WO2023221866A1 - 天线、电路板及电子设备 - Google Patents

天线、电路板及电子设备 Download PDF

Info

Publication number
WO2023221866A1
WO2023221866A1 PCT/CN2023/093593 CN2023093593W WO2023221866A1 WO 2023221866 A1 WO2023221866 A1 WO 2023221866A1 CN 2023093593 W CN2023093593 W CN 2023093593W WO 2023221866 A1 WO2023221866 A1 WO 2023221866A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
antenna
substrate
layer
electronic device
Prior art date
Application number
PCT/CN2023/093593
Other languages
English (en)
French (fr)
Inventor
李军
张淼
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023221866A1 publication Critical patent/WO2023221866A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/002Protection against seismic waves, thermal radiation or other disturbances, e.g. nuclear explosion; Arrangements for improving the power handling capability of an antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2258Supports; Mounting means by structural association with other equipment or articles used with computer equipment
    • H01Q1/2266Supports; Mounting means by structural association with other equipment or articles used with computer equipment disposed inside the computer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/273Adaptation for carrying or wearing by persons or animals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/273Adaptation for carrying or wearing by persons or animals
    • H01Q1/276Adaptation for carrying or wearing by persons or animals for mounting on helmets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/285Aircraft wire antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor

Definitions

  • the present application relates to the field of antennas, and in particular, to an antenna, a circuit board and an electronic device.
  • a ceramic substrate with a high dielectric constant can be used to reduce the size of the antenna, or laser direct forming technology can be used to bend and engrave the antenna on a bracket, thereby reducing the space occupied by the antenna.
  • the cost of using a high dielectric constant ceramic substrate or using laser direct forming technology is high, and the solution of using a high dielectric constant ceramic substrate (or can be understood as an on-board ceramic antenna) also requires a relatively large amount of space reserved for the antenna. Large headroom.
  • the embodiments of the present application provide an antenna, a circuit board and an electronic device, which solve the problems of high cost and high clearance area requirements of the existing technology.
  • An embodiment of the present application provides an antenna, including a first radiator and a second radiator provided on a substrate.
  • the substrate has a first structural layer and a second structural layer.
  • the first structural layer is provided with a first hollow area
  • the second structural layer is provided with a second hollow area
  • the first radiator is set up in the first hollow area
  • the second radiator Set up in the second hollow area; along the thickness direction of the substrate, the first radiator and the second radiator are spaced apart.
  • the substrate also has a ground layer, and two ends of the second radiator are respectively connected to the ground layer to be grounded.
  • a first gap is provided on the first radiator, and a first end of the first radiator is connected to the ground layer to be grounded.
  • the first radiator in the first hollow area of the substrate and the second radiator in the second hollow area of the substrate or it can be understood as using a double-layer wiring structure on the substrate, it can effectively Increasing the diameter of the radiator (or can be understood as the length of the radiator) makes the magnetic field distribution of the antenna more uniform, which can effectively improve the efficiency of the antenna under the condition of a certain clearance area, or it can be understood as, under the conditions of meeting the same antenna performance
  • This application can effectively reduce the clearance area required for the antenna, thereby contributing to the miniaturization of electronic equipment.
  • the connection method in which one end of the first radiator is grounded and both ends of the second radiator are grounded makes the structure of the antenna simpler.
  • the embodiment of the present application does not need to use a high dielectric constant dielectric material as the substrate, nor does it need to use laser direct forming technology to form the antenna structure. Therefore, the antenna of the embodiment of the present application has the advantages of simple structure and low cost.
  • the second radiator is provided with a second gap.
  • a first capacitor is connected in series on two opposite sides of the first slit of the first radiator, and/or a second capacitor is connected in series on two opposite sides of the second slit of the second radiator.
  • 0.2pF ⁇ capacitance value of the first capacitor ⁇ 3pF, and 0.2pF ⁇ capacitance value of the second capacitor ⁇ 3pF are 0.2pF ⁇ capacitance value of the first capacitor ⁇ 3pF, and 0.2pF ⁇ capacitance value of the second capacitor ⁇ 3pF.
  • the inductance of the antenna impedance can be effectively improved and the antenna impedance can be reduced.
  • Quality factor value (or can be understood as Q value), which can improve the radiation efficiency and bandwidth of the antenna.
  • the first gap forms a first gap and a second gap respectively on two opposite sides of the first radiator, and the first gap and the second gap are staggered along the extension direction of the first radiator.
  • the second gap of the second radiator forms a third gap and a fourth gap respectively on two opposite sides of the second radiator, and the third gap and the fourth gap are offset along the extension direction of the second radiator. distributed.
  • the first gap and the second gap generated by the first gap on the two sides of the first radiator are offset, and the second gap is generated on both sides of the second radiator.
  • the staggered arrangement of the third gap and the fourth gap can effectively increase the relative area of the radiators on both sides of the first gap (the opposite parts of the radiators on both sides of the gap can be regarded as the plates of equivalent capacitance) and the areas on both sides of the second gap.
  • the relative area of the radiator uses the structure of the radiator to construct the distributed capacitance of the antenna, which can effectively deepen the resonance depth of the antenna and thereby improve the efficiency bandwidth of the antenna.
  • the first slit is in a zigzag shape or a finger shape
  • the second slit is in a zigzag shape or a finger shape
  • the first slit is located at the middle position of the first radiator; along the extension direction of the second radiator, the second slit of the second radiator is located at the middle position of the second radiator. at the middle position.
  • the antenna further includes a feed point provided on the substrate, wherein the second end of the first radiator is connected to the feed point, or the second end of the first radiator is coupled to the feed point.
  • the antenna further includes a feed branch.
  • the feed branch is connected to the feed point and is spaced apart from the first radiator to form a gap.
  • the second end of the first radiator is coupled to the feed branch through the gap. .
  • the second end of the first radiator is connected to the feed point through a microstrip line.
  • the microstrip line is used to directly connect the radiator to the feed point.
  • the microstrip line can not only reduce the material cost, but also avoid the easy contact between the shrapnel and the radiator. Or the problem of poor contact at the feed point can effectively improve the reliability of the antenna feed connection.
  • the electrical lengths of the first radiator and the second radiator are both less than or equal to 1/8 of the antenna operating wavelength.
  • the working frequency band of the antenna is 2.4 GHz to 2.48 GHz, 6 mm ⁇ the physical length of the first radiator ⁇ 12 mm, and 6 mm ⁇ the physical length of the second radiator ⁇ 12 mm.
  • This application also provides a circuit board, including a substrate, and the antenna involved in the above embodiments and possible embodiments.
  • This application also provides an electronic device, including the circuit board involved in the above embodiments and possible embodiments.
  • the electronic device of the embodiment of the present application can arrange more antennas to meet more functional requirements than the traditional electronic device, or it can be understood that in Under the premise of meeting the same functional requirements, the electronic device according to the embodiment of the present application is more compact.
  • the substrate has multiple metal layers, the multiple metal layers include a first metal layer and a second metal layer, the first structural layer includes a first metal layer, and the second structural layer includes a second metal layer.
  • the first structural layer is a first metal layer
  • the second structural layer is a second metal layer
  • the second metal layer serves as a ground layer.
  • the substrate has a first surface and a second surface, the second surface is opposite to the first surface, the metal layer closest to the first surface among the multi-layer metal layers is the first metal layer, and among the multi-layer metal layers The metal layer closest to the second surface is the second metal layer.
  • the first radiator includes at least part of the first metal layer and the second radiator includes at least part of the second metal layer.
  • the electronic device of the embodiment of the present application uses the metal layer in the substrate as the radiator of the antenna, which helps to simplify the structure of the electronic device. Furthermore, since the radiator of the antenna is at least partially formed of the metal layer in the substrate, it is consistent with The metal layer in the substrate has an integrated structure. Compared with electrical connection methods such as elastic sheet electrical connection and welding electrical connection, the embodiment of the present application is simple to process and has high electrical connection reliability.
  • the first radiator includes a microstrip line provided on the substrate or a conductive component provided on the substrate.
  • the second radiator includes a microstrip line provided on the substrate or a conductive component provided on the substrate.
  • the electronic device further includes a dielectric structural member for supporting the first radiator and the second radiator, and the dielectric structural member is disposed between the first radiator and the second radiator.
  • the substrate is a PCB board
  • the PCB board includes a dielectric layer
  • the dielectric structural member includes at least part of the dielectric layer.
  • the electronic device is a Bluetooth headset.
  • Figure 1a is a schematic top view of the structure of the antenna and substrate according to the embodiment of the present application.
  • Figure 1b is a schematic three-dimensional structural diagram of the antenna and substrate according to the embodiment of the present application.
  • Figure 1c is a schematic partial enlarged structural diagram of the antenna and substrate in a top view according to the embodiment of the present application;
  • Figure 2a is a schematic three-dimensional structural diagram of the antenna and the substrate according to the embodiment of the present application, in which the first slit and the second slit are both in a zigzag shape;
  • Figure 2b is a schematic three-dimensional structural diagram of the antenna and the substrate according to the application embodiment, in which the first gap is in the shape of an inserted finger;
  • Figure 3 is a schematic three-dimensional structural diagram of the antenna and the substrate according to the application embodiment, in which the dotted arrows show the direction of the current on the antenna and the floor;
  • Figure 4 is an electric field distribution diagram obtained by analyzing the simulation effect of the antenna according to the embodiment of the present application.
  • Figure 5 is a S11 parameter comparison effect curve chart obtained by conducting simulation effect analysis on the antenna of the embodiment of the present application and the antenna of the first reference design respectively;
  • Figure 6 is a radiation efficiency comparison curve obtained by conducting simulation effect analysis on the antenna of the embodiment of the present application, the antenna of the second reference design, and the antenna of the third reference design respectively;
  • Figure 7 is a system efficiency comparison effect curve chart obtained by conducting simulation effect analysis on the antenna of the embodiment of the present application, the antenna of the second reference design, and the antenna of the third reference design respectively;
  • Figure 8 is a schematic diagram of the three-dimensional structure of the fourth reference design antenna
  • Figure 9 shows the S11 parameter comparison effect curve and the system efficiency comparison effect curve obtained by conducting simulation effect analysis on the antenna of the embodiment of the present application and the antenna of the fourth reference design respectively;
  • Figure 10 is a radiation efficiency comparison effect curve chart obtained by conducting simulation effect analysis on the antenna of the embodiment of the present application and the antenna of the fourth reference design respectively;
  • Figures 11 and 12 are respectively energy disassembly effect curves obtained by analyzing the simulation effect of the antenna of the fourth reference design and the antenna of the embodiment of the present application;
  • Figures 13 and 14 are respectively the magnetic field distribution diagrams obtained by analyzing the simulation effects of the antenna of the fourth reference design and the antenna of the embodiment of the present application;
  • Figure 15 is an exploded view of the three-dimensional structure of the electronic device according to the embodiment of the present application.
  • Figure 16 is a partial structural diagram of an electronic device according to an embodiment of the present application.
  • Figure 17a is a partially enlarged structural diagram of the antenna and substrate in the electronic device according to the embodiment of the present application.
  • Figure 17b is a partial three-dimensional structural diagram of the antenna and the substrate in the electronic device according to the embodiment of the present application.
  • Figure 18 is a partial three-dimensional structural diagram of the antenna and substrate of the fifth reference design
  • Figure 19 is a schematic three-dimensional structural diagram of the electronic device in the head mold scenario according to the embodiment of the present application.
  • Figure 20 is a S11 parameter comparison effect curve chart obtained by analyzing the simulation effect of the antenna of the embodiment of the present application and the antenna of the fifth reference design in the head model scenario;
  • Figure 21 is a system efficiency comparison effect curve chart obtained by analyzing the simulation effect of the antenna of the embodiment of the present application and the antenna of the fifth reference design in the head mold scenario;
  • Figures 22a to 22c are all radiation direction comparison effect curves obtained by analyzing the simulation effect of the antenna of the embodiment of the present application and the antenna of the fifth reference design in the head mold scenario;
  • Figure 23 is a partial structural diagram of an electronic device according to an embodiment of the present application.
  • Figure 24a is a partially enlarged structural schematic diagram of the antenna and substrate in the electronic device according to the embodiment of the present application.
  • Figure 24b is a partial three-dimensional structural diagram of the antenna and the substrate in the electronic device according to the embodiment of the present application.
  • Figure 25 is a partial three-dimensional structural diagram of the antenna and substrate of the sixth reference design.
  • Figure 26 is a S11 parameter comparison effect curve chart obtained by analyzing the simulation effect of the antenna of the embodiment of the present application and the antenna of the sixth reference design in the head mold scenario;
  • Figure 27 is a system efficiency comparison effect curve chart obtained by analyzing the simulation effect of the antenna of the embodiment of the present application and the antenna of the sixth reference design in the head mold scenario;
  • Figure 28 is a radiation efficiency comparison effect curve chart obtained by conducting simulation effect analysis on the antenna of the embodiment of the present application and the antenna of the sixth reference design in the head mold scenario;
  • Figures 29a to 29c are all radiation direction comparison effect curves obtained by analyzing the simulation effect of the antenna of the embodiment of the present application and the antenna of the sixth reference design in the head mold scenario.
  • circuit board 20: substrate; 21: first structural layer; 210: first hollow area; 22: second structural layer; 220: second hollow area; 23: dielectric structural member;
  • A0 Feed connection point; B1: First end; B2: Second end; C1: First capacitor; C2: Second capacitor; d: Thickness direction; I: Current direction; L1: Extension direction; L2: Extension direction ;S1: first surface; S2: second surface.
  • connection should be understood in a broad sense.
  • connection or integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • connection or integral connection
  • connection or integral connection
  • connection can be a mechanical connection or an electrical connection
  • it can be a direct connection or an indirect connection through an intermediate medium
  • it can be an internal connection between two components.
  • specific meanings of the above terms in this application can be understood on a case-by-case basis.
  • Relative setting It can be understood as facing (opposite to, or face to face) setting or setting with at least partial overlap in a certain direction.
  • two oppositely arranged radiators are arranged adjacently without any other radiators between them.
  • Coupling can be understood as direct coupling and/or indirect coupling, and "coupling connection” can be understood as direct coupling connection and/or indirect coupling connection.
  • Direct coupling can also be called “electrical connection”, which is understood as the physical contact and electrical conduction of components; it can also be understood as the printed circuit board (PCB) copper foil or wires between different components in the circuit structure.
  • PCB printed circuit board
  • indirect coupling can be understood as two conductors being electrically connected through space/non-contact.
  • indirect coupling may also be called capacitive coupling, for example, signal transmission is achieved by forming an equivalent capacitance through coupling between a gap between two conductive members.
  • Ground/floor It can generally refer to at least a part of any ground layer, or ground plate, or ground metal layer, etc. in an electronic device (such as a mobile phone), or at least part of any combination of any of the above ground layers, or ground plates, or ground components, etc.
  • ground/floor can be used for grounding components within electronic equipment.
  • "ground/floor” may include any one or more of the following: the ground layer of the circuit board of the electronic device, the ground plate formed by the middle frame of the electronic device, the ground metal layer formed by the metal film under the screen, the ground metal layer of the battery Conductive ground layer, and conductive parts or metal parts that are electrically connected to the above-mentioned ground layer/ground plate/metal layer.
  • the circuit board may include a printed circuit board (PCB), such as an 8-, 10-, or 12- to 14-layer board having 8, 10, 12, 13, or 14 layers of conductive material, or by a circuit such as Components separated and electrically insulated by dielectric or insulating layers such as fiberglass, polymer, etc.
  • the PCB board includes a dielectric substrate (or can be understood as a dielectric layer mentioned below), a ground layer and a wiring layer, and the wiring layer and the ground layer are electrically connected through via holes.
  • the dielectric substrate in the PCB board can be a flame-resistant material (FR-4) dielectric board, a Rogers dielectric board, or a mixed dielectric board of Rogers and FR-4.
  • FR-4 flame-resistant material
  • components such as a display, touch screen, input buttons, transmitter, processor, memory, battery, charging circuit, system on chip (SoC) structure, etc. may be mounted on or connected to the circuit board; Or electrically connected to trace and/or ground planes in the circuit board.
  • SoC system on chip
  • the RF source is placed on the wiring layer.
  • ground layers, or ground plates, or ground metal layers are made of conductive materials.
  • the conductive material can be any of the following materials: copper, aluminum, stainless steel, brass and their alloys, copper foil on an insulating substrate, aluminum foil on an insulating substrate, gold foil on an insulating substrate, Silver-plated copper, silver-plated copper foil on an insulating substrate, silver foil and tin-plated copper on an insulating substrate, cloth impregnated with graphite powder, graphite-coated substrate, copper-plated substrate, brass-plated substrate sheet and aluminized substrate.
  • the ground layer/ground plate/ground metal layer can also be made of other conductive materials.
  • Electrical length can refer to the physical length (i.e. mechanical length or geometric length) multiplied by the transmission time of an electrical or electromagnetic signal in the medium required to travel the same distance in free space as the physical length of the medium. Expressed as a ratio of time, the electrical length can satisfy the following formula:
  • L is the physical length
  • a is the transmission time of electrical or electromagnetic signals in the medium
  • b is the transmission time in free space.
  • the electrical length can also refer to the ratio of the physical length (i.e. mechanical length or geometric length) to the wavelength of the transmitted electromagnetic wave.
  • the electrical length can satisfy the following formula:
  • L is the physical length
  • is the wavelength of the electromagnetic wave.
  • the wavelength in a certain wavelength mode (such as a half-wavelength mode, etc.) of the antenna may refer to the wavelength of the signal radiated by the antenna.
  • the half-wavelength mode of the suspended metal antenna may generate resonance including a frequency band of 1.575 GHz, where the wavelength in the half-wavelength mode may refer to the wavelength at which the antenna radiates signals in the 1.575 GHz frequency band.
  • the wavelength of the radiation signal in the medium can be calculated as follows: Among them, ⁇ is the relative dielectric constant of the medium, and frequency is the frequency of the radiation signal.
  • the gaps and grooves in the above embodiments can be filled with insulating medium.
  • a predetermined threshold eg 1 mm, 0.5 m, or 0.1 mm
  • a deviation between the edges of two coplanar radiators that is less than a predetermined threshold (eg, 1 mm, 0.5 m, or 0.1 mm) in a direction perpendicular to their coplanar planes.
  • a predetermined threshold eg, 1 mm, 0.5 m, or 0.1 mm
  • the technical solution provided by this application is applicable to electronic devices with one or more of the following communication technologies: Bluetooth (BT) communication technology, global positioning system (GPS) communication technology, wireless fidelity, WiFi) communication technology, global system for mobile communications (GSM) technology, wideband code division multiple access (WCDMA) communication technology, long term evolution (LTE) communication technology, 5G Communication technology, SUB-6G communication technology and other future communication technologies, etc.
  • Electronic devices in the embodiments of this application may be mobile phones, tablet computers, laptops, smart speakers, smart homes, smart bracelets, smart watches, smart helmets, smart glasses, drones, wireless wearables, vehicle-mounted modules (such as vehicle-mounted T-shirts) -BOX, Telematics BOX), Bluetooth headsets, etc.
  • the Bluetooth headset may be, for example, a True Wireless Stereo (TWS) Bluetooth headset, etc.
  • the electronic device may also be a handheld device with wireless communication capabilities, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, an electronic device in a 5G network or a future evolved public land mobile network (PLMN) ), wireless routing or customer premise equipment (CPE), etc., the embodiments of the present application are not limited to this.
  • Figure 1a is a schematic top view of the antenna and the substrate according to the embodiment of the present application.
  • Figure 1b is a schematic three-dimensional structural view of the antenna and the substrate according to the embodiment of the present application.
  • Figure 1c is a top view of the antenna and the substrate according to the embodiment of the present application.
  • the embodiment of the present application provides an antenna 1 including a first radiator 11 and a second radiator 12 provided on a substrate 20 .
  • the substrate 20 has a first structural layer 21 and a second structural layer 22.
  • the first structural layer 21 is provided with a first hollow area 210
  • the second structural layer 22 is provided with a second hollow area 220
  • the first radiator 11 is set up on the first In the hollow area 210
  • the second radiator 12 is installed in the second hollow area 220 .
  • the first radiator 11 and the second radiator 12 are spaced apart.
  • the first structural layer 21 is the first metal layer of the substrate 20
  • the second structural layer 22 is the second metal layer of the substrate 20
  • the first metal layer and the second metal layer are spaced apart in the thickness direction d of the substrate.
  • the first structural layer 21 and the second structural layer 22 can also be other structural layers of the substrate, such as dielectric layers.
  • the “hollow area” in this application refers to the space used to accommodate the radiator (such as the first radiator 11 or the second radiator 12), which may penetrate the structural layer, for example, along the first radiator.
  • the first hollow area 210 penetrates the first structural layer 21, and in the thickness direction of the second structural layer 22, the second hollow area 220 penetrates the second structural layer 22.
  • the “hollow area” can also be a groove formed on the structural layer.
  • the first hollow area 210 is a groove formed on the first structural layer 21
  • the second hollow area 220 is formed on the second structural layer 22 groove.
  • the extension direction L1 of the first radiator 11 and the extension direction L2 of the second radiator 12 are in the same direction, or it can be understood that the first radiator 11 and the second radiator 12 are arranged in parallel. In alternative embodiments, the first radiator 11 and the second radiator 12 may also be non-parallel.
  • the first radiator 11 and the second radiator 12 partially overlap along the thickness direction d of the substrate 20 . In other alternative embodiments, the first radiator 11 and the second radiator 12 overlap along the thickness direction d of the substrate 20 .
  • the thickness direction d may also be misaligned.
  • the substrate 20 also has a ground layer, and both ends of the second radiator 12 are respectively connected to the ground layer to be grounded.
  • the second structural layer 22 serves as a ground layer.
  • the first structural layer 21 can also be used as a ground layer, and the first structural layer 21 , the second structural layer 22 and the ground layer can also be three different structural layers in the substrate 20 .
  • the first radiator 11 is provided with a first gap 110, and the first end B1 of the first radiator 11 is connected to the ground layer to be grounded.
  • the caliber of the radiator can be effectively increased (or can be understood as The length of the radiator) makes the magnetic field distribution of the antenna more uniform, thereby effectively improving the efficiency of the antenna under the condition of a certain clearance area, or it can be understood that under the condition of meeting the same antenna performance, this application can effectively reduce the size of the antenna.
  • the required headroom contributes to the miniaturization of electronic devices.
  • the first radiator 11 may include a first trace on a first layer on the substrate 20
  • the second radiator 12 may include a second trace on a second layer on the substrate 20 , or may be understood as, the substrate 20 uses a double-layer wiring structure to realize the first radiator 11 and the second radiator 12.
  • the first radiator and the second radiator are respectively grounded through the ground layer of the substrate 20 without the need to drill metal vias between the first radiator and the second radiator; specifically, the first radiator
  • the connection method of grounding one end of the second radiator and grounding both ends of the second radiator makes the structure of the antenna simpler, helps to simplify the processing technology, and is low in cost.
  • the position of the antenna 1 on the substrate 20 is not limited. Please refer to FIG. 1a.
  • the antenna 1 is located at the edge of the substrate 20.
  • the substrate 20 may be, for example, a PCB board.
  • the formation manner of the first radiator 11 and the second radiator 12 is not limited.
  • the first radiator 11 and the second radiator 12 may be formed of metal microstrip lines provided on the substrate 20 .
  • the first radiator 11 and the second radiator 12 may be formed of metal conductive parts provided on the substrate 20 .
  • metal conductive parts refer to conductive parts other than metal microstrip lines that can be provided on the substrate 20 , such as metal patches and so on.
  • the shapes of the first radiator 11 and the second radiator 12 are not limited, and may be bar-shaped, L-shaped, U-shaped, arc-shaped, polygonal, curved, etc., or may be a special-shaped structure that is a combination of any of the above shapes.
  • the first radiator 11 and the second radiator 12 may be at least partially formed by a metal layer in the substrate 20 (such as a PCB board). Further, the first radiator 11 and the second radiator 12 It may be formed of any two different metal layers in the substrate 20 (such as a PCB board). In one embodiment, the second radiator 12 is formed by a metal ground layer in the substrate 20 (such as a PCB board). In other alternative embodiments, the first radiator 11 or the second radiator 12 can also be formed by connecting different lines. For example, the first radiator 11 (or the second radiator 12) can be formed by microstrip lines, It is formed by splicing any two or more of metal conductive parts, metal layers in PCB boards, etc. The width of the first radiator 11 and the second radiator 12 is not limited.
  • the width of the radiator may be uniform or uneven. For example, part of the radiator may be widened or narrowed.
  • the width of the radiator is not limited. In one embodiment, the width of the radiator is approximately 0.2 mm to 0.5 mm, such as 0.3 mm, 0.4 mm, etc.
  • the substrate 20 has a first surface S1 and a second surface S2 arranged oppositely.
  • the first radiator 11 is located on the plane where the first surface S1 (or can be understood as the front) of the substrate 20 is located
  • the second radiator 12 is located on the plane where the second surface S2 (or can be understood as the back) of the substrate 20 is located. plane.
  • the first radiator 11 is formed of a metal layer on the front side of the substrate 20
  • the second radiator 12 is formed of a metal layer on the back side of the substrate 20
  • the first radiator 11 and the second radiator 12 are formed of a metal layer on the back side of the substrate 20 .
  • the radiator 12 may be formed of any two different metal layers inside the substrate 20 .
  • the substrate 20 has multiple metal layers, the metal layer closest to the first surface S1 among the multiple metal layers is the first metal layer, and the metal layer closest to the second surface S2 among the multiple metal layers is Second metal layer.
  • the first radiator 11 is located on the metal layer of the substrate 20 closest to the first surface S1 (or can be understood as the front), and the second radiator 12 is located on the substrate 20 closest to the second surface S2 (or can be understood as the front surface). for the metal layer on the back side).
  • the first radiator 11 and the second radiator 12 may also be located on any two different planes between the first surface S1 and the second surface S2 of the substrate.
  • a dielectric structural member 23 is also provided between the first radiator 11 and the second radiator 12.
  • the dielectric structural member 23 is used to support the first radiator 11 and the second radiator 12.
  • the material of the dielectric structure member 23 is not limited.
  • the dielectric structure member 23 is at least partially formed of a dielectric board in the substrate 20 (such as a PCB board), which has a simple structure, simple process, and low cost.
  • the dielectric structure 23 may also include at least part of the dielectric plate in the PCB board and other high dielectric constant (such as ceramic) dielectric plates.
  • the feeding method of the present application is not limited.
  • the second end B2 of the first radiator 11 is provided with a feed connection point A0.
  • the first radiator 11 is connected to the second end B2 of the first radiator 11 through the feed connection point A0.
  • the antenna 1 further includes a feed branch (not shown in the figure), which is connected to a feed point (not shown in the figure) and connected with the first radiator 11
  • the spaced arrangement forms a gap, and the second end B2 of the first radiator 11 is coupled with the feed branch (not shown in the figure) through the gap.
  • the second end B2 of the first radiator 11 is connected to the feed point (not shown in the figure) through a microstrip line.
  • a microstrip line to directly connect the radiator to the feed point, compared with using shrapnel to connect to the feed point, can not only reduce material costs, but also avoid the shrapnel from being in poor contact with the radiator or feed point. problem, effectively improving the reliability of the antenna feed connection.
  • the feed point in this application can be understood as a signal output end of the radio frequency source, for example, it can be the output pin of the radio frequency chip, or it can also be one end of the signal transmission line used to connect the radio frequency source, as long as it can pass
  • the feed point is electrically connected to the radio frequency source and receives the radio frequency signal without departing from the scope of this embodiment.
  • the second radiator 12 is provided with a second gap 120.
  • the positions of the first slit 110 and the second slit 120 on the radiator are not limited.
  • the first slit 110 is located at the middle position of the first radiator 11 ;
  • the second slit 110 of the second radiator 12 is located at the middle position of the first radiator 11 .
  • the gap 120 is located at the middle position of the second radiator 12 .
  • the intermediate position of the radiator (for example, the first radiator 11 and the second radiator 12 ) can be understood to include the center point of the geometric structure of the radiator, or include the center point of the electrical length of the radiator. point, or include an area within a certain range near the midpoint, for example, the middle position of the radiator includes an area of 1mm near the midpoint or an area of 2mm near the midpoint.
  • first gap 110 may also be located near the first end B1 of the first radiator 11 or near the second end B2, and the second gap 120 may be located at the second radiator 12 near either end, and so on.
  • first capacitor C1 is connected in series on two opposite sides of the first gap 110
  • second gap 120 of the second radiator 12 A second capacitor C2 is connected in series on the opposite sides.
  • only the first capacitor C1 may be connected in series on two opposite sides of the first slot 110
  • only the opposite sides of the second slot 120 of the second radiator 12 may be connected in series.
  • the parameter selection of the first capacitor C1 and the second capacitor C2 can be adjusted according to actual design needs.
  • 0.2pF ⁇ the capacitance value of the first capacitor C1 ⁇ 3pF, and 0.2pF ⁇ the capacitance value of the second capacitor C2 ⁇ 3pF further, the capacitance value of the first capacitor C1 may be, for example, 0.2pF ⁇ 1.5pF, and the capacitance value of the second capacitor C2 may be, for example, ⁇ 1pF.
  • the first capacitor C1 is connected in series to the first radiator 11 and/or the second capacitor C2 is connected in series to the second radiator 12 and the corresponding capacitance value is matched (or it can be understood as a series connection set).
  • Total capacitance method can effectively improve the inductance of the antenna impedance, reduce the quality factor value of the antenna (or can be understood as the Q value), and thereby improve the radiation efficiency and bandwidth of the antenna.
  • the antenna of the embodiment of the present application can effectively increase the real part of the antenna impedance and increase the convergence of the impedance. properties, thereby reducing the loss caused by the matching device, thereby improving the radiation efficiency of the antenna.
  • the electrical lengths of the first radiator 11 and the second radiator 11 are both less than or equal to 1/8 of the antenna operating wavelength.
  • the antenna is used as a Bluetooth antenna.
  • the operating frequency band of the antenna is 2.4GHz to 2.48GHz.
  • the physical lengths of the first radiator 11 and the second radiator 12 are both greater than 6 mm and less than 12 mm, or equal to 6 mm or 12 mm.
  • the antenna 1 is used in the Bluetooth frequency band.
  • the physical lengths of the first radiator 11 and the second radiator 12 are both 6.3mm, which is approximately 1/16 of the antenna's operating wavelength.
  • the antenna It can also be applied to WIFI antennas.
  • the working frequency band of the antenna can be, for example, 2.4GHz ⁇ 2.5GHz.
  • the physical lengths of the first radiator 11 and the second radiator 12 can also be other values.
  • the antenna can also be applied to GPS antennas.
  • the working frequency band of the antenna may be, for example, 1.5 GHz to 1.6 GHz.
  • the physical lengths of the first radiator 11 and the second radiator 12 may also be other values.
  • the physical length of the radiator (such as the first radiator 11 and the second radiator 12) is related to a variety of influencing factors, such as the operating frequency band of the antenna, the dielectric constant of the dielectric structural member, etc., in this field
  • the above physical lengths of the radiators are examples, and other values can also be used in other application scenarios.
  • Figure 2a and Figure 2b are both schematic three-dimensional structural diagrams of the antenna and the substrate according to the embodiment of the present application.
  • the first gap 110 forms a first notch 1101 and a second notch 1102 respectively on two opposite sides of the first radiator 11.
  • the first notch 1101 and the second notch 1102 are formed along
  • the extension direction L1 of the first radiator 11 is staggered.
  • the second gap 120 of the second radiator 12 forms a third gap 1201 and a fourth gap 1202 respectively on the two opposite sides of the second radiator 12 .
  • the third gap 1201 and the fourth gap 1202 are formed along the second radiator 12
  • the first slit 110 and the second slit 120 are both in a zigzag shape.
  • the first slit 110 and the second slit (not shown in the figure) ) are all in the shape of a finger.
  • the shapes of the first slit 110 and the second slit 120 may be different.
  • the first slit 110 is in a zigzag shape and the second slit 120 is in a shape of a finger, or, The first slit 110 is in the shape of a finger, the second slit 120 is in the shape of a sawtooth, and so on.
  • the first gap 1101 and the second gap 1102 generated by the first gap 110 on both sides of the first radiator 11 are offset, and the second gap 120 is positioned on the side of the second radiator 12 .
  • the staggered arrangement of the third gap 1201 and the fourth gap 1202 generated on the two sides can effectively increase the relative area of the radiators on both sides of the first gap 110 (the opposite parts of the radiators on both sides of the gap can be regarded as equivalent capacitance) Plate) and the relative area of the radiators on both sides of the second gap 120, using the structure of the radiator to construct the distributed capacitance of the antenna, which can effectively deepen the resonance depth of the antenna, thereby improving the efficiency bandwidth of the antenna.
  • the capacitors provided on the first radiator 11 and the second radiator 12 can also adopt a lumped capacitor or a distributed capacitor.
  • the capacitor C1 is connected in series in the first gap 110, and the capacitor C1 in the second gap 110 is connected in series.
  • the gap 120 is in a zigzag shape or a finger shape, or the second gap 120 is connected in series with the capacitor C2, the first gap 110 is in a zigzag shape or a finger shape, etc. This application does not limit this.
  • this application also provides a circuit board 2, including a substrate 20, and the antenna 1 involved in the above-mentioned embodiments and implementation modes.
  • Figure 3 is a schematic diagram of the three-dimensional structure of the antenna and the substrate of the application embodiment
  • Figure 4 This is an electric field distribution diagram obtained by analyzing the simulation effect of the antenna according to the embodiment of the present application.
  • the dotted arrow shows the current direction I on the antenna and the floor.
  • the current direction I on the radiator or can be understood as the antenna wiring
  • the floor current present a ring-shaped distribution.
  • the darker the color the stronger the electric field intensity.
  • the electric field intensity point area of the antenna is concentrated at the capacitor connected in series on the radiator. It can be seen that the electric field distribution of the antenna of the embodiment of the present application is generally relatively uniform, which helps to effectively improve the efficiency of the antenna under the condition of a certain clearance area.
  • Simulation software was used to perform simulation analysis on the antenna provided in this embodiment and the antenna of the first reference design, and the effect curve shown in Figure 5 was obtained, in which the antenna structure of the first reference design was the same as that of the embodiment of the present application.
  • the structure of the antenna is basically the same, the only difference is that there is no capacitor connected in series on the radiator.
  • the abscissa represents the frequency in GHz
  • the ordinate represents the S11 amplitude value in dB.
  • S11 is one of the S parameters.
  • S11 represents the reflection coefficient. This parameter can characterize the quality of the antenna's transmission efficiency. Specifically, the smaller the S11 value, the smaller the antenna return loss, and the smaller the energy reflected back by the antenna itself, which represents the energy that actually enters the antenna. The more. It should be noted that in engineering, the S11 value of -6dB is generally used as a standard. When the S11 value of an antenna is less than -6dB, it can be considered that the antenna can work normally, or the antenna's radiation efficiency can be considered to be good.
  • the electrical conductivity of the radiator of the antenna of the embodiment of the present application is The overall length becomes longer, and the resonant frequency point shifts to low frequency. It can be seen that based on the same antenna structure, the antenna of the embodiment of the present application can produce a smaller resonant frequency, or it can be understood that under the working conditions of producing the same resonant frequency, the antenna of the present application can produce a smaller resonant frequency.
  • the application embodiments contribute to the miniaturization of antennas.
  • Figure 6 is a radiation efficiency comparison curve and a system efficiency comparison effect curve obtained through simulation effect analysis of the antenna of the embodiment of the present application, the antenna of the second reference design, and the antenna of the third reference design respectively.
  • Obtaining the simulation data for the curves shown in Figures 6 and 7 is basically the same as Table 1 above (please understand it in conjunction with Figure 1c and Figure 3).
  • the simulation data of the antenna of the second reference design and the antenna of the third reference design are basically the same as the antennas of the embodiments of this application. The difference is that the capacitance value of the first capacitor C1 of the antenna of the second reference design is 0.4. pF, the capacitance value of the first capacitor C1 of the antenna of the third reference design is 0.5pF.
  • the abscissa represents the frequency in GHz, and the ordinate represents the radiation efficiency of the antenna.
  • Radiation efficiency is a measure of the antenna's radiation capability.
  • Metal loss and dielectric loss are factors that influence radiation efficiency.
  • the abscissa represents the frequency in GHz
  • the ordinate represents the system efficiency of the antenna.
  • the system efficiency is the actual efficiency after considering the antenna port matching, that is, the system efficiency of the antenna is the actual efficiency (ie efficiency) of the antenna.
  • efficiency is generally expressed as a percentage, and there is a corresponding conversion relationship between it and dB. The closer the efficiency is to 0dB, the better the efficiency of the antenna is.
  • the capacitance value of the first capacitor connected in series on the first radiator increases from 0.4pF to 0.6pF. It can increase the inductance of the antenna input impedance, thereby reducing the quality factor Q value, thereby increasing the bandwidth of the antenna, and the antenna will also increase the radiation efficiency due to reduced energy storage.
  • Figure 8 is a schematic three-dimensional structural diagram of the fourth reference design antenna.
  • the antenna structure shown in Figure 8 is basically the same as the antenna structure of the embodiment of the present application. The difference is that the antenna shown in Figure 8 is Single-layer wiring structure, including only the first radiator.
  • Figure 9 shows the antennas of the embodiment of this application and the fourth reference design respectively.
  • the S11 parameter comparison effect curve and the system efficiency comparison effect curve obtained by conducting simulation effect analysis on the antennas of the four reference designs respectively;
  • Figure 10 shows the simulation effect analysis on the antenna of the embodiment of the present application and the antenna of the fourth reference design respectively.
  • Figures 11 and 12 are respectively energy disassembly effect curves obtained by analyzing the simulation effect of the antenna of the fourth reference design and the antenna of the embodiment of the present application.
  • the embodiment of the present application compared with the antenna of the fourth reference design (single-layer wiring structure antenna), the embodiment of the present application has a better efficiency bandwidth, and the antenna of the embodiment of the present application is better than the single-layer antenna.
  • the antenna efficiency of the wiring structure is improved by about 0.6dB.
  • the radiation efficiency of the embodiment of the present application is 0.6 dB higher than the radiation efficiency of the fourth reference design antenna (single-layer wiring structure antenna).
  • the total dielectric loss and metal loss of the antenna according to the embodiment of the present application is 0.125W when the resonant frequency is at 2.44GHz.
  • the fourth reference design antenna single-layer wiring structure antenna ) when the resonant frequency point is 2.44GHz
  • the total quality loss and metal loss is 0.176W. It can be seen that the antenna of the embodiment of the present application can effectively reduce the dielectric loss and metal loss of the antenna, increase the radiation power of the antenna, and thereby improve the radiation efficiency of the antenna.
  • the antenna of the embodiment of the present application has higher system efficiency, higher radiation efficiency and better efficiency bandwidth, and the antenna performance is better.
  • the maximum magnetic field intensity of the antenna of the fourth reference design is 1366A/m, which is greater than the maximum magnetic field intensity of 1121A/m of the antenna of the embodiment of the present application.
  • the magnetic field intensity of the fourth reference design antenna is significantly stronger than the magnetic field intensity of the antenna of the embodiment of the present application.
  • a larger magnetic field intensity will cause larger dielectric loss and metal loss. It can be seen that the performance of the antenna of the embodiment of the present application is better than the antenna of the fourth reference design (antenna with a single-layer wiring structure).
  • This application also provides an electronic device 3, including the circuit board 2 involved in the above embodiments and implementation modes.
  • the electronic device is a Bluetooth headset.
  • the following uses a Bluetooth headset as an example to illustrate the application of the circuit board 2 and the antenna 1 on the electronic device 3 .
  • Figure 15 is an exploded view of the three-dimensional structure of the electronic device according to the embodiment of the present application
  • Figure 16 is a partial structural schematic diagram of the electronic device according to the embodiment of the present application.
  • the Bluetooth headset includes an earphone shell, and the earphone shell includes an ear bag shell 311, a front shell 321, and a back shell 322.
  • the ear bag shell 311, the front shell 321, and the back shell 322 are connected in sequence by being buckled.
  • the Bluetooth headset also includes a PCB board 33, which serves as the aforementioned substrate.
  • the PCB board 33 and the media structure member 23 are integrally formed, and the media structure member 23 is located at one edge of the PCB board 33 .
  • Figure 17a is a partial enlarged structural diagram of the antenna and the substrate in the electronic device according to the embodiment of the present application
  • Figure 17b is a partial three-dimensional structural diagram of the antenna and the substrate in the electronic equipment according to the embodiment of the present application.
  • the structure of the antenna of this embodiment is basically the same as that of the antenna shown in Figure 1b. The difference is that both the first radiator 11 and the second radiator 12 are in a zigzag shape to further increase the length of the radiator.
  • Figure 18 is a partial three-dimensional structural diagram of the antenna and substrate of the fifth reference design.
  • the structure of the antenna shown in Figure 18 is basically the same as that of the antenna shown in Figure 17b. The difference is that the antenna has a single-layer wiring structure.
  • Simulation software was used to perform simulation analysis on the electronic equipment using the antenna of this embodiment and the electronic equipment using the fifth reference design antenna in the head mold scenario, and the effect curves shown in Figures 20 to 22c were obtained.
  • FIG. 19 Please see Figure 19 for a schematic diagram of the headform scene.
  • the electronic device 3 is worn on the left ear of the headform.
  • the efficiency bandwidth of the antenna of the embodiment of the present application is significantly improved. Taking -12.5dB as a reference, the efficiency bandwidth of the antenna of the embodiment of the present application is increased by about 38%.
  • the system efficiency of the antenna of the embodiment of the present application is improved by about 0.2dB.
  • Figures 22a to 22c are all radiation direction comparison effect curves obtained by analyzing the simulation effect of the antenna of the embodiment of the present application and the antenna of the fifth reference design in the head mold scenario.
  • Table 3 below is a summary of the performance comparison between the antenna of the embodiment of the present application and the antenna of the fifth reference design.
  • the efficiency bandwidth (-12.5dB) in Table 3 refers to the frequency range in which the antenna efficiency is greater than -12.5dB.
  • the performance of the antenna of the embodiment of the present application at different resonant frequency points is better than that of the antenna of the fifth reference design (single-layer wiring structure), because the embodiment of the present application can weaken the strong magnetic field at the edge of the clearance, it also improves the SAR performance.
  • the SAR value is reduced from 0.91W/kg under single-layer wiring to 0.88W/kg.
  • SAR Specific Absorption Rate, full English name "Specific Absorption Rate” refers to the electromagnetic power absorbed by a unit mass of human tissue, and the unit is W/kg.
  • the SAR value is commonly used internationally to measure the thermal effect of radiation from electronic equipment.
  • the normalized SAR value in the table represents the SAR value obtained when the antenna's efficiency normalized value is -12dB.
  • Figure 23 is a partial structural schematic diagram of an electronic device according to an embodiment of the present application
  • Figure 24a is a partial enlarged structural diagram of an antenna and a substrate in an electronic device according to an embodiment of the present application
  • Figure 24b is an electronic device according to an embodiment of the present application. Schematic diagram of the partial three-dimensional structure of the antenna and substrate.
  • the structure of the antenna in this embodiment is basically the same as that of the antenna shown in Figure 17a. The difference is that this embodiment further reduces the clearance area of the antenna, reducing the clearance area by 60% compared to the structure shown in Figure 17a, to: 6.2 mm*1.5mm. The lengths of both the first radiator and the second radiator are reduced to 6.2mm.
  • Figure 25 is a partial three-dimensional structural diagram of the antenna and substrate of the sixth reference design.
  • the structure of the antenna shown in Figure 25 is basically the same as the structure of the antenna shown in Figure 24b. The difference is that the antenna has a single-layer wiring structure and only includes a first radiator.
  • Simulation software was used to perform simulation analysis on the electronic equipment using the antenna of this embodiment and the electronic equipment using the sixth reference design antenna in the head mold scenario, and the effect curves shown in Figures 26 to 29c were obtained.
  • FIG. 19 Please see Figure 19 for a schematic diagram of the headform scene.
  • the electronic device 3 is worn on the left ear of the headform.
  • the system efficiency of the antenna of the embodiment of the present application is improved by about 1.7dB. It can be seen that by reducing the headroom area, the embodiments of the present application can achieve greater benefits in improving efficiency. This may be understood that the antennas of the embodiments of the present application can maintain high antenna performance under extremely small headroom areas, which is helpful to The miniaturization of electronic devices helps to arrange more antennas in electronic devices to meet more functional requirements.
  • the loss of the matching device of the antenna of the embodiment of the present application is significantly smaller than that of the antenna of the sixth reference design.
  • the loss of the matching device is the radiation efficiency minus the system radiation efficiency. Therefore, the system radiation efficiency of the antenna of the embodiment of the present application is better than that of the antenna of the sixth reference design.
  • Figures 29a to 29c are all radiation direction comparison effect curves obtained by analyzing the simulation effect of the antenna of the embodiment of the present application and the antenna of the sixth reference design in the head mold scenario.
  • the pattern of the antenna of the embodiment of the present application basically covers the pattern of the antenna of the sixth reference design in the XOY plane, XOZ plane and YOZ plane.
  • the radiation direction of the antenna of the embodiment of the present application covers It is better, and compared with the antenna of the sixth reference design, the minimum gain of the antenna in the horizontal plane of the embodiment of the present application is improved by about 2.8dB, and the overall radiation performance is better.
  • Table 5 below is a summary of the performance comparison between the antenna of the embodiment of the present application and the antenna of the sixth reference design.
  • the performance of the antenna of the embodiment of the present application is better than that of the antenna of the sixth reference design (single-layer wiring structure) at different resonant frequency points. Since the embodiment of the present application can weaken the strong magnetic field at the edge of the clearance, it has a better impact on SAR. Performance has also been improved, with the SAR value reduced from 0.9W/kg under single-layer wiring to 0.87W/kg.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)

Abstract

本申请提供了一种天线、电路板及电子设备,天线包括设于基板的第一辐射体和第二辐射体。基板具有第一结构层和第二结构层,第一结构层设有第一镂空区域,第二结构层设有第二镂空区域,第一辐射体架设于第一镂空区域内,第二辐射体架设于第二镂空区域内;沿基板的厚度方向,第一辐射体和第二辐射体间隔设置。基板还具有接地层,第二辐射体的两端分别连接于接地层以接地。第一辐射体设有第一缝隙,并且,第一辐射体的第一端连接于接地层以接地。本申请的天线能够有效增加辐射体口径,使得天线的磁场分布更加均匀,进而能够在满足相同天线性能的条件下,有效减小天线所需的净空面积,进而有助于电子设备的小型化。

Description

天线、电路板及电子设备
本申请要求于2022年05月20日提交中国专利局、申请号为CN202210556906.6、申请名称为“天线、电路板及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线领域,尤其是涉及一种天线、电路板及电子设备。
背景技术
为了应对市场需求与增加核心卖点,对电子设备(例如蓝牙耳机)的功能要求越来越多,导致电子设备(例如蓝牙耳机)内部的空间堆叠挑战越来越大,天线作为电子设备中用于信号传输的重要媒介,因而,如何满足更多功能要求的同时实现天线的小型化是亟待解决的重要问题。
现有技术中,可以采用高介电常数的陶瓷基板减小天线的尺寸,或者采用激光直接成型技术通过将天线弯曲镭雕在支架上,进而减小天线的空间占用率。
然而,采用高介电常数的陶瓷基板或者采用激光直接成型技术的成本较高,并且,采用高介电常数的陶瓷基板的方案(或可理解为板载陶瓷天线)还需要为天线预留较大的净空面积。
可见,现有技术存在成本高且净空面积要求高的问题。
发明内容
本申请实施例提供了一种天线,电路板及电子设备,解决了现有技术成本高且净空面积要求高的问题。
本申请实施例提供了一种天线,包括设于基板的第一辐射体和第二辐射体。
基板具有第一结构层和第二结构层,第一结构层设有第一镂空区域,第二结构层设有第二镂空区域,第一辐射体架设于第一镂空区域内,第二辐射体架设于第二镂空区域内;沿基板的厚度方向,第一辐射体和第二辐射体间隔设置。
基板还具有接地层,第二辐射体的两端分别连接于接地层以接地。
第一辐射体上设有第一缝隙,并且,第一辐射体的第一端连接于接地层以接地。
本申请实施例中,通过在基板的第一镂空区域架设第一辐射体,在基板的第二镂空区域架设第二辐射体,或可理解为在基板上采用双层走线的结构,能够有效增加辐射体口径(或可理解为辐射体的长度),使得天线的磁场分布更加均匀,进而能够在净空面积一定的条件下有效提高天线的效率,或可理解为,在满足相同天线性能的条件下,本申请能够有效减小天线所需的净空面积,进而有助于电子设备的小型化。并且本申请实施例无需在第一辐射体和第二辐射体之间打金属过孔,第一辐射体的一端接地,第二辐射体两端接地的连接方式使得天线的结构更加简单。
此外,本申请实施例无需选用高介电常数的介质材料作为基板,也无需采用激光直接成型技术形成天线结构,因而本申请实施例的天线具有结构简单,成本低廉的优点。
在一些实施例中,第二辐射体上设有第二缝隙。
在一些实施例中,第一辐射体的第一缝隙相对的两侧串接有第一电容,和/或,第二辐射体的第二缝隙相对的两侧串接有第二电容。
在一些实施例中,0.2pF≤第一电容的电容值≤3pF,0.2pF≤第二电容的电容值≤3pF。
本申请实施例中,通过在第一辐射体上串接第一电容和/或在第二辐射体上串接第二电容并匹配相应的电容值,能够有效提高天线阻抗的感性,降低天线的品质因素值(或可理解为Q值),进而能够提高天线的辐射效率和带宽。
在一些实施例中,第一缝隙在第一辐射体相对的两个侧边上分别形成第一缺口和第二缺口,第一缺口和第二缺口沿第一辐射体的延伸方向错位分布。
和/或,第二辐射体的第二缝隙在第二辐射体相对的两个侧边上分别形成第三缺口和第四缺口,第三缺口和第四缺口沿第二辐射体的延伸方向错位分布。
本申请实施例中,通过将第一缝隙在第一辐射体的两个侧边产生的第一缺口和第二缺口错位设置,以及将第二缝隙在第二辐射体的两个侧边产生的第三缺口和第四缺口错位设置,能够有效增大第一缝隙两侧辐射体相对的面积(缝隙两侧辐射体相对的部分可看作是等效电容的极板)以及第二缝隙两侧辐射体相对的面积,利用辐射体的自身结构构造出天线的分布式电容,能够有效加深天线的谐振深度,进而提高天线的效率带宽。
在一些实施例中,第一缝隙呈锯齿状或者呈插指状,第二缝隙呈锯齿状或者插指状。
在一些实施例中,沿第一辐射体的延伸方向,第一缝隙位于第一辐射体的中间位置处;沿第二辐射体的延伸方向,第二辐射体的第二缝隙位于第二辐射体的中间位置处。
在一些实施例中,天线还包括设于基板的馈电点,其中,第一辐射体的第二端与馈电点连接,或者第一辐射体的第二端与馈电点耦合。
在一些可能的实施例中,天线还包括馈电枝节,馈电枝节连接于馈电点,并与第一辐射体间隔设置形成间隙,第一辐射体的第二端通过间隙与馈电枝节耦合。
在一些可能的实施例中,第一辐射体的第二端通过微带线连接于馈电点。
本申请实施例中,采用微带线直接将辐射体接入馈电点的方式,相较于采用弹片接入馈电点的方式,不仅能够减小物料成本,还能够避免弹片易与辐射体或者馈电点接触不良的问题,有效提高天线馈电连接的可靠性。
在一些实施例中,第一辐射体和第二辐射体的电长度均小于或等于天线工作波长的1/8。
在一些实施例中,天线的工作频段为2.4GHz~2.48GHz,6mm≤第一辐射体的物理长度≤12mm,6mm≤第二辐射体的物理长度≤12mm。
本申请还提供了一种电路板,包括基板,以及上述实施例以及可能的实施例所涉及的天线。
本申请还提供了一种电子设备,包括上述实施例以及可能的实施例中所涉及的电路板。
由于天线具有较小的尺寸、较优的效率和带宽,因而本申请实施例的电子设备相较于传统的电子设备能够布置更多的天线以满足更多的功能需求,或可理解为,在满足同样功能需求的条件下,本申请实施例的电子设备更加小型化。
在一些实施例中,基板具有多层金属层,多层金属层包括第一金属层和第二金属层,第一结构层包括第一金属层,第二结构层包括第二金属层。
在一些可能的实施例中,第一结构层为第一金属层,第二结构层为第二金属层。
在一些可能的实施例中,第二金属层作为接地层。
在一些实施例中,基板具有第一表面和第二表面,第二表面与第一表面相对设置,多层金属层中最靠近第一表面的金属层为第一金属层,多层金属层中最靠近第二表面的金属层为第二金属层。
在一些实施例中,第一辐射体包括第一金属层的至少部分,第二辐射体包括第二金属层的至少部分。
本申请实施例的电子设备,利用基板内金属层作为天线的辐射体,有助于简化的电子设备的结构,进一步的,由于天线的辐射体是基板内金属层的至少部分形成的,其与基板内的金属层是一体结构,相较于采用弹片电连接、焊接电连接等电连接方式,本申请实施例加工简单且电连接可靠性高。
在一些实施例中,第一辐射体包括设于基板上的微带线或者设于基板上的导电件。
第二辐射体包括设于基板上的微带线或者设于基板上的导电件。
在一些实施例中,电子设备还包括用于支撑第一辐射体和第二辐射体的介质结构件,介质结构件设于第一辐射体和第二辐射体之间。
在一些实施例中,基板为PCB板,PCB板包括介质层,介质结构件包括介质层的至少部分。
在一些实施例中,电子设备为蓝牙耳机。
附图说明
图1a为本申请实施例天线与基板的俯视结构示意图;
图1b为本申请实施例天线与基板的立体结构示意图;
图1c为本申请实施例天线与基板的俯视局部放大结构示意图;
图2a为本申请实施例天线与基板的立体结构示意图,其中,第一缝隙和第二缝隙均呈锯齿状;
图2b为申请实施例天线与基板的立体结构示意图,其中,第一缝隙呈插指状;
图3为申请实施例天线与基板的立体结构示意图,其中,虚线箭头示出了天线和地板上的电流方向;
图4为对本申请实施例天线进行仿真效果分析获得的电场分布图;
图5为对本申请实施例天线、第一种参考设计的天线分别进行仿真效果分析获得的S11参数对比效果曲线图;
图6为对本申请实施例天线、第二种参考设计的天线以及第三种参考设计的天线分别进行仿真效果分析获得的辐射效率对比曲线图;
图7为对本申请实施例天线、第二种参考设计的天线以及第三种参考设计的天线分别进行仿真效果分析获得的系统效率对比效果曲线图;
图8为第四种参考设计天线的立体结构示意图;
图9为分别对本申请实施例天线、第四种参考设计的天线分别进行仿真效果分析获得的S11参数对比效果曲线图和系统效率对比效果曲线图;
图10为分别对本申请实施例天线、第四种参考设计的天线分别进行仿真效果分析获得的辐射效率对比效果曲线图;
图11、图12分别为对第四种参考设计的天线、本申请实施例天线进行仿真效果分析获得的能量拆解效果曲线图;
图13、图14分别为对第四种参考设计的天线、本申请实施例天线进行仿真效果分析获得的磁场分布图;
图15为本申请实施例电子设备的立体结构爆炸图;
图16为本申请实施例电子设备的局部结构示意图;
图17a为本申请实施例电子设备中天线与基板的局部放大结构示意图;
图17b为本申请实施例电子设备中天线与基板的局部立体结构示意图;
图18为第五种参考设计的天线与基板的局部立体结构示意图;
图19为本申请实施例电子设备在头模场景下的立体结构示意图;
图20为分别对本申请实施例天线、第五种参考设计的天线在头模场景下进行仿真效果分析获得的S11参数对比效果曲线图;
图21为分别对本申请实施例天线、第五种参考设计的天线在头模场景下进行仿真效果分析获得的系统效率对比效果曲线图;
图22a~图22c均为对本申请实施例天线、第五种参考设计的天线在头模场景下进行仿真效果分析获得的辐射方向对比效果曲线图;
图23为本申请实施例电子设备的局部结构示意图;
图24a为本申请实施例电子设备中天线与基板的局部放大结构示意图;
图24b为本申请实施例电子设备中天线与基板的局部立体结构示意图;
图25为第六种参考设计的天线与基板的局部立体结构示意图;
图26为分别对本申请实施例天线、第六种参考设计的天线在头模场景下进行仿真效果分析获得的S11参数对比效果曲线图;
图27为分别对本申请实施例天线、第六种参考设计的天线在头模场景下进行仿真效果分析获得的系统效率对比效果曲线图;
图28为分别对本申请实施例天线、第六种参考设计的天线在头模场景下进行仿真效果分析获得的辐射效率对比效果曲线图;
图29a~图29c均为对本申请实施例天线、第六种参考设计的天线在头模场景下进行仿真效果分析获得的辐射方向对比效果曲线图。
附图标记说明:
1:天线;11:第一辐射体;110:第一缝隙;1101:第一缺口;1102:第二缺口;12:第二辐射体;120:第二缝隙;1201:第三缺口;1202:第四缺口;
2:电路板;20:基板;21:第一结构层;210:第一镂空区域;22:第二结构层;220:第二镂空区域;23:介质结构件;
3:电子设备;311:耳包外壳;321:前壳;322:后壳;33:PCB板;
A0:馈电连接点;B1:第一端;B2:第二端;C1:第一电容;C2:第二电容;d:厚度方向;I:电流方向;L1:延伸方向;L2:延伸方向;S1:第一表面;S2:第二表面。
具体实施方式
以下由特定的具体实施例说明本申请的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本申请的其他优点及功效。虽然本申请的描述将结合一些实施例一起介绍,但这并不代表此申请的特征仅限于该实施方式。恰恰相反,结合实施方式作申请介绍的目的是为了覆盖基于本申请的权利要求而有可能延伸出的其它选择或改造。为了提供对本申请的深度了解,以下描述中将包含许多具体的细节。本申请也可以不使用这些细节实施。此外,为了避免混乱或模糊本申请的重点,有些具体细节将在描述中被省略。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
应注意的是,在本说明书中,相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
以下,对本申请实施例可能出现的术语进行解释。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
相对设置:可理解为面对面(opposite to,或是face to face)设置或者沿某一方向上有至少部分区域重叠设置。在一个实施例中,两个相对设置的辐射体为相邻设置且其间没有设置其他辐射体。
耦合:可理解为直接耦合和/或间接耦合,“耦合连接”可理解为直接耦合连接和/或间接耦合连接。直接耦合又可以称为“电连接”,理解为元器件物理接触并电导通;也可理解为线路构造中不同元器件之间通过印制电路板(printed circuit board,PCB)铜箔或导线等可传输电信号的实体线路进行连接的形式;“间接耦合”可理解为两个导体通过隔空/不接触的方式电导通。在一个实施例中,间接耦合也可以称为电容耦合,例如通过两个导电件间隔的间隙之间的耦合形成等效电容来实现信号传输。
地/地板:可泛指电子设备(比如手机)内任何接地层、或接地板、或接地金属层等的至少一部分,或者上述任何接地层、或接地板、或接地部件等的任意组合的至少一部分,“地/地板”可用于电子设备内元器件的接地。一个实施例中,“地/地板”可以包括以下任一个或多个:电子设备的电路板的接地层、电子设备中框形成的接地板、屏幕下方的金属薄膜形成的接地金属层、电池的导电接地层,和与上述接地层/接地板/金属层有电连接的导电件或金属件。一个实施例中,电路板可以包括印刷电路板(printed circuit board,PCB),例如具有8、10、12、13或14层导电材料的8层、10层或12至14层板,或者通过诸如玻璃纤维、聚合物等之类的介电层或绝缘层隔开和电绝缘的元件。一个实施例中,PCB板包括介质基板(或可理解为后文提及的介质层)、接地层和走线层,走线层和接地层通过过孔进行电连接。PCB板中的介质基板可以为采用耐燃材料(FR-4)介质板,也可以采用罗杰斯(Rogers)介质板,也可以采用Rogers和FR-4的混合介质板。一个实施例中,诸如显示器、触摸屏、输入按钮、发射器、处理器、存储器、电池、充电电路、片上系统(system on chip,SoC)结构等部件可以安装在电路板上或连接到电路板;或者电连接到电路板中的走线层和/或接地层。例如,射频源设置于走线层。
上述任何接地层、或接地板、或接地金属层由导电材料制得。一个实施例中,该导电材料可以采用以下材料中的任一者:铜、铝、不锈钢、黄铜和它们的合金、绝缘基片上的铜箔、绝缘基片上的铝箔、绝缘基片上的金箔、镀银的铜、绝缘基片上的镀银铜箔、绝缘基片上的银箔和镀锡的铜、浸渍石墨粉的布、涂覆石墨的基片、镀铜的基片、镀黄铜的基片和镀铝的基片。本领域技术人员可以理解,接地层/接地板/接地金属层也可由其它导电材料制得。
电长度:电长度可以是指,物理长度(即机械长度或几何长度)乘以电或电磁信号在媒介中的传输时间与这一信号在自由空间中通过跟媒介物理长度一样的距离时所需的时间的比来表示,电长度可以满足以下公式:
其中,L为物理长度,a为电或电磁信号在媒介中的传输时间,b为在自由空间中的传输时间。
或者,电长度也可以是指物理长度(即机械长度或几何长度)与所传输电磁波的波长之比,电长度可以满足以下公式:
其中,L为物理长度,λ为电磁波的波长。
本申请的实施例中,天线的某种波长模式(如二分之一波长模式等)中的波长可以是指该天线辐射的信号的波长。例如,悬浮金属天线的二分之一波长模式可产生包括1.575GHz的频段的谐振,其中二分之一波长模式中的波长可以指天线辐射1.575GHz频段的信号的波长。应理解的是,辐射信号在空气中的波长可以如下计算:空气波长(或真空波长)=光速/频率,其中频率为辐射信号的频率(例如1575MHz),光速可以取3×108m/s。辐射信号在介质中的波长可以如下计算: 其中,ε为该介质的相对介电常数,频率为辐射信号的频率。以上实施例中的缝隙、槽中可以填充绝缘介质。
本申请实施例中提及的共线、共轴、共面、对称(例如,轴对称、或中心对称等)、平行、垂直、相同(例如,长度相同、宽度相同等等)等这类限定,均是针对当前工艺水平而言的,而不是数学意义上绝对严格的定义。共线的两个辐射体的边缘之间在线宽方向上可以存在小于预定阈值(例如1mm,0.5m,或0.1mm)的偏差。共面的两个辐射体的边缘之间在垂直于其共面平面的方向上可以存在小于预定阈值(例如1mm,0.5m,或0.1mm)的偏差。相互平行或垂直的两个辐射体之间可以存在预定角度(例如±5°,±10°)的偏差。
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请的实施方式作进一步地详细描述。
本申请提供的技术方案适用于具有以下一种或多种通信技术的电子设备:蓝牙(bluetooth,BT)通信技术、全球定位系统(global positioning system,GPS)通信技术、无线保真(wireless fidelity,WiFi)通信技术、全球移动通讯系统(global system for mobile communications,GSM)技术、宽频码分多址(wideband code division multiple access,WCDMA)通信技术、长期演进(long term evolution,LTE)通信技术、5G通信技术、SUB-6G通信技术以及未来其它通信技术等。本申请实施例中的电子设备可以是手机、平板电脑、笔记本电脑、智能音箱、智能家居、智能手环、智能手表、智能头盔、智能眼镜、无人机、无线穿戴、车载模块(例如车载T-BOX,Telematics BOX)、蓝牙耳机等。蓝牙耳机具体可例如,真正无线立体声(True Wireless Stereo,TWS)蓝牙耳机等。电子设备还可以是具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备,5G网络中的电子设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的电子设备、无线路由或客户前置设备(Customer Premise Equipment,CPE)等,本申请实施例对此并不限定。
请参见图1a~图1c,图1a为本申请实施例天线与基板的俯视结构示意图,图1b为本申请实施例天线与基板的立体结构示意图,图1c为本申请实施例天线与基板的俯视局部放大结构示意图。本申请实施例提供了一种天线1,包括设于基板20的第一辐射体11和第二辐射体12。
基板20具有第一结构层21和第二结构层22,第一结构层21设有第一镂空区域210,第二结构层22设有第二镂空区域220,第一辐射体11架设于第一镂空区域210内,第二辐射体12架设于第二镂空区域220内。沿基板20的厚度方向d,第一辐射体11和第二辐射体12间隔设置。在一个实施方式中,第一结构层21为基板20的第一金属层,第二结构层22为基板20的第二金属层,第一金属层 和第二金属层在基板的厚度方向d上间隔设置。本领域技术人员可以理解的是,在可替代的其它实施方式中,第一结构层21和第二结构层22也可为基板的其它结构层,比如介质层等。
应可理解,本申请中的“镂空区域”指的是用于容置辐射体(例如第一辐射体11或第二辐射体12)的空间,其可以是贯穿结构层的,例如,沿第一结构层21的厚度方向,第一镂空区域210贯穿第一结构层21,沿第二结构层22的厚度方向,第二镂空区域220贯穿第二结构层22。“镂空区域”也可以是开设在结构层上的凹槽,例如,第一镂空区域210是开设在第一结构层21上的凹槽,第二镂空区域220是开设在第二结构层22上凹槽。
一个实施方式中,第一辐射体11的延伸方向L1和第二辐射体12的延伸方向L2为同一方向,或可理解为,第一辐射体11和第二辐射体12是平行设置的,其他可替代的实施方式中,第一辐射体11和第二辐射体12也可以是不平行的。
一个实施方式中,第一辐射体11和第二辐射体12沿基板20的厚度方向d是部分重叠的,其他可替代的实施方式中,第一辐射体11和第二辐射体12沿基板20的厚度方向d也可以是错位的。
基板20还具有接地层,第二辐射体12的两端分别连接于接地层以接地。一个实施方式中,第二结构层22作为接地层。其他可替代的实施方式中,第一结构层21也可作为接地层,第一结构层21、第二结构层22与接地层也可为基板20中三个不同的结构层。
第一辐射体11设有第一缝隙110,并且,第一辐射体11的第一端B1连接于接地层以接地。
本申请实施例中,通过在基板20的第一镂空区域210架设第一辐射体11,在基板20的第二镂空区域220架设第二辐射体12,能够有效增加辐射体口径(或可理解为辐射体的长度),使得天线的磁场分布更加均匀,进而能够在净空面积一定的条件下有效提高天线的效率,或可理解为,在满足相同天线性能的条件下,本申请能够有效减小天线所需的净空面积,进而有助于电子设备的小型化。在一个实施例中,第一辐射体11可以包括基板20上第一层的第一走线,第二辐射体12可以包括基板20上第二层的第二走线,或可理解为,基板20采用双层走线的结构实现第一辐射体11和第二辐射体12。在一个实施例中,第一辐射体和第二辐射体分别通过基板20的接地层接地,而无需在第一辐射体和第二辐射体之间打金属过孔;具体地,第一辐射体的一端接地,第二辐射体两端接地的连接方式使得天线的结构更加简单,有助于简化加工工艺,并且成本低廉。
天线1在基板20的位置不限,请参见图1a,为了使天线更好地向外辐射,一个实施方式中,天线1位于基板20的边缘处。其中,基板20可例如是PCB板。第一辐射体11和第二辐射体12的形成方式不限。一个实施方式中,第一辐射体11和第二辐射体12可以是设于基板20上的金属微带线形成的。一个实施方式中,第一辐射体11和第二辐射体12可以是设于基板20上的金属导电件形成的。其中,金属导电件指的是除了金属微带线以外的能够设于基板20上的导电件,例如金属贴片等等。
第一辐射体11和第二辐射体12的形状不限,可以是条形、L形、U形、弧形、折线形、曲线形等,还可以是以上任意形状组合后的异形结构。
一个实施方式中,第一辐射体11和第二辐射体12可以是由基板20(例如PCB板)内的金属层的至少部分形成的,进一步的,第一辐射体11和第二辐射体12可以是基板20(例如PCB板)中的任意两个不同层的金属层形成的。一个实施方式中,第二辐射体12是基板20(例如PCB板)中的金属接地层形成的。其他可替代的实施方式中,第一辐射体11或第二辐射体12也可以是不同走线相连形成的,例如第一辐射体11(或者第二辐射体12)可以是由微带线、金属导电件、PCB板中的金属层等等中的任意两个或多个拼接形成的。第一辐射体11和第二辐射体12的宽度不限,沿辐射体的延 伸方向,辐射体的宽度可以是均匀的,也可以是不均匀的,例如辐射体的局部可以是加宽或者缩窄的。辐射体的宽度不限,一个实施方式中,辐射体的宽度大约为0.2mm~0.5mm,例如0.3mm、0.4mm等等。
沿基板20的厚度方向d,第一辐射体11和第二辐射体12在基板20上的设置位置不限。请参见图1b,基板20具有相对设置的第一表面S1和第二表面S2。一个实施方式中,第一辐射体11位于基板20的第一表面S1(或可理解为正面)所在的平面,第二辐射体12位于基板20的第二表面S2(或可理解为背面)所在的平面。一种举例的实施方式中,第一辐射体11是基板20正面的金属层形成的,第二辐射体12是基板20背面的金属层形成的,其他举例中,第一辐射体11和第二辐射体12可以是基板20内部任意两个不同的金属层形成的。
一个实施方式中,基板20具有多层金属层,所述多层金属层中最靠近第一表面S1的金属层为第一金属层,多层金属层中最靠近第二表面S2的金属层为第二金属层。一个实施方式中,第一辐射体11位于基板20中最靠近第一表面S1(或可理解为正面)的金属层,第二辐射体12位于基板20中最靠近第二表面S2(或可理解为背面)的金属层。其他可替代的实施方式中,第一辐射体11和第二辐射体12也可以位于基板第一表面S1和第二表面S2之间的任意两个不同的平面上。
一个实施方式中,请参见图2b,第一辐射体11和第二辐射体12之间还设有介质结构件23,介质结构件23用于支撑第一辐射体11和第二辐射体12,介质结构件23的材质不限,一个实施方式中,介质结构件23是基板20(例如PCB板)中的介质板的至少部分形成的,这样结构简单,工艺简单,成本低。可替代的其他实施方式中,介质结构件23也可以同时包括PCB板中的介质板的至少部分以及其他高介电常数(比如陶瓷)的介质板。
本申请的馈电方式不限,一个实施方式中,请参见图1b,第一辐射体11的第二端B2设有馈电连接点A0,第一辐射体11通过馈电连接点A0连接于馈电点(图中未示出)。一个实施方式中,天线1还包括馈电枝节(图中未示出),馈电枝节(图中未示出)连接于馈电点(图中未示出),并与第一辐射体11间隔设置形成间隙,第一辐射体11的第二端B2通过间隙与馈电枝节(图中未示出)耦合。
一个实施方式中,第一辐射体11的第二端B2通过微带线连接于馈电点(图中未示出)。采用微带线直接将辐射体接入馈电点的方式,相较于采用弹片接入馈电点的方式,不仅能够减小物料成本,还能够避免弹片易与辐射体或者馈电点接触不良的问题,有效提高天线馈电连接的可靠性。
需要说明的是,本申请中的馈电点可理解为射频源的一个信号输出端,例如可以是射频芯片的输出引脚,还可以是用于连接射频源的信号传输线的一端,只要能够通过该馈电点电连接于射频源并接收射频信号,就不脱离本实施例的范围。
请参见图1b,在一个实施方式中,第二辐射体12设有第二缝隙120。其中,第一缝隙110和第二缝隙120在辐射体上的位置不限。一个实施方式中,沿第一辐射体11的延伸方向L1,第一缝隙110位于第一辐射体11的中间位置处;沿第二辐射体12的延伸方向L2,第二辐射体12的第二缝隙120位于第二辐射体12的中间位置处。
本领域技术人员可以理解的是,辐射体(例如第一辐射体11、第二辐射体12)的中间位置可理解为包括辐射体的几何结构的中点,或者,包括辐射体电长度的中点,或者包括上述中点附近一定范围内的区域,例如辐射体的中间位置包括中点附近1mm的区域或中点附近2mm的区域。
其他可替代的实施方式中,第一缝隙110也可以位于第一辐射体11靠近第一端B1的位置处,或者靠近第二端B2的位置处,第二缝隙120可以位于第二辐射体12靠近两端中任一端的位置处,等等。
在一个实施方式中,第一缝隙110相对的两侧串接有第一电容C1,第二辐射体12的第二缝隙120 相对的两侧串接有第二电容C2。其他可替代的实施方式中,也可以是仅第一缝隙110相对的两侧串接有第一电容C1,或者,可以是仅第二辐射体12的第二缝隙120相对的两侧串接有第二电容C2。
第一电容C1和第二电容C2的参数选型可根据实际设计需要调整,一个实施方式中,0.2pF≤第一电容C1的电容值≤3pF,0.2pF≤第二电容C2的电容值≤3pF,进一步的,第一电容C1的电容值可例如为:0.2pF~1.5pF,第二电容C2的电容值可例如为:<1pF。
本申请实施例中,通过在第一辐射体11上串接第一电容C1和/或在第二辐射体12上串接第二电容C2并匹配相应的电容值(或可理解为串接集总电容的方式),能够有效提高天线阻抗的感性,降低天线的品质因素值(或可理解为Q值),进而能够提高天线的辐射效率和带宽。
本领域技术人员可以理解的是,天线匹配网络中并联的电容值越大,所带来的器件损耗也会越大,本申请实施例天线能够有效提升天线阻抗的实部,增大阻抗的收敛性,进而降低匹配器件带来的损耗,从而提升天线的辐射效率。
一个实施方式中,第一辐射体11和第二辐射体11的电长度均小于或等于天线工作波长的1/8。一个实施方式中,天线应用于蓝牙天线,天线的工作频段为2.4GHz~2.48GHz,第一辐射体11和第二辐射体12的物理长度均大于6mm且小于12mm,或者等于6mm或12mm。一种举例的实施方式中,天线1应用于蓝牙频段,第一辐射体11和第二辐射体12的物理长度均为6.3mm,大约为天线工作波长的1/16,其他实施方式中,天线也可应用于WIFI天线,天线的工作频段可例如是2.4GHz~2.5GHz,相应的,第一辐射体11和第二辐射体12的物理长度也可以是其他数值,天线还可应用于GPS天线,天线的工作频段可例如是1.5GHz~1.6GHz,相应的,第一辐射体11和第二辐射体12的物理长度也可以是其他数值。
需要说明的是,辐射体(例如第一辐射体11和第二辐射体12)的物理长度与多种影响因素有关,例如,天线的工作频段、介质结构件的介电常数等等,本领域技术人员应理解的是,以上辐射体的物理长度均为举例说明,其他应用场景中,也可以是其他数值。
请参见图2a和图2b,图2a和图2b均为本申请实施例天线与基板的立体结构示意图。一个实施方式中,如图2a所示,第一缝隙110在第一辐射体11相对的两个侧边上分别形成第一缺口1101和第二缺口1102,第一缺口1101和第二缺口1102沿第一辐射体11的延伸方向L1错位分布。第二辐射体12的第二缝隙120在第二辐射体12相对的两个侧边上分别形成第三缺口1201和第四缺口1202,第三缺口1201和第四缺口1202沿第二辐射体12的延伸方向L2错位分布。一个实施方式中,如图2a所示,第一缝隙110和第二缝隙120均呈锯齿状,一个实施方式中,如图2b所示,第一缝隙110和第二缝隙(图中未示出)均呈插指状,其他可替代实施方式中,第一缝隙110和第二缝隙120的形状可以是不同的,例如第一缝隙110呈锯齿状,第二缝隙120呈插指状,或者,第一缝隙110呈插指状,第二缝隙120呈锯齿状等等。
本申请实施例中,通过将第一缝隙110在第一辐射体11的两个侧边产生的第一缺口1101和第二缺口1102错位设置,以及将第二缝隙120在第二辐射体12的两个侧边产生的第三缺口1201和第四缺口1202错位设置,能够有效增大第一缝隙110两侧辐射体相对的面积(缝隙两侧辐射体相对的部分可看作是等效电容的极板)以及第二缝隙120两侧辐射体相对的面积,利用辐射体的自身结构构造出天线的分布式电容,能够有效加深天线的谐振深度,进而提高天线的效率带宽。
本领域技术人员可以理解的是,第一辐射体11和第二辐射体12上设置的电容也可分别采用集总电容或分布式电容方式,例如第一缝隙110内串接电容C1,第二缝隙120呈锯齿状或者插指状,或者第二缝隙120内串接电容C2,第一缝隙110呈锯齿状或者插指状等等,本申请对此不作限定。
请参见图1a~图3,本申请还提供了一种电路板2,包括基板20,以及上述各实施例及实施方式所涉及的天线1。
采用仿真软件对谐振频点处于2.44GHz的本实施例天线进行仿真分析并获得了如图3和图4所示的仿真效果图,图3为申请实施例天线与基板的立体结构示意图,图4为对本申请实施例天线进行仿真效果分析获得的电场分布图。
在图3中,虚线箭头示出了天线和地板上的电流方向I,从图3可以看出,辐射体上(或可理解为天线走线处)的电流方向I与地板电流呈现一个环形分布,在图4中,颜色越深,表征电场强度越强,从图4可以看出,天线的电场强点区域集中在辐射体上串接的电容处。可见,本申请实施例天线的电场分布总体较为均匀,有助于在净空面积一定的条件下有效提高天线的效率。
采用仿真软件对本实施例中所提供的天线以及第一种参考设计的天线进行仿真分析并获得了如图5所示的效果曲线图,其中,第一种参考设计的天线结构与本申请实施例天线的结构基本相同,其不同之处仅在于:辐射体上未串接电容。
获取图5所示的曲线图的仿真数据如下表1所示(请结合图1c和图3予以理解)。
表1
需要说明的是,以上仅是一种天线的参数选型示例,当本申请实施例的天线适用于其它工作频段时,可根据实际应用场景进行参数选型调整,本申请对此不作限定。
在图5中,横坐标表示频率,单位为GHz,纵坐标表示S11幅度值,单位为dB,S11属于S参数中的一种。S11表示反射系数,此参数能够表征天线发射效率的优劣,具体的,S11值越小,表征天线回波损耗越小,天线本身反射回来的能量越小,也就是代表实际上进入天线的能量就越多。需要说明的是,工程上一般以S11值为-6dB作为标准,当天线的S11值小于-6dB时,可以认为该天线可正常工作,或可认为该天线的发射效率较好。
从图5中可以看出,相较于未串接电容的第一种参考设计的天线,当第一辐射体和第二辐射体上串接电容后,本申请实施例天线的辐射体的电长度整体变长,谐振频点向低频偏移,可见,基于同样的天线结构,本申请实施例天线能够产生更小的谐振频率,或可理解为,在产生相同谐振频率的工作条件下,本申请实施例有助于天线的小型化。
采用仿真软件对本实施例中所提供的天线、第二种参考设计的天线以及第三种参考设计的天线分别进行仿真效果分析获得了如图6~图7所示的仿真效果图,图6、图7为对本申请实施例天线、第二种参考设计的天线以及第三种参考设计的天线分别进行仿真效果分析获得的辐射效率对比曲线图、系统效率对比效果曲线图。
获取图6、图7所示的曲线图的仿真数据与上表1基本相同(请结合图1c和图3予以理解)。第二种参考设计的天线和第三种参考设计的天线的仿真数据与本申请实施例天线基本相同,其不同之处在于:第二种参考设计的天线的第一电容C1的电容值为0.4pF,第三种参考设计的天线的第一电容C1的电容值为0.5pF。
在图6中,横坐标表示频率,单位为GHz,纵坐标表示天线的辐射效率,辐射效率是衡量天线辐射能力的值,金属损耗、介质损耗均是辐射效率的影响因素。
在图7中,横坐标表示频率,单位为GHz,纵坐标表示天线的系统效率,系统效率是考虑天线端口匹配后的实际效率,即天线的系统效率为天线的实际效率(即效率)。本领域技术人员可以理解,效率一般是用百分比来表示,其与dB之间存在相应的换算关系,效率越接近0dB,表征该天线的效率越优。
从图6可以看出,增大第一辐射体上串接的第一电容C1的电容值,能够有效提高天线的辐射效率,从图7可以看出,增大第一辐射体上串接的第一电容C1的电容值,能够使得天线的系统效率带宽获得拓展。
本领域技术人员可以理解的是,保持第二辐射体上串接的第二电容的电容值不变,第一辐射体上串接的第一电容的电容值从0.4pF增大到0.6pF,能够使得天线输入阻抗的感性增大,进而降低品质因素Q值,从而使得天线的带宽增加,并且天线也会因储能降低而提高辐射效率。
请参见图8,图8为第四种参考设计天线的立体结构示意图,图8所示的天线结构与本申请实施例的天线结构基本相同,其不同之处在于,图8所示的天线为单层走线结构,仅包括第一辐射体。
采用仿真软件对本实施例中所提供的天线、第四种参考设计的天线分别进行仿真效果分析获得了如图9~图12所示的仿真效果图,图9为分别对本申请实施例天线、第四种参考设计的天线分别进行仿真效果分析获得的S11参数对比效果曲线图和系统效率对比效果曲线图;图10为分别对本申请实施例天线、第四种参考设计的天线分别进行仿真效果分析获得的辐射效率对比效果曲线图;在图9中,虚线表示系统效率曲线,实线表示S11参数曲线。图11、图12分别为对第四种参考设计的天线、本申请实施例天线进行仿真效果分析获得的能量拆解效果曲线图。
获取图9~图12所示的曲线图的仿真数据请参见上表1,并结合图1c和图3理解。
从图9中可以看出,相较于第四种参考设计的天线(单层走线结构的天线),本申请实施例具有较优的效率带宽,并且,本申请实施例的天线较单层走线结构的天线效率提高0.6dB左右。从图10中可以看出,本申请实施例的辐射效率较第四种参考设计的天线(单层走线结构的天线)的辐射效率高0.6dB。
从图11和图12中可以看出,本申请实施例天线在谐振频点处于2.44GHz时的介质损耗和金属损耗合计为0.125W,第四种参考设计的天线(单层走线结构的天线)在谐振频点处于2.44GHz时的介 质损耗和金属损耗合计为0.176W。可见,本申请实施例天线能够有效降低天线的介质损耗和金属损耗,提高天线的辐射功率,进而提高天线的辐射效率。
可见,本申请实施例的天线具有较高的系统效率、较高的辐射效率以及较佳的效率带宽,天线性能较优。
采用仿真软件对本实施例中所提供的天线、第四种参考设计的天线分别进行仿真效果分析获得了如图13~图14所示的仿真效果图,图13、图14分别为对第四种参考设计的天线、本申请实施例天线进行仿真效果分析获得的磁场分布图;其中,颜色越深,表示磁场强度越强。
从图13和图14可以看出,第四种参考设计的天线(单层走线结构的天线)的磁场强度最大值为1366A/m,大于本申请实施例天线的最大磁场强度1121A/m。并且,如图中虚线圈出部分所示,即净空边缘处的磁场强度,第四种参考设计的天线(单层走线结构的天线)的磁场强度明显强于本申请实施例天线的磁场强度,较大的磁场强度会引起较大的介质损耗与金属损耗。由此可见,本申请实施例天线的性能优于第四种参考设计的天线(单层走线结构的天线)。
本申请还提供了一种电子设备3,包括上述各实施例及实施方式涉及的电路板2。一个实施方式中,电子设备为蓝牙耳机。下面以蓝牙耳机为例对电路板2以及天线1在电子设备3上的应用予以说明。
请参见图15和图16,图15为本申请实施例电子设备的立体结构爆炸图,图16为本申请实施例电子设备的局部结构示意图。
蓝牙耳机包括耳机外壳,耳机外壳包括耳包外壳311、前壳321和后壳322,耳包外壳311、前壳321和后壳322依次扣压连接。蓝牙耳机还包括PCB板33,PCB板33作为前文提及的基板。PCB板33和介质结构件23一体成型,介质结构件23位于PCB板33的一侧边缘。
请参见图17a和图17b,图17a为本申请实施例电子设备中天线与基板的局部放大结构示意图;图17b为本申请实施例电子设备中天线与基板的局部立体结构示意图。
本实施例天线的结构与图1b所示天线结构基本相同,其不同之处在于,第一辐射体11和第二辐射体12均呈折线形,以进一步增大辐射体的长度。
请参见图18,图18为第五种参考设计的天线与基板的局部立体结构示意图。图18所示天线的结构与图17b所示天线结构基本相同,其不同之处在于,天线为单层走线结构。
采用仿真软件对采用本实施例天线的电子设备以及采用第五种参考设计天线的电子设备进行头模场景下的仿真分析,并获得了如图20~图22c所示的效果曲线图。
其中,头模场景示意请参见图19,电子设备3均佩戴于头模的左耳。
获取图20~图22c所示的曲线图的仿真数据如下表2所示(请结合图16、图17a、图17b、图18予以理解)。
表2

需要说明的是,以上仅是一种天线的参数选型示例,当本申请实施例的天线适用于其它工作频段时,可根据实际应用场景进行参数选型调整,本申请对此不作限定。
从图20可以看出,相较于第五种参考设计的天线,本申请实施例天线的效率带宽明显提升,以-12.5dB作为参考,本申请实施例天线的效率带宽扩增38%左右。
从图21中可以看出,相较于第五种参考设计的天线,本申请实施例天线的系统效率提升约0.2dB。
图22a~图22c均为对本申请实施例天线、第五种参考设计的天线在头模场景下进行仿真效果分析获得的辐射方向对比效果曲线图。
从图22a~图22c可以看出,两种方案的方向图基本一致,相较于第五种参考设计的天线,本申请实施例天线的水平面最小增益提升约0.9dB,有助于提升天线的整体辐射性能。
下表3为本申请实施例天线与第五种参考设计的天线的性能对比汇总。
表3
其中,表3中的效率带宽(-12.5dB)是指天线效率大于-12.5dB的频率范围。
可见,本申请实施例天线在处于不同谐振频点时的性能均优于第五种参考设计的天线(单层走线 结构),由于本申请实施例能够弱化净空边缘的强磁场,因而对SAR性能亦有改善作用,SAR值从单层走线下的0.91W/kg减小至0.88W/kg。本领域技术人员可以理解的是:SAR(比吸收率,英文全称“Specific Absorption Rate”)指的是单位质量的人体组织所吸收的电磁功率,单位为W/kg。国际上通常使用SAR值来衡量电子设备辐射的热效应。表中归一化SAR值表示天线的效率归一化值-12dB时得到的SAR值。
请参见图23~图24b,图23为本申请实施例电子设备的局部结构示意图;图24a为本申请实施例电子设备中天线与基板的局部放大结构示意图;图24b为本申请实施例电子设备中天线与基板的局部立体结构示意图。
本实施例天线的结构与图17a所示天线结构基本相同,其不同之处在于,本实施例进一步缩小天线的净空面积,将净空面积较图17a所示结构缩减60%,减小为:6.2mm*1.5mm。第一辐射体和第二辐射体的长度均减小为6.2mm。
请参见图25,图25为第六种参考设计的天线与基板的局部立体结构示意图。图25所示天线的结构与图24b所示天线结构基本相同,其不同之处在于,天线为单层走线结构,仅包括第一辐射体。
采用仿真软件对采用本实施例天线的电子设备以及采用第六种参考设计天线的电子设备进行头模场景下的仿真分析,并获得了如图26~图29c所示的效果曲线图。
其中,头模场景示意请参见图19,电子设备3均佩戴于头模的左耳。
获取图26~图29c所示的曲线图的仿真数据如下表4所示(请结合图23、图24a、图24b、图25予以理解)。
表4

需要说明的是,以上仅是一种天线的参数选型示例,当本申请实施例的天线适用于其它工作频段时,可根据实际应用场景进行参数选型调整,本申请对此不作限定。
从图26可以看出,相较于第六种参考设计的天线,本申请实施例天线的S11参数值更深,效率更好且能够适用于更多工作频段。
从图27中可以看出,相较于第六种参考设计的天线,本申请实施例天线的系统效率提升约1.7dB。可见,缩小净空面积,本申请实施例在提升效率方面能够取得更大的收益,或可理解为,本申请实施例的天线能够在极小净空面积下仍保持较高的天线性能,有助于电子设备的小型化,有助于在电子设备中布置更多天线以满足更多功能需求。
从图28可以看出,本申请实施例天线的匹配器件损耗明显小于第六种参考设计的天线,匹配器件损耗为辐射效率减去系统辐射效率。因此,本申请实施例天线的系统辐射效率优于第六种参考设计的天线。
图29a~图29c均为对本申请实施例天线、第六种参考设计的天线在头模场景下进行仿真效果分析获得的辐射方向对比效果曲线图。
从图29a~图29c可以看出,本申请实施例天线的方向图在XOY平面、XOZ平面以及YOZ平面基本均包裹第六种参考设计的天线的方向图,本申请实施例天线的辐射方向覆盖较优,并且,相较于第六种参考设计的天线,本申请实施例天线的水平面最小增益提升约2.8dB,整体辐射性能较优。
下表5为本申请实施例天线与第六种参考设计的天线的性能对比汇总。
表5
可见,本申请实施例天线在处于不同谐振频点时的性能均优于第六种参考设计的天线(单层走线结构),由于本申请实施例能够弱化净空边缘的强磁场,因而对SAR性能亦有改善作用,SAR值从单层走线下的0.9W/kg减小至0.87W/kg。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (19)

  1. 一种天线,其特征在于,包括设于基板的第一辐射体和第二辐射体;
    所述基板具有第一结构层和第二结构层,所述第一结构层设有第一镂空区域,所述第二结构层设有第二镂空区域,所述第一辐射体架设于所述第一镂空区域内,所述第二辐射体架设于所述第二镂空区域内;沿所述基板的厚度方向,所述第一辐射体和所述第二辐射体间隔设置;
    所述基板还具有接地层,所述第二辐射体的两端分别连接于所述接地层以接地;
    所述第一辐射体上设有第一缝隙,并且,所述第一辐射体的第一端连接于所述接地层以接地。
  2. 如权利要求1所述的天线,其特征在于,所述第二辐射体上设有第二缝隙。
  3. 如权利要求1或2所述的天线,其特征在于,所述第一辐射体的所述第一缝隙相对的两侧串接有第一电容;和/或,所述第二辐射体的第二缝隙相对的两侧串接有第二电容。
  4. 如权利要求3所述的天线,其特征在于,0.2pF≤所述第一电容的电容值≤3pF;0.2pF≤所述第二电容的电容值≤3pF。
  5. 如权利要求1或2所述的天线,其特征在于,所述第一缝隙在所述第一辐射体相对的两个侧边上分别形成第一缺口和第二缺口,所述第一缺口和所述第二缺口沿所述第一辐射体的延伸方向错位分布;
    和/或,所述第二辐射体的第二缝隙在所述第二辐射体相对的两个侧边上分别形成第三缺口和第四缺口,所述第三缺口和所述第四缺口沿所述第二辐射体的延伸方向错位分布。
  6. 如权利要求5所述的天线,其特征在于,所述第一缝隙呈锯齿状或者呈插指状,所述第二缝隙呈锯齿状或者插指状。
  7. 如权利要求1至6任一项所述的天线,其特征在于,沿所述第一辐射体的延伸方向,所述第一缝隙位于所述第一辐射体的中间位置处;沿所述第二辐射体的延伸方向,所述第二辐射体的第二缝隙位于所述第二辐射体的中间位置处。
  8. 如权利要求1至7任一项所述的天线,其特征在于,所述天线还包括设于基板的馈电点,其中,所述第一辐射体的第二端与所述馈电点连接,或者所述第一辐射体的第二端与所述馈电点耦合。
  9. 如权利要求1至8任一项所述的天线,其特征在于,所述第一辐射体和所述第二辐射体的电长度均小于或等于所述天线工作波长的1/8。
  10. 如权利要求1至9任一项所述的天线,其特征在于,所述天线的工作频段为2.4GHz~2.48GHz,6mm≤所述第一辐射体的物理长度≤12mm,6mm≤所述第二辐射体的物理长度≤12mm。
  11. 一种电路板,其特征在于,包括基板,以及权利要求1至10任一项所述的天线。
  12. 一种电子设备,其特征在于,包括权利要求11所述的电路板。
  13. 如权利要求12所述的电子设备,其特征在于,所述基板具有多层金属层,所述多层金属层包括第一金属层和第二金属层,所述第一结构层包括所述第一金属层,所述第二结构层包括所述第二金属层。
  14. 如权利要求13所述的电子设备,其特征在于,所述基板具有第一表面和第二表面,所述第二表面与所述第一表面相对设置;所述多层金属层中最靠近所述第一表面的金属层为所述第一金属层,所述多层金属层中最靠近所述第二表面的金属层为所述第二金属层。
  15. 如权利要求13或14所述的电子设备,其特征在于,所述第一辐射体包括所述第一金属层的至少部分,所述第二辐射体包括所述第二金属层的至少部分。
  16. 如权利要求13或14所述的电子设备,其特征在于,所述第一辐射体包括设于基板上的微带线或者设于基板上的导电件;
    所述第二辐射体包括设于基板上的微带线或者设于基板上的导电件。
  17. 如权利要求12至16任一项所述的电子设备,其特征在于,所述电子设备还包括用于支撑所述第一辐射体和所述第二辐射体的介质结构件,所述介质结构件设于所述第一辐射体和所述第二辐射体之间。
  18. 如权利要求17所述的电子设备,其特征在于,所述基板为PCB板,所述PCB板包括介质层,所述介质结构件包括所述介质层的至少部分。
  19. 如权利要求12至18任一项所述的电子设备,其特征在于,所述电子设备为蓝牙耳机。
PCT/CN2023/093593 2022-05-20 2023-05-11 天线、电路板及电子设备 WO2023221866A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210556906.6A CN117134107A (zh) 2022-05-20 2022-05-20 天线、电路板及电子设备
CN202210556906.6 2022-05-20

Publications (1)

Publication Number Publication Date
WO2023221866A1 true WO2023221866A1 (zh) 2023-11-23

Family

ID=88834591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093593 WO2023221866A1 (zh) 2022-05-20 2023-05-11 天线、电路板及电子设备

Country Status (2)

Country Link
CN (1) CN117134107A (zh)
WO (1) WO2023221866A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202111217U (zh) * 2010-12-31 2012-01-11 美桀电科技股份有限公司 微型天线结构
US20140320352A1 (en) * 2013-04-26 2014-10-30 Wintek Corporation Touch panel module and touch display panel with antenna structure
CN104795628A (zh) * 2015-04-07 2015-07-22 上海安费诺永亿通讯电子有限公司 一种利用pcb板净空实现双频谐振的地辐射天线
CN105322279A (zh) * 2015-12-01 2016-02-10 上海安费诺永亿通讯电子有限公司 一种宽带地辐射天线及有效改善其带宽的方法
US20180375193A1 (en) * 2017-06-22 2018-12-27 AAC Technologies Pte. Ltd. Antenna system and mobile terminal
CN209329151U (zh) * 2019-01-28 2019-08-30 杭州海康威视数字技术股份有限公司 一种双频天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202111217U (zh) * 2010-12-31 2012-01-11 美桀电科技股份有限公司 微型天线结构
US20140320352A1 (en) * 2013-04-26 2014-10-30 Wintek Corporation Touch panel module and touch display panel with antenna structure
CN104795628A (zh) * 2015-04-07 2015-07-22 上海安费诺永亿通讯电子有限公司 一种利用pcb板净空实现双频谐振的地辐射天线
CN105322279A (zh) * 2015-12-01 2016-02-10 上海安费诺永亿通讯电子有限公司 一种宽带地辐射天线及有效改善其带宽的方法
US20180375193A1 (en) * 2017-06-22 2018-12-27 AAC Technologies Pte. Ltd. Antenna system and mobile terminal
CN209329151U (zh) * 2019-01-28 2019-08-30 杭州海康威视数字技术股份有限公司 一种双频天线

Also Published As

Publication number Publication date
CN117134107A (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
US11916282B2 (en) Coupling antenna apparatus and electronic device
EP2642595B1 (en) Antenna device, electronic apparatus, and wireless communication method
WO2021203942A1 (zh) 一种电子设备
WO2021238347A1 (zh) 天线和电子设备
US20230387572A1 (en) Mobile terminal
US11637361B2 (en) Antenna structure and wireless communication device
WO2023103945A1 (zh) 一种天线结构和电子设备
CN211350966U (zh) 一种超低剖面双频uwb天线及通信设备
WO2022133922A1 (zh) 一种多频天线及通信设备
CN116247428B (zh) 一种毫米波阵列天线
WO2023221866A1 (zh) 天线、电路板及电子设备
WO2022017220A1 (zh) 一种电子设备
US11973278B2 (en) Antenna structure and electronic device
CN102157794A (zh) 谐振产生的三频段天线
US11581651B2 (en) Microstrip antenna and television
WO2024067012A1 (zh) 天线及电子设备
CN112086742A (zh) 天线结构、物联模块和显示装置
WO2024055868A1 (zh) 一种可穿戴设备
CN111193109B (zh) 一种自封装基片集成悬置线Vivaldi天线
WO2023082999A1 (zh) 天线及电子设备
CN214542533U (zh) 一种内嵌于屏幕内部结构的天线
WO2023016353A1 (zh) 一种天线结构和电子设备
CN111146581B (zh) 一种双层天线结构
CN114824768B (zh) 回路天线及tws耳机
WO2024007996A1 (zh) 天线单元及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23806818

Country of ref document: EP

Kind code of ref document: A1