WO2023222022A1 - 锁核酸修饰的分子条形码、反向引物、引物组、试剂盒和抑制非特异性扩增的方法及应用 - Google Patents

锁核酸修饰的分子条形码、反向引物、引物组、试剂盒和抑制非特异性扩增的方法及应用 Download PDF

Info

Publication number
WO2023222022A1
WO2023222022A1 PCT/CN2023/094729 CN2023094729W WO2023222022A1 WO 2023222022 A1 WO2023222022 A1 WO 2023222022A1 CN 2023094729 W CN2023094729 W CN 2023094729W WO 2023222022 A1 WO2023222022 A1 WO 2023222022A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular barcode
primer
nucleic acid
locked nucleic
bases
Prior art date
Application number
PCT/CN2023/094729
Other languages
English (en)
French (fr)
Inventor
李世学
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2023222022A1 publication Critical patent/WO2023222022A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes

Definitions

  • the embodiments of the present disclosure relate to, but are not limited to, the field of molecular biology technology, and particularly refer to locked nucleic acid-modified molecular barcodes, reverse primers, primer sets, kits, and methods and applications for inhibiting non-specific amplification.
  • Immunoglobulin refers to a globulin with antibody activity or chemical structure. It is a tetramer composed of two identical light chains and two identical heavy chains connected by disulfide bonds.
  • the light chain consists of a variable region. (V region), connecting region (J region) and constant region (C region).
  • the heavy chain consists of variable region (V region), hinge region (D region), connecting region (J region) and constant region (C region). ), and are encoded by corresponding V, D, J and C gene segments respectively; there are multiple copies of V, D and J gene segments in organisms, and during the development of B lymphocytes, different V, D
  • the process of random combination with J gene segments to form functional immunoglobulins is gene rearrangement.
  • the present disclosure proposes locked nucleic acid modified molecular barcodes, reverse primers, primer sets, kits, and methods and applications for inhibiting non-specific amplification.
  • embodiments of the present disclosure provide a locked nucleic acid-modified molecular barcode for inhibiting non-specific amplification during gene rearrangement detection, wherein,
  • the total number of bases of the molecular barcode is Q ⁇ 10, and the molecular barcode contains m locked nucleic acid modified sites.
  • the m locked nucleic acid modified sites divide the molecular barcode into m+1 sequences, wherein each The number of bases in the segment sequence ranges from 2 to 4, and m ⁇ 2.
  • m satisfies: [Q/4] ⁇ m ⁇ [Q/3],
  • Q represents the total number of bases in the molecular barcode
  • [Q/3] represents the largest integer not exceeding Q/3
  • [Q/4] represents the largest integer not exceeding Q/4.
  • the number of degenerate bases N is ⁇ 8.
  • the number of degenerate bases N is 8 to 10.
  • At least two sequences of the molecular barcode have the same number of bases.
  • the number of bases in two adjacent sequences of the molecular barcode is the same.
  • the total number of bases Q of the molecular barcode is 10, and the sites modified by the locked nucleic acid include the k-th site and the k+4-th site along the direction from the 5' end to the 3' end of the molecular barcode, Among them, k>2.
  • the sites modified by the locked nucleic acid include the 4th position and the 8th position.
  • sequence of the molecular barcode is shown in SEQ ID NO.1.
  • the sites modified by the locked nucleic acid include the 3rd position and the 7th position.
  • sequence of the molecular barcode is shown in SEQ ID NO.2.
  • an embodiment of the present disclosure provides a reverse primer, the reverse primer comprising the locked nucleic acid modified molecular barcode described in the first aspect, the reverse primer comprising a linker primer, a molecular barcode and a specific Sex primer.
  • sequence of the reverse primer is shown in SEQ ID NO.3;
  • sequence of the reverse primer is shown in SEQ ID NO.4.
  • another embodiment of the present disclosure provides a primer set, the primer set includes a forward primer and the reverse primer described in the second aspect, the forward primer includes an FR1 forward primer, an FR2 forward primer, and a reverse primer as described in the second aspect. at least one of forward primer and FR3 forward primer.
  • kits comprising:
  • yet another embodiment of the present disclosure provides a method for inhibiting non-specific amplification in gene rearrangement detection.
  • the method uses the primer set described in the third aspect to perform an amplification reaction, and the Methods include:
  • the primers used in the first round of PCR amplification reaction include the reverse primer
  • the primers used in the second round of PCR amplification reaction include at least one of FR1 forward primer, FR2 forward primer and FR3 forward primer.
  • the primers used in the last round of PCR amplification reaction are adapter primers.
  • the concentration of the reverse primer is 9 ⁇ mol/L to 11 ⁇ mol/L, and the added amount of the reverse primer is 5 ⁇ L to 7 ⁇ L.
  • the total weight of DNA in the sample to be amplified is ⁇ 100ng.
  • yet another embodiment of the present disclosure provides an application of the locked nucleic acid-modified molecular barcode described in the first aspect in preparing a reagent for gene rearrangement detection.
  • the locked nucleic acid-modified molecular barcode controls the total number of bases of the molecular barcode Q ⁇ 10, controls the number of locked nucleic acid-modified sites ⁇ 2, and controls the number of bases of each sequence in the molecular barcode, so that the locked nucleic acid-modified molecular barcode
  • the nucleic acid modification sites evenly separate the sequence of the molecular barcode.
  • the modified base of the locked nucleic acid is a special bicyclic oligonucleotide derivative
  • the 2,-O,4,- of the ribose in the structure The C position forms an oxygen subunit bridge, a thiomethylene bridge or an amine methylene bridge through different shrinkage reactions, thereby connecting it into a ring, and this ring bridge locks the N configuration of the furanose C3,-endotype, reducing It reduces the flexibility of the ribose or deoxyribose structure and increases the stability of the local structure of the phosphate skeleton.
  • the bases modified by locked nucleic acids have the same phosphate skeleton as DNA or RNA.
  • the bases modified by locked nucleic acids have the same phosphate skeleton.
  • the recognition and binding ability of bases to the bases on the target gene are stronger than those of bases that have not been modified by locked nucleic acids. That is to say, locked nucleic acid modifications are carried out in the molecular barcode of the primer, so that the bases in the primers modified by locked nucleic acids.
  • the recognition and binding ability of the base to the base of the target gene is stronger than that of the complementary primer, so it can avoid direct binding between the linker primers of the amplification primer, thereby inhibiting the linker between the forward primer and the reverse primer. ligation, reducing the number of non-specific amplification products produced by self-ligation of the adapter between the forward primer and the reverse primer.
  • Figure 1 shows a schematic diagram of a locked nucleic acid-modified molecular barcode used in the process of detecting gene rearrangements provided by an embodiment of the present disclosure
  • Figure 2 shows a schematic diagram of the principle of non-specific amplification provided by the embodiment of the present disclosure
  • Figure 3 shows a flow chart of a method for inhibiting non-specific amplification in gene rearrangement detection provided by an embodiment of the present disclosure
  • Figure 4 shows a detailed flow chart of another method for inhibiting non-specific amplification in gene rearrangement detection provided by an embodiment of the present disclosure.
  • lymphoma diagnostic methods mainly include histopathology, immunology, etc., but the detection rate is low and it is easy to misjudge.
  • immunoglobulin gene rearrangement detection can assist in the diagnosis of lymphoma and improve the accuracy of diagnosis. rate, and by detecting heavy chain and light chain genes through gene rearrangement, the lymphoma detection rate and diagnostic accuracy exceed 90%.
  • the PCR-high-throughput sequencing method has high resolution and can determine the specific sequence of each clone, so the detection accuracy is high; however, the PCR-high-throughput sequencing method relies on multiplex PCR for library construction. , and the amplification bias caused by the library process has great interference on the test results, which will lead to diagnostic errors in some samples.
  • a locked nucleic acid-modified molecular barcode is provided.
  • the molecular barcode is used to inhibit non-specific amplification during gene rearrangement detection.
  • the total number of bases of the molecular barcode is Q ⁇ 10, and the molecular barcode contains m Locked nucleic acid modified sites, m locked nucleic acid modified sites divide the molecular barcode into m+1 sequences, where the number of bases in each sequence is 2 to 4, m ⁇ 2.
  • the bases of the molecular barcode may be base A, base T, base C, base G, degenerate base R, degenerate base Y, degenerate base M, Degenerate base K, degenerate base S, degenerate base W, degenerate base H, degenerate base B, degenerate base V, degenerate base D and degenerate base N.
  • the possible distributions between the total number of bases of the molecular barcode, the number of degenerate bases, and the number of locked nucleic acid modified sites are as follows:
  • the total number of bases Q of the molecular barcode is 10, the number of degenerate bases N is 4 or 5 or 6 or 7 or 8, the sites for locked nucleic acid modification are 2, and the remaining bases It can be degenerate base R, degenerate base Y, degenerate base M, degenerate base K, degenerate base S, degenerate base W, degenerate base H, degenerate base B, Degenerate base V or degenerate base D;
  • the total number of bases Q of the molecular barcode is 12, and the number of degenerate bases N is 4 or 5 or 6 or 7 or 8 or 9, the locked nucleic acid modification sites are 4 or 3, and the remaining bases can be degenerate base R, degenerate base Y, degenerate base M , degenerate base K, degenerate base S, degenerate base W, degenerate base H, degenerate base B, degenerate base V or degenerate base D;
  • the total number of bases Q of the molecular barcode is 14, the number of degenerate bases N is 8 or 9 or 10, the number of locked nucleic acid modification sites is 4, and the remaining bases can be degenerate bases R, degenerate base Y, degenerate base M, degenerate base K, degenerate base S, degenerate base W, degenerate base H, degenerate base B, degenerate base V or Degenerate base D;
  • the total number of bases Q of the molecular barcode is 15, the number of degenerate bases N is 8 or 9 or 10, the number of locked nucleic acid modification sites is 5 or 4, and the remaining bases can be degenerate bases.
  • the total number of bases Q of the molecular barcode is 18, the corresponding degenerate bases N are 8 or 9 or 10, the sites for locked nucleic acid modification are 6 or 5, and the remaining bases can be degenerate bases.
  • the number of bases of each molecular barcode modified by locked nucleic acid is controlled to be 2 to 4.
  • the molecular barcode and the target gene are randomly combined. There are sufficient types, so that the quantity of the product is sufficient. Therefore, if the number of bases in a certain sequence is too small, the number of randomly combined types between the amplification primers will be insufficient, making it difficult to maintain a sufficient quantity of products, which will lead to the modification of locked nucleic acids.
  • the site does not meet the requirements.
  • the primer where the sequence is located may directly bind to the complementary primer, resulting in non-specificity. amplification product.
  • the molecular barcode can inhibit non-specific amplification between the forward primer and the reverse primer, it can promote the forward primer and the reverse primer to fully amplify the target gene respectively, thus enabling Improve the efficiency of amplification reactions.
  • m satisfies: [Q/4] ⁇ m ⁇ [Q/3],
  • Q represents the total number of bases in the molecular barcode
  • [Q/3] represents the largest integer not exceeding Q/3
  • [Q/4] represents the largest integer not exceeding Q/4.
  • m is controlled to satisfy the relationship of [Q/4] ⁇ m ⁇ [Q/3], such that The molecular barcode modified by locked nucleic acid can effectively inhibit non-specific amplification between the forward primer and the reverse primer.
  • the value of m is too small, there will be too many bases in a certain sequence in the molecular barcode, thereby enhancing to a certain extent the binding ability of primers containing the molecular barcode to fragments and regions of non-target genes.
  • the forward primer and the reverse primer will be directly combined, which will increase the number of non-specific amplification products to a certain extent. If the value of m is too large, the number of bases in a certain sequence in the molecular barcode will be too few. , to a certain extent, the number of random tag types will be too small, and to a certain extent, the sites for locked nucleic acid modification will not meet the requirements.
  • the number of degenerate bases N is ⁇ 8.
  • the number of degenerate bases N in the molecular barcode to be ⁇ 8
  • the degenerate base N represents any one of the bases A, C, T, and G
  • there are enough types of molecular barcodes to choose from so that there are enough ways to randomly combine the molecular barcode with the target gene. Make the molecular barcode function properly.
  • the number of degenerate bases N is 8 to 10.
  • the number of types of random combinations of molecular barcodes and target genes is sufficiently large to promote a sufficient number of products and reduce the number of molecular barcodes and target genes. risk of non-specific amplification. Specifically, if the number of degenerate bases N is too small, the number of random combinations of molecular barcodes and target genes will be insufficient, which may not meet the product quantity requirements. Too large, on the one hand, will make the sequence length of the molecular barcode too long.
  • an overly long molecular barcode will increase the risk of DNA mismatch between the primer where the molecular barcode is located and the target gene, and will increase the number of non-specific amplification products.
  • the sites modified by locked nucleic acids may not meet the requirement of 2 to 4 bases for each molecular barcode.
  • the number of bases for a certain molecular barcode There may be more than 4, which will cause direct binding between the primer containing the molecular barcode and the complementary primer, resulting in non-specific amplification products.
  • At least two sequences in the molecular barcode have the same number of bases.
  • two adjacent sequences in the molecular barcode have the same number of bases.
  • the number of bases of the two sequences in the molecular barcode is controlled to be the same, or the number of bases of the adjacent two end sequences is controlled to be the same, so that at least two segments of the molecular barcode are evenly separated.
  • Open, and evenly spaced molecular barcodes can stably bind to the target gene during the complementary pairing process with the target gene, enhancing the degree of binding between the molecular barcode and the target gene, avoiding the direct binding between the primer where the molecular barcode is located and the complementary primer. Self-ligation of the adapter between the forward and reverse primers is inhibited.
  • the total number of bases Q of the molecular barcode is 10, and the locked nucleic acid modification sites include the k-th site and the k+4-th site in the direction from the 5' end to the 3' end of the molecular barcode, Among them, k can be 3 or 4, and the corresponding locked nucleic acid modification sites can be the 3rd position and the 7th position, or the 4th position and the 8th position.
  • the total number of bases of the molecular barcode is controlled to 10, and the sites modified by the locked nucleic acid include two sites, and the number of bases spaced between the two sites is controlled. It is 4, so that the sequences in the molecular barcode maintain a certain degree of spacing, and at the same time, the 10-base molecular barcode is roughly evenly separated.
  • the evenly separated molecular barcode can match the target gene during the process of complementary pairing with the target gene. Stable binding avoids the direct binding between the primer where the molecular barcode is located and the complementary primer, and inhibits the self-ligation of the linker between the forward primer and the reverse primer.
  • bases of these locked nucleic acid modified sites can be specifically selected from base A, base T, base C and base G.
  • the specific bases of the locked nucleic acid modified sites need to be selected from The complementary primer of the primer where the molecular barcode is located is determined.
  • the base at the 4th position or the 8th position can be selected from base A, base T, base C and base G.
  • Specific selection that is to say, the base at position 4 or position 8 can be base A, base T, base C and base G.
  • the specific selection requires the complementary primer of the primer where the molecular barcode is located. decided.
  • the base sequence of the obtained molecular barcode is as shown in SEQ ID NO.1.
  • the base sequence of the obtained molecular barcode is shown in SEQ ID NO. 2.
  • a reverse primer including but not limited to an adapter primer, a locked nucleic acid-modified molecular barcode, and a specific primer.
  • the reverse primer by controlling the primer where the molecular barcode is located, since the reverse primer binds to a smaller region of the target gene than the forward primer, the reverse primer is designed, and the designed reverse primer
  • the molecular barcode in the forward primer can improve the binding degree of the reverse primer and the target gene, thereby inhibiting non-specific amplification between the forward primer and the reverse primer in the amplification primer.
  • a primer set is provided, and the primer set includes:
  • Forward primers include but are not limited to at least one of FR1 forward primer, FR2 forward primer and FR3 forward primer, wherein the forward primer can be FR1 forward primer, FR2 forward primer, FR3 forward primer, or It can be a mixed forward primer of FR1 forward primer and FR2 forward primer, or it can be a mixed forward primer of FR2 forward primer and FR3 forward primer, or it can be a mixed forward primer of FR1 forward primer and FR3 forward primer.
  • the forward primer may also be a mixed forward primer of FR1 forward primer, FR2 forward primer and FR3 forward primer.
  • a kit including but not limited to a reverse primer, DNA polymerase, buffer, and magnetic beads for purification.
  • a method for inhibiting non-specific amplification in gene detection including:
  • the primers used in the first round of PCR amplification reaction include reverse primers
  • the primers used in the second round of PCR amplification reaction include at least one of FR1 forward primer, FR2 forward primer and FR3 forward primer.
  • the first two rounds of PCR amplification reactions require a first round of PCR amplification reaction and then a second round of PCR amplification reaction
  • the primers used in the first round of PCR amplification reaction are
  • the reverse primer with molecular barcode modified with locked nucleic acid can amplify the target gene with the reverse primer with molecular barcode, so that the first round of amplification products all contain molecular barcodes.
  • the forward primer to perform the second round of PCR amplification reaction, which can further amplify the first round amplification product, prompting the forward primer to further amplify the first round amplification product, so that the amplified
  • the total amount of product is sufficient to facilitate subsequent gene rearrangement detection.
  • the primers used in the last round of PCR amplification reactions are adapter primers.
  • the primers used to control the final round of PCR amplification reaction are adapter primers, and the adapter primers are used to complete the DNA fragment of the entire amplification product to facilitate subsequent gene rearrangement detection.
  • the concentration of the reverse primer is 9 ⁇ mol/L to 11 ⁇ mol/L, and the added amount of the reverse primer is 5 ⁇ L to 7 ⁇ L.
  • the concentration of the reverse primer and the amount of the reverse primer added are generally controlled so that the reverse primer can fully carry out the first round of PCR amplification reaction of the sample to be amplified.
  • the quantity of the first amplification product is sufficient to provide sufficient template for the second round of PCR amplification reaction.
  • the concentration of the reverse primer must also be controlled to increase the amount of the first amplification product. enough.
  • the total weight of DNA in the sample to be amplified is ⁇ 100 ng.
  • controlling the total weight of DNA in the sample to be amplified can ensure that the number of DNA fragments is large enough, and enough DNA fragments can make the amount of amplification products sufficient, so controlling the DNA
  • the total weight can provide sufficient products for the first round of PCR amplification reaction and the second round of PCR amplification reaction, so that the final amount of amplification product obtained is sufficient. Convenient for subsequent gene rearrangement detection operations.
  • an application of the locked nucleic acid-modified molecular barcode in preparing reagents for gene rearrangement detection is provided, including but not limited to, using the molecular barcode to prepare forward reagents for gene rearrangement detection. in primers or probes.
  • Embodiment 1 provides a locked nucleic acid-modified molecular barcode.
  • the number of bases of the molecular barcode is 10.
  • the locked nucleic acid-modified sites are the 4th position and the 8th position, wherein the base at the 4th position is a base.
  • Base A the base at position 8 is base T.
  • the sequence of the locked nucleic acid-modified molecular barcode is shown in SEQ ID NO.1, which is 5'-NNA*NNNT*NN-3', where * indicates locked Nucleic acid (LNA) modified sites.
  • Embodiment 2 provides a reverse primer. Based on Example 1, the reverse primer includes a linker primer, a locked nucleic acid modified molecular barcode and a specific primer.
  • the specific sequence is as shown in SEQ ID NO. 3.
  • Embodiment 3 provides a primer set, including a forward primer and the reverse primer of Example 2, wherein the forward primer includes an FR1 forward primer, an FR2 forward primer or a FR3 forward primer.
  • the specific primer set is as shown in the table. 1 shown.
  • Embodiment 4 provides a kit, including the reverse primer of Embodiment 2, DNA polymerase, buffer and magnetic beads.
  • Embodiment 5 provides a method for inhibiting non-specific amplification in gene rearrangement detection, as shown in Figure 4, including:
  • the primers used in the first round of PCR amplification reaction are the reverse primer shown in SEQ ID NO.2, and the primers used in the second round of PCR amplification reaction are FR1 forward primer, FR2 forward primer and FR3 forward primer.
  • the primers used in the three rounds of PCR amplification reactions were Illumina-R adapter primers.
  • Embodiment 6 provides another locked nucleic acid modified molecular barcode.
  • the number of bases of the molecular barcode is 10, and the locked nucleic acid modified sites are the 3rd position and the 7th position, wherein the base at the 3rd position is base C, and the base at position 7 is base A.
  • the sequence of the molecular barcode is shown in SEQ ID NO.2, which is 5'-NNC*NNNA*NNN-3', where * represents locked nucleic acid ( LNA) modified site.
  • Example 7 provides a reverse primer. Based on Example 6, the reverse primer includes The head primer, locked nucleic acid modified molecular barcode and specific primer, the specific sequence is shown in SEQ ID NO.4.
  • Embodiment 8 provides a primer set, including a forward primer and the reverse primer of Embodiment 7, wherein the forward primer includes an FR1 forward primer, an FR2 forward primer or a FR3 forward primer.
  • the specific primer set is as shown in the table. 1 shown.
  • Example 9 provides another method for inhibiting non-specific amplification in gene rearrangement detection.
  • the reverse primer used contains the molecular barcode of Example 6.
  • Comparative Example 1 provides a molecular barcode without locked nucleic acid modification, and the specific sequence is 5’-NNNNNNNN-3’.
  • Example 9 and Comparative Example 1 The PCR amplification products obtained in Example 5, Example 9 and Comparative Example 1 were respectively subjected to gene rearrangement detection, and the gene rearrangement detection data of Example 5, Example 9 and Comparative Example 1 were compared respectively. The results As shown in Table 8 and Table 9.
  • Reverse primers containing molecular barcodes that have not been modified by locked nucleic acids are added to PCR reaction tubes No. 1-3 in sequence.
  • Example 5 reverse primers containing molecular barcodes modified by locked nucleic acids are added to PCR reaction tubes No. 4-6.
  • the reverse primer containing the molecular barcode modified by locked nucleic acid in Example 9 is added to PCR reaction tubes No. 7-9 in sequence
  • the forward primer in PCR reaction tubes No. 1, 4 and 7 is the FR1 forward primer
  • the forward primers in PCR reaction tubes No. 2, 5, and 8 are FR2 forward primers
  • the forward primers in PCR reaction tubes No. 3, 6, and 9 are FR3 forward primers. Perform PCR amplification reactions respectively.
  • the amplification reaction system and amplification reaction procedures are shown in Table 2 to Table 7.
  • Amplification Methods refer to Example 5 and Example 9.
  • the model of the test instrument is Illumina NovaSeq.
  • the test length of the instrument is PE150. Read the test data;
  • the percentages of self-ligated read numbers of the adapters of the molecular barcode modified by the locked nucleic acid as shown in SEQ ID NO.1 are 9.56%, 8.27%, and 7.91% respectively, while the read numbers of the locked nucleic acid modified by the locked nucleic acid as shown in SEQ ID NO.2
  • the percentages of adapter self-ligation Reads of molecular barcodes are 10.26%, 9.16%, and 8.83% respectively. This shows that different sites and different bases modified by locked nucleic acids can inhibit the self-ligation of adapters between forward primers and reverse primers. abilities are different.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

一种锁核酸修饰的分子条形码、反向引物、引物组、试剂盒和抑制非特异性扩增的方法及应用;该分子条形码的碱基总数Q≥10,且简并碱基N的数量≥8,该分子条形码含有m个锁核酸修饰的位点,m个锁核酸修饰的位点将该分子条形码分为m+1段序列,其中,每段序列的碱基数量为2个至4个,m≥2。

Description

锁核酸修饰的分子条形码、反向引物、引物组、试剂盒和抑制非特异性扩增的方法及应用
本申请要求于2022年5月18日提交中国专利局、申请号为202210551546.0、发明名称为“锁核酸修饰的分子条形码、反向引物、引物组、试剂盒和抑制非特异性扩增的方法及应用”的中国专利申请的优先权,其内容应理解为通过引用的方式并入本申请中。
技术领域
本公开实施例涉及但不限于分子生物技术领域,尤指锁核酸修饰的分子条形码、反向引物、引物组、试剂盒和抑制非特异性扩增的方法及应用。
背景技术
免疫球蛋白是指具有抗体活性或化学结构的球蛋白,由两条相同的轻链和两条相同的重链通过二硫键连接组合而成的四聚体,其中,轻链由可变区(V区)、连接区(J区)和恒定区(C区)组成,重链由可变区(V区)、铰链区(D区)、连接区(J区)和恒定区(C区)组成,并且分别由对应的V、D、J和C基因片段编码而成;在生物体内V、D和J基因片段均有多个拷贝,而在B淋巴细胞发育过程中,不同V、D和J基因片段随机组合形成具有功能的免疫球蛋白的过程即为基因重排。
在正常生理条件下,B淋巴细胞中携带的免疫球蛋白重排序列是相对均一的,不同序列占比相差不大,表现为“多克隆性重排”;在淋巴瘤发生过程中淋巴细胞失去正常功能而恶性增殖,该过程伴随其携带的特异的重排序列所占比例极大的增加,表现为“克隆性重排”,通过对基因重排进行检测,判断其为“多克隆性重排”或“克隆性重排”,即可以判断患者为正常的淋巴结肿大还是淋巴瘤。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开提出了锁核酸修饰的分子条形码、反向引物、引物组、试剂盒和抑制非特异性扩增的方法及应用。
第一方面,本公开实施例提供了一种锁核酸修饰的分子条形码,用于抑制基因重排检测过程中非特异性扩增,其中,
所述分子条形码的碱基总数Q≥10,所述分子条形码含有m个锁核酸修饰的位点,m个锁核酸修饰的位点将所述分子条形码分为m+1段序列,其中,每段序列的碱基数量为2个至4个,m≥2。
可选的,m满足:
[Q/4]≤m≤[Q/3],
式中,Q表示分子条形码的碱基总数,[Q/3]表示不超过Q/3的最大整数,[Q/4]表示不超过Q/4的最大整数。
可选的,所述简并碱基N的数量≥8。
可选的,所述简并碱基N的数量为8个至10个。
可选的,所述分子条形码的至少两段序列的碱基数量相同。
可选的,所述分子条形码的相邻两段序列的碱基数量相同。
可选的,所述分子条形码的碱基总数Q为10,锁核酸修饰的所述位点包括沿分子条形码的5’端至3’端方向的第k位点和第k+4位点,其中,k>2。
可选的,锁核酸修饰的所述位点包括第4位点和第8位点。
可选的,所述分子条形码的序列如SEQ ID NO.1所示。
可选的,锁核酸修饰的所述位点包括第3位点和第7位点。
可选的,所述分子条形码的序列如SEQ ID NO.2所示。
第二方面,本公开的一个实施例提供了一种反向引物,所述反向引物包括第一方面所述的锁核酸修饰的分子条形码,所述反向引物包括接头引物、分子条形码和特异性引物。
可选的,所述反向引物的序列如SEQ ID NO.3所示;
或,所述反向引物的序列如SEQ ID NO.4所示。
第三方面,本公开的另一个实施例提供了一种引物组,所述引物组包括正向引物和第二方面所述的反向引物,所述正向引物包括FR1正向引物、FR2正向引物和FR3正向引物中的至少一种。
第四方面,本公开的又另一个实施例提供了一种试剂盒,所述试剂盒包括:
DNA聚合酶,缓冲液,以及
第二方面所述的反向引物。
第五方面,本公开的又另一个实施例提供了一种用于基因重排检测中抑制非特异性扩增的方法,所述方法采用第三方面所述的引物组进行扩增反应,所述方法包括:
对待扩增样品进行至少两轮的PCR扩增反应,得到扩增产物;
其中,第一轮PCR扩增反应所用的引物包括锁所述反向引物,第二轮PCR扩增反应所用的引物包括FR1正向引物、FR2正向引物和FR3正向引物中的至少一种。
可选的,至少两轮的所述PCR扩增反应中,最后一轮PCR扩增反应所用的引物为接头引物。
可选的,所述反向引物的浓度为9μmol/L至11μmol/L,所述反向引物的加入量为5μL至7μL。
可选的,所述待扩增样品中DNA总重量≥100ng。
第六方面,本公开的又另一个实施例提供了一种第一方面所述的锁核酸修饰的分子条形码在制备基因重排检测的试剂中的应用。
本公开实施例提供的锁核酸修饰的分子条形码,通过控制分子条形码的碱基总数Q≥10,控制锁核酸修饰的位点数量≥2,控制分子条形码中每段序列的碱基数量,使得锁核酸修饰的位点将分子条形码的序列均匀分隔开,由于锁核酸修饰后的碱基是一种特殊的双环状寡核苷酸衍生物,结构中核糖的2,-O,4,-C位通过不同的缩水作用形成氧亚基桥、硫亚甲基桥或胺亚甲基桥,从而连接成环形,而这个环形桥锁定了呋喃糖C3,-内型的N构型,降 低了核糖或脱氧核糖结构的柔韧性,且增加了磷酸盐骨架局部结构的稳定性,同时经锁核酸修饰后的碱基跟DNA或RNA具有相同的磷酸盐骨架,因此经锁核酸修饰后的碱基跟靶标基因上的碱基的识别能力和结合能力较未经锁核酸修饰的碱基强,也就是说在引物的分子条形码中进行锁核酸修饰,使得经过锁核酸修饰后的引物中碱基跟靶标基因的碱基的识别能力和结合能力较互补的引物的强,因此能避免扩增引物的接头引物之间的直接结合,从而能抑制正向引物和反向引物之间的接头自连,减少了正向引物和反向引物之间因接头自连而产生的非特异性扩增产物的数量。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1示出了本公开实施例提供的一种锁核酸修饰后的分子条形码用于基因重排检测过程中的示意图;
图2示出了本公开实施例提供的一种非特异性扩增的原理示意图;
图3示出了本公开实施例提供的一种用于基因重排检测中抑制非特异性扩增的方法的流程图;
图4示出了本公开实施例提供的另一种用于基因重排检测中抑制非特异性扩增的方法的详细流程图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不 应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本公开的创造性思维为:传统的淋巴瘤诊断方法主要包括组织病理学、免疫学等,但是检出率低,容易误判,而免疫球蛋白基因重排检测能够辅助淋巴瘤诊断,提高诊断准确率,并且通过基因重排检测重链和轻链基因,淋巴瘤检出率和诊断准确率均超过90%。
在基因重排检测中,PCR-高通量测序法因分辨率高,同时能够确定每个克隆的具体序列,因此检测准确率高;但是PCR-高通量测序法依赖于多重PCR进行文库构建,而文库过程中导致的扩增偏倚对检测结果存在极大干扰,会导致部分样本诊断错误,虽然目前通过分子条形码测序技术能消除PCR扩增反应导致的偏倚,提高测序均一度和灵敏度,但是,如图2所示,基于分子条形码技术进行高通量测序文库的构建会产生由于正向引物与反向引物的分子条形码序列相互结合并扩增的接头自连片段,即非特异性扩增产物,对后续高通量测序的结果产生极大干扰。
在本公开的一个实施例中,提供一种锁核酸修饰的分子条形码,该分子条形码用于抑制基因重排检测过程中非特异性扩增,分子条形码的碱基总数Q≥10,分子条形码含有m个锁核酸修饰的位点,m个锁核酸修饰的位点将分子条形码分为m+1段序列,其中,每段序列的碱基数量为2个至4个,m≥2。
在本公开的一些实施例中,分子条形码的碱基可以是碱基A、碱基T、碱基C、碱基G、简并碱基R、简并碱基Y、简并碱基M、简并碱基K、简并碱基S、简并碱基W、简并碱基H、简并碱基B、简并碱基V、简并碱基D和简并碱基N。
在本公开的一些实施例中,分子条形码的碱基总数、简并碱基的数量以及锁核酸修饰的位点数量之间可能的分布情况如下:
1、分子条形码的碱基总数Q为10个,简并碱基N的数量为4个或5个或6个或7个或8个,锁核酸修饰的位点为2个,其余的碱基可以是简并碱基R、简并碱基Y、简并碱基M、简并碱基K、简并碱基S、简并碱基W、简并碱基H、简并碱基B、简并碱基V或简并碱基D;
2、分子条形码的碱基总数Q为12个,简并碱基N的数量为4个或5 个或6个或7个或8个或9个,锁核酸修饰的位点为4个或3个,其余的碱基可以是简并碱基R、简并碱基Y、简并碱基M、简并碱基K、简并碱基S、简并碱基W、简并碱基H、简并碱基B、简并碱基V或简并碱基D;
3、分子条形码的碱基总数Q为14个,简并碱基N的数量为8个或9个或10个,锁核酸修饰的位点为4个,剩余的碱基可以是简并碱基R、简并碱基Y、简并碱基M、简并碱基K、简并碱基S、简并碱基W、简并碱基H、简并碱基B、简并碱基V或简并碱基D;
4、分子条形码的碱基总数Q为15个,简并碱基N的数量为8个或9个或10个,锁核酸修饰的位点为5个或4个,剩余的碱基可以是简并碱基R、简并碱基Y、简并碱基M、简并碱基K、简并碱基S、简并碱基W、简并碱基H、简并碱基B、简并碱基V或简并碱基D;
5、分子条形码的碱基总数Q为18个,对应的简并碱基N为8个或9个或10个,锁核酸修饰的位点为6个或5个,剩余的碱基可以是简并碱基R、简并碱基Y、简并碱基M、简并碱基K、简并碱基S、简并碱基W、简并碱基H、简并碱基B、简并碱基V或简并碱基D。
控制锁核酸修饰后的每段分子条形码的碱基数量为2个至4个,一方面,由于锁核酸修饰后的每段序列需要维持简并碱基的数量,使得分子条形码和靶标基因随机结合的种类充足,从而使得产物数量的足够,因此若某段序列的碱基数量过少,则扩增引物之间随机结合的种类数量将不足,难以维持产物的数量足够,会导致锁核酸修饰的位点不满足要求,另一方面,由于锁核酸修饰后的每段序列的碱基数量超过4个时,该段序列所在的引物将有可能同互补的引物之间直接结合,会产生非特异性扩增产物。
从扩增反应阶段来看,由于分子条形码能够抑制正向引物和反向引物之间的非特异性扩增,因此能够促使正向引物和反向引物分别同靶标基因进行充分的扩增,从而能够提升扩增反应的效率。
在一些可选的实施方式中,m满足:
[Q/4]≤m≤[Q/3],
式中,Q表示分子条形码的碱基总数,[Q/3]表示不超过Q/3的最大整数, [Q/4]表示不超过Q/4的最大整数。
本公开的一些实施例提供的技术方案中,通过控制锁核酸修饰的位点与分子条形码的碱基总数的关系,控制m满足[Q/4]≤m≤[Q/3]的关系,使得锁核酸修饰后的分子条形码能够有效地抑制正向引物和反向引物之间的非特异性扩增。具体来说,如果m的取值过小,则会使得分子条形码中某段序列的碱基数量过多,从而一定程度上增强含有该分子条形码的引物跟非靶标基因的片段和区域的结合能力,使得正向引物和反向引物之间将直接结合,一定程度上会增加非特异性扩增产物的数量,如果m的取值过大,会使得分子条形码中某段序列的碱基数量过少,一定程度上会造成随机标签的种类数量过少,一定程度上导致锁核酸修饰的位点不满足要求。
在一些可选的实施方式中,所述简并碱基N的数量≥8。
本公开的一些实施例提供的技术方案中,通过控制分子条形码的简并碱基N的数量≥8,可以达到满足简并碱基N的数量充足的同时使得锁核酸修饰的位点在2个以上,由于简并碱基N代表的是碱基A、C、T和G中的任一种,使得分子条形码可选择的种类足够多,从而使得分子条形码同靶标基因随机结合的方式足够多,使分子条形码的功能正常。
在一些可选的实施方式中,所述简并碱基N的数量为8个至10个。
本公开的一些实施例提供的技术方案中,通过控制简并碱基N的数量,使得分子条形码和靶标基因随机结合的种类数量足够多,促使产物的数量足够,且可以降低分子条形码和靶标基因的非特异性扩增的风险。具体来说,如果简并碱基N的数量取值过小,会使得分子条形码和靶标基因的随机结合的种类数量不足,可能无法满足产物数量的要求,如果简并碱基N的数量取值过大,一方面,会使得分子条形码的序列长度太长,而过长的分子条形码一定程度会提高分子条形码所在引物和靶标基因之间DNA错配的风险,会增加非特异性扩增产物的数量,另一方面,简并碱基N的数量增多,锁核酸修饰的位点可能无法满足每段分子条形码的碱基数量为2个至4个的这一要求,某段分子条形码的碱基数量可能会超过4个,会造成该段分子条形码所在的引物和互补的引物之间直接结合,产生非特异性扩增的产物。
在一些可选的实施方式中,分子条形码中至少两段序列的碱基数量相同。
在一些可选的实施方式中,分子条形码中相邻两段序列的碱基数量相同。
本公开的一些实施例提供的技术方案中,控制分子条形码中两段序列的碱基数量相同,或者控制相邻两端序列的碱基数量相同,使得分子条形码中至少有两段是均匀分隔开的,而均匀分隔的分子条形码在跟靶标基因互补配对过程中能够同靶标基因稳定结合,增强分子条形码和靶标基因的结合程度,避免了分子条形码所在的引物跟互补的引物之间直接结合,抑制了正向引物和反向引物之间的接头自连。
在一些可选的实施方式中,分子条形码的碱基总数Q为10,锁核酸修饰的位点包括分子条形码的5’端至3’端方向的第k位点和第k+4位点,其中,k可以是3或者4,对应的锁核酸修饰的位点可以是第3位点和第7位点,也可以是第4位点和第8位点。
本公开的一些实施例提供的技术方案中,通过控制分子条形码的碱基总数为10,并且锁核酸修饰的位点包括两个位点,且控制两个位点之间的间隔的碱基数量为4个,使得分子条形码中的序列保持一定程度上的间隔,同时将10个碱基的分子条形码大致均匀的分隔开,均匀分隔的分子条形码在跟靶标基因互补配对过程中能够同靶标基因稳定结合,避免了分子条形码所在的引物跟互补的引物之间直接相互结合,抑制了正向引物和反向引物之间的接头自连。
需要说明是,这些锁核酸修饰的位点的碱基可以从碱基A、碱基T、碱基C和碱基G中进行具体的选择,具体的锁核酸修饰的位点的碱基需要由分子条形码所在引物的互补引物决定。
当锁核酸修饰的位点是第4位点和第8位点时,第4位点或第8位点的碱基可以从碱基A、碱基T、碱基C和碱基G中进行具体的选择,也就是说,第4位点或第8位点的碱基可以是碱基A、碱基T、碱基C和碱基G,具体的选择需要由分子条形码所在引物的互补引物所决定。当第4位点选择的碱基为碱基A,同时第8位点的碱基为T时,得到的分子条形码的碱基序列如SEQ ID NO.1所示。
同理,当第3位点选择的碱基为碱基C,同时第7位点选择的碱基为碱基A时,得到的分子条形码的碱基序列如SEQ ID NO.2所示。
在本公开的一个实施例中,提供一种反向引物,反向引物包括但不限于接头引物、锁核酸修饰的分子条形码和特异性引物。
本公开的一些实施例提供的技术方案中,通过对分子条形码所在的引物进行控制,由于反向引物结合靶标基因的区域较正向引物的少,因此对反向引物进行设计,通过设计的反向引物中的分子条形码,能够提高反向引物和靶标基因的结合程度,进而抑制扩增引物中正向引物和反向引物之间的非特异性扩增。
在本公开的一个实施例中,提供一种引物组,引物组包括:
正向引物,以及
反向引物;
正向引物包括但不限于FR1正向引物、FR2正向引物和FR3正向引物中的至少一种,其中,正向引物可以是FR1正向引物、FR2正向引物、FR3正向引物,也可以是FR1正向引物和FR2正向引物的混合正向引物,也可以是FR2正向引物和FR3正向引物的混合正向引物,也可以是FR1正向引物和FR3正向引物的混合正向引物,也可以是FR1正向引物、FR2正向引物和FR3正向引物的混合正向引物。
在本公开的一个实施例中,提供一种试剂盒,包括但不限于反向引物、DNA聚合酶、缓冲液和纯化用的磁珠。
在本公开的一个实施例中,如图3所示,提供一种用于基因检测中抑制非特异性扩增的方法,包括:
S1.对待扩增样品进行至少两轮的PCR扩增反应,得到扩增产物;
其中,第一轮PCR扩增反应所用的引物包括反向引物,所述第二轮PCR扩增反应所用的引物包括FR1正向引物、FR2正向引物和FR3正向引物中的至少一种。
本公开的一些实施例提供的技术方案中,前两轮PCR扩增反应需先进行第一轮PCR扩增反应再进行第二轮PCR扩增反应,而第一轮PCR扩增反应所用引物为带有锁核酸修饰的分子条形码的反向引物,可以使得带有分子条形码的反向引物同靶标基因进行扩增,促使第一轮扩增产物中均带有分子条 形码,再通过正向引物进行第二轮PCR扩增反应,可使得第一轮扩增产物进一步扩增,促使正向引物对第一轮扩增产物进一步进行扩增,可使得扩增后的产物总量足够,方便后续的基因重排检测。
在一些可选的实施方式中,至少两轮的PCR扩增反应中,最后一轮PCR扩增反应所用的引物为接头引物。
本公开的一些实施例提供的技术方案中,控制最后一轮PCR扩增反应所用的引物为接头引物,利用接头引物补全整个扩增产物的DNA片段,方便后续的基因重排检测。
需要说明的是,一般情况下,进行两轮PCR扩增反应后,就可以进行最后一轮PCR扩增反应。而采用上述的至少两轮的PCR扩增反应,可以避免直接投入含有正向引物和反向引物的引物组,因为在PCR扩增反应阶段该引物组中正向引物和反应引物之间会直接结合,因此采用不同轮次PCR扩增反应,将反向引物和正向引物分别进行PCR扩增反应,能够抑制正向引物和反向引物之间的非特异性扩增,减少非特异性扩增的产物数量。
在一些可选的实施方式中,反向引物的浓度为9μmol/L至11μmol/L,反向引物的加入量为5μL至7μL。
本公开的一些实施例提供的技术方案中,控制反向引物的浓度和反向引物的加入量,一般是为了使反向引物能够将待扩增样品充分的进行第一轮PCR扩增反应,促使第一扩增产物的数量足够,为第二轮PCR扩增反应提供充足的模板。
为了更好的方便扩增反应体系的使用,因此需要控制引物的加入量,而控制了反向引物的加入量后,对应的也要控制反向引物的浓度,促使第一扩增产物的数量足够。
在一些可选的实施方式中,待扩增样品中DNA总重量≥100ng。
本公开的一些实施例提供的技术方案中,控制待扩增样品中DNA总重量,可使得DNA片段的数量足够多,而足够多的DNA片段能使得扩增产物中的数量充足,因此控制DNA总重量,能为第一轮PCR扩增反应和第二轮PCR扩增反应提供充足的产物,从而使得最终得到的扩增产物数量的充足, 方便后续的基因重排检测操作。
在本公开的一个实施例中,提供一种所述锁核酸修饰的分子条形码在制备基因重排检测的试剂中的应用,包括但不限于,将分子条形码用于制备基因重排检测的正向引物或探针中。
实施例1
实施例1提供一种锁核酸修饰的分子条形码,分子条形码的碱基数量为10,锁核酸修饰的位点为第4位点和第8位点,其中,第4位点的碱基为碱基A,第8位点的碱基为碱基T,锁核酸修饰的分子条形码的序列如SEQ ID NO.1所示,为5’-NNA*NNNT*NN-3’,其中,*表示锁核酸(LNA)修饰的位点。
实施例2
实施例2提供了一种反向引物,在实施例1的基础上,反向引物包括接头引物、锁核酸修饰的分子条形码和特异性引物,具体序列如SEQ ID NO.3所示。
实施例3
实施例3提供了一种引物组,包括正向引物和实施例2的反向引物,其中,正向引物包括FR1正向引物、FR2正向引物或FR3正向引物,具体的引物组如表1所示。
表1引物组序列情况表


注:*代表锁核酸(LNA)修饰的位点。
实施例4
实施例4提供了一种试剂盒,包括实施例2的反向引物、DNA聚合酶、缓冲液和磁珠。
实施例5
实施例5提供了一种用于基因重排检测中抑制非特异性扩增的方法,如图4所示,包括:
S1.对待扩增样品进行第一轮PCR扩增反应,具体扩增反应体系如表2所示,扩增反应程序如表3所示,扩增后的产物需要进行磁珠纯化,才能得到第一扩增产物;其中,磁珠纯化中磁珠和扩增反应体系的体积比为0.8;
S2.对第一扩增产物进行第二轮PCR扩增反应,具体扩增反应体系如表4所示,扩增反应程序如表5所示,每种FR正向引物单独作为正向引物进行扩增,扩增后的产物需要进行进一步的磁珠纯化,得到第二扩增产物;其中,磁珠纯化中磁珠和扩增反应体系的体积比为0.6;
S3.对第二扩增产物进行第三轮PCR扩增反应,具体扩增反应体系如表6所示,扩增反应程序如表7所示,扩增后的产物需要进行进一步的磁珠纯化,才能得到第三扩增产物;其中,磁珠纯化中磁珠和扩增反应体系的体积比为0.8;
第一轮PCR扩增反应所用的引物为SEQ ID NO.2所示的反向引物,第二轮PCR扩增反应所用的引物为FR1正向引物、FR2正向引物和FR3正向引物,第三轮PCR扩增反应所用的引物为Illumina-R接头引物。
表2第一轮PCR扩增反应体系情况表

注:表中0<X≤18μL。
表3第一轮PCR扩增反应程序情况表
表4第二轮PCR扩增反应体系情况表
表5第二轮PCR扩增反应程序情况表
表6第三轮PCR扩增反应体系情况表
表7第三轮PCR扩增反应程序情况表
实施例6
实施例6提供了另外一种锁核酸修饰的分子条形码,分子条形码的碱基数量为10,锁核酸修饰的位点为第3位点和第7位点,其中,第3位点的碱基为碱基C,第7位点的碱基为碱基A,分子条形码的序列如SEQ ID NO.2所示,为5’-NNC*NNNA*NNN-3’,其中,*表示锁核酸(LNA)修饰的位点。
实施例7
实施例7提供了一种反向引物,在实施例6的基础上,反向引物包括接 头引物、锁核酸修饰的分子条形码和特异性引物,具体序列如SEQ ID NO.4所示。
实施例8
实施例8提供了一种引物组,包括正向引物和实施例7的反向引物,其中,正向引物包括FR1正向引物、FR2正向引物或FR3正向引物,具体的引物组如表1所示。
实施例9
实施例9提供了另外一种用于基因重排检测中抑制非特异性扩增的方法,为简要描述,实施例部分未提及之处,可参考前述方法实施例中相应内容;与实施例5相比,实施例9的区别仅在于采用的反向引物中是含有实施例6的分子条形码。
对比例1
基于对照原则,对比例1提供了一种未经锁核酸修饰的分子条形码,具体序列为5’-NNNNNNNNNN-3’。
该分子条形码对应的反向引物的序列如表1所示,其余序列和方法的工艺条件均同前述实施例1。
相关测试:
分别将实施例5、实施例9和对比例1所得的PCR扩增产物进行基因重排检测,并分别将实施例5、实施例9和对比例1的基因重排检测数据进行比对,结果如表8、表9所示。
相关测试的方法:
分别将含有未经锁核酸修饰的分子条形码的反向引物依次加入1-3号PCR反应管,实施例5中含有经锁核酸修饰的分子条形码的反向引物依次加入4-6号PCR反应管,实施例9中含有经锁核酸修饰的分子条形码的反向引物依次加入7-9号PCR反应管,且1号、4号和7号PCR反应管中的正向引物为FR1正向引物,2号、5号和8号PCR反应管中的正向引物为FR2正向引物,3号、6号和9号PCR反应管中的正向引物为FR3正向引物,分别进行PCR扩增反应,扩增反应体系和扩增反应程序参考表2至表7所示,扩增 方法参考实施例5和实施例9,扩增产物经过纯化后,作为测序文库,再上机测试,测试仪器的型号为Illumina NovaSeq,仪器的测试长度为PE150,读取测试数据;
其中,锁核酸修饰的分子条形码在基因重排检测过程中的原理如图1所示。
表8实施例5和对比例1的基因重排检测数据对比表
表9实施例9和对比例1的基因重排检测数据对比表
由表8可知,通过如SEQ ID NO.1所示的锁核酸修饰后的分子条形码,实现在基因重排的PCR-高通量测序文库的构建过程中,接头自连Reads数百分比由85.6%、92.4%、91.6%分别降低至9.56%、8.27%、7.91%,显著降低1个数量级。
而通过如SEQ ID NO.2的锁核酸修饰后的分子条形码,实现在基因重排的PCR-高通量测序文库的构建过程中,接头自连Reads数百分比由85.6%、92.4%、91.6%分别降低至10.26%、9.16%、8.83%,也显著降低1个数量级。
这说明本公开通过特定数量和特定位置的锁核酸修饰的分子条形码能显 著的减少基因重排过程中非特异性扩增产物的数量。
通过表8和表9数据对比可知,如SEQ ID NO.1所示的锁核酸修饰后的分子条形码和如SEQ ID NO.2的锁核酸修饰后的分子条形码,两者的接头自连Reads数百分比不同,如SEQ ID NO.1所示的锁核酸修饰后的分子条形码的接头自连Reads数百分比分别为9.56%、8.27%、7.91%,而如SEQ ID NO.2的锁核酸修饰后的分子条形码的接头自连Reads数百分比分别为10.26%、9.16%、8.83%,这说明,锁核酸修饰的不同位点和不同碱基,对抑制正向引物和反向引物之间的接头自连的能力不同。
本文中出现“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。本领域内的技术人员应明白,在整个说明书中,除非另有特别说明,本文使用的术语应理解为如本领域中通常所使用的含义。因此,除非另有定义,本文使用的所有技术和科学术语具有与本公开所属领域技术人员的一般理解相同的含义。若存在矛盾,本说明书优先。
除非另有特别说明,本公开中用到的各种原材料、试剂、仪器和设备等,均可通过市场购买得到或者可通过现有方法制备得到。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
尽管已描述了本公开的可选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括可选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要 求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (20)

  1. 一种锁核酸修饰的分子条形码,用于抑制基因重排检测过程中非特异性扩增,
    其中,
    所述分子条形码的碱基总数Q≥10,所述分子条形码含有m个锁核酸修饰的位点,且m个锁核酸修饰的位点将所述分子条形码分为m+1段序列,其中,每段序列的碱基数量为2个至4个,m≥2。
  2. 如权利要求1所述的分子条形码,其中,m满足:
    [Q/4]≤m≤[Q/3],
    式中,Q表示分子条形码的碱基总数,[Q/3]表示不超过Q/3的最大整数,[Q/4]表示不超过Q/4的最大整数。
  3. 如权利要求1所述的分子条形码,其中,所述简并碱基N的数量≥8。
  4. 如权利要求3所述的分子条形码,其中,所述简并碱基N的数量为8个至10个。
  5. 如权利要求1所述的分子条形码,其中,所述分子条形码的至少两段序列的碱基数量相同。
  6. 如权利要求5所述的分子条形码,其中,所述分子条形码的相邻两段序列的碱基数量相同。
  7. 如权利要求1所述的分子条形码,其中,所述分子条形码的碱基总数Q为10,锁核酸修饰的所述位点包括沿分子条形码的5’端至3’端方向的第k位点和第k+4位点,其中,k>2。
  8. 如权利要求7所述的分子条形码,其中,锁核酸修饰的所述位点包括第4位点和第8位点。
  9. 如权利于要求8所述的分子条形码,其中,所述分子条形码的序列如SEQ ID NO.1所示。
  10. 如权利要求7所述的分子条形码,其中,锁核酸修饰的所述位点包括第3位点和第7位点。
  11. 如权利要求10所述的分子条形码,其中,所述分子条形码的序列如SEQ ID NO.2所示。
  12. 一种反向引物,其中,所述反向引物包括如权利要求1-10任一项所述的锁核酸修饰的分子条形码,所述反向引物包括接头引物、分子条形码和特异性引物。
  13. 如权利要求12所述的反向引物,其中,所述反向引物的序列如SEQ ID NO.3所示;
    或,所述反向引物的序列如SEQ ID NO.4所示。
  14. 一种引物组,其中,所述引物组包括:
    正向引物,以及
    权利要求12或13所述的反向引物;
    所述正向引物包括FR1正向引物、FR2正向引物和FR3正向引物中的至少一种。
  15. 一种试剂盒,其中,所述试剂盒包括:
    DNA聚合酶,缓冲液,以及
    权利要求12或13所述的反向引物。
  16. 一种用于基因重排检测中抑制非特异性扩增的方法,其中,所述方法采用如权利要求14所述的引物组进行扩增反应,所述方法包括:
    对待扩增样品进行至少两轮的PCR扩增反应,得到扩增产物;
    其中,第一轮PCR扩增反应所用的引物包括所述反向引物,第二轮PCR扩增反应所用的引物包括FR1正向引物、FR2正向引物和FR3正向引物中的至少一种。
  17. 如权利要求16所述的方法,其中,至少两轮的所述PCR扩增反应中,最后一轮PCR扩增反应所用的引物为接头引物。
  18. 如权利要求16所述的方法,其中,所述反向引物的浓度为9μmol/L至11μmol/L,所述反向引物的加入量为5μL至7μL。
  19. 如权利要求16所述的方法,其中,所述待扩增样品中DNA总重量 ≥100ng。
  20. 一种如权利要求1-11任一项所述的锁核酸修饰的分子条形码在制备基因重排检测的试剂中的应用。
PCT/CN2023/094729 2022-05-18 2023-05-17 锁核酸修饰的分子条形码、反向引物、引物组、试剂盒和抑制非特异性扩增的方法及应用 WO2023222022A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210551546.0A CN117126931A (zh) 2022-05-18 2022-05-18 锁核酸修饰的分子条形码、反向引物、引物组、试剂盒和抑制非特异性扩增的方法及应用
CN202210551546.0 2022-05-18

Publications (1)

Publication Number Publication Date
WO2023222022A1 true WO2023222022A1 (zh) 2023-11-23

Family

ID=88834687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094729 WO2023222022A1 (zh) 2022-05-18 2023-05-17 锁核酸修饰的分子条形码、反向引物、引物组、试剂盒和抑制非特异性扩增的方法及应用

Country Status (2)

Country Link
CN (1) CN117126931A (zh)
WO (1) WO2023222022A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106755451A (zh) * 2017-01-05 2017-05-31 苏州艾达康医疗科技有限公司 核酸制备及分析
CN108929906A (zh) * 2018-08-24 2018-12-04 山东德诺生物科技有限公司 用于检测rs1799889的引物探针组及其应用
CN111575343A (zh) * 2019-02-18 2020-08-25 北京全谱医学检验实验室有限公司 一种免疫组库测序文库的构建方法及试剂盒
US20220025452A1 (en) * 2018-12-12 2022-01-27 Shanghai Mag-Gene Nanotech Co., Ltd. Nucleic acid amplification blocking agent for detecting low-abundance mutation sequence and use thereof
CN114410845A (zh) * 2022-02-09 2022-04-29 广东省农业科学院动物卫生研究所 检测非洲猪瘟病毒的锁核酸修饰的一步巢式pcr引物组、试剂盒

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106755451A (zh) * 2017-01-05 2017-05-31 苏州艾达康医疗科技有限公司 核酸制备及分析
CN108929906A (zh) * 2018-08-24 2018-12-04 山东德诺生物科技有限公司 用于检测rs1799889的引物探针组及其应用
US20220025452A1 (en) * 2018-12-12 2022-01-27 Shanghai Mag-Gene Nanotech Co., Ltd. Nucleic acid amplification blocking agent for detecting low-abundance mutation sequence and use thereof
CN111575343A (zh) * 2019-02-18 2020-08-25 北京全谱医学检验实验室有限公司 一种免疫组库测序文库的构建方法及试剂盒
CN114410845A (zh) * 2022-02-09 2022-04-29 广东省农业科学院动物卫生研究所 检测非洲猪瘟病毒的锁核酸修饰的一步巢式pcr引物组、试剂盒

Also Published As

Publication number Publication date
CN117126931A (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
CN108893466B (zh) 测序接头、测序接头组和超低频突变的检测方法
CN113005121B (zh) 接头元件、试剂盒及其相关应用
Famulok et al. In vitro selection of specific ligand‐binding nucleic acids
CN111748551B (zh) 封闭序列、捕获试剂盒、文库杂交捕获方法及建库方法
WO2005010494A2 (en) Multiplexed analyte detection
CN107002080B (zh) 一种基于多重pcr的目标区域富集方法和试剂
CN113444770A (zh) 一种单细胞转录组测序文库的构建方法及其应用
WO2019144582A1 (zh) 用于检测基因突变和已知、未知基因融合类型的高通量测序靶向捕获目标区域的探针和方法
Plongthongkum et al. Scalable dual-omics profiling with single-nucleus chromatin accessibility and mRNA expression sequencing 2 (SNARE-seq2)
CN105524920B (zh) 用于Ion Proton测序平台的TN5建库的引物组、试剂盒和建库方法
CN106939344B (zh) 用于二代测序的接头
WO2023221308A1 (zh) 一种液相杂交捕获方法及其试剂盒
CN107893100A (zh) 一种单细胞mRNA逆转录与扩增的方法
CN113862261B (zh) 一组应用于不同高通量测序平台文库的通用环化陪伴序列、其试剂盒以及环化方法
CN113811618A (zh) 基于甲基化dna目标区域构建测序文库及系统和应用
CN104531874B (zh) Egfr基因突变检测方法及试剂盒
JP2022502343A (ja) 肝癌によく見られた複数の変異を同時に検出するctDNAライブラリーの構築及びシークエンシングデータの分析の方法
CN111662970B (zh) 一种bcr免疫组库全长扩增的三代建库测序方法
CN112094914B (zh) 一种联合检测急性髓细胞白血病的试剂盒
WO2023222022A1 (zh) 锁核酸修饰的分子条形码、反向引物、引物组、试剂盒和抑制非特异性扩增的方法及应用
CN111748613A (zh) 一种双标签接头设计方法及制备方法
CN115807056B (zh) 一种bcr或tcr重排序列模板池及其应用
CN108949765B (zh) 与节球藻毒素-r特异性结合的适配体及其应用
Sabrowski et al. The use of high-affinity polyhistidine binders as masking probes for the selection of an NDM-1 specific aptamer
CN112266963B (zh) 一种联合检测慢性粒细胞白血病检测试剂盒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23806973

Country of ref document: EP

Kind code of ref document: A1