WO2023223437A1 - レジストレーション装置、レジストレーション方法、及びプログラム - Google Patents
レジストレーション装置、レジストレーション方法、及びプログラム Download PDFInfo
- Publication number
- WO2023223437A1 WO2023223437A1 PCT/JP2022/020587 JP2022020587W WO2023223437A1 WO 2023223437 A1 WO2023223437 A1 WO 2023223437A1 JP 2022020587 W JP2022020587 W JP 2022020587W WO 2023223437 A1 WO2023223437 A1 WO 2023223437A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- dimensional point
- jig
- measurement
- registration
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 28
- 238000005259 measurement Methods 0.000 claims abstract description 81
- 238000004364 calculation method Methods 0.000 claims description 49
- 238000010586 diagram Methods 0.000 description 14
- 238000012545 processing Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/16—Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/30—Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C15/00—Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
Definitions
- the present invention relates to a registration device, a registration method, and a program for aligning a plurality of three-dimensional point cloud data measured from different measurement points.
- registration refers to aligning three-dimensional point cloud data acquired from a plurality of measurement points.
- Non-Patent Document 1 describes a technique for selecting highly accurate point cloud data in multi-point measurement using a laser scanner.
- a plurality of targets are installed in a measurement range, a target is extracted from three-dimensional point cloud data, and then the point cloud data is associated through the corresponding target. Registration (alignment) between three-dimensional point group data is performed using this method.
- Non-Patent Document 2 describes an efficient point cloud data acquisition technique using a combination of a terrestrial laser scanner (TLS) and a satellite positioning system (GNSS (Global Navigation Satellite System)).
- TLS terrestrial laser scanner
- GNSS Global Navigation Satellite System
- registration (alignment) of three-dimensional point group data is performed by clarifying and measuring the measurement position of a measuring device such as a three-dimensional laser scanner or a target.
- Non-Patent Document 1 it is necessary to install multiple targets. For this reason, when the measurement range becomes wider, it becomes necessary to increase the number of targets installed according to the number of measurements, and there is a problem that it takes time to install the targets. Additionally, when work space is limited, there is the problem of having difficulty deciding where to install multiple targets.
- Non-Patent Document 2 requires an expensive measuring device equipped with a satellite positioning system (GNSS (Global Navigation Satellite System)) or the like.
- GNSS Global Navigation Satellite System
- GNSS cannot perform registration in structures with limited communication environments, such as underground tunnels, because the measurement position cannot be accurately determined.
- point cloud data acquisition technology using GNSS is suitable for measurements in places with good communication environments, but is not suitable for capturing deformations that occur in places with limited communication environments. There is a problem.
- the object of the present invention which was made in view of the above circumstances, is to measure a plurality of measurement points obtained from different measurement points based on the three-dimensional coordinates of a jig equipped with three or more connected balls installed within a measurement range.
- An object of the present invention is to provide a registration device, a registration method, and a program that align three-dimensional point group data.
- a registration device is a registration device that performs alignment between a plurality of three-dimensional point cloud data, and includes a registration device that performs alignment between a plurality of three-dimensional point cloud data.
- a measurement unit that acquires three-dimensional point cloud data of the structure, including the jig in a measurement range, and calculates center coordinates of the three or more spheres included in the jig from the three-dimensional point cloud data.
- a first calculation unit that generates initial alignment data between the plurality of three-dimensional point group data so that the center coordinates match; and a first calculation unit that generates initial alignment data between the plurality of three-dimensional point group data; and a second calculation unit that generates final alignment data between the three-dimensional point group data.
- the registration method is a registration method that performs alignment between a plurality of three-dimensional point cloud data, and is a registration method that performs alignment between a plurality of three-dimensional point cloud data.
- Registration methods including.
- a program according to the first embodiment causes a computer to function as the above registration device.
- FIG. 1 is a block diagram illustrating a configuration example of a registration device according to a first embodiment. It is a top view, a front view, and a side view which show the example of a structure of the jig comprised from three connected spheres. It is a figure showing an example of measurement in a structure.
- FIG. 6 is a diagram illustrating a coordinate system alignment process performed by the first calculation unit according to the first embodiment.
- 3 is a flowchart illustrating an example of a registration method executed by the registration apparatus according to the first embodiment.
- FIG. 2 is a block diagram illustrating a configuration example of a registration device according to a second embodiment.
- FIG. 7 is a diagram illustrating a planar element set in the second embodiment.
- FIG. 7 is a diagram illustrating a coordinate system alignment process performed by the first calculation unit according to the second embodiment.
- FIG. 1 is a block diagram showing a schematic configuration of a computer that functions as a registration device.
- FIG. 1 is a block diagram showing a configuration example of a registration device 1 according to the first embodiment.
- the registration device 1 includes a measurement section 11, a first calculation section 12, and a second calculation section 13.
- the registration device 1 performs measurement using a three-dimensional laser scanner from each of the plurality of measurement points, acquires three-dimensional point cloud data from each of the plurality of measurement points, and then collects the plurality of three-dimensional point cloud data. Perform alignment between the two.
- a control calculation circuit (controller) 30 is configured by the measurement unit 11, the first calculation unit 12, and the second calculation unit 13.
- the control calculation circuit 30 may be composed of dedicated hardware such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field-Programmable Gate Array), or may be composed of a processor, or may be composed of both. may be done.
- the jig 2 is placed in a range where the jig 2 can be measured from each of the plurality of measurement points inside the structure 20 by a measurement person.
- the jig 2 includes three or more connected balls. In the embodiment described below, it is assumed that the jig 2 includes three connected balls.
- FIG. 2 is a plan view, a front view, and a side view showing a configuration example of a jig 2 made up of three connected balls.
- the jig 2 is composed of three spheres arranged to form one plane. The reason why a sphere is used is that it can be measured as an object of the same shape from multiple different measurement points.
- FIG. 3 is a diagram showing an example of measurement in the structure 20 (underground tunnel). As shown in FIG. 3, the jig 2 including three connected balls is arranged so that the entire outer shape (three balls) of the jig 2 falls within the measurement range from measurement point A and measurement point B. .
- the measurement unit 11 uses a three-dimensional laser scanner to measure the entirety of the jig 2, which includes three or more balls, which are installed in advance at the same position inside the structure, from each of a plurality of different measurement points. Three-dimensional point group data of the structure 20 including (three or more spheres) in the measurement range is acquired. The measurement unit 11 outputs three-dimensional point group data of the structure 20 acquired from each measurement point to the first calculation unit 12.
- the three-dimensional point cloud data to be registered must include point cloud data of the jig 2 installed at the same position, measured from each of a plurality of different measurement points.
- the first calculation unit 12 calculates the center coordinates of three or more spheres included in the jig 2 from the three-dimensional point group data acquired at each of the plurality of measurement points, and makes sure that the center coordinates match. Next, initial alignment data is generated in which initial alignment between a plurality of three-dimensional point group data is completed. The first calculation section 12 outputs the initial positioning data to the second calculation section.
- FIG. 4 is a diagram illustrating the coordinate system alignment process performed by the first calculation unit 12 according to the first embodiment.
- the first calculation unit 12 reads three-dimensional point group data (referred to as data A to X) measured at each of the plurality of measurement points A to X. Data reading is performed repeatedly according to the number of data to be registered.
- the first calculation unit 12 extracts three spheres from the three-dimensional point cloud data to be registered for each of the data A to X, and calculates the center coordinates of each sphere. .
- the first calculation unit 12 calculates the coordinates so that the center coordinates of the three spheres of each data A to X match (so that the planes constituted by the center coordinates of the three spheres overlap).
- the systems are combined to perform initial alignment between a plurality of three-dimensional point group data A to X, and to generate initial alignment data A1 to X1.
- the second calculation unit 13 uses a registration algorithm from the initial registration data generated by the first calculation unit 12 to generate final registration data A2 to X2 between the plurality of three-dimensional point group data.
- the second calculation unit 13 uses a three-dimensional point group data alignment algorithm such as ICP (Iterative Closest Point) to generate final alignment data A2. ⁇ Generate X2.
- ICP Intelligent Closest Point
- the first calculation unit performs initial positioning using only the center coordinates of the sphere, and the second calculation unit performs final positioning using all three-dimensional point group data.
- the reason why the alignment is performed in two stages is that if the alignment is performed by wide-range search using ICP from the beginning, there are cases where a local solution is reached.In this disclosure, after the initial alignment is performed, A method of applying ICP was adopted.
- FIG. 5 is a flowchart illustrating an example of a registration method executed by the registration device 1 according to the first embodiment.
- step S101 the measurement person places one jig 2 including three connected balls in a range where the jig 2 can be measured from each measurement point.
- step S102 the measurement unit 11 uses a three-dimensional laser scanner to set the entire jig 2 (three balls) placed at the same position into a measurement range from each measurement point A to X of the plurality of measurement points.
- the structure 20 including the structure 20 is repeatedly measured to obtain three-dimensional point group data A to X of the structure 20.
- step S103 the first calculation unit 12 reads the three-dimensional point group data A to X of the structure 20.
- step S104 the first calculation unit 12 calculates the center coordinates of the three spheres included in the jig 2 from the three-dimensional point group data A to X.
- step S105 the first calculation unit 12 calculates a plurality of three spheres from the center coordinates of the three spheres calculated for each of the three-dimensional point group data A to X so that the center coordinates of the three spheres match. Generate initial alignment data between dimensional point cloud data.
- step S106 the second calculation unit 13 generates final alignment data A2 to X2 between the plurality of three-dimensional point group data from the initial alignment data using an alignment algorithm.
- the registration device 1 when measuring a structure in a non-GNSS environment with a three-dimensional laser scanner, it is possible to simplify the work time for installing a target, and at the same time, it is possible to register three-dimensional point cloud data. can be done efficiently.
- FIG. 6 is a block diagram showing a configuration example of a registration device 1' according to the second embodiment.
- the registration device 1' includes a measurement section 11, a first calculation section 12', and a second calculation section 13.
- the registration device 1' performs alignment between a plurality of three-dimensional point group data.
- the registration apparatus 1' according to the present embodiment is partially different from the registration apparatus 1 according to the first embodiment in the processing function of the first calculation unit 12'.
- the same configurations as in the first embodiment are given the same reference numbers as in the first embodiment, and the description thereof will be omitted as appropriate.
- the measurement section 11, the first calculation section 12', and the second calculation section 13 constitute a control calculation circuit (controller) 30'.
- the control calculation circuit 30' may be configured with dedicated hardware such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field-Programmable Gate Array), or may be configured with a processor, or may include both. may be configured.
- the first calculation unit 12' calculates the coordinates of a plane element set that is a set of a plurality of points constituting a polygonal plane having the center coordinates as vertices.
- Initial alignment data between a plurality of three-dimensional point group data is generated as shown in FIG.
- FIG. 7 is a diagram illustrating a planar element set in the second embodiment.
- the center coordinates of the three spheres are (xa1, ya1, za1), (xa2, ya2, za2), and (xa3 ,ya3,za3).
- the plane element set (Pa0,Pa1,... ,Pan) is not the three points at the center coordinates of the three spheres, but a set of multiple points that make up the plane, as shown in the balloon in Figure 7. .
- a rotation matrix R and a parallel matrix T are determined using the following equation (1) so that the square error between the planar element sets is minimized.
- FIG. 8 is a diagram illustrating the coordinate system alignment process performed by the first calculation unit 12' according to the second embodiment.
- the first calculation unit 12' reads three-dimensional point group data (referred to as data A to X) measured at each of the plurality of measurement points A to X. Data reading is performed repeatedly according to the number of data to be registered.
- the first calculation unit 12' extracts three spheres from the three-dimensional point cloud data to be registered for each data A to X, and calculates the center coordinates of each sphere. do.
- the first calculation unit 12' calculates a planar element set Pa to Px surrounded by the center coordinates of the three spheres.
- the first calculation unit 12' adjusts the coordinate systems so that the center coordinates of the three spheres or the coordinates of the plane element set of each data A to Initial alignment is performed between the point group data A to X to generate initial alignment data A1' to X1'.
- a plane element set which is a set of a plurality of points constituting a plane
- processing for convergence when setting a coordinate system can be sped up. You can expect it.
- FIG. 9 is a block diagram showing a schematic configuration of a computer functioning as registration devices 1 and 1'.
- the computers functioning as the registration devices 1 and 1' may be general-purpose computers, special-purpose computers, workstations, PCs (Personal Computers), electronic notepads, or the like.
- Program instructions may be program code, code segments, etc. to perform necessary tasks.
- the computer 100 communicates with a processor 110, a ROM (Read Only Memory) 120, a RAM (Random Access Memory) 130, and a storage 140 as storage units, an input unit 150, an output unit 160, and An interface (I/F) 170 is provided.
- a processor 110 a ROM (Read Only Memory) 120
- a RAM Random Access Memory
- storage 140 storage units
- I/F An interface
- the ROM 120 stores various programs and various data.
- the RAM 130 temporarily stores programs or data as a work area.
- the storage 140 is configured with an HDD (Hard Disk Drive) or an SSD (Solid State Drive), and stores various programs including an operating system and various data.
- a program according to the present disclosure is stored in the ROM 120 or the storage 140.
- the processor 110 is a CPU (Central Processing Unit), MPU (Micro Processing Unit), GPU (Graphics Processing Unit), DSP (Digital Signal Processor), SoC (System on a Chip), etc., and may be of the same or different type. It may be configured with a plurality of processors.
- the processor 110 reads a program from the ROM 120 or the storage 140 and executes the program using the RAM 130 as a work area, thereby controlling each of the above components and performing various calculation processes. Note that at least a part of these processing contents may be realized by hardware.
- the program may be recorded on a recording medium readable by the registration devices 1 and 1'. By using such a recording medium, it is possible to install it in the registration devices 1 and 1'.
- the recording medium on which the program is recorded may be a non-transitory recording medium.
- the non-transitory recording medium is not particularly limited, and may be, for example, a CD-ROM, a DVD-ROM, a USB (Universal Serial Bus) memory, or the like. Further, this program may be downloaded from an external device via a network.
- a registration device that aligns multiple three-dimensional point cloud data, A jig comprising three or more connected balls arranged within a measurable range from each of a plurality of measurement points inside the structure; Using a three-dimensional laser scanner, acquire three-dimensional point cloud data of the structure from each of the plurality of measurement points, including the entire jig placed at the same position in the measurement range, and Calculate center coordinates of the three or more spheres included in the jig from the three-dimensional point group data, and generate initial alignment data between the plurality of three-dimensional point group data so that the center coordinates match. and a controller that generates final alignment data between the plurality of three-dimensional point group data from the initial alignment data using an alignment algorithm.
- the controller calculates the center coordinates of the three or more spheres, and then calculates the center coordinates of the three or more spheres so that the coordinates of a plane element set, which is a set of a plurality of points constituting a polygonal plane having the center coordinates as vertices, match.
- the registration device according to supplementary note 1, which generates initial alignment data between the plurality of three-dimensional point group data.
- a registration method for aligning multiple three-dimensional point cloud data comprising: A measurement person places a jig including three or more connected balls in a range where the jig can be measured from each of a plurality of measurement points inside the structure, A registration device uses a three-dimensional laser scanner to obtain three-dimensional point cloud data of the structure from each of the plurality of measurement points, including the entire jig placed at the same position in the measurement range. , calculate the center coordinates of the three or more spheres included in the jig from the three-dimensional point group data, and calculate the initial coordinates between the plurality of three-dimensional point group data so that the center coordinates match.
- a registration method that generates alignment data and uses a alignment algorithm from the initial alignment data to generate final alignment data between the plurality of three-dimensional point group data.
- a non-temporary storage medium storing a program executable by a computer, the non-temporary storage medium storing a program that causes the computer to function as a registration device according to supplementary note 1 or 2.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
レジストレーション装置(1)は、構造物(20)の内部の複数の計測地点の各計測地点から計測可能な範囲に配置された、1つの連結された3つ以上の球を備える治具(2)と、3次元レーザスキャナを用いて、複数の計測地点の各計測地点から、同一位置に配置された治具(2)の全体を計測範囲に含む、構造物(20)の3次元点群データを取得する計測部(11)と、3次元点群データから、治具(2)が備える3つ以上の球の中心座標を算出し、中心座標が合致するように、複数の3次元点群データ間の初期位置合わせデータを生成する第1演算部(12)と、初期位置合わせデータから、位置合わせアルゴリズムを用いて、複数の3次元点群データ間の最終位置合わせデータを生成する第2演算部(13)と、を備える。
Description
本発明は、互いに異なる計測地点から計測した複数の3次元点群データ間の位置合わせを行うレジストレーション装置、レジストレーション方法、及びプログラムに関する。
従来、構造物の覆工面の落下、崩落事故等を未然に防ぐため、構造物の覆工面における浮き、剥がれ、凹凸変形等の変状が計測される。この時、3次元レーザスキャナによる計測が行われ、3次元点群データが取得される。そして、取得された3次元点群データから構造物の内空断面が正確に計測される。しかし、計測を行う範囲が広い場合、あるいは設置物等による死角が存在する場合には、1度の計測により、対象物全体の3次元点群データを取得することはできない。このため、互いに異なる計測地点から計測した複数の3次元点群データを取得する。そして、複数の計測地点から3次元点群データを取得する場合、各3次元点群データを同一の座標系のデータとするためにレジストレーションを行う必要がある。本開示において、レジストレーションとは、複数の計測地点から取得された3次元点群データ間の位置合わせを行うことをいう。
非特許文献1には、レーザースキャナによる多地点計測における高精度な点群データの選択技術が記載されている。非特許文献1に記載された技術では、計測範囲に複数のターゲットを設置し、3次元点群データの中からターゲットを抽出した後、対応するターゲットを介して点群データ間の関連付けを行うことにより3次元点群データ間のレジストレーション(位置合わせ)を行っている。
非特許文献2には、地上型レーザースキャナ(TLS)と衛星測位システム(GNSS(Global Navigation Satellite System))との組合せによる効率的な点群データの取得技術が記載されている。非特許文献2に記載された技術では、3次元レーザスキャナ、ターゲット等の測定器の測定位置を明らかにして計測することにより、3次元点群データのレジストレーション(位置合わせ)を行っている。
櫻井淳、外5名、「レーザスキャナを用いた多地点計測における高精度な点群データの選択技術の開発」、土木学会論文集F3(土木情報学)、Vol72、No2、I_209-I_218、2016。
森石一志、外1名、「ICT舗装工における点群データ取得の効率化と適用範囲拡大について」、土木学会論文集E1(舗装工学論文集第24巻)、Vol75、No2、I_77-I_85、2019。
しかし、非特許文献1に記載された技術によると、複数のターゲットの設置が必要となる。このため、計測を行う範囲が広くなると、計測回数に応じてターゲットの設置数を増やす必要が生じると共に、ターゲットの設置に時間を要するという課題がある。また、作業スペースが限られると、複数のターゲットを設置する場所に苦慮するという課題がある。
一方、非特許文献2の技術は、衛星測位システム(GNSS(Global Navigation Satellite System))等を備えた高価な測定器を必要とする。これに加え、GNSSは、地下トンネル等の通信環境が限られた構造物では、測定位置を正確に把握することができないため、レジストレーションを行うことができない。このように、GNSSによる点群データの取得技術は、通信環境が良好な場所での測定には適しているが、通信環境が限られた場所で発生する変状を捉えるのには適していないという課題がある。
かかる事情に鑑みてなされた本発明の目的は、計測範囲内に設置された、連結された3つ以上の球を備える治具の3次元座標に基づいて、互いに異なる計測地点から取得した複数の3次元点群データ間の位置合わせを行う、レジストレーション装置、レジストレーション方法、及びプログラムを提供することにある。
上記課題を解決するため、第1の実施形態に係るレジストレーション装置は、複数の3次元点群データ間の位置合わせを行うレジストレーション装置であって、構造物の内部の複数の計測地点の各計測地点から計測可能な範囲に配置された、連結された3つ以上の球を備える治具と、3次元レーザスキャナを用いて、前記複数の計測地点の各計測地点から、同一位置に配置された前記治具を計測範囲に含む、前記構造物の3次元点群データを取得する計測部と、前記3次元点群データから、前記治具が備える前記3つ以上の球の中心座標を算出し、前記中心座標が合致するように、前記複数の3次元点群データ間の初期位置合わせデータを生成する第1演算部と、前記初期位置合わせデータから、位置合わせアルゴリズムを用いて、前記複数の3次元点群データ間の最終位置合わせデータを生成する第2演算部と、を備える。
上記課題を解決するため、第1の実施形態に係るレジストレーション方法は、複数の3次元点群データ間の位置合わせを行うレジストレーション方法であって、計測員により、連結された3つ以上の球を備える治具を、構造物の内部の複数の計測地点の各計測地点から前記冶具を計測可能な範囲に配置するステップと、レジストレーション装置により、3次元レーザスキャナを用いて、前記複数の計測地点の各計測地点から、同一位置に配置された前記治具の全体を計測範囲に含む、前記構造物の3次元点群データを取得するステップと、前記レジストレーション装置により、前記3次元点群データから、前記治具が備える前記3つ以上の球の中心座標を算出するステップと、前記レジストレーション装置により、前記中心座標が合致するように、前記複数の3次元点群データ間の初期位置合わせデータを生成するステップと、前記レジストレーション装置により、前記初期位置合わせデータから、位置合わせアルゴリズムを用いて、前記複数の3次元点群データ間の最終位置合わせデータを生成するステップと、を含むレジストレーション方法。
上記課題を解決するため、第1の実施形態に係るプログラムは、コンピュータを、上記レジストレーション装置として機能させる。
本開示によれば、非GNSS環境にある構造物に対して、3次元レーザスキャナによる計測を行う際、ターゲットの設置作業時間を簡略できると同時に、3次元点群データのレジストレーションを効率的に行うことができる。
以下、本発明を実施するための形態が、図面を参照しながら詳細に説明される。本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
(第1の実施形態)
図1は、第1の実施形態に係るレジストレーション装置1の構成例を示すブロック図である。図1に示すように、レジストレーション装置1は、計測部11と、第1演算部12と、第2演算部13と、を備える。レジストレーション装置1は、複数の計測地点の各計測地点から3次元レーザスキャナによる計測を行い、複数の計測地点の各計測地点から3次元点群データを取得した後、複数の3次元点群データ間の位置合わせを行う。
図1は、第1の実施形態に係るレジストレーション装置1の構成例を示すブロック図である。図1に示すように、レジストレーション装置1は、計測部11と、第1演算部12と、第2演算部13と、を備える。レジストレーション装置1は、複数の計測地点の各計測地点から3次元レーザスキャナによる計測を行い、複数の計測地点の各計測地点から3次元点群データを取得した後、複数の3次元点群データ間の位置合わせを行う。
計測部11、第1演算部12、及び第2演算部13により制御演算回路(コントローラ)30が構成される。制御演算回路30は、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)等の専用のハードウェアによって構成されてもよいし、プロセッサによって構成されてもよいし、双方を含んで構成されてもよい。
治具2は、計測員により、構造物20の内部の複数の計測地点の各計測地点から冶具2を計測可能な範囲に配置される。治具2は、連結された3つ以上の球を備える。以下に説明する実施形態では、治具2は連結された3つの球を備えるものとする。治具2は、3次元レーザスキャナによる計測を行う際は、あらかじめ計測範囲内に1つ配置される。図2は、連結された3つの球から構成される冶具2の構成例を示す平面図、正面図、及び側面図である。図2の正面図の破線で示す領域aに示すように、冶具2は、1つの平面を構成するように配置された3つの球から構成される。球を採用する理由は、複数の異なる計測地点より同一形状の物体として計測できるためである。
図3は、構造物20(地下トンネル)における計測の一例を示す図である。図3に示すように、連結された3つの球を備える治具2は、計測地点A及び計測地点Bから治具2の全体の外形(3つの球)が計測範囲に入るように配置される。
計測部11は、3次元レーザスキャナを用いて、互いに異なる複数の計測地点の各計測地点から、予め構造物の内部の同一位置に設置された、3つ以上の球を備える治具2の全体(3つ以上の球)を計測範囲に含む、構造物20の3次元点群データを取得する。計測部11は、各計測地点から取得された、構造物20の3次元点群データを第1演算部12へ出力する。
レジストレーションの対象となる3次元点群データには、互いに異なる複数の計測地点の各計測地点から計測された、同一位置に設置した治具2の点群データが含まれている必要がある。
第1演算部12は、複数の計測地点の各計測地点で取得された3次元点群データから、治具2が備える3つ以上の球の中心座標を算出し、該中心座標が合致するように、複数の3次元点群データ間の初期位置合わせを完了した初期位置合わせデータを生成する。第1演算部12は、初期位置合わせデータを第2演算部へ出力する。
図4は、第1の実施形態に係る第1演算部12による座標系の位置合わせ処理を説明する図である。図4に示すように、(i)第1演算部12は、複数の計測地点の各計測地点A~Xにおいて計測された3次元点群データ(データA~Xという)を読み込む。データの読み込みは、レジストレーションを行うデータの数に応じて繰り返し実施される。(ii)つぎに、第1演算部12は、データA~X毎に、レジストレーションの対象となる3次元点群データ内から3つの球を抽出し、それぞの球の中心座標を算出する。(iii)そして、第1演算部12は、データA~Xの各データの3つの球の中心座標が合致するように(3つの球の中心座標から構成される平面が重なるにように)座標系を合わせて、複数の3次元点群データA~X間の初期の位置合わせを行い、初期位置合わせデータA1~X1を生成する。
第2演算部13は、第1演算部12により生成された初期位置合わせデータから、位置合わせアルゴリズムを用いて、複数の3次元点群データ間の最終位置合わせデータA2~X2を生成する。第2演算部13は、第1演算部12が初期の位置合わせを行った後に、ICP(Iterative Closest Point)等の3次元点群データの位置合わせアルゴリズムを用いて、最終的な位置合わせデータA2~X2を生成する。第1演算部では球の中心座標のみを用いて初期位置合わせを行い、第2演算部では3次元点群データのすべてを用いて最終位置合わせを行う。2段階に分けて位置合わせを行う理由は、初めからICPにより広範囲の探索による位置合わせを行うと、局所的な解に陥るケースがあるためであり、本開示では初期の位置合わせを行った後にICPを適用する手法を採用した。
図5は、第1の実施形態に係るレジストレーション装置1が実行するレジストレーション方法の一例を示すフローチャートである。
ステップS101では、計測員が、連結された3つの球を備える冶具2を、各計測地点から冶具2を計測可能な範囲に、1つ配置する。
ステップS102では、計測部11が、3次元レーザスキャナを用いて、複数の計測地点の各計測地点A~Xから、同一位置に配置された治具2の全体(3つの球)を計測範囲に含む、構造物20を繰り返し計測し、構造物20の3次元点群データA~Xを取得する。
ステップS103では、第1演算部12が、構造物20の3次元点群データA~Xを読み込む。
ステップS104では、第1演算部12が、3次元点群データA~Xから、治具2が備える3つの球の中心座標を算出する。
ステップS105では、第1演算部12が、3次元点群データA~Xの各データごとに算出された3つの球の中心座標から、3つの球の中心座標が合致するように、複数の3次元点群データ間の初期位置合わせデータを生成する。
ステップS106では、第2演算部13が、初期位置合わせデータから、位置合わせアルゴリズムを用いて、複数の3次元点群データ間の最終位置合わせデータA2~X2を生成する。
なお、3次元点群データを取得したい範囲を変えずに計測点を追加する場合には、同一位置に治具2を設置した状態で、図5のフローチャートにより、追加された計測点での計測を行う。3次元点群データを取得したい範囲が変わる場合には、治具2の位置を移動させ、最初の計測点を計測点Aとして、図5のフローチャートを最初から実行する。
本実施形態に係るレジストレーション装置1によれば、非GNSS環境における構造物に対して3次元レーザスキャナによる計測を行う際、ターゲットの設置作業時間を簡略できると同時に3次元点群データのレジストレーションを効率的に行うことができる。
(第2の実施形態)
図6は、第2の実施形態に係るレジストレーション装置1′の構成例を示すブロック図である。図6に示すように、レジストレーション装置1′は、計測部11と、第1演算部12′と、第2演算部13と、を備える。レジストレーション装置1′は、複数の3次元点群データ間の位置合わせを行う。本実施形態に係るレジストレーション装置1′は、第1の実施形態に係るレジストレーション装置1と比較して、第1演算部12′の処理機能が一部相違する。第1の実施形態と同一の構成については、第1の実施形態と同一の参照番号を付して適宜説明を省略する。
図6は、第2の実施形態に係るレジストレーション装置1′の構成例を示すブロック図である。図6に示すように、レジストレーション装置1′は、計測部11と、第1演算部12′と、第2演算部13と、を備える。レジストレーション装置1′は、複数の3次元点群データ間の位置合わせを行う。本実施形態に係るレジストレーション装置1′は、第1の実施形態に係るレジストレーション装置1と比較して、第1演算部12′の処理機能が一部相違する。第1の実施形態と同一の構成については、第1の実施形態と同一の参照番号を付して適宜説明を省略する。
計測部11、第1演算部12′、及び第2演算部13により制御演算回路(コントローラ)30′が構成される。制御演算回路30′は、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)等の専用のハードウェアによって構成されてもよいし、プロセッサによって構成されてもよいし、双方を含んで構成されてもよい。
第1演算部12′は、3つ以上の球の中心座標を算出した後、該中心座標を頂点とする多角形状の平面を構成する複数の点の集合である平面要素集合の座標が合致するように、複数の3次元点群データ間の初期位置合わせデータを生成する。
図7は、第2の実施形態における平面要素集合を説明する図である。治具2が連結された3つの球を備える場合には、図7に示すように、3つの球の中心座標は、(xa1,ya1,za1)、(xa2,ya2,za2)、及び(xa3,ya3,za3)で表される。それに対し、平面要素集合(Pa0,Pa1,… ,Pan)は、図7の吹き出しに示されるように、3つの球の中心座標の3点ではなく、平面を構成する複数の点の集合である。
また、3つ以上の平面要素集合(Pc等)が存在する場合は、Pa、Pbで算出した座標系を基に、上記式(1)を適用する。
図8は、第2の実施形態に係る第1演算部12′による座標系の位置合わせ処理を説明する図である。図8に示すように、(i)第1演算部12′は、複数の計測地点の各計測地点A~Xにおいて計測された3次元点群データ(データA~Xという)を読み込む。データの読み込みは、レジストレーションを行うデータの数に応じて繰り返し実施される。(ii)つぎに、第1演算部12′は、データA~X毎に、レジストレーションの対象となる3次元点群データ内から3つの球を抽出し、それぞの球の中心座標を算出する。(iii)さらに、第1演算部12′は、3つの球の中心座標に囲われる平面要素集合Pa~Pxを算出する。(iv)最後に、第1演算部12′は、データA~Xの各データの3つの球の中心座標、あるいは平面要素集合の座標が合致するように座標系を合わせて、複数の3次元点群データA~X間の初期の位置合わせを行い、初期位置合わせデータA1′~X1′を生成する。
本実施形態に係るレジストレーション装置1′によれば、平面を構成する複数の点の集合である平面要素集合を利用することにより、座標系を設定する際の収束に向けた処理の高速化が期待できる。
上記のレジストレーション装置1及び1′を機能させるために、プログラム命令を実行可能なコンピュータを用いることも可能である。図9は、レジストレーション装置1及び1′として機能するコンピュータの概略構成を示すブロック図である。ここで、レジストレーション装置1及び1′として機能するコンピュータは、汎用コンピュータ、専用コンピュータ、ワークステーション、PC(Personal Computer)、電子ノートパッド等であってもよい。プログラム命令は、必要なタスクを実行するためのプログラムコード、コードセグメント等であってもよい。
図9に示すように、コンピュータ100は、プロセッサ110と、記憶部としてROM(Read Only Memory)120、RAM(Random Access Memory)130、及びストレージ140と、入力部150と、出力部160と、通信インターフェース(I/F)170と、を備える。各構成は、バス180を介して相互に通信可能に接続されている。
ROM120は、各種プログラム及び各種データを保存する。RAM130は、作業領域として一時的にプログラム又はデータを記憶する。ストレージ140は、HDD(Hard Disk Drive)又はSSD(Solid State Drive)により構成され、オペレーティングシステムを含む各種プログラム及び各種データを保存する。本開示では、ROM120又はストレージ140に、本開示に係るプログラムが保存されている。
プロセッサ110は、具体的にはCPU(Central Processing Unit)、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)、DSP(Digital Signal Processor)、SoC(System on a Chip)等であり、同種又は異種の複数のプロセッサにより構成されてもよい。プロセッサ110は、ROM120又はストレージ140からプログラムを読み出し、RAM130を作業領域としてプログラムを実行することで、上記各構成の制御及び各種の演算処理を行う。なお、これらの処理内容の少なくとも一部をハードウェアで実現することとしてもよい。
プログラムは、レジストレーション装置1及び1′が読み取り可能な記録媒体に記録されていてもよい。このような記録媒体を用いれば、レジストレーション装置1及び1′にインストールすることが可能である。ここで、プログラムが記録された記録媒体は、非一過性(non-transitory)の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROM、DVD-ROM、USB(Universal Serial Bus)メモリ等であってもよい。また、このプログラムは、ネットワークを介して外部装置からダウンロードされる形態としてもよい。
以上の実施形態に関し、更に以下の付記を開示する。
(付記項1)
複数の3次元点群データ間の位置合わせを行うレジストレーション装置であって、
構造物の内部の複数の計測地点の各計測地点から計測可能な範囲に配置された、連結された3つ以上の球を備える治具と、
3次元レーザスキャナを用いて、前記複数の計測地点の各計測地点から、同一位置に配置された前記治具の全体を計測範囲に含む、前記構造物の3次元点群データを取得し、前記3次元点群データから、前記治具が備える前記3つ以上の球の中心座標を算出し、前記中心座標が合致するように、前記複数の3次元点群データ間の初期位置合わせデータを生成し、前記初期位置合わせデータから、位置合わせアルゴリズムを用いて、前記複数の3次元点群データ間の最終位置合わせデータを生成するコントローラと、を備えるレジストレーション装置。
(付記項2)
前記コントローラは、前記3つ以上の球の中心座標を算出した後、該中心座標を頂点とする多角形状の平面を構成する複数の点の集合である平面要素集合の座標が合致するように、前記複数の3次元点群データ間の初期合わせデータを生成する、付記項1に記載のレジストレーション装置。
(付記項3)
複数の3次元点群データ間の位置合わせを行うレジストレーション方法であって、
計測員により、連結された3つ以上の球を備える治具を、構造物の内部の複数の計測地点の各計測地点から前記冶具を計測可能な範囲に配置し、
レジストレーション装置により、3次元レーザスキャナを用いて、前記複数の計測地点の各計測地点から、同一位置に配置された前記治具の全体を計測範囲に含む、前記構造物の3次元点群データを取得し、前記3次元点群データから、前記治具が備える前記3つ以上の球の中心座標を算出し、前記中心座標が合致するように、前記複数の3次元点群データ間の初期位置合わせデータを生成し、前記初期位置合わせデータから、位置合わせアルゴリズムを用いて、前記複数の3次元点群データ間の最終位置合わせデータを生成するレジストレーション方法。
(付記項4)
コンピュータによって実行可能なプログラムを記憶した非一時的記憶媒体であって、前記コンピュータを付記項1又は2に記載のレジストレーション装置として機能させるプログラムを記憶した非一時的記憶媒体。
複数の3次元点群データ間の位置合わせを行うレジストレーション装置であって、
構造物の内部の複数の計測地点の各計測地点から計測可能な範囲に配置された、連結された3つ以上の球を備える治具と、
3次元レーザスキャナを用いて、前記複数の計測地点の各計測地点から、同一位置に配置された前記治具の全体を計測範囲に含む、前記構造物の3次元点群データを取得し、前記3次元点群データから、前記治具が備える前記3つ以上の球の中心座標を算出し、前記中心座標が合致するように、前記複数の3次元点群データ間の初期位置合わせデータを生成し、前記初期位置合わせデータから、位置合わせアルゴリズムを用いて、前記複数の3次元点群データ間の最終位置合わせデータを生成するコントローラと、を備えるレジストレーション装置。
(付記項2)
前記コントローラは、前記3つ以上の球の中心座標を算出した後、該中心座標を頂点とする多角形状の平面を構成する複数の点の集合である平面要素集合の座標が合致するように、前記複数の3次元点群データ間の初期合わせデータを生成する、付記項1に記載のレジストレーション装置。
(付記項3)
複数の3次元点群データ間の位置合わせを行うレジストレーション方法であって、
計測員により、連結された3つ以上の球を備える治具を、構造物の内部の複数の計測地点の各計測地点から前記冶具を計測可能な範囲に配置し、
レジストレーション装置により、3次元レーザスキャナを用いて、前記複数の計測地点の各計測地点から、同一位置に配置された前記治具の全体を計測範囲に含む、前記構造物の3次元点群データを取得し、前記3次元点群データから、前記治具が備える前記3つ以上の球の中心座標を算出し、前記中心座標が合致するように、前記複数の3次元点群データ間の初期位置合わせデータを生成し、前記初期位置合わせデータから、位置合わせアルゴリズムを用いて、前記複数の3次元点群データ間の最終位置合わせデータを生成するレジストレーション方法。
(付記項4)
コンピュータによって実行可能なプログラムを記憶した非一時的記憶媒体であって、前記コンピュータを付記項1又は2に記載のレジストレーション装置として機能させるプログラムを記憶した非一時的記憶媒体。
上述の実施形態は代表的な例として説明したが、本開示の趣旨及び範囲内で、多くの変更及び置換ができることは当業者に明らかである。したがって、本発明は、上述の実施形態によって制限するものと解するべきではなく、請求の範囲から逸脱することなく、種々の変形又は変更が可能である。たとえば、実施形態の構成図に記載の複数の構成ブロックを1つに組み合わせたり、あるいは1つの構成ブロックを分割したりすることが可能である。
1,1′ レジストレーション装置
2 冶具(連結された3つ以上の球を備える治具)
11 計測部(3次元レーザスキャナ)
12,12′ 第1演算部
13 第2演算部
20 構造物
30,30′ 制御演算回路(コントローラ)
100 コンピュータ
110 プロセッサ
120 ROM
130 RAM
140 ストレージ
150 入力部
160 出力部
170 通信インターフェース(I/F)
180 バス
2 冶具(連結された3つ以上の球を備える治具)
11 計測部(3次元レーザスキャナ)
12,12′ 第1演算部
13 第2演算部
20 構造物
30,30′ 制御演算回路(コントローラ)
100 コンピュータ
110 プロセッサ
120 ROM
130 RAM
140 ストレージ
150 入力部
160 出力部
170 通信インターフェース(I/F)
180 バス
Claims (4)
- 複数の3次元点群データ間の位置合わせを行うレジストレーション装置であって、
構造物の内部の複数の計測地点の各計測地点から計測可能な範囲に配置された、連結された3つ以上の球を備える治具と、
3次元レーザスキャナを用いて、前記複数の計測地点の各計測地点から、同一位置に配置された前記治具の全体を計測範囲に含む、前記構造物の3次元点群データを取得する計測部と、
前記3次元点群データから、前記治具が備える前記3つ以上の球の中心座標を算出し、前記中心座標が合致するように、前記複数の3次元点群データ間の初期位置合わせデータを生成する第1演算部と、
前記初期位置合わせデータから、位置合わせアルゴリズムを用いて、前記複数の3次元点群データ間の最終位置合わせデータを生成する第2演算部と、
を備えるレジストレーション装置。 - 前記第1演算部は、前記3つ以上の球の中心座標を算出した後、該中心座標を頂点とする多角形状の平面を構成する複数の点の集合である平面要素集合の座標が合致するように、前記複数の3次元点群データ間の初期合わせデータを生成する、請求項1に記載のレジストレーション装置。
- 複数の3次元点群データ間の位置合わせを行うレジストレーション方法であって、
計測員により、連結された3つ以上の球を備える治具を、構造物の内部の複数の計測地点の各計測地点から前記冶具の全体を計測可能な範囲に配置するステップと、
レジストレーション装置により、3次元レーザスキャナを用いて、前記複数の計測地点の各計測地点から、同一位置に配置された前記治具の全体を計測範囲に含む、前記構造物の3次元点群データを取得するステップと、
前記レジストレーション装置により、前記3次元点群データから、前記治具が備える前記3つ以上の球の中心座標を算出するステップと、
前記レジストレーション装置により、前記中心座標が合致するように、前記複数の3次元点群データ間の初期位置合わせデータを生成するステップと、
前記レジストレーション装置により、前記初期位置合わせデータから、位置合わせアルゴリズムを用いて、前記複数の3次元点群データ間の最終位置合わせデータを生成するステップと、
を含むレジストレーション方法。 - コンピュータを、請求項1又は2に記載のレジストレーション装置として機能させるためのプログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/020587 WO2023223437A1 (ja) | 2022-05-17 | 2022-05-17 | レジストレーション装置、レジストレーション方法、及びプログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/020587 WO2023223437A1 (ja) | 2022-05-17 | 2022-05-17 | レジストレーション装置、レジストレーション方法、及びプログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023223437A1 true WO2023223437A1 (ja) | 2023-11-23 |
Family
ID=88834899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/020587 WO2023223437A1 (ja) | 2022-05-17 | 2022-05-17 | レジストレーション装置、レジストレーション方法、及びプログラム |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023223437A1 (ja) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017106749A (ja) * | 2015-12-07 | 2017-06-15 | 株式会社Hielero | 点群データ取得システム及びその方法 |
-
2022
- 2022-05-17 WO PCT/JP2022/020587 patent/WO2023223437A1/ja unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017106749A (ja) * | 2015-12-07 | 2017-06-15 | 株式会社Hielero | 点群データ取得システム及びその方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110764111B (zh) | 雷达坐标与大地坐标的转换方法、装置、系统及介质 | |
JP6591131B1 (ja) | 構造物計測装置および構造物計測方法 | |
US20220230390A1 (en) | Method in constructing a model of a scenery and device therefor | |
KR20160071127A (ko) | 시뮬레이션 시스템에서의 오브젝트 자동 이동 방법 및 이를 적용한 시뮬레이션 시스템 | |
CN116153800A (zh) | 晶圆缺陷定位方法 | |
KR101499006B1 (ko) | 보존적 물리량을 위도-경도 좌표계로부터 회전된 육면체구 좌표계로 변환하는 방법 및 이를 수행하는 하드웨어 장치 | |
TW201523183A (zh) | 旋轉台精度補償系統及方法 | |
WO2023223437A1 (ja) | レジストレーション装置、レジストレーション方法、及びプログラム | |
JP2017009557A (ja) | 境界点抽出方法およびトータルステーションを用いた測定方法 | |
JP7024405B2 (ja) | 情報処理装置、プログラム及び情報処理方法 | |
JP2020041950A (ja) | 測量装置、測量方法、及びプログラム | |
JP2006286019A (ja) | 三次元構造物形状の自動生成装置、自動生成方法、そのプログラム、及びそのプログラムを記録した記録媒体 | |
JP6564738B2 (ja) | 図面作成装置及び図面作成方法 | |
JP2023112932A (ja) | 浸水高推定装置およびプログラム | |
US11922659B2 (en) | Coordinate calculation apparatus, coordinate calculation method, and computer-readable recording medium | |
JP7235204B2 (ja) | 高精度変位マップ生成方法、高精度変位マップ生成装置、および高精度変位マップ生成プログラム | |
RU150423U1 (ru) | Адаптивная автоматизированная система согласования границ кадастровых участков | |
JP7133821B1 (ja) | 任意座標系点群による、自動採寸プログラム、自動採寸装置および自動採寸方法 | |
US20210110513A1 (en) | Image processing method and image processing apparatus | |
JP2024154560A (ja) | レール標高修正方法、レール標高修正補助装置、レール標高修正補助プログラム | |
CN117690038A (zh) | 一种目标遥感数据的展示方法、装置及计算设备 | |
JP2023087700A (ja) | 橋梁データ抽出装置、橋梁データ抽出方法、及びプログラム | |
KR20220078217A (ko) | 위치 좌표 및 그에 기반하여 계산된 방위각을 사용하여 기반 시설에 대응하는 증강현실 콘텐츠를 생성하는 방법 및 장치 | |
Rankin | Map making from tables | |
JP2024027718A (ja) | 解析装置、解析方法、及びプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22942642 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024521439 Country of ref document: JP Kind code of ref document: A |