WO2023221655A1 - Procédé d'estimation conjointe pour position cible et paramètre de propagation environnementale de réseau sous-marin de capteurs sans fil - Google Patents

Procédé d'estimation conjointe pour position cible et paramètre de propagation environnementale de réseau sous-marin de capteurs sans fil Download PDF

Info

Publication number
WO2023221655A1
WO2023221655A1 PCT/CN2023/084119 CN2023084119W WO2023221655A1 WO 2023221655 A1 WO2023221655 A1 WO 2023221655A1 CN 2023084119 W CN2023084119 W CN 2023084119W WO 2023221655 A1 WO2023221655 A1 WO 2023221655A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
anchor node
target
distance
signal
Prior art date
Application number
PCT/CN2023/084119
Other languages
English (en)
Chinese (zh)
Inventor
梅骁峻
韩德志
吴中岱
王骏翔
郭磊
胡蓉
韩冰
徐一言
杨珉
朱宇
Original Assignee
上海船舶运输科学研究所有限公司
上海海事大学
中远海运科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海船舶运输科学研究所有限公司, 上海海事大学, 中远海运科技股份有限公司 filed Critical 上海船舶运输科学研究所有限公司
Publication of WO2023221655A1 publication Critical patent/WO2023221655A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/02Transmission systems in which the medium consists of the earth or a large mass of water thereon, e.g. earth telegraphy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the invention relates to the technical field of underwater wireless sensor network node positioning, and specifically relates to a joint estimation method of target position and environmental propagation parameters.
  • UWSNs Underwater Wireless Sensor Networks
  • the purpose of this invention is to provide a joint estimation method (TLESE) for underwater sensor network target positions and environmental propagation parameters to solve the problem of reduced positioning accuracy caused by signal layering effects and unknown environmental parameters in highly dynamic marine environments. .
  • TLESE joint estimation method
  • a joint estimation method for underwater sensor network target position and environmental propagation parameters which is characterized by including the following steps:
  • a represents the gradient parameter
  • b represents the propagation speed of sound waves on the water surface
  • ⁇ i and ⁇ x represent the received signal angle of the i-th anchor node and the target node respectively, and their value range is [- ⁇ /2, ⁇ /2 ]; According to the distance of the target node Construct a ranging model of received signal strength;
  • N is the number of buoy sensor nodes deployed underwater that contain position information.
  • a ranging model of received signal strength based on Snell's law is constructed, specifically including:
  • N buoy sensor nodes containing position information are deployed underwater, that is, anchor nodes and a target node. Assume that the position of the i-th anchor node at time t is Target node at time t The location is Assume that all nodes are equipped with pressure sensors and can accurately know their own depth information; according to the propagation speed model of acoustic signals underwater, we can get:
  • a represents the gradient parameter
  • z represents the water depth
  • b represents the acoustic wave propagation speed on the water surface
  • C(z) represents the acoustic signal propagation velocity solution function when the water depth is z.
  • ⁇ i and ⁇ x represent the received signal angle of the i-th anchor node and the target node respectively, and their value range is [- ⁇ /2, ⁇ /2]; k represents a constant.
  • ⁇ f represents the absorption factor of the signal, which can be obtained according to the emission frequency according to Thorpe's theorem, that is:
  • the objective function with environmental propagation parameters and target position as variables is constructed through multiple first-order Taylor series expansions, specifically including:
  • d 0 is the reference distance, usually 1m, represents the power of the target node received by the i-th anchor node at time t, ⁇ t represents the environmental propagation parameter of the signal;
  • equation (7) in S22 can be expressed as:
  • ⁇ t represents the environmental propagation parameter of the signal
  • ⁇ t represents the environmental propagation parameter of the signal
  • ⁇ t represents the environmental propagation parameter of the signal
  • equation (10) in S25 is still nonlinear and difficult to solve, so it is assumed is smaller, using Taylor's first-order expansion of the exponential function, for Perform Taylor's first-order expansion, which can be further transformed into:
  • ⁇ t represents the environmental propagation parameter of the signal
  • I and 0 represent the identity matrix and zero matrix respectively.
  • the dichotomy method is used to conduct coarse-grained estimation of variables, specifically including:
  • the estimated value of the environmental propagation parameter is Among them, ⁇ t
  • the average value of the loss factor that is:
  • step S4 linear expansion is performed based on the coarse-grained estimated value and iterative re-optimization is performed to further improve the accuracy of the solution and obtain the estimated value of the target position, which specifically includes:
  • the present invention Compared with the existing technology, the present invention has the following advantages: it establishes a UWSNs ranging model with a layered effect and unknown environmental propagation parameters, and can jointly estimate the environmental propagation parameters and target position at each moment, thereby improving the accuracy of positioning.
  • this invention considers the propagation of underwater acoustic signals, the scene is 3D, and it also takes into account the layered effect of signal propagation underwater. And the ranging model constructed by absorption effect.
  • the solution method proposed by the present invention combines the dichotomy method and the linear re-optimization method based on Taylor series expansion, which is obviously different from the related methods in Chapter 5 of the paper. More importantly, the method proposed by the present invention is targeted at underwater scenes, and has significant improvements in computational complexity and accuracy. Therefore, the present invention is suitable for positioning field
  • the scene, model establishment and algorithm solution process are all essentially different from Chapter 5 of this paper, and the positioning performance of this invention is better than the method proposed in Chapter 5 of this paper.
  • Figure 1 is a flow chart of a joint estimation method of underwater sensor network target position and environmental propagation parameters according to the present invention.
  • Figure 2(a) and Figure 2(b) show the estimation errors corresponding to different numbers of anchor nodes in the present invention.
  • Figure 3(a) and Figure 3(b) show the estimation errors of the target position and environmental propagation parameters (path loss factor) of different anchor nodes in the present invention.
  • Figure 4(a) and Figure 4(b) show the estimation errors corresponding to the target position and environmental propagation parameters (path loss factor) of different absorption factors according to the present invention.
  • Figure 1 shows a flow chart of a joint estimation method of underwater sensor network target position and environmental propagation parameters of the present invention, which specifically includes:
  • a represents the gradient parameter
  • b represents the propagation speed of sound waves on the water surface
  • ⁇ i and ⁇ x represent the received signal angle of the i-th anchor node and the target node respectively, and their value range is [- ⁇ /2, ⁇ /2 ]; According to the distance of the target node Construct a ranging model of received signal strength;
  • N is the number of buoy sensor nodes deployed underwater that contain position information.
  • step S1 specifically includes:
  • N buoy sensor nodes containing position information are deployed underwater, that is, anchor nodes and a target node.
  • the position of the i-th anchor node at time t is The position of the target node at time t is Assume that all nodes are equipped with pressure sensors and can accurately know their own depth information; according to the propagation speed model of acoustic signals underwater, we can get:
  • a represents the gradient parameter
  • z represents the water depth
  • b represents the acoustic wave propagation speed on the water surface
  • C(z) represents the acoustic signal propagation velocity solution function when the water depth is z.
  • ⁇ i and ⁇ x represent the received signal angle of the i-th anchor node and the target node respectively, and their value range is [- ⁇ /2, ⁇ /2]; k represents a constant.
  • ⁇ f represents the absorption factor of the signal, which can be obtained according to the emission frequency according to Thorpe's theorem, that is:
  • the step S2 specifically includes:
  • d 0 is the reference distance, usually 1m, represents the power of the target node received by the i-th anchor node at time t, and ⁇ t represents the environmental propagation parameter of the signal.
  • equation (7) in S22 can be expressed as:
  • ⁇ t represents the environmental propagation parameter of the signal.
  • equation (10) in S25 is still nonlinear and difficult to solve, so it is assumed is smaller, using Taylor's first-order expansion of the exponential function, for Perform Taylor's first-order expansion, which can be further transformed into:
  • ⁇ t represents the environmental propagation parameter of the signal
  • I and 0 represent the identity matrix and zero matrix respectively.
  • the step S3 specifically includes:
  • the estimated value of the environmental propagation parameter is Among them, ⁇ t
  • the average value of the loss factor that is:
  • the step S4 specifically includes:
  • TLESE algorithm In order to verify the effectiveness of the method of the present invention (referred to as TLESE algorithm), simulation experiments were conducted in Matlab R2021b. For different scenarios, compare the existing algorithms USR, PLSE, and TSE, and use the minimum root mean square error (RSME) as the evaluation index to evaluate the performance of the algorithm, namely:
  • MC represents the total number of Monte Carlo simulations; nu represents the number of Monte Carlo simulations.
  • the anchor node and target node positions of each Monte Carlo simulation are set to change in the simulation.
  • the method TLESE proposed by the present invention incorporates the linear iterative re-optimization method, and its positioning accuracy is significantly better than the other three methods. The same result can be obtained from the environmental parameter estimation error in Figure 2(b). Although the environmental parameter estimation error of the method proposed in this invention increases as the noise increases, the overall estimation performance is better than the other three methods.
  • the received signal strength (RSS) information that can be used to estimate underwater acoustic signal propagation also increases, so the estimation error of each algorithm decreases as the number of anchor nodes increases.
  • the advantages of TLESE's positioning performance gradually become apparent, and its position estimation accuracy is better than the other three methods. This superiority is further illustrated in the environmental propagation parameter estimation error in Figure 3(b).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

La présente invention concerne un procédé d'estimation conjointe pour une position cible et un paramètre de propagation environnementale d'un réseau sous-marin de capteurs sans fil. Le procédé comprend les étapes suivantes : S1, selon un effet de propagation en couches d'un signal sonore sous l'eau, construire un modèle de télémétrie d'une intensité de signal reçu selon la loi de Snell et un théorème de lancer de rayons ; S2, au moyen d'une pluralité d'expansions de série de Taylor de premier ordre, construire une fonction objectif en utilisant comme variables un paramètre de propagation environnementale et une position cible ; S3, effectuer une estimation grossière des variables par dichotomie ; et S4, effectuer une expansion linéaire selon la valeur de l'estimation grossière, et effectuer une réoptimisation itérative pour améliorer davantage la précision d'une solution. Le procédé présente les avantages de résoudre le problème d'une erreur de positionnement accrue résultant d'un paramètre de propagation environnementale inconnu et d'un effet de couches dans un processus de propagation de signal sous-marin.
PCT/CN2023/084119 2022-05-17 2023-03-27 Procédé d'estimation conjointe pour position cible et paramètre de propagation environnementale de réseau sous-marin de capteurs sans fil WO2023221655A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210536969.5 2022-05-17
CN202210536969.5A CN115038165B (zh) 2022-05-17 2022-05-17 一种水下无线传感网目标位置和环境传播参数的联合估计方法

Publications (1)

Publication Number Publication Date
WO2023221655A1 true WO2023221655A1 (fr) 2023-11-23

Family

ID=83121124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084119 WO2023221655A1 (fr) 2022-05-17 2023-03-27 Procédé d'estimation conjointe pour position cible et paramètre de propagation environnementale de réseau sous-marin de capteurs sans fil

Country Status (2)

Country Link
CN (1) CN115038165B (fr)
WO (1) WO2023221655A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115038165B (zh) * 2022-05-17 2023-05-12 上海船舶运输科学研究所有限公司 一种水下无线传感网目标位置和环境传播参数的联合估计方法
CN116299393A (zh) * 2023-02-24 2023-06-23 烟台欣飞智能系统有限公司 基于多目标检测的隐身雷达高精度导航定位系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107820207A (zh) * 2017-11-16 2018-03-20 西京学院 降维自适应分簇的节点模糊信息三维定位模型
CN108267743A (zh) * 2017-12-29 2018-07-10 中国海洋石油集团有限公司 基于拟合插值的快速迭代水下定位方法
US20190250244A1 (en) * 2018-02-09 2019-08-15 South China University Of Technology Underwater source node positioning method
CN115038165A (zh) * 2022-05-17 2022-09-09 上海船舶运输科学研究所有限公司 一种水下无线传感网目标位置和环境传播参数的联合估计方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018046440A1 (fr) * 2016-09-06 2018-03-15 Eidgenoessische Technische Hochschule Zurich (Ethz) Procédés de traçage de rayons pour simulation ultrasonore interactive réaliste
CN106714301B (zh) * 2016-12-23 2020-09-18 深圳信息职业技术学院 一种无线定位网络中的载波优化方法
CN107148079B (zh) * 2017-05-15 2020-11-06 华北电力大学 移动自组织传感器网络中三维联合定位与追踪方法
CN109039506B (zh) * 2018-07-19 2019-09-06 中国科学院声学研究所 一种水下移动信道仿真方法
CN110167124B (zh) * 2019-05-21 2020-07-07 浙江大学 一种自适应传输功率的水下无线传感器网络目标跟踪方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107820207A (zh) * 2017-11-16 2018-03-20 西京学院 降维自适应分簇的节点模糊信息三维定位模型
CN108267743A (zh) * 2017-12-29 2018-07-10 中国海洋石油集团有限公司 基于拟合插值的快速迭代水下定位方法
US20190250244A1 (en) * 2018-02-09 2019-08-15 South China University Of Technology Underwater source node positioning method
CN115038165A (zh) * 2022-05-17 2022-09-09 上海船舶运输科学研究所有限公司 一种水下无线传感网目标位置和环境传播参数的联合估计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GONG HAO-LIANG, CHEN BO, WAN LI-LI, JIANG NAN: "A dichotomy iteration method of real-time sound ray correction", SHENGXUE-JISHU : JIKAN = TECHNICAL ACOUSTICS, SHENG XUE JI SHU BIAN JI BU, CN, vol. 37, no. 4, 1 August 2018 (2018-08-01), CN , pages 303 - 308, XP093109253, ISSN: 1000-3630, DOI: 10.16300/j.cnki.1000-3630.2018.04.002 *

Also Published As

Publication number Publication date
CN115038165A (zh) 2022-09-09
CN115038165B (zh) 2023-05-12

Similar Documents

Publication Publication Date Title
WO2023221655A1 (fr) Procédé d'estimation conjointe pour position cible et paramètre de propagation environnementale de réseau sous-marin de capteurs sans fil
CN105676181B (zh) 基于分布式传感器能量比的水下运动目标扩展卡尔曼滤波跟踪方法
CN106842128B (zh) 运动目标的声学跟踪方法及装置
Zheng et al. Mobile node localization in underwater wireless networks
Han et al. A multi-node cooperative bearing-only target passive tracking algorithm via UWSNs
CN107202989B (zh) 一种适用于被动拖曳线列阵声呐的复杂弱目标检测和跟踪方法
CN101915922A (zh) 拖曳线列阵被动测距方法
CN110133580B (zh) 一种随机共振增强的声矢量信号定向方法
WO2022226856A1 (fr) Procédé et appareil pour inverser des paramètres géoacoustiques de fond marin multicouche en mer peu profonde, dispositif informatique et support de stockage
Wu et al. An improved underwater acoustic network localization algorithm
Pan et al. IoUT based underwater target localization in the presence of time synchronization attacks
CN115201799A (zh) 一种用于声呐的时变卡尔曼滤波跟踪方法
Yan et al. Broad-learning-based localization for underwater sensor networks with stratification compensation
Zhang et al. Fast and accurate underwater acoustic horizontal ranging algorithm for an arbitrary sound-speed profile in the deep sea
CN109164416B (zh) 一种三平面五元传声器阵列的声源定位方法
Cox et al. Towards Centimetre Accurate and Low-Power, Hybrid Radio-Acoustic 3D Indoor Positioning: an Experimental Journey.
Rahman et al. Coordinates determination of submerged sensors using cayley-menger determinant
CN110109087B (zh) 一种声纳不规则探测范围显示方法及系统
CN113126029B (zh) 适用于深海可靠声路径环境的多传感器脉冲声源定位方法
CN112729532B (zh) 浅海运动声源近场传递函数获取方法、装置、设备及介质
CN113009417B (zh) 利用声场干涉特性的海底声学阵列阵形估计方法
CN111948607B (zh) 一种深海目标被动定位及粒子滤波跟踪方法
Li et al. Sparse feature points extraction-based localization with partial information loss in UWSNs
Ramezani et al. Localization and tracking of a mobile target for an isogradient sound speed profile
CN110944285A (zh) 一种具有隐私保护的水下传感器定位方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23806613

Country of ref document: EP

Kind code of ref document: A1