WO2023221340A1 - 一种多材质砂型打印用高柔性多区域铺砂方法及装置 - Google Patents

一种多材质砂型打印用高柔性多区域铺砂方法及装置 Download PDF

Info

Publication number
WO2023221340A1
WO2023221340A1 PCT/CN2022/117060 CN2022117060W WO2023221340A1 WO 2023221340 A1 WO2023221340 A1 WO 2023221340A1 CN 2022117060 W CN2022117060 W CN 2022117060W WO 2023221340 A1 WO2023221340 A1 WO 2023221340A1
Authority
WO
WIPO (PCT)
Prior art keywords
sand
printing
spreading
compaction
vibrating
Prior art date
Application number
PCT/CN2022/117060
Other languages
English (en)
French (fr)
Inventor
杨浩秦
单忠德
强惠
施建培
任洪稳
罗磊
Original Assignee
南京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京航空航天大学 filed Critical 南京航空航天大学
Publication of WO2023221340A1 publication Critical patent/WO2023221340A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to the field of 3DP printing of casting sand molds, and specifically relates to a highly flexible multi-region sand laying method and device for multi-material sand mold printing.
  • sand mold 3DP printing technology and equipment generally have problems such as limited and single molding materials and weak flexible manufacturing capabilities.
  • a single molding material cannot have excellent casting properties such as strength, air permeability, and gas generation.
  • the casting mold is partially The thermal conductivity, interface heat transfer coefficient, thermal expansion and other parameters are low, resulting in poor structural properties, mechanical properties and low dimensional accuracy of complex castings, making it difficult to meet the high-performance casting needs of high-end complex castings.
  • Multi-material sand mold 3D printing and forming technology mainly includes sand pretreatment, digital sand laying, printing and post-processing.
  • This technology first establishes a three-dimensional model of the casting mold and imports it into the slicing software for layered slicing processing; then generates a printing pattern for each layer based on the two-dimensional contour data of each layer of sand mold to obtain cross-sectional information; the different molding sand particles premixed with curing agent are Store it in a sand spreading tank for sand spreading, solidify layer by layer, and accumulate to form; after the sand mold preparation is completed, clean the sand mold and remove the floating sand on the surface.
  • the overall multi-material sand mold printing equipment based on droplet jet technology has the following shortcomings:
  • the molding sand material is single, the material types are limited, and multi-area flexible sand spreading cannot be achieved;
  • the present invention provides a highly flexible multi-region sand laying method for multi-material sand mold printing. and devices to improve the printing accuracy and flexible manufacturing capabilities of multi-material sand mold overall printing and forming equipment.
  • a highly flexible multi-region sand spreading device for multi-material sand mold printing including a printing mechanism, a compaction mechanism, a vibrating sand spreading mechanism, a base ball screw mechanism, a support plate, a machine base, a ball screw mechanism, and a vibrating sand spreading mechanism , the compaction mechanism and the printing mechanism are installed on the support plate.
  • the compaction mechanism and the printing mechanism are installed on the support plate.
  • they slide together on the ball screw mechanism of the machine base to complete the sand spreading, compaction and printing operations of the printing area in sequence; the sand spreading box of the vibrating sand spreading mechanism and the subsequent
  • the dynamic sand spreading mechanism is connected to the ball screw mechanism through a moving slide table to achieve two-dimensional movement.
  • the pressing plate of the compaction mechanism uses an electric push cylinder, lifting guide column, and bearing to control the lifting and realizing the compaction operation after sand spreading; printing
  • the mechanism includes a nozzle beam component, a drag chain, a transverse base and a print head component.
  • the print head component is driven by the transverse base and the drag chain to achieve two-dimensional mobile printing.
  • the vibrating sand spreading mechanism consists of a sand spreading box, a driven sand spreading box, a vibrating sand screening mechanism and a ball screw mechanism; the sand spreading box is driven by the ball screw mechanism to carry out large-area sand spreading. Sand spreading; the lateral base of the following sand spreading box is connected to the ball screw mechanism, and the following sand spreading box can move on the lateral base, so that sand spreading can be carried out at multiple fixed points in a large area.
  • the vibrating sand screen mechanism is composed of a spring vibration mechanism and a multi-grid screen.
  • the multi-grid screen and the support plate are connected by a spring vibration mechanism.
  • the plate can be laid with various types of molding sand in different zones.
  • the mesh shape, mesh arrangement density and mesh center distance of the screen can be designed according to the amount of sand falling out.
  • the spring vibration mechanism can be designed with the limit size and quantity according to the degree of vibration to ensure the amount of sand falling out. Uniformity.
  • the compaction mechanism includes an electric push cylinder, a lifting guide column, a pressure plate and a bearing.
  • the pressure plate is connected between the fixed plate and the support plate.
  • the pressure plate is arranged below the support plate and is driven up and down by the electric push cylinder.
  • the guide column moves up and down to compact the sand falling area, and the lifting guide column is connected to the support plate through bearings.
  • the lower surface of the support plate is supported by the machine base.
  • the support plate and the printing mechanism, compaction mechanism, and vibrating sand laying mechanism on it move sequentially from the top of the printing platform through the ball screw mechanism of the machine base to perform layering. Layers of sand, layers of compaction and printing.
  • the invention also provides a highly flexible multi-region sand laying method for multi-material sand mold printing, which includes the following steps:
  • S2 Perform hierarchical slicing processing on the 3D geometric model of the multi-material composite casting mold to obtain the 2D slicing information of each layer;
  • Figure 1 is a schematic structural diagram of a multi-material highly flexible sand-laying printing device according to an embodiment of the present invention
  • Figure 2 is a top view of the structure of the sand spreading device according to the embodiment of the present invention.
  • Figure 3 is a schematic diagram of the vibrating sand spreading mechanism according to the embodiment of the present invention.
  • Figure 4 is a schematic diagram of the vibrating spring in the vibrating sand spreading mechanism in the implementation case of the present invention.
  • Figure 5 is a schematic diagram of the compaction mechanism according to the embodiment of the present invention.
  • Figure 6 is a schematic diagram of the printing mechanism of the implementation case of the present invention.
  • 12-2 servo motor 13-sand spreading box; 14-vibrating sand screening mechanism; 15-transverse base ; 16-Following sand spreading box; 17-Ball screw mechanism; 18-Spring vibration mechanism; 19-Electric push cylinder; 20-Lifting guide column; 21-Fixed plate; 22-Pressure plate; 23-Bearing; 24-Nozzle Cross beam component; 25-drag chain; 26-lateral base; 27-print head component.
  • a highly flexible multi-region sand spreading device for multi-material sand mold printing includes a printing mechanism 1, a compaction mechanism 2, a vibrating sand spreading mechanism 3, and a machine base ball screw.
  • Mechanism 4 support plate 5, machine base 6, ball screw mechanism 17, vibrating sand spreading mechanism 3, compaction mechanism 2, and printing mechanism 1 are installed on the support plate 5.
  • the lower surface of the support plate 5 is supported by the machine base 6.
  • the plate 5 and the printing mechanism 1, compaction mechanism 2, and vibrating sand spreading mechanism 3 on it move sequentially from the top of the printing platform through the ball screw mechanism 4 of the machine base to perform sand spreading, compaction and printing layer by layer.
  • the sand spreading box 13 of the sand mechanism 3 and the accompanying sand spreading mechanism are connected to the ball screw mechanism 17 through a moving slide to achieve two-dimensional movement.
  • the pressure plate 22 of the compaction mechanism 2 adopts an electric push cylinder 19, a lifting guide column 20,
  • the bearing 23 is used to control the lifting and realize the compaction operation after sand spreading;
  • the printing mechanism 1 includes a nozzle beam component 24, a drag chain 25, a transverse base 26 and a print head component 27.
  • the print head component 27 is composed of a transverse base 26 and a drag chain. 25 drives the realization of two-dimensional mobile printing.
  • the vibrating sand spreading mechanism 3 consists of a sand spreading box 13, a following sand spreading box 16, a vibrating screen sand mechanism 14 and a ball screw mechanism 17; the sand spreading box 13 passes through the ball screw mechanism. 17 drives sand spreading over a large area; the transverse base 15 of the following sand spreading box 16 is connected to the ball screw mechanism 17, and the following sand spreading box 16 can move on the transverse base 15, thereby enabling multiple quantitative and fixed points in a large area. Sand.
  • the vibrating screen sand mechanism 14 is composed of a spring vibration mechanism 18 and a multi-grid screen.
  • the multi-grid screen and the support plate 5 are connected by a spring vibration mechanism 18.
  • a partition can be used to lay different types of molding sand materials according to the characteristics of the casting mold.
  • the types of molding sand include quartz sand, zircon sand, chromite sand, orb sand, etc.; the mesh shape and mesh of the screen can be designed according to the amount of sand falling out.
  • the hole arrangement density and mesh center distance are based on 900cm3 quartz sand.
  • the screen can process a through hole structure with a diameter of 4cm.
  • the arrangement can be a square lattice arrangement, and the through hole center distance can be 5cm; the spring vibration mechanism can be based on
  • the vibration degree is designed to limit the size and quantity to ensure the amount and uniformity of falling
  • the compaction mechanism includes an electric push cylinder 19, a lifting guide column 20, a pressure plate 22 and a bearing 23.
  • the pressure plate 22 is connected to the support plate 5 through a fixed plate 21, and the pressure plate 22 is arranged below the support plate 5.
  • the electric push cylinder 19 drives the lifting guide column 20 up and down to compact the falling sand area, and the lifting guide column 20 is connected to the support plate 5 through the bearing 23.
  • FIG. 2 it also includes No. 1 servo motor 7 and No. 2 servo motor 12 for driving the ball screw mechanism 4 of the machine base, No. 3 servo motor 8 for driving the printing mechanism 1, and No. 3 servo motor 8 for driving the ball screw.
  • the invention also provides a highly flexible multi-region sand laying method for multi-material sand mold printing, which is characterized by including the following steps:
  • S2 Perform hierarchical slicing processing on the 3D geometric model of the multi-material composite casting mold to obtain the 2D slicing information of each layer;
  • the vibrating sand-laying mechanism 3 moves from the left to the right, and the molding sand particles premixed with the curing agent are vibrated and shaken out on the printing platform for the sand-laying process.
  • the laying thickness is 0.3-0.5cm; after the sand-laying is completed,
  • the compaction mechanism 2 moves from the right to the left, moves to the top of the printing platform through the ball screw mechanism, and compacts the molding sand particles premixed with the curing agent on the printing platform.
  • the printing mechanism 1 moves from the right side to the top of the printing platform. Move to the left and spray the current layer of resin through the array nozzle;

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Casting Devices For Molds (AREA)

Abstract

一种多材质砂型打印用高柔性多区域铺砂装置,其包括打印机构(1)、压实机构(2)、振动铺砂机构(3)、机座滚珠丝杠机构(4)、支撑板(5)、机座(6)、滚珠丝杠机构(17),振动铺砂机构、压实机构、打印机构安装在支撑板上,打印时一起在机座滚珠丝杠机构上滑动,依次完成打印区域的铺砂、压实和打印操作;振动铺砂机构的铺砂盒(13)与随动铺砂机构通过移动滑台与滚珠丝杠机构相连接,实现二维运动,压实机构的压板(22)采用电动推缸(19)、升降导柱(20)、轴承(23)来控制升降,实现铺砂后的压实操作;打印机构包括喷头横梁部件(24)、拖链(25)、横向底座(26)和打印头部件(27),打印头部件由横向底座和拖链带动实现二维移动打印。以及一种多材质砂型打印用高柔性多区域铺砂方法。采用该装置和方法可以提高多材质砂型整体打印成形装备的打印精度和柔性化制造能力。

Description

一种多材质砂型打印用高柔性多区域铺砂方法及装置 技术领域
本发明涉及铸造砂型的3DP打印领域,具体涉及一种多材质砂型打印用高柔性多区域铺砂方法及装置。
背景技术
现有技术中,砂型3DP打印技术与设备普遍存在成形材料受限且单一、柔性化制造能力弱等问题,单一造型材料不能兼备优良的强度、透气性、发气量等铸造性能,同时铸型局部的导热系数、界面换热系数、热膨胀性等参数较低,导致复杂铸件组织性能、力学性能差、尺寸精度低,难以满足高端复杂铸件的高性能铸造需求。
多材质砂型3D打印成形技术主要包括砂粒预处理、数字化铺砂、打印成形以及后处理等工序。该技术首先建立铸型的三维模型,导入切片软件进行分层切片处理;然后根据每层砂型的二维轮廓数据生成每一层的打印图案,得到截面信息;将预混固化剂的不同型砂颗粒存放在铺砂槽中进行铺砂,层层固化,堆积成形;砂型制备完成后,将砂型清理出来,除去表面浮砂即可。基于微滴喷射技术的多材质砂型整体打印装备有以下不足之处:
(1)型砂材料单一,材质种类受限,不能实现多区域柔性铺砂;
(2)型砂铺放区域难以精确控制,不同材质型砂颗粒界面匹配调控难;
(3)不能针对目标区域进行铺砂,复杂铸件柔性调控能力弱。
发明内容
针对现有技术中3DP铺砂打印设备存在成形材料受限、型砂颗粒界面匹配调控难和复杂铸件柔性调控能力弱等问题,本发明提供了一种多材质砂型打印用高柔性多区域铺砂方法及装置,以提高多材质砂型整体打印成形装备的打印精度和柔性化制造能力。
为实现上述目的,本发明采取的技术方案为:
一种多材质砂型打印用高柔性多区域铺砂装置,包括打印机构、压实机构、振动铺砂机构、机座滚珠丝杠机构、支撑板、机座、滚珠丝杠机构,振动铺砂机构、压实机构、打印机构安装在支撑板上,打印时一起在机座滚珠丝杠机构上滑动,依次完成打印区域的铺砂、压实和打印操作;振动铺砂机构的铺砂盒与随动铺砂机构通过移动滑台与滚珠丝杠机构相连接,实现二维运动,压实机构的压板采用电动推缸、升降导柱、轴承来控制升降,实现铺砂后的压实操作;打印机构包括喷头横梁部件、拖链、横向底座和打印头部件,打印头部件由横向底座和拖链带动实现二维移动打印。
作为本方案的进一步地设计,所述振动铺砂机构由铺砂盒、随动铺砂盒、振动筛砂机构以及滚珠丝杠机构组成;所述铺砂盒经滚珠丝杠机构带动进行大面积铺砂;随动铺砂盒的横向底座与滚珠丝杠机构连接,且随动铺砂盒可在横向底座上移动,进而可进行大区域多处定量定点铺砂。
作为本方案的进一步地设计,所述振动筛砂机构由弹簧振动机构和多格筛网组成,多格筛网与支撑板之间采用弹簧振动机构相连接,多格筛网上设计有多个隔板,可分区铺设多种型砂,筛网可根据落砂量需求设计网孔形状、网孔排列密度和网孔中心距,弹簧振动机构可根据振动程度设计极限尺寸和数量,保证落砂量及均匀性。
作为本方案的进一步地设计,所述压实机构包括电动推缸、升降 导柱、压板和轴承,压板通过固定板与支撑板之间连接,压板设置在支撑板下方,通过电动推缸带动升降导柱上下升降以此对落砂区域进行压实,升降导柱通过轴承与支撑板实现连接。
作为本方案的进一步地设计,支撑板下底面由机座支撑,支撑板和其上的打印机构、压实机构、振动铺砂机构通过机座滚珠丝杠机构依次从打印平台上方移动,进行层层铺砂、层层压实和打印。
本发明还提供了一种多材质砂型打印用高柔性多区域铺砂方法,包括如下步骤:
S1:根据复杂铸件形状轮廓需求,选取型砂配方及种类;
S2:对多材质复合铸型三维几何模型进行分层切片处理,得到每层二维切片信息;
S3:在打印平台铺设5cm高度的原砂作为底砂;
S4:将配比后的不同种类原砂颗粒分别与相对应固化剂量放入混砂机中,均匀搅拌,得到预混了固化剂的型砂颗粒;
S5:将预混了固化剂的型砂颗粒均匀装入振动铺砂机构内,完成装砂工序;
S6:振动铺砂机构从左侧向右侧移动,将预混了固化剂的型砂颗粒通过振动落砂在打印平台上进行铺砂工序,铺设厚度为0.3-0.5cm;铺砂完成后,压实机构从右侧向左侧移动,通过滚珠丝杠机构移动到打印平台上方,将预混了固化剂的型砂颗粒在打印平台上压实,压实完成后,打印机构从右侧向左侧移动,经阵列喷头进行当前层树脂的喷射;
S7:打印平台下降0.3mm-0.5mm的高度;
S8:重复步骤S2至步骤S6,层层压实打印,直至完成多材质复合铸型的制备;
S9:清理废砂,取出砂型。
作为本方案的进一步地设计,采用定点定量铺砂,并且在铺砂前需要进行一次振动筛砂,使得落砂更均匀。
本发明具有以下有益效果:
1)填补砂型3D打印材料受限、多材质铺砂界面匹配难以调控;
2)实现多材质砂型精准落砂,节约型砂原材料,有利于绿色化可持续。
3)实现铸型高精高效制备,完成对铸件微观组织及力学性能综合调控。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明实施例所述多材质高柔性铺砂打印装置的结构示意图;
图2为本发明实施例所述铺砂装置结构俯视图;
图3为本发明实施例所述振动铺砂机构示意图;
图4位本发明实施案例中振动铺砂机构中振动弹簧示意图;
图5为本发明实施例所述压实机构示意图;
图6为本发明实施案例打印机构示意图;
附图说明:1-打印机构;2-压实机构;3-振动铺砂机构;4-机座滚珠丝杠机构;5-支撑板;6-机座;7-1号伺服电机;8-3号伺服电机;9-4号伺服电机;10-6号伺服电机;11-5号伺服电机;12-2号伺服电机;13-铺砂盒;14-振动筛砂机构;15-横向底座;16-随动铺 砂盒;17-滚珠丝杠机构;18-弹簧振动机构;19-电动推缸;20-升降导柱;21-固定板;22-压板;23-轴承;24-喷头横梁部件;25-拖链;26-横向底座;27-打印头部件。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
如图1-图4所示,本发明实施例的一种多材质砂型打印用高柔性多区域铺砂装置,包括打印机构1、压实机构2、振动铺砂机构3、机座滚珠丝杠机构4、支撑板5、机座6、滚珠丝杠机构17,振动铺砂机构3、压实机构2、打印机构1安装在支撑板5上,支撑板5下底面由机座6支撑,支撑板5和其上的打印机构1、压实机构2、振动铺砂机构3通过机座滚珠丝杠机构4依次从打印平台上方移动,进行层层铺砂、层层压实和打印,振动铺砂机构3的铺砂盒13与随动铺砂机构通过移动滑台与滚珠丝杠机构17相连接,实现二维运动,压实机构2的压板22采用电动推缸19、升降导柱20、轴承23来控制升降,实现铺砂后的压实操作;打印机构1包括喷头横梁部件24、拖链25、横向底座26和打印头部件27,打印头部件27由横向底座26和拖链25带动实现二维移动打印。
如图3所示,所述振动铺砂机构3由铺砂盒13、随动铺砂盒16、振动筛砂机构14以及滚珠丝杠机构17组成;所述铺砂盒13经滚珠丝杠机构17带动进行大面积铺砂;随动铺砂盒16的横向底座15与 滚珠丝杠机构17连接,且随动铺砂盒16可在横向底座15上移动,进而可进行大区域多处定量定点铺砂。
如图4所示,所述振动筛砂机构14由弹簧振动机构18和多格筛网组成,多格筛网与支撑板5之间采用弹簧振动机构18相连接,多格筛网上设计有多个隔板,可以根据铸型特征铺设不同种类的型砂材料,该型砂种类包括石英砂、锆英砂、铬铁矿砂和宝珠砂等;筛网可根据落砂量需求设计网孔形状、网孔排列密度和网孔中心距,根据900cm 3石英砂,所述筛网可加工直径4cm的通孔结构,排列方式可以是四方晶格排列,通孔中心距可以是5cm;弹簧振动机构可根据振动程度设计极限尺寸和数量,保证落砂量及均匀性。
如图5所示,所述压实机构包括电动推缸19、升降导柱20、压板22和轴承23,压板22通过固定板21与支撑板5之间连接,压板22设置在支撑板5下方,通过电动推缸19带动升降导柱20上下升降以此对落砂区域进行压实,升降导柱20通过轴承23与支撑板5实现连接。
如图2所示,还包括用于驱动机座滚珠丝杠机构4的1号伺服电机7和2号伺服电机12、用于驱动打印机构1的3号伺服电机8、用于驱动滚珠丝杠机构17的4号伺服电机9和5号伺服电机11、用于驱动振动铺砂机构3的6号伺服电机10。
本发明还提供了一种多材质砂型打印用高柔性多区域铺砂方法,其特征在于,包括如下步骤:
S1:根据复杂铸件形状轮廓需求,选取型砂配方及种类;
S2:对多材质复合铸型三维几何模型进行分层切片处理,得到每层二维切片信息;
S3:在打印平台铺设5cm高度的原砂作为底砂;
S4:将配比后的不同种类原砂颗粒分别与相对应固化剂量放入混砂机中,均匀搅拌,得到预混了固化剂的型砂颗粒;
S5:将预混了固化剂的型砂颗粒均匀装入振动铺砂机构3内,完成装砂工序;
S6:振动铺砂机构3从左侧向右侧移动,将预混了固化剂的型砂颗粒通过振动落砂在打印平台上进行铺砂工序,铺设厚度为0.3-0.5cm;铺砂完成后,压实机构2从右侧向左侧移动,通过滚珠丝杠机构移动到打印平台上方,将预混了固化剂的型砂颗粒在打印平台上压实,压实完成后,打印机构1从右侧向左侧移动,经阵列喷头进行当前层树脂的喷射;
S7:打印平台下降0.3mm-0.5mm的高度;
S8:重复步骤S2至步骤S6,层层压实打印,直至完成多材质复合铸型的制备;
S9:清理废砂,取出砂型。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (7)

  1. 一种多材质砂型打印用高柔性多区域铺砂装置,其特征在于,包括打印机构(1)、压实机构(2)、振动铺砂机构(3)、机座滚珠丝杠机构(4)、支撑板(5)、机座(6)、滚珠丝杠机构(17),振动铺砂机构(3)、压实机构(2)、打印机构(1)安装在支撑板(5)上,打印时一起在机座滚珠丝杠机构(4)上滑动,依次完成打印区域的铺砂、压实和打印操作;振动铺砂机构(3)的铺砂盒(13)与随动铺砂机构通过移动滑台与滚珠丝杠机构(17)相连接,实现二维运动,压实机构(2)的压板(22)采用电动推缸(19)、升降导柱(20)、轴承(23)来控制升降,实现铺砂后的压实操作;打印机构(1)包括喷头横梁部件(24)、拖链(25)、横向底座(26)和打印头部件(27),打印头部件(27)由横向底座(26)和拖链(25)带动实现二维移动打印。
  2. 如权利要求1所述的一种多材质砂型打印用高柔性多区域铺砂装置,其特征在于,所述振动铺砂机构(3)由铺砂盒(13)、随动铺砂盒(16)、振动筛砂机构(14)以及滚珠丝杠机构(17)组成;所述铺砂盒(13)经滚珠丝杠机构(17)带动进行大面积铺砂;随动铺砂盒(16)的横向底座(15)与滚珠丝杠机构(17)连接,且随动铺砂盒(16)可在横向底座(15)上移动,进而可进行大区域多处定量定点铺砂。
  3. 如权利要求2所述的一种多材质砂型打印用高柔性多区域铺砂装置,其特征在于,所述振动筛砂机构(14)由弹簧振动机构(18)和 多格筛网组成,多格筛网与支撑板(5)之间采用弹簧振动机构(18)相连接,多格筛网上设计有多个隔板,可分区铺砂多种型砂,筛网根据落砂量需求设计网孔形状、网孔排列密度和网孔中心距,弹簧振动机构可根据振动程度设计极限尺寸和数量,保证落砂量及均匀性。
  4. 如权利要求1所述的一种多材质砂型打印用高柔性多区域铺砂装置,其特征在于,所述压实机构包括电动推缸(19)、升降导柱(20)、压板(22)和轴承(23),压板(22)通过固定板(21)与支撑板(5)之间连接,压板(22)设置在支撑板(5)下方,通过电动推缸(19)带动升降导柱(20)上下升降以此对落砂区域进行压实,升降导柱(20)通过轴承(23)与支撑板(5)实现连接。
  5. 如权利要求1所述的一种多材质砂型打印用高柔性多区域铺砂装置,其特征在于,支撑板(5)下底面由机座(6)支撑,支撑板(5)和其上的打印机构(1)、压实机构(2)、振动铺砂机构(3)通过机座滚珠丝杠机构(4)依次从打印平台上方移动,进行层层铺砂、层层压实和打印。
  6. 一种多材质砂型打印用高柔性多区域铺砂方法,其特征在于,包括如下步骤:
    S1:根据复杂铸件形状轮廓需求,选取型砂配方及种类;
    S2:对多材质复合铸型三维几何模型进行分层切片处理,得到每层二维切片信息;
    S3:在打印平台上铺设5cm高度的原砂作为底砂;
    S4:将配比后的不同种类原砂颗粒分别与相对应固化剂量放入混砂机中,均匀搅拌,得到预混了固化剂的型砂颗粒;
    S5:将预混了固化剂的型砂颗粒均匀装入振动铺砂机构(3)内,完成装砂工序;
    S6:振动铺砂机构(3)从左侧向右侧移动,将预混了固化剂的型砂颗粒通过振动落砂在打印平台上进行铺砂工序,铺设厚度0.3-0.5cm;铺砂完成后,压实机构(2)从右侧向左侧移动,通过滚珠丝杠机构移动到打印平台上方,将预混了固化剂的型砂颗粒在打印平台上压实,压实完成后,打印机构(1)从右侧向左侧移动,经阵列喷头进行当前层树脂的喷射;
    S7:打印平台下降0.3mm-0.5mm的高度;
    S8:重复步骤S2至步骤S6,层层压实打印,直至完成多材质复合铸型的制备;
    S9:清理废砂,取出砂型。
  7. 如权利要求6所述的一种多材质砂型打印用高柔性多区域铺砂方法,其特征在于,采用定点定量铺砂,并且在铺砂前需要进行一次振动筛砂,使得落砂更均匀。
PCT/CN2022/117060 2022-05-20 2022-09-05 一种多材质砂型打印用高柔性多区域铺砂方法及装置 WO2023221340A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210548767.2A CN114918371B (zh) 2022-05-20 2022-05-20 一种多材质砂型打印用高柔性多区域铺砂方法及装置
CN202210548767.2 2022-05-20

Publications (1)

Publication Number Publication Date
WO2023221340A1 true WO2023221340A1 (zh) 2023-11-23

Family

ID=82809160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117060 WO2023221340A1 (zh) 2022-05-20 2022-09-05 一种多材质砂型打印用高柔性多区域铺砂方法及装置

Country Status (2)

Country Link
CN (1) CN114918371B (zh)
WO (1) WO2023221340A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117960998A (zh) * 2024-04-01 2024-05-03 潍坊精远模具有限公司 一种用于生产砂壳的3d砂型打印机
CN118080788A (zh) * 2024-04-26 2024-05-28 泰州市国银合金材料厂 一种精密铸造集成式浮砂设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114918371B (zh) * 2022-05-20 2023-04-25 南京航空航天大学 一种多材质砂型打印用高柔性多区域铺砂方法及装置
CN116493609B (zh) * 2023-03-10 2023-10-31 南京航空航天大学 组合式砂型增材制造多材料集成铺砂装置及方法
CN116372189B (zh) * 2023-03-17 2023-12-15 南京航空航天大学 砂型增材制造多模型分割与图案填充打印方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206588297U (zh) * 2017-03-13 2017-10-27 广州市爱司凯科技股份有限公司 一种3d砂模打印梁系统装置
US20190375159A1 (en) * 2018-06-07 2019-12-12 Keracel, Inc. Multi-material three-dimensional printer
CN111267345A (zh) * 2020-01-19 2020-06-12 西安增材制造国家研究院有限公司 一种铺粉式3d打印装置
CN112222358A (zh) * 2020-09-29 2021-01-15 北京机科国创轻量化科学研究院有限公司 一种3d打印成形装置
WO2021143092A1 (zh) * 2020-01-16 2021-07-22 共享智能装备有限公司 一种打印组件及3d打印设备
CN113771364A (zh) * 2021-09-18 2021-12-10 重庆理工大学 一种产品增材制造方法
CN114289685A (zh) * 2022-01-12 2022-04-08 南京航空航天大学 一种多材质复合砂型成形方法及装置
CN114918371A (zh) * 2022-05-20 2022-08-19 南京航空航天大学 一种多材质砂型打印用高柔性多区域铺砂方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107321917A (zh) * 2017-07-03 2017-11-07 机械科学研究总院先进制造技术研究中心 一种多材质砂型3d打印成形方法
CN108339937A (zh) * 2018-02-07 2018-07-31 北京机科国创轻量化科学研究院有限公司 一种高性能高精度砂型(芯)3d打印成形方法
CN110695313B (zh) * 2019-11-06 2022-01-21 沈阳铸造研究所有限公司 一种冲压紧实砂型3d打印设备与方法
CN110935843A (zh) * 2019-11-15 2020-03-31 北京机科国创轻量化科学研究院有限公司 一种具有先进排砂装置的铸造砂型分区铺砂柔性打印成形装置
CN110860651A (zh) * 2019-11-22 2020-03-06 郑州中兴三维科技有限公司 一种高精度3d砂型打印设备
CN111688194A (zh) * 2020-05-26 2020-09-22 佛山市晗宇科技有限公司 3d打印平台
CN112077262A (zh) * 2020-09-03 2020-12-15 北京机科国创轻量化科学研究院有限公司 一种冷冻复合铸型3d打印成形方法及装置
CN112338140B (zh) * 2020-09-29 2022-08-30 北京机科国创轻量化科学研究院有限公司 一种3d打印成形方法
CN214349427U (zh) * 2020-11-19 2021-10-08 贵州航天风华精密设备有限公司 3d打印设备超声波振动落砂机构
CN113547076B (zh) * 2021-07-28 2022-05-03 南京航空航天大学 一种砂型冷冻打印层间预冷装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206588297U (zh) * 2017-03-13 2017-10-27 广州市爱司凯科技股份有限公司 一种3d砂模打印梁系统装置
US20190375159A1 (en) * 2018-06-07 2019-12-12 Keracel, Inc. Multi-material three-dimensional printer
WO2021143092A1 (zh) * 2020-01-16 2021-07-22 共享智能装备有限公司 一种打印组件及3d打印设备
CN111267345A (zh) * 2020-01-19 2020-06-12 西安增材制造国家研究院有限公司 一种铺粉式3d打印装置
CN112222358A (zh) * 2020-09-29 2021-01-15 北京机科国创轻量化科学研究院有限公司 一种3d打印成形装置
CN113771364A (zh) * 2021-09-18 2021-12-10 重庆理工大学 一种产品增材制造方法
CN114289685A (zh) * 2022-01-12 2022-04-08 南京航空航天大学 一种多材质复合砂型成形方法及装置
CN114918371A (zh) * 2022-05-20 2022-08-19 南京航空航天大学 一种多材质砂型打印用高柔性多区域铺砂方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117960998A (zh) * 2024-04-01 2024-05-03 潍坊精远模具有限公司 一种用于生产砂壳的3d砂型打印机
CN118080788A (zh) * 2024-04-26 2024-05-28 泰州市国银合金材料厂 一种精密铸造集成式浮砂设备

Also Published As

Publication number Publication date
CN114918371A (zh) 2022-08-19
CN114918371B (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
WO2023221340A1 (zh) 一种多材质砂型打印用高柔性多区域铺砂方法及装置
CN107790628B (zh) 一种吹气固化法3d打印铸造砂型的成形方法及装置
AU2018262560B2 (en) Molding method and apparatus, particularly applicable to metal and/or ceramics
CN114289685B (zh) 一种多材质复合砂型成形方法及装置
KR20180122643A (ko) 인 시추 인퓨전을 활용하여 물체들의 솔리드 프리폼 제조를 위한 방법 및 장치
WO2018133599A1 (zh) 一种轮盘式多材料激光选区熔化成型装置与方法
CN106001415B (zh) 基于分层实体制造的激光3d打印砂型的方法
CN103586410A (zh) 一种型砂喷射固化增材制造方法
CN108500260A (zh) 一种环形四缸高效快速成型装置及方法
CN112338140B (zh) 一种3d打印成形方法
KR20190126910A (ko) 분말 재료를 이용한 적층 제조용 방법 및 시스템
CN103341591A (zh) 一种基于选择性失效制作铸型的3d打印方法
CN205310848U (zh) 一种适用于多材料多工艺3d打印装置
CN107262714B (zh) 一种适用于多种材料的微波烧结3d打印装置及其打印工艺
CN107932691A (zh) 一种复杂结构陶瓷材料的增材制造方法
JP2004124201A (ja) 金属粉末光造形方法
CN111215578B (zh) 一种基于壳型增材和余区填充的铸型制备方法
CN113290849A (zh) 一种铺粉式列印成型的增材制造方法
CN110756731A (zh) 一种3d打印粘土型砂铸型的装置及方法
CN103600039A (zh) 一种型砂喷射固化增材制造设备
CN109514862B (zh) 一种用于聚合物三维制品增材制造的方法
CN114850417B (zh) 一种制备多材质复合砂型的铺砂振动压实装置
CN109732920A (zh) 粉末材料光固化粘结的3d打印装置和打印方法
CN110523987B (zh) 一种用于致密材料制备的激光烧结同步压制增材制造系统
CN110064759B (zh) 层积压实的粉末烧结3d成型缸及成型法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942369

Country of ref document: EP

Kind code of ref document: A1