WO2023109041A1 - 一种双向 dc-dc 变换器 - Google Patents

一种双向 dc-dc 变换器 Download PDF

Info

Publication number
WO2023109041A1
WO2023109041A1 PCT/CN2022/098504 CN2022098504W WO2023109041A1 WO 2023109041 A1 WO2023109041 A1 WO 2023109041A1 CN 2022098504 W CN2022098504 W CN 2022098504W WO 2023109041 A1 WO2023109041 A1 WO 2023109041A1
Authority
WO
WIPO (PCT)
Prior art keywords
bidirectional
converter
capacitor
circuit
inductor
Prior art date
Application number
PCT/CN2022/098504
Other languages
English (en)
French (fr)
Inventor
向小路
冯丽萍
陈强
Original Assignee
深圳深源技术能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳深源技术能源有限公司 filed Critical 深圳深源技术能源有限公司
Publication of WO2023109041A1 publication Critical patent/WO2023109041A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present application relates to the technical field of power conversion, and more specifically relates to a bidirectional DC-DC converter.
  • the bidirectional DC-DC converter is a DC/DC converter that can adjust the bidirectional transmission of energy according to the needs. It is mainly used in energy storage systems, vehicle power systems, feedback charging and discharging systems, hybrid energy electric vehicles and other occasions.
  • the ZVS conduction of the switch tube on the primary side and the ZCS conduction of the diode on the rectification side can be realized regardless of forward and reverse operation, but its circuit characteristics are no longer when the energy flows in the reverse direction. It is LLC resonance characteristic and degenerates into LC resonance characteristic. The maximum voltage gain of LC resonance becomes 1, which greatly reduces the voltage gain during reverse operation and greatly narrows the output voltage range, so it is not suitable for working in a wide range of energy The state of two-way flow limits its application scenarios.
  • the technical problem to be solved by the present application is to provide a bidirectional DC-DC converter with less loss in forward and reverse operation and capable of increasing the output voltage range.
  • the present application provides a bidirectional DC-DC converter, including an inverter circuit, a resonant circuit, a transformer, and a rectifier circuit, wherein the resonant circuit includes a first inductor, a second inductor, and a first capacitor, One end of the first capacitor is connected to the first inductor and one end of the second inductor, the other end of the first capacitor and the second inductor is connected to the inverter circuit, and the other end of the second capacitor is connected to the first inductor The other end is connected to the primary winding of the transformer, and the secondary winding of the transformer is connected to the input side of the rectification circuit, and the output side of the rectification circuit and the input side of the inverter circuit are respectively used as the second external terminals of the bidirectional DC-DC converter and the first external terminal.
  • the resonant circuit includes a first inductor, a second inductor, and a first capacitor, One end of the first capacitor is connected to the first inductor and one end
  • the inverter circuit includes four switching tubes, every two switching tubes are connected in series to form a bridge arm, and after the two bridge arms are connected in parallel, the two ends thereof serve as the first external terminals of the bidirectional DC-DC converter, The first capacitor and the second inductor are respectively connected to midpoints of the two bridge arms.
  • the inverter circuit includes two capacitors and two switch tubes, the two capacitors and the two switch tubes are respectively connected in series to form a bridge arm, and after the two bridge arms are connected in parallel, their two ends serve as a bidirectional DC-DC
  • the first external terminal of the converter, the first capacitor and the second inductor are respectively connected to the midpoint of the two bridge arms.
  • the inverter circuit includes two switching tubes, and the two switching tubes are connected in series to form a bridge arm, and the two ends of the bridge arm serve as the first external terminals of the bidirectional DC-DC converter, and the first A capacitor is connected to the middle point of the bridge arm, and the second inductor is connected to the bottom end of the bridge arm.
  • the inverter circuit includes two switching tubes, and the two switching tubes are connected in series to form a bridge arm, and the two ends of the bridge arm serve as the first external terminals of the bidirectional DC-DC converter, and the first A capacitor is connected to the uppermost end of the bridge arm, and the second inductor is connected to the midpoint of the bridge arm.
  • the rectifier circuit includes four switch tubes, each two switch tubes are connected in series to form a bridge arm, and after the two bridge arms are connected in parallel, the two ends thereof serve as the second external terminals of the bidirectional DC-DC converter, so The same-named end and the different-named end of the secondary winding of the transformer are respectively connected to the midpoint of the two bridge arms.
  • the bidirectional DC-DC converter also includes a first filter capacitor and a second filter capacitor, both ends of the first filter capacitor are connected to the input side of the inverter circuit, and the two ends of the second filter capacitor are connected to the output side of the rectifier circuit.
  • the present application also provides a bidirectional DC-DC converter, including an inverter circuit, a resonant circuit, a transformer, and a rectifier circuit, wherein the resonant circuit includes a first inductor, a second inductor, and a first capacitor , one end of the first capacitor and the first inductor is connected to the inverter circuit, the other end of the first capacitor and the first inductor is connected to the primary winding of the transformer, and one end of the second inductor is connected to the first inductor and the inverter One end connected to the circuit, the other end of the second inductance is connected to the end connected to the first capacitor and the transformer, the secondary winding of the transformer is connected to the input side of the rectifier circuit, the output side of the rectifier circuit and the input side of the inverter circuit They are respectively used as the second external terminal and the first external terminal of the bidirectional DC-DC converter.
  • the resonant circuit includes a first inductor, a second inductor, and a first
  • the equivalent circuit of the resonant circuit in the bidirectional DC-DC converter of the present application is a three-element resonant circuit when the energy flows in the forward and reverse directions, and realizes soft switching when working in the forward and reverse directions, and the loss is small.
  • the problem of the small reverse gain of the traditional LLC resonant circuit is solved, that is, the bidirectional DC-DC converter of the present application can boost the voltage when the energy flows in the reverse direction, which can effectively increase the output voltage range of the converter and realize a wide voltage range output.
  • FIG. 1 is a schematic circuit diagram of a first embodiment of a bidirectional DC-DC converter of the present application.
  • FIG. 2 is a schematic circuit diagram of the second embodiment of the bidirectional DC-DC converter of the present application.
  • FIG. 3 is a schematic circuit diagram of a third embodiment of a bidirectional DC-DC converter of the present application.
  • FIG. 1 is a schematic circuit diagram of a first embodiment of a bidirectional DC-DC converter 10 of the present application.
  • the bidirectional DC-DC converter 10 includes an inverter circuit 11, a resonant circuit 12, a transformer T1 and a rectifier circuit 14, wherein the resonant circuit 12 includes a first capacitor C1, a second An inductor L1 and a second inductor L2, one end of the first capacitor C1 is connected to one end of the first inductor L1 and one end of the second inductor L2, and the other end of the first capacitor C1 and the second inductor L2 is connected to the inverter circuit 11, And the other end of the second capacitor C2 and the other end of the first inductance L1 are connected to the primary winding of the transformer T1, the secondary winding of the transformer T1 is connected to the input side of the rectifier circuit 14, and the output side of the rectifier circuit 14 And the input side of the inverter circuit 11 is respectively used as the first
  • the first external terminal of the bidirectional DC-DC converter 10 when the energy flows in the forward direction, the first external terminal of the bidirectional DC-DC converter 10 is used as a DC input terminal, which can be connected to an external power supply, and the second external terminal is used as a DC output terminal, which can be connected to an external load; and when the energy When the flow is reversed, the second external terminal of the bidirectional DC-DC converter 10 is used as a DC input terminal, and the first external terminal is used as a DC output terminal.
  • the equivalent circuit of the resonant circuit 12 in the bidirectional DC-DC converter 10 of the present application is a three-element resonant circuit when the energy flows in the forward and reverse directions, which can realize soft switching when working in the forward and reverse directions, and the loss is small, which solves the problem of traditional
  • the problem of the small reverse gain of the LLC resonant circuit is that it can boost the voltage when the energy flows in the reverse direction, which can effectively increase the output voltage range of the converter and realize a wide voltage range output, which can be applied to high-power circuits.
  • the inverter circuit 11 includes a total of four switching tubes: the first switching tube Q1, the second switching tube Q2, the third switching tube Q3 and the fourth switching tube Q4, and each two switching tubes are connected in series.
  • a bridge arm two ends of which are connected in parallel as the first external terminal of the bidirectional DC-DC converter 10, wherein the midpoint of the bridge arm formed by the first switching tube Q1 and the second switching tube Q2 connected in series It is connected to the first capacitor C1, and the midpoint of the bridge arm formed by the third switching transistor Q3 and the fourth switching transistor Q4 connected in series is connected to the second inductor L2.
  • one of the two bridge arms of the inverter circuit 11 may also be composed of two capacitors, that is, the switch tube in one of the bridge arms may be replaced with a capacitor, Inverting is also possible.
  • the rectifier circuit 14 includes four switching tubes in total, including the fifth switching tube Q5, the sixth switching tube Q6, the seventh switching tube Q7, and the eighth switching tube Q8, and every two switching tubes
  • a bridge arm is formed in series, and the two ends of the bridge arms are connected in parallel as the second external terminal of the bidirectional DC-DC converter 10, wherein, the fifth switch tube Q5 and the sixth switch tube Q6 are connected in series to form a bridge arm
  • the midpoint and the midpoint of the bridge arm formed by series connection of the seventh switch tube Q7 and the eighth switch tube Q8 are respectively connected to the terminal with the same name and the terminal with the same name of the secondary winding of the transformer T1.
  • the rectifier circuit 14 can rectify the voltage waveform periodically output by the transformer T1 to generate the working voltage required by the load.
  • the switching tube is selected from MOS, IGBT or other controllable power switching tubes to achieve better circuit performance.
  • a diode can also be connected in parallel on each switching tube. If the switching tube If the MOS tube is selected, a diode is connected in parallel between its drain and source, and if the switch tube is selected as an IGBT tube, a diode is connected in parallel between its emitter and collector.
  • the bidirectional DC-DC converter 10 also includes a first filter capacitor C3 and a second filter capacitor C4, both ends of the first filter capacitor C3 are connected to the input side of the inverter circuit 11, and the second filter capacitor Both ends of the capacitor C4 are connected to the output side of the rectification circuit 14 .
  • the switching frequency of the first switching tube Q1, the second switching tube Q2, the third switching tube Q3 and the fourth switching tube Q4 are controlled to realize the bidirectional DC-DC converter 10 Wide-range voltage output, and the two switch tubes on each bridge arm are complementary conduction, which can realize soft switching of the circuit;
  • the equivalent circuit of the resonant circuit 12 is also a three-element resonant circuit, therefore, by controlling The switching frequency of the fifth switching tube Q5, the sixth switching tube Q6, the seventh switching tube Q7 and the eighth switching tube Q8 can realize the same wide-range voltage output as that in the forward transmission, and the two switches on each bridge arm
  • the complementary conduction of the tube can realize the soft switching of the circuit.
  • Fig. 2 is a schematic circuit diagram of the second embodiment of the bidirectional DC-DC converter 10 of the present application.
  • the difference between this embodiment and the first embodiment is that the specific structures of the inverter circuit 11 and the resonant circuit 12 are different, and the remaining circuits same or similar structure.
  • the inverter circuit 11 includes two capacitors and two switch tubes, the two capacitors and the two switch tubes are respectively connected in series to form a bridge arm, and every two switch tubes are connected in series to form a bridge arm, and the two bridge tubes are connected in series to form a bridge arm.
  • the resonant circuit 12 includes The first inductor L1, the second inductor L2, and the first capacitor C1, one end of the first capacitor C1 and the first inductor L1 is connected to the inverter circuit 11, as shown in the figure, the first capacitor C1 is connected to the fifth capacitor The midpoint of the bridge arm formed by C5 and the sixth capacitor C6 connected in series, the first inductor L1 is connected to the midpoint of the bridge arm formed by the first switch transistor Q1 and the second switch transistor Q2 connected in series, the first capacitor C1 and the second switch transistor Q2 are connected in series.
  • an inductor L1 is connected to the primary winding of the transformer T1, and one end of the second inductor L2 is connected to the end of the first inductor L1 connected to the inverter circuit 11, and the other end of the second inductor L2 is connected to the first capacitor C1 One end connected to transformer T1.
  • the working process and working principle of the circuit in this embodiment are substantially similar to those in the first embodiment.
  • the soft switching of the circuit can also be realized, and the voltage can be boosted when the energy flows in the reverse direction, which can effectively increase the output voltage range of the converter and realize a wide voltage range output.
  • FIG. 3 is a schematic circuit diagram of the third embodiment of the bidirectional DC-DC converter 10 of the present application.
  • the difference between this embodiment and the first embodiment is that the specific structure of the inverter circuit 11 is different, and the remaining circuit structures are the same or similar .
  • the inverter circuit 11 is a half-bridge structure, including two switching tubes, the first switching tube Q1 and the second switching tube Q2, and the first switching tube Q1 and the second switching tube Q2 are connected in series to form a bridge arm. , the two ends of the bridge arm are used as the first external terminals of the bidirectional DC-DC converter 10, the first capacitor C1 is connected to the midpoint of the bridge arm, and the second inductor L2 is connected to the lowermost end of the bridge arm.
  • the resonant circuit 12 in this embodiment has less loss when the energy flows in the forward and reverse directions, and can also effectively increase the output voltage range of the converter 10 to achieve a wide voltage range output. Understandably, in some other embodiments, the first capacitor C1 can be connected to the uppermost end of the bridge arm, and the second inductor L2 can be connected to the midpoint of the bridge arm. Similar to the example, a wide voltage range output can also be achieved.
  • the equivalent circuit of the resonant circuit in the bidirectional DC-DC converter of the present application is a three-element resonant circuit when the energy flows in the forward and reverse directions, and realizes soft switching when working in the forward and reverse directions, and the loss is small, which solves the problem of The problem of the small reverse gain of the traditional LLC resonant circuit is that the bidirectional DC-DC converter of the present application can boost the voltage when the energy flows in the reverse direction, which can effectively increase the output voltage range of the converter and realize a wide voltage range output.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请公开了一种双向DC-DC变换器,包括逆变电路、谐振电路、变压器以及整流电路,其中,所述谐振电路包括第一电感、第二电感以及第一电容,所述第一电容的一端连接第一电感和第二电感的一端,所述第一电容和第二电感的另一端连接逆变电路,且所述第二电感的该另一端和第一电感的另一端连接变压器的初级绕组,所述变压器的次级绕组连接整流电路的输入侧,所述整流电路的输出侧以及逆变电路的输入侧分别作为该双向DC-DC变换器的第二外接端和第一外接端。本申请双向DC-DC变换器中的谐振电路在能量正反向流动时的等效电路均为三元件谐振电路,在能量反向流动时可升压,可有效提升变换器的输出电压范围,实现宽电压范围输出。

Description

一种双向DC-DC变换器
本申请是以申请号为202111534981.4、申请日为2021年12月15日的中国专利申请为基础,并主张其优先权,该申请的全部内容在此作为整体引入本申请中。
技术领域
本申请涉及电源转换技术领域,更具体地涉及一种双向DC-DC变换器。
背景技术
双向DC-DC变换器是能够根据需要调节能量双向传输的直流/直流的变换器,其主要运用于储能系统、车载电源系统、回馈充放电系统、混合能源电动汽车等场合。
在传统的LLC谐振双向变换器中,无论正反向工作均能够实现原边侧开关管的ZVS导通以及整流侧二极管的ZCS导通,但其在能量反向流动时,其电路特性不再是LLC谐振特性而退化为LC谐振特性,LC谐振最大的电压增益变为1,大大降低了反向工作时的电压增益,使输出电压范围极大变窄,因此不太适合工作在宽范围能量双向流动的状态,限制了其应用场景。
申请内容
本申请所要解决的技术问题是提供一种正反向工作时损耗较小,能提升输出电压范围的双向DC-DC变换器。
为解决上述技术问题,本申请提供一种双向DC-DC变换器,包括逆变电路、谐振电路、变压器以及整流电路,其中,所述谐振电路包括第一电感、第二电感以及第一电容,所述第一电容的一端连接第一电感和第二电感的一端,所述第一电容和第二电感的另一端连接逆变电路,且所述第二电容的该另一端和第一电感的另一端连接变压器的初级绕组,所述变压器的次级绕组连接整流电路的输入侧,所述整流电路的输出侧以及逆变电路的输入侧分别作为该双向DC-DC变换器的第二外接端和第一外接端。
其进一步技术方案为:所述逆变电路包括四个开关管,每两个开关管串联构成一个桥臂,两个桥臂并联后其两端作为双向DC-DC变换器的第一外接端,所述第一电容和第二电感分别连接至两个桥臂的中点。
其进一步技术方案为:所述逆变电路包括两个电容和两个开关管,两个电容和两个开关管分别串联构成一个桥臂,两个桥臂并联后其两端作为双向DC-DC变换器的第一外接端,所述第一电容和第二电感分别连接至两个桥臂的中点。
其进一步技术方案为:所述逆变电路包括两个开关管,两个所述开关管串联构成一个桥臂,该桥臂两端作为双向DC-DC变换器的第一外接端,所述第一电容连接至桥臂的中点,所述第二电感连接至桥臂的最下端。
其进一步技术方案为:所述逆变电路包括两个开关管,两个所述开关管串联构成一个桥臂,该桥臂两端作为双向DC-DC变换器的第一外接端,所述第一电容连接至桥臂的最上端,所述第二电感连接至桥臂的中点。
其进一步技术方案为:所述整流电路包括四个开关管,每两个开关管串联构成一个桥臂,两个桥臂并联后其两端作为双向DC-DC变换器的第二外接端,所述变压器次级绕组的同名端和异名端分别连接至两个桥臂的中点。
其进一步技术方案为:所述双向DC-DC变换器还包括第一滤波电容和第二滤波电容,所述第一滤波电容两端连接至逆变电路的输入侧,所述第二滤波电容两端连接至整流电路的输出侧。
为解决上述技术问题,本申请还提供一种双向DC-DC变换器,包括逆变电路、谐振电路、变压器以及整流电路,其中,所述谐振电路包括第一电感、第二电感以及第一电容,所述第一电容和第一电感的一端连接逆变电路,该第一电容和第一电感的另一端连接变压器的初级绕组,且所述第二电感的一端连接于第一电感与逆变电路连接的一端,该第二电感的另一端连接第一电容与变压器连接的一端,所述变压器的次级绕组连接整流电路的输入侧,所述整流电路的输出侧以及逆变电路的输入侧分别作为该双向DC-DC变换器的第二外接端和第一外接端。
与现有技术相比,本申请双向DC-DC变换器中的谐振电路在能量正反向流动时的等效电路均为三元件谐振电路,正反向工作时实现软开关,损耗较小,解决了传统LLC谐振电路反向增益较小的问题,即本申请双向DC-DC变换器在能量反向流动时可升压,可有效提升变换器的输出电压范围,实现宽电压范围输出。
附图说明
图1是本申请双向DC-DC变换器第一实施例的电路示意图。
图2是本申请双向DC-DC变换器第二实施例的电路示意图。
图3是本申请双向DC-DC变换器第三实施例的电路示意图。
具体实施方式
为使本领域的普通技术人员更加清楚地理解本申请的目的、技术方案和优点,以下结合附图和实施例对本申请做进一步的阐述。
参照图1,图1为本申请双向DC-DC变换器10第一实施例的电路示意图。在附图所示的实施例中,所述双向DC-DC变换器10包括逆变电路11、谐振电路12、变压器T1以及整流电路14,其中,所述谐振电路12包括第一电容C1、第一电感L1以及第二电感L2,所述第一电容C1的一端连接第一电感L1和第二电感L2的一端,所述第一电容C1和第二电感L2的另一端连接逆变电路11,且所述第二电容C2的该另一端和第一电感L1的另一端连接变压器T1的初级绕组,所述变压器T1的次级绕组连接整流电路14的输入侧,所述整流电路14的输出侧以及逆变电路11的输入侧分别作为该双向DC-DC变换器10的第一外接端和第二外接端,以连接负载和电源。优选地,所述第一电感L1和第二电感L2的电感量相同。
本实施例中,当能量正向流动时,双向DC-DC变换器10的第一外接端作为直流输入端,可外接电源,其第二外接端作为直流输出端,可外接负载;而当能量反向流动时,则双向DC-DC变换器10的第二外接端作为直流输入端,其第一外接端作为直流输出端。本申请双向DC-DC变换器10中的谐振电路12在能量正反向流动时的等效电路均为三元件谐振电路,正反向工作时均可实现软开关,损耗较小,解决了传统LLC谐振电路反向增益较小的问题,即在能量反向流动时可升压,可有效提升变换器的输出电压范围,实现宽电压范围输出,可适用于大功率电路。
在某些实施例中,所述逆变电路11包括第一开关管Q1、第二开关管Q2、第三开关管Q3及第四开关管Q4共四个开关管,每两个开关管串联构成一个桥臂,两个桥臂并联后其两端作为双向DC-DC变换器10的第一外接端,其中,所述第一开关管Q1和第二开关管Q2串联构成的桥臂的中点与第一电容C1连接,所述第三开关管Q3和第四开关管Q4串联构成的桥臂的中点与第二电感L2连接。可理解地,在某些其他实施例中,所述逆变电路11的两个桥臂中的一个桥臂还可以由两个电容组成,即可以用电容替换其中一个桥臂中的开关管,同样可实现逆变。
在附图所示的实施例中,所述整流电路14包括第五开关管Q5、第六开关管Q6、第七开关管Q7及第八开关管Q8共四个开关管,每两个开关管串联构成一个桥臂,两个桥臂并联后其两端作为双向DC-DC变换器10的第二外接端,其中,所述第五开关管Q5和第六开关管Q6串联构成的桥臂的中点以及第七开关管Q7和第八开关管Q8串联构成的桥臂的中点分别与所述变压器T1次级绕组的同名端和异名端连接。基于该设计,在能量正向流动时,所述整流电路14可将所述变压器T1周期性输出的电压波形进行整流,产生负载所需的工作电压。优选地,所述开关管选用MOS、IGBT或其他可控功率开关管,以实现更好的电路性能,在某些其他实施例中,在每一开关管上还可并联一二极管,若开关管选用MOS管,则在其漏极和源极之间并联一二极管,而若开关管选用IGBT管,则在其发射极和集电极之间并联一二极管。
进一步地,所述双向DC-DC变换器10还包括第一滤波电容C3和第二滤波电容C4,所述第一滤波电容C3两端连接至逆变电路11的输入侧,所述第二滤波电容C4两端连接至整流电路14的输出侧。
本实施例中,在能量正向传输时,通过控制第一开关管Q1、第二开关管Q2、第三开关管Q3和第四开关管Q4的开关频率来实现双向DC-DC变换器10的宽范围电压输出,且每个桥臂上的两个开关管互补导通,可实现电路软开关;能量反向传输时,谐振电路12的等效电路也为三元件谐振电路,因此,通过控制第五开关管Q5、第六开关管Q6、第七开关管Q7和第八开关管Q8的开关频率可实现与正向传输时同样的宽范围电压输出,且每个桥臂上的两个开关管互补导通,可实现电路软开关。
参照图2,图2为本申请双向DC-DC变换器10第二实施例的电路示意图,本实施例与第一实施例的不同在于逆变电路11和谐振电路12的具体结构不同,其余电路结构相同或相似。本实施例中,所述逆变电路11包括两个电容和两个开关管,两个电容和两个开关管分别串联构成一个桥臂,每两个开关管串联构成一个桥臂,两个桥臂并联后其两端作为双向变换器10的第一外接端,具体地,包括第一开关管Q1、第二开关管Q2、第五电容C5和第六电容C6;而所述谐振电路12包括第一电感L1、第二电感L2以及第一电容C1,所述第一电容C1和第一电感L1的一端连接逆变电路11,如图所示,所述第一电容C1连接至第五电容C5和第六电容C6串联构成的桥臂的中点,所述第一电感L1连接至第一开关管Q1和第二开关管Q2串联构成的桥臂的中点,该第一电容C1和第一电感L1的另一端连接变压器T1的初级绕组,且所述第二电感L2的一端连接于第一电感L1与逆变电路11连接的一端,该第二电感L2的另一端连接第一电容C1与变压器T1连接的一端。本实施例电路工作过程和工作原理实质与第一实施例相似,同样可实现电路软开关,在能量反向流动时可升压,可有效提升变换器的输出电压范围,实现宽电压范围输出。
参照图3,图3为本申请双向DC-DC变换器10第三实施例的电路示意图,本实施例与第一实施例的不同在于逆变电路11的具体结构不同,其余电路结构相同或相似。本实施例中,所述逆变电路11为半桥结构,包括第一开关管Q1和第二开关管Q2共两个开关管,第一开关管Q1和第二开关管Q2串联构成一个桥臂,该桥臂两端作为双向DC-DC变换器10的第一外接端,所述第一电容C1连接至桥臂的中点,所述第二电感L2连接至桥臂的最下端。本实施例中的谐振电路12在能量正反向流通时损耗较小,同样可以有效提升变换器10的输出电压范围,实现宽电压范围输出。可理解地,在某些其他实施例中,所述第一电容C1可连接至桥臂的最上端,而第二电感L2可连接至桥臂中点,其电路工作过程和工作原理与本实施例相似,同样也可实现宽电压范围输出。
综上所述,本申请双向DC-DC变换器中的谐振电路在能量正反向流动时的等效电路均为三元件谐振电路,正反向工作时实现软开关,损耗较小,解决了传统LLC谐振电路反向增益较小的问题,即本申请双向DC-DC变换器在能量反向流动时可升压,可有效提升变换器的输出电压范围,实现宽电压范围输出。
以上所述仅为本申请的优选实施例,而非对本申请做任何形式上的限制。本领域的技术人员可在上述实施例的基础上施以各种等同的更改和改进,凡在权利要求范围内所做的等同变化或修饰,均应落入本申请的保护范围之内。

Claims (8)

  1. 一种双向DC-DC变换器,其特征在于:所述双向DC-DC变换器包括逆变电路、谐振电路、变压器以及整流电路,其中,所述谐振电路包括第一电感、第二电感以及第一电容,所述第一电容的一端连接第一电感和第二电感的一端,所述第一电容和第二电感的另一端连接逆变电路,且所述第二电感的该另一端和第一电感的另一端连接变压器的初级绕组,所述变压器的次级绕组连接整流电路的输入侧,所述整流电路的输出侧以及逆变电路的输入侧分别作为该双向DC-DC变换器的第二外接端和第一外接端。
  2. 如权利要求1所述的双向DC-DC变换器,其特征在于:所述逆变电路包括四个开关管,每两个开关管串联构成一个桥臂,两个桥臂并联后其两端作为双向DC-DC变换器的第一外接端,所述第一电容和第二电感分别连接至两个桥臂的中点。
  3. 如权利要求1所述的双向DC-DC变换器,其特征在于:所述逆变电路包括两个电容和两个开关管,两个电容和两个开关管分别串联构成一个桥臂,两个桥臂并联后其两端作为双向DC-DC变换器的第一外接端,所述第一电容和第二电感分别连接至两个桥臂的中点。
  4. 如权利要求1所述的双向DC-DC变换器,其特征在于:所述逆变电路包括两个开关管,两个所述开关管串联构成一个桥臂,该桥臂两端作为双向DC-DC变换器的第一外接端,所述第一电容连接至桥臂的中点,所述第二电感连接至桥臂的最下端。
  5. 如权利要求1所述的双向DC-DC变换器,其特征在于:所述逆变电路包括两个开关管,两个所述开关管串联构成一个桥臂,该桥臂两端作为双向DC-DC变换器的第一外接端,所述第一电容连接至桥臂的最上端,所述第二电感连接至桥臂的中点。
  6. 如权利要求1所述的双向DC-DC变换器,其特征在于:所述整流电路包括四个开关管,每两个开关管串联构成一个桥臂,两个桥臂并联后其两端作为双向DC-DC变换器的第二外接端,所述变压器次级绕组的同名端和异名端分别连接至两个桥臂的中点。
  7. 如权利要求1所述的双向DC-DC变换器,其特征在于:所述双向DC-DC变换器还包括第一滤波电容和第二滤波电容,所述第一滤波电容两端连接至逆变电路的输入侧,所述第二滤波电容两端连接至整流电路的输出侧。
  8. 一种双向DC-DC变换器,其特征在于:所述双向DC-DC变换器包括逆变电路、谐振电路、变压器以及整流电路,其中,所述谐振电路包括第一电感、第二电感以及第一电容,所述第一电容和第一电感的一端连接逆变电路,该第一电容和第一电感的另一端连接变压器的初级绕组,且所述第二电感的一端连接于第一电感与逆变电路连接的一端,该第二电感的另一端连接第一电容与变压器连接的一端,所述变压器的次级绕组连接整流电路的输入侧,所述整流电路的输出侧以及逆变电路的输入侧分别作为该双向DC-DC变换器的第二外接端和第一外接端。
PCT/CN2022/098504 2021-12-15 2022-06-14 一种双向 dc-dc 变换器 WO2023109041A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111534981.4A CN114070068B (zh) 2021-12-15 2021-12-15 一种双向dc-dc变换器
CN202111534981.4 2021-12-15

Publications (1)

Publication Number Publication Date
WO2023109041A1 true WO2023109041A1 (zh) 2023-06-22

Family

ID=80229633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098504 WO2023109041A1 (zh) 2021-12-15 2022-06-14 一种双向 dc-dc 变换器

Country Status (2)

Country Link
CN (1) CN114070068B (zh)
WO (1) WO2023109041A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114070068B (zh) * 2021-12-15 2024-06-14 深圳深源技术能源有限公司 一种双向dc-dc变换器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2141793A1 (de) * 2008-06-30 2010-01-06 ABB Research LTD Umrichterschaltung
CN103001501A (zh) * 2011-09-08 2013-03-27 Abb技术有限公司 多电平转换器和用于操作多电平转换器的控制方法
CN210724569U (zh) * 2019-11-18 2020-06-09 陕西科技大学 一种零电压转换cll谐振dc-dc变换器
CN112688571A (zh) * 2020-12-31 2021-04-20 王艳萍 一种双向变换器
CN114070068A (zh) * 2021-12-15 2022-02-18 深圳深源技术能源有限公司 一种双向dc-dc变换器
CN216794864U (zh) * 2021-12-15 2022-06-21 深圳深源技术能源有限公司 一种双向dc-dc变换器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206992959U (zh) * 2017-05-17 2018-02-09 苏州汇川联合动力系统有限公司 双向谐振变换器
CN111193398A (zh) * 2020-02-21 2020-05-22 固德威电源科技(广德)有限公司 一种隔离型双向dcdc变换器及电流双向控制方法
CN212627694U (zh) * 2020-04-02 2021-02-26 天津工业大学 一种llc谐振型三端口dc-dc变换器结构
CN111817566B (zh) * 2020-06-10 2022-09-09 天津大学 一种llct谐振型双向直流变换器
CN112688573A (zh) * 2020-12-31 2021-04-20 王艳萍 一种高频隔离双向变换器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2141793A1 (de) * 2008-06-30 2010-01-06 ABB Research LTD Umrichterschaltung
CN103001501A (zh) * 2011-09-08 2013-03-27 Abb技术有限公司 多电平转换器和用于操作多电平转换器的控制方法
CN210724569U (zh) * 2019-11-18 2020-06-09 陕西科技大学 一种零电压转换cll谐振dc-dc变换器
CN112688571A (zh) * 2020-12-31 2021-04-20 王艳萍 一种双向变换器
CN114070068A (zh) * 2021-12-15 2022-02-18 深圳深源技术能源有限公司 一种双向dc-dc变换器
CN216794864U (zh) * 2021-12-15 2022-06-21 深圳深源技术能源有限公司 一种双向dc-dc变换器

Also Published As

Publication number Publication date
CN114070068B (zh) 2024-06-14
CN114070068A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
CN216794863U (zh) 一种高频隔离双向dc-dc变换器
CN113162431B (zh) 一种高效双向变换器
CN112688571A (zh) 一种双向变换器
CN112688573A (zh) 一种高频隔离双向变换器
WO2024051320A1 (zh) 一种宽范围高效隔离双向变换器
CN114070070B (zh) 一种高效双向变换器
CN114884365A (zh) 一种三相变换器
CN109742957B (zh) 一种双环全谐振型软开关变换器
US20240154517A1 (en) Soft-switching power converter
WO2023109041A1 (zh) 一种双向 dc-dc 变换器
CN214045456U (zh) 一种高频隔离双向dc-dc变换器
WO2022193343A1 (zh) 一种三端口双向隔离变换器及轨道交通车辆
CN216794864U (zh) 一种双向dc-dc变换器
CN216794865U (zh) 一种高效双向变换器
CN217508598U (zh) 一种高效双向dc-dc变换器
CN114070071B (zh) 一种高效双向dc-dc变换器
WO2023221212A1 (zh) 一种高频隔离双向变换器
CN218549756U (zh) 一种宽范围高效隔离双向变换器
CN215222024U (zh) 一种高效双向变换器
CN115459605A (zh) 一种三相dc-dc变换器
CN114900048A (zh) 一种三相双向dc-dc变换器
CN114884346A (zh) 一种高频隔离三相双向变换器
CN114070069B (zh) 一种高频隔离双向dc-dc变换器
CN214045458U (zh) 一种双向变换器
CN216794862U (zh) 一种双向变换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22905807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE