WO2023221743A1 - 一种速比可选范围广而构造简单的差齿减速机 - Google Patents

一种速比可选范围广而构造简单的差齿减速机 Download PDF

Info

Publication number
WO2023221743A1
WO2023221743A1 PCT/CN2023/090167 CN2023090167W WO2023221743A1 WO 2023221743 A1 WO2023221743 A1 WO 2023221743A1 CN 2023090167 W CN2023090167 W CN 2023090167W WO 2023221743 A1 WO2023221743 A1 WO 2023221743A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
roller
teeth
fixed wheel
moving wheel
Prior art date
Application number
PCT/CN2023/090167
Other languages
English (en)
French (fr)
Inventor
郑如骏
郑好
Original Assignee
郑如骏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郑如骏 filed Critical 郑如骏
Publication of WO2023221743A1 publication Critical patent/WO2023221743A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/17Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • F16H2001/327Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear with orbital gear sets comprising an internally toothed ring gear

Definitions

  • the invention relates to a differential gear reduction device, the speed ratio of which conforms to a specific mathematical formula.
  • a new type of reduction principle is favored by many technicians. Its structure is similar to that of a planetary reducer. Its principle is to use the planetary wheel to roll two internal gears with different numbers of teeth (one internal gear is fixed and the other is movable for output), and the internal gear is synchronized. gear, so that the two internal gears rotate relative to each other to achieve the purpose of speed change, such as the following two technical solutions (Chinese Application No.: 201521024172.9, planetary differential gear transmission; and Chinese Application No.: 201720389258.4, an eccentric rolling differential gearbox gear precision reducer), all adopt this differential tooth rolling principle. This design does not require a flexspline and has higher fatigue strength, stiffness and life.
  • the tooth number difference needs to be increased so that the two internal gears generate as many synchronization points as the number of planetary gears so that the planetary gears can roll. This will not only increase the system backlash, but also increase the number of teeth at the same level. In this case, the speed ratio will be significantly reduced.
  • the present invention provides the following solution. It discovers the speed ratio formula implicit in the structure of the invention, and the optional range of speed ratio is very wide.
  • the main components of the present invention are composed of an internal gear fixed wheel 1, an internal gear moving wheel 2, and a roller 3 (there are multiple rollers 3, all with the same structure. For the sake of visual display, only one of them is shown in Figure 1.
  • the roller 3 The structure is an important feature of this technical solution, which will be explained in detail in the following paragraphs).
  • the fixed wheel 1 is rigidly connected or integrally formed with the device shell.
  • the moving wheel 2 is parallel to the fixed wheel 1 through the bearing provided on the inside of the device shell. However, the moving wheel 2 does not contact the fixed wheel 1.
  • the other end of the moving wheel 2 is connected to the flange. Can output axial rotation.
  • a plurality of rollers 3 are mounted on the input wheel 4 in a planetary shape through bearings.
  • the input wheel 4 places the plurality of rollers 3 on the input wheel 4 between the fixed wheel 1 and the moving wheel 2 through the bearings provided inside the device casing, so that their The teeth mesh closely.
  • multiple rollers 3 roll the fixed wheel 1 and the moving wheel 2 simultaneously. Since the number of teeth of the fixed wheel 1 and the moving wheel 2 is different, there will be a slight gap between the teeth of the fixed wheel 1 and the moving wheel 2.
  • the roller 3 is rolling, the teeth of the roller 3 will penetrate into the tooth gap between the fixed wheel 1 and the moving wheel 2, causing a side gap.
  • the fixed wheel 1 and the moving wheel 2 are forced to synchronize the teeth of the fixed wheel 1 and the moving wheel 2, causing the fixed wheel 1 and the moving wheel 2 to rotate slightly. Because the fixed wheel 1 is fixed, the moving wheel 2 rotates, thereby outputting rotation.
  • the present invention divides the roller 3 into two parts (as shown in Figure 2): a part 301 that meshes with the fixed wheel and a part 302 that meshes with the moving wheel.
  • the two parts of the roller have different numbers of teeth.
  • the center lines of the two parts of the roller (301 and 302) coincide, and a tooth of 301 is aligned with a tooth of 302 (or other parts of the two are aligned).
  • Multiple identical rollers are calibrated in this way. Alignment points.
  • the gear parameters of the two parts of the roller (301 and 302) are different.
  • the gear parameters (such as tooth addendum coefficient, top clearance coefficient, displacement coefficient, etc.) can be adjusted to make 301 closely mesh with the fixed wheel 1.
  • the two parts of the roller (301 and 302) are rigidly connected or integrally formed.
  • the solution of dividing the roller into two parts can effectively eliminate the system backlash problem, and the different number of teeth in the two parts can cleverly increase the optional range of speed ratios.
  • the present invention uses multiple rollers, usually three or more rollers. Two rollers can be used in situations where the radial force requirements are not high. .
  • the plurality of rollers are evenly distributed on the input wheel 4 in a planetary shape (as shown in Figure 3).
  • the number of teeth of the fixed wheel 1 divided by the number of rollers the number of teeth of the fixed wheel is required to be an integer multiple of the number of rollers; similarly, the number of teeth of the moving wheel 2 should also be an integer multiple of the number of rollers.
  • each gear should also meet the following restrictions: that is, it is necessary to ensure that multiple rollers can be included in the fixed wheel and the moving wheel, and the tooth spacing of the meshing part 301 of the roller and the fixed wheel is consistent with that of the fixed wheel.
  • the tooth spacing should match, and the tooth spacing of the meshing portion 302 of the roller and the moving wheel should also match the tooth spacing of the moving wheel, so as to achieve close meshing.
  • the distance between the center line of the roller 3 and the center line of the input wheel 4 can be adjusted according to the diameter of the tooth tip circle of each gear (fixed wheel 1, movable wheel 2, roller 3), so that the gears can mesh closely without causing the gears to be in contact with each other.
  • the rotation spaces of the rollers overlap. When selecting this spacing, priority should be given to the tight meshing of 302 and the moving wheel 2 to eliminate output backlash.
  • the installation key points of the present invention are shown in Figure 4.
  • the number of teeth of the fixed wheel 1 is an integer multiple of the number of rollers (set as x). Therefore, the number of teeth of the fixed wheel 1 can be divided into x equal parts.
  • the fixed wheel has x equal points 101, and the above fixed wheel equal points 101 are engaged and aligned with each roller alignment point 303. If they are not installed in alignment, the initial phases of each roller will be different, resulting in failure to rotate normally.
  • the present invention refers to a differential gear reducer with a wide optional range of speed ratios and a simple structure.
  • This speed ratio formula is temporarily named the four-ring speed ratio formula.
  • the advantage of the present invention is that it solves the system backlash problem of the reducer designed based on the rolling synchronization principle, reduces wear and consumption, enhances radial load stability, reduces manufacturing difficulty, and more importantly, it provides the same number of teeth or the same The reduction ratio is greatly increased despite the size, opening up a new path for the development of robot reducers.
  • Figure 1 is a cross-sectional view of the main components
  • FIG. 2 is a schematic diagram of the roller
  • Figure 3 is a schematic diagram of the input wheel
  • Figure 4 is a schematic diagram of roller alignment and installation
  • Figure 5 is the overall assembly diagram.
  • the figures are marked as follows: 1-fixed wheel; 101-fixed wheel bisecting point; 2-moving wheel; 3-roller; 301-the meshing part between the rolling wheel and the fixed wheel; 302-the meshing part between the rolling wheel and the moving wheel; 303-the alignment point of the roller; 4 -Input wheel; 401-roller mounting shaft; 402-D-shaped hole; 501-input wheel bearing; 502-output wheel bearing; 6-roller bearing; 7-roller mounting shaft support frame; 8-gasket; 9-output wheel .
  • the first step in implementing the present invention is to determine the number of teeth a, b, m, n of the four gear rings in the four-ring speed ratio formula.
  • This embodiment uses a computer program enumeration method to enumerate all combinations that comply with the four-ring speed ratio formula within a certain range. In order to optimize the enumeration method, some unachievable combinations are eliminated.
  • the tooth spacing of the meshing part 301 of the roller and the fixed wheel is equal to The tooth spacing of the fixed wheel must match, and the tooth spacing of the meshing part 302 between the roller and the moving wheel must also match the tooth spacing of the moving wheel, so as to ensure close meshing. , that is, approximately a>2.155m; if the number of rollers is four, then , that is, about a>2.414m. In the same way, b and n also need to meet these restrictions. At the same time, it is necessary to limit the difference between the fixed gear tooth number a and the moving gear tooth number b not to be too large.
  • This embodiment uses a program to list all qualified combinations with a fixed wheel tooth number within 150, exclude combinations in which a and b are not integer multiples of the number of rollers, and further exclude combinations with lower speed ratios and combinations in which the speed ratio is not an integer.
  • a and b are not integer multiples of the number of rollers
  • speed ratio is not an integer.
  • the fixed wheel 1 is rigidly connected or integrally formed with the device shell
  • input Wheel 4 is embedded in the input wheel bearing 501.
  • the input wheel 4 is rigidly connected to the inner steel ring of the input wheel bearing 501.
  • the input wheel bearing 501 is embedded in the housing along with the input wheel and is arranged on the left side of the fixed wheel 1 (as shown in Figure 5 ), the outer steel ring of the input wheel bearing 501 is rigidly connected to the device shell.
  • 401 is the roller installation shaft
  • 402 is the D-shaped hole as the input interface (it can also be changed to other input methods, such as D-shaped shaft, etc.).
  • Roller bearing 6 is inner sleeved in roller 3.
  • the fixed wheel bisection point 101 and the roller alignment point 303 must be aligned and installed.
  • Three The rollers must be installed in this alignment.
  • the roller installation shaft support frame 7 is put on.
  • the roller installation shaft support frame 7 is rigidly connected to the roller installation shaft 401.
  • the purpose of installing the roller installation shaft support frame 7 is to increase the radial bearing capacity of the roller installation shaft 401.
  • the left half of the output wheel 9 is sleeved inside the output wheel bearing 502 and is rigidly connected to the inner steel ring of the output wheel bearing 502.
  • the right half can be a flange output or other means of output.
  • the driving wheel 2, the gasket 8, and the output wheel 9 are rigidly connected.
  • the function of the gasket 8 is to block the output wheel bearing 502 from axial movement.
  • the assembly is completed after the combination of the four parts 2, 8, 502, and 9. It is sleeved with the front half assembly, and the outer steel ring of the rear output wheel bearing 502 is rigidly connected to the device shell.
  • the above is the structural design and installation method of this embodiment.
  • the device operates stably and reliably, and the speed ratio fully complies with Four-ring speed ratio formula.
  • the invention can be used as an alternative to RV reducers and harmonic reducers, opens up a new direction for the development of robot reducers, and can also be used in precision mechanical equipment in various industries such as machine tools.
  • the single stage of the present invention can achieve a large speed ratio without the accumulation of backlash caused by multi-stage assembly. Therefore, the combination of a single stage with a large speed ratio can be applied to the precise adjustment of precision instruments, such as the small angle of astronomical observation instruments. Adjustments etc.

Abstract

本发明公开了一种速比可选范围广而构造简单的差齿减速机,其减速比与特定数学公式相符。本发明主要部件包括定轮,动轮和滚轮,所述定轮和动轮是内齿轮,所述滚轮是外齿轮。本发明的特征在于:所述滚轮分两部分,即与定轮啮合部分和与动轮啮合部分,所述滚轮的这两部分齿数也不相同,刚性连接成一体。多个相同的滚轮呈行星状安装在输入轮上,随着输入轮的转动,滚轮同时滚压定轮和动轮使动轮相对定轮转动。假设所述定轮齿数为a,所述动轮齿数为b,所述滚轮与定轮啮合部分齿数为m,所述滚轮与动轮啮合部分齿数为n,则速比i=-bm/(an-bm)。通过选择各轮的齿数a,b,m,n的值,来获取想要的速比,速比可选范围非常广泛。

Description

一种速比可选范围广而构造简单的差齿减速机 技术领域
本发明涉及一种差齿减速装置,其速比与特定数学公式相符。
背景技术
随着产业升级,高端制造业处于前所未有的发展阶段。重大装备及工业机器人需求出现爆发式增长,减速机作为这些装备的关键零部件,其需求也随着快速增长,减速机的制造技术也处于不断迭代更新之中,正沿着高精度、小型化、高速度、小震动、低噪声的方向发展。目前应用于工业机器人等高端装备的高精减速机无疑就是RV减速机和谐波减速机。RV减速机具有更高的疲劳强度、刚度和寿命,用于转矩大的关节,但其重量重,外形尺寸大,构造复杂,加工工艺要求高,价格昂贵。谐波减速机用于转矩较小的关节,由于柔轮的原因,随着使用时间增长,运动精度会显著降低,而制造柔轮要求的工艺技术要求高,价格也不菲。由于制造工艺复杂,价格昂贵,减速机成本在工业机器人本体成本的占比一直居高不下,妨碍了工业机器人的规模发展。
减速机行业的技术人员一直在寻求可行的替代技术方案,相关的发明创造也不断推陈出新。一种新型的减速原理被很多技术人员所青睐,其结构类似于行星减速机,其原理是利用行星轮滚压两个不同齿数内齿轮(一个内齿轮固定,一个内齿轮活动输出),同步内齿轮,从而使两个内齿轮发生相对旋转,达到变速的目的,如以下两种技术方案(中国申请号:201521024172.9,行星差齿式变速器;以及中国申请号:201720389258.4,一种偏心滚压式差齿精密减速器),均是采用这种差齿滚压原理。这种设计无需柔轮,具有更高的疲劳强度、刚度和寿命。
技术问题
目前以这种差齿滚压原理设计的原型还无法达到实用程度,有很多问题没有解决。比如,两个内齿轮由于齿数不同,要使它们的齿顶圆相同以便滚压,它们的齿间距必然不同,而滚轮与定轮滚压部分和与动轮滚压部分无差别,会导致无论怎样设计齿轮都会存在无法消除的系统背隙。另外,用于滚压的行星轮数量选择也存在问题,若低于三个,不仅会使滚压面过小,增加磨损消耗,还会导致径向荷载不稳。若行星轮数量过多,则需要增加齿数差,使两个内齿轮产生与行星轮数量一样多的同步点,以便行星轮滚压,这样不仅会加大系统背隙,而且在同级别齿数的情况下会显著降低速比。
技术解决方案
为了解决目前这种以滚压同步原理设计的原型所存在的问题,本发明提供以下解决方案,发现了隐含在发明构造里面的速比公式,速比可选范围非常广泛。
如图1所示,本发明主要部件由内齿轮定轮1、内齿轮动轮2、滚轮3(滚轮3有多个,构造均相同,为了直观显示,图1这里仅显示其中一个。滚轮3的构造是本技术方案的重要特征,下面段落将详细说明)构成。定轮1与装置外壳刚性连接或一体成型,动轮2通过设置在装置外壳内侧的轴承,并列在定轮1旁边,但动轮2与定轮1并不接触,动轮2的另一端连接法兰盘可以轴向输出转动。多个滚轮3通过轴承呈行星状安装在输入轮4上,输入轮4通过设置在装置外壳内侧的轴承将输入轮4上面的多个滚轮3置于定轮1和动轮2中间,使它们的齿紧密啮合。随着输入轮4的转动,多个滚轮3同时滚压定轮1和动轮2。由于定轮1和动轮2的齿数不同,定轮1和动轮2的齿间距会有微小差距,当滚轮3滚压时,滚轮3的齿打入定轮1和动轮2的齿间隙,产生侧向力,强行同步定轮1和动轮2的齿,使定轮1与动轮2发生微小的相对转动,因定轮1固定不动,故动轮2发生旋转,从而输出转动。
本发明将滚轮3分为两部分(如图2所示):即与定轮啮合部分301和与动轮啮合部分302,所述滚轮的这两部分齿数不相同。所述滚轮两部分(301与302)的中心线重合,301的一个齿与302的一个齿对齐(或两者的其他部位对齐),暂命名为滚轮对齐点303,多个相同滚轮均如此标定对齐点。所述滚轮两部分(301与302)的齿轮参数各不相同,可以通过调整齿轮参数(如齿顶高系数、顶隙系数、变位系数等),使301与所述定轮1紧密啮合,使302与动轮2紧密啮合(如图1所示)。所述滚轮两部分(301与302)刚性连接或一体成型。滚轮分为两部分的方案可以有效消除系统背隙问题,而这两部分的齿数不同可以巧妙地增加了速比可选范围。
为了增加滚压面积,减小磨损消耗,增强径向荷载稳定,本发明采用多个滚轮,一般为三个或三个以上滚轮,在径向受力要求不高的使用场合可以采用两个滚轮。所述多个滚轮呈行星状均匀分布在输入轮4上(如图3所示)。为了使定轮1的齿数能被滚轮个数整数分割,要求所述定轮的齿数为滚轮个数的整数倍;同理,所述动轮2的齿数也应为滚轮个数的整数倍。各齿轮齿数a、b、m、n的选择还应符合以下限定条件:即要保证多个滚轮都能包含在定轮和动轮里面,且滚轮与定轮啮合部分301的齿间距与定轮的齿间距要相匹配,滚轮与动轮啮合部分302的齿间距与动轮的齿间距也要相匹配,以便紧密啮合。所述滚轮3中心线与输入轮4的中心线之间距离可以根据各齿轮(定轮1、动轮2、滚轮3)的齿顶圆直径进行调整,使各齿轮紧密啮合,又不至于使各滚轮转动空间重合,选择这个间距时应优先考虑302与动轮2的紧密啮合,以消除输出背隙。
本发明的安装要点如图4所示,所述定轮1的齿数为所述滚轮个数(设为x)的整数倍,故可以将所述定轮1齿数分为x等分,此时定轮有x个等分点101,上述定轮等分点101与每个滚轮对齐点303均啮合对齐安装。如不对齐安装,则各滚轮的初始相位不同,会导致无法正常旋转。
本发明所指的一种速比可选范围广而构造简单的差齿减速机,其速比公式如下:假设所述定轮1齿数为a,所述动轮2齿数为b,所述滚轮与定轮啮合部分301齿数为m,所述滚轮与动轮啮合部分302齿数为n,则速比i=-bm/(an-bm),速比为正值时,输出旋转方向与输入旋转方向相同,反之,速比为负值时,则输出旋转方向与输入旋转方向相反。现暂将该速比公式命名为四环速比公式。
有益效果
本发明的有益之处是解决了这种以滚压同步原理设计的减速机的系统背隙问题,减小磨损消耗,增强径向荷载稳定,降低制造难度,更重要的是在同等齿数或同等体积的情况下极大增加了减速比,为机器人减速机的发展开辟新的路径。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1为主要部件剖视图;
图2为滚轮示意图;
图3为输入轮示意图;
图4为滚轮对齐安装示意图;
图5为整体装配图。
图中标注如下:1-定轮;101-定轮等分点;2-动轮;3-滚轮;301-滚轮与定轮啮合部分;302-滚轮与动轮啮合部分;303-滚轮对齐点;4-输入轮;401-滚轮安装轴;402-D型孔;501-输入轮轴承;502-输出轮轴承;6-滚轮轴承;7-滚轮安装轴支撑架;8-垫片;9-输出轮。
本发明的实施方式
下面结合附图说明本发明的具体实施方式,本实施例作为本发明的一个例子,里面所述的各参数仅用于说明实施方式,权利保护范围如权利要求书所述。
实施本发明的第一步,首先要确定四环速比公式里面四个齿轮环的齿数a、b、m、n。本实施例采用计算机程序枚举方法,将在一定范围内符合四环速比公式的组合全部列举出来。为了优化枚举方法,排除一些无法实现的组合,如当滚轮个数为三个时,为保证三个滚轮都能包含在定轮和动轮里面,且滚轮与定轮啮合部分301的齿间距与定轮的齿间距要相匹配,滚轮与动轮啮合部分302的齿间距与动轮的齿间距也要相匹配,以便紧密啮合,则要求  ,即约为a>2.155m;如当滚轮个数为四个时,则要 ,即约为a>2.414m。同理,b与n也需要符合这些限定条件。同时要限定定轮齿数a和动轮齿数b的相差不要太大。本实施例利用程序列举定轮齿数在150个以内的所有符合条件的组合,排除a、b不是滚轮个数整数倍的组合,再排除速比较低的以及速比不是整数的组合。剩余的可用组合仍有很多可供选择,下面列举几个组合示例:
    
各齿轮的齿数选择完毕后,下面说明本实施例的结构设计和安装方法。如图5所示(注:为了简化描述结构,这里零件装配紧固时所用到的销、螺丝等紧固件及紧固方法予以省略),定轮1与装置外壳刚性连接或一体成型,输入轮4内嵌于输入轮轴承501,输入轮4与输入轮轴承501的内钢圈刚性连接,输入轮轴承501连着输入轮一起嵌在外壳内并排在定轮1左边(如图5所示),输入轮轴承501外钢圈与装置外壳刚性连接。如图3所示,401为滚轮安装轴,402为D型孔作为输入接口(也可以改为其他输入方式,如D型轴等)。滚轮轴承6内套在滚轮3之内,将6、3组合件安装在滚轮安装轴401上,如图4所示,安装时定轮等分点101与滚轮对齐点303必须对齐安装,三个滚轮均需如此对齐安装。滚轮安装完毕后,再套上滚轮安装轴支撑架7,滚轮安装轴支撑架7与滚轮安装轴401刚性连接,安装滚轮安装轴支撑架7的目的是为了增加滚轮安装轴401的径向承受力,到此完成前半部分的组合件安装。输出轮9左半部分内套在输出轮轴承502里面,与输出轮轴承502内钢圈刚性连接,右半部分可以是法兰盘输出或其他方式输出。动轮2、垫片8、输出轮9刚性连接,垫片8的作用是将输出轮轴承502卡住不至于轴向移动,2、8、502、9四个零件的组合完成后的组合件,与前半部分的组合件套接,套接后输出轮轴承502的外钢圈与装置外壳刚性连接。以上就是本实施例的结构设计和安装方法。
工业实用性
本技术方案已在PRO-E中设计成型,并且已通过3D打印输出各零部件,完成以上表格中组合2、组合3、组合4的结构以及安装过程验证,装置运行稳定可靠,速比完全符合四环速比公式。本发明可以作为RV减速机和谐波减速机的替代方案,为机器人减速机的发展开辟新的方向,也可用于机床等多种行业的精密机械设备。本发明单级可以做到很大的速比,没有多级组装导致的背隙积累,故可以将单级大速比的组合应用于精密仪器的精确调整,如可用于天文观测仪器的小角度调整等。

Claims (7)

  1. 一种速比可选范围广而构造简单的差齿减速机,主要部件包括定轮,动轮和滚轮,所述定轮和动轮是内齿轮,所述滚轮是外齿轮,多个相同的滚轮呈行星状安装在输入轮上,随着输入轮的转动,滚轮同时滚压定轮和动轮使动轮相对定轮转动,输出轮与动轮刚性连接,输出旋转运动,其特征在于:所述滚轮分两部分,即与定轮啮合部分和与动轮啮合部分,所述滚轮的这两部分齿数不相同,所述滚轮的这两部分刚性连接成一体,假设定轮齿数为a,动轮齿数为b,滚轮与定轮啮合部分齿数为m,滚轮与动轮啮合部分齿数为n,则速比i=-bm/(an-bm),通过选择各轮的齿数a、b、m、n的值,来获取想要的速比。
  2. 根据权利要求1所述的一种速比可选范围广而构造简单的差齿减速机,其特征在于:所述滚轮分两部分,即与定轮啮合部分和与动轮啮合部分,所述滚轮的这两部分齿数不相同,所述滚轮的这两部分刚性连接成一体。
  3. 根据权利要求1所述的一种速比可选范围广而构造简单的差齿减速机,其特征在于:假设定轮齿数为a,动轮齿数为b,滚轮与定轮啮合部分齿数为m,滚轮与动轮啮合部分齿数为n,则速比i=-bm/(an-bm),速比为正值时,输出旋转方向与输入旋转方向相同,反之,速比为负值时,则输出旋转方向与输入旋转方向相反,通过选择各轮的齿数a、b、m、n的值,来获取想要的速比。
  4. 根据权利要求1所述的一种速比可选范围广而构造简单的差齿减速机,其特征在于:所述定轮的齿数为滚轮个数的整数倍,所述动轮的齿数也为滚轮个数的整数倍。
  5. 根据权利要求1所述的一种速比可选范围广而构造简单的差齿减速机,其特征在于:所述滚轮两部分(即与定轮啮合部分和与动轮啮合部分)的中心线重合,两部分的其中一个齿对齐(或其他部位对齐),暂命名为滚轮对齐点,多个相同滚轮均如此标定对齐点。
  6. 根据权利要求1所述的一种速比可选范围广而构造简单的差齿减速机,其特征在于:定轮的齿数为滚轮个数(设为X)的整数倍,故可以将所述定轮齿数分为X等分,此时定轮有X个等分点,上述等分点与所述权利要求5里的滚轮对齐点啮合对齐安装。
  7. 根据权利要求1所述的一种速比可选范围广而构造简单的差齿减速机,其特征在于:各齿轮齿数a、b、m、n的选择符合以下限定条件:即要保证多个滚轮都能包含在定轮和动轮里面,且滚轮与定轮啮合部分的齿间距与定轮的齿间距要相匹配,且滚轮与动轮啮合部分的齿间距与动轮的齿间距也要相匹配,以便紧密啮合。
PCT/CN2023/090167 2022-05-17 2023-04-24 一种速比可选范围广而构造简单的差齿减速机 WO2023221743A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210516933.0A CN115523263A (zh) 2022-05-17 2022-05-17 一种速比可选范围广而构造简单的差齿减速机
CN202210516933.0 2022-05-17

Publications (1)

Publication Number Publication Date
WO2023221743A1 true WO2023221743A1 (zh) 2023-11-23

Family

ID=84695794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090167 WO2023221743A1 (zh) 2022-05-17 2023-04-24 一种速比可选范围广而构造简单的差齿减速机

Country Status (2)

Country Link
CN (1) CN115523263A (zh)
WO (1) WO2023221743A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115523263A (zh) * 2022-05-17 2022-12-27 郑如骏 一种速比可选范围广而构造简单的差齿减速机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113701A (ja) * 2005-10-20 2007-05-10 Japan Labour Health & Welfare Organization 関節用減速機
CN102226463A (zh) * 2011-05-25 2011-10-26 深圳市琛玛华夏科技有限公司 一种新型的行星减速器及减速电机
CN104728354A (zh) * 2015-04-02 2015-06-24 葛立志 预压补偿消隙减速机
CN111601984A (zh) * 2018-12-30 2020-08-28 罗灿 双内齿圈变线速行星排均衡减速器
CN115523263A (zh) * 2022-05-17 2022-12-27 郑如骏 一种速比可选范围广而构造简单的差齿减速机
CN218377532U (zh) * 2022-05-17 2023-01-24 郑如骏 一种速比可选范围广而构造简单的差齿减速机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113701A (ja) * 2005-10-20 2007-05-10 Japan Labour Health & Welfare Organization 関節用減速機
CN102226463A (zh) * 2011-05-25 2011-10-26 深圳市琛玛华夏科技有限公司 一种新型的行星减速器及减速电机
CN104728354A (zh) * 2015-04-02 2015-06-24 葛立志 预压补偿消隙减速机
CN111601984A (zh) * 2018-12-30 2020-08-28 罗灿 双内齿圈变线速行星排均衡减速器
CN115523263A (zh) * 2022-05-17 2022-12-27 郑如骏 一种速比可选范围广而构造简单的差齿减速机
CN218377532U (zh) * 2022-05-17 2023-01-24 郑如骏 一种速比可选范围广而构造简单的差齿减速机

Also Published As

Publication number Publication date
CN115523263A (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
Lin et al. Design of a two-stage cycloidal gear reducer with tooth modifications
WO2023221743A1 (zh) 一种速比可选范围广而构造简单的差齿减速机
CN101907149B (zh) 工业机器人双摆线单级减速器
JPH05231482A (ja) 内接噛合式遊星歯車構造を採用した増減速機シリーズ
JP2009121494A (ja) 複段減速装置
CN100439750C (zh) 一种针齿摆线齿轮传动机构及减速器
JPH09296850A (ja) 減速装置
WO2017032260A1 (zh) 具有高传动精度的行星减速机
Jang et al. Geometry design and dynamic analysis of a modified cycloid reducer with epitrochoid tooth profile
CN218377532U (zh) 一种速比可选范围广而构造简单的差齿减速机
EP2241780A2 (en) Planetary reduction gear apparatus
US5108353A (en) Crossed-axis gear differential
JP2017040348A (ja) 遊星歯車装置及びその設計方法
CN111765211A (zh) 工业机器人内啮合rv-c型减速机
US11441640B2 (en) Balanced speed reducer of dual-ring gear variable-line-speed planetary row
Alexandrov A Research and comparative analysis of the full planet engagement planetary gear train
CN210034297U (zh) 一种单级大减速比齿轮减速器
CN103335069A (zh) 筛摆差速减速器
US11441641B2 (en) Balanced speed reducer of variable line speed planetary row having double sun gears
JP2016180510A (ja) フローティング歯車減速機
CN110735887B (zh) 无反向间隙的行星齿轮机构及行星减速机
CN111765213A (zh) 工业机器人内啮合rv减速机
WO2001023775A1 (en) Eccentric planetary gearing
CN220134531U (zh) 一种可调消隙精密减速器
CN219796003U (zh) 行星轮式差速器、动力传动系统及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23806696

Country of ref document: EP

Kind code of ref document: A1