WO2023221212A1 - 一种高频隔离双向变换器 - Google Patents

一种高频隔离双向变换器 Download PDF

Info

Publication number
WO2023221212A1
WO2023221212A1 PCT/CN2022/098505 CN2022098505W WO2023221212A1 WO 2023221212 A1 WO2023221212 A1 WO 2023221212A1 CN 2022098505 W CN2022098505 W CN 2022098505W WO 2023221212 A1 WO2023221212 A1 WO 2023221212A1
Authority
WO
WIPO (PCT)
Prior art keywords
inductor
capacitor
bidirectional converter
external side
isolated bidirectional
Prior art date
Application number
PCT/CN2022/098505
Other languages
English (en)
French (fr)
Inventor
向小路
陈强
Original Assignee
深圳深源技术能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳深源技术能源有限公司 filed Critical 深圳深源技术能源有限公司
Publication of WO2023221212A1 publication Critical patent/WO2023221212A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • This application relates to the field of power conversion technology, and more specifically to a high-frequency isolated bidirectional converter.
  • the bidirectional DC-DC converter is a DC/DC converter that can adjust the two-way transmission of energy as needed. It is mainly used in energy storage systems, vehicle power systems, feedback charging and discharging systems, hybrid energy electric vehicles and other occasions.
  • the ZVS turn-on of the primary side switch tube and the ZCS turn-off of the rectifier side switch tube can be realized.
  • the LLC resonance characteristic degenerates into the LC resonance characteristic.
  • the maximum voltage gain of the LC resonance becomes 1, which greatly reduces the voltage gain during reverse operation and greatly narrows the operating voltage range, so it is not suitable for working at a wide voltage.
  • the two-way flow of range energy limits its application scenarios.
  • the technical problem to be solved by this application is to provide a high-frequency isolated bidirectional converter that has no gain loss during forward and reverse operation and can increase the operating voltage range.
  • this application provides a high-frequency isolation bidirectional converter, including a switching circuit, a resonant circuit, a transformer and a full-bridge switching circuit.
  • the full-bridge switching circuit and one side of the switching circuit serve as the high-frequency isolation circuit respectively.
  • the one end of the second inductor is also connected to the other end of the first capacitor/second capacitor through a selector switch to connect through the selector switch when the high-frequency isolated bidirectional converter operates in the first state. to the first capacitor, which is connected to the second capacitor through the selector switch in the second state.
  • the other end of the second capacitor is also connected to one end of the first inductor. The other ends of the first capacitor and the second inductor are connected to the switch.
  • the other end of the second inductor and the other end of the first inductor are connected to the primary winding of the transformer, and the secondary winding of the transformer is connected to the midpoint of the bridge arm of the full-bridge switch circuit, wherein, in the first In the first state, power is transmitted from the first external side to the second external side, and in the second state, power is transmitted from the second external side to the first external side.
  • the switch circuit includes two switch tubes, and the two switch tubes are connected in series to form a bridge arm. Both ends of the bridge arm serve as the first external side of the high-frequency isolated bidirectional converter, and the first The capacitor and the second inductor are respectively connected to the midpoint and the lower end of the bridge arm of the switching circuit.
  • the switch circuit includes two switch tubes, and the two switch tubes are connected in series to form a bridge arm. Both ends of the bridge arm serve as the first external side of the high-frequency isolated bidirectional converter, and the first The capacitor and the second inductor are respectively connected to the uppermost end and the middle point of the bridge arm of the switching circuit.
  • the switching circuit includes four switch tubes, and each two switch tubes are connected in series to form a bridge arm. After the two bridge arms are connected in parallel, their two ends serve as the first external side of the high-frequency isolated bidirectional converter, so The first capacitor and the second inductor are respectively connected to the midpoints of the two bridge arms of the switching circuit.
  • the full-bridge switch circuit includes four switch tubes, and each two switch tubes are connected in series to form a bridge arm. After the two bridge arms are connected in parallel, their two ends serve as the second external side of the high-frequency isolated bidirectional converter. , the same-name terminal and the different-name terminal of the secondary winding of the transformer are respectively connected to the midpoints of the two bridge arms.
  • the high-frequency isolated bidirectional converter further includes a first filter capacitor and a second filter capacitor, and both ends of the first filter capacitor are connected to the first external side of the high-frequency isolated bidirectional converter. Both ends of the second filter capacitor are connected to the second external side.
  • this application also provides a high-frequency isolated bidirectional converter, including a switching circuit, a resonant circuit, a transformer and a full-bridge switching circuit.
  • the full-bridge switching circuit and one side of the switching circuit serve as the high-frequency converter respectively.
  • the resonant circuit includes a first inductor, a second inductor, a third inductor, a first capacitor, a second capacitor and a selection switch, the second capacitor Two ends are respectively connected to the third inductor and one end of the first inductor, the other end of the third inductor is connected to one end of the first capacitor, one end of the second inductor is connected between the third inductor and the second capacitor, and the third inductor is connected to one end of the first capacitor.
  • One end of the two inductors is also connected to the other end of the first capacitor/first inductor through a selector switch, so as to be connected to the first capacitor through the selector switch when the high-frequency isolated bidirectional converter operates in the first state, and in the second state Connected to the first inductor through a selector switch, the other end of the first capacitor and the other end of the second inductor are connected to the switching circuit, the other end of the second inductor and the other end of the first inductor are connected to the primary winding of the transformer , the secondary winding of the transformer is connected to the midpoint of the bridge arm of the full-bridge switch circuit, wherein in the first state, power is transmitted from the first external side to the second external side, and in the third In the second state, power is transmitted from the second external side to the first external side.
  • the equivalent circuit of the resonant circuit in the high-frequency isolated bidirectional converter of the present application is the same when the energy flows in the forward and reverse directions. There is no loss in gain during forward and reverse operation, which solves the problem of the reverse direction of the traditional LLC resonant circuit.
  • the problem of not working with the same performance is that the high-frequency isolated bidirectional converter of this application can boost the voltage when the energy flows in the reverse direction, which can effectively increase the input and output voltage range of the converter and realize wide voltage range conversion.
  • Figure 1 is a circuit schematic diagram of the first embodiment of the high-frequency isolated bidirectional converter of the present application.
  • Figure 2 is a circuit schematic diagram of the second embodiment of the high-frequency isolated bidirectional converter of the present application.
  • Figure 3 is a circuit schematic diagram of the third embodiment of the high-frequency isolated bidirectional converter of the present application.
  • FIG. 1 is a circuit schematic diagram of the first embodiment of the high-frequency isolated bidirectional converter 10 of the present application.
  • the high-frequency isolated bidirectional converter 10 includes a switching circuit 11, a resonant circuit 12, a transformer T1 and a full-bridge switching circuit 14.
  • the resonant circuit 12 includes a first capacitor C1, a second capacitor C2, and a first inductor L1. , the second inductor L2 and the selector switch S.
  • One end of the second capacitor C2 is connected to the first capacitor C1 and one end of the second inductor L2.
  • the one end of the second inductor L2 is also connected to the first capacitor C1 through the selector switch S.
  • the other end of the second capacitor C2 is connected to the other end of the first capacitor C1 through the selector switch S when the high-frequency isolated bidirectional converter 10 works in the first state, and is connected to the third capacitor C1 through the selector switch S when in the second state.
  • the other end of the second capacitor C2 is also connected to one end of the first inductor L1.
  • the other ends of the first capacitor C1 and the second inductor L2 are connected to the switching circuit 11.
  • the second inductor The other end of L2 and the other end of the first inductor L1 are connected to the primary winding of the transformer T1, and the secondary winding of the transformer T1 is connected to the midpoint of the bridge arm of the full-bridge switching circuit 14, wherein in the first state , power is transmitted from the first external side to the second external side, and in the second state, power is transmitted from the second external side to the first external side, that is, when energy flows forward, high-frequency isolation bidirectional conversion
  • the working state of the converter 10 is the first state, and when energy flows in the reverse direction, the working state of the high-frequency isolated bidirectional converter 10 is the second state.
  • the first inductor L1 and the second inductor L2 have the same inductance.
  • the first external side of the high-frequency isolated bidirectional converter 10 when energy flows forward, that is, when power is transmitted from the first external side to the second external side, the first external side of the high-frequency isolated bidirectional converter 10 serves as a DC input terminal and can be connected to an external power supply.
  • the second external side serves as the DC output end and can be connected to an external load; when the energy flows in the reverse direction, that is, when the power is transmitted from the second external side to the first external side, the second external side of the high-frequency isolation bidirectional converter 10
  • the first external side is used as the DC input terminal
  • the first external side is used as the DC output terminal.
  • the resonant circuit 12 in the high-frequency isolated bidirectional converter 10 of the present application flows in the forward direction of energy
  • the first capacitor C1 is short-circuited
  • the second capacitor C2 is short-circuited, so that the resonant circuit 12 flows in the forward direction of energy.
  • the equivalent circuit is the same when flowing in the reverse direction, and there is no gain loss when working in the forward and reverse directions. This solves the problem that the traditional LLC resonant circuit cannot work with the same performance in the reverse direction. That is, the voltage can be boosted when the energy flows in the reverse direction, which can effectively improve the conversion.
  • the input and output voltage range of the device realizes wide voltage range conversion and is suitable for high-power circuits.
  • the switch circuit 11 is a full-bridge structure, including a first switch Q1, a second switch Q2, a third switch Q3 and a fourth switch Q4, a total of four switch tubes, each with two switch tubes.
  • the switching tubes are connected in series to form a bridge arm. After the two bridge arms are connected in parallel, their two ends serve as the first external side of the high-frequency isolated bidirectional converter 10.
  • the first switching tube Q1 and the second switching tube Q2 are connected in series to form a bridge.
  • the midpoint of the arm is connected to the first capacitor C1, and the midpoint of the bridge arm formed by the series connection of the third switching tube Q3 and the fourth switching tube Q4 is connected to the second inductor L2.
  • the full-bridge switching circuit 14 includes a fifth switching tube Q5, a sixth switching tube Q6, a seventh switching tube Q7 and an eighth switching tube Q8, a total of four switching tubes, each with two switching tubes.
  • the switching tubes are connected in series to form a bridge arm. After the two bridge arms are connected in parallel, their two ends serve as the second external side of the high-frequency isolated bidirectional converter 10.
  • the fifth switching tube Q5 and the sixth switching tube Q6 are connected in series to form a bridge.
  • the midpoint of the arm and the midpoint of the bridge arm formed by the series connection of the seventh switching tube Q7 and the eighth switching tube Q8 are respectively connected to the same-name end and the opposite-name end of the secondary winding of the transformer T1.
  • the full-bridge switch circuit 14 can rectify the voltage waveform periodically output by the transformer T1 to generate the operating voltage required by the load.
  • the switch tubes are MOS, IGBT or other controllable power switch tubes to achieve better circuit performance.
  • a diode can be connected in parallel to each switch tube. If the switch tube is For a MOS tube, a diode is connected in parallel between its drain and source. If the switch tube is an IGBT tube, a diode is connected in parallel between its emitter and collector.
  • the high-frequency isolated bidirectional converter 10 further includes a first filter capacitor C3 and a second filter capacitor C4. Both ends of the first filter capacitor C3 are connected to the first external side of the high-frequency isolated bidirectional converter 10, Both ends of the second filter capacitor C4 are connected to the second external side of the high-frequency isolated bidirectional converter 10 .
  • the switching frequency of the high-frequency isolated bidirectional converter 10 is realized by controlling the switching frequencies of the first switching tube Q1, the second switching tube Q2, the third switching tube Q3 and the fourth switching tube Q4.
  • a wide range of voltage output, and the two switching tubes on each bridge arm are in complementary conduction, can realize soft switching of the circuit; when the energy is transmitted in the reverse direction, the equivalent circuit of the resonant circuit 12 is the same as when the energy is transmitted in the forward direction. Therefore, through Controlling the switching frequency of the fifth switching tube Q5, the sixth switching tube Q6, the seventh switching tube Q7 and the eighth switching tube Q8 can achieve the same wide range voltage transformation as during forward transmission, and the two switches on each bridge arm
  • the switching tubes are complementary to each other and can realize soft switching of the circuit.
  • FIG 2 is a circuit schematic diagram of the second embodiment of the high-frequency isolated bidirectional converter 10 of the present application.
  • the difference between this embodiment and the first embodiment lies in the specific structure of the switch circuit 11.
  • the other circuit structures are the same or similar.
  • the switching circuit 11 includes two switching tubes, a first switching tube Q1 and a second switching tube Q2.
  • the first switching tube Q1 and the second switching tube Q2 are connected in series to form a bridge arm. Both ends of the bridge arm
  • the first capacitor C1 is connected to the midpoint of the bridge arm
  • the second inductor L2 is connected to the lowermost end of the bridge arm.
  • the first capacitor C1 can be connected to the uppermost end of the bridge arm, and the second inductor L2 can be connected to the middle point of the bridge arm.
  • the circuit working process and working principle are the same as in this implementation. Similar to the example, wide voltage range conversion can also be achieved.
  • Figure 3 is a circuit schematic diagram of a third embodiment of the high-frequency isolated bidirectional converter 10 of the present application.
  • the difference between this embodiment and the first embodiment lies in the specific structure of the resonant circuit 12.
  • the other circuit structures are the same or similar.
  • the resonant circuit 12 includes a first inductor L1, a second inductor L2, a third inductor L3, a first capacitor C1, a second capacitor C2 and a selection switch S.
  • the two ends of the second capacitor C2 are connected respectively.
  • the other end of the third inductor L3 is connected to one end of the first capacitor C1.
  • One end of the second inductor L2 is connected between the third inductor L3 and the second capacitor C2. , and this one end of the second inductor L2 is also connected to the other end of the first capacitor C1/first inductor L1 through the selector switch S, so as to be connected to The other end of the first capacitor C1 is connected to the other end of the first inductor L1 through the selection switch S in the second state, and the other end of the first capacitor C1 and the other end of the second inductor L2 are connected to the switch circuit 11, The other end of the second inductor L2 and the other end of the first inductor L1 are connected to the primary winding of the transformer T1.
  • the resonant circuit 12 in this embodiment is a five-element resonant circuit.
  • the equivalent circuit is the same when energy flows in forward and reverse directions. There is no gain loss in both forward and reverse operation. It can also effectively improve the high-frequency isolated bidirectional converter 10 input and output voltage range to achieve wide voltage range conversion.
  • the equivalent circuit of the resonant circuit in the high-frequency isolated bidirectional converter of this application is the same when the energy flows in the forward and reverse directions. There is no gain loss in both forward and reverse operation, which solves the problem that the traditional LLC resonant circuit cannot be equivalent in the reverse direction.
  • the problem of performance work is that the high-frequency isolated bidirectional converter of this application can boost the voltage when the energy flows in the reverse direction, which can effectively increase the input and output voltage range of the converter and realize wide voltage range conversion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本申请公开了一种高频隔离双向变换器,包括开关电路、谐振电路、变压器以及全桥开关电路,所述全桥开关电路以及开关电路的一侧分别作为该高频隔离双向变换器的第二外接侧和第一外接侧,其中,所述谐振电路包括第一电感、第二电感、第一电容、第二电容以及选择开关,所述第二电容的一端连接第一电容和第二电感的一端,所述第二电感的该一端还通过选择开关连接第一电容/第二电容的另一端,所述第二电容的该另一端还连接第一电感的一端,所述第一电容和第二电感的另一端连接开关电路,所述第二电感的该另一端和第一电感的另一端连接变压器的初级绕组,所述变压器的次级绕组连接全桥开关电路的桥臂的中点。

Description

一种高频隔离双向变换器
本申请是以申请号为202210544039.4、申请日为2022年5月18日的中国专利申请为基础,并主张其优先权,该申请的全部内容在此作为整体引入本申请中。
技术领域
本申请涉及电源转换技术领域,更具体地涉及一种高频隔离双向变换器。
背景技术
双向DC-DC变换器是能够根据需要调节能量双向传输的直流/直流的变换器,其主要运用于储能系统、车载电源系统、回馈充放电系统、混合能源电动汽车等场合。
在传统的LLC谐振双向变换器中,无论正反向工作均能够实现原边侧开关管的ZVS导通以及整流侧开关管的ZCS关断,但其在能量反向流动时,其电路特性不再是LLC谐振特性而退化为LC谐振特性,LC谐振最大的电压增益变为1,大大降低了反向工作时的电压增益,使工作电压范围极大变窄,因此不太适合工作在宽电压范围能量双向流动的状态,限制了其应用场景。
申请内容
本申请所要解决的技术问题是提供一种正反向工作时增益均无损耗,能提升工作电压范围的高频隔离双向变换器。
为解决上述技术问题,本申请提供一种高频隔离双向变换器,包括开关电路、谐振电路、变压器以及全桥开关电路,所述全桥开关电路以及开关电路的一侧分别作为该高频隔离双向变换器的第二外接侧和第一外接侧,其中,所述谐振电路包括第一电感、第二电感、第一电容、第二电容以及选择开关,所述第二电容的一端连接第一电容和第二电感的一端,所述第二电感的该一端还通过选择开关连接第一电容/第二电容的另一端,以在高频隔离双向变换器工作在第一状态时通过选择开关连接至第一电容,在第二状态时通过选择开关连接至第二电容,所述第二电容的该另一端还连接第一电感的一端,所述第一电容和第二电感的另一端连接开关电路,所述第二电感的该另一端和第一电感的另一端连接变压器的初级绕组,所述变压器的次级绕组连接全桥开关电路的桥臂的中点,其中,在所述第一状态时,电力从所述第一外接侧传输到第二外接侧,而在所述第二状态时,电力从第二外接侧传输到第一外接侧。
其进一步技术方案为:所述开关电路包括两个开关管,两个所述开关管串联构成一个桥臂,该桥臂两端作为高频隔离双向变换器的第一外接侧,所述第一电容和第二电感分别连接至开关电路的桥臂的中点和最下端。
其进一步技术方案为:所述开关电路包括两个开关管,两个所述开关管串联构成一个桥臂,该桥臂两端作为高频隔离双向变换器的第一外接侧,所述第一电容和第二电感分别连接至开关电路的桥臂的最上端和中点。
其进一步技术方案为:所述开关电路包括四个开关管,每两个开关管串联构成一个桥臂,两个桥臂并联后其两端作为高频隔离双向变换器的第一外接侧,所述第一电容和第二电感分别连接至开关电路的两个桥臂的中点。
其进一步技术方案为:所述全桥开关电路包括四个开关管,每两个开关管串联构成一个桥臂,两个桥臂并联后其两端作为高频隔离双向变换器的第二外接侧,所述变压器次级绕组的同名端和异名端分别连接至两个桥臂的中点。
其进一步技术方案为:所述高频隔离双向变换器还包括第一滤波电容和第二滤波电容,所述第一滤波电容两端连接至高频隔离双向变换器的第一外接侧,所述第二滤波电容两端连接至第二外接侧。
为解决上述技术问题,本申请还提供一种高频隔离双向变换器,包括开关电路、谐振电路、变压器以及全桥开关电路,所述全桥开关电路以及开关电路的一侧分别作为该高频隔离双向变换器的第二外接侧和第一外接侧,其中,所述谐振电路包括第一电感、第二电感、第三电感、第一电容、第二电容以及选择开关,所述第二电容两端分别连接第三电感和第一电感的一端,所述第三电感的另一端连接第一电容的一端,所述第二电感的一端连接于第三电感和第二电容之间,且第二电感的该一端还通过选择开关连接于第一电容/第一电感的另一端,以在高频隔离双向变换器工作在第一状态时通过选择开关连接至第一电容,在第二状态时通过选择开关连接至第一电感,所述第一电容的该另一端和第二电感的另一端连接开关电路,所述第二电感的该另一端和第一电感的另一端连接变压器的初级绕组,所述变压器的次级绕组连接全桥开关电路的桥臂的中点,其中,在所述第一状态时,电力从所述第一外接侧传输到第二外接侧,而在所述第二状态时,电力从第二外接侧传输到第一外接侧。
与现有技术相比,本申请高频隔离双向变换器中的谐振电路在能量正反向流动时的等效电路相同,正反向工作时增益均无损耗,解决了传统LLC谐振电路反向不能同等性能工作的问题,即本申请高频隔离双向变换器在能量反向流动时可升压,可有效提升变换器的输入输出电压范围,实现宽电压范围变换。
附图说明
图1是本申请高频隔离双向变换器第一实施例的电路示意图。
图2是本申请高频隔离双向变换器第二实施例的电路示意图。
图3是本申请高频隔离双向变换器第三实施例的电路示意图。
具体实施方式
为使本领域的普通技术人员更加清楚地理解本申请的目的、技术方案和优点,以下结合附图和实施例对本申请做进一步的阐述。
参照图1,图1为本申请高频隔离双向变换器10第一实施例的电路示意图。在附图所示的实施例中,所述高频隔离双向变换器10包括开关电路11、谐振电路12、变压器T1以及全桥开关电路14,所述全桥开关电路14以及开关电路11的一侧分别作为该高频隔离双向变换器10的第二外接侧和第一外接侧,以连接负载和电源,其中,所述谐振电路12包括第一电容C1、第二电容C2、第一电感L1、第二电感L2以及选择开关S,所述第二电容C2的一端连接第一电容C1和第二电感L2的一端,所述第二电感L2的该一端还通过选择开关S连接第一电容C1/第二电容C2的另一端,以在高频隔离双向变换器10工作在第一状态时通过选择开关S连接至第一电容C1的另一端,在第二状态时通过选择开关S连接至第二电容C2的另一端,所述第二电容C2的该另一端还连接第一电感L1的一端,所述第一电容C1和第二电感L2的另一端连接开关电路11,所述第二电感L2的该另一端和第一电感L1的另一端连接变压器T1的初级绕组,所述变压器T1的次级绕组连接全桥开关电路14的桥臂的中点,其中,在所述第一状态时,电力从所述第一外接侧传输到第二外接侧,而在所述第二状态时,电力从第二外接侧传输到第一外接侧,即当能量正向流动时高频隔离双向变换器10的工作状态为第一状态,能量反向流动时高频隔离双向变换器10工作状态为第二状态。优选地,所述第一电感L1和第二电感L2的电感量相同。
本实施例中,当能量正向流动时,即当电力从所述第一外接侧传输到第二外接侧时,高频隔离双向变换器10的第一外接侧作为直流输入端,可外接电源,其第二外接侧作为直流输出端,可外接负载;而当能量反向流动时,即当电力从第二外接侧传输到第一外接侧时,高频隔离双向变换器10的第二外接侧作为直流输入端,其第一外接侧作为直流输出端。本申请高频隔离双向变换器10中的谐振电路12在能量正向流动时,第一电容C1被短路,而在能量反向流动时,第二电容C2被短路,使得谐振电路12在能量正反向流动时的等效电路相同,正反向工作时增益均无损耗,解决了传统LLC谐振电路反向不能同等性能工作的问题,即在能量反向流动时可升压,可有效提升变换器的输入输出电压范围,实现宽电压范围变换,可适用于大功率电路。
在某些实施例中,所述开关电路11为全桥结构,包括第一开关管Q1、第二开关管Q2、第三开关管Q3及第四开关管Q4共四个开关管,每两个开关管串联构成一个桥臂,两个桥臂并联后其两端作为高频隔离双向变换器10的第一外接侧,其中,所述第一开关管Q1和第二开关管Q2串联构成的桥臂的中点与第一电容C1连接,所述第三开关管Q3和第四开关管Q4串联构成的桥臂的中点与第二电感L2连接。
在附图所示的实施例中,所述全桥开关电路14包括第五开关管Q5、第六开关管Q6、第七开关管Q7及第八开关管Q8共四个开关管,每两个开关管串联构成一个桥臂,两个桥臂并联后其两端作为高频隔离双向变换器10的第二外接侧,其中,所述第五开关管Q5和第六开关管Q6串联构成的桥臂的中点以及第七开关管Q7和第八开关管Q8串联构成的桥臂的中点分别与所述变压器T1次级绕组的同名端和异名端连接。基于该设计,在能量正向流动时,所述全桥开关电路14可将所述变压器T1周期性输出的电压波形进行整流,产生负载所需的工作电压。优选地,所述开关管选用MOS、IGBT或其他可控功率开关管,以实现更好的电路性能,在某些实施例中,在每一开关管上还可并联一二极管,若开关管选用MOS管,则在其漏极和源极之间并联一二极管,而若开关管选用IGBT管,则在其发射极和集电极之间并联一二极管。
进一步地,所述高频隔离双向变换器10还包括第一滤波电容C3和第二滤波电容C4,所述第一滤波电容C3两端连接至高频隔离双向变换器10的第一外接侧,所述第二滤波电容C4两端连接至高频隔离双向变换器10的第二外接侧。
本实施例中,在能量正向传输时,通过控制第一开关管Q1、第二开关管Q2、第三开关管Q3和第四开关管Q4的开关频率来实现高频隔离双向变换器10的宽范围电压输出,且每个桥臂上的两个开关管互补导通,可实现电路软开关;能量反向传输时,谐振电路12的等效电路与能量正向传输时相同,因此,通过控制第五开关管Q5、第六开关管Q6、第七开关管Q7和第八开关管Q8的开关频率可实现与正向传输时同样的宽范围电压变换,且每个桥臂上的两个开关管互补导通,可实现电路软开关。
参照图2,图2为本申请高频隔离双向变换器10第二实施例的电路示意图,本实施例与第一实施例的不同在于开关电路11的具体结构不同,其余电路结构相同或相似。本实施例中,所述开关电路11包括第一开关管Q1和第二开关管Q2共两个开关管,第一开关管Q1和第二开关管Q2串联构成一个桥臂,该桥臂两端作为高频隔离双向变换器10的第一外接侧,所述第一电容C1连接至桥臂的中点,所述第二电感L2连接至桥臂的最下端。可理解地,在某些其他实施例中,所述第一电容C1可连接至桥臂的最上端,而第二电感L2可连接至桥臂中点,其电路工作过程和工作原理与本实施例相似,同样也可实现宽电压范围变换。
参照图3,图3为本申请高频隔离双向变换器10第三实施例的电路示意图,本实施例与第一实施例的不同在于谐振电路12的具体结构不同,其余电路结构相同或相似。本实施例中,所述谐振电路12包括第一电感L1、第二电感L2、第三电感L3、第一电容C1、第二电容C2以及选择开关S,所述第二电容C2两端分别连接第三电感L3和第一电感L1的一端,所述第三电感L3的另一端连接第一电容C1的一端,所述第二电感L2的一端连接于第三电感L3和第二电容C2之间,且第二电感L2的该一端还通过选择开关S连接于第一电容C1/第一电感L1的另一端,以在高频隔离双向变换器10工作在第一状态时通过选择开关S连接至第一电容C1的另一端,在第二状态时通过选择开关S连接至第一电感L1的另一端,所述第一电容C1的该另一端和第二电感L2的另一端连接开关电路11,所述第二电感L2的该另一端和第一电感L1的另一端连接变压器T1的初级绕组。可知,本实施例中的谐振电路12为五元件谐振电路,在能量正反向流动时的等效电路相同,正反向工作时增益均无损耗,同样可有效提升高频隔离双向变换器10的输入输出电压范围,实现宽电压范围变换。
综上所述,本申请高频隔离双向变换器中的谐振电路在能量正反向流动时的等效电路相同,正反向工作时增益均无损耗,解决了传统LLC谐振电路反向不能同等性能工作的问题,即本申请高频隔离双向变换器在能量反向流动时可升压,可有效提升变换器的输入输出电压范围,实现宽电压范围变换。
以上所述仅为本申请的优选实施例,而非对本申请做任何形式上的限制。本领域的技术人员可在上述实施例的基础上施以各种等同的更改和改进,凡在权利要求范围内所做的等同变化或修饰,均应落入本申请的保护范围之内。

Claims (7)

  1. 一种高频隔离双向变换器,其特征在于:所述高频隔离双向变换器包括开关电路、谐振电路、变压器以及全桥开关电路,所述全桥开关电路以及开关电路的一侧分别作为该高频隔离双向变换器的第二外接侧和第一外接侧,其中,所述谐振电路包括第一电感、第二电感、第一电容、第二电容以及选择开关,所述第二电容的一端连接第一电容和第二电感的一端,所述第二电感的该一端还通过选择开关连接第一电容/第二电容的另一端,以在高频隔离双向变换器工作在第一状态时通过选择开关连接至第一电容,在第二状态时通过选择开关连接至第二电容,所述第二电容的该另一端还连接第一电感的一端,所述第一电容和第二电感的另一端连接开关电路,所述第二电感的该另一端和第一电感的另一端连接变压器的初级绕组,所述变压器的次级绕组连接全桥开关电路的桥臂的中点,其中,在所述第一状态时,电力从所述第一外接侧传输到第二外接侧,而在所述第二状态时,电力从第二外接侧传输到第一外接侧。
  2. 如权利要求1所述的高频隔离双向变换器,其特征在于:所述开关电路包括两个开关管,两个所述开关管串联构成一个桥臂,该桥臂两端作为高频隔离双向变换器的第一外接侧,所述第一电容和第二电感分别连接至开关电路的桥臂的中点和最下端。
  3. 如权利要求1所述的高频隔离双向变换器,其特征在于:所述开关电路包括两个开关管,两个所述开关管串联构成一个桥臂,该桥臂两端作为高频隔离双向变换器的第一外接侧,所述第一电容和第二电感分别连接至开关电路的桥臂的最上端和中点。
  4. 如权利要求1所述的高频隔离双向变换器,其特征在于:所述开关电路包括四个开关管,每两个开关管串联构成一个桥臂,两个桥臂并联后其两端作为高频隔离双向变换器的第一外接侧,所述第一电容和第二电感分别连接至开关电路的两个桥臂的中点。
  5. 如权利要求1所述的高频隔离双向变换器,其特征在于:所述全桥开关电路包括四个开关管,每两个开关管串联构成一个桥臂,两个桥臂并联后其两端作为高频隔离双向变换器的第二外接侧,所述变压器次级绕组的同名端和异名端分别连接至两个桥臂的中点。
  6. 如权利要求1所述的高频隔离双向变换器,其特征在于:所述高频隔离双向变换器还包括第一滤波电容和第二滤波电容,所述第一滤波电容两端连接至高频隔离双向变换器的第一外接侧,所述第二滤波电容两端连接至第二外接侧。
  7. 一种高频隔离双向变换器,其特征在于:所述高频隔离双向变换器包括开关电路、谐振电路、变压器以及全桥开关电路,所述全桥开关电路以及开关电路的一侧分别作为该高频隔离双向变换器的第二外接侧和第一外接侧,其中,所述谐振电路包括第一电感、第二电感、第三电感、第一电容、第二电容以及选择开关,所述第二电容两端分别连接第三电感和第一电感的一端,所述第三电感的另一端连接第一电容的一端,所述第二电感的一端连接于第三电感和第二电容之间,且第二电感的该一端还通过选择开关连接于第一电容/第一电感的另一端,以在高频隔离双向变换器工作在第一状态时通过选择开关连接至第一电容,在第二状态时通过选择开关连接至第一电感,所述第一电容的该另一端和第二电感的另一端连接开关电路,所述第二电感的该另一端和第一电感的另一端连接变压器的初级绕组,所述变压器的次级绕组连接全桥开关电路的桥臂的中点,其中,在所述第一状态时,电力从所述第一外接侧传输到第二外接侧,而在所述第二状态时,电力从第二外接侧传输到第一外接侧。
PCT/CN2022/098505 2022-05-18 2022-06-14 一种高频隔离双向变换器 WO2023221212A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210544039.4A CN114884366A (zh) 2022-05-18 2022-05-18 一种高频隔离双向变换器
CN202210544039.4 2022-05-18

Publications (1)

Publication Number Publication Date
WO2023221212A1 true WO2023221212A1 (zh) 2023-11-23

Family

ID=82674771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098505 WO2023221212A1 (zh) 2022-05-18 2022-06-14 一种高频隔离双向变换器

Country Status (2)

Country Link
CN (1) CN114884366A (zh)
WO (1) WO2023221212A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116418239B (zh) * 2023-06-09 2023-08-22 深圳市永联科技股份有限公司 双有源桥电路、电源及dc-dc转换器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104011986A (zh) * 2011-12-21 2014-08-27 伊顿工业公司 Llc双向谐振变换器及控制方法
US20190089260A1 (en) * 2016-02-04 2019-03-21 Eltek As Bidirectional dc-dc resonant converter
CN210780553U (zh) * 2019-08-29 2020-06-16 深圳市英威腾电气股份有限公司 一种基于llc谐振的双向dc-dc变换器
CN211557153U (zh) * 2019-12-23 2020-09-22 深圳市核达中远通电源技术股份有限公司 一种新型的双向全桥切换电路
CN114070070A (zh) * 2021-12-15 2022-02-18 深圳深源技术能源有限公司 一种高效双向变换器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104011986A (zh) * 2011-12-21 2014-08-27 伊顿工业公司 Llc双向谐振变换器及控制方法
US20190089260A1 (en) * 2016-02-04 2019-03-21 Eltek As Bidirectional dc-dc resonant converter
CN210780553U (zh) * 2019-08-29 2020-06-16 深圳市英威腾电气股份有限公司 一种基于llc谐振的双向dc-dc变换器
CN211557153U (zh) * 2019-12-23 2020-09-22 深圳市核达中远通电源技术股份有限公司 一种新型的双向全桥切换电路
CN114070070A (zh) * 2021-12-15 2022-02-18 深圳深源技术能源有限公司 一种高效双向变换器

Also Published As

Publication number Publication date
CN114884366A (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
CN112688571A (zh) 一种双向变换器
CN112688573A (zh) 一种高频隔离双向变换器
CN114070070B (zh) 一种高效双向变换器
CN216794863U (zh) 一种高频隔离双向dc-dc变换器
CN113162431B (zh) 一种高效双向变换器
CN114884365A (zh) 一种三相变换器
US20240154517A1 (en) Soft-switching power converter
WO2024051320A1 (zh) 一种宽范围高效隔离双向变换器
WO2023221212A1 (zh) 一种高频隔离双向变换器
WO2022193343A1 (zh) 一种三端口双向隔离变换器及轨道交通车辆
WO2024051317A1 (zh) 一种三相交错宽范围高效隔离双向变换器
WO2023109041A1 (zh) 一种双向 dc-dc 变换器
CN216794865U (zh) 一种高效双向变换器
CN216794864U (zh) 一种双向dc-dc变换器
CN109742957B (zh) 一种双环全谐振型软开关变换器
CN215222024U (zh) 一种高效双向变换器
CN218549756U (zh) 一种宽范围高效隔离双向变换器
CN114070071B (zh) 一种高效双向dc-dc变换器
CN217508598U (zh) 一种高效双向dc-dc变换器
CN111384858A (zh) 全桥电路及全桥变换器
CN114900048A (zh) 一种三相双向dc-dc变换器
CN114884346A (zh) 一种高频隔离三相双向变换器
CN114070069B (zh) 一种高频隔离双向dc-dc变换器
CN214045458U (zh) 一种双向变换器
CN217508600U (zh) 一种高频隔离双向变换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942244

Country of ref document: EP

Kind code of ref document: A1