノズルギア部95と、ノズル本体部93aの先端に接続されたノズル先端部93eと、ノズル先端部93eの先端に形成された開口部93bと、から構成されている。 As shown in FIG. 16, the nozzle part 93 (corresponding to the "nozzle" of the present invention) includes a nozzle body part 93a, a nozzle gear part 95 formed on the outer periphery of the nozzle body part 93a, and a tip of the nozzle body part 93a. The nozzle tip 93e is connected to the nozzle tip 93e, and the opening 93b is formed at the tip of the nozzle tip 93e.
なお、本実施形態の開口部93bも、開口部13bと同様に、平面視において、長辺がV1、短辺がH1(V1>H1)の略長方形を呈しており、したがって、開口部93bから吐出されるモルタルMの断面は、その略長方形を呈することとなる。 Note that, similarly to the opening 13b, the opening 93b of this embodiment also has a substantially rectangular shape with a long side of V1 and a short side of H1 (V1>H1) in plan view. The discharged mortar M has a substantially rectangular cross section.
 ノズル本体部93aは、中空円筒形状であって、その内腔93dは先端に向かって先細り円筒形状であり、ノズル先端部93eは、中空略円錐形状であって、その内腔93fは先端に向かって先細り形状を呈しているが、ノズル本体部93aとノズル先端部93eとの境界部において、ノズル先端部93eの基端の内径は、ノズル本体部93aの先端の内径よりも大きくなるように設定されている。 The nozzle main body 93a has a hollow cylindrical shape, and its inner cavity 93d has a cylindrical shape that tapers toward the tip.The nozzle tip 93e has a hollow, substantially conical shape, and its inner cavity 93f tapers toward the tip. However, at the boundary between the nozzle body 93a and the nozzle tip 93e, the inner diameter of the base end of the nozzle tip 93e is set to be larger than the inner diameter of the tip of the nozzle body 93a. has been done.
 ノズル先端部93eの基端の内径を、ノズル本体部93aの先端の内径よりも大きくすることによって、モルタルMが開口部93bから吐出する際に、開口部93bでのモルタルMの圧力を分散させることができ、延いては、モルタルMをノズル先端部93eの開口部93bから連続してスムーズに吐出させることができる。 By making the inner diameter of the base end of the nozzle tip 93e larger than the inner diameter of the tip of the nozzle body 93a, the pressure of the mortar M at the opening 93b is dispersed when the mortar M is discharged from the opening 93b. This allows the mortar M to be continuously and smoothly discharged from the opening 93b of the nozzle tip 93e.
また、ノズル部93は、ノズル本体部93aの内腔93dを、開口部93bの長方形の短辺に沿って平行に横切る断面円形の規制バー93c(本発明の「流体物規制部」に相当)を備えており、この規制バー93cによれば、モルタルMが三次元造形装置1の停止時にノズル先端部93eの開口部93bから漏れ出すことを防止することができる。 In addition, the nozzle portion 93 includes a restriction bar 93c (corresponding to the “fluid restriction portion” of the present invention) having a circular cross section that crosses the inner cavity 93d of the nozzle body portion 93a in parallel along the short side of the rectangle of the opening 93b. According to this regulation bar 93c, it is possible to prevent the mortar M from leaking out from the opening 93b of the nozzle tip 93e when the three-dimensional modeling apparatus 1 is stopped.
なお、開口部の形状が平面視長方形の場合には、開口部の長方形の長辺に沿って平行に規制バーを設ける方が、開口部の長方形の短辺に沿って平行に規制バーを設けるよりも、モルタルMの開口部から漏れをより効果的に防止することができる。 Note that if the shape of the opening is rectangular in plan view, it is better to provide the regulation bar parallel to the long side of the rectangle of the opening, or to provide the regulation bar parallel to the short side of the rectangle of the opening. It is possible to more effectively prevent leakage from the opening of the mortar M.
また、上述の実施形態においては、規制バーをノズル部の内腔を横切るように設けるものとして説明してきたが、ノズル部の内腔を横切るのではなく、第2ローター11bの動作に支障がない位置、例えば、第2ローター11bの下流部において、流出吐出ヘッド本体11の第2ステータ11aに第1の中空部11dを横切るように規制バーを設けても良い。 Further, in the above embodiment, the restriction bar has been described as being provided so as to cross the inner cavity of the nozzle part, but it does not cross the inner cavity of the nozzle part and does not interfere with the operation of the second rotor 11b. For example, a regulating bar may be provided on the second stator 11a of the outflow discharge head main body 11 at a position downstream of the second rotor 11b so as to cross the first hollow portion 11d.
第2ステータ11aに第1の中空部11dを横切るように規制バーを設けた場合においても、三次元造形装置1の停止時にノズルの開口部からモルタルMが漏れ出すことを防止することができる。 Even when a regulating bar is provided on the second stator 11a so as to cross the first hollow portion 11d, it is possible to prevent the mortar M from leaking from the nozzle opening when the three-dimensional modeling apparatus 1 is stopped.
但し、ノズルが回転することを考慮すれば、開口部の形状の関係から、ノズル部の内腔を横切るように規制バーを設けた方が、三次元造形装置1の停止時にモルタルMがノズルの開口部から漏れ出すことをより効果的に防止することができる。 However, considering that the nozzle rotates, it is better to provide a regulating bar across the inner cavity of the nozzle part due to the shape of the opening, so that the mortar M will not reach the nozzle when the three-dimensional modeling apparatus 1 is stopped. It is possible to more effectively prevent leakage from the opening.
さらに、ノズル部の内腔及び第2ステータ11bの第1の中空部11dを横切るように規制バーを複数設けた場合においても、三次元造形装置1の停止時にモルタルMがノズルの開口部から漏れ出すことを防止することができる。 Furthermore, even when a plurality of regulating bars are provided across the inner cavity of the nozzle part and the first hollow part 11d of the second stator 11b, the mortar M leaks from the opening of the nozzle when the three-dimensional modeling apparatus 1 is stopped. can be prevented from coming out.
また、上述の実施形態における規制バーは、その断面形状を円形としてきたが、特に、断面形状が円形に限定されるものではなく、モルタルMが流れる方向に沿って、湾曲形状を呈するものであれば、モルタルMの吐出時に支障なく、モルタルMの漏れを防止することができる。 Further, although the regulating bar in the above embodiment has a circular cross-sectional shape, the cross-sectional shape is not limited to a circular shape, and may have a curved shape along the direction in which the mortar M flows. For example, leakage of the mortar M can be prevented without any trouble when discharging the mortar M.
 図1、図7及び図8に示すように、支持部21は、上述のように、流体吐出ヘッド10を多関節ロボット3の先端に接続するためのものであり、流体吐出ヘッド10の長手方向に沿って長尺状に形成されている。 As shown in FIGS. 1, 7, and 8, the support section 21 is for connecting the fluid ejection head 10 to the distal end of the articulated robot 3, as described above, and extends in the longitudinal direction of the fluid ejection head 10. It is formed into a long shape along the
また、支持部21は、多関節ロボット3の先端の回転部43に接続され、流体吐出ヘッド10の基端側を支持し、側面視直角三角形の上支持部21aと、流体吐出ヘッド10の先端側を支持し、上支持部21aの下部に隣接して配置された、側面視直角三角形の下支持部21bと、を備える。 Further, the support part 21 is connected to the rotating part 43 at the tip of the articulated robot 3 and supports the base end side of the fluid ejection head 10, and includes an upper support part 21a of a right triangle in side view and a tip end of the fluid ejection head 10. A lower support part 21b that supports the side and is disposed adjacent to the lower part of the upper support part 21a and has a right triangular shape in side view.
 また、支持部21は、流体吐出ヘッド10の長手方向中間位置において、流体吐出ヘッド10の長手方向に交差する方向(本実施形態では流体吐出ヘッド10の長手方向に対して直角の方向)に突出した突出部21cを備え、多関節ロボット3は、その突出部21cに接続されている。 Further, the support portion 21 protrudes in a direction intersecting the longitudinal direction of the fluid ejection head 10 (in the present embodiment, a direction perpendicular to the longitudinal direction of the fluid ejection head 10) at an intermediate position in the longitudinal direction of the fluid ejection head 10. The articulated robot 3 is connected to the protrusion 21c.
多関節ロボット3を突出部21cに接続することにより、流体吐出ヘッド10の態勢を狭い領域で簡単に変更することができることに加え、三次元造形装置1の動作に支障なく、三次元造形装置1の後述するメンテナンス処理をスムーズ行うことができる。 By connecting the articulated robot 3 to the protruding portion 21c, the attitude of the fluid ejection head 10 can be easily changed in a narrow area, and in addition, the posture of the fluid ejection head 10 can be easily changed without hindering the operation of the three-dimensional printing apparatus 1. Maintenance processing, which will be described later, can be performed smoothly.
 なお、本実施形態の多関節ロボット3は、支持部21の突出部21cに接続されているが、突出部21c以外の上支持部21aまたは下支持部21bに接続されても良く、流体吐出ヘッド10に直接接続されても良い。 Although the articulated robot 3 of this embodiment is connected to the protruding part 21c of the support part 21, it may be connected to the upper support part 21a or the lower support part 21b other than the protrusion part 21c, and the fluid ejection head 10 may be directly connected.
 但し、上述のように、多関節ロボット3を突出部21cに接続することにより、流体吐出ヘッド10の態勢を狭い領域で簡単に変更することができることに加え、三次元造形装置1の動作に支障なく、三次元造形装置1の後述するメンテナンス処理をスムーズ行うことができるのである。 However, as described above, by connecting the articulated robot 3 to the protruding portion 21c, the attitude of the fluid ejection head 10 can be easily changed in a narrow area, and in addition, it is possible to easily change the posture of the fluid ejection head 10 in a narrow area. Therefore, maintenance processing of the three-dimensional printing apparatus 1, which will be described later, can be performed smoothly.
次に、制御盤20について説明する。図17は、第1実施形態の三次元造形装置のブロック図であり、図18は、第1実施形態の三次元造形装置のメインコントローラのブロック図である。 Next, the control panel 20 will be explained. FIG. 17 is a block diagram of the three-dimensional printing apparatus of the first embodiment, and FIG. 18 is a block diagram of the main controller of the three-dimensional printing apparatus of the first embodiment.
図17において、制御盤20は、外部からの電源6によって動作するものであり、第1圧力センサー57及び第2圧力センサー63に電気的に接続されたメインコントローラ2と、そのメインコントローラ2に電気的に接続され、多関節ロボット3を駆動するためのロボットコントローラ4と、メインコントローラ2に電気的に接続され、ポンプ側ローター駆動モータ53、ヘッド側ローター駆動モータ27、ノズル回転モータ17及びロボットスライドモータ79を駆動するためのドライバー回路12と、装置の使用者らの入力を受け付ける操作パネル8と、を備える。 In FIG. 17, the control panel 20 is operated by an external power source 6, and includes a main controller 2 electrically connected to a first pressure sensor 57 and a second pressure sensor 63, and a main controller 2 that is electrically connected to a first pressure sensor 57 and a second pressure sensor 63. A robot controller 4 is electrically connected to the main controller 2 to drive the articulated robot 3, and is electrically connected to the pump-side rotor drive motor 53, the head-side rotor drive motor 27, the nozzle rotation motor 17, and the robot slide. It includes a driver circuit 12 for driving a motor 79 and an operation panel 8 for receiving input from users of the device.
 なお、ロボットコントローラ4は、多関節ロボット3の動作の制御に加えて、流体吐出ヘッド10がノズル部からモルタルMを吐出してオブジェPを製造する際の流体吐出ヘッド10の移動速度も検出しており、後述する指示値2を算出する際に使用されるヘッド速度をCPU14に出力する。 In addition to controlling the motion of the articulated robot 3, the robot controller 4 also detects the moving speed of the fluid ejection head 10 when the fluid ejection head 10 produces the object P by ejecting the mortar M from the nozzle part. It outputs the head speed to the CPU 14, which is used when calculating an instruction value 2, which will be described later.
また、図18において、メインコントローラ2は、CPU(中央演算処理装置)14と、そのCPU14に入出力可能に接続されたRAM(Random Access Memory)16と、CPU14に入出力可能に接続されたROM(Read Only Memory)18とを備える。 In FIG. 18, the main controller 2 includes a CPU (Central Processing Unit) 14, a RAM (Random Access Memory) 16 connected to the CPU 14 in an input/output manner, and a ROM connected to the CPU 14 in an input/output manner. (Read Only Memory) 18.
RAM16は、製造する三次元造形物の造形データを記憶した三次元造形データテーブル16aと、ポンプ側ローター駆動モータ53に指示する指示値を記憶したポンプ側ローター指示値テーブル16bと、ヘッド側ローター駆動モータ27に指示する指示値を記憶したヘッド側ローター指示値テーブル16cと、を備え、ROM18は、本実施形態の三次元造形装置1全体の動作を司る三次元造形プログラム18aと、本実施形態の三次元造形装置1の一層ごとの塗布動作を司るN層塗布プログラム18bと、本実施形態のポンプの動作の一部を司る第1吐出制御プログラム18c及び第2吐出制御プログラム18dと、本実施形態のポンプの動作を司る指示値算出プログラム18eと、本実施形態の三次元造形装置1をメンテナンスするためのメンテナンス処理プログラム18fと、を備える。 The RAM 16 includes a three-dimensional modeling data table 16a that stores modeling data for a three-dimensional object to be manufactured, a pump-side rotor instruction value table 16b that stores instruction values for the pump-side rotor drive motor 53, and a head-side rotor drive motor 53. The ROM 18 includes a head-side rotor instruction value table 16c that stores instruction values to be instructed to the motor 27, and a 3D printing program 18a that controls the overall operation of the 3D printing apparatus 1 of this embodiment, and The N layer coating program 18b that controls the coating operation for each layer of the three-dimensional modeling apparatus 1, the first discharge control program 18c and the second discharge control program 18d that control a part of the operation of the pump of this embodiment, and the present embodiment It includes an instruction value calculation program 18e that controls the operation of the pump, and a maintenance processing program 18f that maintains the three-dimensional printing apparatus 1 of this embodiment.
次に、上述した構成の三次元造形装置1の動作について説明する。図19は、第1実施形態の三次元造形装置における三次元造形プログラムのフローチャートであり、図20は、第1実施形態の三次元造形装置におけるN層塗布プログラムのフローチャートである。 Next, the operation of the three-dimensional printing apparatus 1 having the above-described configuration will be explained. FIG. 19 is a flowchart of a three-dimensional printing program in the three-dimensional printing apparatus of the first embodiment, and FIG. 20 is a flowchart of an N-layer application program in the three-dimensional printing apparatus of the first embodiment.
図19において、先ず、三次元造形装置の使用者が装置の電源スイッチを入れた後、操作パネル8上の操作ボタンによってオブジェPを選択して、スタートボタンを押下すると、三次元造形装置1は、初期状態にセットされ(S1)、RAM16の三次元造形データテーブル16aに記憶されたオブジェPに対応する三次元造形データを取得する(S3)。 In FIG. 19, first, the user of the three-dimensional printing apparatus turns on the power switch of the apparatus, selects the object P using the operation buttons on the operation panel 8, and presses the start button. , is set to an initial state (S1), and obtains three-dimensional printing data corresponding to the object P stored in the three-dimensional printing data table 16a of the RAM 16 (S3).
なお、初期状態において、多関節ロボット3は、移動レール75の-Y方向側図面上右端にセットされ、流体吐出ヘッド本体11は、三次元造形物を造形する位置から上方に退避した状態、すなわち、+Z方向側図面上上端にセットされる(図1乃至図3の状態)。 In the initial state, the articulated robot 3 is set at the right end of the moving rail 75 in the −Y direction in the drawing, and the fluid ejection head main body 11 is in a state where it is retracted upward from the position where the three-dimensional object is modeled, that is. , is set at the upper end of the drawing on the +Z direction side (states shown in FIGS. 1 to 3).
そして、多関節ロボット3が造形する層を示すパラメータNに「1」(「1」は、第1層P1を意味する)をセットし(S5)、流体吐出ヘッド10を傾斜させた状態でモルタルMの塗布を開始し(S7)、N層塗布プログラム18bを実行する(S9)。 Then, the parameter N indicating the layer to be modeled by the articulated robot 3 is set to "1" ("1" means the first layer P1) (S5), and the mortar is The coating of M is started (S7), and the N layer coating program 18b is executed (S9).
図21は、第1実施形態の三次元造形装置の塗布開示時における塗布状態を示した説明図であり、三次元造形装置1が進行方向Fへの塗布開示時に流体吐出ヘッド10を傾斜させて厚さZ1=H1(ノズル部13の開口部13b短辺の長さ)のモルタルMを塗布する様子を示している。 FIG. 21 is an explanatory diagram showing the application state of the three-dimensional printing apparatus according to the first embodiment when the application is started, and the three-dimensional printing apparatus 1 tilts the fluid ejection head 10 when starting the application in the traveling direction F. It shows how mortar M with a thickness Z1=H1 (the length of the short side of the opening 13b of the nozzle part 13) is applied.
このように、流体吐出ヘッド10を傾斜させて、下方に向かってモルタルMを吐出させれば、モルタルMを塗布位置にスムーズに塗布することができる。 In this way, by tilting the fluid ejection head 10 and ejecting the mortar M downward, the mortar M can be smoothly applied to the application position.
なお、本実施形態の三次元造形装置1においては、流体吐出ヘッド10を傾斜させた状態でモルタルMの塗布を開始するように構成したが、モルタルM等の流体物の材質の関係上問題無いのであれば、流体吐出ヘッド10を傾斜させずに、垂直状態でモルタルMの塗布を開始するように構成しても良い。 Note that although the three-dimensional modeling apparatus 1 of this embodiment is configured to start applying the mortar M with the fluid ejection head 10 tilted, there is no problem due to the material of the fluid such as the mortar M. If so, the application of the mortar M may be started in a vertical position without tilting the fluid ejection head 10.
図20に示すように、N層プログラムでは、先ず、傾斜させた状態の流体吐出ヘッド10を垂直に戻し(S31)、ロボットスライド機構7によって移動された多関節ロボット3の所定位置において、オブジェPが多関節ロボット3の可動範囲内で造形可能か否かが判断され(S33)、オブジェPが多関節ロボット3の可動範囲内で造形できないと判断された場合には(S33:Yes)、多関節ロボット3をロボットスライド機構7によって移動させた後(S35)、S37を実行し、オブジェPが多関節ロボット3の可動範囲内で造形できると判断された場合には(S33:No)、そのままS37を実行する。 As shown in FIG. 20, in the N-layer program, first, the tilted fluid ejection head 10 is returned vertically (S31), and the object P is placed at a predetermined position of the articulated robot 3 moved by the robot slide mechanism 7. It is determined whether the object P can be modeled within the movable range of the articulated robot 3 (S33), and if it is determined that the object P cannot be modeled within the movable range of the articulated robot 3 (S33: Yes), After the articulated robot 3 is moved by the robot slide mechanism 7 (S35), S37 is executed, and if it is determined that the object P can be modeled within the movable range of the articulated robot 3 (S33: No), the process continues as is. Execute S37.
S37では、ノズル部13の開口部13bを回転させる必要があるか否かが判断され(S37)、ノズル部13の開口部13bを回転させる必要があると判断された場合には(S37:Yes)、ノズル部13の開口部13bを回転させてモルタルMの塗布幅を調整した後、流体吐出ヘッド10によってモルタルMの塗布が実行され(S41)、ノズル部13の開口部13bを回転させる必要がないと判断された場合には(S37:No)、開口部13bを回転させることなく流体吐出ヘッド10によってモルタルMの塗布が実行される(S41)。 In S37, it is determined whether or not it is necessary to rotate the opening 13b of the nozzle section 13 (S37), and if it is determined that it is necessary to rotate the opening 13b of the nozzle section 13 (S37: Yes). ), after adjusting the application width of mortar M by rotating the opening 13b of the nozzle part 13, application of the mortar M is executed by the fluid ejection head 10 (S41), and it is necessary to rotate the opening 13b of the nozzle part 13. If it is determined that there is no mortar (S37: No), application of the mortar M is executed by the fluid ejection head 10 without rotating the opening 13b (S41).
図22は、第1実施形態の三次元造形装置の通常時における塗布状態を示した説明図であり、流体吐出ヘッド10を垂直にした状態で進行方向Fに移動させながら、厚さZ1=H1(ノズル部13の開口部13b短辺の長さ)のモルタルMを塗布する様子を示している。 FIG. 22 is an explanatory diagram showing a normal application state of the three-dimensional printing apparatus of the first embodiment, in which the fluid ejection head 10 is vertically moved in the traveling direction F, and the thickness Z1=H1 is It shows how mortar M is applied (the length of the short side of the opening 13b of the nozzle part 13).
なお、図22は、第1層P1ではなく、第6層P6を塗布する様子を示しているが、流体吐出ヘッド10を垂直にした状態で塗布する点は、第1層P1においても同様である。 Although FIG. 22 shows how the sixth layer P6 is applied instead of the first layer P1, the same applies to the first layer P1 in that the fluid ejection head 10 is applied vertically. be.
また、本実施形態の三次元造形装置1においては、第1層P1、第2層P2、第3層P3、第4層P4・・・第N層PN(図示せず)のN層(Nは自然数)からなる立体のオブジェPを製造する際の、流体吐出ヘッド10のノズル部13から吐出されるモルタルMの厚みは、図21及び図22に示すように、厚さZ1=H1(ノズル部13の開口部13b短辺の長さ)であるとして説明したが、それは、説明の都合上、理解し易いようにしたためであって、具体的には、以下のように塗布するのが良い。 In addition, in the three-dimensional printing apparatus 1 of the present embodiment, N layers (N is a natural number), the thickness of the mortar M discharged from the nozzle part 13 of the fluid discharge head 10 is as shown in FIGS. 21 and 22. Although the length of the short side of the opening 13b of the portion 13 has been explained, this is for the convenience of explanation and to make it easier to understand.Specifically, it is recommended to apply as follows. .
すなわち、流体吐出ヘッド10のノズル部を、塗布しようとする厚さよりも若干短くなるように(Z1≒H1)、ノズル部から吐出されるモルタルMを、最下層の設置面(例えば、オブジェPが製造される地面等の基準面)、または、既に塗布された1段下層のモルタルMの表面に押し付けるように塗布する。 That is, the mortar M ejected from the nozzle part of the fluid ejection head 10 is placed on the lowermost installation surface (for example, when the object P is It is applied so as to be pressed against a reference surface (such as the ground surface to be manufactured) or the surface of the mortar M that has already been applied in the lower layer.
流体吐出ヘッド10のノズル部を、塗布しようとする厚さよりも若干短くなるように(Z1≒H1)、ノズル部から吐出されるモルタルMを、最下層の設置面(例えば、オブジェPが製造される地面等の基準面)、または、既に塗布された1段下層のモルタルMの表面に押し付けるようにてして塗布することにより、三次元造形物を多層に製造する場合に、各層間の密着度合いを増大させることができ、延いては、製造する三次元造形物の剛性を増大させることができる。 The mortar M ejected from the nozzle part of the fluid ejection head 10 is placed so that the thickness is slightly shorter than the thickness to be applied (Z1≒H1). When manufacturing a multi-layered three-dimensional object, the adhesive between each layer can be improved by applying the product by pressing it onto a reference surface (such as the ground) or the surface of the mortar M that has already been applied in the first layer below. The rigidity of the three-dimensional structure to be manufactured can be increased.
なお、流体吐出ヘッド10のノズル部を、塗布しようとする厚さよりも若干短くなるように、ノズル部から吐出されるモルタルMを、最下層の設置面(例えば、オブジェPが製造される地面等の基準面)、または、既に塗布された1段下層のモルタルMの表面に押し付けるようにてして塗布する点は、後述する図29及び図30に示すような、薄膜塗布時においても同様に行うのが良い。 Note that the mortar M discharged from the nozzle portion of the fluid discharge head 10 is placed on the lowest installation surface (for example, the ground surface on which the object P is manufactured, etc.) so that the thickness is slightly shorter than the thickness to be applied. The same applies to thin film coating as shown in FIGS. 29 and 30, which will be described later. Good to do.
図29及び図30に示すような、薄膜塗布時においても、ノズル部から吐出されるモルタルMを、最下層の設置面(例えば、オブジェPが製造される地面等の基準面)、または、既に塗布された1段下層のモルタルMの表面に押し付けるようにてして塗布することにより、三次元造形物を多層に製造する場合に、各層間の密着度合いを増大させることができ、延いては、製造する三次元造形物の剛性を増大させることができる。 Even when applying a thin film as shown in FIGS. 29 and 30, the mortar M discharged from the nozzle part is placed on the lowest installation surface (for example, a reference surface such as the ground on which the object P is manufactured) or By applying it by pressing it onto the surface of the applied mortar M in the lower layer, it is possible to increase the degree of adhesion between each layer when manufacturing a three-dimensional structure in multiple layers, and as a result, the degree of adhesion between each layer can be increased. , the rigidity of the three-dimensional structure to be manufactured can be increased.
ここで、ノズル部13の回転角とモルタルMの塗布幅について説明する。 Here, the rotation angle of the nozzle portion 13 and the application width of the mortar M will be explained.
図23は、第1実施形態の三次元造形装置におけるノズル角度と塗布幅との関係を説明する第1説明図であり、図24は、ノズル角度と塗布幅との関係を説明する第2説明図であり、図25は、ノズル角度と塗布幅との関係を説明する第3説明図であり、図26は、ノズル角度と塗布幅との関係を説明する第4説明図である。 FIG. 23 is a first explanatory diagram illustrating the relationship between the nozzle angle and the coating width in the three-dimensional modeling apparatus of the first embodiment, and FIG. 24 is a second explanatory diagram illustrating the relationship between the nozzle angle and the coating width. 25 is a third explanatory diagram illustrating the relationship between the nozzle angle and the coating width, and FIG. 26 is a fourth explanatory diagram illustrating the relationship between the nozzle angle and the coating width.
上述の通り、ノズル部13は、図9及び図10に示すように、平面視において、長辺がV1、短辺がH1(V1>H1)の略長方形の開口部13bを備えており、図23に示すように、開口部13bの対角線Dが流体吐出ヘッド10の進行方向Fに直交する方向に対して角度θ1(θ1は、開口部13bの長辺が流体吐出ヘッド10の進行方向Fに対して直交する角度とする)をなす場合には、流体吐出ヘッド10によるモルタルMの塗布幅Wは、(H1+V1)の平方根×cosθ1=V1となる。 As described above, as shown in FIGS. 9 and 10, the nozzle portion 13 includes a substantially rectangular opening 13b with a long side of V1 and a short side of H1 (V1>H1) in plan view. 23, the diagonal line D of the opening 13b is at an angle θ1 with respect to the direction perpendicular to the traveling direction F of the fluid ejecting head 10 (θ1 is the angle θ1 when the long side of the opening 13b is in the traveling direction F of the fluid ejecting head 10. In the case where the width W of mortar M applied by the fluid ejection head 10 is the square root of (H1 2 +V1 2 )×cos θ1=V1.
また、図24に示すように、開口部13bの対角線Dが流体吐出ヘッド10の進行方向Fに直交する方向に対して角度θ2(cosθ2=1とする)をなす場合には、流体吐出ヘッド10によるモルタルMの塗布幅Wは、(H1+V1)の平方根となり、開口部13bの長辺V1よりも長くすることができる。 Further, as shown in FIG. 24, when the diagonal line D of the opening 13b forms an angle θ2 (cos θ2=1) with respect to the direction perpendicular to the traveling direction F of the fluid ejection head 10, the fluid ejection head 10 The application width W of the mortar M is the square root of (H1 2 +V1 2 ), and can be made longer than the long side V1 of the opening 13b.
また、図25に示すように、開口部13bの対角線Dが流体吐出ヘッド10の進行方向Fに直交する方向に対して角度θ3(cosθ2<1とする)をなす場合には、流体吐出ヘッド10によるモルタルMの塗布幅Wは、(H1+V1)の平方根×cosθ3となり、開口部13bの長辺V1よりも短くすることができる。 Further, as shown in FIG. 25, when the diagonal line D of the opening 13b forms an angle θ3 (cos θ2<1) with respect to the direction perpendicular to the traveling direction F of the fluid ejection head 10, the fluid ejection head 10 The application width W of the mortar M is the square root of (H1 2 +V1 2 ) x cos θ3, and can be made shorter than the long side V1 of the opening 13b.
さらに、図26に示すように、開口部13bの対角線Dが流体吐出ヘッド10の進行方向Fに直交する方向に対して角度θ4(θ4は、開口部13bの短辺が流体吐出ヘッド10の進行方向Fに対して直交する角度とする)をなす場合には、流体吐出ヘッド10によるモルタルMの塗布幅Wは、(H1+V1)の平方根×cosθ4=H1となる。 Furthermore, as shown in FIG. 26, the diagonal line D of the opening 13b is at an angle θ4 with respect to the direction perpendicular to the traveling direction F of the fluid ejection head 10 (θ4 means that the short side of the opening 13b is When the angle is perpendicular to the direction F), the application width W of the mortar M by the fluid ejection head 10 is the square root of (H1 2 +V1 2 )×cos θ4=H1.
モルタルMの塗布幅が決定されると、流体吐出ヘッド10によってモルタルMの塗布処理が実行される(S41)。具体的には、先ず、オブジェPの第1層P1の所定箇所(流体吐出ヘッド10が一筆書きする範囲)が、決定されたモルタルMの塗布幅で走査されることによって塗布されることとなる。 Once the application width of the mortar M is determined, the application process of the mortar M is executed by the fluid ejection head 10 (S41). Specifically, first, a predetermined portion of the first layer P1 of the object P (the range where the fluid ejection head 10 writes with one stroke) is applied by scanning with the determined application width of the mortar M. .
次に、本実施形態の三次元造形装置1の塗布形態について説明する。 Next, the application form of the three-dimensional modeling apparatus 1 of this embodiment will be explained.
本実施形態の三次元造形装置1が流体吐出ヘッド10を直線方向に移動させて三次元造形物を製造する場合には、図23乃至図26を参照して上述したような方法でモルタルMを塗布する。 When the three-dimensional modeling apparatus 1 of this embodiment moves the fluid ejection head 10 in a linear direction to manufacture a three-dimensional model, the mortar M is applied by the method described above with reference to FIGS. 23 to 26. Apply.
図27は、第1実施形態の三次元造形装置の塗布形態を説明する第1説明図であり、図28は、三次元造形装置の塗布形態を説明する第2説明図である。 FIG. 27 is a first explanatory diagram illustrating the application form of the three-dimensional printing apparatus of the first embodiment, and FIG. 28 is a second explanatory diagram illustrating the application form of the three-dimensional printing apparatus.
本実施形態の三次元造形装置1が流体吐出ヘッド10を曲線方向(例えば、半径Rの円周方向)に移動させて三次元造形物を製造する場合には、図27に示すように、ノズル部13の進行方向前方が流体吐出ヘッド10の進行方向Fに常に沿うようにノズル部13をノズル回転モータ17によって回転させながら、多関節ロボット3を動作させてモルタルMを塗布する。 When the three-dimensional printing apparatus 1 of this embodiment manufactures a three-dimensional object by moving the fluid ejection head 10 in a curved direction (for example, in the circumferential direction of radius R), as shown in FIG. The mortar M is applied by operating the articulated robot 3 while rotating the nozzle part 13 by the nozzle rotation motor 17 so that the forward direction of the movement direction of the part 13 is always along the movement direction F of the fluid ejection head 10.
なお、図27では、ノズル部13の進行方向前方が流体吐出ヘッド10の進行方向Fに常に沿うように制御して、塗布幅W=V1のモルタルMを塗布する場合を図示しているが、この形態に限らず、上述の図23乃至図26に示されるような塗布幅WのモルタルMを塗布する場合においても、同様に、ノズル部13の進行方向前方を流体吐出ヘッド10の進行方向Fに常に沿うように制御すれば、それぞれの塗布幅で曲線方向の塗布が可能となる。 Note that although FIG. 27 shows a case where the mortar M with the application width W=V1 is applied by controlling the nozzle portion 13 so that the forward direction in the traveling direction is always along the traveling direction F of the fluid ejection head 10, Not limited to this form, even when applying mortar M having a coating width W as shown in FIGS. If the coating is controlled to always follow the curve, coating in the curved direction is possible with each coating width.
 また、複雑な輪郭形状の輪郭部分を塗布する場合には、図28に示すように、ノズル部13の頂点部A1部、A2部、A3部、またはA4部(以下、「頂点部A」と記す)を使用して、頂点部Aを輪郭部分の形状に合わせ、ノズル部13をノズル回転モータ17によって回転させながら、多関節ロボット3を動作させてモルタルMを塗布することも可能である。 In addition, when coating an outline part with a complicated outline shape, as shown in FIG. It is also possible to apply the mortar M by adjusting the apex part A to the shape of the contour part and operating the articulated robot 3 while rotating the nozzle part 13 by the nozzle rotation motor 17.
 N層塗布プログラム18bの説明に戻り、流体吐出ヘッド10によって第1層P1の所定箇所のモルタルMの塗布が終了すると、オブジェPの残り高さが開口部13bの塗布幅H1よりも小さいか否かが判断され(S43)、オブジェPの残り高さが開口部13bの塗布幅H1よりも小さいと判断された場合には(S43:Yes)、次層を塗布する場合の流体吐出ヘッド10の移動高さ(後述する高さ「Z2」または「Z3」)をセットし(S45)、三次元造形プログラム18aに戻り(S47)、オブジェPの残り高さが開口部13bの塗布幅H1よりも小さくないと判断された場合には(S43:No)、そのまま三次元造形プログラム18aに戻る(S47)。 Returning to the explanation of the N layer coating program 18b, when the fluid ejection head 10 finishes coating the mortar M at a predetermined location on the first layer P1, it is determined whether the remaining height of the object P is smaller than the coating width H1 of the opening 13b. (S43), and if it is determined that the remaining height of the object P is smaller than the application width H1 of the opening 13b (S43: Yes), the height of the fluid ejection head 10 when applying the next layer is determined. Set the movement height (height "Z2" or "Z3" described later) (S45), return to the three-dimensional modeling program 18a (S47), and confirm that the remaining height of the object P is greater than the application width H1 of the opening 13b. If it is determined that it is not small (S43: No), the process directly returns to the three-dimensional modeling program 18a (S47).
図29は、第1実施形態の三次元造形装置の薄膜塗布時における塗布状態を示した第1説明図であり、流体吐出ヘッド10を垂直にした状態で進行方向Fに移動させながら、厚さZ2<H1(ノズル部13の開口部13b短辺の長さ)のモルタルMを塗布する様子を示している。 FIG. 29 is a first explanatory diagram showing a coating state during thin film coating by the three-dimensional modeling apparatus of the first embodiment. It shows how mortar M is applied with Z2<H1 (the length of the short side of the opening 13b of the nozzle part 13).
また、図30は、第1実施形態の三次元造形装置の薄膜塗布時における塗布状態を示した第2説明図であり、流体吐出ヘッド10を傾斜させた状態で進行方向Fに移動させながら、厚さZ3<H1(ノズル部13の開口部13b短辺の長さ)のモルタルMを塗布する様子を示している。 Further, FIG. 30 is a second explanatory view showing the application state during thin film application by the three-dimensional modeling apparatus of the first embodiment, in which while the fluid ejection head 10 is moved in the traveling direction F in an inclined state, It shows how mortar M with a thickness Z3<H1 (the length of the short side of the opening 13b of the nozzle part 13) is applied.
なお、図30に示すように、流体吐出ヘッド10を傾斜させて塗布する場合には、ノズル13自体も傾斜するため、Z3の高さは、ノズル13の進行方向Fの反対側の開口部13bの辺の高さ(図30では、開口部13bの進行方向Fの反対側の長辺の高さ)に合わせることを基本とする。 Note that, as shown in FIG. 30, when applying fluid with the fluid ejection head 10 tilted, the nozzle 13 itself is also tilted, so the height of Z3 is equal to the opening 13b on the opposite side of the traveling direction F of the nozzle 13. (in FIG. 30, the height of the long side on the opposite side of the opening 13b in the direction of movement F).
また、図30に示すように、流体吐出ヘッド10を傾斜させて塗布する場合には、モルタルMをノズル13の開口部13bからスムーズに吐出させることができ、結果的に、オブジェPの端面の仕上がり具合を向上させることができる。 Further, as shown in FIG. 30, when applying the fluid with the fluid ejection head 10 tilted, the mortar M can be smoothly ejected from the opening 13b of the nozzle 13, and as a result, the end surface of the object P can be smoothly ejected. Finish quality can be improved.
流体吐出ヘッド10は、RAM16のヘッド側ローター指示値テーブル16cに格納されたヘッド側ローター指示値に基づいて、ヘッド側ローター駆動モータ27の回転を制御し、輸送管61から送入されたモルタルMをノズル13に送出し、ノズル13の開口部13bから外部へ吐出するものである。 The fluid ejection head 10 controls the rotation of the head-side rotor drive motor 27 based on the head-side rotor instruction value stored in the head-side rotor instruction value table 16c of the RAM 16, and controls the rotation of the head-side rotor drive motor 27, and the mortar M fed from the transport pipe 61. is sent to the nozzle 13 and discharged to the outside from the opening 13b of the nozzle 13.
本実施形態の三次元造形装置1は、図29及び図30に示すように、ノズル部13等による塗布幅未満の厚みのモルタルMを塗布する場合には、流体吐出ヘッド10の高さを調整して塗布するものであるが、それに合わせ、流体吐出ヘッド10から吐出されるモルタルMの量も、予めRAM16のヘッド側ローター指示値テーブル16cに格納されたヘッド側ローター指示値に基づいて調整されるものである。 As shown in FIGS. 29 and 30, the three-dimensional modeling apparatus 1 of this embodiment adjusts the height of the fluid ejection head 10 when applying mortar M with a thickness less than the application width using the nozzle section 13 or the like. Accordingly, the amount of mortar M discharged from the fluid discharge head 10 is adjusted based on the head-side rotor instruction value stored in advance in the head-side rotor instruction value table 16c of the RAM 16. It is something that
また、ポンプ5からのモルタルMの供給量に対してモルタルMの塗布量が多い場合には、第2圧力センサー63の検出値が下降し、ポンプ5からのモルタルMの供給量に対してモルタルMの塗布量が少ない場合には、第2圧力センサー63の検出値が上昇するため、ポンプ5は、第2圧力センサー63の検出値も加味して、流体吐出ヘッド10にモルタルMを適切に供給することとなる。 Further, when the amount of applied mortar M is large compared to the amount of mortar M supplied from pump 5, the detection value of second pressure sensor 63 decreases, and the amount of mortar M applied is larger than the amount of mortar M supplied from pump 5. When the applied amount of M is small, the detection value of the second pressure sensor 63 increases, so the pump 5 appropriately applies the mortar M to the fluid ejection head 10, taking into consideration the detection value of the second pressure sensor 63. It will be supplied.
 三次元造形プログラム18aに戻り、次に、第1層の塗布が完了したか否かが判断され(S11)、第1層P1の塗布が完了していないと判断された場合には(S11:No)、N層塗布プログラム18bを第1層P1の塗布が完了するまで繰り返し、第1層P1の塗布が完了したと判断された場合には(S11:Yes)、Nを1増加させるとともに(S13:第1層P1から第2層P2にセットされることを意味する)、流体吐出ヘッド10を1層分上方へ移動させる(S15)。 Returning to the three-dimensional modeling program 18a, it is then determined whether the application of the first layer is completed (S11), and if it is determined that the application of the first layer P1 is not completed (S11: No), the N layer application program 18b is repeated until the application of the first layer P1 is completed, and if it is determined that the application of the first layer P1 is completed (S11: Yes), N is increased by 1 and ( S13: means setting from the first layer P1 to the second layer P2), and moves the fluid ejection head 10 upward by one layer (S15).
 なお、N層塗布プログラム18bが第1層P1の塗布が完了するまで繰り返されることによって、第1層P1の上記所定箇所が変更されながら、第1層P1全体の面積がモルタルMによって塗布されることとなる。 Note that by repeating the N layer coating program 18b until the coating of the first layer P1 is completed, the entire area of the first layer P1 is coated with the mortar M while changing the predetermined portions of the first layer P1. That will happen.
そして、RAM16の三次元造形データテーブル16aから取得した全三次元造形データについて塗布が完了したか否かが判断され(S17)、全三次元造形データについて塗布が完了していないと判断された場合には(S17:No)、第2層P2~第N層PNについてS9のN層塗布プログラム18bを実行し、全三次元造形データについて塗布が完了していると判断された場合には(S17:Yes)、Nに「1」(「1」は、第1層P1を意味する)をセットした後(S19)、多関節ロボット3及び流体吐出ヘッド10を初期位置へ移動させ(S21)、オブジェPの造形処理を完了する(S23)。 Then, it is determined whether coating has been completed for all 3D printing data acquired from the 3D printing data table 16a of the RAM 16 (S17), and if it is determined that coating has not been completed for all 3D printing data. (S17: No), the N layer application program 18b of S9 is executed for the second layer P2 to the Nth layer PN, and if it is determined that the application has been completed for all three-dimensional modeling data (S17 : Yes), after setting N to "1" ("1" means the first layer P1) (S19), move the articulated robot 3 and fluid ejection head 10 to the initial position (S21), The modeling process for the object P is completed (S23).
 次に、第1実施形態の三次元造形装置1を構成するポンプ5の制御について説明する。 Next, control of the pump 5 that constitutes the three-dimensional printing apparatus 1 of the first embodiment will be explained.
 本実施形態の三次元造形装置1は、上述のように、多関節ロボット3がロボットスライド機構7の移動レール75上を+Y方向及び-Y方向に移動することから、図1乃至図4に示すように、ポンプ5と、流体吐出ヘッド10とが長尺の輸送管61によって接続され、モルタルMを外部へ吐出する流体吐出ヘッド10が、モルタルMを供給するポンプ5から遠方に配置されている。 The three-dimensional printing apparatus 1 of this embodiment is shown in FIGS. 1 to 4 because the articulated robot 3 moves in the +Y direction and the −Y direction on the movement rail 75 of the robot slide mechanism 7, as described above. As shown, the pump 5 and the fluid discharge head 10 are connected by a long transport pipe 61, and the fluid discharge head 10 that discharges the mortar M to the outside is located far from the pump 5 that supplies the mortar M. .
本実施形態の三次元造形装置1は、このように、流体吐出ヘッド10が、ポンプ5から遠方に配置されている場合においても、モルタルMの供給過多及び供給不足が生じないように、また、流体吐出ヘッド10の吐出動作に支障がないように、ポンプ5を制御している。 In this way, the three-dimensional modeling apparatus 1 of the present embodiment prevents over-supply and under-supply of the mortar M even when the fluid ejection head 10 is disposed far from the pump 5. The pump 5 is controlled so that the ejection operation of the fluid ejection head 10 is not hindered.
図31は、第1実施形態の三次元造形装置における第1圧力センサーの検出タイミングと、第2圧力センサーの検出タイミングとを説明した説明図であり、図32は、第1実施形態の三次元造形装置における第1吐出制御プログラムのフローチャートであり、図33は、第1実施形態の三次元造形装置における第2吐出制御プログラムのフローチャートであり、図34は、第1実施形態の三次元造形装置における指示値算出プログラムのフローチャートである。 FIG. 31 is an explanatory diagram illustrating the detection timing of the first pressure sensor and the detection timing of the second pressure sensor in the three-dimensional modeling apparatus of the first embodiment, and FIG. 33 is a flowchart of the first ejection control program in the three-dimensional printing apparatus of the first embodiment, and FIG. 34 is a flowchart of the second ejection control program in the three-dimensional printing apparatus of the first embodiment. It is a flowchart of the instruction value calculation program in .
なお、第1吐出制御プログラム18c及び第2吐出制御プログラム18dは、何れか1つのプログラムが選択的に実行されるものであり、所定時間t0(msec)毎に実行される割り込み処理によって実行されるものとして説明する。 Note that one of the first discharge control program 18c and the second discharge control program 18d is selectively executed, and is executed by interrupt processing executed every predetermined time t0 (msec). Explain as a thing.
また、指示値算出プログラム18eも、所定時間t0(msec)毎に実行される割り込み処理によって実行されるものとして説明する。 Further, the instruction value calculation program 18e will also be explained as being executed by an interrupt process executed every predetermined time t0 (msec).
上述のように、本実施形態の三次元造形装置1は、スクリュー管55と輸送管61との接続位置に配置され、モルタルMの輸送管61内での圧力を検出するための第1圧力センサー57と、流体吐出ヘッド11と輸送管61との接続位置に配置され、モルタルMの輸送管61内での圧力を検出するための第2圧力センサー63と、を備える。 As described above, the three-dimensional modeling apparatus 1 of the present embodiment includes a first pressure sensor that is arranged at the connection position between the screw pipe 55 and the transport pipe 61, and for detecting the pressure within the transport pipe 61 of the mortar M. 57, and a second pressure sensor 63 arranged at a connection position between the fluid ejection head 11 and the transport pipe 61 and for detecting the pressure within the transport pipe 61 of the mortar M.
そして、ポンプ5は、RAM16のポンプ側ローター指示値テーブル16bに格納されたポンプ側ローター指示値に基づいて、ポンプ側ローター駆動モータ53の回転を制御し、スクリュー管55に送入されたモルタルMを下流側の輸送管61に送出する。 Then, the pump 5 controls the rotation of the pump-side rotor drive motor 53 based on the pump-side rotor instruction value stored in the pump-side rotor instruction value table 16b of the RAM 16, and controls the mortar M fed into the screw pipe 55. is sent to the transport pipe 61 on the downstream side.
なお、ポンプ側ローター指示値テーブル16bに格納されたポンプ側ローター指示値は、後述するように、第1圧力センサー57のよって検出された検出値及び第2圧力センサー63によって検出された検出値に基づいて算出された指示値1と、流体吐出ヘッド10によってノズル部13の開口部13bから外部へ吐出されるモルタルMの量に対応する指示値2と、に基づいて決定されるものである。 The pump side rotor instruction value stored in the pump side rotor instruction value table 16b is based on the detection value detected by the first pressure sensor 57 and the detection value detected by the second pressure sensor 63, as described later. The instruction value 1 is determined based on the instruction value 1 calculated based on the above, and the instruction value 2 corresponding to the amount of mortar M discharged from the opening 13b of the nozzle portion 13 by the fluid ejection head 10 to the outside.
すなわち、ポンプ5は、流体吐出ヘッド10によってノズル部13の開口部13bから外部へ吐出されるモルタルMの量と同一の量のモルタルMを輸送管61に送出するようにポンプ側ローター駆動モータ53の回転を制御するのではなく、第1圧力センサー57及び第2圧力センサー63による検出値を補填してポンプ側ローター駆動モータ53の回転を制御して、モルタルMを流体吐出ヘッド10に適切に送出することができ、延いては、モルタルMを流体吐出ヘッド10から適切に吐出させることができるものである。 That is, the pump 5 operates the pump-side rotor drive motor 53 so as to deliver the same amount of mortar M to the transport pipe 61 as the amount of mortar M that is discharged to the outside from the opening 13b of the nozzle portion 13 by the fluid discharge head 10. Rather than controlling the rotation of the rotor drive motor 53 on the pump side by supplementing the detection values from the first pressure sensor 57 and the second pressure sensor 63, the mortar M is appropriately delivered to the fluid discharge head 10. This allows mortar M to be discharged appropriately from the fluid discharge head 10.
先ず、第1吐出制御プログラム18cについて説明すると、第1圧力センサー57によって、スクリュー管55と輸送管61との接続位置におけるモルタルMの輸送管61内での圧力を検出し(S51、図31上「S1」は検出タイミングを示す)、その検出値に基づいて指示値1を算出する(S53)。 First, the first discharge control program 18c will be described. The first pressure sensor 57 detects the pressure in the transport pipe 61 of the mortar M at the connection position between the screw pipe 55 and the transport pipe 61 (S51, upper part of FIG. 31). "S1" indicates the detection timing), and an instruction value 1 is calculated based on the detected value (S53).
一方、ポンプ側ローター駆動モータ53は、S53または後述するS59で算出された指示値1と、第1吐出制御プログラム18cとは別途に実行される後述する指示値算出プログラム18eによって算出された指示値2と、によって算出され、RAM16のポンプ側ローター指示値テーブル16bに格納されたポンプ側ローター指示値に一致するように、その回転を制御する(S54)。 On the other hand, the pump-side rotor drive motor 53 receives the instruction value 1 calculated in S53 or S59, which will be described later, and the instruction value calculated by an instruction value calculation program 18e, which will be described later, and which is executed separately from the first discharge control program 18c. The rotation is controlled so as to match the pump side rotor instruction value calculated by 2 and stored in the pump side rotor instruction value table 16b of the RAM 16 (S54).
そして、前回の第2圧力センサー検出時から時間t1(時間t1は、時間t0よりも長い時間であり、例えば、時間t0のN倍(Nは2以上の自然数))が経過したか否かが判断され(S55)、時間t1が経過していないと判断された場合には(S55:No)、割り込み処理を完了し(S61)、時間t1が経過していると判断された場合には(S55:Yes)、S57を実行する。 Then, it is determined whether time t1 (time t1 is longer than time t0, for example, N times time t0 (N is a natural number of 2 or more)) has elapsed since the previous detection of the second pressure sensor. (S55), and if it is determined that the time t1 has not elapsed (S55: No), the interrupt processing is completed (S61), and if it is determined that the time t1 has elapsed ( S55: Yes), execute S57.
S57では、第2圧力センサー63によって、流体吐出ヘッド11と輸送管61との接続位置におけるモルタルMの輸送管61内での圧力を検出し(S57、図31上「S2」は検出タイミングを示す)、その検出値に基づいて指示値1を算出した後(S59)、割り込み処理を完了する(S61)。 In S57, the second pressure sensor 63 detects the pressure within the transport pipe 61 of the mortar M at the connection position between the fluid ejection head 11 and the transport pipe 61 (S57, "S2" in FIG. 31 indicates the detection timing ), and after calculating the instruction value 1 based on the detected value (S59), the interrupt processing is completed (S61).
なお、図31は、第1吐出制御プログラム18cの検出タイミングを示すものであり、図31に示すように、本実施形態の三次元造形装置1において、時間t1は、時間t0の約10倍に設定されている。 Note that FIG. 31 shows the detection timing of the first discharge control program 18c, and as shown in FIG. 31, in the three-dimensional printing apparatus 1 of this embodiment, the time t1 is about 10 times the time t0. It is set.
次に、第2吐出制御プログラム18dについて説明すると、第1圧力センサー57によって、スクリュー管55と輸送管61との接続位置におけるモルタルMの輸送管61内での圧力を検出し(S71)、前回の第2圧力センサー63の検出時から時間t1(時間t1は、時間t0のN倍(Nは2以上の自然数))が経過したか否かが判断され(S73)、時間t1が経過していないと判断された場合には(S73:No)、時間t1が経過するまで待ち、時間t1が経過していると判断された場合には(S73:Yes)、S75を実行する。 Next, explaining the second discharge control program 18d, the first pressure sensor 57 detects the pressure within the transport pipe 61 of the mortar M at the connection position between the screw pipe 55 and the transport pipe 61 (S71), and It is determined whether or not a time t1 (time t1 is N times the time t0 (N is a natural number of 2 or more)) has elapsed since the detection of the second pressure sensor 63 (S73), and it is determined whether the time t1 has elapsed. If it is determined that there is no such thing (S73: No), the process waits until the time t1 has elapsed, and if it is determined that the time t1 has elapsed (S73: Yes), S75 is executed.
S75では、第2圧力センサー63によって、流体吐出ヘッド11と輸送管61との接続位置におけるモルタルMの輸送管61内での圧力を検出し(S75)、第1圧力センサー57による検出値と、時間t1後の第2圧力センサー63による検出値とに基づいて指示値1を算出する(S77)。 In S75, the second pressure sensor 63 detects the pressure within the transport pipe 61 of the mortar M at the connection position between the fluid ejection head 11 and the transport pipe 61 (S75), and the detected value by the first pressure sensor 57 and The instruction value 1 is calculated based on the detected value by the second pressure sensor 63 after time t1 (S77).
一方、ポンプ側ローター駆動モータ53は、S77で算出された指示値1と、第1吐出制御プログラム18cとは別途に実行される後述する指示値算出プログラム18eによって算出された指示値2と、によって算出され、RAM16のポンプ側ローター指示値テーブル16bに格納されたポンプ側ローター指示値に一致するように、その回転を制御して(S79)、割り込み処理を完了する(S81)。 On the other hand, the pump-side rotor drive motor 53 is driven by the instruction value 1 calculated in S77 and the instruction value 2 calculated by an instruction value calculation program 18e, which will be described later, and which is executed separately from the first discharge control program 18c. The rotation is controlled so as to match the calculated pump-side rotor instruction value stored in the pump-side rotor instruction value table 16b of the RAM 16 (S79), and the interrupt processing is completed (S81).
次に、指示値算出プログラム18eについて説明すると、先ず、ロボットコントローラ4から流体吐出ヘッド11の塗布速度を取得し(S83)、取得した塗布速度及び流体吐出ヘッド11から吐出されるモルタルの高さ(厚み)に基づいて指示値2を算出する(S85)。 Next, the instruction value calculation program 18e will be explained. First, the application speed of the fluid ejection head 11 is obtained from the robot controller 4 (S83), and the obtained application speed and the height of the mortar ejected from the fluid ejection head 11 ( An instruction value 2 is calculated based on the thickness (S85).
なお、指示値2は、流体吐出ヘッド10から吐出されるモルタルMの量に対応した値であり、流体吐出ヘッド10の塗布速度が速い場合、または流体吐出ヘッド11から吐出されるモルタルの高さ(厚み)が厚い場合には、指示値2の値は増加し、流体吐出ヘッド10の塗布速度が遅い場合、または流体吐出ヘッド11から吐出されるモルタルの高さ(厚み)が薄い場合には、指示値2の値は減少する。 Note that the instruction value 2 is a value corresponding to the amount of mortar M discharged from the fluid discharge head 10, and when the coating speed of the fluid discharge head 10 is fast, or the height of the mortar discharged from the fluid discharge head 11. (thickness), the value of the instruction value 2 increases, and when the application speed of the fluid ejection head 10 is slow or the height (thickness) of the mortar ejected from the fluid ejection head 11 is small, the value of the instruction value 2 increases. , the value of instruction value 2 decreases.
そして、第1吐出制御プログラム18cまたは第2吐出制御プログラム18dで算出された指示値1に、S85で算出された指示値2を加算して、指示値を算出し、RAM16のポンプ側ローター指示値テーブル16bに格納した後(S87)、割り込み処理を完了する(S89)。 Then, the instruction value 2 calculated in S85 is added to the instruction value 1 calculated by the first discharge control program 18c or the second discharge control program 18d to calculate the instruction value, and the pump side rotor instruction value is stored in the RAM 16. After storing it in the table 16b (S87), the interrupt processing is completed (S89).
第1吐出制御プログラム18c及び指示値算出プログラム18eによれば、ポンプ5からのモルタルMの供給量は、流体吐出ヘッド10によって開口部13bから外部へ吐出されるモルタルMの吐出量と、第1圧力センサー57が時間t0の間隔で検出した検出値と、第2圧力センサー63が時間t0よりも長い時間t1(例えば、時間t1=時間t0のN倍の時間)で検出した検出値と、に基づいて決定されるので、流体吐出ヘッド10へ供給されるモルタルMの量の変動を少なくすることができ、ポンプ5が、長尺の輸送管61によって流体吐出ヘッド10に接続され、流体吐出ヘッド10から遠方に配置された場合においても、モルタルMを流体吐出ヘッド10に適切に供給することができ、延いては、モルタルMを流体吐出ヘッド10から適切に吐出させることができる。 According to the first discharge control program 18c and the instruction value calculation program 18e, the amount of mortar M supplied from the pump 5 is equal to the amount of mortar M discharged to the outside from the opening 13b by the fluid discharge head 10, and the first The detection value detected by the pressure sensor 57 at an interval of time t0 and the detection value detected by the second pressure sensor 63 at a time t1 longer than time t0 (for example, time t1 = time N times time t0). Since the amount of mortar M supplied to the fluid discharge head 10 can be reduced, the pump 5 is connected to the fluid discharge head 10 by a long transport pipe 61, and the fluid discharge head Even when the mortar M is disposed far from the fluid ejection head 10, the mortar M can be appropriately supplied to the fluid ejection head 10, and the mortar M can be appropriately ejected from the fluid ejection head 10.
第2吐出制御プログラム18d及び指示値算出プログラム18eによれば、ポンプ5からのモルタルMの供給量は、流体吐出ヘッド10によって開口部13bから外部へ吐出されるモルタルMの吐出量と、所定の時間に第1圧力センサー57で検出された検出値と、その所定時間からt1時間経過後の第2圧力センサー63で検出された検出値と、に基づいて決定されるので、輸送管61の長さによる検出値の遅れを補填して、流体吐出ヘッド10へ供給されるモルタルMの量の変動を少なくすることができ、ポンプ5が、長尺の輸送管61によって流体吐出ヘッド10に接続され、流体吐出ヘッド10から遠方に配置された場合においても、モルタルMを流体吐出ヘッド10に適切に供給することができ、延いては、モルタルMを流体吐出ヘッド10から適切に吐出させることができる。 According to the second discharge control program 18d and the instruction value calculation program 18e, the amount of mortar M supplied from the pump 5 is equal to the amount of mortar M discharged to the outside from the opening 13b by the fluid discharge head 10, and the predetermined amount. The length of the transport pipe 61 is determined based on the detection value detected by the first pressure sensor 57 at the specified time and the detection value detected by the second pressure sensor 63 after the elapse of time t1 from the predetermined time. By compensating for the delay in the detected value due to , Even when the mortar M is disposed far from the fluid ejection head 10, the mortar M can be appropriately supplied to the fluid ejection head 10, and the mortar M can be appropriately ejected from the fluid ejection head 10. .
一方、流体吐出ヘッド10は、RAM16のヘッド側ローター指示値テーブル16cに格納されたヘッド側ローター指示値に基づいて、ヘッド側ローター駆動モータ27の回転を制御し、輸送管61から送入されたモルタルMをノズル13に送出し、ノズル13の開口部13bから外部へ吐出するものである。 On the other hand, the fluid ejection head 10 controls the rotation of the head-side rotor drive motor 27 based on the head-side rotor instruction value stored in the head-side rotor instruction value table 16 c of the RAM 16 , and controls the rotation of the head-side rotor drive motor 27 . The mortar M is delivered to the nozzle 13 and discharged from the opening 13b of the nozzle 13 to the outside.
具体的には、本実施形態の三次元造形装置1は、塗布するモルタルMの幅、厚み、及び塗布速度に応じてヘッド側ローター駆動モータ27の回転を制御するものであるが、一般に、ポンプ5からのモルタルMの供給量に対してモルタルMの塗布量が多い場合には、第2圧力センサー63の検出値が下降し、ポンプ5からのモルタルMの供給量に対してモルタルMの塗布量が少ない場合には、第2圧力センサー63の検出値が上昇する。 Specifically, the three-dimensional modeling apparatus 1 of this embodiment controls the rotation of the head-side rotor drive motor 27 according to the width, thickness, and application speed of the mortar M to be applied. When the amount of mortar M applied is large compared to the amount of mortar M supplied from pump 5, the detection value of the second pressure sensor 63 decreases, and the amount of mortar M applied is larger than the amount of mortar M supplied from pump 5. When the amount is small, the detected value of the second pressure sensor 63 increases.
しかしながら、ポンプ5を上述のように制御することにより、モルタルMを流体吐出ヘッド10に適切に供給することができ、延いては、モルタルMを流体吐出ヘッド10から適切に吐出させることができる。 However, by controlling the pump 5 as described above, the mortar M can be appropriately supplied to the fluid ejection head 10, and in turn, the mortar M can be appropriately ejected from the fluid ejection head 10.
次に、第1実施形態の三次元造形装置1のメンテナンス処理について説明する。 Next, maintenance processing of the three-dimensional printing apparatus 1 of the first embodiment will be explained.
本実施形態の三次元造形装置1は、上述のように、流体吐出ヘッド10の先端からモルタルMを吐出して、三次元造形物であるオブジェPを製造するものであるが、流体吐出ヘッド10を使用後にそのまま放置すると、モルタルMが流体吐出ヘッド10の内部で固化してしまい、次回に使用できなくなってしまう可能性がある。 As described above, the three-dimensional modeling apparatus 1 of this embodiment discharges the mortar M from the tip of the fluid discharge head 10 to manufacture an object P, which is a three-dimensional model. If the mortar M is left as is after use, there is a possibility that the mortar M will solidify inside the fluid ejection head 10 and become unusable next time.
したがって、三次元造形装置1を継続的に使用するためには、流体吐出ヘッド10を定期的に分解して内部のモルタルMを除去するとともに、流体吐出ヘッド10を構成する部品を清掃しておく必要がある。 Therefore, in order to continuously use the three-dimensional printing apparatus 1, the fluid ejection head 10 should be periodically disassembled to remove the internal mortar M and the parts that make up the fluid ejection head 10 should be cleaned. There is a need.
一方で、本実施形態の三次元造形装置は大型であって、かつ重量も重く、流体吐出ヘッド10自体も大型であって、かつ重量も重いものであるため、メンテナンス作業には、使用者の安全を考慮する必要がある。 On the other hand, the three-dimensional printing apparatus of this embodiment is large and heavy, and the fluid ejection head 10 itself is also large and heavy. Safety needs to be considered.
図35は、第1実施形態の三次元造形装置におけるメンテナンス処理プログラムのフローチャートであり、図36は、三次元造形装置のメンテナンス時の分解前の状態を示した正面図であり、図37は、三次元造形装置のメンテナンス時の分解前の状態を示した底面図であり、図38は、三次元造形装置のメンテナンス時の分解後の状態を示した説明図である。 FIG. 35 is a flowchart of a maintenance processing program in the three-dimensional printing apparatus of the first embodiment, FIG. 36 is a front view showing the state of the three-dimensional printing apparatus before disassembly during maintenance, and FIG. FIG. 38 is a bottom view showing the state of the three-dimensional printing apparatus before disassembly during maintenance, and FIG. 38 is an explanatory view showing the state after disassembly during maintenance of the three-dimensional printing apparatus.
本実施形態の三次元造形装置1は、上述のように、多関節ロボット3と、その多関節ロボット3の先端に接続され、モルタルMを外部へ吐出するための流体吐出ヘッド10と、その流体吐出ヘッド10を多関節ロボット3の先端に接続するための支持部21と、を備える。 As described above, the three-dimensional modeling apparatus 1 of this embodiment includes an articulated robot 3, a fluid ejection head 10 connected to the tip of the articulated robot 3 for discharging mortar M to the outside, and a fluid discharging head 10 for discharging mortar M to the outside. A support part 21 for connecting the ejection head 10 to the tip of the articulated robot 3 is provided.
そして、本実施形態の三次元造形装置1は、上述したように、流体吐出ヘッド10を、多関節ロボット3によって縦向きにした状態(流体吐出ヘッド10を垂直方向または傾斜方向に向けた状態)で、下方に向かってモルタルMを吐出して、三次元造形物であるオブジェPを製造するものである。 As described above, the three-dimensional printing apparatus 1 of the present embodiment has the fluid ejection head 10 oriented vertically by the articulated robot 3 (the fluid ejection head 10 is oriented vertically or in an inclined direction). The mortar M is discharged downward to produce an object P which is a three-dimensional structure.
図35のメンテナンス処理プログラム18fにおいて、先ず、三次元造形装置1の使用者が装置の電源スイッチを入れた後、操作パネル8上の操作ボタンによってメンテナンス処理を選択して、スタートボタンを押下すると、三次元造形装置1は、流体吐出ヘッド10をメンテナンス位置に退避させ(S91)、流体吐出ヘッド10を動作時の縦向きの状態(流体吐出ヘッド10を垂直方向または傾斜方向に向けた状態)から水平向きの状態に回転させて(S93)、水平向きの状態を保持する(S95)。 In the maintenance processing program 18f in FIG. 35, first, the user of the three-dimensional printing apparatus 1 turns on the power switch of the apparatus, selects maintenance processing using the operation buttons on the operation panel 8, and presses the start button. The three-dimensional printing apparatus 1 retreats the fluid ejection head 10 to the maintenance position (S91), and changes the fluid ejection head 10 from the vertical state during operation (the state where the fluid ejection head 10 is oriented vertically or in an inclined direction). It is rotated to a horizontal state (S93), and the horizontal state is maintained (S95).
なお、図36は、流体吐出ヘッド10を多関節ロボット3によって水平向きの状態にした正面図であり、図37は、その状態の底面図である。 Note that FIG. 36 is a front view of the fluid ejection head 10 in a horizontal state by the articulated robot 3, and FIG. 37 is a bottom view of the state.
図36及び図37に示すように、多関節ロボット3は、支持部21の突出部21cに接続されることによって、流体吐出ヘッド10を水平向きの状態に保持しており、流体吐出ヘッド10は、支持部21の第1支持部21d、第2支持部21e、第3支持部21f、第4支持部21gの4つの支持部によって吊るされた状態である。 As shown in FIGS. 36 and 37, the articulated robot 3 holds the fluid ejection head 10 in a horizontal state by being connected to the protrusion 21c of the support portion 21, and the fluid ejection head 10 , it is suspended by four supports of the support section 21: the first support section 21d, the second support section 21e, the third support section 21f, and the fourth support section 21g.
 流体吐出ヘッド10が多関節ロボット3によって水平向きの状態に保持されると(S95)、三次元造形装置1の使用者は、所定のボルト、ネジ等の固定具を解除して、流体吐出ヘッド10を分解する。 When the fluid ejection head 10 is held in a horizontal state by the articulated robot 3 (S95), the user of the three-dimensional printing apparatus 1 releases the fixing devices such as predetermined bolts and screws, and removes the fluid ejection head. Decompose 10.
なお、本実施形態の三次元造形装置1においては、流体吐出ヘッド本体11の外管を構成する第2ステータ11aと、ノズル部13とが取り外され、ヘッド側ローター駆動モータ27、第2ローター11b、ノズル回転モータ17及びモータギア部19は支持部21に残ったままの状態になっている。 In the three-dimensional modeling apparatus 1 of this embodiment, the second stator 11a and the nozzle part 13 that constitute the outer pipe of the fluid ejection head main body 11 are removed, and the head-side rotor drive motor 27 and the second rotor 11b are removed. , the nozzle rotation motor 17 and the motor gear part 19 remain on the support part 21.
 本実施形態の三次元造形装置においては、流体吐出ヘッド10の全部品を取り外すことも可能であるが、少なくとも、第2ステータ11aと、ノズル部13とを取り外せば、第2ステータ11a及びノズル部13を個別に洗浄可能であり、支持部12に残った第2ローター11bも露出しているため、洗浄することができる。 In the three-dimensional modeling apparatus of this embodiment, it is possible to remove all parts of the fluid ejection head 10, but if at least the second stator 11a and the nozzle section 13 are removed, the second stator 11a and the nozzle section can be removed. 13 can be washed individually, and the second rotor 11b remaining on the support part 12 is also exposed, so it can be washed.
本実施形態の三次元造形装置1によれば、多関節ロボット3と、その多関節ロボット3の先端に接続され、外部にモルタルMを吐出する長尺の流体吐出ヘッド10と、を備え、流体吐出ヘッド10から吐出されたモルタルMによって三次元造形物を製造するものを対象として、特に、流体吐出ヘッド10は、多関節ロボット3によって縦向きにされた状態で、下方に向かってモルタルMを吐出可能であり、多関節ロボット3によって横向きにされた状態で、解体可能であるので、モルタルMであっても三次元造形装置1を継続して使用することができ、モルタルMを貯留する流体吐出ヘッド10の重量が重い場合においても、三次元造形装置1の動作に支障なく、三次元造形装置1のメンテナンスをスムーズに行うことができる。 According to the three-dimensional modeling apparatus 1 of the present embodiment, the three-dimensional modeling apparatus 1 includes an articulated robot 3 and a long fluid ejection head 10 that is connected to the tip of the articulated robot 3 and that discharges mortar M to the outside. Intended for manufacturing three-dimensional objects using mortar M discharged from the discharge head 10, in particular, the fluid discharge head 10 is oriented vertically by the articulated robot 3, and the mortar M is discharged downward. Since it can be discharged and disassembled in a state where it is turned sideways by the articulated robot 3, the three-dimensional modeling apparatus 1 can be continuously used even if it is mortar M. Even when the weight of the ejection head 10 is heavy, the operation of the three-dimensional printing apparatus 1 is not hindered, and maintenance of the three-dimensional printing apparatus 1 can be performed smoothly.
また、本実施形態の三次元造形装置1によれば、多関節ロボット3と、その多関節ロボット3の先端に接続された支持部21と、その支持部21に接続され、外部にモルタルMを吐出する長尺の流体吐出ヘッド10と、を備え、流体吐出ヘッド10から吐出されたモルタルMによって三次元造形物を製造する三次元造形装置1において、流体吐出ヘッド10は、多関節ロボット3によって縦向きにされ、支持部21に接続された状態で、下方に向かってモルタルMを吐出可能であり、多関節ロボット3によって横向きにされ、支持部21に吊るされた状態で、解体可能であるので、モルタルであっても三次元造形装置1を継続して使用することができ、モルタルMを貯留する流体吐出ヘッド10の重量が重い場合においても、三次元造形装置1の動作に支障なく、三次元造形装置1のメンテナンスをスムーズに行うことができる。 Further, according to the three-dimensional modeling apparatus 1 of the present embodiment, the articulated robot 3, the support section 21 connected to the tip of the articulated robot 3, and the mortar M connected to the support section 21 externally. In the three-dimensional modeling apparatus 1, which includes a long fluid ejection head 10 for ejecting fluid, and manufactures a three-dimensional object using the mortar M ejected from the fluid ejection head 10, the fluid ejection head 10 is moved by the articulated robot 3. The mortar M can be discharged downward when it is oriented vertically and connected to the support part 21, and it can be dismantled when it is oriented horizontally by the articulated robot 3 and suspended from the support part 21. Therefore, even when using mortar, the three-dimensional printing apparatus 1 can be used continuously, and even when the weight of the fluid ejection head 10 that stores the mortar M is heavy, the operation of the three-dimensional printing apparatus 1 is not hindered. Maintenance of the three-dimensional printing apparatus 1 can be performed smoothly.
また、本実施形態の三次元造形装置1によれば、流体吐出ヘッド10は、第1の中空部11dを有する長尺の第2ステータ11aと、その第2ステータ11aの第1の中空部11d内で、供給されたモルタルMを、回転しながら先端側へ移送する第2ローター11bと、第2ステータ11aの基端に接続され、第2ローター11bを回転させるヘッド側ローター駆動モータ27と、第2ステータ11aの先端に接続され、開口部13b、23b、83b、93bと、第1の中空部11dに連通する第2の中空部13d、13f、23d、23f、83d、83f、93d、93fと、を有し、第2ローター11bによって移送されたモルタルMを第1の中空部11d及び第2の中空部13d、13f、23d、23f、83d、83f、93d、93fを介して開口部13b、23b、83b、93bから外部へ吐出するノズル部13、23、83、93と、を備え、支持部21は、ヘッド側ローター駆動モータ27を支持するものであって、少なくとも第2ステータ11a及びノズル部13、23、83、93を、支持部21から離脱可能としたので、流体吐出ヘッド10の内部からモルタルMを除去し易くし、その後の三次元造形装置1の使用において、目詰まりを確実に防止することができる。 Further, according to the three-dimensional modeling apparatus 1 of the present embodiment, the fluid ejection head 10 includes the elongated second stator 11a having the first hollow portion 11d, and the first hollow portion 11d of the second stator 11a. a second rotor 11b that rotates and transfers the supplied mortar M to the tip side; a head-side rotor drive motor 27 that is connected to the base end of the second stator 11a and rotates the second rotor 11b; Second hollow parts 13d, 13f, 23d, 23f, 83d, 83f, 93d, 93f are connected to the tip of the second stator 11a and communicate with the openings 13b, 23b, 83b, 93b and the first hollow part 11d. and the mortar M transferred by the second rotor 11b is passed through the first hollow part 11d and the second hollow part 13d, 13f, 23d, 23f, 83d, 83f, 93d, 93f to the opening 13b. , 23b, 83b, 93b to the outside. Since the nozzle parts 13, 23, 83, and 93 are made detachable from the support part 21, the mortar M can be easily removed from the inside of the fluid ejection head 10, and clogging can be prevented during subsequent use of the three-dimensional printing apparatus 1. This can be reliably prevented.
また、本実施形態の三次元造形装置1によれば、支持部21は、流体吐出ヘッド10の長手方向に沿って長尺状に形成されており、流体吐出ヘッド10の長手方向中間位置において、流体物吐出ヘッド10の長手方向に交差する方向に突出した突出部21cを備え、多関節ロボット3は、突出部21cに接続されているので、流体吐出ヘッド10の態勢を狭い領域で簡単に変更することができ、三次元造形装置1の動作にさらに支障なく、三次元造形装置1のメンテナンスをさらにスムーズに行うことができる。 Further, according to the three-dimensional printing apparatus 1 of the present embodiment, the support part 21 is formed in an elongated shape along the longitudinal direction of the fluid ejection head 10, and at an intermediate position in the longitudinal direction of the fluid ejection head 10. Since the articulated robot 3 is provided with a protrusion 21c that protrudes in a direction intersecting the longitudinal direction of the fluid discharge head 10 and is connected to the protrusion 21c, the posture of the fluid discharge head 10 can be easily changed in a narrow area. This allows maintenance of the three-dimensional printing apparatus 1 to be performed more smoothly without any hindrance to the operation of the three-dimensional printing apparatus 1.
また、本実施形態の三次元造形装置1によれば、流体吐出ヘッド10は、少なくとも吐出開始時において、多関節ロボット3によって傾斜された状態で下方に向かってモルタルMを吐出可能であるので、メンテナンス後にモルタルMをスムーズに移動させ、モルタルMを塗布位置にスムーズに塗布することができる。 Furthermore, according to the three-dimensional modeling apparatus 1 of the present embodiment, the fluid ejection head 10 is capable of ejecting the mortar M downward while being tilted by the articulated robot 3 at least when starting ejection. The mortar M can be smoothly moved after maintenance, and the mortar M can be smoothly applied to the application position.
さらに、本実施形態の三次元造形装置1によれば、流体吐出ヘッド10は、内部を横切る規制バー13c、23c、83c、83g、93cを備えているので、メンテナンス後にモルタルMが流体吐出ヘッド10から漏れ出すことを防止することができる。 Further, according to the three-dimensional modeling apparatus 1 of the present embodiment, the fluid ejection head 10 is provided with the regulation bars 13c, 23c, 83c, 83g, and 93c that cross the inside thereof, so that the mortar M is removed from the fluid ejection head 10 after maintenance. leakage can be prevented.
以上、本発明の実施形態における三次元造形について説明してきたが、本発明は上記実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々変更して実施することが可能である。 Although three-dimensional modeling in the embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and can be implemented with various changes without departing from the gist thereof.
例えば、上述の実施形態の三次元造形装置においては、ノズル部の開口部の平面視における形状を略長方形として説明してきたが、ノズルの開口部の平面視における形状は、略長方形に限られるものではなく、略円形、略楕円形、略正方形、略平行四辺形、略菱形であっても良い。 For example, in the three-dimensional printing apparatus of the above-described embodiment, the shape of the opening of the nozzle section in plan view has been described as approximately rectangular, but the shape of the nozzle opening in plan view is limited to approximately rectangular. Instead, it may be approximately circular, approximately elliptical, approximately square, approximately parallelogram, or approximately rhombic.
但し、塗布幅をノズル部の回転によって変更させたいのであれば、ノズル部の開口部の平面視における形状を、略楕円形または略矩形状とするのが良い。 However, if it is desired to change the coating width by rotating the nozzle section, it is preferable that the shape of the opening of the nozzle section in plan view is approximately elliptical or approximately rectangular.
また、三次元造形物を、流体物を積層して構成したいのであれば、ノズル部の開口部の平面視における形状を略矩形状とするのが良い。 Moreover, if it is desired to construct a three-dimensional structure by laminating fluid objects, it is preferable that the shape of the opening of the nozzle part in plan view is approximately rectangular.
しかしながら、ノズルの開口部の平面視における形状を略長方形とした方が、塗布幅、積層する場合の安定性の点で有利である。 However, it is advantageous to make the nozzle opening substantially rectangular in plan view in terms of coating width and stability in lamination.
1・・・三次元造形装置
2・・・メインコントローラ
3・・・多関節ロボット
4・・・ロボットコントローラ
5・・・ポンプ
6・・・電源
7・・・ロボットスライド機構
8・・・操作パネル
9・・・ミキサー
10・・・流体吐出ヘッド
11・・・流体吐出ヘッド本体
11a・・・第2ステータ
11b・・・第2ローター
11c・・・キャビティー
11d・・・第1の中空部
12・・・ドライバー回路
13、23、83、93・・・ノズル部
13a、23a、83a、93a・・・ノズル本体部
13b、23b、83b、93b・・・開口部
13c、23c、83c、83g、93c・・・規制バー
13d、23d、83d、93d・・・ノズル本体部内腔
13e、23e、83e、93e・・・ノズル先端部
13f、23f、83f、93f・・・ノズル先端部内腔
15、25、85、95・・・ノズルギア部(ノズル回転機構)
16・・・RAM
17・・・ノズル回転モータ(ノズル回転機構)
18・・・ROM
19・・・モータギア部(ノズル回転機構)
20・・・制御盤
21・・・支持部
21a・・・上支持部
21b・・・下支持部
21c・・・突出部
21d・・・第1支持部
21e・・・第2支持部
21f・・・第3支持部
21g・・・第4支持部
27・・・ヘッド側ローター駆動モータ
29・・・供給口
31・・・第1の基台(多関節ロボット)
33・・・第2の基台(多関節ロボット)
35・・・下腕部(多関節ロボット)
37・・・中下腕部(多関節ロボット)
39・・・中上腕部(多関節ロボット)
41・・・上腕部(多関節ロボット)
43・・・回転部(多関節ロボット)
51・・・ポンプ本体
53・・・ポンプ側ローター駆動モータ
55・・・スクリュー管
55a・・・第1ステータ
55b・・・第1ローター
57・・・第1圧力センサー
59・・・モルタル投入口
61・・・輸送管
63・・・第2圧力センサー
71・・・移動レールカバー
73・・・移動台
75・・・移動レール
77・・・ケーブル
79・・・ロボットスライドモータ
80・・・流体吐出ヘッドカバー
M・・・モルタル
P・・・オブジェ
1... Three-dimensional modeling device 2... Main controller 3... Articulated robot 4... Robot controller 5... Pump 6... Power supply 7... Robot slide mechanism 8... Operation panel 9... Mixer 10... Fluid ejection head 11... Fluid ejection head main body 11a... Second stator 11b... Second rotor 11c... Cavity 11d... First hollow part 12 ... Driver circuits 13, 23, 83, 93... Nozzle parts 13a, 23a, 83a, 93a... Nozzle body parts 13b, 23b, 83b, 93b... Openings 13c, 23c, 83c, 83g, 93c... Restriction bars 13d, 23d, 83d, 93d...Nozzle body inner cavity 13e, 23e, 83e, 93e... Nozzle tip 13f, 23f, 83f, 93f...Nozzle tip inner cavity 15, 25 , 85, 95... Nozzle gear section (nozzle rotation mechanism)
16...RAM
17... Nozzle rotation motor (nozzle rotation mechanism)
18...ROM
19...Motor gear section (nozzle rotation mechanism)
20... Control panel 21... Support part 21a... Upper support part 21b... Lower support part 21c... Projection part 21d... First support part 21e... Second support part 21f. ...Third support part 21g...Fourth support part 27...Head side rotor drive motor 29...Supply port 31...First base (articulated robot)
33...Second base (articulated robot)
35...Lower arm (multi-jointed robot)
37...Middle and lower arm (multi-jointed robot)
39... Middle upper arm (articulated robot)
41... Upper arm (articulated robot)
43...Rotating part (articulated robot)
51... Pump body 53... Pump side rotor drive motor 55... Screw pipe 55a... First stator 55b... First rotor 57... First pressure sensor 59... Mortar inlet 61... Transport pipe 63... Second pressure sensor 71... Moving rail cover 73... Moving table 75... Moving rail 77... Cable 79... Robot slide motor 80... Fluid Discharge head cover M... Mortar P... Object

Claims (10)

  1. 多関節ロボットと、
    その多関節ロボットの先端に接続され、外部に流体物を吐出する長尺の流体吐出部と、
    を備え、
    前記流体吐出部から吐出された前記流体物によって三次元造形物を製造する三次元造形装置において、
    前記流体吐出部は、前記多関節ロボットによって縦向きにされた状態で、下方に向かって前記流体物を吐出可能であり、前記多関節ロボットによって横向きにされた状態で、解体可能であることを特徴とする三次元造形装置。
    articulated robot,
    a long fluid discharge part connected to the tip of the articulated robot and discharges fluid to the outside;
    Equipped with
    In a three-dimensional printing apparatus that manufactures a three-dimensional object using the fluid discharged from the fluid discharge part,
    The fluid discharge unit is capable of discharging the fluid downward when the multi-jointed robot holds it vertically, and can be dismantled when the multi-joint robot holds it horizontally. Characteristic three-dimensional printing equipment.
  2. 多関節ロボットと、
    その多関節ロボットの先端に接続された支持部と、
    その支持部に接続され、外部に流体物を吐出する長尺の流体吐出部と、
    を備え、
    前記流体吐出部から吐出された前記流体物によって三次元造形物を製造する三次元造形装置において、
    前記流体吐出部は、前記多関節ロボットによって縦向きにされ、前記支持部に接続された状態で、下方に向かって前記流体物を吐出可能であり、
    前記多関節ロボットによって横向きにされ、前記支持部に吊るされた状態で、解体可能であることを特徴とする三次元造形装置。
    articulated robot,
    A support part connected to the tip of the articulated robot,
    a long fluid discharge part connected to the support part and discharges a fluid to the outside;
    Equipped with
    In a three-dimensional printing apparatus that manufactures a three-dimensional object using the fluid discharged from the fluid discharge part,
    The fluid discharge part is vertically oriented by the articulated robot and can discharge the fluid object downward while connected to the support part,
    A three-dimensional modeling device characterized in that it can be dismantled in a state where it is turned sideways by the articulated robot and suspended from the support portion.
  3. 前記流体吐出部は、
    第1の中空部を有する長尺の中空筐体と、
    その中空筐体の前記第1の中空部内で、供給された流体物を、回転しながら先端側へ移送するローターと、
    前記中空筐体の基端に接続され、前記ローターを回転させる駆動部と、
    前記中空筐体の先端に接続され、開口部と、前記第1の中空部に連通する第2の中空部と、を有し、前記ローターによって移送された前記流体物を前記第1の中空部及び前記第2の中空部を介して前記開口部から外部へ吐出するノズルと、
    を備え、
    前記支持部は、前記駆動部を支持するものであって、
    少なくとも前記中空筐体及び前記ノズルを、前記支持部から離脱可能としたことを特徴とする請求項2に記載の三次元造形装置。
    The fluid discharge section includes:
    an elongated hollow casing having a first hollow part;
    a rotor that rotates and transfers the supplied fluid to the distal end side within the first hollow part of the hollow casing;
    a drive unit connected to the base end of the hollow casing and rotating the rotor;
    The hollow casing has an opening and a second hollow part connected to the tip of the hollow casing and communicating with the first hollow part, and the fluid transferred by the rotor is transferred to the first hollow part. and a nozzle that discharges water from the opening to the outside through the second hollow part;
    Equipped with
    The support section supports the drive section,
    The three-dimensional printing apparatus according to claim 2, wherein at least the hollow casing and the nozzle are detachable from the support section.
  4. 前記支持部は、前記流体吐出部の長手方向に沿って長尺状に形成されており、前記流体吐出部の前記長手方向中間位置において、前記流体物吐出部の前記長手方向に交差する方向に突出した突出部を備え、
    前記多関節ロボットは、前記突出部に接続されていることを特徴とする請求項2に記載の三次元造形装置。
    The support part is formed in an elongated shape along the longitudinal direction of the fluid discharge part, and extends in a direction intersecting the longitudinal direction of the fluid discharge part at an intermediate position in the longitudinal direction of the fluid discharge part. Equipped with a protruding protrusion,
    The three-dimensional modeling apparatus according to claim 2, wherein the articulated robot is connected to the protrusion.
  5. 前記支持部は、前記流体吐出部の長手方向に沿って長尺状に形成されており、前記流体吐出部の前記長手方向中間位置において、前記流体物吐出部の前記長手方向に交差する方向に突出した突出部を備え、
    前記多関節ロボットは、前記突出部に接続されていることを特徴とする請求項3に記載の三次元造形装置。
    The support part is formed in an elongated shape along the longitudinal direction of the fluid discharge part, and extends in a direction intersecting the longitudinal direction of the fluid discharge part at an intermediate position in the longitudinal direction of the fluid discharge part. Equipped with a protruding protrusion,
    The three-dimensional modeling apparatus according to claim 3, wherein the articulated robot is connected to the protrusion.
  6. 前記流体吐出部は、少なくとも吐出開始時において、前記多関節ロボットによって傾斜された状態で下方に向かって前記流体物を吐出可能であることを特徴とする請求項1に記載の三次元造形装置。 2. The three-dimensional printing apparatus according to claim 1, wherein the fluid discharge section is capable of discharging the fluid object downward in a tilted state by the multi-joint robot at least when starting discharge.
  7. 前記流体吐出部は、少なくとも吐出開始時において、前記多関節ロボットによって傾斜された状態で下方に向かって前記流体物を吐出可能であることを特徴とする請求項2に記載の三次元造形装置。 3. The three-dimensional printing apparatus according to claim 2, wherein the fluid discharge section is capable of discharging the fluid object downward in a tilted state by the multi-jointed robot at least when starting discharge.
  8. 前記流体吐出部は、少なくとも吐出開始時において、前記多関節ロボットによって傾斜された状態で下方に向かって前記流体物を吐出可能であることを特徴とする請求項3に記載の三次元造形装置。 4. The three-dimensional printing apparatus according to claim 3, wherein the fluid discharge section is capable of discharging the fluid object downward in a tilted state by the multi-jointed robot at least when starting discharge.
  9. 前記流体吐出部は、少なくとも吐出開始時において、前記多関節ロボットによって傾斜された状態で下方に向かって前記流体物を吐出可能であることを特徴とする請求項4に記載の三次元造形装置。 5. The three-dimensional printing apparatus according to claim 4, wherein the fluid discharge section is capable of discharging the fluid object downward in a tilted state by the multi-joint robot at least when starting discharge.
  10. 流体吐出部は、内部を横切る流体物規制部を備えたことを特徴とする請求項1乃至請求項9の何れかに記載の三次元造形装置。 10. The three-dimensional printing apparatus according to claim 1, wherein the fluid discharge section includes a fluid regulating section that crosses the inside thereof.
PCT/JP2022/020923 2022-05-20 2022-05-20 Three-dimensional shaping apparatus WO2023223530A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022545846A JP7370027B1 (en) 2022-05-20 2022-05-20 3D printing equipment
PCT/JP2022/020923 WO2023223530A1 (en) 2022-05-20 2022-05-20 Three-dimensional shaping apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020923 WO2023223530A1 (en) 2022-05-20 2022-05-20 Three-dimensional shaping apparatus

Publications (1)

Publication Number Publication Date
WO2023223530A1 true WO2023223530A1 (en) 2023-11-23

Family

ID=88469007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020923 WO2023223530A1 (en) 2022-05-20 2022-05-20 Three-dimensional shaping apparatus

Country Status (2)

Country Link
JP (1) JP7370027B1 (en)
WO (1) WO2023223530A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017020110A (en) * 2016-07-06 2017-01-26 株式会社東芝 Nozzle device and lamination molding device
JP2018075778A (en) * 2016-11-10 2018-05-17 Dmg森精機株式会社 Three-dimensional shape manufacturing apparatus
JP2018086747A (en) * 2016-11-28 2018-06-07 前田建設工業株式会社 Construction device of construction structure using 3d printing technique

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017020110A (en) * 2016-07-06 2017-01-26 株式会社東芝 Nozzle device and lamination molding device
JP2018075778A (en) * 2016-11-10 2018-05-17 Dmg森精機株式会社 Three-dimensional shape manufacturing apparatus
JP2018086747A (en) * 2016-11-28 2018-06-07 前田建設工業株式会社 Construction device of construction structure using 3d printing technique

Also Published As

Publication number Publication date
JPWO2023223530A1 (en) 2023-11-23
JP7370027B1 (en) 2023-10-27

Similar Documents

Publication Publication Date Title
JP6937824B2 (en) Systems and methods for active adhesive recirculation control
JP6702846B2 (en) 3D object printer
JP2020097248A (en) System and method for operating multi-nozzle extrusion printhead in three-dimensional object printer
US7014714B2 (en) Apparatus and method for conditioning a bowling lane using precision delivery injectors
CN101639316A (en) Air knife device
JP7370027B1 (en) 3D printing equipment
KR102016686B1 (en) 3D Printer for Construction Materials
WO2021040578A1 (en) Building mixture extruder for 3d printer
JP7370026B1 (en) 3D printing equipment
JP7458041B1 (en) Fluid discharge device and three-dimensional printing device equipped with the fluid discharge device
JP7220446B2 (en) discharge system
JP2012117160A (en) Cloth-bonding apparatus and bonding program
JP6284713B2 (en) Cleaning device
MXPA02000705A (en) Coated film forming method and apparatus therefor.
JP2011110022A (en) Powder/granule spreader
JP2014135912A (en) Seed coating agent feeding apparatus
JP6233159B2 (en) Coating device
JP6254201B2 (en) Seed coating agent supply device or seed coating system
JP2010275655A (en) Cloth bonding apparatus
JP2022040690A (en) Liquid discharge machine and 3d printer
JP7482370B2 (en) Three-dimensional modeling device and method for manufacturing three-dimensional object
JP2023019527A (en) Molding data formation method
JP2002282761A (en) Method and apparatus for forming coating film
CN117507356A (en) Three-dimensional printer, working method thereof and three-dimensional printing spray head module
JP4130564B2 (en) Sanitary washing device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022545846

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942734

Country of ref document: EP

Kind code of ref document: A1