WO2023221080A1 - 一种无硼无醛改性多糖的制备方法 - Google Patents

一种无硼无醛改性多糖的制备方法 Download PDF

Info

Publication number
WO2023221080A1
WO2023221080A1 PCT/CN2022/094060 CN2022094060W WO2023221080A1 WO 2023221080 A1 WO2023221080 A1 WO 2023221080A1 CN 2022094060 W CN2022094060 W CN 2022094060W WO 2023221080 A1 WO2023221080 A1 WO 2023221080A1
Authority
WO
WIPO (PCT)
Prior art keywords
free
modified polysaccharide
boron
add
aldehyde
Prior art date
Application number
PCT/CN2022/094060
Other languages
English (en)
French (fr)
Inventor
王清才
刘东辉
Original Assignee
刘东辉
王清才
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘东辉, 王清才 filed Critical 刘东辉
Priority to PCT/CN2022/094060 priority Critical patent/WO2023221080A1/zh
Publication of WO2023221080A1 publication Critical patent/WO2023221080A1/zh
Priority to US18/425,317 priority patent/US20240166773A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof

Definitions

  • the invention relates to a method and product for preparing a boron-free and aldehyde-free modified polysaccharide. Specifically, it is a method for preparing a modified polysaccharide without using boron inorganic compounds and borate esters or glyoxal as cross-linking agents.
  • Product belongs to the field of fine chemical technology.
  • borate mainly borax
  • glyoxal glyoxal
  • modified polysaccharides are mainly used in the cosmetic field, causing consumers to passively ingest trace amounts of boron or glyoxal.
  • Years of research have proven that excessive boron intake can damage the function of the human reproductive system, affect the growth and development of fetuses and children, and also affect people's emotions and intelligence.
  • ICPS International Program on Chemical Safety
  • the European Food Safety Authority stipulated that minors aged 1 to 17 years old, depending on their age, respectively. Allowable intake per person per day is 1 to 9 mg, and adults are allowed 10 mg per person per day.
  • glyoxal is not carcinogenic, it is irritant and cytotoxic and can react with proteins to promote tumorigenesis.
  • glyoxal usually contains a small amount of formaldehyde due to production technology and purification problems.
  • Formaldehyde is a recognized carcinogen.
  • the use of glyoxal in cosmetics will cause the product to be contaminated by formaldehyde.
  • the U.S. Cosmetic Ingredient Evaluation (CIR) Expert Committee re-evaluated glyoxal in 2017 and concluded that it is safe only when used in nail polish and at a dosage of less than 1.25%, which means it is unsafe to use in other cosmetics.
  • ICPS stipulated in 2004 that the intake limit per person per day is 0.2 mg per kilogram of body weight, and the allowable environmental concentration is 6 micrograms per cubic meter.
  • the technical problem to be solved by the present invention is to carry out hydroxyalkyl or cationic modification of polysaccharide without using borax or glyoxal cross-linking agent, and to make the product performance index better.
  • One of the purposes of the present invention is to provide a method for preparing boron-free and aldehyde-free modified polysaccharides. By optimizing the process and selecting appropriate polysaccharide dissolution and gelation inhibitors, it can also be prepared without using borax and glyoxal cross-linking. Modified polysaccharide, and the product has high purity, and its 0.5% aqueous solution has high light transmittance at 500 nanometer wavelength.
  • a preparation method of boron-free and aldehyde-free modified polysaccharide the steps are as follows:
  • transfer the polysaccharide that has been activated by impurity removal into the reaction vessel first add an alkaline compound, replace the air with nitrogen, and then pressurize the hydroxyalkylation etherifying agent with nitrogen; raise the temperature to 35°C - 45°C, react at this temperature for 5-300 minutes; raise the temperature to 50°C-95°C, react for 5-600 minutes;
  • the polysaccharide is natural galactomannan, starch or cellulose.
  • the galactomannan is guar gum, cassia gum, coumarin gum, tara gum or locust bean gum.
  • the structural formula of the galactomannan is as shown in Figure 1; where n represents the degree of polymerization (n is not less than 30), and when m in the formula is 0, 1, 2, 3, and 4, they represent coumarin respectively. Gum, guar gum, tara gum, locust bean gum, cassia gum.
  • the polar organic compounds are alcohols, ketones or ethers that are miscible with water.
  • the alcohol is ethanol or isopropyl alcohol.
  • the low molecular weight sugar is a monosaccharide, a disaccharide or an oligosaccharide.
  • the low molecular weight sugar is glucose, sucrose, mannose or galactose.
  • the monovalent metal salt is a lithium salt, a sodium salt or a potassium salt.
  • the catalyst is a monovalent metal strongly alkaline compound soluble in a polar solvent, such as sodium oxide, potassium oxide, sodium hydroxide or potassium hydroxide.
  • the oxygen partial pressure in the reaction vessel is less than one ten thousandth.
  • the basic compound includes an inorganic basic compound or an organic basic compound.
  • the inorganic alkaline compound is a hydroxide of lithium, sodium, or potassium, or a weak acid salt of sodium or potassium.
  • the alkaline compound is sodium hydroxide.
  • the basic organic compound is an amine, a pyridine or a pyrrole.
  • the hydroxyalkylation etherifying agent is ethylene oxide, propylene oxide, terminal alkylene oxides with six or less carbon atoms, 2-hydroxychloropropane or 2-chloroethanol.
  • the hydroxyalkylation etherifying agent is ethylene oxide or propylene oxide.
  • the cationized etherification agent is glycidyltrimethylammonium chloride or 3-chloro-2-hydroxypropyltrimethylammonium chloride.
  • the acid is hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid or citric acid.
  • Another object of the present invention is to provide modified polysaccharides prepared by the above method.
  • a modified polysaccharide prepared by the above preparation method of boron-free and aldehyde-free modified polysaccharide the modified polysaccharide content is greater than 94%, the boron content does not exceed 5 mg/Kg, and the 0.5% aqueous solution has a high light transmittance at 500 nm wavelength.
  • the structural formula of the modified galactomannan of the present invention is shown in Figure 2.
  • R when R is H (hydrogen) and/or hydroxyalkyl, it is a hydroxyalkylated modified polysaccharide; when R is H (hydrogen) and/or chlorinated-3-(N,N,N-trimethyl)amino-2-hydroxypropyl, it is a cationized modified polysaccharide; when R is H (hydrogen) and/or hydroxyalkane When it is hydroxypropyl and/or chlorinated-3-(N,N,N-trimethyl)amino-2-hydroxypropyl, it is hydroxypropyl and cationized modified polysaccharide.
  • R is H (hydrogen) and/or the structural formula shown in Figure 3, it is a hydroxypropylated modified polysaccharide.
  • R is H (hydrogen) and/or the structural formula shown in Figure 4, it is a cationized modified polysaccharide.
  • R is H (hydrogen) and/or the structural formula shown in Figure 3 and/or the structural formula shown in Figure 4, it is hydroxypropylated polysaccharide-2-hydroxypropyltrimethylammonium chloride, which belongs to hydroxyalkyl group and a type of cationized polysaccharide.
  • the preparation method of the boron-free and aldehyde-free modified polysaccharide of the present invention uses low molecular weight sugars and water-soluble monovalent metal salts to inhibit the dissolution and gel formation of the polysaccharide and its modified products and avoid harmful boron compounds and glyoxal. Use; through impurity removal, activation and process optimization, the purity of the modified polysaccharide product is improved.
  • the modified polysaccharide content of the product is greater than 94%, the boron content does not exceed 5 mg/Kg, and the 0.5% aqueous solution of the product has a high 500 nm visible light transmittance.
  • the polysaccharide is first subjected to impurity removal and activation in the presence of a catalyst, and the polysaccharide is dispersed in a solution containing low molecular weight sugars and monovalent metal salts.
  • a catalyst is added, and the entire system is heated and treated under a nitrogen atmosphere to obtain an activated polysaccharide that has basically removed impurities such as grease and protein; the processed polysaccharide It reacts with the etherifying agent under alkaline conditions. After the reaction is completed, acid is added to neutralize the alkali in the system to make the system nearly neutral.
  • the finished product is then obtained through washing, purification, filtration, and drying.
  • Figure 1 is a schematic diagram of the structural formula of galactomannan of the present invention.
  • Figure 2 is a schematic diagram of the structural formula of modified galactomannan of the present invention.
  • Figure 3 is the structural formula of the hydroxypropyl group in the modified galactomannan of the present invention.
  • Figure 4 is the structural formula of the cationized group in the modified galactomannan of the present invention.
  • the percentages in the examples of the present invention are mass percentages; the raw materials used are all conventional types of raw materials in the field that are commercially available; the methods used are all conventional methods in the field (including detection methods); the equipment used are all conventional methods in the field. It is a conventional equipment in this field.
  • a preparation method of boron-free and aldehyde-free modified polysaccharide the steps are as follows:
  • FIG 2 it is a schematic structural diagram of the modified galactomannan of the present invention; wherein, R represents hydrogen and/or hydroxypropyl, and its structure can be characterized by IR and NMR; when R represents hydrogen and Figure 3 When the structural formula is shown, it is a hydroxypropylated modified polysaccharide. When R represents hydrogen and the structural formula shown in Figure 4, it is a cationized modified polysaccharide. When R represents hydrogen and the structural formula shown in Figure 3 and the structural formula shown in Figure 4 are hydroxypropylated polysaccharide-2-hydroxypropyltrimethylammonium chloride, it is a type of hydroxyalkyl and cationized polysaccharide.
  • the polysaccharide modification reaction of the present invention belongs to a polymer modification reaction.
  • the polymer reaction is characterized by a relatively low degree of reaction. It is not as complete as the small molecule reaction, and only a part of the monomer units participate in the reaction. Therefore, in Figure 1 of the present invention, only a small part of the hydrogen at the reaction position is replaced by the groups in Figure 3 or Figure 4.
  • R in Figure 2 can be either hydrogen or as shown in Figure 3 ( Hydroxyalkyl) group or the [3-(N, N, N-trimethyl)amino-2-hydroxypropyl] group shown in Figure 4.
  • the essence is that the modifying group replaces the hydroxyl hydrogen on the sugar unit, and the molar degree of substitution represents the average value of the hydroxyl hydrogen of each sugar unit substituted by the substituent, that is, the degree of modification reaction.
  • a preparation method of boron-free and aldehyde-free modified polysaccharide the steps are as follows:
  • a preparation method of boron-free and aldehyde-free modified polysaccharide the steps are as follows:
  • a preparation method of boron-free and aldehyde-free modified polysaccharide the steps are as follows:
  • Examples 1 to 4 without using harmful boron compounds and glyoxal as cross-linking agents, through impurity removal activation and process optimization, the purity of the hydroxypropyl polysaccharide product is above 94%, and the boron content of the product does not exceed 5mg/Kg (the boron content of commercial modified polysaccharides on the market is 100-400mg/Kg), the 0.5% aqueous solution of the product has a high 500nm visible light transmittance, and the entire production process will not produce boron-containing wastewater.
  • a preparation method of boron-free and aldehyde-free modified polysaccharide the steps are as follows:
  • a preparation method of boron-free and aldehyde-free modified polysaccharide the steps are as follows:
  • a preparation method of boron-free and aldehyde-free modified polysaccharide the steps are as follows:
  • the filter material is washed and filtered twice with 45% isopropyl alcohol aqueous solution; the washed material is added to a reaction vessel containing 150Kg of 80% isopropyl alcohol aqueous solution, and 8.90Kg (in solution state) of 3- Chloro-2-hydroxypropyltrimethylammonium chloride; replace the air, protect with nitrogen atmosphere, add 1.42Kg sodium hydroxide (in solution state) several times according to the reaction situation; heat up to 40°C, react for 60 minutes; heat up to 55 °C, reaction 150min;
  • a preparation method of boron-free and aldehyde-free modified polysaccharide the steps are as follows:
  • the liquid-mass spectrometry method is used to determine the sugar content, and the nuclear magnetic method is used to determine the modified group content.
  • Examples 5 to 8 without using harmful boron compounds and glyoxal as cross-linking agents, through impurity removal activation and process optimization, the purity of the cationic polysaccharide product is above 94%, and the boron content of the product does not exceed 5 mg.
  • a preparation method of boron-free and aldehyde-free modified polysaccharide the steps are as follows:
  • a preparation method of boron-free and aldehyde-free modified polysaccharide the steps are as follows:
  • Air raise the temperature to 45°C, press in 1.26Kg sodium hydroxide (solution state) catalyst with nitrogen, and keep the materials in the container under a nitrogen atmosphere for reaction; raise the temperature to 95°C, react under this condition for 40 minutes; cool down to Filter below 40°C, wash and filter the filter material twice with 50% isopropyl alcohol aqueous solution; add the washed material to a reaction vessel containing 150Kg of 85% isopropyl alcohol aqueous solution, and add 1.62Kg of sodium hydroxide (in solution state) ), replace the air, protect with nitrogen atmosphere, press in 6.78Kg of propylene oxide; raise the temperature to 40°C, react for 30 minutes; raise the temperature to 50°C, react for 60 minutes; raise the temperature to 65°C, react for 90 minutes; after the reaction is completed, cool down to 40 °C below, pressurize 5.86Kg of 3-chloro-2-hydroxypropyltrimethylammonium chloride (in solution state) with nitrogen; add 0.69Kg of sodium hydro
  • a preparation method of boron-free and aldehyde-free modified polysaccharide the steps are as follows:
  • Air raise the temperature to 40°C, press in 4.50Kg of sodium hydroxide (solution state) catalyst with nitrogen, and keep the materials in the container under a nitrogen atmosphere for reaction; raise the temperature to 92°C, react under this condition for 40 minutes; cool down to Below 40°C, filter, wash and filter the filter material twice with 45% isopropyl alcohol aqueous solution; add the washed material to a reaction vessel containing 150Kg of 80% isopropyl alcohol aqueous solution, and add 2.14Kg of sodium hydroxide (solution state), replace the air, and protect with nitrogen atmosphere; press in 11.40Kg of propylene oxide; raise the temperature to 35°C, react for 30 minutes; raise the temperature to 60°C, react for 90 minutes; after the reaction is completed, cool down to below 40°C, and press in with nitrogen 8.60Kg of 3-chloro-2-hydroxypropyltrimethylammonium chloride (in solution state); add 0.84Kg of sodium hydroxide (in solution state) several times according to the reaction situation
  • a preparation method of boron-free and aldehyde-free modified polysaccharide the steps are as follows:
  • Air raise the temperature to 35°C, press in 5.80Kg sodium hydroxide (solution state) catalyst with nitrogen, and keep the materials in the container under a nitrogen atmosphere for reaction; raise the temperature to 95°C, react under this condition for 40 minutes; cool down to Below 40°C, filter, wash and filter the filter material twice with 42% isopropyl alcohol aqueous solution; add the washed material to a reaction vessel containing 150Kg 85% isopropyl alcohol aqueous solution, and add 0.56Kg sodium hydroxide (solution state), replace the air, and protect with nitrogen atmosphere; press in 8.80Kg of propylene oxide; raise the temperature to 35°C, react for 30 minutes; raise the temperature to 60°C, react for 90 minutes; after the reaction is completed, cool down to below 40°C, and press in with nitrogen 6.86Kg of 3-chloro-2-hydroxypropyltrimethylammonium chloride (in solution state); add 1.18Kg of sodium hydroxide (in solution state) several times according to the reaction situation; heat up to
  • ⁇ 3 ⁇ Note The hydroxypropyl content was determined by nuclear magnetic method and calculated.
  • Nitrogen content is determined by Kjeldahl method and calculated.
  • Liquid mass spectrometry determines the sugar content, and NMR determines the modified group content.
  • Embodiments 9 to 12 without using harmful boron compounds and glyoxal as cross-linking agents, through impurity removal activation and process optimization, the purity of the hydroxypropyl cationic polysaccharide product is above 94%, and the product boron The content does not exceed 5mg/Kg (the boron content of commercial modified polysaccharides on the market is 100-400mg/Kg).
  • the 0.5% aqueous solution of the product has a high 500nm visible light transmittance, and the entire production process does not produce boron-containing wastewater.
  • the boron-free and aldehyde-free modified polysaccharide of the present invention is prepared by using natural polysaccharides as raw materials, using deionized water and a mixture of polar organic compounds as the dispersion medium, and obtaining the polysaccharide through impurity removal, activation, modification, neutralization, washing, purification, filtration, and drying. Finished product.
  • the present invention Before modifying the polysaccharide, the present invention first performs impurity removal and activation on the polysaccharide in the presence of a catalyst, and disperses the polysaccharide in a mixed medium of deionized pure water and polar organic compounds in which low molecular weight sugars and monovalent metal salts are dissolved.
  • a catalyst is added, and the entire system is heated and treated under a nitrogen atmosphere to obtain an activated polysaccharide that is basically free of impurities such as grease and protein; the treated polysaccharide reacts with an etherifying agent under alkaline conditions, After the reaction is completed, acid is added to neutralize the alkali in the system to make the system nearly neutral; then the finished product is obtained through washing, purification, filtration, and drying.
  • the present invention uses a mixture of water and polar organic compounds as the dispersion medium; low molecular weight sugars (including monosaccharides and disaccharides, hereinafter referred to as low molecular weight sugars) with a molecular weight lower than 10,000 Daltons and monovalent water-soluble metal salts are used as the dispersion medium.
  • Low molecular weight sugars including monosaccharides and disaccharides, hereinafter referred to as low molecular weight sugars
  • Polysaccharide dissolution and gel inhibitor in order to improve reaction efficiency, in the presence of a catalyst, the polysaccharide is first removed and activated, then modified, purified, filtered and dried to obtain a boron-free and aldehyde-free modified polysaccharide product.
  • other materials are: 50-2000 parts of dispersion medium, 0-50 parts of low molecular weight sugar, 0-50 parts of monovalent metal salts, 0.5-50 parts of catalyst, and 0-50 parts of monovalent metal inorganic 0.5-200 parts of alkaline or organic alkaline compounds, 5-300 parts of etherifying agent, 1-100 parts of inorganic or organic acids.
  • the water is deionized pure water;
  • the polar organic compounds are alcohols, ketones, and ethers that are miscible with water;
  • the polysaccharides are galactomannan, starch, and cellulose;
  • the catalyst It is a monovalent metal strong alkaline compound;
  • the etherifying agent is an etherifying agent that hydroxyalkylates and cationizes polysaccharides;
  • the inorganic alkaline compound is lithium, sodium, potassium hydroxide and sodium, potassium weak acid Salt;
  • the organic basic compound is an amine, a pyridine or a pyrrole.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

一种无硼无醛改性多糖的制备方法,其步骤如下:(1)、将去离子水、极性有机化合物、低分子量糖、一价金属盐和多糖分散均匀;(2)、加入催化剂;(3)、升温至45℃-120℃,活化30-600分钟,冷却,过滤;(4)、滤料中加入醚化剂,升温反应;(5)、降温至40℃以下,加酸调pH至近中性,过滤;(6)、加入溶剂进行洗涤纯化,再经过过滤和干燥,得到目标产品。

Description

一种无硼无醛改性多糖的制备方法 技术领域
本发明涉及一种无硼无醛改性多糖的制备方法及产品,具体地说是一种不使用硼的无机化合物及硼酸酯类或乙二醛做交联剂制备改性多糖的方法及其产品;属于精细化工技术领域。
背景技术
在使用水或水与其它极性有机物混合物做介质制备改性多糖过程中,为了抑制多糖和改性多糖溶解或形成凝胶,通常会使用硼酸盐(主要是硼砂)或乙二醛,让多糖轻微交联(工业上称封端),以便解决生产工艺过程中分散介质和产品不好分离问题。
然而,改性多糖主要用于化妆品领域,造成消费者被动摄入微量硼或乙二醛。多年的研究证明:硼摄入过量会损坏人类生殖系统功能,影响胎儿和儿童生长发育,还会影响人的情智。早在1998年,国际化学品安全规划署(ICPS)就规定:每人每天每千克体重允许摄入量0.4毫克;欧洲食品安全局则规定:1至17岁未成年人,根据年龄不同,分别允许每人每天摄入1至9毫克,成人允许每人每天摄入10毫克。2019年,欧盟把硼酸及其盐和酯等共27种化合物列为化妆品禁用成分,2020年,我国台湾地区也把硼酸和硼酸钠列为化妆品禁用成分,日本早在2000年就已把硼酸列为化妆品禁用成分,2021年5月26号,我国发布的化妆品原料禁用目录中,同样把硼酸和硼砂列为禁用成分,其它国家和地区把硼酸及其盐列为化妆品限制使用成分。硼摄入过量不仅对人类有害,其浓度超标对生态环境伤害也很大,会影响动植物生长发育,甚至造成死亡。为了保护生态环境,我国新的污水排放标准中增加了硼含量指标,规定污水中硼含量不得超过0.5mg/L。
尽管乙二醛没有致癌性,但其具有刺激性和细胞毒性,会与蛋白质反应,促进肿瘤生成。另外,乙二醛因生产技术和纯化问题,通常含有少量的甲醛,甲醛是公认的致癌物,化妆品中使用乙二醛会造成产品被甲醛污染。美国化妆品原料评价(CIR)专家委员会在2017年对乙二醛重新评估得出结论,其仅用于指甲油且用量在1.25%以下是安全的,也就是说用于其它化妆品是不安全的。ICPS在2004年规定:每人每天每千克体重摄入限量0.2毫克,环境允许浓度是每立方米6微克。
改性多糖制备过程中,通常用水和极性有机溶剂混合物作为分散介质,多糖和 其改性产物均有溶于水和形成凝胶倾向,使制备过程操作困难,为了解决这个工艺难题,传统工艺多采用硼砂或乙二醛对多糖交联。在US5489674和US5536825中,均用硼砂作为交联剂,这些含硼交联剂大部分残留在产品中;US8580952采用乙二醛交联,虽然发明者在后处理过程中采取了化学转化技术试图除去乙二醛,但产物中还是有少量乙二醛残留。
因此,提供一种无硼无醛改性多糖的制备方法,在不使用硼砂或乙二醛交联剂的条件下,对多糖进行羟烷基或阳离子化改性,并使产品性能指标更优,就成为该技术领域急需解决的技术难题。
发明内容
本发明所要解决的技术问题是在不使用硼砂或乙二醛交联剂的条件下,对多糖进行羟烷基或阳离子化改性,并使产品性能指标更优。
本发明的目的之一是提供一种无硼无醛改性多糖的制备方法,通过工艺优化和选用合适的多糖溶解和凝胶化抑制剂,不使用硼砂和乙二醛交联,同样能够制备改性多糖,并且产品纯度高,其0.5%水溶液500纳米波长透光率较高。
本发明的上述目的是通过技术方案达到的:
一种无硼无醛改性多糖的制备方法,其步骤如下:
(1)、在0℃-35℃下,将去离子水和极性有机化合物加入到反应容器中,加入分子量10000道尔顿以下的低分子量糖和一价金属盐,溶解完毕后,加入多糖并分散均匀;
(2)、用氮气置换反应容器中的空气,在氮气氛下加热升温至35℃-40℃时,加入催化剂;
(3)、继续升温至45℃-120℃,在这个条件下反应活化30-600分钟,冷却降温后,过滤;
(4)、过滤除杂后,把经过除杂活化的多糖转入反应容器,加入阳离子化醚化剂,通过抽充氮气,置换掉容器中的空气,用氮气压入碱性化合物,升温至35℃-45℃,在此温度下反应5-300分钟;升温至45℃-95℃,反应5-600分钟;
或者,过滤除杂后,把经过除杂活化的多糖转入反应容器,先加入碱性化合物,用氮气置换掉空气后,再用氮气压入羟烷基化醚化剂;升温至35℃-45℃,在此温度下反应5-300分钟;升温至50℃-95℃,反应5-600分钟;
(5)、冷却降温至40℃以下,加酸,调pH至中性,在温度降至35℃以下时, 过滤;
(6)、将过滤得到的改性多糖送入容器中,加入溶剂进行洗涤纯化,再经过过滤和干燥,得到目标产品。
优选地,步骤(1)中,所述多糖是天然半乳甘露聚糖、淀粉或纤维素。
优选地,所述半乳甘露聚糖为瓜尔胶、决明胶、香豆胶、塔拉胶或刺槐豆胶。
优选地,所述半乳甘露聚糖的结构式如图1所示;其中n代表聚合度(n不小于30),当式中m为0、1、2、3、4时,分别代表香豆胶、瓜尔胶、塔拉胶、刺槐豆胶、决明胶。
优选地,步骤(1)中,所述的极性有机化合物是与水互溶的醇类、酮类或醚类。
优选地,所述醇类为乙醇或异丙醇。
优选地,步骤(1)中,所述低分子量糖是单糖、双糖或寡糖。
优选地,步骤(1)中,所述低分子量糖是葡萄糖、蔗糖、甘露糖或半乳糖。
优选地,步骤(1)中,所述的一价金属盐是锂盐、钠盐或钾盐。
优选地,步骤(2)中,所述催化剂是可溶于极性溶剂的一价金属强碱性化合物,如氧化钠、氧化钾、氢氧化钠或氢氧化钾。
优选地,步骤(2)中,反应容器中的氧分压在万分之一以下。
优选地,步骤(4)中,所述的碱性化合物包括无机碱性化合物或有机碱性化合物。
优选地,所述无机碱性化合物是锂、钠、钾的氢氧化物,或者钠、钾的弱酸盐。
优选地,步骤(4)中,所述的碱性化合物为氢氧化钠。
优选地,所述的碱性有机化合物是胺类、吡啶类或吡咯类。
优选地,步骤(4)中,所述羟烷基化醚化剂是环氧乙烷、环氧丙烷、六碳以下端基环氧烷烃、2-羟基氯代丙烷或2-氯代乙醇。
优选地,步骤(4)中,所述羟烷基化醚化剂是环氧乙烷或环氧丙烷。
优选地,步骤(4)中,所述阳离子化醚化剂是环氧丙基三甲基氯化铵或3-氯-2-羟丙基三甲基氯化铵。
优选地,步骤(5)中,所述酸是盐酸、硫酸、磷酸、醋酸或柠檬酸。
本发明的另一目的是提供上述方法制备的改性多糖。
本发明的上述目的是通过以下技术方案达到的:
一种由上述无硼无醛改性多糖的制备方法制备的改性多糖,其改性多糖含量大于94%,硼含量不超过5mg/Kg,且0.5%水溶液500纳米波长透光率较高。
本发明改性后的半乳甘露聚糖的结构式如图2所示,式中:当R为H(氢)和/或羟烷基时,为羟烷基化改性多糖;当R为H(氢)和/或氯化-3-(N,N,N-三甲基)氨基-2-羟基丙基时,为阳离子化改性多糖;当R为H(氢)和/或羟烷基和/或氯化-3-(N,N,N-三甲基)氨基-2-羟基丙基时,为羟丙基及阳离子化改性多糖。
更具体地表述为:
当R为H(氢)和/或图3所示的结构式时,为羟丙基化改性多糖。
当R为H(氢)和/或图4所示的结构式时,为阳离子化改性多糖。
当R是H(氢)和/或图3所示的结构式和/或图4所示的结构式时,为羟丙基化多糖-2-羟基丙基三甲基氯化铵,属于羟烷基和阳离子化多糖的一种。
本发明的有益效果是:
本发明的无硼无醛改性多糖的制备方法,通过使用低分子量糖和水溶性一价金属盐,抑制多糖及其改性产品的溶解和凝胶形成,避免有害的硼化合物和乙二醛的使用;通过除杂活化和优化工艺过程,使改性多糖产品纯度提高,产品改性多糖含量大于94%,硼含量不超过5mg/Kg,产品0.5%水溶液500纳米可见光透光率较高。
本发明的无硼无醛改性多糖的制备方法,在对多糖进行改性前,在催化剂存在下,先对多糖进行除杂活化,把多糖分散在溶有低分子量糖、一价金属盐的去离子纯净水和极性有机化合物混合介质中,用氮气置换除氧后,加入催化剂,整个体系在氮气气氛下升温处理,获得基本除去油脂、蛋白质等杂质且活化了的多糖;经过处理的多糖在碱性条件下与醚化剂进行反应,反应完成后,加酸中和体系中的碱,使体系近中性;再经过洗涤纯化、过滤、干燥便获得成品。
下面通过附图和具体实施方式对本发明做进一步说明,但并不意味着对本发明保护范围的限制。
附图说明
图1是本发明半乳甘露聚糖的结构式示意图。
图2是本发明改性后的半乳甘露聚糖的结构式示意图。
图3是本发明改性后的半乳甘露聚糖中羟丙基的结构式。
图4是本发明改性后的半乳甘露聚糖中阳离子化基的结构式。
具体实施方式
为了更好的说明本发明工艺过程和技术优势,下面用实施例来阐述发明效果。但本发明并不局限于实施例的内容。
除非特别说明,本发明实施例中的百分比均为质量百分比;所用原料均为市场可购的本领域的常规型号的原料;所用方法均为本领域的常规方法(包括检测方法);所用设备均为本领域的常规设备。
实施例一
一种无硼无醛改性多糖的制备方法,其步骤如下:
(1)室温下,在带有搅拌的反应容器中依次加入75Kg的异丙醇、78Kg的去离子水、1.50Kg的蔗糖、0.75Kg的氯化钠、25.0Kg的瓜尔胶;
(2)通过抽充氮气,置换掉反应容器中的空气,升温至40℃,用氮气压入3.20Kg氢氧化钠(溶液状态)催化剂,并使反应容器中物料始终处于氮气氛下进行反应;
(3)升温至90℃,在此条件下反应40min;冷却降温至40℃以下,过滤;
(4)滤料用50%异丙醇水溶液洗涤过滤两次;把洗涤后的物料加入到盛有150Kg90%的异丙醇水溶液的反应容器中,加入1.80Kg氢氧化钠(溶液状态),置换掉反应容器中空气,氮气氛保护;分两次用氮气压入21.75Kg环氧丙烷;升温至40℃,反应30min;升温至50℃,反应90min;升温至65℃,反应150min;
(5)反应完成后,冷却降温至40℃以下,加乙酸调节pH至7,温度降至35℃以下,过滤;
(6)滤料依次分别用80%异丙醇和纯异丙醇各洗涤一次,滤料烘干即得产品。
如图2所示,是本发明改性后的半乳甘露聚糖的结构式示意图;其中,R代表氢和/或羟丙基,其结构可以用IR和NMR表征;当R代表氢和图3所示的结构式时,为羟丙基化改性多糖。当R代表氢和图4所示的结构式时,为阳离子化改性多糖。R代表氢和图3所示的结构式及图4所示的结构式时,为羟丙基化多糖-2-羟基丙基三甲基氯化铵,属于羟烷基和阳离子化多糖的一种。
本发明的多糖改性反应属于高聚物改性反应,高聚物反应特点是反应程度较低,不像小分子反应那样比较完全,只有一部分单体单元参与反应。因此,本发明附图1中,反应位置上的氢只有少部分被图3或图4中的基团取代,那么,图2中R就既可以是氢,也可以是图3所示的(羟烷基)基团或图4所示的【3-(N,N,N- 三甲基)氨基-2-羟基丙基】基团。
针对本发明多糖改性,实质是改性基团取代糖基单元上的羟基氢,而摩尔取代度就是表示平均每个糖基单元羟基氢被取代基取代的数值,即改性反应程度。
产品主要性能指标见表1。
实施例二
一种无硼无醛改性多糖的制备方法,其步骤如下:
(1)室温下,在带有搅拌的反应容器中依次加入70Kg的异丙醇、78Kg的去离子水、2.00Kg的蔗糖、0.80Kg的氯化钠、25.0Kg的瓜尔胶;
(2)用氮气置换掉容器中的空气后,升温至40℃,用氮气压入1.26Kg的氢氧化钠(溶液状态)催化剂,并使容器中物料始终处于氮气氛下进行反应;
(3)升温至95℃,在此条件下反应40min;冷却降温至40℃以下,过滤;
(4)滤料用50%异丙醇水溶液洗涤过滤两次;把洗涤后的物料加入到盛有150Kg90%的异丙醇水溶液的反应容器中,同时加入1.62Kg氢氧化钠(溶液状态),置换掉反应容器中空气,氮气氛保护,压入环氧丙烷13.95Kg;升温至40℃,反应30min;升温至50℃,反应90min;升温至65℃,反应150min;
(5)反应完成后,冷却降温至40℃以下,加乙酸调节pH至7,温度降至35℃以下,过滤;
(6)滤料依次分别用80%异丙醇和纯异丙醇各洗涤一次,滤料烘干即得产品。
产品主要性能指标见表1。
实施例三
一种无硼无醛改性多糖的制备方法,其步骤如下:
(1)室温下,在带有搅拌的反应容器中依次加入70Kg的异丙醇、80Kg的去离子水、1.50Kg的蔗糖、0.40Kg的氯化钠、25.0Kg的决明胶;
(2)用氮气置换掉容器中的空气后,升温至40℃,用氮气压入4.50Kg氢氧化钠(溶液状态)催化剂,并使容器中物料始终处于氮气氛下进行反应;
(3)升温至92.5℃,在此条件下反应40min;冷却降温至40℃以下,过滤;
(4)滤料用45%异丙醇水溶液洗涤过滤两次;把洗涤后的物料加入到盛有150Kg80%的异丙醇水溶液的反应容器中,同时加入2.14Kg氢氧化钠(溶液状态),置换掉反应容器中空气,氮气氛保护;压入环氧丙烷22.80Kg;升温至35℃,反应60min;升温至60℃,反应150min;
(5)反应完成后,冷却降温至40℃以下,加乙酸调节pH至7,温度降至35℃以下,过滤;
(6)滤料依次分别用80%异丙醇和纯异丙醇各洗涤一次,滤料烘干即得产品。
产品主要性能指标见表1。
实施例四
一种无硼无醛改性多糖的制备方法,其步骤如下:
(1)室温下,在带有搅拌的反应容器中依次加入60Kg的异丙醇、90Kg的去离子水、1.65Kg的蔗糖、0.30Kg的氯化钠、25.0Kg的决明胶;
(2)用氮气置换掉容器中的空气后,升温至40℃,用氮气压入5.80Kg氢氧化钠(溶液状态)催化剂,并使容器中物料始终处于氮气氛下进行反应;
(3)升温至95℃,在此条件下反应40min;冷却降温至40℃以下,过滤;
(4)滤料用42%异丙醇水溶液洗涤过滤两次;把洗涤后的物料加入到盛有150Kg90%的异丙醇水溶液的反应容器中,同时加入0.56Kg氢氧化钠(溶液状态),置换掉反应容器中空气,氮气氛保护;压入环氧丙烷15.8Kg;升温至35℃,反应60min;升温至60℃,反应150min;
(5)反应完成后,冷却降温至40℃以下,加乙酸调节pH至7,温度降至35℃以下,过滤;
(6)滤料依次分别用80%异丙醇和纯异丙醇各洗涤一次,滤料烘干即得产品。
产品主要性能指标见表1。
表1羟丙基多糖性能指标
Figure PCTCN2022094060-appb-000001
【1】注:布氏黏度(1%水溶液,25℃,pH=6~7条件下测定)。
【2】注:0.5%水溶液,25℃,pH=6~7,500纳米可见光条件下测定。
【3】注:核磁法测定羟丙基含量,计算得到(取代度计算问题请参见文献1:《天然产物研究与开发》,2004,Vol.16,No.6,“牛膝多糖衍生物的几种取代度测 定方法的探讨”;文献2:《GB/T20376-2006/ISO11543:2000》;利用百分含量计算摩尔取代度公式如下:各样品氮含量采用凯氏法测定;获得半乳甘露聚糖样品中氮的含量,最后记录为N(%);取代度(DS)计算公式为:DS=MS*(%N)/[MN-(%N)*MR];其中,MS、MN和MR分别是半乳糖或甘露糖单元(162)、氮(14)和结合在糖基单元上的取代基团(152.5)的摩尔质量;同理,把氮含量换成羟丙基含量,氮摩尔质量换成羟丙基摩尔质量,氯化3-(N,N,N-三甲基)氨基-2-羟丙基摩尔质量也换成羟丙基摩尔质量,就可以计算羟丙基摩尔取代度)。
【4】注:液质法(液相色谱-质谱法(liquid chromatography mass spectrometry))测定糖基含量,核磁法测定改性基团含量(参见文献2:
《GB/T20376-2006/ISO11543:2000》;和文献3:
www.mdpi.com/journal/molecules,Molecules 2019,24,2526;doi:10.3390/molecules24142526》)。
实施例一至四,在不使用有害的硼化合物和乙二醛做交联剂的条件下,通过除杂活化和优化工艺过程,使羟丙基多糖产品纯度在94%以上,产品硼含量不超过5mg/Kg(市场改性多糖商品硼含量在100—400mg/Kg),产品0.5%水溶液500纳米可见光透光率较高,且整个生产过程不会产生含硼废水。
实施例五
一种无硼无醛改性多糖的制备方法,其步骤如下:
(1)室温下,在带有搅拌的反应容器中依次加入80Kg的异丙醇、73Kg的去离子水、1.25Kg的蔗糖、0.50Kg的氯化钠、25.0Kg的瓜尔胶;
(2)用氮气置换掉反应容器中的空气,升温至45℃,用氮气压入3.75Kg氢氧化钠(溶液状态)催化剂,并使反应容器中物料始终处于氮气氛下进行反应;
(3)升温至90℃,在此条件下反应40min;冷却降温至40℃以下,过滤;
(4)滤料用50%异丙醇水溶液洗涤过滤两次;把洗涤后的物料加入到盛有150Kg70%的异丙醇水溶液的反应容器中,同时加入8.69Kg的3-氯-2-羟丙基三甲基氯化铵(溶液状态);置换掉空气,氮气氛保护,根据反应情况分多次加入1.29Kg氢氧化钠(溶液状态);升温至40℃,反应30min;升温至50℃,反应30min;升温至60℃,反应150min;
(5)反应完成后,冷却降温至40℃以下,加盐酸调节pH至7,温度至35℃以 下,过滤;
(6)滤料依次分别用80%异丙醇和纯异丙醇各洗涤一次,滤料烘干即得产品。
产品主要性能指标见表2。
实施例六
一种无硼无醛改性多糖的制备方法,其步骤如下:
(1)室温下,在带有搅拌的反应容器中依次加入70Kg的异丙醇、78Kg的去离子水、1.50Kg的蔗糖、0.50Kg的氯化钠、25.0Kg的瓜尔胶;
(2)用氮气置换掉容器中的空气,升温至35℃,用氮气压入2.25Kg氢氧化钠(溶液状态)催化剂,并使容器中物料始终处于氮气气氛下进行反应;
(3)升温至90℃,在此条件下反应40min;冷却降温至40℃以下,过滤;
(4)滤料用50%异丙醇水溶液洗涤、过滤两次;把洗涤后的物料加入到盛有150Kg 70%的异丙醇水溶液的反应容器中,同时加入5.80Kg的3-氯-2-羟丙基三甲基氯化铵(溶液状态);置换掉空气,氮气氛保护,根据反应情况分多次加入0.89Kg氢氧化钠(溶液状态);升温至40℃,反应30min;升温至50℃,反应30min;升温至60℃,反应150min;
(5)反应完成后,冷却降温至40℃以下,加盐酸调节pH至7左右,温度至35℃以下,过滤;
(6)滤料依次分别用80%异丙醇和纯异丙醇各洗涤一次,滤料烘干即得产品。
产品主要性能指标见表2。
实施例七
一种无硼无醛改性多糖的制备方法,其步骤如下:
(1)室温下,在带有搅拌的反应容器中依次加入70Kg的异丙醇、78Kg的去离子水、1.25Kg的蔗糖、0.50Kg的氯化钠、25.0Kg的决明胶;
(2)用氮气置换掉容器中的空气,升温至40℃,用氮气压入4.50Kg氢氧化钠(溶液状态)催化剂,并使容器中物料始终处于氮气氛下进行反应;
(3)升温至90℃,在此条件下反应40min;冷却降温至40℃以下,过滤;
(4)滤料用45%异丙醇水溶液洗涤过滤两次;把洗涤后的物料加入到盛有150Kg 80%的异丙醇水溶液的反应容器中,同时加入8.90Kg(溶液状态)的3-氯-2-羟丙基三甲基氯化铵;置换掉空气,氮气氛保护,根据反应情况分多次加入1.42Kg氢氧化钠(溶液状态);升温至40℃,反应60min;升温至55℃,反应150min;
(5)反应完成后,冷却降温至40℃以下,加盐酸调节pH至7左右,温度至35℃以下,过滤;
(6)滤料依次分别用80%异丙醇和纯异丙醇各洗涤一次,滤料烘干即得产品。
产品主要性能指标见表2。
实施例八
一种无硼无醛改性多糖的制备方法,其步骤如下:
(1)室温下,在带有搅拌的反应容器中依次加入70Kg的异丙醇、73Kg的去离子水、1.05Kg的蔗糖、0.50Kg的氯化钠、25.0Kg的决明胶;
(2)用氮气置换掉容器中的空气,升温至35℃,用氮气压入4.95Kg氢氧化钠(溶液状态)催化剂,并使容器中物料始终处于氮气氛下进行反应;
(3)升温至95℃,在此条件下反应40min;冷却降温至40℃以下,过滤;
(4)滤料用42%异丙醇水溶液洗涤过滤两次;把洗涤后的物料加入到盛有150Kg80%的异丙醇水溶液的反应容器中,同时加入11.86Kg的3-氯-2-羟丙基三甲基氯化铵(溶液状态);置换掉空气,氮气氛保护,根据反应情况分多次加入1.79Kg氢氧化钠(溶液状态);升温至40℃,反应60min;升温至55℃,反应150min;
(5)反应完成后,冷却降温至40℃以下,加盐酸调节pH至7左右,温度至35℃以下,过滤;
(6)滤料依次分别用80%异丙醇和纯异丙醇各洗涤一次,滤料烘干即得产品。
产品主要性能指标见表2。
表2阳离子多糖性能指标
Figure PCTCN2022094060-appb-000002
【1】注:布氏黏度(1%水溶液,25℃,pH=6~7条件下测定)。
【2】注:0.5%水溶液,25℃,pH=6~7,500纳米可见光条件下测定。
【3】注:凯氏定氮法计算得到[各样品氮含量采用凯氏法测定;获得半乳甘露聚糖样品中氮的含量,记录为N(%);取代度(DS)计算公式为:DS=MS* (%N)/[MN-(%N)*MR];其中,MS、MN和MR分别是半乳糖或甘露糖单元(162)、氮(14)和结合在糖基单元上的取代基团(152.5)的摩尔质量。
【4】注:液质法测定糖基含量,核磁法测定改性基团含量。
实施例五至八,在不使用有害的硼化合物和乙二醛做交联剂的条件下,通过除杂活化和优化工艺过程,使阳离子多糖产品纯度在94%以上,产品硼含量不超过5mg/Kg(市场改性多糖商品硼含量在100-400mg/Kg),产品0.5%水溶液500纳米可见光透光率较高(目前市场最著名商品JAGUAR EXCEL的标准是82%,参见文献5:PRODUCT DATA SHEET E 90007821-March 2009,实测其产品的透光率85-90%),且整个生产过程不会产生含硼废水。
实施例九
一种无硼无醛改性多糖的制备方法,其步骤如下:
室温下,在带有搅拌的反应容器中依次加入75Kg的异丙醇、78Kg的去离子水、1.50Kg的蔗糖、0.75Kg的氯化钠、25.0Kg的瓜尔胶;用氮气置换反应容器中的空气,升温至35℃,用氮气压入3.20Kg氢氧化钠(溶液状态)催化剂,并使反应容器中物料始终处于氮气氛下进行反应;升温至90℃,在此条件下反应40min;冷却降温至40℃以下,过滤,滤料用50%异丙醇水溶液洗涤过滤两次;把洗涤后的物料加入到盛有150Kg85%的异丙醇水溶液的反应容器中,加入1.80Kg氢氧化钠(溶液状态),置换掉空气,氮气氛保护;用氮气压入8.75Kg环氧丙烷;升温至40℃,反应30min;升温至50℃,反应30min;升温至65℃,反应90min;反应完成后,冷却降温至40℃以下,用氮气压入7.02Kg的3-氯-2-羟丙基三甲基氯化铵(溶液状态);根据反应情况分多次加入1.02Kg氢氧化钠(溶液状态);升温至40℃,反应30min;升温至50℃,反应30min;升温至60℃,反应90min;反应完成后,冷却降温至40℃以下,加乙酸调节pH至7左右,温度降至35℃以下,过滤;滤料依次分别用80%异丙醇和纯异丙醇各洗涤一次,滤料烘干即得产品。
产品主要性能指标见表3。
实施例十
一种无硼无醛改性多糖的制备方法,其步骤如下:
室温下,在带有搅拌的反应容器中依次加入70Kg的异丙醇、78Kg的去离子水、2.00Kg的蔗糖、0.80Kg的氯化钠、25.0Kg的瓜尔胶;用氮气置换容器中的空气,升温至45℃,用氮气压入1.26Kg氢氧化钠(溶液状态)催化剂,并使容器中物料 始终处于氮气氛下进行反应;升温至95℃,在此条件下反应40min;冷却降温至40℃以下过滤,滤料用50%异丙醇水溶液洗涤过滤两次;把洗涤后的物料加入到盛有150Kg85%的异丙醇水溶液的反应容器中,同时加入1.62Kg氢氧化钠(溶液状态),置换掉空气,氮气氛保护,压入环氧丙烷6.78Kg;升温至40℃,反应30min;升温至50℃,反应60min;升温至65℃,反应90min;反应完成后,冷却降温至40℃以下,用氮气压入5.86Kg的3-氯-2-羟丙基三甲基氯化铵(溶液状态);根据反应情况分多次加入0.69Kg氢氧化钠(溶液状态);升温至40℃,反应30min;升温至50℃,反应30min;升温至60℃,反应90min;反应完成后,冷却降温至40℃以下,加乙酸调节pH至7左右,温度降至35℃以下,过滤;滤料依次分别用80%异丙醇和纯异丙醇各洗涤一次,滤料烘干即得产品。
产品主要性能指标见表3。
实施例十一
一种无硼无醛改性多糖的制备方法,其步骤如下:
室温下,在带有搅拌的反应容器中依次加入70Kg的异丙醇、80Kg的去离子水、1.50Kg的蔗糖、0.40Kg的氯化钠、25.0Kg的决明胶;用氮气置换掉容器中的空气,升温至40℃,用氮气压入4.50Kg氢氧化钠(溶液状态)催化剂,并使容器中物料始终处于氮气氛下进行反应;升温至92℃,在此条件下反应40min;冷却降温至40℃以下,过滤,滤料用45%异丙醇水溶液洗涤过滤两次;把洗涤后的物料加入到盛有150Kg80%的异丙醇水溶液的反应容器中,同时加入2.14Kg氢氧化钠(溶液状态),置换掉空气,氮气氛保护;压入环氧丙烷11.40Kg;升温至35℃,反应30min;升温至60℃,反应90min;反应完成后,冷却降温至40℃以下,用氮气压入8.60Kg的3-氯-2-羟丙基三甲基氯化铵(溶液状态);根据反应情况分多次加入0.84Kg氢氧化钠(溶液状态);升温至40℃,反应60min;升温至55℃,反应90min;反应完成后,冷却降温至40℃以下,加乙酸调节pH至7左右,温度降至35℃以下,过滤;滤料依次分别用80%异丙醇和纯异丙醇各洗涤一次,滤料烘干即得产品。
产品主要性能指标见表3。
实施例十二
一种无硼无醛改性多糖的制备方法,其步骤如下:
室温下,在带有搅拌的反应容器中依次加入60Kg的异丙醇、90Kg的去离子水、1.65Kg的蔗糖、0.30Kg的氯化钠、25.0Kg的决明胶;用氮气置换掉容器中的空气, 升温至35℃,用氮气压入5.80Kg氢氧化钠(溶液状态)催化剂,并使容器中物料始终处于氮气氛下进行反应;升温至95℃,在此条件下反应40min;冷却降温至40℃以下,过滤,滤料用42%异丙醇水溶液洗涤过滤两次;把洗涤后的物料加入到盛有150Kg85%的异丙醇水溶液的反应容器中,同时加入0.56Kg氢氧化钠(溶液状态),置换掉空气,氮气氛保护;压入环氧丙烷8.80Kg;升温至35℃,反应30min;升温至60℃,反应90min;反应完成后,冷却降温至40℃以下,用氮气压入6.86Kg的3-氯-2-羟丙基三甲基氯化铵(溶液状态);根据反应情况分多次加入1.18Kg氢氧化钠(溶液状态);升温至40℃,反应60min;升温至55℃,反应90min;反应完成后,冷却降温至40℃以下,加乙酸调节pH至7左右,温度降至35℃以下过滤;滤料依次分别用80%异丙醇和纯异丙醇各洗涤一次,滤料烘干即得产品。
产品主要性能指标见表3。
表3羟丙基阳离子多糖性能指标
Figure PCTCN2022094060-appb-000003
【1】注:布氏黏度(1%水溶液,25℃,pH=6~7条件下测定)。
【2】注:0.5%水溶液,25℃,pH=6~7,500纳米可见光条件下测定。
【3】注:核磁法测定羟丙基含量,计算得到。
【4】注:凯式定氮法测定氮含量,计算得到。
【5】注:液质测定糖基含量,核磁测定改性基团含量。
实施例九至十二,在不使用有害的硼化合物和乙二醛做交联剂的条件下,通过除杂活化和优化工艺过程,使羟丙基阳离子多糖产品纯度在94%以上,产品硼含量不超过5mg/Kg(市场改性多糖商品硼含量在100-400mg/Kg),产品0.5%水溶液500纳米可见光透光率较高,且整个生产过程不会产生含硼废水。
本发明无硼无醛改性多糖制备:采用天然多糖为原料,以去离子水和极性有机化合物混合物作分散介质,经过多糖除杂活化、改性、中和、洗涤纯化、过滤、干 燥获得成品。
本发明在对多糖进行改性前,在催化剂存在下,先对多糖进行除杂活化,把多糖分散在溶有低分子量糖、一价金属盐的去离子纯净水和极性有机化合物混合介质中,用氮气置换除氧后,加入催化剂,整个体系在氮气气氛下升温处理,获得基本除去油脂、蛋白质等杂质且活化了的多糖;经过处理的多糖在碱性条件下与醚化剂进行反应,反应完成后,加酸中和体系中的碱,使体系近中性;再经过洗涤纯化、过滤、干燥便获得成品。
本发明利用水和极性有机化合物混合物作为分散介质;采用分子量低于10000道尔顿的低分子量糖类(包括单糖和双糖,以下简称低分子量糖)和一价水溶性金属盐类作为多糖溶解和凝胶抑制剂;为了提高反应效率,在催化剂存在下,先将多糖除杂活化,再进行改性,经纯化过滤干燥,获得无硼无醛的改性多糖产品。以多糖为100份(质量)计,其它物料分别为:分散介质50-2000份、低分子量糖0-50份、一价金属盐类0-50份、催化剂0.5-50份、一价金属无机碱性或有机碱性化合物0.5-200份、醚化剂5-300份、无机或有机酸类1-100份。所述的水为去离子纯净水;所述的极性有机化合物为可以和水互溶的醇类、酮类、醚类;所述的多糖是半乳甘露多糖、淀粉、纤维素;所述催化剂是一价金属强碱性化合物;所述醚化剂是使多糖羟烷基化和阳离子化的醚化剂;所述无机碱性化合物是锂、钠、钾氢氧化物和钠、钾弱酸盐;所述有机碱性化合物是胺类、吡啶类或吡咯类。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。

Claims (10)

  1. 一种无硼无醛改性多糖的制备方法,其步骤如下:
    (1)、在0℃-35℃下,将去离子水和极性有机化合物加入到反应容器中,加入分子量10000道尔顿以下的低分子量糖和一价金属盐,溶解完毕后,加入多糖并分散均匀;
    (2)、用氮气置换反应容器中的空气,在氮气氛下加热升温至35℃-40℃时,加入催化剂;
    (3)、继续升温至45℃-120℃,在这个条件下反应活化30-600分钟,冷却降温后,过滤;
    (4)、过滤除杂后,把经过除杂活化的多糖转入反应容器,加入阳离子化醚化剂,通过抽充氮气,置换掉容器中的空气,用氮气压入碱性化合物,升温至35℃-45℃,在此温度下反应5-300分钟;升温至45℃-95℃,反应5-600分钟;
    或者,过滤除杂后,把经过除杂活化的多糖转入反应容器,加入羟烷基化醚化剂,先加入碱性化合物,用氮气置换掉空气后,再用氮气压入羟烷基醚化剂;升温至35℃-45℃,在此温度下反应5-300分钟;升温至50℃-95℃,反应5-600分钟;
    (5)、冷却降温至40℃以下,加酸,调pH至中性,在温度降至35℃以下时,过滤;
    (6)、将过滤得到的改性多糖送入容器中,加入溶剂进行洗涤纯化,再经过过滤和干燥,得到目标产品。
  2. 根据权利要求1所述无硼无醛改性多糖的制备方法,其特征在于:步骤(1)中,所述多糖是天然半乳甘露聚糖、淀粉或纤维素。
  3. 根据权利要求1所述无硼无醛改性多糖的制备方法,其特征在于:步骤(1)中,所述半乳甘露聚糖为瓜尔胶、决明胶、香豆胶、塔拉胶或刺槐豆胶;所述的极性有机化合物是与水互溶的醇类、酮类或醚类;所述低分子量糖是单糖、双糖或寡糖;所述的一价金属盐是锂盐、钠盐或钾盐。
  4. 根据权利要求1所述无硼无醛改性多糖的制备方法,其特征在于:步骤(1)中,所述醇类为乙醇或异丙醇;所述低分子量糖是葡萄糖、蔗糖、甘露糖或半乳糖。
  5. 根据权利要求1所述无硼无醛改性多糖的制备方法,其特征在于:步骤(1)中,步骤(2)中,所述催化剂是氧化钠、氧化钾、氢氧化钠或氢氧化钾;反应容 器中的氧分压在万分之一以下。
  6. 根据权利要求1所述无硼无醛改性多糖的制备方法,其特征在于:步骤(4)中,所述的碱性化合物是锂、钠或钾的氢氧化物,或者是钠、钾的弱酸盐,或者是胺类、吡啶、吡咯;所述羟烷基化醚化剂是环氧乙烷、环氧丙烷、六碳以下端基环氧烷烃、2-羟基氯代丙烷或2-氯代乙醇;所述阳离子化醚化剂是环氧丙基三甲基氯化铵或3-氯-2-羟丙基三甲基氯化铵。
  7. 根据权利要求1所述无硼无醛改性多糖的制备方法,其特征在于:步骤(5)中,所述酸是盐酸、硫酸、磷酸、醋酸或柠檬酸。
  8. 权利要求1-7中任一项所述无硼无醛改性多糖的制备方法制备的改性多糖。
  9. 根据权利要求8所述改性多糖,其特征在于:所述改性多糖含量大于94%、硼含量低于5mg/Kg。
  10. 根据权利要求8所述改性多糖,其特征在于:所述改性多糖为羟烷基化改性多糖、阳离子化改性多糖或羟丙基及阳离子化改性多糖。
PCT/CN2022/094060 2021-08-16 2022-05-20 一种无硼无醛改性多糖的制备方法 WO2023221080A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/094060 WO2023221080A1 (zh) 2022-05-20 2022-05-20 一种无硼无醛改性多糖的制备方法
US18/425,317 US20240166773A1 (en) 2021-08-16 2024-01-29 Preparation method of boron-free and formaldehyde-free modified polysaccharides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/094060 WO2023221080A1 (zh) 2022-05-20 2022-05-20 一种无硼无醛改性多糖的制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/425,317 Continuation US20240166773A1 (en) 2021-08-16 2024-01-29 Preparation method of boron-free and formaldehyde-free modified polysaccharides

Publications (1)

Publication Number Publication Date
WO2023221080A1 true WO2023221080A1 (zh) 2023-11-23

Family

ID=88834388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094060 WO2023221080A1 (zh) 2021-08-16 2022-05-20 一种无硼无醛改性多糖的制备方法

Country Status (1)

Country Link
WO (1) WO2023221080A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104974267A (zh) * 2014-04-10 2015-10-14 中国石油化工股份有限公司 一种醚化改性刺槐豆胶及其制备方法和含有该刺槐豆胶的水基冻胶压裂液及其应用
CN108047348A (zh) * 2017-12-18 2018-05-18 苏州昕能胶体技术有限公司 一种高取代羟丙基瓜尔胶及其制备方法和用途
CN113583147A (zh) * 2021-08-16 2021-11-02 刘东辉 无硼无醛羟烷基阳离子多糖制备技术
CN113621086A (zh) * 2021-08-16 2021-11-09 刘东辉 无硼无醛羟烷基多糖的制备方法
CN113621087A (zh) * 2021-08-16 2021-11-09 刘东辉 无硼无醛阳离子多糖制备技术

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104974267A (zh) * 2014-04-10 2015-10-14 中国石油化工股份有限公司 一种醚化改性刺槐豆胶及其制备方法和含有该刺槐豆胶的水基冻胶压裂液及其应用
CN108047348A (zh) * 2017-12-18 2018-05-18 苏州昕能胶体技术有限公司 一种高取代羟丙基瓜尔胶及其制备方法和用途
CN113583147A (zh) * 2021-08-16 2021-11-02 刘东辉 无硼无醛羟烷基阳离子多糖制备技术
CN113621086A (zh) * 2021-08-16 2021-11-09 刘东辉 无硼无醛羟烷基多糖的制备方法
CN113621087A (zh) * 2021-08-16 2021-11-09 刘东辉 无硼无醛阳离子多糖制备技术

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
" Master’s Theses ", 24 May 2012, WUYI UNIVERSITY, China, article LI, CONGNUAN: "Synthesis and Properties of Highly Transparent Cationic Guar Gum", pages: 1 - 71, XP009550594 *

Similar Documents

Publication Publication Date Title
CN105102556B (zh) 适口性改善的水溶性多糖
Chen et al. Properties of granular cold-water-soluble starches prepared by alcoholic-alkaline treatments
US5489674A (en) Guar gum composition and process for making it
KR20130084222A (ko) 신규한 고점도 카복시메틸 셀룰로스 및 제조방법
DE212017000348U1 (de) Hydroxypropyl-Guargummi
CN101768225B (zh) 胶液透明的阳离子瓜尔胶及其制备方法
WO2020239012A1 (zh) 一种制备羟乙基纤维素的方法
Kono et al. NMR characterization of methylcellulose: chemical shift assignment and mole fraction of monomers in the polymer chains
CA2151349A1 (en) Guar gum composition and process for making it
WO2023221080A1 (zh) 一种无硼无醛改性多糖的制备方法
CN113621086B (zh) 无硼无醛羟烷基多糖的制备方法
CA1071193A (en) Polygalactomannan ether compositions
CN113583147B (zh) 无硼无醛羟烷基阳离子多糖制备技术
Hodge et al. Methylation and ethylation of corn starch, amylose and amylopectin in liquid ammonia
RU2079507C1 (ru) Очищенный конжековый глюкоманнан и способ его получения
CN113621087B (zh) 无硼无醛阳离子多糖制备技术
US20240166773A1 (en) Preparation method of boron-free and formaldehyde-free modified polysaccharides
JP2007084680A (ja) 水易溶性高分子化合物及びその製造方法
CN104892773A (zh) 一种高取代度羧甲基纤维素钠的制备方法
CN110256594B (zh) 一种非离子决明子多糖衍生物及其制备方法和应用
EP2906190B1 (en) Glyoxal-free cellulose derivatives for personal care compositions
CN105755862A (zh) 羧甲基决明子胶活性染料印花糊料的制备方法
CN116082531B (zh) 脱乙酰基的葡甘聚糖的制备方法及其产品
CN111574637A (zh) 甲基羧甲基瓜尔胶及其制备方法和应用
Mackie et al. 480. Polysaccharides from the green seaweed Caulerpa filiformis. Part II. A glucan of amylopectin type

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942120

Country of ref document: EP

Kind code of ref document: A1