WO2023222026A1 - 电动工具系统及其控制方法 - Google Patents

电动工具系统及其控制方法 Download PDF

Info

Publication number
WO2023222026A1
WO2023222026A1 PCT/CN2023/094742 CN2023094742W WO2023222026A1 WO 2023222026 A1 WO2023222026 A1 WO 2023222026A1 CN 2023094742 W CN2023094742 W CN 2023094742W WO 2023222026 A1 WO2023222026 A1 WO 2023222026A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
current
power switch
detection
current controller
Prior art date
Application number
PCT/CN2023/094742
Other languages
English (en)
French (fr)
Inventor
姚凯
湛康
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Publication of WO2023222026A1 publication Critical patent/WO2023222026A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • H02P25/0805Reluctance motors whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/28Arrangements for controlling current

Definitions

  • the present invention relates to the technical field of electric tools, and in particular to an electric tool system and a control method thereof.
  • an electric tool system including:
  • the drive circuit includes a power switch tube, which receives a control signal and controls the operation of the motor;
  • a first detection circuit connected to the power switch tube, detects and obtains a first detection value used to characterize the current information passing through the power switch tube;
  • a second detection circuit is connected to the motor and detects a second detection value used to characterize the rotation speed of the motor
  • a speed controller connected to the second detection circuit, used to receive the set reference speed value and determine the set value based on the reference speed value and the second detection value;
  • a current controller is respectively connected to the first detection circuit, the speed controller and the drive circuit, and the current controller forms a supply voltage to the power switch tube according to the set value and the first detection value. of the control signal.
  • the control signal provided by the current controller has several control periods. In the current control period, if the set value is higher than the first detection value, then in the remaining time interval of the current time interval, if the set value is higher than the first detection value, Within a period of time, the current controller controls the power switch to open until it controls the power switch to close at the beginning of the next control period; if in the current control period, the set value is lower than or equal to If the first detection value is determined, within the remaining time of the current time interval, the current controller controls the power switch to maintain the current state until the next control period.
  • the set value is higher than the first detection value, and the current controller outputs a control signal that reduces the duty cycle to the drive circuit; the set value is lower than the first detection value. For the first detection value, the current controller outputs a control signal to increase the duty cycle to the driving circuit.
  • the current controller includes a comparator
  • the power tool system further includes a first preset value
  • the comparator is used to compare the first detection value and the first preset value, the The first preset value is greater than the set value
  • the control signal provided by the current controller has several control periods. In the current control period, the first detection value exceeds the first preset value. In the remaining time of the current time interval, the current controller The power switch tube is controlled to be turned off until the power switch tube is controlled to be turned on at the beginning of the next control period.
  • the current controller controls the motor to stop when the first detection value exceeds the first preset value for a preset period of time.
  • the motor is a switched reluctance motor.
  • the comparator includes a first input terminal, a second input terminal and an output terminal.
  • the first input terminal is connected to the first detection circuit, and the second input terminal is connected to the current control circuit.
  • the current controller outputs the set value to the second input terminal, and the output terminal is connected to the current controller for outputting the comparison result to the current controller.
  • the comparator and the current controller are integrated into a main control chip.
  • the main control chip includes several pins, and the first detection circuit is connected to the pins corresponding to the comparator. .
  • a register is further connected between the current controller and the second input terminal.
  • a method for controlling a power tool system wherein the power tool system includes a motor, a drive circuit, a first detection circuit, a second detection circuit, a speed controller and a current Controller, the drive circuit includes a power switch tube, the power switch tube receives a control signal and controls the operation of the motor, the first detection circuit is connected to the power switch tube, and is used for detecting the obtained signal to characterize the passage of the motor.
  • the first detection value of the current information of the power switch tube, the second detection circuit is connected to the motor, and is used to detect the second detection value used to characterize the rotation speed of the motor, and the speed controller is connected to the second detection circuit , used to receive the set reference speed value and determine the set value according to the reference speed value and the second detection value;
  • the control method includes:
  • a control signal for the power switch tube is generated according to the first detection value and the set value.
  • control signal includes several control cycles; the control method further includes:
  • the current controller controls the power switch to turn off during the remaining time of the current time interval until the next control period.
  • the start of the cycle controls the closing of the power switch; if in the current control cycle, the set value is lower than or equal to the first detection value, then in the remaining time of the current time interval, the current controller controls The power switch tube maintains the current state until the next control cycle.
  • the above-mentioned electric tool system and its control method can detect and obtain the first detection value representing the current information of the power switch tube in real time through the detection circuit, and compare the first detection value and the set value in real time through the comparator, and output the corresponding comparison result to
  • the current controller forms a control signal to control the operation of the motor based on the set value and the first detection value, so that the speed value of the motor reaches the reference speed value and achieves stable speed.
  • Figure 1 is a schematic diagram of the principle of an implementation of the power tool system provided by the embodiment of the present application.
  • Figure 2 is a schematic waveform diagram of the preset duty cycle and the actual duty cycle corresponding to the current limiting mode of the comparator used in this application;
  • FIG. 3 is a schematic principle diagram of another implementation of the power tool system provided by the embodiment of the present application.
  • Figure 4 is a schematic principle diagram of another implementation of the power tool system provided by the embodiment of the present application.
  • Figure 5 is a flow chart of an implementation method of the control method of the power tool system provided by the embodiment of the present application.
  • FIG. 6 is a flow chart of another implementation of the control method of the power tool system provided by the embodiment of the present application.
  • connection In the present invention, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated into one; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise specified limitations. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific circumstances.
  • first and second are used for descriptive purposes only and shall not be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • An embodiment of the present application provides an electric tool system to solve the problem of unstable motor speed in the electric tool system.
  • the electric tool system provided by this embodiment includes a motor 100 , a drive circuit 200 , a first detection circuit 300 , a second detection circuit 600 , a speed controller 800 and a current controller 900 .
  • the motor 100 is connected to the tool body and is used to drive the tool body to work;
  • the drive circuit 200 includes a power switch tube, which receives a control signal and controls the operation of the motor 100;
  • the first detection circuit 300 is connected to the power switch tube to detect the The first detection value represents the current information passing through the power switch;
  • the second detection circuit 600 is connected to the motor 100 and detects the second detection value used to characterize the motor speed;
  • the speed controller 800 is connected to the second detection circuit , used to receive the set reference speed value and determine the set value based on the reference speed value and the second detection value.
  • the reference speed value here may include a target speed value that the motor is expected to maintain.
  • the motor speed is required to be stable at 20,000 rpm (reference speed value), then this parameter will be set in the software.
  • the current controller 900 is respectively connected to the first detection circuit 300, the speed controller 800 and the drive circuit 200.
  • the current controller 900 forms a direction according to the set value and the first detection value.
  • the tool body may include the tool body of an angle grinder, an electric drill, an electric hammer, an electric wrench and other similar electric tools.
  • the power switch tube can be a MOSFET, IGBT and other power devices.
  • the motor 100 is connected to the tool body and used to provide driving force for the tool body.
  • the motor can be a switched reluctance motor or a brushless motor, etc.
  • the drive output shaft of the motor 100 is connected to the grinding disc of the angle grinder, and the driving force is transmitted to the grinding disc through the drive output shaft to drive the grinding disc to rotate.
  • the driving circuit 200 is electrically connected to the motor 100 and used to drive the motor 100 .
  • the drive circuit 200 may include several power switch tubes.
  • the gate end of the power switch tube is the control signal input end of the drive circuit 200 and is electrically connected to the output end of the current controller 900 in the main control chip.
  • the source and drain are connected to the motor 100.
  • the power switch tube changes its on-off state according to the control signal output by the current controller 900, thereby changing the voltage condition on the motor 100, thereby changing the motor speed, thereby controlling the working condition of the tool body.
  • the first detection circuit 300 is connected to the power switch tube, and detects and obtains a first detection value used to characterize the current information passing through the power switch tube. Specifically, the first detection circuit 300 is connected to the circuit where the power switch tube is located, and the first detection value detected by it can represent the current information passing through the power switch tube.
  • the first detection value can be the current value, or it can be the same as the current value.
  • the first detection value is positively correlated with the current value flowing through the power switch tube. That is, the larger the first detection value is, the greater the current flowing through the power switch tube is.
  • the first detection value representing the current information passing through the power switch tube can be detected in real time through the first detection circuit 300.
  • the speed controller 800 is connected to the current controller 900, and the speed controller 800 is used to receive the set reference speed. value, the reference speed value may include a target speed value that the motor is expected to maintain.
  • the speed controller 800 determines the difference between the reference speed value and the actually detected second detection value as a change amount, and superimposes the change amount onto the second detection value to obtain a set value. Further, the current controller 900 forms the control signal provided to the power switch tube according to the set value and the first detection value.
  • the steady speed of the motor can be achieved by adjusting the closing/opening of the power switch tube.
  • the control signal provided by the current controller 900 has several control periods. In the current control period, if the set value is higher than the first detection value, the current controller will The power switch tube is controlled to be turned off until the power switch tube is controlled to be turned on at the beginning of the next control period. To reduce the energy supply to the motor and reduce the speed to reach the reference speed value.
  • the current controller controls the power switch to maintain the current state until later in the remaining time of the current time interval. a control cycle. To increase the energy supply of the motor and increase the rotation speed to reach the reference speed value.
  • the attributes of the first detected value and the set value are consistent. That is, if the first detection value is a current value, the set value can be directly a current value value; if the first detection value is the voltage value, the set value is the voltage value.
  • the rotation speed of the motor can always be maintained around the reference speed value to achieve stable speed.
  • the current controller 900 may be provided with a comparator or AD software sampling. Taking the comparator as an example, the input terminal of the comparator is connected to the output terminal of the first detection circuit 300. That is, the first detection circuit 300 can detect in real time. The first detection value is input to the comparator. As long as the comparator function is turned on, the comparator compares the first detection value with the set value and outputs the corresponding comparison result. The current controller 900 can The obtained comparison result controls the closing or opening of the power switch to control the current, thereby controlling the rotation speed of the motor to stabilize the rotation speed of the motor. Moreover, during the above process, the current controller 900 does not need to consume computing resources, ensuring no lag in control and improving the reliability of the power tool system.
  • the setting value can change with the change of the real-time speed of the motor.
  • a reference speed value is preset according to the demand, the real-time speed difference is determined based on the difference between the fixed speed value and the real-time speed value of the motor, and then the real-time speed difference is determined based on the real-time speed value of the motor.
  • the rotational speed difference determines the real-time set value (which may be a current value), and then compares the real-time set value with the real-time first detection value for subsequent control processes.
  • the first detection value is the current value a
  • the current set value is b
  • the upper limit value is h
  • the lower limit value is g
  • h is a positive number
  • g is a negative number.
  • the motor speed is too slow.
  • the power switch can be controlled to close to increase the current provided by the bus to the motor and increase the motor speed. Repeatedly executing the above control process can stabilize the current value passing through the power switch tube within a certain range, thereby controlling the operating speed of the motor within the required range to achieve stable operation of the motor.
  • the setting value can be determined according to actual needs. The larger the setting value, the greater the output torque of the motor during the entire control process. Excessive output torque will cause damage to the power switch tube or motor. Therefore, it can meet the product working requirements and avoid Under the premise that the device is damaged, set the setting value reasonably.
  • the motor is a brushless motor, and the speed can be stabilized by adjusting the duty cycle.
  • the control signal includes a PWM signal.
  • the current controller When the set value is higher than the first detection value, the current controller outputs a control signal that reduces the duty cycle to the drive circuit; when the set value is lower than the first detection value, the current controller The current controller outputs a control signal to increase the duty cycle to the driving circuit. If the setting value is the same as the first detection value, the original control signal is sent to the driving circuit.
  • the duty cycle can be used as a control parameter of the current controller. The effect of reducing the duty cycle is to gradually reduce the power, reduce the energy supply of the motor, and reduce the rotation speed to reach the reference speed value.
  • the effect of increasing the duty cycle is to increase the power, increase the energy supply of the motor, and increase the speed to reach the reference speed value.
  • the first detection value in addition to achieving the purpose of speed stabilization by comparing the first detection value with the set value, the first detection value can also be compared with the first preset value to further realize current limiting and thereby improve the speed. Blockage resistance.
  • the first preset value is greater than the set value.
  • a first preset value can be set, and the first preset value is a fixed value.
  • the current controller includes a comparator
  • the power tool system further includes a first preset value
  • the comparator is used to compare the first detection value and the first preset value, the The first preset value is greater than the set value; the control signal provided by the current controller has several control periods. In the current control period, the first detection value exceeds the first preset value.
  • the current controller controls the power switch to turn off until the next control period. The start controls the power switch to close. That is, if an excessive current occurs during the current control cycle, the power switch tube remains in the off state during the remaining time of the current control cycle, and the periodic control of the power switch tube is restored when the next control cycle comes; Or the power switch tube is kept in the off state in several subsequent control cycles.
  • the power switch tube is kept in the off state in the following two control cycles.
  • the cycle of the power switch tube is restored.
  • periodic control or the power switch tube is kept in the off state during the subsequent 4 control cycles, and the periodic control of the power switch tube is restored when the fifth control cycle comes.
  • the time interval can be set according to actual needs. Not listed here.
  • the current controller can stop supplying power to the motor, that is, control the motor to stop.
  • the preset duration can be set to 5 seconds, 6 seconds, 8 seconds, etc., with 5 seconds being preferred.
  • the hardware control method adopted in this embodiment effectively reduces the processing time and resources consumed within the current controller, and avoids large current fluctuations and current flow caused by control lag. Problems of excessive power, damage to power switch tubes and motors.
  • the comparator 410 includes a first input terminal, a second input terminal and an output terminal.
  • the first input terminal is connected to the first detection circuit 300
  • the second input terminal is connected to the current controller 900
  • the current controller 900 outputs the set value to the second input terminal
  • the output terminal of the comparator 410 is connected to the current controller 900 for outputting the comparison result to the current controller 900 .
  • the first input terminal of the comparator is connected to the output terminal of the first detection circuit 300 and receives the first detection value output by the first detection circuit 300.
  • the second input terminal of the comparator is connected to the output terminal of the current controller 900 and receives the current controller 900. After comparing the output set value with the first detection value and the set value internally, the comparator outputs the comparison result to the current controller 900 through the output terminal.
  • FIG 2 is a waveform diagram corresponding to the current limiting implemented through the hardware control method in this embodiment.
  • each PWM control cycle includes alternating high-level signals and low-level signals (preset duty cycle).
  • the current exceeds the limit. moment, the actual duty cycle is immediately lowered, and there is no response lag problem. It can be seen that the response speed of the hardware current limiting solution in this embodiment is faster.
  • the current controller 900 cuts the current high-level signal to low level, that is, turns off the power switch tube, and maintains the control signal during the remaining time of the second PWM control cycle. In the low level state, until the third PWM control period arrives, the current controller 900 resumes high and low level signal switching control on the power switch tube.
  • the subsequent management and control of power switch tubes is also based on the above method.
  • a register 430 is further connected between the current controller 900 and the second input terminal, and the current controller 900 configures the first preset value in the register 430 .
  • the current controller 900 can configure the first preset value in the register 430 in advance.
  • the register 430 outputs the first preset value to the comparator to provide a comparison object, which is relatively simple to implement.
  • the comparator and the current controller are integrated into the main control chip.
  • the main control chip includes several pins, and the first detection circuit 300 is connected to the pins corresponding to the comparator 410 .
  • the comparator 410 and the current controller 900 are integrated into the same main control chip, which improves the integration level of the power tool system, and is more conducive to signal transmission between the comparator 410 and the current controller 900 and improves signal transmission efficiency.
  • the main control chip includes several pins for external connection. The output end of the comparator 410 is connected to the external connection pin on the main control chip. That is, the output end of the comparator is led out to facilitate connection with the output end of the detection circuit.
  • an interrupt signal is output to the current controller 900 , and the current controller 900
  • the power switch is controlled to close or open, where the preset results include the difference between the first detection value and the set value exceeding the upper limit, and the difference between the first detection value and the set value exceeding The lower limit value and the first detection value exceed any one or more of the first preset values.
  • the current controller 900 controls the driving circuit 200 according to the preset control signal, if it receives an interrupt signal from the comparator, it stops controlling the driving circuit 200 according to the original control signal, and directly outputs the open or closed state. Power switch tube in drive circuit 200 signal of. That is, the current controller 900 does not need to perform internal calculations, saving internal resources and improving control efficiency.
  • the interrupt signal may include a high level signal. For example, when the comparison result is that the first detection value exceeds the first preset value, a high-level signal is output to the current controller 900, and the current controller 900 controls the power switch to turn off.
  • the comparator can also output other types of interrupt signals, as long as the current controller 900 can close or turn off the power switch tube immediately when receiving the signal.
  • the comparator will also compare the first detection value with the second preset value. When the first detection value exceeds the second preset value, the controller can stop powering the motor.
  • the second preset value is generally larger than the first preset value and is used for short circuit protection.
  • the first detection circuit 300 includes a detection element 310 and a signal processing element 320 .
  • the detection element 310 is connected in series between the power switch tube and the comparator, and samples the first detection value in real time;
  • the signal processing element 320 is connected to the detection element 310 and the comparator respectively, processes the first detection value and then outputs it to the comparator.
  • the first detection value is obtained through real-time sampling by the detection element 310, and the first detection value is processed by the signal processing element 320 and then output to the comparator, so that the comparator can directly compare and analyze the processed data.
  • the processing of the first detection value by the signal processing element 320 may include interference removal processing to filter out the interference signal output by the detection element 310 and improve the accuracy of the data input to the comparator.
  • the first detection circuit 300 includes a detection element 310 and a signal processing unit 320 .
  • the detection element 310 includes a sampling resistor
  • the signal processing element 320 includes an operational amplifier. That is, it is relatively simple and low-cost to detect current information by connecting a sampling resistor in series with the output line of the power switch.
  • the first detection value detected can be amplified by a set factor through an operational amplifier, thereby avoiding interference signals.
  • the first detection value may be the voltage value across the sampling resistor
  • the setting value and the first preset value may be voltage values, wherein the first preset value may be the resistance of the sampling resistor. The product of the current limit of the power switch.
  • the voltage value at both ends of the sampling resistor is obtained to represent the current flowing through the sampling resistor (the ratio of the voltage value to the resistance value of the sampling resistor), that is, the current flowing through the power switch tube. current.
  • the first preset value is the product of the current limit value of the power switch tube and the resistance value of the sampling resistor.
  • the comparator compares it with the voltage value at both ends of the sampling resistor, which is equivalent to comparing the current passing through the power switch tube with the current limit value. value.
  • the current controller 900 implements current limiting. Otherwise, the current is maintained.
  • the controller 900 controls the driving circuit 200 normally.
  • the power tool system further includes a power module and a rectifier module.
  • the power module provides power for the drive circuit 200 .
  • the rectifier module is connected between the power module and the drive circuit. , used to convert AC power to DC power.
  • a control method for a power tool system is provided, and the control method can be used to control the aforementioned power tool system.
  • the power tool system includes a motor, a drive circuit, a detection circuit and a comparator.
  • the drive circuit includes a power switch tube.
  • the power switch tube receives control signals and controls the operation of the motor.
  • control method of the power tool system includes:
  • Step S410 Receive the first detection value of the first detection circuit and the setting value determined by the speed controller based on the reference speed value and the second detection value;
  • Step S420 Generate a control signal for the power switch tube according to the first detection value and the set value.
  • step S420 of the control method of the power tool system provided in this embodiment includes:
  • Step S430 In the current control period, if the set value is higher than the first detection value, the current controller controls the power switch to turn off during the remaining time of the current time interval until The start of the latter control period controls the closing of the power switch;
  • Step S440 If the set value is lower than or equal to the first detection value in the current control period, then the remaining time interval of the current time interval will be During the time, the current controller controls the power switch tube to maintain the current state until the next control period.
  • the first detection value representing the current information of the power switch tube can be detected in real time through the detection circuit, and the first detection value and the set value can be compared in real time through the comparator, and the corresponding comparison result is output to the current
  • the current controller can control the power switch to turn off when the difference between the first detection value and the set value exceeds the upper limit, and control the power when the difference between the first detection value and the set value exceeds the lower limit.
  • the switch tube is closed, thereby keeping the motor's running speed within a stable range and achieving steady speed.
  • the above control method does not require setting up an internal program to calculate and compare the data detected by the detection circuit, effectively reducing the processing time and resources consumed by the current controller.
  • control method of the power tool system provided by this embodiment belongs to the same inventive concept as the power tool system provided by the previous embodiment.
  • For details about the control method please refer to the description of the corresponding embodiment of the power tool system, which will not be described again here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

本公开涉及一种电动工具系统及其控制方法。系统包括:电机,连接工具本体;驱动电路,包括功率开关管,所述功率开关管接收控制信号并控制所述电机工作;第一检测电路,连接所述功率开关管,检测得到用于表征通过所述功率开关管的电流信息的第一检测值;第二检测电路,连接所述电机,检测用于表征所述电机转速的第二检测值;速度控制器,连接所述第二检测电路,用于接收设定的参考速度值,并根据所述参考速度值和第二检测值确定设定值;电流控制器,所述电流控制器根据所述设定值与所述第一检测值形成向所述功率开关管提供的所述控制信号。由此可使电机的运行速度保持在稳定的范围内,实现稳速。

Description

电动工具系统及其控制方法 技术领域
本发明涉及电动工具技术领域,特别是涉及一种电动工具系统及其控制方法。
背景技术
随着电动工具的应用逐渐广泛,目前对电动工具的功率输出要求越来越高,电动工具的电机驱动电路中往往采用功率开关管,通过控制功率开关管的通断进而实现对电机运行状态的控制。而目前电动工具中电机的运行转速往往会出现不稳定的状况,进而影响到电动工具的使用效果。因此,如何保持电动工具中电机稳速运行是本领域中急需解决的问题之一。
发明内容
基于此,有必要针对上述问题,提供一种电动工具系统及其控制方法。
根据本公开实施例的第一方面,提供一种电动工具系统,所述电动工具系统包括:
电机,连接工具本体;
驱动电路,包括功率开关管,所述功率开关管接收控制信号并控制所述电机工作;
第一检测电路,连接所述功率开关管,检测得到用于表征通过所述功率开关管的电流信息的第一检测值;
第二检测电路,连接所述电机,检测用于表征所述电机转速的第二检测值;
速度控制器,连接所述第二检测电路,用于接收设定的参考速度值,并根据所述参考速度值和第二检测值确定设定值;
电流控制器,分别连接所述第一检测电路、所述速度控制器和所述驱动电路,所述电流控制器根据所述设定值与所述第一检测值形成向所述功率开关管提供的所述控制信号。
在其中一个实施例中,所述电流控制器提供的控制信号具有若干个控制周期,在当前控制周期内,若所述设定值高于所述第一检测值,则在当前时间间隔的剩余时间内,所述电流控制器控制所述功率开关管断开,直至在后一个控制周期的开始控制所述功率开关管闭合;若在当前控制周期内,所述设定值低于或等于所述第一检测值,则在当前时间间隔的剩余时间内,所述电流控制器控制所述功率开关管保持当前状态直至在后一个控制周期。
在其中一个实施例中,所述设定值高于所述第一检测值,所述电流控制器输出一个降低占空比的控制信号至所述驱动电路;所述设定值低于所述第一检测值,所述电流控制器输出一个提高占空比的控制信号至所述驱动电路。
在其中一个实施例中,所述电流控制器包括比较器,所述电动工具系统还包括第一预设值,所述比较器用于比较所述第一检测值和第一预设值,所述第一预设值大于所述设定值;
所述电流控制器提供的控制信号具有若干个控制周期,在当前控制周期内,所述第一检测值超过所述第一预设值,在当前时间间隔的剩余时间内,所述电流控制器控制所述功率开关管断开,直至在后一个控制周期的开始控制所述功率开关管闭合。
在其中一个实施例中,所述电流控制器在所述第一检测值超过所述第一预设值且持续预设时长时,控制所述电机停机。
在其中一个实施例中,所述电机为开关磁阻电机。
在其中一个实施例中,所述比较器包括第一输入端、第二输入端以及输出端,所述第一输入端连接所述第一检测电路,所述第二输入端连接所述电流控制器,所述电流控制器输出所述设定值至所述第二输入端,所述输出端连接所述电流控制器,用于输出所述比较结果至所述电流控制器。
在其中一个实施例中,所述比较器与所述电流控制器集成于主控芯片,所述主控芯片包括若干个引脚,所述第一检测电路连接所述比较器所对应的引脚。
在其中一个实施例中,所述电流控制器与所述第二输入端之间还连接有寄存器。
根据本公开实施例的第二方面,提供一种电动工具系统的控制方法,其特征在于,所述电动工具系统包括电机、驱动电路、第一检测电路、第二检测电路、速度控制器以及电流控制器,所述驱动电路包括功率开关管,所述功率开关管接收控制信号并控制所述电机工作,所述第一检测电路连接所述功率开关管,用于检测得到用于表征通过所述功率开关管的电流信息的第一检测值,所述第二检测电路连接所述电机,用于检测用于表征所述电机转速的第二检测值,速度控制器,连接所述第二检测电路,用于接收设定的参考速度值,并根据所述参考速度值和第二检测值确定设定值;所述控制方法包括:
接收所述第一检测电路的所述第一检测值、所述速度控制器的设定值;
根据所述第一检测值和所述设定值,生成对所述功率开关管的控制信号。
在其中一个实施例中,所述控制信号包括若干个控制周期;所述控制方法还包括:
在当前控制周期内,若所述设定值高于所述第一检测值,则在当前时间间隔的剩余时间内,所述电流控制器控制所述功率开关管断开,直至在后一个控制周期的开始控制所述功率开关管闭合;若在当前控制周期内,所述设定值低于或等于所述第一检测值,则在当前时间间隔的剩余时间内,所述电流控制器控制所述功率开关管保持当前状态直至在后一个控制周期。
上述电动工具系统及其控制方法,通过检测电路可以实时检测得到表征功率开关管电流信息的第一检测值,通过比较器可以实时比较第一检测值和设定值,并输出对应的比较结果至电流控制器,电流控制器根据设定值和第一检测值形成控制电机工作的控制信号,使得电机的速度值达到参考速度值,实现稳速。
附图说明
图1为本申请实施例提供的电动工具系统的一种实施方式的原理示意图;
图2为本申请采用比较器限流方式所对应的预设占空比与实际占空比的波形示意图;
图3为本申请实施例提供的电动工具系统的另一种实施方式的原理示意图;
图4为本申请实施例提供的电动工具系统的另一种实施方式的原理示意图;
图5为本申请实施例提供的电动工具系统的控制方法的一种实施方式的流程框图;
图6为本申请实施例提供的电动工具系统的控制方法的另一种实施方式的流程框图。
附图标记说明:
100、电机;200、驱动电路;300、第一检测电路;310、检测元件;320、信号处理元件;600、第二
检测电路;800、速度控制器;900、电流控制器。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的优选实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反的,提供这些实施方式的目的是为了对本发明的公开内容理解得更加透彻全面。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。 在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请实施例提供了一种电动工具系统,用以解决电动工具系统中,电机转速不稳定的问题。
参照图1,本实施例提供的电动工具系统包括电机100、驱动电路200、第一检测电路300、第二检测电路600、速度控制器800和电流控制器900。
具体地,电机100连接工具本体,用于驱动工具本体工作;驱动电路200包括功率开关管,功率开关管接收控制信号并控制电机100工作;第一检测电路300连接功率开关管,检测得到用于表征通过功率开关管的电流信息的第一检测值;第二检测电路600,连接电机100,检测用于表征所述电机转速的第二检测值;速度控制器800,连接所述第二检测电路,用于接收设定的参考速度值,并根据所述参考速度值和第二检测值确定设定值。这里的参考速度值可以包括期望电机维持的目标速度值。比如根据实际工部需要,要求电机转速稳定在20000rpm(参考速度值),那么会在软件中将这个参数设定好。电流控制器900,分别连接所述第一检测电路300、所述速度控制器800和所述驱动电路200,所述电流控制器900根据所述设定值与所述第一检测值形成向所述功率开关管提供的所述控制信号。其中,工具本体可以包括角磨机、电钻、电锤、电动扳手等类似的电动工具的工具本体。功率开关管可以是MOSFET、IGBT等功率器件。
电机100连接工具本体,用于为工具本体提供驱动力。在这里,电机可以是开关磁阻电机或者是无刷电机等。以角磨机为例,电机100的驱动输出轴连接角磨机的打磨盘,通过驱动输出轴将驱动力传递至打磨盘,带动打磨盘转动。
驱动电路200电性连接电机100,用于驱动电机100。其中,驱动电路200可以包括若干个功率开关管,功率开关管的栅极端即为驱动电路200的控制信号输入端,与主控芯片中电流控制器900的输出端电性连接,功率开关管的源漏极则与电机100连接,功率开关管根据电流控制器900输出的控制信号,改变自身通断状态,进而改变电机100上的电压状况,进而改变电机转速,由此控制工具本体的工作状况。
第一检测电路300连接功率开关管,检测得到用于表征通过功率开关管的电流信息的第一检测值。具体地,第一检测电路300与功率开关管所在的电路连接,其所检测得到的第一检测值可以表征通过功率开关管的电流信息,第一检测值可以为电流值,也可以为与电流值对应的电压值等。本实施例中,第一检测值与流经功率开关管的电流值呈正相关,即,第一检测值越大,则代表通过功率开关管的电流越大。
上述电动工具系统,通过第一检测电路300可以实时检测得到表征通过功率开关管电流信息的第一检测值,速度控制器800连接电流控制器900,速度控制器800用于接收设定的参考速度值,参考速度值可以包括期望电机维持的目标速度值。速度控制器800根据参考速度值和实际检测的第二检测值确定两者之间的差值作为变化量,并将该变化量叠加到第二检测值上,得到设定值。进一步的电流控制器900根据所述设定值与所述第一检测值形成向所述功率开关管提供的所述控制信号。
在其中一个实施例中,可以通过调节功率开关管闭合/断开来实现电机的稳速。电流控制器900提供的控制信号具有若干个控制周期,在当前控制周期内,若所述设定值高于所述第一检测值,则在当前时间间隔的剩余时间内,所述电流控制器控制所述功率开关管断开,直至在后一个控制周期的开始控制所述功率开关管闭合。以减少电机能量供给,降低转速以达到参考速度值。
若在当前控制周期内,所述设定值低于或等于所述第一检测值,则在当前时间间隔的剩余时间内,所述电流控制器控制所述功率开关管保持当前状态直至在后一个控制周期。以增加电机能量供给,提高转速以达到参考速度值。
本实施例中,第一检测值与设定值的属性一致。即,若第一检测值为电流值,则设定值可直接为电流 值;若第一检测值为电压值,则设定值为电压值。
通过本公开实施例,可以使电机的转速始终维持在参考速度值上下,实现稳速。
具体的,电流控制器900内可以设有比较器或AD软件采样,以比较器为例,比较器的输入端连接第一检测电路300的输出端,即,第一检测电路300可以实时检测得到第一检测值,并将第一检测值输入至比较器,只要开启比较器功能,比较器便将第一检测值与设定值进行比较,并输出对应的比较结果,电流控制器900可根据获取到的比较结果控制功率开关管闭合或断开,以实施对电流的控制,进而控制电机的转速,使电机转速稳定。并且,在上述过程中,电流控制器900无需耗费运算资源,确保控制无滞后,提高电动工具系统的可靠性。
本实施例中,设定值可以随电机实时转速的变化而变化,例如,根据需求预先设定一参考速度值,根据固定转速值与电机实时转速值的差值确定实时转速差,再根据实时转速差确定出实时的设定值(可以为电流值),进而再对实时的设定值与实时的第一检测值进行比对,以进行后续控制过程。
例如,第一检测值为电流值a,当前的设定值为b,上限值为h,下限值为g,h为正数,g为负数。在电动工具运行期间,a逐渐增大,当a-b的值超过h时,则可认定当前的电流值超出当前的设定值较多,电机转速过快,此时可控制功率开关管断开,以使母线提供给电机的电流下降,降低电机转速;在下降过程中,a逐渐减小,当a-b的值减小至g时,则可认定当前的电流值低于当前的设定值较多,电机转速过慢,此时可控制功率开关管闭合,以使母线提供给电机的电流增加,提高电机转速。反复执行上述控制过程,可使通过功率开关管的电流值稳定在一定范围内,进而将电机的运行速度控制在所需的范围内,实现电机的稳速运转。
在实际应用中,上限值和下限值之间的差距越大,电流的控制精度越低,反之,电流的控制精度越高。可以根据实际需求确定设定值,设定值越大,电机在整个控制过程中,其输出扭矩越大,而输出扭矩过大会导致功率开关管或电机损坏,因此可在满足产品工作需求和避免器件受损的前提下,合理设置设定值。
在其中一个实施例中,电机是无刷电机,可以通过调节占空比的方式来实现稳速。所述控制信号包括PWM信号。所述设定值高于所述第一检测值,所述电流控制器输出一个降低占空比的控制信号至所述驱动电路;所述设定值低于所述第一检测值,所述电流控制器输出一个提高占空比的控制信号至所述驱动电路。如若设定值与所述第一检测值相同,则保持原有的控制信号至驱动电路。本公开实施例中,可以将占空比作为电流控制器的一种控制参数,降低占空比所起到的效果是逐渐的减小功率,减少电机能量供给,降低转速以达到参考速度值。升高占空比所起到的效果是增加功率,增加电机的能量供给,提高转速以达到参考速度值。本申请实施例中,除了通过第一检测值与设定值进行比较后,实现稳速的目的,还可以对第一检测值与第一预设值进行比较,以进一步实现限流,进而提高抗堵能力。其中,第一预设值大于设定值。具体地,可以设定第一预设值,第一预设值为一固定值,当确定第一检测值超过了第一预设值时,此时可控制功率开关管用于限流,以提高堵转能力。
在其中一个实施例中,所述电流控制器包括比较器,所述电动工具系统还包括第一预设值,所述比较器用于比较所述第一检测值和第一预设值,所述第一预设值大于所述设定值;所述电流控制器提供的控制信号具有若干个控制周期。在当前控制周期内,所述第一检测值超过所述第一预设值,在当前时间间隔的剩余时间内,所述电流控制器控制所述功率开关管断开,直至在后一个控制周期的开始控制所述功率开关管闭合。即,若在当前控制周期内出现电流过大情况时,在当前控制周期的剩余时间内,功率开关管保持断开状态,在下一个控制周期来临的时刻再恢复对功率开关管的周期性控制;或者在后续的若干个控制周期内均保持功率开关管断开状态,例如后续的2个控制周期内均保持功率开关管断开状态,当第3个控制周期来临时恢复对功率开关管的周期性控制,或者后续的4个控制周期内均保持功率开关管断开状态,当第5个控制周期来临时恢复对功率开关管的周期性控制。在实际应用中,可以根据实际需求设定时间间隔, 在此不一一列举。
当电流过高时,保持功率开关管断开一段时间后再恢复对功率开关管的周期性控制,可确保电流在短时间内不会再次过高,避免频繁控制功率开关管断开而影响到对功率开关管的周期性控制,进而影响电动工具的正常运行。
在其中一个实施例中,可进一步判断第一检测值超过第一预设值的且持续预设时长时,若持续预设时长,电流控制器可停止对电机供电,即控制电机停机。其中,对预设时长的判断,有助于避免误判,提高控制的准确性。预设时长可以设置为5秒、6秒、8秒等,优选为5秒。
本实施例中,通过比较器对第一检测值与设定值、第一预设值的比较,以及电流控制器根据比较结果对功率开关管的控制,能够对电动工具的运行实施良好的稳速控制以及限流,同时相对于传统的软件控制方式,本实施例中采用的硬件控制方式,有效减少了电流控制器内部耗费的处理时间和资源,避免控制滞后导致的电流波动较大、电流过大、功率开关管和电机损坏的问题。
在其中一个实施例中,参考图4所示,比较器410包括第一输入端、第二输入端以及输出端,第一输入端连接第一检测电路300,第二输入端连接电流控制器900,电流控制器900输出设定值至第二输入端,比较器410的输出端连接电流控制器900,用于输出比较结果至电流控制器900。
即,比较器的第一输入端连接第一检测电路300的输出端,接收第一检测电路300输出的第一检测值,第二输入端连接电流控制器900的输出端,接收电流控制器900输出的设定值,比较器内部比对第一检测值和设定值之后,将比较结果通过输出端输出至电流控制器900。
图2为通过本实施例中的硬件控制方式实现限流所对应的波形图。参照图2,每个PWM控制周期内均包括交替的高电平信号和低电平信号(预设占空比),在第2个PWM控制周期的高电平信号期间,电流超过限值的时刻,实际占空比立刻置低,没有出现响应迟滞的问题。由此可见,本实施例中硬件限流方案的响应速度更快。
同时,由图2可看出,电流控制器900将当前的高电平信号切为低电平,即关断功率开关管,且保持第2个PWM控制周期的剩余时间内,控制信号均保持低电平状态,直至第3个PWM控制周期到来时,电流控制器900恢复对功率开关管进行高低电平信号切换控制。以此类推,后续也是基于上述方式对功率开关管进行管控。
在其中一个实施例中,参照图4,电流控制器900与第二输入端之间还连接有寄存器430,电流控制器900在寄存器430内配置第一预设值。
电流控制器900预先可以在寄存器430内配置好第一预设值,在实际应用中,寄存器430将第一预设值输出至比较器,以提供比较对象,实施起来较为简便。
在其中一个实施例中,比较器与电流控制器集成于主控芯片,主控芯片包括若干个引脚,第一检测电路300连接比较器410所对应的引脚。比较器410与电流控制器900集成于同一主控芯片,提高了电动工具系统的集成度,且更利于比较器410与电流控制器900之间的信号传输,提高信号传输效率。主控芯片包括若干个用于外接的引脚,其中比较器410的输出端连接主控芯片上的外接用引脚,即,将比较器的输出端引出,便于与检测电路的输出端连接。
在其中一个实施例中,当比较器确定第一检测值与设定值或第一预设值的比较结果为预设结果时,则输出一中断信号至电流控制器900,电流控制器900在收到中断信号时控制功率开关管闭合或断开,其中,预设结果包括前述的第一检测值和设定值的差值超过上限值、第一检测值和设定值的差值超过下限值、第一检测值超过第一预设值中的任意一种或多种。
即,电流控制器900按照预设的控制信号控制驱动电路200的过程中,若接收到比较器发出的中断信号,则停止按照原先的控制信号控制驱动电路200,而是直接输出断开或闭合驱动电路200中功率开关管 的信号。即,电流控制器900无需进行内部运算,节省了内部资源,提供控制效率。
其中,中断信号可以包括高电平信号。例如,当比较结果为第一检测值超过第一预设值,则输出高电平信号至电流控制器900,电流控制器900控制功率开关管断开。
当然,比较器也可以输出其他类型的中断信号,只要满足电流控制器900在接收到该信号时,能够第一时间闭合或断开功率开关管即可。
另外,在实际控制过程中,比较器还会将第一检测值与第二预设值进行比较,控制器可在第一检测值超过第二预设值时,停止对电机供电。第二预设值一般大于第一预设值,用于短路保护。
在其中一个实施例中,参照图3,所述第一检测电路300包括检测元件310和信号处理元件320。其中,检测元件310串联于功率开关管与比较器之间,并实时采样得到第一检测值;信号处理元件320分别连接检测元件310和比较器,对第一检测值进行处理后输出至比较器。通过检测元件310实时采样得到第一检测值,并通过信号处理元件320对第一检测值进行处理后再输出至比较器,以便比较器可以直接对处理后的数据进行比较分析。
其中,信号处理元件320对第一检测值的处理可以包括去干扰处理,以过滤掉检测元件310输出的干扰信号,提高输入至比较器中数据的准确性。
在其中一个实施例中,参照图4,第一检测电路300包括检测元件310和信号处理单元320。检测元件310包括采样电阻,信号处理元件320包括运算放大器。即,通过在功率开关管的输出线路中串联采样电阻的方式检测电流信息,较为简单且成本低。通过运算放大器可将检测到的第一检测值放大设定倍数,进而避免干扰信号。
在其中一个实施例中,第一检测值可以为所述采样电阻两端的电压值,设定值和第一预设值可以为电压值,其中,第一预设值可以为采样电阻的阻值与功率开关管电流限值的乘积。
当采用采样电阻作为电流检测元件310时,则通过获取采样电阻两端的电压值,用以表征流经采样电阻的电流(电压值与采样电阻的阻值的比值),也即经过功率开关管的电流。第一预设值即为功率开关管电流限值与采样电阻阻值的乘积,比较器将其与采样电阻两端的电压值进行比对,即相当于比对经过功率开关管的电流与电流限值。例如当采样电阻两端的电压值超出第一预设值,则认定为经过功率开关管的电流超出电流限值,进而输出对应的比较结果,以使电流控制器900实施限流,否则,保持电流控制器900对驱动电路200的正常控制。
在其中一个实施例中,所述电动工具系统还包括电源模块和整流模块,所述电源模块为所述驱动电路200提供电能,所述整流模块连接于所述电源模块与所述驱动电路之间,用于将交流电源转换为直流电源。
在一个实施例中,提供了一种电动工具系统的控制方法,该控制方法可以用于控制前述电动工具系统。其中,电动工具系统包括电机、驱动电路、检测电路以及比较器,驱动电路包括功率开关管,功率开关管接收控制信号并控制电机工作。
参照图5,本实施例提供的电动工具系统的控制方法包括:
步骤S410、接收所述第一检测电路的所述第一检测值、所述速度控制器根据参考速度值和第二检测值确定的设定值;
步骤S420、根据所述第一检测值和所述设定值,生成对所述功率开关管的控制信号。
在其中一个实施例中,控制信号具有若干个控制周期;参照图6,本实施例提供的电动工具系统的控制方法步骤S420包括:
步骤S430、在当前控制周期内,若所述设定值高于所述第一检测值,则在当前时间间隔的剩余时间内,所述电流控制器控制所述功率开关管断开,直至在后一个控制周期的开始控制所述功率开关管闭合;
步骤S440、若在当前控制周期内,所述设定值低于或等于所述第一检测值,则在当前时间间隔的剩余 时间内,所述电流控制器控制所述功率开关管保持当前状态直至在后一个控制周期。
上述电动工具系统的控制方法,通过检测电路可以实时检测得到表征功率开关管电流信息的第一检测值,通过比较器可以实时比较第一检测值和设定值,并输出对应的比较结果至电流控制器,电流控制器可在第一检测值和设定值的差值超过上限值时控制功率开关管断开,在第一检测值和设定值的差值超过下限值时控制功率开关管闭合,由此可使电机的运行速度保持在稳定的范围内,实现稳速。相比较于软件限流,上述控制方法无需设定内部程序对检测电路检测到的数据进行计算和比较,有效减少电流控制器所耗费的处理时间和资源。
本实施例提供的电动工具系统的控制方法与前述实施例提供的电动工具系统属于同一发明构思,关于控制方法的具体内容可参见电动工具系统对应实施例中的描述,在此不再赘述。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (11)

  1. 一种电动工具系统,其特征在于,所述电动工具系统包括:
    电机,连接工具本体;
    驱动电路,包括功率开关管,所述功率开关管接收控制信号并控制所述电机工作;
    第一检测电路,连接所述功率开关管,检测得到用于表征通过所述功率开关管的电流信息的第一检测值;
    第二检测电路,连接所述电机,检测用于表征所述电机转速的第二检测值;
    速度控制器,连接所述第二检测电路,用于接收设定的参考速度值,并根据所述参考速度值和第二检测值确定设定值;
    电流控制器,分别连接所述第一检测电路、所述速度控制器和所述驱动电路,所述电流控制器根据所述设定值与所述第一检测值形成向所述功率开关管提供的所述控制信号。
  2. 根据权利要求1所述的电动工具系统,其特征在于,所述电流控制器提供的控制信号具有若干个控制周期,在当前控制周期内,若所述设定值高于所述第一检测值,则在当前时间间隔的剩余时间内,所述电流控制器控制所述功率开关管断开,直至在后一个控制周期的开始控制所述功率开关管闭合;若在当前控制周期内,所述设定值低于或等于所述第一检测值,则在当前时间间隔的剩余时间内,所述电流控制器控制所述功率开关管保持当前状态直至在后一个控制周期。
  3. 根据权利要求1所述的电动工具系统,其特征在于,所述设定值高于所述第一检测值,所述电流控制器输出一个降低占空比的控制信号至所述驱动电路;所述设定值低于所述第一检测值,所述电流控制器输出一个提高占空比的控制信号至所述驱动电路。
  4. 根据权利要求1所述的电动工具系统,其特征在于,所述电流控制器包括比较器,所述电动工具系统还包括第一预设值,所述比较器用于比较所述第一检测值和第一预设值,所述第一预设值大于所述设定值;
    所述电流控制器提供的控制信号具有若干个控制周期,在当前控制周期内,所述第一检测值超过所述第一预设值,在当前时间间隔的剩余时间内,所述电流控制器控制所述功率开关管断开,直至在后一个控制周期的开始控制所述功率开关管闭合。
  5. 根据权利要求4所述的电动工具系统,其特征在于,所述电流控制器在所述第一检测值超过所述第一预设值且持续预设时长时,控制所述电机停机。
  6. 根据权利要求4所述的电动工具系统,其特征在于,所述比较器包括第一输入端、第二输入端以及输出端,所述第一输入端连接所述第一检测电路,所述第二输入端连接所述电流控制器,所述电流控制器输出所述设定值至所述第二输入端,所述输出端连接所述电流控制器,用于输出所述比较结果至所述控制器。
  7. 根据权利要求6所述的电动工具系统,其特征在于,所述比较器与所述电流控制器集成于主控芯片,所述主控芯片包括若干个引脚,所述第一检测电路连接所述比较器所对应的引脚。
  8. 根据权利要求6所述的电动工具系统,其特征在于,所述电流控制器与所述第二输入端之间还连接有寄存器。
  9. 根据权利要求1所述的电动工具系统,其特征在于,所述第一检测电路包括:
    检测元件,串联于所述功率开关管与所述电流控制器之间,并实时采样得到所述第一检测值;
    信号处理元件,分别连接所述检测元件和所述电流控制器,对所述第一检测值进行处理后输出至所述电流控制器。
  10. 一种电动工具系统的控制方法,其特征在于,所述电动工具系统包括电机、驱动电路、第一检测电路、第二检测电路、速度控制器以及电流控制器,所述驱动电路包括功率开关管,所述功率开关管接收 控制信号并控制所述电机工作,所述第一检测电路连接所述功率开关管,用于检测得到用于表征通过所述功率开关管的电流信息的第一检测值,所述第二检测电路连接所述电机,用于检测用于表征所述电机转速的第二检测值,速度控制器,连接所述第二检测电路,用于接收设定的参考速度值,并根据所述参考速度值和第二检测值确定设定值;所述控制方法包括:
    接收所述第一检测电路的所述第一检测值、所述速度控制器的设定值;
    根据所述第一检测值和所述设定值,生成对所述功率开关管的控制信号。
  11. 根据权利要求10所述的电动工具系统的控制方法,其特征在于,所述控制信号包括若干个控制周期;所述控制方法还包括:
    在当前控制周期内,若所述设定值高于所述第一检测值,则在当前时间间隔的剩余时间内,所述电流控制器控制所述功率开关管断开,直至在后一个控制周期的开始控制所述功率开关管闭合;若在当前控制周期内,所述设定值低于或等于所述第一检测值,则在当前时间间隔的剩余时间内,所述电流控制器控制所述功率开关管保持当前状态直至在后一个控制周期。
PCT/CN2023/094742 2022-05-20 2023-05-17 电动工具系统及其控制方法 WO2023222026A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210551974.3A CN117134658A (zh) 2022-05-20 2022-05-20 电动工具系统及其控制方法
CN202210551974.3 2022-05-20

Publications (1)

Publication Number Publication Date
WO2023222026A1 true WO2023222026A1 (zh) 2023-11-23

Family

ID=88834691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094742 WO2023222026A1 (zh) 2022-05-20 2023-05-17 电动工具系统及其控制方法

Country Status (2)

Country Link
CN (1) CN117134658A (zh)
WO (1) WO2023222026A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102710190A (zh) * 2012-06-11 2012-10-03 成都伟瓦节能科技有限公司 一种开关磁阻电机工作速度控制方法
CN103312245A (zh) * 2013-06-24 2013-09-18 珠海格力电器股份有限公司 电机控制器及电机控制方法
CN110718995A (zh) * 2019-10-25 2020-01-21 华中科技大学 一种多相开关磁阻电机电流检测方法及检测系统
US20200162007A1 (en) * 2017-07-25 2020-05-21 Milwaukee Electric Tool Corporation High power battery-powered system
CN111917355A (zh) * 2020-07-30 2020-11-10 南京凌鸥创芯电子有限公司 针对按摩类应用的电机调速系统及方法
WO2022237307A1 (zh) * 2021-05-12 2022-11-17 南京泉峰科技有限公司 电动工具及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102710190A (zh) * 2012-06-11 2012-10-03 成都伟瓦节能科技有限公司 一种开关磁阻电机工作速度控制方法
CN103312245A (zh) * 2013-06-24 2013-09-18 珠海格力电器股份有限公司 电机控制器及电机控制方法
US20200162007A1 (en) * 2017-07-25 2020-05-21 Milwaukee Electric Tool Corporation High power battery-powered system
CN110718995A (zh) * 2019-10-25 2020-01-21 华中科技大学 一种多相开关磁阻电机电流检测方法及检测系统
CN111917355A (zh) * 2020-07-30 2020-11-10 南京凌鸥创芯电子有限公司 针对按摩类应用的电机调速系统及方法
WO2022237307A1 (zh) * 2021-05-12 2022-11-17 南京泉峰科技有限公司 电动工具及其控制方法

Also Published As

Publication number Publication date
CN117134658A (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
CN101594108B (zh) 电马达抗阻扭力控制暨电池放电保护电路
US8674641B2 (en) System and method for regulating motor rotation speed
JP2013049120A (ja) 電動工具
US8912744B2 (en) Method and apparatus for dynamically adjusting a dead time of brushless direct current motor during a phase change
JP4969181B2 (ja) 電流制御装置及びその方法
CN203942468U (zh) 空调室外机中直流电机的逆风启动控制装置
US8421390B2 (en) Fan motor control device
CN106936365A (zh) 扫雪机中电机的控制方法
CN201374671Y (zh) 直流无刷马达的控制器
WO2023222026A1 (zh) 电动工具系统及其控制方法
WO2021100843A1 (ja) 電動工具、制御方法、及びプログラム
CN103956940A (zh) 空调室外机中直流电机的逆风启动控制方法和控制装置
CN116979857A (zh) 一种基于新型多电平功率变换器的开关磁阻电机pwm-ditc控制方法
CN201528304U (zh) 一种单相直流无刷电机智能控制装置
CN101997476B (zh) 马达驱动装置及其驱动方法
CN211500997U (zh) 一种基于水泵的缺水保护控制装置
CN204304866U (zh) 一种电动机降压节能控制装置
JP2023031617A (ja) 電動作業機
KR101039435B1 (ko) 전동기의 제어 장치 및 방법
CN114629382B (zh) 智能电动工具及其控制方法
JPH11318085A (ja) 電源回路とその遮断方法
CN219513986U (zh) 一种电机的转速控制装置
TWI790903B (zh) 電動工具及其控制方法
US11949362B2 (en) Power tool including conduction angle control
CN202120085U (zh) 车床控制器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23806977

Country of ref document: EP

Kind code of ref document: A1