WO2023221322A1 - 光学系统及其激光焊接装置 - Google Patents
光学系统及其激光焊接装置 Download PDFInfo
- Publication number
- WO2023221322A1 WO2023221322A1 PCT/CN2022/114808 CN2022114808W WO2023221322A1 WO 2023221322 A1 WO2023221322 A1 WO 2023221322A1 CN 2022114808 W CN2022114808 W CN 2022114808W WO 2023221322 A1 WO2023221322 A1 WO 2023221322A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mirror
- collimating
- focusing
- optical system
- lens
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 74
- 238000003466 welding Methods 0.000 title claims abstract description 46
- 230000001681 protective effect Effects 0.000 claims description 12
- 238000005516 engineering process Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/20—Bonding
- B23K26/21—Bonding by welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/70—Auxiliary operations or equipment
Definitions
- the utility model relates to the technical field of laser welding, in particular to an optical system and a laser welding device thereof.
- Laser processing technology covers a variety of laser processing techniques such as laser cutting, welding, quenching, drilling, micro-machining, etc., and utilizes the basic characteristics of the interaction between laser and matter. Because the laser beam has the advantages of non-contact with the processed materials, fast processing speed and excellent quality, laser processing technology is an irreplaceable high-tech technology.
- Fiber laser welding has the advantages of high energy density, fast speed, small welding deformation, narrow melt width and heat affected zone.
- fiber laser welding for some low-power thin plate welding that does not require high welding quality, in order to save costs, reduce cumbersome fixture restrictions, and reduce laser welding operation requirements, laser welding applications do not use machine tools or robots, and gradually formed A new set of laser welding technology is developed, namely handheld welding.
- Scanning spot welding exists in traditional handheld welding technology, that is, changes in different patterns of the focused spot are achieved through methods such as galvanometer swing scanning and wedge mirror rotation scanning in the welding device.
- the galvanometer swing scanning solution is affected by motor limitations and many optical lenses, resulting in a relatively large and heavy laser head, which is not conducive to the customer's handheld application experience; while the wedge mirror rotation scanning solution uses the wedge mirror separately from the collimating and focusing mirrors, resulting in There are many lenses in the optical path system. Even if a hollow motor is used to drive the wedge-shaped mirror to rotate, the structure of the laser head will be complex and heavy, resulting in poor user experience.
- this utility model provides an optical system and its laser welding device. Based on the scanning characteristics of a double wedge mirror, the functions of a collimating mirror, a focusing mirror and a wedge mirror are integrated to simplify the optical path scheme and ensure Functional integrity.
- the utility model discloses an optical system, which includes: collimating mirrors along the optical axis, including a first incident mirror surface and a first exit mirror surface.
- One of the first incident mirror surface and the first exit mirror surface is A plane, the other a convex surface
- the focusing mirror includes a second incident mirror surface and a second incident mirror surface, one of the second incident mirror surface and the second exit mirror surface is a plane surface, the other is a convex surface; wherein, the The line connecting the vertex of the convex surface of the collimating mirror and the focusing mirror and the center of the curvature radius at the vertex forms an angle greater than 0° with the normal line of the plane of the collimating mirror and the focusing mirror. angle; both the collimating lens and the focusing lens can rotate with the optical axis as the axis of rotation.
- the line connecting the vertex of the convex surface of the collimating mirror and the focusing mirror and the center of the curvature radius at the vertex is normal to the plane of the collimating mirror and the focusing mirror.
- the angles formed by the lines are all less than 10°.
- the line connecting the apex of the convex surface of the collimating lens and the focusing lens and the center of the curvature radius at the apex coincides with the optical axis.
- the projection of the collimating lens and the focusing lens on a plane perpendicular to a line connecting the vertex of the convex surface and the center of the curvature radius at the vertex is a centrally symmetrical figure.
- the collimating lens can rotate at the same rotation speed and direction as the focusing lens.
- the first incident mirror surface is a flat surface, and the first exit mirror surface is a convex surface; the second incident mirror surface is a convex surface, and the second exit mirror surface is a flat surface.
- the convex surfaces of the collimating lens and the focusing lens are spherical mirror surfaces or aspheric mirror surfaces.
- an antireflection film is provided on one or more of the first incident mirror surface, the first exit mirror surface, the second incident mirror surface, and the second exit mirror surface.
- Another aspect of the utility model discloses a laser welding device, which includes a laser source and any one of the aforementioned optical systems, and the optical system is arranged on the optical path formed by the laser source.
- the laser welding device further includes a protective mirror assembly, which is disposed on the optical path and on a side of the focusing mirror away from the collimating mirror.
- the optical system of this utility model is based on the scanning characteristics of a double wedge mirror and integrates the functions of a collimating mirror, a focusing mirror and a wedge mirror to simplify the optical path scheme and ensure functional integrity.
- the optical system of the present invention When the optical system of the present invention is applied to a laser welding device, it helps to reduce the size and weight of the laser head and improves customer experience. At the same time, it has a graphics scanning function, which helps to improve the adaptability of the weld seam width and the welding quality. It is suitable for Laser welding application, especially suitable for handheld welding applications of plates with different seam widths.
- Figure 1 is a schematic diagram of the optical system of the present invention in some embodiments.
- Figure 2 is a schematic diagram of the collimating lens of the optical system of the present invention in some embodiments.
- Figure 3 is a schematic diagram of the focusing lens of the optical system of the present invention in some embodiments.
- 1 is the laser source
- 2 is the collimating mirror
- 3 is the focusing mirror
- 4 is the protective mirror assembly
- 21 is the first incident mirror
- 22 is the first exit mirror
- 31 is the second incident mirror
- 32 is the second exit mirror.
- first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
- “plurality” means at least two, such as two, three, etc., unless otherwise clearly and specifically limited.
- the first feature "on” or “below” the second feature may be that the first and second features are in direct contact, or the first and second features are in direct contact through an intermediate medium. indirect contact.
- the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
- "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
- Figure 1 shows a schematic diagram of an optical system in an embodiment of the present application.
- the optical system provided by an embodiment of the present application includes a collimating lens 2 and a focusing lens 3 that are sequentially arranged on the optical path.
- the optical path is generated by the laser source 1, which is a point divergent light source.
- the beam it emits is collimated by the collimating mirror 2 to form a parallel beam, and the parallel beam further passes through the focusing mirror 3 to form a focus.
- FIG 2 is an enlarged schematic diagram of the collimating lens 2 in Figure 1.
- the collimating mirror 2 includes a first incident mirror 21 facing the laser source 1 and a first exit mirror 22 relatively far away from the laser source 1.
- the first incident mirror 21 and the first exit mirror 22 are One is flat and the other is convex.
- the collimating mirror 2 has two specific arrangements: the first is as shown in Figure 2, the first incident mirror 21 is a flat surface, and the first exit mirror 22 is a convex surface; the second is to set the first The incident mirror surface 21 is a convex surface, and the first exit mirror surface 22 is a flat surface.
- the plane is configured such that a line connecting its normal to the vertex of the convex surface and the center of the curvature radius at the vertex forms a radius greater than 0 °, the apex of the convex surface refers to the intersection point of the tangent plane of the convex surface perpendicular to the optical axis and the optical axis.
- the collimating mirror 2 can rotate with the optical axis as the rotation axis.
- the focusing mirror 3 includes a second incident mirror 31 facing the laser source 1 and a second exit mirror 32 relatively far away from the laser source 1 .
- One of the second incident mirror 31 and the second exit mirror 32 One is planar and the other is convex.
- the first one is as shown in Figure 3.
- the second incident mirror surface 31 is a convex surface and the second exit mirror surface 32 is a flat surface; the second one is to set the second incident mirror surface 31 as a convex surface.
- the mirror surface 31 is a flat surface, and the second exit mirror surface 32 is a convex surface.
- the plane is configured such that the line connecting its normal line with the vertex of the convex surface and the center of the curvature radius at the vertex forms a value greater than 0 ° angle.
- the focusing mirror 3 can rotate about the optical axis as a rotation axis.
- the optical system of the present application is shown in Figure 1.
- the first incident mirror surface 21 of the collimating mirror 2 is a flat surface
- the first exit mirror surface 22 is a convex surface
- the second incident mirror surface 31 of the focusing mirror 3 is a
- the second exit mirror 32 is a convex surface
- the second exit mirror 32 is a flat surface. Since the normal line of the plane forms an angle greater than 0° with the line connecting the vertex of the convex surface and the center of the curvature radius at the vertex, this causes the light emitted by the laser source 1 to be refracted by the first incident mirror 21 of the plane.
- the refracted light is collimated by the convex first exit mirror 22 to obtain a parallel collimated light beam with a transmission direction deviating from the central axis of the optical path.
- the parallel collimated light beams again converge through the convex second incident mirror surface 31 of the focusing mirror 3, but also because the plane of the second exit mirror surface 32, the vertex of the convex surface and the center of the curvature radius at the vertex form a line greater than 0°. angle, the condensed beam is emitted and deflected again after passing through the flat second exit mirror 32, which ultimately causes the focus of the condensed beam to be offset by a certain amount compared to the central axis of the entire optical path.
- rotating the collimating mirror 2 and the focusing mirror 3 causes the relative rotation angles of the collimating mirror 2 and the focusing mirror 3 to change, and the optical system of the present application can achieve different focusing focus offsets.
- the collimating mirror 2 and the focusing mirror 3 are in the same direction and speed, and scanning of circles with different diameters can be achieved.
- the rotation speed and rotation of the collimating mirror 2 and the focusing mirror 3 are controlled to be different, thereby enabling other scanning applications with different patterns to be realized.
- the optical system of the present application is based on the scanning characteristics of the double wedge mirror and integrates the functions of the collimating mirror and the wedge mirror. While achieving the collimating function, it can still be roughly wedge-shaped, so that the beam can pass through the collimator. Deflection occurs after straight mirror. Similarly, merging the functions of a focusing mirror and a wedge-shaped mirror not only achieves the function of converging the light beam, but also allows the light beam to be roughly wedge-shaped, so that the light beam will also be deflected after passing through the focusing mirror. In this way, the optical system of the present application simplifies the optical path scheme and ensures functional integrity compared with traditional technology.
- the optical system of this application When the optical system of this application is applied to a laser welding device, it can help reduce the size and weight of the laser head and improve customer experience. It also has a graphics scanning function, which can help improve the adaptability of weld seam width and welding quality. It is suitable for laser Welding applications, especially suitable for handheld welding applications of plates with different seam widths.
- the planes of the collimating lens 2 and the focusing lens 3 may also be opposite to each other.
- the arrangement situation is either the convex surface of the collimating mirror 2 is opposite to the flat surface of the focusing mirror 3, or the flat surface of the collimating mirror 2 is opposite to the convex surface of the focusing mirror 3.
- the point divergent light emitted by the laser source 1 can be passed through the collimating lens 2 to obtain a parallel collimated beam with a transmission direction deviating from the central axis of the optical path using a similar principle.
- This parallel collimated beam passes through the focusing lens 2
- the focal point of the converged beam obtained after 3 will also have a certain offset compared to the central axis of the entire optical path.
- the optical system of the present application sets the line connecting the normal line of the plane of the collimating mirror 2 and the focusing mirror 3 and the vertex of the convex surface of the collimating mirror 2 and the focusing mirror 3 and the center of the curvature radius at the vertex.
- the formed angles are all less than 10°.
- the angle between the plane of the collimating mirror 2 and the line connecting the apex of the convex surface and the center of the radius of curvature at the apex and the angle between the plane of the focusing mirror 3 and the line connecting the apex of the convex surface and the center of the radius of curvature at the apex Can be set to the same or different. With this arrangement, the focus of the optical system of the present application will not deviate too much from the optical axis, making it suitable for laser welding applications, especially for handheld welding applications.
- the convex surface is configured as the vertex and vertex of the convex surface.
- the line connecting the center of the curvature radius coincides with the optical axis.
- the collimating mirror 2 and the focusing mirror 3 are set so that their projections on a plane perpendicular to the line connecting the vertex of the convex surface and the center of the curvature radius circle at the vertex are centrally symmetrical figures. With this arrangement, the collimating lens 2 and focusing lens 3 are easier to process.
- the optical system of the present application does not strictly limit the specific shapes of the convex surfaces of the collimating mirror 2 and the focusing mirror 3, as long as the convex surface of the collimating mirror 2 can achieve the collimating function, and the convex surface of the focusing mirror 3
- the convex surface can realize the focusing function.
- the convex surface of the collimating mirror 2 may be a spherical mirror surface or an aspheric mirror surface
- the convex surface of the focusing mirror 3 may be a spherical mirror surface or an aspheric mirror surface.
- the specific shapes of the convex surface of the collimating mirror 2 and the convex surface of the focusing mirror 3 may be set to be the same or different.
- the convex surface of the collimating mirror 2 and the convex surface of the focusing mirror 3 are both spherical mirror surfaces, and the curvatures of the spherical mirror surfaces are the same.
- those skilled in the art can also design the shapes of the convex surfaces of the collimating mirror 2 and the focusing mirror 3 in detail based on the specific concepts of the optical system disclosed in this application based on the actual situation, which will not be described in detail here.
- the mirror materials of the collimating mirror 2 and focusing mirror 3 of the optical path system of the present application can be fused quartz, sapphire, or zinc sulfide.
- these lens materials can meet the transmission characteristics, refractive characteristics and mechanical properties required in laser welding.
- an anti-reflection film is provided on at least one of the first incident mirror surface, the first exit mirror surface, the second incident mirror surface and the second exit mirror surface.
- the laser welding device includes a laser source 1 and any one of the aforementioned optical systems.
- the optical system is disposed on the optical path formed by the laser source.
- the laser welding device of the present application may also include a protective mirror assembly 4 , which is disposed on the optical path and on the side of the focusing mirror 3 away from the collimating mirror 2 .
- the protective lens assembly 4 can protect the focusing lens 3 and the collimating lens 2 in the device, thereby improving the welding effect of the laser welding device of the present application.
- the protective mirror assembly 4 may include a protective mirror housing and a protective mirror body. The protective mirror body is installed in the protective mirror housing, and the protective mirror body is disposed on the optical path formed by the laser source 1 .
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Lenses (AREA)
Abstract
一种光学系统及其激光焊接装置,光学系统沿光轴依次包括:准直镜(2),包括第一入射镜面(21)和第一出射镜面(22),第一入射镜面(21)与第一出射镜面(22)的其中一个为平面,另一个为凸面;以及,聚焦镜(3),包括第二入射镜面(31)和第二出射镜面(32),第二入射镜面(31)与第二出射镜面(32)的其中一个为平面,另一个为凸面;其中,准直镜(2)、聚焦镜(3)的凸面的顶点与顶点处的曲率半径圆心的连线均与准直镜(2)、聚焦镜(3)的平面的法线形成大于0°的夹角;准直镜(2)、聚焦镜(3)均能够以光轴为旋转轴发生旋转。
Description
本实用新型涉及激光焊接技术领域,特别是涉及一种光学系统及其激光焊接装置。
激光加工技术涵盖了激光切割、焊接、淬火、打孔、微加工等多种激光加工工艺,利用了激光与物质相互作用的基本特性。由于激光束具有与加工材料的非接触性、加工速度快与质量优异等优势,奠定了激光加工技术是一种无可替代的高新技术。
光纤激光焊接,具有能量密度高、速度快、焊接变形小、熔宽与热影响区窄等优点。随着光纤激光焊接发展,对于一些焊接质量要求不高的低功率薄板焊接而言,为节省成本,降低繁琐夹具限制,降低激光焊接操作要求,不采用机床或机器人等进行激光焊接应用,逐渐形成了一套新的激光焊接技术,即手持焊接。
传统技术的手持焊接中存在着扫描式光斑焊接,即通过如焊接装置中的振镜摆动扫描、楔形镜旋转扫描等方式实现聚焦光斑不同图形的变化。其中,振镜摆动扫描方案受电机限制及光学镜片较多影响导致激光头比较大且沉重,不利于客户手持应用体验;而楔形镜旋转扫描方案由于楔形镜与准直、聚焦镜分开应用,致使光路系统镜片较多,即便是采用中空电机带动楔形镜旋转,激光头结构也会较为复杂、沉重,客户使用体验不佳。
实用新型内容
为了解决传统技术中存在的问题,本实用新型提供了一种光学系统及其激光焊接装置,基于双片楔形镜扫描特性,将准直镜、聚焦镜与楔形镜功能融合,简化光路方案并保障功能完整性。
本实用新型一方面公开了一种光学系统,沿光轴依次包括:准直镜,包括第一入射镜面和第一出射镜面,所述第一入射镜面与所述第一出射镜面的其中一个为平面,另一个为凸面;以及,聚焦镜,包括第二入射镜面和第二入射镜面,所述第二入射镜面与所述第二出射镜面的其中一个为平面,另一个为凸面;其中,所述准直镜、所述聚焦镜的所述凸面的顶点与顶点处的曲率半径圆心的连线均与所述准直镜、所述聚焦镜的所述平面的法线形成大于0°的夹角;所述准直镜、所述聚焦镜均能够以光轴为旋转轴发生旋转。
在部分实施例中,所述准直镜、所述聚焦镜的所述凸面的顶点与顶点处的曲率半径圆心的连线均与所述准直镜、所述聚焦镜的所述平面的法线形成的夹角均小于10°。
在部分实施例中,所述准直镜、所述聚焦镜的所述凸面的顶点与顶点处的曲率半径圆心的连线均与光轴重合。
在部分实施例中,所述准直镜、所述聚焦镜在垂直于其所述凸面的顶点与顶点处的曲率半径圆心的连线的平面上的投影为中心对称图形。
在部分实施例中,所述准直镜能够与所述聚焦镜以相同的旋转速度与旋转方向旋转。
在部分实施例中,所述第一入射镜面为平面,所述第一出射镜面为凸面;所述第二入射镜面为凸面,所述第二出射镜面为平面。
在部分实施例中,所述准直镜、所述聚焦镜的所述凸面为球面镜面或者非 球面镜面。
在部分实施例中,在第一入射镜面、第一出射镜面、第二入射镜面与所述第二出射镜面的一个或多个上设置增透膜。
本实用新型另一方面公开了一种激光焊接装置,包括激光源以及前述任一所述的光学系统,所述光学系统设置在所述激光源形成的光路上。
在部分实施例中,所述激光焊接装置还包括保护镜组件,所述保护镜组件设置在光路上且设置在所述聚焦镜远离所述准直镜的一侧。
本实用新型的光学系统,基于双片楔形镜扫描特性,将准直镜、聚焦镜与楔形镜功能融合,简化光路方案并保障功能完整性。当本实用新型的光学系统应用于激光焊接装置时,有助于降低激光头尺寸及重量,提升客户使用体验,同时具备图形扫描功能,有助于提高焊缝宽度适应性及焊接质量,适用于激光焊接应用,特别适用于不同缝宽板材的手持焊接应用。
图1为部分实施例中本实用新型的光学系统的示意图;
图2为部分实施例中本实用新型的光学系统的准直镜的示意图;
图3为部分实施例中本实用新型的光学系统的聚焦镜的示意图;
其中,1为激光源,2为准直镜,3为聚焦镜,4为保护镜组件,21为第一入射镜面,22为第一出射镜面,31为第二入射镜面,32为第二出射镜面。
为使本实用新型的上述目的、特征和优点能够更加明显易懂,下面结合附 图对本实用新型的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本实用新型。但是本实用新型能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本实用新型内涵的情况下做类似改进,因此本实用新型不受下面公开的具体实施例的限制。
在本实用新型的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本实用新型的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本实用新型中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
参阅图1,图1示出了本申请一实施例中的光学系统的示意图,本申请一 实施例提供了的光学系统包括依次设置在光路上的准直镜2和聚焦镜3。在该部分实施例中,光路由激光源1产生,激光源1为点发散光源,其发出的光束经过准直镜2准直后形成平行光束,平行光束进一步通过聚焦镜3形成焦点。
图2为图1中准直镜2的放大示意图。进一步的,如图2所示,准直镜2包括朝向激光源1的第一入射镜面21和相对远离激光源1的第一出射镜面22,第一入射镜面21与第一出射镜面22的其中一个为平面而另一个为凸面。这就意味着准直镜2具有两种具体的设置形式:第一种如图2所示,第一入射镜面21为平面,而第一出射镜面22为凸面;第二种则是设置第一入射镜面21为凸面,设置第一出射镜面22为平面。而无论所述平面被配置为第一入射镜面21或是第一出射镜面22,所述平面均被配置为其法线与所述凸面的顶点与顶点处的曲率半径圆心的连线形成大于0°的夹角,所述凸面的顶点指的是所述凸面的垂直于光轴的切平面与光轴的交点。准直镜2能够以光轴为旋转轴发生旋转。
类似地,如图3所示,聚焦镜3包括朝向激光源1的第二入射镜面31和相对远离激光源1的第二出射镜面32,第二入射镜面31与第二出射镜面32的其中一个为平面而另一个为凸面。这就意味着聚焦镜3具有两种具体的设置形式,第一种如图3所示,第二入射镜面31为凸面,而第二出射镜面32为平面;第二种则是设置第二入射镜面31为平面,设置第二出射镜面32为凸面。而无论所述平面被配置为第二入射镜面31或是第二出射镜面32,所述平面均被配置为其法线与所述凸面的顶点与顶点处的曲率半径圆心的连线形成大于0°的夹角。聚焦镜3能够以光轴为旋转轴发生旋转。
作为一种具体的示例,本申请的光学系统如图1所示,准直镜2的第一入射镜面21为平面,其第一出射镜面22为凸面,聚焦镜3的第二入射镜面31为凸面,而第二出射镜面32为平面。由于平面的法线与所述凸面的顶点与顶点处的曲率半径圆心的连线形成大于0°的夹角,这就使得激光源1发出的光线通过平面的第一入射镜面21会发生折射,折射后的光线经过凸面的第一出射镜面22进行准直,获得传输方向偏离光路中心轴的平行准直光束。该平行准直光束再次经过聚焦镜3的凸面的第二入射镜面31发生汇聚,但同样由于第二出射镜面32的平面与其凸面的顶点与顶点处的曲率半径圆心的连线形成大于0°的夹角, 汇聚光束在经过平面的第二出射镜面32后再次发射偏折,最终使得汇聚光束的聚焦焦点相较于整个光路中心轴产生一定的偏移量。如此设置,旋转准直镜2以及聚焦镜3使准直镜2和聚焦镜3的相对旋转角度发生变化,本申请的光学系统便可以实现不同聚焦焦点偏移量。在此基础上同向同速准直镜2和聚焦镜3,即可实现不同直径圆的扫描。又或者,在其他部分实施例中,控制准直镜2和聚焦镜3的转速与转向不同,进而可以实现其他不同图形的扫描应用。
通过上述分析可知,本申请的光学系统,基于双片楔形镜扫描特性,将准直镜与楔形镜功能融合,在实现准直功能的同时,仍然能够大致呈楔形,从而能够使光束在经过准直镜后发生偏转。类似地,将聚焦镜与楔形镜功能融合,在实现光束汇聚功能的同时,由于能够大致呈楔形,光束在经过聚焦镜后也会发生偏转。如此,本申请的光学系统相较于传统技术简化了光路方案并保障了功能完整性。当本申请的光学系统应用于激光焊接装置时,有助于降低激光头尺寸及重量,提升客户使用体验,同时具备图形扫描功能,有助于提高焊缝宽度适应性及焊接质量,适用于激光焊接应用,特别适用于不同缝宽板材的手持焊接应用。
可以理解的,除了图1所示的实施例中,准直镜2与聚焦镜3的凸面相对设置的情形,在其他部分实施例中,也可以出现准直镜2与聚焦镜3的平面相对设置的情形,或者准直镜2的凸面与聚焦镜3的平面相对设置的情形,或者准直镜2的平面与聚焦镜3的凸面相对设置的情形。在这些其他的实施例中,激光源1发出的点发散光均可以以类似的原理在经过准直镜2获得传输方向偏离光路中心轴的平行准直光束,该平行准直光束在经过聚焦镜3后获得的汇聚光束的聚焦焦点相较于整个光路中心轴同样也会产生一定的偏移量。
具体来说,本申请的光学系统设置准直镜2、聚焦镜3的所述平面的法线与准直镜2、聚焦镜3的所述凸面的顶点与顶点处的曲率半径圆心的连线形成的夹角均小于10°。准直镜2的平面与其所述凸面的顶点与顶点处的曲率半径圆心的连线的夹角与聚焦镜3的平面与其所述凸面的顶点与顶点处的曲率半径圆心的连线的夹角可以设置为相同,也可以设置为不同。如此设置,本申请的光学系统的聚焦焦点不会偏离光轴过多,适用于激光焊接应用,特别适用于手持焊 接应用。
具体来说,在如图1所示的部分实施例中,无论所述凸面被配置为第一入射镜面21或是第一出射镜面22,所述凸面均被配置为所述凸面的顶点与顶点处曲率半径圆心的连线与光轴重合。如此设置,有利于本申请的光学系统对聚焦焦点的位置进行控制和判断,进而有助于实现不同图形的扫描应用。
在部分实施例中,优选地将准直镜2、聚焦镜3设置为其在垂直于所述凸面的顶点与顶点处的曲率半径圆心的连线的平面上的投影为中心对称图形。如此设置,准直镜2与聚焦镜3更加容易加工。
可以理解的,对于准直镜2、聚焦镜3的所述凸面的具体形状,本申请的光学系统并不加以严格限制,只要准直镜2的凸面可以实现准直功能,而聚焦镜3的凸面可以实现聚焦功能即可。具体来说,准直镜2的凸面可以为球面镜面或者非球面镜面,聚焦镜3的凸面可以为球面镜面或者非球面镜面。准直镜2的凸面与聚焦镜3的凸面的具体形状可以设置为相同也可设置为不同。实践中,为了降低制造成本,准直镜2的凸面与聚焦镜3的凸面均为球面镜面,且球面镜面的曲率相同。当然,本领域技术人员也可以结合实际情况,根据本申请所公开的光学系统的具体构思对准直镜2、聚焦镜3的凸面的形状进行具体设计,本申请在此不再赘述。
作为一种具体可实现的实例,本申请的光路系统的准直镜2、聚焦镜3的镜面材料可以为熔融石英或者蓝宝石或者硫化锌,当然本领域技术人员也可以根据具体需要重新进行选择。这些镜片材料可以满足激光焊接中所需要的透射特性、折射特性以及机械特性。
在部分实施例中,至少在第一入射镜面、第一出射镜面、第二入射镜面与所述第二出射镜面的其中一个上设置增透膜。如此,便可以进一步细化调节准直镜2、聚焦镜3的光学性能,以满足激光焊接的需要。
本申请另一方面公开了一种激光焊接装置,所述激光焊接装置包括激光源1以及前述任一所述的光学系统,所述光学系统设置在所述激光源形成的光路上。本申请的激光焊接装置通过设置本申请的所述光学系统,较定光斑离焦焊接而言,其焊接光斑功率密度可大幅提高,同时确保焊缝上足够的光斑尺寸以降低 激光焊接缺陷,且焊接质量更好,表面更为美观;较振镜扫描、传统楔形镜扫描而言,同样具备任意形状、一定范围尺寸可调的图形扫描,而光路系统精简许多,除了机械结构上更容易设计并能保证更小的外观尺寸外,整体重量也会更轻,有利于客户手持焊接应用体验,另外光路系统镜片数量更少,成本更低。
具体的,如图所示,本申请的激光焊接装置还可以包括保护镜组件4,保护镜组件4设置在光路上且设置在聚焦镜3远离准直镜2的一侧。如此,保护镜组件4可以对装置内的聚焦镜3、准直镜2进行保护,提高本申请的激光焊接装置的焊接效果。在部分实施例中,保护镜组件4可以包括保护镜壳体以及保护镜本体,保护镜本体安装在保护镜壳体中,保护镜本体设置于激光源1形成的光路上。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本实用新型的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对实用新型专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本实用新型构思的前提下,还可以做出若干变形和改进,这些都属于本实用新型的保护范围。因此,本实用新型专利的保护范围应以所附权利要求为准。
Claims (10)
- 一种光学系统,其特征在于,沿光轴依次包括:准直镜,包括第一入射镜面和第一出射镜面,所述第一入射镜面与所述第一出射镜面的其中一个为平面,另一个为凸面;以及聚焦镜,包括第二入射镜面和第二入射镜面,所述第二入射镜面与所述第二出射镜面的其中一个为平面,另一个为凸面;其中,所述准直镜、所述聚焦镜的所述凸面的顶点与顶点处的曲率半径圆心的连线均与所述准直镜、所述聚焦镜的所述平面的法线形成大于0°的夹角;所述准直镜、所述聚焦镜均能够以光轴为旋转轴发生旋转。
- 根据权利要求1所述的光学系统,其特征在于,所述准直镜、所述聚焦镜的所述凸面的顶点与顶点处的曲率半径圆心的连线均与所述准直镜、所述聚焦镜的所述平面的法线形成的夹角均小于10°。
- 根据权利要求1所述的光学系统,其特征在于,所述准直镜、所述聚焦镜的所述凸面的顶点与顶点处的曲率半径圆心的连线均与光轴重合。
- 根据权利要求1所述的光学系统,其特征在于,所述准直镜、所述聚焦镜在垂直于其所述凸面的顶点与顶点处的曲率半径圆心的连线的平面上的投影为中心对称图形。
- 根据权利要求1所述的光学系统,其特征在于,所述准直镜能够与所述聚焦镜以相同的旋转速度与旋转方向旋转。
- 根据权利要求1所述的光学系统,其特征在于,所述第一入射镜面为平面,所述第一出射镜面为凸面;所述第二入射镜面为凸面,所述第二出射镜面为平面。
- 根据权利要求1所述的光学系统,其特征在于,所述准直镜、所述聚焦镜的所述凸面为球面镜面或者非球面镜面。
- 根据权利要求1所述的光学系统,其特征在于,在第一入射镜面、第一出射镜面、第二入射镜面与所述第二出射镜面的一个或多个上设置增透膜。
- 一种激光焊接装置,其特征在于,包括激光源以及权利要求1-8任一所述的光学系统,所述光学系统设置在所述激光源形成的光路上。
- 根据权利要求9所述的激光焊接装置,其特征在于,所述激光焊接装置还包括保护镜组件,所述保护镜组件设置在光路上且设置在所述聚焦镜远离所述准直镜的一侧。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202221196323.9 | 2022-05-18 | ||
CN202221196323.9U CN217551503U (zh) | 2022-05-18 | 2022-05-18 | 光学系统及其激光焊接装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023221322A1 true WO2023221322A1 (zh) | 2023-11-23 |
Family
ID=83474684
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/114808 WO2023221322A1 (zh) | 2022-05-18 | 2022-08-25 | 光学系统及其激光焊接装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN217551503U (zh) |
WO (1) | WO2023221322A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000158170A (ja) * | 1998-11-27 | 2000-06-13 | Amada Co Ltd | 加工ヘッド |
JP2002137083A (ja) * | 2000-10-30 | 2002-05-14 | Amada Co Ltd | ビームウィービング装置を備えたレーザー加工ヘッド |
CN106061667A (zh) * | 2014-03-13 | 2016-10-26 | 松下知识产权经营株式会社 | 激光加工头 |
CN111308699A (zh) * | 2020-03-11 | 2020-06-19 | 南京理工大学 | 高功率光纤激光器用光闸中透镜参数设计方法 |
CN111590198A (zh) * | 2020-06-01 | 2020-08-28 | 华中科技大学 | 利用高频/超高频微振动实现激光光斑动态调节的激光头 |
CN214769754U (zh) * | 2021-04-13 | 2021-11-19 | 深圳欧斯普瑞智能科技有限公司 | 一种具有自动调焦功能的激光切割头 |
-
2022
- 2022-05-18 CN CN202221196323.9U patent/CN217551503U/zh active Active
- 2022-08-25 WO PCT/CN2022/114808 patent/WO2023221322A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000158170A (ja) * | 1998-11-27 | 2000-06-13 | Amada Co Ltd | 加工ヘッド |
JP2002137083A (ja) * | 2000-10-30 | 2002-05-14 | Amada Co Ltd | ビームウィービング装置を備えたレーザー加工ヘッド |
CN106061667A (zh) * | 2014-03-13 | 2016-10-26 | 松下知识产权经营株式会社 | 激光加工头 |
CN111308699A (zh) * | 2020-03-11 | 2020-06-19 | 南京理工大学 | 高功率光纤激光器用光闸中透镜参数设计方法 |
CN111590198A (zh) * | 2020-06-01 | 2020-08-28 | 华中科技大学 | 利用高频/超高频微振动实现激光光斑动态调节的激光头 |
CN214769754U (zh) * | 2021-04-13 | 2021-11-19 | 深圳欧斯普瑞智能科技有限公司 | 一种具有自动调焦功能的激光切割头 |
Also Published As
Publication number | Publication date |
---|---|
CN217551503U (zh) | 2022-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100580500C (zh) | 准双半高斯空心激光束形成装置 | |
TW490350B (en) | Laser focusing process | |
CN110076449A (zh) | 实现大深径比加工的激光头装置 | |
JPH07209598A (ja) | ミラー走査システム及び方法 | |
CN107160032A (zh) | 一种间距与分光能量可调三光点激光焊接光学系统 | |
CN111736329A (zh) | 一种双片式非球面镜zoom光学系统 | |
CN105904087A (zh) | 一种反射式高功率双金属振镜扫描系统 | |
US6088170A (en) | Optical system for shaping light beams and an optical pickup employing the same | |
WO2023221322A1 (zh) | 光学系统及其激光焊接装置 | |
CN101765883A (zh) | 光拾取装置及准直透镜 | |
CN215545785U (zh) | 一种光学系统及激光加工设备 | |
CN106735887A (zh) | 一种单振镜全反射式位移调焦3d扫描光学系统 | |
CN206445359U (zh) | 一种单振镜全反射式位移调焦3d扫描光学系统 | |
CN205702846U (zh) | 一种反射式高功率双金属振镜扫描系统 | |
KR100288967B1 (ko) | 빔정형을 위한 광학계 및 이를 채용한 광픽업 | |
CN111736355A (zh) | 一种基于微透镜组可调能量分布光学系统 | |
WO2023221318A1 (zh) | 自由曲面透镜、光学系统及其激光焊接装置 | |
CN115951329A (zh) | 一种mems激光雷达光准直环扫装置及方法 | |
CN205817077U (zh) | 一种基于二分束棱镜与扫描振镜组合光学系统 | |
CN107561692A (zh) | 一种基于多面棱镜四光路双通道激光刻痕光学系统 | |
US20100053739A1 (en) | Laser device providing an adjusted field distribution for laser beams thereof | |
CN114012248A (zh) | 一种激光切割头的光路系统 | |
CN110614431A (zh) | 一种基于柱面透镜调焦手持焊接光学机构及其工作方法 | |
TW200411214A (en) | Near-field optical object lens | |
CN110488398A (zh) | 一种获得可调双焦点的自由曲面透镜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22942351 Country of ref document: EP Kind code of ref document: A1 |