WO2023221164A1 - 一种固态源气化装置 - Google Patents

一种固态源气化装置 Download PDF

Info

Publication number
WO2023221164A1
WO2023221164A1 PCT/CN2022/095627 CN2022095627W WO2023221164A1 WO 2023221164 A1 WO2023221164 A1 WO 2023221164A1 CN 2022095627 W CN2022095627 W CN 2022095627W WO 2023221164 A1 WO2023221164 A1 WO 2023221164A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier gas
solid
tray
trays
gasification device
Prior art date
Application number
PCT/CN2022/095627
Other languages
English (en)
French (fr)
Inventor
袁磊
杨敏
陈化冰
沈斌
Original Assignee
江苏南大光电材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏南大光电材料股份有限公司 filed Critical 江苏南大光电材料股份有限公司
Publication of WO2023221164A1 publication Critical patent/WO2023221164A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/04Methods for emptying or filling

Definitions

  • the present invention relates to the field of solid-state source vaporization devices, and in particular to a system for vaporizing solid precursor materials to deliver precursor vapor to a system such as a reaction chamber of a chemical vapor deposition equipment, an atomic deposition equipment, or an ion implantation equipment.
  • Solid-state source vaporization device for precursor vapors for precursor vapors.
  • the structure of the existing solid-state source gasification device is that there are one or more trays containing solid raw materials inside a sealed container.
  • several ventilation air tubes are distributed on each tray to Connecting each pallet; under working condition, the sealed container is heated from the outside to the vaporization temperature of the solid raw material; the sealed container has an air inlet for the carrier gas, and the carrier gas enters through the air inlet, and the carrier gas is fully mixed with the vapor of the solid raw material Enter the reaction vessel connected to the solid-state source gasification device through the gas outlet.
  • Commonly used carrier gases are inert gases, such as helium.
  • the reaction vessel is usually the reaction chamber of thin film deposition equipment, such as CVD and ALD equipment.
  • the carrier gas enters the container from the top or bottom, is transmitted to the bottom of the shell through the air conduit, and then rises layer by layer through the air conduits on each layer of trays, and interacts with the solid state during the rising process.
  • the source gasified vapor is mixed, and the mixed gas is output from the gas outlet at the top and transported to the reaction vessel.
  • the disadvantages of existing solid-state source gasification devices are that, first of all, the existing technology uses a series of gas transmission channels.
  • the carrier gas must pass through the air guide tubes from bottom to top and enter each layer of trays. Finally, it reaches the uppermost tray and is output from the gas outlet. , so when the carrier gas enters the trays on the lower layers, the vapor content in the carrier gas is low. Therefore, in the trays on the lower layers, the gasification speed of the solid raw materials is relatively fast, while the carrier gas reaches the trays on the top layers.
  • the concentration of vapor carried in the carrier gas is relatively high, so the gasification speed of the solid raw materials in the top few trays will be relatively slow, resulting in the solid-state source gasification device in the bottom tray and the top tray.
  • the gasification speeds vary greatly, and the solid raw materials in the top few layers cannot be fully utilized.
  • the height of the air guide tube should be higher than the loading height of the solid raw materials in the pallet.
  • the loading capacity of solid raw materials is relatively large, so the height of the air duct is usually close to the extension height of the pallet.
  • the top of the ventilation air duct is very close to the bottom of the pallet placed above it, so the carrier gas
  • the flow distance of the gas flow on the surface of the solid raw material is very short, so the amount of solid source vapor that the carrier gas can carry is very small, making the mixing efficiency of the carrier gas and steam very low.
  • the existing solid-state source gasification device is equipped with a multi-layer tray, and the total surface area of the solid raw materials loaded in the tray is large, the gasification efficiency of the upper layers is not maximized, and the overall gasification efficiency and transmission efficiency are not maximized. There is no optimization. Therefore, there is a need to improve existing solid-state source gasification devices.
  • the purpose of the present invention is to address the fact that the existing solid source gasification device described in the background technology uses a series of gas transmission channels.
  • the gasification efficiency of the solid source material in the upper tray is very low.
  • the carrier gas is The horizontal movement distance in the tray is very short, so the mixing effect with solid vapor is poor, the amount of vapor that can be carried in the carrier gas is very small, and the overall gasification efficiency and transmission efficiency of the solid-state source gasification device are very low. This provides A new type of solid-state source gasification device.
  • a first implementation solution of the present invention is: a solid-state source gasification device, which includes a shell and several layers of trays.
  • a top cover is provided on the top of the shell, and an air inlet is provided on the top cover. Inlet and air outlet, the trays are stacked vertically in the casing.
  • the carrier gas tube passes through each layer of trays and extends to the bottom tray.
  • the carrier gas tube is provided with several carrier gas outlets.
  • the carrier gas outlets are set in the cavity of the bottom tray or in the cavities of the bottom tray and several other layers of trays. Except for the bottom tray, the rest of the trays There are several air ducts inside.
  • the air guide tube is arranged at a position far away from the carrier gas tube.
  • the position where the carrier gas enters the tray can be far away from the position of the air guide tube, so that after entering the tray, the carrier gas has to go through a longer path to reach the position of the air guide tube of the upper tray, and rise through the air guide tube. into the upper tray, so that the carrier gas can fully mix with the steam generated by the gasification of the solid source on the tray during the flow process, and carry a large amount of steam into the upper tray, improving the concentration of the solid source material in the tray. Vaporization rate and vapor delivery efficiency.
  • the carrier gas tube is arranged offset from the center of the tray.
  • the distance between the carrier gas tube and the air guide tube can be further increased, so that during the flow process, the carrier gas can be fully mixed with the steam generated by the gasification of the solid source on the tray, and carry a large amount of steam into the upper layer.
  • the gasification rate of the solid source material in the tray and the transportation efficiency of the vapor are improved.
  • the air guide tubes in adjacent trays are arranged at a set distance.
  • the mixed gas that rises to the upper tray can enter the air guide tube of the next upper tray after passing a certain transmission distance in the tray, and rise to the next upper tray. This can further improve the efficiency of the gas mixture. Mixing efficiency of mixed gas and solid source vapor.
  • each layer of the pallet is provided with a plurality of air guide tubes, and the air guide tubes are arranged at a position far away from the carrier gas tube.
  • the second implementation solution of the present invention is: a solid-state source gasification device, which includes a shell and several layers of trays.
  • a top cover is provided on the top of the housing, and an air outlet is provided on the top cover.
  • the trays are stacked vertically.
  • Placed in the casing an air inlet is provided at the bottom of the casing, and a carrier gas pipe is provided in the casing.
  • the lower end of the carrier gas pipe is connected to the air inlet.
  • the carrier gas pipe passes through several layers of trays, and several The carrier gas outlet is set in the cavity of the bottom tray or in the cavities of the bottom tray and the remaining trays. Except for the bottom tray, the other trays are equipped with several guides. trachea.
  • the air guide tube is arranged at a position far away from the carrier gas tube.
  • the position where the carrier gas enters the tray can be far away from the position of the air guide tube, so that after entering the tray, the carrier gas has to go through a longer path to reach the position of the air guide tube of the upper tray, and rise through the air guide tube. into the upper tray, so that the carrier gas can fully mix with the steam generated by the gasification of the solid source on the tray during the flow process, and carry a large amount of steam into the upper tray, improving the concentration of the solid source material in the tray. Vaporization rate and vapor delivery efficiency.
  • the carrier gas tube is arranged offset from the center of the tray.
  • the distance between the carrier gas tube and the air guide tube can be further increased, so that during the flow process, the carrier gas can be fully mixed with the steam generated by the gasification of the solid source on the tray, and carry a large amount of steam into the upper layer.
  • the gasification rate of the solid source material in the tray and the transportation efficiency of the vapor are improved.
  • the air guide tubes in adjacent trays are arranged at a set distance.
  • the mixed gas that rises to the upper tray can enter the air guide tube of the upper tray after a certain transmission distance in the tray, and rise to the upper tray. This can further improve the efficiency of the gas mixture. Mixing efficiency of mixed gas and solid source vapor.
  • each layer of the pallet is provided with a plurality of air guide tubes, and the air guide tubes are arranged at a position far away from the carrier gas tube.
  • the third implementation solution of the present invention is: a solid-state source gasification device, which includes a shell and several layers of trays.
  • a top cover is provided on the top of the shell, and an air inlet and an air outlet are provided on the top cover.
  • the trays are stacked vertically in the casing.
  • a cavity is provided below the bottom tray.
  • a first carrier gas pipe and a second carrier gas pipe are provided in the casing. The upper end of the first carrier gas pipe is connected to the air inlet.
  • the air tube passes through each layer of pallets and extends into the cavity below the bottom tray.
  • the second carrier gas tube passes through several layers of pallets from bottom to top. The lower end opening of the second carrier gas tube is located on the bottom layer of the tray.
  • the carrier gas outlets are arranged in the cavity of the bottom tray or in the cavities of the bottom tray and the remaining trays. Except for the bottom tray, the rest of the trays are equipped with several air ducts.
  • the first carrier gas tube is arranged at the center of the tray or at a position offset from the center of the tray.
  • the first carrier gas tube can be set at the center of the tray or off-center. During design, it can be flexibly adjusted according to the design needs of the air flow path.
  • the second carrier gas tube is arranged at the center of the tray or at a position offset from the center of the tray.
  • the second carrier gas tube can be set at the center of the tray or off-center. During design, it can be flexibly adjusted according to the design needs of the air flow path.
  • the second carrier gas tube is arranged at a position far away from the first carrier gas tube.
  • the air guide tube is arranged at a position far away from the second carrier air tube.
  • the air guide tubes in adjacent trays are arranged at a set distance.
  • the mixed gas that rises to the upper tray can enter the air guide tube of the next upper tray after passing a certain transmission distance in the tray, and rise to the next upper tray. This can further improve the efficiency of the gas mixture. Mixing efficiency of mixed gas and steam.
  • a plurality of air guide tubes are provided in the tray. Through this arrangement, the transmission efficiency of the mixed gas can be improved.
  • a plurality of air guide tubes are provided in the tray, and the air guide tubes are arranged near the first carrier gas tube.
  • the first gas carrier tube also has air outlet openings at positions corresponding to the cavities of one or more layers of trays.
  • the carrier gas enters the tray through the carrier gas outlet on the second carrier gas tube.
  • multiple second carrier gas tubes are provided, the transmission efficiency of the carrier gas can be improved, thereby improving the solid-state source gas Gas transfer efficiency within the chemical device.
  • the present invention has positive effects: 1)
  • the solid-state source gasification device of the present invention adopts parallel gas transmission channels. After the carrier gas enters the carrier gas pipe from the air inlet, it can enter each layer of trays respectively. After layering the trays, it can be transported horizontally for a long distance along the surface of the solid source material in each layer of trays to reach the position of the air guide tube, so the carrier gas can carry a large amount of solid source vapor; 2) Because in each layer of trays
  • the input carrier gas is a carrier gas that does not contain volatile gas, so the amount of vapor that the carrier gas can carry is very large, and it can make the vaporization rate of solid source materials in each layer of trays similar, improving the solid state in each layer of trays.
  • the gasification efficiency of the source material is improved, thereby improving the overall gasification efficiency of the solid-state source gasification device.
  • Figure 1a is a schematic structural diagram of the solid-state source gasification device of Embodiment 1.
  • Figure 1b is a schematic top view of the solid-state source gasification device of Embodiment 1.
  • Figure 1c is a schematic cross-sectional view along the line A-A in Figure 1b.
  • Figure 1d is an internal structural diagram of the solid-state source gasification device of Embodiment 1.
  • Figure 1e is a schematic structural diagram of the first to third layer pallets.
  • Figure 1f is a cross-sectional view along B-B direction in Figure 1e.
  • Figure 1g is a schematic structural diagram of the fourth layer pallet.
  • Figure 1h is a C-C cross-sectional view of Figure 1g.
  • Figure 2a is a schematic structural diagram of the solid-state source gasification device of Embodiment 2.
  • Figure 2b is a schematic top view of the solid-state source gasification device in Embodiment 2.
  • Figure 2c is a schematic cross-sectional view along the line D-D in Figure 2b.
  • Figure 2d is a schematic diagram of the internal structure of the solid-state source gasification device in Embodiment 2.
  • Figure 3a is a schematic structural diagram of the solid-state source gasification device of Embodiment 3.
  • Figure 3b is a schematic top view of the solid-state source gasification device in Embodiment 3.
  • Figure 3c is a schematic cross-sectional view along E-E direction in Figure 3b.
  • Figure 3d is a schematic diagram of the internal structure of the solid-state source gasification device in Embodiment 3.
  • Figure 4a is a schematic structural diagram of the solid-state source gasification device of Embodiment 4.
  • Figure 4b is a schematic top view of the solid-state source gasification device in Embodiment 4.
  • Figure 4c is a schematic cross-sectional view along the line F-F in Figure 4b.
  • Figure 4d is a schematic diagram of the internal structure of the solid-state source gasification device in Embodiment 4.
  • Figure 5a is a schematic structural diagram of the solid-state source gasification device of Embodiment 5.
  • Figure 5b is a schematic top view of the solid-state source gasification device of Embodiment 5.
  • Figure 5c is a schematic cross-sectional view along G-G direction in Figure 5b.
  • Figure 5d is a schematic diagram of the internal structure of the solid-state source gasification device in Embodiment 5.
  • Figure 6a is a schematic structural diagram of the solid-state source gasification device of Embodiment 6.
  • Figure 6b is a schematic top view of the solid-state source gasification device in Embodiment 6.
  • Figure 6c is a schematic cross-sectional view along the K-K direction in Figure 8b.
  • a solid-state source gasification device is shown in Figures 1a-1h, which includes a housing 1, several layers of trays 2 and a carrier gas tube 3.
  • the housing 1 is a corrosion-resistant housing.
  • a top cover 11 is provided on the top of the housing 1. After the top cover 11 is fixedly connected to the housing 1, an airtight cavity can be formed in the housing 1.
  • An air inlet 12 and an air outlet 13 are provided on the top cover 1 .
  • the housing 1 is heated to a specific temperature, causing the solid source to vaporize to generate steam.
  • the heating of the shell 1 can be achieved by a heating device wrapping the shell, or by being placed in a liquid heating container, or by other heating devices.
  • the gas carrier tube 3 is a tubular piece.
  • the upper end of the gas carrier tube 3 is connected to the air inlet on the top cover of the housing.
  • the bottom of the gas carrier tube extends into the bottom tray 2 in the housing 1 .
  • a carrier gas outlet 33 is opened on the carrier gas tube 3.
  • the carrier gas outlet 33 is arranged at a position corresponding to the internal cavities of several layers of pallets 2, so that the carrier gas can directly enter the corresponding tray 2 through the carrier gas tube 3.
  • the trachea 3 is provided with a carrier gas outlet 33 at a position corresponding to the internal cavity of the bottom tray 2.
  • the carrier gas outlet 33 can be provided in the internal cavity of any two or more layers of trays 2.
  • the carrier gas in the carrier gas pipe 3 is a carrier gas that is heated to the required temperature in advance.
  • the designed position of the carrier gas pipe 3 corresponds to the position of the air inlet 12 on the top cover 11 of the housing 1.
  • the carrier gas pipe 3 may or may not be designed in the middle of the tray 2.
  • the tray 2 is a tray used to hold solid source materials.
  • the tray 2 includes a tray bottom and a tray rim arranged on the edge of the tray bottom.
  • a cavity for holding the solid source material is formed between the tray bottom and the tray rim.
  • the number of pallets includes several layers, for example, it can be arranged as one layer, two layers, three layers or more.
  • a multi-layer tray is usually provided in the solid source gasification device. Multi-layer pallets are stacked vertically inside the housing. In this embodiment, there are 4 layers of trays, which are vertically stacked in the housing.
  • through holes for passing the carrier gas tube 3 are provided on the bottom surfaces of the 1st to 3rd layer pallets, and a vertical air guide tube 21 is also provided on the bottom surface of the tray. There are no through holes and no air ducts in the 4th layer tray.
  • the air guide tube 21 can be arranged at a position far away from the carrier gas tube 3.
  • the air guide tube 21 is used to transfer the mixed gas in the lower tray to the upper tray.
  • the air guide tube 21 is The height should be lower than the height of the tray edge.
  • the number of air guide tubes 21 and the aperture of the air guide tube 21 can be set according to the transportation speed requirements of the carrier gas.
  • One air guide tube 21 can be set, or two or more guide tubes can be set.
  • the air pipe 21, in this embodiment is provided with an air guide pipe 21 in the first to third layer pallets 2, and the air guide pipe 21 is arranged on one side close to the air outlet 13.
  • the heated carrier gas outside the solid-state source gasification device enters the carrier gas pipe 3 from the air inlet 12, and enters the trays 2 of each layer through the carrier gas outlets 33 on the carrier gas pipe 3.
  • the carrier gas in 2 moves along the surface of the solid material in the tray 2 to the position of the air guide pipe 21. In this process, it can carry a large amount of solid source vapor, increase the vapor content in the mixed gas, and thereby increase the solid source
  • the volatilization efficiency of substances is because the air ducts on each layer are facing each other, so the mixed gas that enters the upper tray from the lower tray through the air duct will quickly reach the upper tray, and the mixed gas transmission speed is faster.
  • a solid-state source gasification device is based on Embodiment 1. What is different from Embodiment 1 is that in the first to third layer pallets 2, the design position of the air guide tube 21 is located far away from the The positions of the gas carrier tubes 3 and the air guide tubes 21 in the adjacent trays 2 are staggered by a certain distance, and the positions of the air guide tubes 21 in each layer of pallets 2 are staggered by a certain distance from the air outlet 13 . As shown in Figures 2a-2d, there are four layers of trays 2 in the housing 1. There is no air duct in the fourth layer of trays. The air ducts 21 in the first and third layers of trays 2 are designed at the air outlet. The air guide tube 21 in the second layer tray 2 is designed near the air outlet 13 and positioned toward the front side.
  • the carrier gas enters the carrier gas pipe 3 from the air inlet 12 and enters the trays 2 of each layer through the carrier gas outlets on the carrier gas pipe 3.
  • the carrier gas entering the tray 2 moves along the lines of the tray 2.
  • the surface of the solid material moves to the position of the air guide tube 21. In the process, it can carry a large amount of solid source vapor, increase the vapor content in the mixed gas, and thereby improve the volatilization efficiency of the solid source material, because the adjacent tray 2
  • the air guide tubes 21 in the tray 2 are staggered by a certain distance, and the positions of the air guide tubes 21 in each layer of the tray 2 are staggered by a certain distance from the air outlet 13.
  • the mixed gas from the lower tray 2 passes through the air guide tube 21 and enters the upper tray 2. It takes a certain distance to reach the air guide pipe 21 of the upper tray 2. Therefore, the mixing distance of each layer of mixed gas is increased, and the output mixed gas can be mixed more evenly.
  • a solid-state source gasification device is based on the previous Embodiment 1.
  • the difference from the previous Embodiment 1 is that in each layer of trays 2 except the bottom tray, A plurality of air guide tubes 21 are provided, and the air guide tubes 21 are located far away from the carrier gas tube.
  • the carrier gas after the carrier gas is heated outside the solid-state source gasification device, it enters the carrier gas pipe 3 from the air inlet 12, and enters each layer of the tray 2 through each carrier gas outlet 33 on the carrier gas pipe 3.
  • the carrier gas is transmitted in each layer of trays 2 along the surface of the solid source material in the tray 2 to the position of the air guide tube 21 of the upper tray 2.
  • it can carry a large amount of solid source vapor and increase the concentration of the mixed gas. The content of vapor, thereby improving the volatilization efficiency of solid source materials. Because a plurality of air guide tubes 21 are provided in the first to third layer pallets, the rising speed of the mixed gas can be accelerated and the transmission efficiency of volatile gases can be improved.
  • a solid-state source gasification device is based on the previous Embodiment 1.
  • the difference from Embodiment 1 is that a cavity 14 is provided below the bottom tray, and the carrier gas tube has two The roots are respectively named the first carrier gas pipe 31 and the second carrier gas pipe 32.
  • the first carrier gas pipe 31 is not provided with a carrier gas outlet or is provided with a gas outlet opening.
  • the first carrier gas pipe 31 extends from the air inlet 12 to the bottom tray.
  • all other trays 2 are provided with air guide tubes 21, and the air guide tubes 21 in adjacent trays 2 are arranged at a certain distance.
  • the second carrier gas pipe 32 passes through all the other pallets 2 except the uppermost pallet 2.
  • the second carrier gas pipe 32 is provided with a carrier gas outlet 33.
  • the design positions of the air guide pipe 21 and the second carrier gas pipe 32 can be determined as needed.
  • the air guide tube 21 can be designed at a position far away from the second carrier air tube 32.
  • the air guide tube 21 is designed near the first carrier air tube 31, and the second carrier air tube 32 is designed at a position far away from the air guide tube 21.
  • the second gas carrier tube 32 is designed at a position close to the first carrier gas tube 31
  • the air guide tube 21 is designed at a position far away from the second carrier gas tube 32 , or there is another solution in which the air guide tube 21 is far away from the second carrier gas tube 32 .
  • FIG. 4a-4d there are four layers of trays 2 in the housing 1. There is no air guide tube in the fourth layer of trays.
  • the air guide tubes 21 in the first and third layer trays The air guide tube 21 in the second layer of the tray is designed near the first carrier gas pipe and at a position toward the front side.
  • the carrier gas is transmitted from the air inlet 12 through the first carrier gas pipe 31 to the cavity 14 below the fourth layer of the tray.
  • the carrier gas is transmitted to the lower end opening of the second carrier gas pipe 32 position, then enters the second carrier gas pipe 32, rises through the second carrier gas pipe 32, and enters the fourth to second layer pallets 2 through each carrier gas outlet 33 on the second carrier gas pipe 32.
  • the carrier gas is in the pallet 2
  • the solid material is transmitted on the surface, and when it reaches the position of the air guide tube 21, it reaches the upper pallet 2 through the air guide tube 21, because from the first layer pallet to the third layer pallet, the air guide tubes 21 in the adjacent pallets 2 are staggered by a certain amount.
  • the mixing distance of the gas is increased, and the gas can be mixed more evenly, because the second loader
  • the air pipe 32 does not directly enter the first layer pallet 2, so the carrier gas and the volatile gas can enter the first layer pallet through the air conduit 21 in the first layer pallet 2 after being mixed in the second layer pallet, thus enabling Mixed gases are mixed more evenly.
  • a solid-state source gasification device is based on Embodiment 4. What is different from Embodiment 4 is that multiple guides are provided in the first to third layer trays. The air tube 21 and the air guide tube 21 are distributed near the first carrier air tube 31 .
  • the carrier gas is transmitted from the air inlet 12 through the first carrier gas pipe 31 to the cavity 14 below the bottom tray.
  • the carrier gas enters the second carrier gas pipe 32 from the lower end opening.
  • the second carrier gas pipe 32 rises through the second carrier gas pipe 32, and enters the fourth to second layer pallets 2 through each carrier gas outlet 33 on the second carrier gas pipe 32.
  • the carrier gas flows on the pallet 2
  • the solid matter in the tray is transmitted on the surface and reaches the position of the air guide tube 21, it reaches the upper pallet through the air guide tube 21. Because there are multiple air guide tubes 21 from the first layer of pallets to the third layer of pallets, it can Accelerate the rising speed of mixed gas and improve the transmission efficiency of gasified gas.
  • a solid-state source gasification device is based on Embodiment 1.
  • the air inlet 12 is designed at the bottom of the housing 1, and the carrier gas pipe 3 comes from the air inlet.
  • the port 12 passes through each layer of pallets in sequence from bottom to top.
  • the upper end of the carrier gas pipe 3 is not open.
  • a carrier gas outlet 33 is provided on the carrier gas pipe 3.
  • the carrier gas outlet 33 is arranged in conjunction with the other pallets except the uppermost pallet 2. 2 Corresponding position of the internal cavity.
  • the carrier gas heated outside the solid-state source gasification device enters the carrier gas tube 3 from the air inlet 12 at the bottom of the housing, and enters the uppermost layer through the carrier gas outlet 33 on the carrier gas tube 3 respectively.
  • the carrier gas entering the pallet 2 moves along the surface of the solid material in the pallet 2 to the position of the air guide pipe. In this process, it can carry a large amount of vapor and increase the vapor content in the mixed gas. , thereby improving the gasification efficiency of the solid source material. Because the air guide tubes of each layer are facing each other, the mixed gas entering the upper tray from the lower tray through the air guide tube will quickly reach the upper tray, and the transmission speed of the mixed gas is faster. quick.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

一种固态源气化装置,其包括壳体(1)和若干层托盘(2),在壳体(1)的顶部设有顶盖(11),在顶盖(11)上设有进气口(12)和出气口(13),托盘(2)竖直叠放在壳体(1)内,在壳体(1)内设有载气管(3),载气管(3)的上端与进气口(12)连接,载气管(3)穿过各层托盘(2),并延伸至最底层的托盘(2)内,在载气管(3)上设有若干个载气出口(33),载气出口(33)设置在最底层托盘(2)的空腔(14)内或是设置在最底层托盘(2)和其余的若干层托盘(2)的空腔(14)内,除最底层的托盘(2)外,其余托盘(2)内都设有若干个导气管(21)。该固态源气化装置,采用了并联的气体传输通道,载气从进气口(12)进入载气管(3)后,能分别进入各层托盘(2)内,能在各层托盘(2)内沿着固态源物质的表面水平传输较长的距离才能到达导气管(21)的位置,因而载气中能携带大量的气化气体,提升固态源气化装置的整体气化效率。

Description

一种固态源气化装置 技术领域
本发明涉及固态源气化装置领域,特别是涉及一种用于使固态前驱体材料气化以向例如化学气相沉积设备、原子沉积设备或离子注入设备的反应腔体等前驱体蒸气使用系统输送前驱体蒸气的固态源气化装置。
背景技术
现有的固态源气化装置的结构是在密封容器内部有一个或多个盛放固态原料的托盘,对于多个托盘的方案中,每个托盘上均都分布有若干根通气导气管,以联通各托盘;工作状态下,密封容器由外部加热至固态原料的气化温度;密封容器有一个载气的进气口,载气由进气口进入,载气与固体原料的蒸气充分混合后由出气口进入与固态源气化装置相连的反应容器中。通常使用的载气为惰性气体,如氦气等。在半导体制造的应用中,反应容器通常为薄膜沉积设备的反应腔体,如CVD,ALD设备。在现有的固态源气化装置中,载气由顶部或底部进入容器,经导气管传输至壳体的底部,然后经过各层托盘上的导气管逐层上升,在上升的过程中与固态源气化的蒸气混合,混合气体由顶部的出气口输出,输送至反应容器中。
现有的固态源气化装置的缺点在于,首先,现有技术采用了串联的气体传输通道,载气要从下向上依次经过导气管进入各层托盘,最后到达最上层托盘,从出气口输出,所以载气在进入下面几层的托盘中时,载气中的蒸气含量低,因而,在下面几层的托盘中,固体原料的气化速度比较快,而载气到达顶部的几层托盘中时,载气中携带的蒸气的浓度比较高,所以顶部的几层托盘中的固体原料气化速度会比较慢,导致在固态源气化装置内,底层的托盘与顶层的托盘中固态源的气化速度相差很大,顶部几层的固态原料无法得到充分的利用。其次,因为在各层托盘中都均匀分布有多根导气管,为了防止固态原料颗粒进入导气管内,导致导气管的堵塞,导气管的高度要高于 固态原料在托盘内的装载高度,而通常固体原料的装载量都比较多,所以导气管的高度通常是与托盘的外延高度接近,导致托盘叠放后,通气导气管的顶部与设置在其上层的托盘的底部非常接近,因而载气气流在固态原料表面的流动距离很短,所以载气能携带的固态源蒸气的量很少,使得载气与蒸气的混合效率很低。此外,虽然现有的固态源气化装置设置了多层托盘,装载在托盘内的固态原料的总表面积较大,但是上方各层气化效率并没有最大化,总的气化效率和传输效率没有最优化。因而,需要对现有的固态源气化装置进行改进。
发明内容
本发明的目的在于针对背景技术中所述的现有的固态源气化装置采用了串联的气体传输通道,上层托盘中固态源物质的气化效率很低,在各层托盘内,载气在托盘内的水平移动距离很短,因而与固态蒸气的混合效果差,载气中能携带的蒸气的量很少,固态源气化装置的整体气化效率和传输效率都很低等问题,提供一种新型固态源气化装置。
为实现以上目的,本发明的第一种实现方案为:一种固态源气化装置,其包括壳体和若干层托盘,在壳体的顶部设有顶盖,在顶盖上设有进气口和出气口,托盘竖直叠放在壳体内,在壳体内设有载气管,载气管的上端与进气口连接,载气管穿过各层托盘,并延伸至最底层的托盘内,在载气管上设有若干个载气出口,载气出口设置在最底层托盘的空腔内或是设置在最底层托盘和其余的若干层托盘的空腔内,除最底层的托盘外,其余托盘内都设有若干个导气管。
作为上述的方案的进一步改进,所述的导气管设置在远离载气管的位置。通过这种设置,能使载气进入托盘内的位置远离导气管的位置,使载气在进入托盘后要后经过较长的路径才能到达上一层托盘的导气管的位置,通过导气管上升到上一层托盘内,这样载气在流动的过程中,能与托盘上固态源气化产生的蒸气充分的混合,并携带大量的蒸气进入到上层的托盘中,提高托盘内固态源物质的气化速率和蒸气的输送效率。
作为上述的方案的进一步改进,所述的载气管偏离托盘的中心位置设置。通过这种设置能进一步加大载气管与导气管之间的距离,这样载气在流动的过程中,能与托盘上固态源气化产生的蒸气充分的混合,并携带大量的蒸气进入到上层的托盘中,提高托盘内固态源物质的气化速率和蒸气的输送效率。
作为上述的方案的进一步改进,相邻的托盘内的导气管间隔设定的距离设置。通过这种设置,能使上升到上一层托盘的混合气体在托盘内经过一段传输距离后才能够进入再上一层托盘的导气管,上升到再上一层的托盘内,这样能进一步提高混合气与固态源蒸气的混合效率。
作为上述的方案的进一步改进,所述的各层托盘内都设有多根导气管,导气管设置在远离载气管的位置。通过这种设置,能提高混合气体的传输效率。
本发明的第二种实现方案为:一种固态源气化装置,其包括壳体和若干层托盘,在壳体的顶部设有顶盖,在顶盖上设有出气口,托盘竖直叠放在壳体内,在壳体的底部设有进气口,在壳体内设有载气管,载气管的下端与进气口连接,载气管穿过若干层托盘,在载气管上设有若干个载气出口,载气出口设置在最底层托盘的空腔内或是设置在最底层托盘和其余的若干层托盘的空腔内,除最底层的托盘外,其余托盘内都设有若干个导气管。
作为上述的方案的进一步改进,所述的导气管设置在远离载气管的位置。通过这种设置,能使载气进入托盘内的位置远离导气管的位置,使载气在进入托盘后要后经过较长的路径才能到达上一层托盘的导气管的位置,通过导气管上升到上一层托盘内,这样载气在流动的过程中,能与托盘上固态源气化产生的蒸气充分的混合,并携带大量的蒸气进入到上层的托盘中,提高托盘内固态源物质的气化速率和蒸气的输送效率。
作为上述的方案的进一步改进,所述的载气管偏离托盘的中心位置设置。通过这种设置能进一步加大载气管与导气管之间的距离,这样载气在流动的过程中,能与托盘上固态源气化产生的蒸气充分的混合,并携带大量的蒸气进入到上层的托盘中,提高托盘内固态源物质的气化速率和蒸气的输送效率。
作为上述的方案的进一步改进,相邻的托盘内的导气管间隔设定的距离设置。通过这种设置,能使上升到上一层托盘的混合气体在托盘内经过一段传输距离后才能够进入再上一层托盘的导气管,上升到再上一层的托盘内, 这样能进一步提高混合气与固态源蒸气的混合效率。
作为上述的方案的进一步改进,所述的各层托盘内都设有多根导气管,导气管设置在远离载气管的位置。通过这种设置,能提高混合气体的传输效率。
本发明的第三种实现方案为:一种固态源气化装置,其包括壳体和若干层托盘,在壳体的顶部设有顶盖,在顶盖上设有进气口和出气口,托盘竖直叠放在壳体内,在最底层托盘的下方设有空腔,在壳体内设有第一载气管和第二载气管,第一载气管的上端与进气口连接,第一载气管穿过各层托盘并延伸至最底层托盘下方的空腔内,第二载气管有若干根,第二载气管从下向上穿过若干层托盘,第二载气管的下端开口位于最底层托盘下方的空腔内,在第二载气管上设有若干个载气出口,载气出口设置在最底层托盘的空腔内或是设置在最底层托盘和其余的若干层托盘的空腔内,除最底层的托盘外,其余托盘内都设有若干个导气管。
作为上述的方案的进一步改进,所述的第一载气管设置在托盘的中心位置或设置在偏离托盘中心的位置。第一载气管可以设置在托盘的中心位置或偏离中心的位置,设计时,可以根据气流路径的设计需要进行灵活调整。
作为上述的方案的进一步改进,所述的第二载气管设置在托盘的中心位置或设置在偏离托盘中心的位置。第二载气管可以设置在托盘的中心位置或偏离中心的位置,设计时,可以根据气流路径的设计需要进行灵活调整。
作为上述的方案的进一步改进,所述的第二载气管设置在远离第一载气管的位置。通过这种设置,能使载气在最底层托盘的下方的空腔内充满且压力稳定后,再进入载气管,使载气的压力更稳定。
作为上述的方案的进一步改进,所述的导气管设置在远离第二载气管的位置。通过这种设置,能使载气进入托盘内的位置远离导气管的位置,使载气在进入托盘后要后经过较长的路径才能到达上一层托盘的导气管的位置,通过导气管上升到上一层托盘内,这样载气在流动的过程中,能与托盘上固态源气化产生的蒸气充分的混合,并携带大量的蒸气进入到上层的托盘中,提高托盘内固态源物质的气化速率和蒸气的输送效率。
作为上述的方案的进一步改进,相邻的托盘内的导气管间隔设定的距离设置。通过这种设置,能使上升到上一层托盘的混合气体在托盘内经过一段 传输距离后才能够进入再上一层托盘的导气管,上升到再上一层的托盘内,这样能进一步提高混合气与蒸气的混合效率。
作为上述的方案的进一步改进,所述的托盘内设有多根导气管。通过这种设置,能提高混合气体的传输效率。
作为上述的方案的进一步改进,所述的托盘内设有多根导气管,且导气管设置在第一载气管附近。通过这种设置,能提高混合气体的传输效率,并能使导气管与第二载气管远离,提高载气与蒸气的混合效率。
作为上述的方案的进一步改进,所述的第一载气管在一层或多层托盘空腔对应位置也有出气开口。通过这种设置,能使少量载气通过第一载气管上的出气开口进入托盘内,与托盘内的固态源气化产生的蒸气混合,提高混合效率。
作为上述的方案的进一步改进,所述的第二载气管只有一根或有一根以上。只设置一根第二载气管时,载气通过第二载气管上的载气出口进入托盘内,而设置多根第二载气管时,能提高载气的传输效率提高,进而提高固态源气化装置内的气体传输效率。
本发明具有积极的效果:1)本发明的固态源气化装置,采用了并联的气体传输通道,载气从进气口进入载气管后,能分别进入各层托盘内,载气在进入各层托盘后,能在各层托盘内沿着固态源物质的表面水平传输较长的距离才能到达导气管的位置,因而载气中能携带大量的固态源蒸气;2)因为在各层托盘中输入的载气都是不含挥发气的载气,所以载气能携带的蒸气的量都很大,而且能使各层托盘内固态源物质的气化速率相近,提高各层托盘内的固态源物质的气化效率,进而提升固态源气化装置的整体气化效率。
附图说明
图1a为实施例1的固态源气化装置的结构示意图。
图1b为实施例1的固态源气化装置的俯视示意图。
图1c为图1b中的A-A向剖视示意图。
图1d为实施例1的固态源气化装置的内部结构图。
图1e为第1-3层托盘的结构示意图。
图1f为图1e中的B-B向剖视图。
图1g为第4层托盘的结构示意图。
图1h为图1g的C-C向剖视图。
图2a为实施例2的固态源气化装置的结构示意图。
图2b为实施例2的固态源气化装置的俯视示意图。
图2c为图2b中的D-D向剖视示意图。
图2d为实施例2的固态源气化装置的内部结构示意图。
图3a为实施例3的固态源气化装置的结构示意图。
图3b为实施例3的固态源气化装置的俯视示意图。
图3c为图3b中的E-E向剖视示意图。
图3d为实施例3的固态源气化装置的内部结构示意图。
图4a为实施例4的固态源气化装置的结构示意图。
图4b为实施例4的固态源气化装置的俯视示意图。
图4c为图4b中的F-F向剖视示意图。
图4d为实施例4的固态源气化装置的内部结构示意图。
图5a为实施例5的固态源气化装置的结构示意图。
图5b为实施例5的固态源气化装置的俯视示意图。
图5c为图5b中的G-G向剖视示意图。
图5d为实施例5的固态源气化装置的内部结构示意图。
[根据细则91更正 08.07.2022]
图6a为实施例6的固态源气化装置的结构示意图。
[根据细则91更正 08.07.2022]
图6b为实施例6的固态源气化装置的俯视示意图。
图6c为图8b中的K-K向剖视示意图。
其中,壳体1,顶盖11,进气口12,出气口13,空腔14,托盘2,导气管21,导流板22,载气管3,第一载气管31,第二载气管32,载气出口 33。
具体实施方式
下面通过实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
如图1a-1h所示的一种固态源气化装置,其包括壳体1、若干层托盘2和载气管3。
壳体1为耐腐蚀的壳体,在壳体1的顶部设有顶盖11,顶盖11与壳体1固定连接后,在壳体1能形成气密封的腔体,在顶盖1上设有进气口12和出气口13。工作状态下,壳体1加热至特定的温度,使得固态源气化产生蒸气。壳体1加热可以由包裹壳体的加热装置实现,也可以由放置在液体加热容器中实现,或由其它加热装置实现。
载气管3为管状件,载气管3的上端与壳体顶盖上的进气口连接,载气管的底部延伸至壳体1内最底层的托盘2内。在载气管3上开有载气出口33,载气出口33设置在与若干层托盘2的内部空腔对应的位置,使载气能通过载气管3直接进入对应的托盘2内,例如在载气管3上与最底层托盘2的内部空腔对应的位置设有载气出口33,作为优选的实施方案,可以在任意两层或更多层托盘2的内部空腔中都设置载气出口33,或者在各层托盘2的内部空腔中都设有载气出口33。为了使进入固态源气化装置内的载气达到所需的温度,载气管3的载气是提前加热到所需温度的载气。载气管3的设计位置与壳体1顶盖11上的进气口12的位置相对应,载气管3可以设计在托盘2的中部,也可以不设计在托盘2的中部。
托盘2是用于盛放固态源物质的托盘,托盘2包括托盘底面和设置在托盘底面边缘的托盘沿,在托盘底面和托盘沿之间形成盛放固态源物质的腔体。托盘的数量包括若干层,例如可以设置为一层、两层、三层或更多层。为了提高固态源物质的气化速率,通常在固态源气化装置内设有多层托盘。多层 托盘通过竖直叠放的方式设置在壳体内。在本实施例中有4层托盘,4层托盘竖直叠放在壳体内。如图1d和图1e所示,在第1-3层托盘底面上都设有用于穿过载气管3的通孔,在托盘的底面上还设有竖直的导气管21。而在第4层托盘内没有通孔,也没有导气管。作为优选方案,导气管21可以设置在远离载气管3的位置,导气管21用于将下层托盘中的混合气体传输至上层托盘内,为了便于多层托盘的竖直叠放,导气管21的高度要低于托盘沿的高度,导气管21的数量和导气管21的孔径可以根据载气的输送速度要求进行设置,可以设置一根导气管21,也可以设置两根或更多根的导气管21,在本实施例中,在第1-3层托盘2内都设有一根导气管21,导气管21设置在靠近出气口13的一侧位置。
在本实施例中,在固态源气化装置外部经过加热的载气从进气口12进入载气管3内,并通过载气管3上的载气出口33分别进入各层托盘2内,进入托盘2内的载气沿着托盘2内的固态物料的表面移动至导气管21所在的位置,在此过程中,能携带大量的固态源蒸气,提高混合气体中的蒸气的含量,进而提高固态源物质的挥发效率,因为各层的导气管正对,所以从下层托盘内通过导气管进入上层托盘内的混合气体会快速到达更上层的托盘内,混合气体的传输速度较快。
实施例2
如图2a-2d所示的一种固态源气化装置,在实施例1的基础上,与实施例1不同的是,在第1-3层托盘2内,导气管21的设计位置位于远离载气管3的位置,而且相邻的托盘2内的导气管21错开一定距离设置,而且各层托盘2内,导气管21的位置都与出气口13错开一定距离设置。如附图2a-2d所示,在壳体1内共设有四层托盘2,第四层托盘内没有导气管,在第一层和第三层托盘2内的导气管21设计在出气口13附近,且偏后侧的位置,在第二层托盘2内的导气管21设计在出气口13附近,且偏前侧的位置。
在本实施例中,载气从进气口12进入载气管3内,并通过载气管3上的载气出口分别进入各层托盘2内,进入托盘2内的载气沿着托盘2内的固态物料的表面移动至导气管21所在的位置,在此过程中,能携带大量的固态源蒸气,提高混合气体中的蒸气的含量,进而提高固态源物质的挥发效率,因为相邻的托盘2内的导气管21错开一定距离设置,而且各层托盘2内,导气 管21的位置都与出气口13错开一定距离设置,所以从下层托盘2经过导气管21进入上层托盘2内的混合气体,要经过一段距离才能再到达上一层托盘2的导气管21,因而,增加了各层混合气体的混合距离,能使输出的混合气体混合的更均匀。
实施例3
如附图3a-3d所示的一种固态源气化装置,在前面实施例1的基础上,与前述的实施例1不同的是,在除最底层的托盘外的各层托盘2中,都设有多个导气管21,导气管21位于远离载气管的位置。
在本实施例中,载气在固态源气化装置外部加热后,从进气口12进入到载气管3中,并通过载气管3上的各个载气出口33分别进入各层托盘2内,载气在各层托盘2内沿着托盘2内固态源物质的表面传输至上一层托盘2的导气管21的位置,在气体传输过程中,能携带大量的固态源蒸气,提高混合气体中的蒸气的含量,进而提高固态源物质的挥发效率。因为在第一层到第三层托盘内都设置了多个导气管21,因而能加快混合气体的上升速度,提高挥发气体的传输效率。
实施例4
如附图4a-4d所示的一种固态源气化装置,在前面实施例1的基础上,与实施例1不同的是,在最底层托盘的下方设有空腔14,载气管有两根,分别命名为第一载气管31和第二载气管32,第一载气管31上不设有载气出口或设有出气开口,第一载气管31从进气口12延伸至最底层托盘2下方的空腔14内,除最底层的托盘2外,其余托盘2上都设有导气管21,且相邻的托盘2内的导气管21错开一定距离设置。第二载气管32穿过除最上层托盘2外的其余各层托盘2,第二载气管32上设有载气出口33,导气管21和第二载气管32的设计位置可以根据需要来进行设计,作为优选的实施方式,导气管21可以设计在远离第二载气管32的位置,例如导气管21设计在第一载气管31附近,而第二载气管32设计在远离导气管21的位置,或者第二载气管32设计在靠近第一载气管31的位置,而导气管21设计在远离第二载气管32的位置,或者是其他导气管21与第二载气管32相远离的方案。
如图4a-4d所示,在本实施例中,在壳体1内共设有四层托盘2,第四层托盘内没有导气管,在第一层和第三层托盘内的导气管21设计在第一载气 管附近,且偏后侧的位置,在第二层托盘内的导气管21设计在第一载气管附近,且偏前侧的位置。
在本实施例中,载气从进气口12经过第一载气管31传输至第四层托盘下方的空腔14内,在空腔14内,载气传输至第二载气管32的下端开口位置,然后进入第二载气管32,并通过第二载气管32上升,通过第二载气管32上的各个载气出口33分别进入第四层至第二层托盘2,载气在托盘2内的固态物质表面传输,到达导气管21的位置时,通过导气管21到达上一层托盘2内,因为从第一层托盘至第三层托盘,相邻的托盘2内的导气管21错开一定的距离设置,所以混合气从导气管21上升后,要经过一段传输距离才能再次上升到上一层托盘2内,所以增加了气体的混合距离,能使气体混合得更均匀,因为第二载气管32不直接进入第一层托盘2内,因而载气和挥发气体经历了第二层托盘内的混合,才能通过第一层托盘2内的导气管21进入第一层托盘内,因而能使混合气体的混合更均匀。
实施例5
如附图5a-5d所示的一种固态源气化装置,在实施例4的基础上,与实施例4不同的是,在第一层托盘至第三层托盘内都设有多个导气管21,导气管21分布在第一载气管31的附近。
在本实施例中,载气从进气口12经过第一载气管31传输至最底层托盘下方的空腔14内,在空腔14内,载气从第二载气管32的下端开口进入第二载气管32,并通过第二载气管32上升,通过第二载气管32上的各个载气出口33分别进入第四至第二层托盘2,进入各层托盘2后,载气在托盘2内的固态物质表面传输,到达导气管21的位置时,通过导气管21到达上一层托盘内,因为从第一层托盘至第三层托盘内,都设有多个导气管21,因而能加快混合气体的上升速度,提高气化气体的传输效率。
实施例6
如图6a-6c所示的一种固态源气化装置,在实施例1的基础上,与实施例1不同的是,进气口12设计在壳体1的底部,载气管3从进气口12从下向上依次穿过各层托盘,载气管3的上端不开口,在载气管3上设有载气出口33,载气出口33设置在与除最上层托盘2外的其余各层托盘2内部空腔对应的位置。
在本实施例中,在固态源气化装置外部经过加热的载气从壳体的底部的进气口12进入载气管3内,并通过载气管3上的载气出口33分别进入除最上层各层托盘2内,进入托盘2内的载气沿着托盘2内的固态物料的表面移动至导气管所在的位置,在此过程中,能携带大量的蒸气,提高混合气体中的蒸气的含量,进而提高固态源物质的气化效率,因为各层的导气管正对,所以从下层托盘内通过导气管进入上层托盘内的混合气体会快速到达更上层的托盘内,混合气体的传输速度较快。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (20)

  1. 一种固态源气化装置,其特征在于:其包括壳体和若干层托盘,在壳体的顶部设有顶盖,在顶盖上设有进气口和出气口,托盘竖直叠放在壳体内,在壳体内设有载气管,载气管的上端与进气口连接,载气管穿过各层托盘,并延伸至最底层的托盘内,在载气管上设有若干个载气出口,载气出口设置在最底层托盘的空腔内或是设置在最底层托盘和其余的若干层托盘的空腔内,除最底层的托盘外,其余托盘内都设有若干个导气管。
  2. 根据权利要求1所述的固态源气化装置,其特征在于:所述的导气管设置在远离载气管的位置。
  3. 根据权利要求1所述的固态源气化装置,其特征在于:所述的载气管偏离托盘的中心位置设置。
  4. 根据权利要求1所述的固态源气化装置,其特征在于:相邻的托盘内的导气管间隔设定的距离设置。
  5. 根据权利要求1所述的固态源气化装置,其特征在于:所述的各层托盘内都设有多根导气管,导气管设置在远离载气管的位置。
  6. 一种固态源气化装置,其特征在于:其包括壳体和若干层托盘,在壳体的顶部设有顶盖,在顶盖上设有出气口,托盘竖直叠放在壳体内,在壳体的底部设有进气口,在壳体内设有载气管,载气管的下端与进气口连接,载气管穿过若干层托盘,在载气管上设有若干个载气出口,载气出口设置在最底层托盘的空腔内或是设置在最底层托盘和其余的若干层托盘的空腔内,除最底层的托盘外,其余托盘内都设有若干个导气管。
  7. 根据权利要求6所述的固态源气化装置,其特征在于:所述的导气管设置在远离载气管的位置。
  8. 根据权利要求6所述的固态源气化装置,其特征在于:所述的载气管偏离托盘的中心位置设置。
  9. 根据权利要求6所述的固态源气化装置,其特征在于:相邻的托盘内的导气管间隔设定的距离设置。
  10. 根据权利要求6所述的固态源气化装置,其特征在于:所述的各层托盘内都设有多根导气管,导气管设置在远离载气管的位置。
  11. 一种固态源气化装置,其特征在于:其包括壳体和若干层托盘,在壳体的顶部设有顶盖,在顶盖上设有进气口和出气口,托盘竖直叠放在壳体 内,在最底层托盘的下方设有空腔,在壳体内设有第一载气管和第二载气管,第一载气管的上端与进气口连接,第一载气管穿过各层托盘并延伸至最底层托盘下方的空腔内,第二载气管有若干根,第二载气管从下向上穿过若干层托盘,第二载气管的下端开口位于最底层托盘下方的空腔内,在第二载气管上设有若干个载气出口,载气出口设置在最底层托盘的空腔内或是设置在最底层托盘和其余的若干层托盘的空腔内,除最底层的托盘外,其余托盘内都设有若干个导气管。
  12. 根据权利要求11所述的固态源气化装置,其特征在于:所述的第一载气管设置在托盘的中心位置或设置在偏离托盘中心的位置。
  13. 根据权利要求11所述的固态源气化装置,其特征在于:所述的第二载气管设置在托盘的中心位置或设置在偏离托盘中心的位置。
  14. 根据权利要求11所述的固态源气化装置,其特征在于:所述的第二载气管设置在远离第一载气管的位置。
  15. 根据权利要求11所述的固态源气化装置,其特征在于:所述的导气管设置在远离第二载气管的位置。
  16. 根据权利要求11所述的固态源气化装置,其特征在于:相邻的托盘内的导气管间隔设定的距离设置。
  17. 根据权利要求11所述的固态源气化装置,其特征在于:所述的托盘内设有多根导气管。
  18. 根据权利要求11所述的固态源气化装置,其特征在于:所述的托盘内设有多根导气管,且导气管设置在第一载气管附近。
  19. 根据权利要求11所述的固态源气化装置,其特征在于:所述的第一载气管在一层或多层托盘空腔对应位置也有出气开口。
  20. 根据权利要求11-19中的任意一项所述的固态源气化装置,其特征在于:所述的第二载气管只有一根或有一根以上。
PCT/CN2022/095627 2022-05-18 2022-05-27 一种固态源气化装置 WO2023221164A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210547408.5A CN114811423A (zh) 2022-05-18 2022-05-18 一种固态源气化装置
CN202210547408.5 2022-05-18

Publications (1)

Publication Number Publication Date
WO2023221164A1 true WO2023221164A1 (zh) 2023-11-23

Family

ID=82515568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095627 WO2023221164A1 (zh) 2022-05-18 2022-05-27 一种固态源气化装置

Country Status (2)

Country Link
CN (1) CN114811423A (zh)
WO (1) WO2023221164A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06173011A (ja) * 1992-12-02 1994-06-21 Shin Etsu Chem Co Ltd 気化容器
CN101065515A (zh) * 2004-11-29 2007-10-31 东京毅力科创株式会社 包括可置换可堆叠盘的固态前驱体传输系统
JP2013028854A (ja) * 2011-07-29 2013-02-07 Air Liquide Japan Ltd 固体材料ガスの供給装置および供給方法
JP2014009392A (ja) * 2012-07-02 2014-01-20 Tokyo Electron Ltd 原料容器および原料容器の使用方法
US20170342557A1 (en) * 2014-04-21 2017-11-30 Entegris, Inc. Solid vaporizer
CN110016654A (zh) * 2017-12-12 2019-07-16 东京毅力科创株式会社 原料容器
CN111286720A (zh) * 2018-12-10 2020-06-16 北京北方华创微电子装备有限公司 一种源瓶及半导体设备
CN113897593A (zh) * 2021-09-13 2022-01-07 浙江陶特容器科技股份有限公司 一种固态前驱体源存储升华器
CN217684405U (zh) * 2022-05-18 2022-10-28 江苏南大光电材料股份有限公司 一种固态源气化装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06173011A (ja) * 1992-12-02 1994-06-21 Shin Etsu Chem Co Ltd 気化容器
CN101065515A (zh) * 2004-11-29 2007-10-31 东京毅力科创株式会社 包括可置换可堆叠盘的固态前驱体传输系统
JP2013028854A (ja) * 2011-07-29 2013-02-07 Air Liquide Japan Ltd 固体材料ガスの供給装置および供給方法
JP2014009392A (ja) * 2012-07-02 2014-01-20 Tokyo Electron Ltd 原料容器および原料容器の使用方法
US20170342557A1 (en) * 2014-04-21 2017-11-30 Entegris, Inc. Solid vaporizer
CN110016654A (zh) * 2017-12-12 2019-07-16 东京毅力科创株式会社 原料容器
CN111286720A (zh) * 2018-12-10 2020-06-16 北京北方华创微电子装备有限公司 一种源瓶及半导体设备
CN113897593A (zh) * 2021-09-13 2022-01-07 浙江陶特容器科技股份有限公司 一种固态前驱体源存储升华器
CN217684405U (zh) * 2022-05-18 2022-10-28 江苏南大光电材料股份有限公司 一种固态源气化装置

Also Published As

Publication number Publication date
CN114811423A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
RU2384652C2 (ru) Барботер для постоянной доставки пара твердого химиката
KR100427426B1 (ko) 반응가스분사헤드및증기상박막성장장치
TWI222677B (en) Treatment device of substrate
CN101426953B (zh) 用于化学气相沉积的装置和方法
TWI476298B (zh) 成膜裝置、成膜方法以及電腦可讀取記憶媒體
KR101324367B1 (ko) 성막 장치, 성막 방법 및 컴퓨터 판독 가능 기억 매체
TWI537416B (zh) A CVD reactor with a strip inlet region and a method of depositing a layer on the substrate in such a CVD reactor
US20100272895A1 (en) Film deposition apparatus, film deposition method, storage medium, and gas supply apparatus
JP2008509547A (ja) 高いスループットのcvd装置及び方法
JP5958231B2 (ja) 縦型熱処理装置
JP2010245448A (ja) 成膜装置、成膜方法及び記憶媒体
CN101960044A (zh) 固态前体升华器
CN203768445U (zh) 真空蒸镀装置
WO2023221164A1 (zh) 一种固态源气化装置
CN107452653A (zh) 具有集成蒸气浓度传感器的蒸气歧管
WO2023036046A1 (zh) 半导体热处理设备的气体喷射装置及半导体热处理设备
CN105861991A (zh) 一种线性加热源
JP2020012197A (ja) 流れ分配器を備える蒸気輸送コンテナ
CN217684405U (zh) 一种固态源气化装置
TW202230830A (zh) 用於半導體製造前驅物的安瓿
WO2023246522A1 (zh) 气体分配装置及半导体工艺设备
CN107342246A (zh) 半导体制造装置以及半导体制造工艺罐
CN217324289U (zh) 多导流空间的前驱体封装装置
WO2023093455A1 (zh) 一种进气分配机构及具有其的 cvd 反应设备
CN114277358B (zh) 一种液态源瓶及半导体工艺设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942199

Country of ref document: EP

Kind code of ref document: A1