WO2023219397A1 - Hydrogen-doped reduced titania powder and preparation method therefor - Google Patents

Hydrogen-doped reduced titania powder and preparation method therefor Download PDF

Info

Publication number
WO2023219397A1
WO2023219397A1 PCT/KR2023/006297 KR2023006297W WO2023219397A1 WO 2023219397 A1 WO2023219397 A1 WO 2023219397A1 KR 2023006297 W KR2023006297 W KR 2023006297W WO 2023219397 A1 WO2023219397 A1 WO 2023219397A1
Authority
WO
WIPO (PCT)
Prior art keywords
tio
powder
hydrogen
doped
doped reduced
Prior art date
Application number
PCT/KR2023/006297
Other languages
French (fr)
Korean (ko)
Inventor
조중영
남우현
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Publication of WO2023219397A1 publication Critical patent/WO2023219397A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/70Catalysts, in general, characterised by their form or physical properties characterised by their crystalline properties, e.g. semi-crystalline
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/08Drying; Calcining ; After treatment of titanium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/15X-ray diffraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/30Scanning electron microscopy; Transmission electron microscopy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Definitions

  • the present invention relates to hydrogen-doped reduced titanium oxide powder (TiO 2-x ) and a method for producing the same. Specifically, it relates to hydrogen-doped reduced titanium oxide powder (TiO 2-x ) with high optical absorption of visible light and a method for producing the same.
  • a photocatalyst is a catalyst that is activated by light energy. Unlike general catalysts, photocatalysts are photoactive even at room temperature, have simple reaction equipment, and can be used on a small scale. In addition, harmful substances are oxidized and decomposed into harmless carbon dioxide (CO 2 ) and water (H 2 O), and the reaction can proceed in the wavelength range of ultraviolet rays and visible rays.
  • CO 2 carbon dioxide
  • H 2 O water
  • Materials that can be used as photocatalysts include titanium oxide (TiO 2 ), zinc oxide (ZnO), cadmium sulfide (CdS), tungsten trioxide (WO 3 ), tin oxide (SnO 2 ), zirconium oxide (ZrO 2 ), and iron oxide (Fe). 2 O 3 ), cerium oxide (CeO 2 ), etc.
  • ZnO similar to TiO 2 , has an excellent effect on the decomposition of TCE (trichloroethylene), but by absorbing light, the catalyst itself is decomposed by light. Additionally, there is a possibility of secondary contamination because it generates harmful Zn ions.
  • CdS has a band gap (or forbidden band) energy (Eg) of 2.4 eV and can be excited by light in the visible range.
  • Eg forbidden band energy
  • WO 3 has good photocatalytic efficiency only for certain materials, and for other materials, the photocatalytic efficiency is not as good as TiO 2 , so its applicable range is very limited.
  • TiO 2 not only has good photocatalytic activity, but also has excellent durability and wear resistance, does not change its physical properties, is environmentally friendly, and has no concerns about secondary pollution even when disposed of. For this reason, TiO 2 is the most widely used among various types of photocatalysts.
  • TiO 2 can be broadly divided into anatase type and rutile type depending on its crystal structure.
  • the band gap energy (Eg) of anatase-type TiO 2 is 3.23 eV
  • that of rutile-type TiO 2 is 3.02 eV.
  • Eg band gap energy
  • rutile-type TiO 2 When converted to wavelength, they are 388 nm and 413 nm, respectively. Therefore, TiO 2 hardly reacts in the visible light range of 400 nm to 800 nm, but reacts in the ultraviolet light range of 270 nm to 400 nm. It is known that about 5% of sunlight reaching the earth's surface is ultraviolet rays, and about 40% is visible light. As commercialized TiO 2 reacts with ultraviolet rays, catalyst efficiency can be relatively increased if it can react with visible rays, which account for 40% of sunlight.
  • One embodiment of the present invention aims to provide a hydrogen-doped reduced titanium oxide powder (TiO 2-x ) having excellent light absorption for visible light and a method for manufacturing the same.
  • an embodiment of the present invention aims to provide hydrogen-doped reduced titanium oxide powder (TiO 2-x ) having a stable phase and a method for producing the same.
  • an embodiment of the present invention aims to provide a hydrogen-doped reduced titanium oxide powder (TiO 2-x ) with relatively improved processability and a method for manufacturing the same.
  • the method for producing hydrogen-doped reduced titania (TiO 2-x ) powder of the present invention includes a mixture preparation step of mixing TiO 2 particles, hydride, and mixed salt, mixture It includes a crystallization step of producing a crystallized product by reacting at a temperature above the eutectic melting point of the mixed salt, and a powder obtaining step of obtaining TiO 2-x powder (where X is a free number between 0.00001 and 2) from the crystallized product. do.
  • the hydride is 1 selected from the group consisting of MgH 2 , NaAlH 4 , NaBH 4 , LiAlH 4 , CaH 2 , ZrH 2 , TiH 2 , VH 2 , NaH, LiH, KH, RbH, CsH and Mg 2 FeH 6 It can be characterized as having more than one species.
  • the mixed salt may be two or more selected from the group consisting of LiCl, NaCl, KCl, RbCl, CsCl, Li 2 SO 4 , Na 2 SO 4 , K 2 SO 4 and K 3 PO 4 .
  • the mixed salt may be characterized as having a eutectic melting point of less than 700°C.
  • the mixture preparation step may include a first mixture preparation step of mixing TiO 2 particles and hydride to prepare a first mixture, and a second mixture preparation step of preparing a second mixture by adding a mixed salt to the first mixture.
  • the first mixture preparation step may include mixing TiO 2 particles and hydride at a molar ratio of 1:1 to 1:20.
  • the second mixture preparation step may include mixing the first mixture and the mixed salt at a mass ratio of 1:5 to 1:120.
  • the crystallization step may include a heat treatment step and a cooling step.
  • the heat treatment step may include heat treatment at a temperature of 700°C or more for 3 hours or more.
  • the powder obtaining step may include a washing step of washing the crystallized product, a filtration step of filtering the washed crystallized product, and a step of drying the filtered crystallized product.
  • the method for producing reduced hydrogen-doped titania (TiO 2-x ) powder may further include a post-treatment step of heat treating the dried product.
  • the post-treatment step may include heat treatment for 1 to 3 hours.
  • hydrogen-doped reduced titania (TiO 2-x ) powder may have a particle diameter of 5 nm to 100 ⁇ m.
  • hydrogen-doped reduced titania (TiO 2-x ) powder may have an optical absorption of 0.35 au or more in the visible light range (400 to 800 nm).
  • hydrogen-doped reduced titania (TiO 2-x ) powder may have an XRD spectrum including (110), (101), and (211) diffraction peaks.
  • the hydrogen-doped reduced titanium oxide powder (TiO 2-x ) according to an embodiment of the present invention has excellent light absorption not only for ultraviolet rays but also for visible rays. You can.
  • the hydrogen-doped reduced titanium oxide powder (TiO 2-x ) according to an embodiment of the present invention can exist stably without easily changing into another phase at a certain temperature or pressure.
  • the method for producing hydrogen-doped reduced titanium oxide powder (TiO 2-x ) according to an embodiment of the present invention can easily control the size and shape of the titanium oxide powder.
  • the method for producing hydrogen-doped reduced titanium oxide powder (TiO 2-x ) according to an embodiment of the present invention can be performed at a low process temperature and a short process time, thereby improving process ease.
  • Figure 1 is a flowchart of a method for producing hydrogen-doped reduced titanium oxide (TiO 2-x ) powder according to an embodiment of the present invention.
  • Figure 2a is a diagram showing hydrogen-doped reduced titanium oxide (TiO 2-x ) prepared in Example 1.
  • Figure 2b is a diagram showing hydrogen-doped reduced titanium oxide (TiO 2-x ) prepared in Example 6.
  • Figure 3 shows the results of XRD analysis of hydrogen-doped reduced titanium oxide (TiO 2-x ) powder according to the present invention.
  • FIGS. 4A to 4D are SEM images of hydrogen-doped reduced titanium oxide (TiO 2-x ) powder according to the present invention.
  • Figure 5 is a diagram showing specific areas where EDS analysis was performed on the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder of the present invention.
  • FIGS. 6A to 6D are diagrams showing EDS analysis results for each region of FIG. 5.
  • Figure 7 is a diagram showing the results of SEM elemental mapping of the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder of the present invention.
  • Figure 8 is a diagram showing the results of UV-Vis analysis of hydrogen-doped reduced titanium oxide (TiO 2-x ) powder of the present invention.
  • the method for producing hydrogen-doped reduced titanium oxide (TiO 2-x ) powder according to an embodiment of the present invention reduces TiO 2 through heat treatment. More specifically, the method for producing hydrogen-doped reduced titanium oxide (TiO 2-x ) powder according to an embodiment of the present invention reduces TiO 2 through a molten salt method.
  • the molten salt method refers to a method of growing crystals using salt with a low melting temperature.
  • Molten salt means salt in a molten state.
  • Molten salt has excellent heat transfer properties, heat storage properties, and fluidity. Therefore, when salts are mixed and heat treated, the heating rate is faster than the heating rate in the air, and the cooling rate is also fast, enabling rapid processing.
  • the heat treatment temperature can be lower than when using single salts.
  • Figure 1 is a flowchart of a method for producing hydrogen-doped reduced titanium oxide (TiO 2-x ) powder according to an embodiment of the present invention.
  • the method for producing hydrogen-doped reduced titanium oxide (TiO 2-x ) powder includes a mixture preparation (S10) step of mixing TiO 2 particles, hydride, and mixed salt. , a crystallization (S20) step of producing a crystallized product by reacting the mixture at a temperature above the eutectic melting point of the mixed salt, and a powder obtaining (S30) of hydrogen-doped reduced titanium oxide (TiO 2-x ) powder from the crystallized product. ) step.
  • a mixture is first prepared by mixing TiO 2 particles, hydride, and mixed salt (S10).
  • the mixture preparation (S10) step may be a step for evenly mixing materials for reducing TiO 2 and doping hydrogen with TiO 2 particles.
  • the mixture preparation (S10) step is in detail a first mixture preparation (S11) step of mixing TiO 2 particles and hydride to prepare a first mixture, and a second step of preparing a second mixture by adding a mixed salt to the first mixture. It may be done in the mixture preparation (S12) step.
  • the first mixture preparation (S11) step may be performed to add a hydride that reduces TiO 2 to TiO 2 .
  • TiO 2 is white TiO 2 , and commercial or laboratory-synthesized TiO 2 may be used.
  • P25 type TiO 2 which is a mixture of anatase type and rutile type, TiO 2 consisting of only anatase type, or TiO 2 consisting of only rutile type can be used.
  • Hydride is a two-element compound formed by combining hydrogen with another element, and can be used as a reducing agent in the present invention. Specifically, hydride can induce oxygen deficiency on the TiO 2 surface. Accordingly, TiO 2 can be reduced to TiO 2-x form.
  • hydride can dope hydrogen into oxygen-deficient TiO 2 (TiO 2-x ).
  • hydrogen of hydride may be doped into oxygen-deficient sites or interstitial defect sites of TiO 2 .
  • the reduced TiO 2 may be formed as TiO 2-x, which is a hydrogen-doped form.
  • Hydrides include magnesium hydride (MgH 2 ), sodium aluminum hydride (NaAlH 4 ), sodium borohydride (NaBH 4 ), lithium aluminum hydride (LiAlH 4 ), calcium hydride (CaH 2 ), and zirconium hydride ( ZrH 2 ), titanium hydride (TiH 2 ), vanadium hydride (VH 2 ), sodium hydride (NaH), lithium hydride (LiH), potassium hydride (KH), rubidium hydride (RbH), cesium hydrogen.
  • One or more species selected from the group consisting of hydride (CsH) and magnesium iron hydride (Mg 2 FeH 6 ) may be used.
  • TiO 2 particles and hydride may be mixed at a molar ratio of 1:1 to 1:20.
  • TiO 2 particles and hydride are mixed at a molar ratio of less than 1:1, the amount of hydride, which is a reducing agent, is relatively small, so reduction of TiO 2 may not occur properly. Conversely, when TiO 2 particles and hydride are mixed at a molar ratio exceeding 1:20, the hydride creates too many oxygen deficiency sites in TiO 2 , increasing the absorbance of visible light, while the number of electron and hole recombinations also increases. Photocatalyst performance may deteriorate due to the formation of new phases or new phases.
  • the molar ratio in which TiO 2 particles and hydride are mixed may vary.
  • TiO 2 and TiH 2 may be mixed at a molar ratio of 1:1 to 1:3.
  • TiO 2 particles and hydride can be mixed using equipment such as milling or mixer, but are not limited to this.
  • the mixed salt is added to the first mixture to prepare the second mixture (S12).
  • the second mixture preparation (S12) step may be performed to add a mixed salt to the first mixture to help the reduction reaction of TiO 2 occur at a low temperature and for a short time.
  • the mixed salt is selected to have a eutectic melting point of less than 700°C.
  • the mixed salt is lithium chloride (LiCl), sodium chloride (NaCl), potassium chloride (KCl), rubidium chloride (RbCl), cesium chloride (CsCl), lithium sulfate (Li 2 SO 4 ), and sodium sulfate (Na 2 SO 4 ), potassium sulfate (K 2 SO 4 ), and potassium phosphate (K 3 PO 4 ).
  • LiCl lithium chloride
  • NaCl sodium chloride
  • KCl potassium chloride
  • RbCl rubidium chloride
  • CsCl cesium chloride
  • Li 2 SO 4 lithium sulfate
  • Na 2 SO 4 sodium sulfate
  • K 2 SO 4 potassium sulfate
  • K 3 PO 4 potassium phosphate
  • the mixed salt may be appropriately selected and used depending on the type of hydride used in the first mixture preparation (S11) step.
  • the mixed salt and the first mixture may be mixed at a mass ratio of 5:1 to 120:1.
  • the mass ratio of the mixed salt and the first mixture is less than 5:1, the heat transfer efficiency of the mixed salt may decrease and the heat treatment time may be prolonged. Conversely, when the mass ratio of the mixed salt and the first mixture is 120:1, the melting point becomes too low, which may weaken the bond within the powder.
  • the mixed mass ratio of the mixed salt and the first mixture may be different depending on the type and amount of hydride used in the first mixture, and the type of mixed salt.
  • TiH 2 when TiH 2 is mixed as a hydride at a molar ratio of 1:1 to 1:3, it may be mixed at a mass ratio of 7:1 to 20:1.
  • the mixed salt and the first mixture can be mixed using equipment such as a mill or mixer, but are not limited to this.
  • a crystallized product is prepared by reacting at a temperature above the eutectic melting point of the mixed salt (S20).
  • the crystallization (S20) step may be performed to induce a reduction reaction of TiO 2 to form crystals of hydrogen-doped reduced titanium oxide (TiO 2-x ) powder.
  • the crystallization (S20) step may include a heat treatment (S21) step of heat-treating the second mixture and a cooling (S22) step of cooling the heat-treated second mixture.
  • the heat treatment (S21) step may be performed to induce a reduction reaction of TiO 2 .
  • the heat treatment (S21) step can be performed by placing the second mixture in a reaction vessel such as an alumina crucible, charging it into the reaction furnace, and then heating the reaction furnace.
  • a reaction vessel such as an alumina crucible
  • heat treatment can be performed in various ways, such as heating by burning fuel, heating by using physical characteristics of electricity such as electrical resistance, electromagnetic induction, and discharge, and heating by injecting gas.
  • the heat treatment (S21) step may be performed at a temperature higher than the eutectic melting point of the mixed salt.
  • the eutectic melting point of the mixed salt refers to the point where the two components are completely dissolved and mixed in the liquid state without forming a solid solution. Specifically, it refers to the fact that all mixed salts can exist in a liquid state.
  • the heat treatment (S21) step may be performed at a temperature of 700°C or higher. Specifically, the heat treatment (S21) step may be performed at a temperature of 700° C. or higher for 3 hours or more.
  • the mixed salt may not melt properly and the reduction of TiO 2 may not occur smoothly.
  • a cooling (S22) step may be performed to form crystals of the product produced by heat treatment.
  • the cooling (S22) step can be performed by cooling the reactor using gas, cooling it naturally, etc.
  • the powder obtaining (S30) step may include a washing (S31) step of washing the crystallized product, a filtration (S32) step of filtering the washed crystallized product, and a drying (S33) step of drying the filtered crystallized product. You can.
  • a washing (S31) step may be performed to dissolve water-soluble salts remaining in the crystallized product.
  • the washing (S31) step may be performed by immersing the crystallized product in distilled water.
  • a filtration (S32) step may be performed to filter out insoluble product particles in the crystallized product.
  • the filtration (S32) step can be performed by natural filtration, suction filtration, etc.
  • the drying (S33) step may be performed to remove moisture from the powder.
  • the drying (S33) step can be performed by drying in an oven or natural drying.
  • the method for producing hydrogen-doped reduced titanium oxide (TiO 2-x ) powder of the present invention may further include a post-treatment (S40) step of heat treating the filtered crystallized product.
  • a post-treatment (S40) step may be performed to prepare the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder into a more stable phase.
  • the post-treatment (S40) step may be performed by heat treatment at a temperature of 300°C or higher for 1 to 3 hours.
  • the thermal and chemical stability of the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder may be improved.
  • the problem of hydrogen-doped reduced titanium oxide (TiO 2-x ) powder easily changing phase at a certain temperature and pressure can be prevented, and thus the specific surface area can be reduced to prevent light absorption from falling. .
  • the method for producing hydrogen-doped reduced titanium oxide (TiO 2-x ) powder of the present invention includes the steps of mixing TiO 2 particles, hydride, and mixed salt to prepare a mixture, and reacting the mixture at a temperature above the eutectic melting point of the mixed salt. Since it includes the step of preparing a crystallized product, an excellent photocatalyst can be manufactured with significantly improved light absorption performance for ultraviolet and visible light, photocatalytic performance, and catalyst stability.
  • the size of the band gap can be reduced through oxygen deficiency in TiO 2 and the generation of Ti 3+ ions, and the recombination of electrons and holes can be prevented through hydrogen doping.
  • the method for producing hydrogen-doped reduced titanium oxide (TiO 2-x ) powder of the present invention includes preparing a mixture by mixing TiO 2 particles, hydride, and mixed salt, and mixing the mixture at a temperature above the eutectic melting point of the mixed salt. Since it includes the step of reacting to produce a crystallized product, the ease of processing can be improved.
  • the method for producing doped reduced titanium oxide powder (TiO 2-x ) of the present invention can easily control the size and shape of the titanium oxide powder depending on the type and mixing ratio of the hydride and the mixed salt.
  • the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder of the present invention has an oxygen-deficient structure. Specifically, TiO 2 is reduced and It has a surface oxygen-depleted structure. When oxygen in TiO 2 is deficient, a change occurs in the oxidation number of Ti. Specifically, Ti 4+ changes to Ti 3+ . Since the energy level of Ti 3+ is lower than that of Ti 4+ , the band gap of Ti 3+ may be lower than that of Ti 4+ . Accordingly, the light absorption efficiency of TiO 2 for visible light can be improved.
  • the color of oxygen-deficient titanium oxide changes depending on the degree of oxygen deficiency on the surface.
  • the color changes from light yellow, yellow, gray, dark gray, and black depending on the degree of oxygen deficiency.
  • the reason why the color change occurs in this order is because the more titanium oxide is reduced, that is, the more oxygen defects there are in titanium oxide, the area that can absorb light gradually moves toward longer wavelengths.
  • the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder of the present invention has a structure in which hydrogen is doped at the oxygen-deficient site. Since the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder of the present invention is doped with hydrogen at oxygen-deficient sites, the recombination of electrons and holes can be relatively reduced. Accordingly, the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder may have improved light absorption for visible light.
  • the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder of the present invention may have a particle diameter size of 5 nm to 100 ⁇ m.
  • the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder of the present invention has an optical absorption of 0.35 au or more in the visible light range (400 to 800 nm).
  • the XRD spectrum of the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder of the present invention may include (110), (101), and (211) diffraction peaks.
  • the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder of the present invention has an oxygen-deficient and hydrogen-doped structure, it can relatively reduce the recombination of electrons and holes, and thus can be used not only in ultraviolet rays but also in visible light. Light absorption can be improved.
  • TiO 2 , hydride, and mixed salt were mixed to prepare a mixture, then heat treated at a temperature above the eutectic melting point of the mixed salt, cooled, washed, filtered, and dried to prepare a powder.
  • P25 was used as TiO 2 and TiH 2 was used as the hydride.
  • KCl and NaCl were used as mixed salts.
  • Hydrogen-doped reduced titanium oxide (TiO 2-x ) powder was prepared through the following steps.
  • Step 1 Preparing a first mixture by mixing 1g each of TiO 2 and TiH 2
  • Step 2 Preparing a second mixture by mixing a mixed salt of 15 g each of KCl and NaCl with the first mixture.
  • Step 3 Raise the temperature from room temperature to 120°C per hour and maintain the heat treatment temperature at 800°C for 3 hours.
  • Step 4 Cooling using furnace cooling method
  • Step 5 Ultrasonic wash with approximately 1000ml of DI water for 30 minutes.
  • Step 7 After final washing with ethanol and acetone, dry in an oven at 80°C for 1 hour.
  • Hydrogen-doped reduced titanium oxide (TiO 2-x ) powder was prepared through the following steps.
  • Step 1 Preparing a first mixture by mixing 1g each of TiO 2 and TiH 2
  • Step 2 Preparing a second mixture by mixing a mixed salt of 15 g each of KCl and NaCl with the first mixture.
  • Step 3 Raise the temperature from room temperature to 120°C per hour and maintain the heat treatment temperature at 800°C for 3 hours.
  • Step 4 Cooling using furnace cooling method
  • Step 5 Ultrasonic wash with approximately 1000ml of DI water for 30 minutes.
  • Step 7 After final washing with ethanol and acetone, dry in an oven at 80°C for 1 hour.
  • Step 8 Heat treatment at 300°C, 350°C, 400°C, and 450°C respectively.
  • Step 1 Preparing the first mixture by mixing 1g of TiO 2 and 3g of TiH 2
  • Step 2 Preparing a second mixture by mixing a mixed salt of 15 g each of KCl and NaCl with the first mixture.
  • Step 3 Raise the temperature from room temperature to 120°C per hour and maintain the heat treatment temperature at 800°C for 3 hours.
  • Step 4 Cooling using furnace cooling method
  • Step 5 Ultrasonic wash with approximately 1000ml of DI water for 30 minutes.
  • Step 7 After final washing with ethanol and acetone, dry in an oven at 80°C for 1 hour.
  • Figure 2a is a diagram showing hydrogen-doped reduced titanium oxide (TiO 2-x ) prepared in Example 1.
  • Figure 2b is a diagram showing hydrogen-doped reduced titanium oxide (TiO 2-x ) prepared in Example 6.
  • the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder prepared according to Example 6 is the hydrogen-doped reduced titanium oxide (TiO 2- x) prepared according to Example 1.
  • a dark color means that the absorbance of visible light is high, so it can be seen that the higher the hydride content, the higher the absorbance of visible light.
  • Figure 3 shows the results of XRD analysis of hydrogen-doped reduced titanium oxide (TiO 2-x ) powder according to the present invention.
  • the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder according to the present invention had XRD peaks observed at 27.53° (110), 36.15° (101), and 54.40° (211). Through this, it can be seen that the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder according to the present invention has the strongest peak intensity of rutile (JCPDS: 00-004-0551).
  • the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder according to the present invention originates from the rutile phase.
  • Figures 4a to 4d show SEM images of hydrogen-doped reduced titanium oxide (TiO 2-x ) powder according to the present invention.
  • the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder according to the present invention has a particle diameter size of 5 nm to 100 ⁇ m.
  • Figure 6b is the qualitative analysis result for Spectrum 2
  • [Table 2] is the quantitative analysis result.
  • Figure 6c is the qualitative analysis result for Spectrum 3
  • [Table 3] is the quantitative analysis result.
  • Ti is contained at 48.31 wt% and O is contained at 42.84 wt%.
  • Figure 6d is the qualitative analysis result for Spectrum 4
  • [Table 4] is the quantitative analysis result.
  • the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder according to the present invention contains the same components as TiO 2 , that is, Ti and O elements, in all crystal parts.
  • Figure 7 is a diagram showing the results of SEM elemental mapping of the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder of the present invention.
  • Ti and O are uniformly present in the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder of the present invention.
  • C is derived by carbon tape on which the powder sample is placed
  • Pt is derived by Pt coating, which is a pretreatment process for SEM analysis.
  • UV-Vis analysis was performed using an Ultraviolet-Visible-Near Infrared Spectrophotometer (CARY5000) manufactured by Agilent Technology.
  • CARY5000 Ultraviolet-Visible-Near Infrared Spectrophotometer
  • Figure 8 is a diagram showing the results of UV-Vis analysis of hydrogen-doped reduced titanium oxide (TiO 2-x ) powder of the present invention.
  • Comparative Example 1 in FIG. 8 is a graph of TiO 2 (P25) before reaction.
  • Example 1 is a graph of hydrogen-doped reduced titanium oxide (TiO 2-x ) without post-treatment, and Examples 2 to 5 are hydrogen post-processed by heating to 300°C, 350°C, 400°C, and 450°C, respectively. This is a graph for doped reduced titanium oxide (TiO 2-x ).
  • Example 6 is a graph of hydrogen-doped reduced titanium oxide (TiO 2-x ) prepared by mixing TiO 2 and hydride at a molar ratio of 1:3.
  • the comparative example absorbs light only in the ultraviolet region and hardly absorbs light in the visible region.
  • Examples 1 to 6 it can be seen that light is absorbed not only in the ultraviolet region but also in the visible region. Specifically, in the case of Examples 1 to 6, it can be seen that the optical absorption of visible light is 0.35 a.u. or more.
  • post-processed Examples 2 to 6 have almost similar light absorption characteristics compared to non-post-treated Example 1.
  • the light absorption characteristics of the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder are hardly deteriorated even when heat-treated to form a stable phase. That is, it can be confirmed that hydrogen-doped reduced titanium oxide (TiO 2-x ) powder, which has a stable phase and improved light absorption characteristics for ultraviolet and visible light, can be produced.
  • Example 3 when comparing Example 1 and Example 3, it can be confirmed that the light absorption of ultraviolet rays and visible light in Example 3, which has a higher mixing ratio of hydride, is higher than that in Example 1. Through this, it can be seen that the higher the mixing ratio of hydride, the improved light absorption of ultraviolet rays and visible light.
  • the present invention is a photocatalyst technology and can be used in various industrial fields where photocatalysts are applied. For example, it can be used in various industrial fields such as environment, energy, and chemical manufacturing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

A preparation method for hydrogen-doped reduced titania (TiO2-x) powder of the present invention comprises: a mixture preparation step for mixing TiO2 particles, hydrides, and mixed salts; a crystallization step for preparing a crystallized product by reacting a mixture at a temperature higher than or equal to the eutectic melting point of the mixed salts; and a powder acquisition step for acquiring TiO2-x powder (in the formula, X is a rational number between 0.00001 and 2) from the crystallized product.

Description

수소 도핑된 환원된 산화티탄 분말 및 그의 제조방법Hydrogen-doped reduced titanium oxide powder and method for producing the same
본 발명은 수소 도핑된 환원된 산화티탄 분말(TiO2-x) 및 그의 제조방법에 관한 것이다. 구체적으로, 가시광선에 대한 광 흡수도가 높은 수소 도핑된 환원된 산화티탄 분말(TiO2-x) 및 그의 제조방법에 관한 것이다.The present invention relates to hydrogen-doped reduced titanium oxide powder (TiO 2-x ) and a method for producing the same. Specifically, it relates to hydrogen-doped reduced titanium oxide powder (TiO 2-x ) with high optical absorption of visible light and a method for producing the same.
광촉매(photocatalyst)란 빛 에너지에 의해 활성화되는 촉매를 말한다. 광촉매는 일반적인 촉매와 다르게 상온에서도 광활성을 가지며, 반응 장치가 간단하고 소규모로 사용 가능하다. 또한, 유해 물질들을 무해한 이산화탄소(CO2)와 물(H2O) 등으로 산화 분해하고, 자외선과 가시광선 영역의 파장에서 반응이 진행될 수 있다.A photocatalyst is a catalyst that is activated by light energy. Unlike general catalysts, photocatalysts are photoactive even at room temperature, have simple reaction equipment, and can be used on a small scale. In addition, harmful substances are oxidized and decomposed into harmless carbon dioxide (CO 2 ) and water (H 2 O), and the reaction can proceed in the wavelength range of ultraviolet rays and visible rays.
광촉매로 사용 가능한 물질로는 산화티탄(TiO2), 산화아연(ZnO), 황화카드뮴(CdS), 삼산화텅스텐(WO3), 산화주석(SnO2), 산화지르코늄(ZrO2), 산화철(Fe2O3), 산화세륨(CeO2) 등이 있다. TiO2와 비슷한 ZnO는 TCE(trichloroethylene)의 분해에 탁월한 효과를 가지고 있지만, 빛을 흡수함으로써 촉매 자신이 빛에 분해된다. 또한, 유해한 Zn 이온을 발생하기 때문에 2차 오염의 가능성이 있다. CdS는 밴드 갭(band gap or forbidden band) 에너지(Eg)가 2.4 eV로서 가시광선 영역의 빛으로 여기상태가 될 수 있지만, 빛을 받으면 촉매 구조가 파괴되어 내구성이 좋지 않다는 문제가 있다. WO3은 특정한 물질에 대해서만 광촉매 효율이 좋고 그 외에는 광촉매 효율이 TiO2에 비해 좋지 않아 적용 가능한 범위가 매우 제한된다. 이에 반해, TiO2는 광촉매 활성이 좋을 뿐 아니라, 내구성과 내마모성이 우수하고, 자체 물성 변화가 없으며 친환경적이며 폐기 시에도 2차 공해에 대한 염려가 없다. 이러한 이유에서, 다양한 종류의 광촉매 중 TiO2가 가장 많이 사용되고 있다.Materials that can be used as photocatalysts include titanium oxide (TiO 2 ), zinc oxide (ZnO), cadmium sulfide (CdS), tungsten trioxide (WO 3 ), tin oxide (SnO 2 ), zirconium oxide (ZrO 2 ), and iron oxide (Fe). 2 O 3 ), cerium oxide (CeO 2 ), etc. ZnO, similar to TiO 2 , has an excellent effect on the decomposition of TCE (trichloroethylene), but by absorbing light, the catalyst itself is decomposed by light. Additionally, there is a possibility of secondary contamination because it generates harmful Zn ions. CdS has a band gap (or forbidden band) energy (Eg) of 2.4 eV and can be excited by light in the visible range. However, it has a problem of poor durability because the catalyst structure is destroyed when exposed to light. WO 3 has good photocatalytic efficiency only for certain materials, and for other materials, the photocatalytic efficiency is not as good as TiO 2 , so its applicable range is very limited. On the other hand, TiO 2 not only has good photocatalytic activity, but also has excellent durability and wear resistance, does not change its physical properties, is environmentally friendly, and has no concerns about secondary pollution even when disposed of. For this reason, TiO 2 is the most widely used among various types of photocatalysts.
TiO2는 결정구조에 따라 크게 아나타제형(anatase)과 루틸형(rutile)으로 나눌 수 있다. 아나타제형 TiO2의 밴드 갭 에너지(Eg)는 3.23eV이고, 루틸형 TiO2는 3.02eV이다. 이를 파장으로 환산하면 각각 388nm, 413nm이므로, TiO2는 가시광선 영역인 400nm 내지 800nm 에서는 거의 반응하지 않고, 자외선 영역인 270nm 내지 400nm에서 반응한다. 태양광의 경우 지표면에 도달하는 약 5%가 자외선이고, 약 40%가 가시광선으로 알려져 있다. 이와 같이 상용화된 TiO2는 자외선에 의해 반응하므로 태양광의 40%를 차지하는 가시광선에 의해 반응할 수 있게 되면 촉매 효율은 상대적으로 높아질 수 있다.TiO 2 can be broadly divided into anatase type and rutile type depending on its crystal structure. The band gap energy (Eg) of anatase-type TiO 2 is 3.23 eV, and that of rutile-type TiO 2 is 3.02 eV. When converted to wavelength, they are 388 nm and 413 nm, respectively. Therefore, TiO 2 hardly reacts in the visible light range of 400 nm to 800 nm, but reacts in the ultraviolet light range of 270 nm to 400 nm. It is known that about 5% of sunlight reaching the earth's surface is ultraviolet rays, and about 40% is visible light. As commercialized TiO 2 reacts with ultraviolet rays, catalyst efficiency can be relatively increased if it can react with visible rays, which account for 40% of sunlight.
이에, 자외선뿐만 아니라 가시광선에 대한 활성 및 안정성이 우수한 TiO2에 대한 기술 개발이 요구되고 있다.Accordingly, there is a need to develop technology for TiO 2 that has excellent activity and stability against not only ultraviolet rays but also visible rays.
한편, 전술한 배경기술은 반드시 본 발명의 출원 전에 일반 공중에게 공개된 공지기술이라 할 수는 없다.Meanwhile, the above-mentioned background technology cannot necessarily be said to be known technology disclosed to the general public before the application for the present invention.
본 발명의 일 실시예는 가시광선에 대한 광 흡수도가 우수한 수소 도핑된 환원된 산화티탄 분말(TiO2-x) 및 그의 제조방법을 제공하는 데에 목적이 있다.One embodiment of the present invention aims to provide a hydrogen-doped reduced titanium oxide powder (TiO 2-x ) having excellent light absorption for visible light and a method for manufacturing the same.
또한, 본 발명의 일 실시예는 안정된 상을 가지는 수소 도핑된 환원된 산화티탄 분말(TiO2-x) 및 그의 제조방법을 제공하는 데에 목적이 있다.Additionally, an embodiment of the present invention aims to provide hydrogen-doped reduced titanium oxide powder (TiO 2-x ) having a stable phase and a method for producing the same.
나아가, 본 발명의 일 실시예는 상대적으로 공정 용이성이 향상된 수소 도핑된 환원된 산화티탄 분말(TiO2-x) 및 그의 제조방법을 제공하는 데에 목적이 있다.Furthermore, an embodiment of the present invention aims to provide a hydrogen-doped reduced titanium oxide powder (TiO 2-x ) with relatively improved processability and a method for manufacturing the same.
상술한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본 발명의 수소가 도핑된 환원된 티타니아(TiO2-x) 분말의 제조방법은 TiO2 입자, 수소화물 및 혼합염을 혼합하는 혼합물 제조단계, 혼합물을 혼합염의 공융 녹는점 이상의 온도에서 반응시켜 결정화된 생성물을 제조하는 결정화단계 및 결정화된 생성물로부터 TiO2-x 분말(상기 식에서 X는 0.00001 내지 2 사이의 유리수임)을 수득하는 분말 수득단계를 포함한다.As a technical means for achieving the above-described technical problem, the method for producing hydrogen-doped reduced titania (TiO 2-x ) powder of the present invention includes a mixture preparation step of mixing TiO 2 particles, hydride, and mixed salt, mixture It includes a crystallization step of producing a crystallized product by reacting at a temperature above the eutectic melting point of the mixed salt, and a powder obtaining step of obtaining TiO 2-x powder (where X is a free number between 0.00001 and 2) from the crystallized product. do.
예컨대, 수소화물은 MgH2, NaAlH4, NaBH4, LiAlH4, CaH2, ZrH2, TiH2, VH2, NaH, LiH, KH, RbH, CsH 및 Mg2FeH6로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 할 수 있다.For example, the hydride is 1 selected from the group consisting of MgH 2 , NaAlH 4 , NaBH 4 , LiAlH 4 , CaH 2 , ZrH 2 , TiH 2 , VH 2 , NaH, LiH, KH, RbH, CsH and Mg 2 FeH 6 It can be characterized as having more than one species.
예컨대, 혼합염은 LiCl, NaCl, KCl, RbCl, CsCl, Li2SO4, Na2SO4, K2SO4 및 K3PO4 로 이루어진 군으로부터 선택되는 2종 이상인 것을 특징으로 할 수 있다.For example, the mixed salt may be two or more selected from the group consisting of LiCl, NaCl, KCl, RbCl, CsCl, Li 2 SO 4 , Na 2 SO 4 , K 2 SO 4 and K 3 PO 4 .
예컨대, 혼합염은 공융 녹는점이 700℃미만인 것을 특징으로 할 수 있다.For example, the mixed salt may be characterized as having a eutectic melting point of less than 700°C.
예컨대, 혼합물 제조단계는 TiO2 입자와 수소화물을 혼합하여 제1혼합물을 제조하는 제1혼합물 제조단계 및 제1혼합물에 혼합염을 투여하여 제2혼합물을 제조하는 제2혼합물 제조단계를 포함할 수 있다.For example, the mixture preparation step may include a first mixture preparation step of mixing TiO 2 particles and hydride to prepare a first mixture, and a second mixture preparation step of preparing a second mixture by adding a mixed salt to the first mixture. You can.
예컨대, 제1혼합물 제조단계는 TiO2 입자와 수소화물을 1:1 내지 1:20의 몰 비로 혼합하는 단계를 포함할 수 있다.For example, the first mixture preparation step may include mixing TiO 2 particles and hydride at a molar ratio of 1:1 to 1:20.
예컨대, 제2혼합물 제조단계는 제1혼합물과 혼합염을 1:5 내지 1:120의 질량 비로 혼합하는 단계를 포함할 수 있다.For example, the second mixture preparation step may include mixing the first mixture and the mixed salt at a mass ratio of 1:5 to 1:120.
예컨대, 결정화단계는 열처리단계 및 냉각단계를 포함할 수 있다.For example, the crystallization step may include a heat treatment step and a cooling step.
예컨대, 열처리단계는 700℃이상의 온도에서 3시간 이상 열처리하는 단계를 포함할 수 있다.For example, the heat treatment step may include heat treatment at a temperature of 700°C or more for 3 hours or more.
예컨대, 분말 수득단계는 결정화된 생성물을 세척하는 세척단계, 세척된 결정화된 생성물을 여과하는 여과단계 및 여과된 결정화된 생성물을 건조하는 단계를 포함할 수 있다.For example, the powder obtaining step may include a washing step of washing the crystallized product, a filtration step of filtering the washed crystallized product, and a step of drying the filtered crystallized product.
예컨대, 수소가 도핑된 환원된 티타니아(TiO2-x) 분말의 제조방법은 건조된 생성물을 열처리하는 후처리 단계를 더 포함할 수 있다.For example, the method for producing reduced hydrogen-doped titania (TiO 2-x ) powder may further include a post-treatment step of heat treating the dried product.
예컨대, 후처리 단계는 1시간 내지 3시간동안 열처리하는 단계를 포함할 수 있다.For example, the post-treatment step may include heat treatment for 1 to 3 hours.
예컨대, 수소가 도핑된 환원된 티타니아(TiO2-x) 분말은 입자 직경 사이즈가 5nm 내지 100μm일 수 있다.For example, hydrogen-doped reduced titania (TiO 2-x ) powder may have a particle diameter of 5 nm to 100 μm.
예컨대, 수소가 도핑된 환원된 티타니아(TiO2-x) 분말은 가시광선 영역의 파장대(400 내지 800nm)에서 0.35 a.u. 이상의 광 흡수도를 가질 수 있다.For example, hydrogen-doped reduced titania (TiO 2-x ) powder may have an optical absorption of 0.35 au or more in the visible light range (400 to 800 nm).
예컨대, 수소가 도핑된 환원된 티타니아(TiO2-x) 분말은 (110), (101) 및 (211) 회절 피크를 포함하는 XRD 스펙트럼을 가질 수 있다.For example, hydrogen-doped reduced titania (TiO 2-x ) powder may have an XRD spectrum including (110), (101), and (211) diffraction peaks.
전술한 본 발명의 과제 해결 수단 중 어느 하나에 의하면, 본 발명의 일 실시예에 따른 수소 도핑된 환원된 산화티탄 분말(TiO2-x)은 자외선뿐만 아니라 가시광선에 대한 광 흡수도가 우수할 수 있다.According to any one of the means for solving the problems of the present invention described above, the hydrogen-doped reduced titanium oxide powder (TiO 2-x ) according to an embodiment of the present invention has excellent light absorption not only for ultraviolet rays but also for visible rays. You can.
또한, 본 발명의 일 실시예에 따른 수소 도핑된 환원된 산화티탄 분말(TiO2-x)은 일정 온도 또는 압력에서 다른 상으로 쉽게 변화하지 않고 안정적으로 존재할 수 있다.In addition, the hydrogen-doped reduced titanium oxide powder (TiO 2-x ) according to an embodiment of the present invention can exist stably without easily changing into another phase at a certain temperature or pressure.
본 발명의 일 실시예에 따른 수소 도핑된 환원된 산화티탄 분말(TiO2-x) 제조방법은 산화티탄 분말의 크기 및 형상의 제어가 용이할 수 있다.The method for producing hydrogen-doped reduced titanium oxide powder (TiO 2-x ) according to an embodiment of the present invention can easily control the size and shape of the titanium oxide powder.
또한, 본 발명의 일 실시예에 따른 수소 도핑된 환원된 산화티탄 분말(TiO2-x) 제조방법은 낮은 공정온도 및 짧은 공정시간으로 수행되어 공정 용이성이 향상될 수 있다.In addition, the method for producing hydrogen-doped reduced titanium oxide powder (TiO 2-x ) according to an embodiment of the present invention can be performed at a low process temperature and a short process time, thereby improving process ease.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects that can be obtained from the present invention are not limited to the effects mentioned above, and other effects not mentioned can be clearly understood by those skilled in the art from the description below. will be.
도 1은 본 발명의 일 실시예에 따른 수소 도핑된 환원된 산화티탄(TiO2-x) 분말의 제조방법의 순서도이다.Figure 1 is a flowchart of a method for producing hydrogen-doped reduced titanium oxide (TiO 2-x ) powder according to an embodiment of the present invention.
도 2a는 실시예 1에 의하여 제조된 수소 도핑된 환원된 산화티탄(TiO2-x)을 나타낸 도면이다. Figure 2a is a diagram showing hydrogen-doped reduced titanium oxide (TiO 2-x ) prepared in Example 1.
도 2b는 실시예 6에 의하여 제조된 수소 도핑된 환원된 산화티탄(TiO2-x)을 나타낸 도면이다.Figure 2b is a diagram showing hydrogen-doped reduced titanium oxide (TiO 2-x ) prepared in Example 6.
도 3은 본 발명에 따른 수소 도핑된 환원된 산화티탄(TiO2-x) 분말의 XRD 분석 결과이다.Figure 3 shows the results of XRD analysis of hydrogen-doped reduced titanium oxide (TiO 2-x ) powder according to the present invention.
도 4a 내지 도 4d는 본 발명에 따른 수소 도핑된 환원된 산화티탄(TiO2-x) 분말의 SEM 이미지를 나타낸 도면들이다.FIGS. 4A to 4D are SEM images of hydrogen-doped reduced titanium oxide (TiO 2-x ) powder according to the present invention.
도 5는 본 발명의 수소 도핑된 환원된 산화티탄(TiO2-x) 분말의 EDS 분석이 수행된 특정 영역들을 도시한 도면이다.Figure 5 is a diagram showing specific areas where EDS analysis was performed on the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder of the present invention.
도 6a 내지 도 6d는 도 5의 각 영역들에 대한 EDS 분석 결과를 나타낸 도면들이다.FIGS. 6A to 6D are diagrams showing EDS analysis results for each region of FIG. 5.
도 7은 본 발명의 수소 도핑된 환원된 산화티탄(TiO2-x) 분말의 SEM 원소 맵핑(SEM elemental mapping) 측정 결과를 나타낸 도면이다. Figure 7 is a diagram showing the results of SEM elemental mapping of the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder of the present invention.
도 8은 본 발명의 수소 도핑된 환원된 산화티탄(TiO2-x) 분말의 UV-Vis분석 결과를 나타낸 도면이다.Figure 8 is a diagram showing the results of UV-Vis analysis of hydrogen-doped reduced titanium oxide (TiO 2-x ) powder of the present invention.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Below, with reference to the attached drawings, embodiments of the present invention will be described in detail so that those skilled in the art can easily implement the present invention. However, the present invention may be implemented in many different forms and is not limited to the embodiments described herein. In order to clearly explain the present invention in the drawings, parts that are not related to the description are omitted, and similar parts are given similar reference numerals throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 구성을 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part is said to be “connected” to another part, this includes not only cases where it is “directly connected,” but also cases where it is “indirectly connected” with another component in between. . Additionally, when a part "includes" a certain component, this means that it may further include other components rather than excluding other components, unless specifically stated to the contrary.
본 발명의 일 실시예에 따른 수소 도핑된 환원된 산화티탄(TiO2-x) 분말의 제조방법(상기 식에서 X는 0.00001 내지 2 사이의 유리수임)은 TiO2를 열처리를 통해 환원한다. 보다 구체적으로, 본 발명의 일 실시예에 따른 수소 도핑된 환원된 산화티탄(TiO2-x) 분말의 제조방법은 TiO2를 용융염법을 통해 환원시킨다. 용융염법은 용융 온도가 낮은 염을 이용하여 결정을 성장시키는 방법을 말한다. The method for producing hydrogen-doped reduced titanium oxide (TiO 2-x ) powder according to an embodiment of the present invention (where X is a rational number between 0.00001 and 2) reduces TiO 2 through heat treatment. More specifically, the method for producing hydrogen-doped reduced titanium oxide (TiO 2-x ) powder according to an embodiment of the present invention reduces TiO 2 through a molten salt method. The molten salt method refers to a method of growing crystals using salt with a low melting temperature.
용융염이란 용융상태에 있는 염을 의미한다. 용융염은 열 전달 특성, 열 저장 특성 및 유동성이 우수하다. 따라서, 염을 혼합하여 열처리하면 가열되는 속도가 대기중의 가열속도에 비해 빠르며, 냉각속도 또한 빨라 급속한 처리가 가능하다. 특히, 혼합염은 단일염에 비해 용융온도가 낮기 때문에, 단일염을 사용할 경우 보다 열처리 온도는 더 낮아질 수 있다. Molten salt means salt in a molten state. Molten salt has excellent heat transfer properties, heat storage properties, and fluidity. Therefore, when salts are mixed and heat treated, the heating rate is faster than the heating rate in the air, and the cooling rate is also fast, enabling rapid processing. In particular, since mixed salts have a lower melting temperature than single salts, the heat treatment temperature can be lower than when using single salts.
이하 첨부된 도면을 참고하여 본 발명을 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to the attached drawings.
도 1은 본 발명의 일 실시예에 따른 수소 도핑된 환원된 산화티탄(TiO2-x) 분말의 제조방법의 순서도이다.Figure 1 is a flowchart of a method for producing hydrogen-doped reduced titanium oxide (TiO 2-x ) powder according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 수소 도핑된 환원된 산화티탄(TiO2-x) 분말의 제조방법은 TiO2 입자, 수소화물 및 혼합염을 혼합하는 혼합물 제조(S10) 단계, 혼합물을 혼합염의 공융 녹는점 이상의 온도에서 반응시켜 결정화된 생성물을 제조하는 결정화(S20) 단계 및 결정화된 생성물로부터 수소 도핑된 환원된 산화티탄(TiO2-x) 분말을 수득하는 분말 수득(S30) 단계를 포함한다.Referring to FIG. 1, the method for producing hydrogen-doped reduced titanium oxide (TiO 2-x ) powder according to an embodiment of the present invention includes a mixture preparation (S10) step of mixing TiO 2 particles, hydride, and mixed salt. , a crystallization (S20) step of producing a crystallized product by reacting the mixture at a temperature above the eutectic melting point of the mixed salt, and a powder obtaining (S30) of hydrogen-doped reduced titanium oxide (TiO 2-x ) powder from the crystallized product. ) step.
본 발명의 일 실시예에 따른 수소 도핑된 환원된 산화티탄(TiO2-x) 분말의 제조방법은 먼저, TiO2 입자, 수소화물 및 혼합염을 혼합하여 혼합물을 제조(S10)한다.In the method for producing hydrogen-doped reduced titanium oxide (TiO 2-x ) powder according to an embodiment of the present invention, a mixture is first prepared by mixing TiO 2 particles, hydride, and mixed salt (S10).
혼합물 제조(S10) 단계는 TiO2를 환원시키고, 수소를 도핑(dopping)시키는 물질들을 TiO2 입자와 고르게 혼합하기 위한 단계일 수 있다.The mixture preparation (S10) step may be a step for evenly mixing materials for reducing TiO 2 and doping hydrogen with TiO 2 particles.
혼합물 제조(S10) 단계는 세부적으로 TiO2 입자와 수소화물을 혼합하여 제1혼합물을 제조하는 제1혼합물 제조(S11) 단계 및 제1혼합물에 혼합염을 투여하여 제2혼합물을 제조하는 제2혼합물 제조(S12) 단계로 이루어질 수 있다.The mixture preparation (S10) step is in detail a first mixture preparation (S11) step of mixing TiO 2 particles and hydride to prepare a first mixture, and a second step of preparing a second mixture by adding a mixed salt to the first mixture. It may be done in the mixture preparation (S12) step.
제1혼합물 제조(S11) 단계는 TiO2를 환원시키는 수소화물을 TiO2에 첨가하기 위해 수행될 수 있다.The first mixture preparation (S11) step may be performed to add a hydride that reduces TiO 2 to TiO 2 .
여기서, TiO2는 백색의 TiO2로, 상용 또는 실험실에서 합성한 TiO2가 사용될 수 있다. 예를 들어, 아나타제형 및 루틸형이 혼재되어 있는 P25 타입의 TiO2, 아나타제형으로만 이루어진 TiO2 또는 루틸형으로만 이루어진 TiO2가 사용될 수 있다.Here, TiO 2 is white TiO 2 , and commercial or laboratory-synthesized TiO 2 may be used. For example, P25 type TiO 2 which is a mixture of anatase type and rutile type, TiO 2 consisting of only anatase type, or TiO 2 consisting of only rutile type can be used.
수소화물은 수소와 다른 원소가 결합하여 이룬 2원소 화합물로, 본 발명에서 환원제로 사용될 수 있다. 구체적으로, 수소화물은 TiO2 표면에 산소 결핍을 유도할 수 있다. 이에, TiO2는 TiO2-x 형태로 환원될 수 있다.Hydride is a two-element compound formed by combining hydrogen with another element, and can be used as a reducing agent in the present invention. Specifically, hydride can induce oxygen deficiency on the TiO 2 surface. Accordingly, TiO 2 can be reduced to TiO 2-x form.
또한, 수소화물은 산소가 결핍된 TiO2(TiO2-x)에 수소를 도핑시킬 수 있다. 구체적으로, 수소화물의 수소는 TiO2의 산소가 결핍된 자리 또는 침입형 결함자리에 도핑될 수 있다. 이에, 환원된 TiO2는 수소가 도핑된 형태인 TiO2-x로 형성될 수 있다.Additionally, hydride can dope hydrogen into oxygen-deficient TiO 2 (TiO 2-x ). Specifically, hydrogen of hydride may be doped into oxygen-deficient sites or interstitial defect sites of TiO 2 . Accordingly, the reduced TiO 2 may be formed as TiO 2-x, which is a hydrogen-doped form.
환원된 TiO2는 수소가 도핑되면, 전자의 이송이 용이해져 전자가 이동시 물질 내부에 갇혀 있거나 홀과 재결합하는 현상을 줄일 수 있다. 이에, TiO2의 가시광선에 대한 광 흡수 효율은 향상될 수 있다.When reduced TiO 2 is doped with hydrogen, the transfer of electrons becomes easier, reducing the phenomenon of electrons being trapped inside the material or recombining with holes when moving. Accordingly, the light absorption efficiency of TiO 2 for visible light can be improved.
수소화물은 마그네슘 수소화물(MgH2), 나트륨 알루미늄 수소화물(NaAlH4), 나트륨 붕소 수소화물(NaBH4), 리튬 알루미늄 수소화물(LiAlH4), 칼슘 수소화물(CaH2), 지르코늄 수소화물(ZrH2), 티타늄 수소화물(TiH2), 바나듐 수소화물(VH2), 나트륨 수소화물(NaH), 리튬 수소화물(LiH), 칼륨 수소화물(KH), 루비듐 수소화물(RbH), 세슘 수소화물(CsH) 및 마그네슘 철 수소화물(Mg2FeH6)로 이루어진 군으로부터 선택되는 1종 이상이 사용될 수 있다.Hydrides include magnesium hydride (MgH 2 ), sodium aluminum hydride (NaAlH 4 ), sodium borohydride (NaBH 4 ), lithium aluminum hydride (LiAlH 4 ), calcium hydride (CaH 2 ), and zirconium hydride ( ZrH 2 ), titanium hydride (TiH 2 ), vanadium hydride (VH 2 ), sodium hydride (NaH), lithium hydride (LiH), potassium hydride (KH), rubidium hydride (RbH), cesium hydrogen. One or more species selected from the group consisting of hydride (CsH) and magnesium iron hydride (Mg 2 FeH 6 ) may be used.
TiO2 입자와 수소화물은 1:1 내지 1:20의 몰 비로 혼합될 수 있다. TiO 2 particles and hydride may be mixed at a molar ratio of 1:1 to 1:20.
만약 TiO2 입자와 수소화물이 1:1 미만의 몰 비로 혼합될 경우, 환원제인 수소화물의 양이 상대적으로 작아 TiO2의 환원이 제대로 이루어지지 않을 수 있다. 반대로, TiO2 입자와 수소화물이 1: 20 초과의 몰 비로 혼합될 경우, 수소화물에 의해 TiO2에 산소 결핍 자리가 너무 많아져 가시광선에 대한 흡광도가 높아지는 반면, 전자와 홀의 재결합 수 또한 많아지거나 새로운 상이 형성되어 광촉매 성능이 저하될 수 있다. If TiO 2 particles and hydride are mixed at a molar ratio of less than 1:1, the amount of hydride, which is a reducing agent, is relatively small, so reduction of TiO 2 may not occur properly. Conversely, when TiO 2 particles and hydride are mixed at a molar ratio exceeding 1:20, the hydride creates too many oxygen deficiency sites in TiO 2 , increasing the absorbance of visible light, while the number of electron and hole recombinations also increases. Photocatalyst performance may deteriorate due to the formation of new phases or new phases.
이때, 사용되는 수소화물의 종류에 따라 TiO2 입자와 수소화물이 혼합되는 몰 비는 상이해질 수 있다. At this time, depending on the type of hydride used, the molar ratio in which TiO 2 particles and hydride are mixed may vary.
예를 들어, 수소화물로 TiH2가 사용될 경우, TiO2와 TiH2는 1:1 내지 1:3의 몰 비로 혼합될 수 있다.For example, when TiH 2 is used as the hydride, TiO 2 and TiH 2 may be mixed at a molar ratio of 1:1 to 1:3.
TiO2 입자와 수소화물은 밀링, 믹서 등의 장비를 사용하여 혼합될 수 있으나 이에 한정하는 것은 아니다.TiO 2 particles and hydride can be mixed using equipment such as milling or mixer, but are not limited to this.
TiO2 입자와 수소화물이 혼합된 제1 혼합물 제조가 완료되면, 제1혼합물에 혼합염을 투여하여 제2혼합물을 제조(S12)한다.When the preparation of the first mixture of TiO 2 particles and hydride is completed, the mixed salt is added to the first mixture to prepare the second mixture (S12).
제2혼합물 제조(S12) 단계는 TiO2의 환원반응이 낮은 온도에서 짧은 시간 동안 이루어질 수 있도록 보조하는 혼합염을 제1혼합물에 첨가하기 위해 수행될 수 있다. The second mixture preparation (S12) step may be performed to add a mixed salt to the first mixture to help the reduction reaction of TiO 2 occur at a low temperature and for a short time.
혼합염은 공융 녹는점이 700℃ 미만인 것으로 선택되는 것이 적절하다.It is appropriate that the mixed salt is selected to have a eutectic melting point of less than 700°C.
구체적으로, 혼합염은 염화 리튬(LiCl), 염화 나트륨(NaCl), 염화 칼륨(KCl), 염화 루비듐(RbCl), 염화 세슘(CsCl), 황산리튬(Li2SO4), 황산나트륨(Na2SO4), 황산칼륨(K2SO4) 및 인산칼륨(K3PO4)으로 이루어진 군으로부터 선택되는 2종 이상이 사용될 수 있다. Specifically, the mixed salt is lithium chloride (LiCl), sodium chloride (NaCl), potassium chloride (KCl), rubidium chloride (RbCl), cesium chloride (CsCl), lithium sulfate (Li 2 SO 4 ), and sodium sulfate (Na 2 SO 4 ), potassium sulfate (K 2 SO 4 ), and potassium phosphate (K 3 PO 4 ). Two or more species selected from the group consisting of may be used.
혼합염은 제1혼합물 제조(S11) 단계에서 사용되는 수소화물의 종류에 따라 적절하게 선택되어 사용될 수 있다.The mixed salt may be appropriately selected and used depending on the type of hydride used in the first mixture preparation (S11) step.
한편, 혼합염과 제1혼합물은 5:1 내지 120:1의 질량 비로 혼합될 수 있다.Meanwhile, the mixed salt and the first mixture may be mixed at a mass ratio of 5:1 to 120:1.
만약 혼합염과 제1혼합물의 질량 비가 5:1 미만일 경우 혼합염의 열 전달 효율이 감소하여 열처리 시간이 길어질 수 있다. 반대로, 혼합염과 제1혼합물의 질량 비가 120:1일 경우 용융점이 너무 낮아져, 분말 내의 결합이 약해질 수 있다.If the mass ratio of the mixed salt and the first mixture is less than 5:1, the heat transfer efficiency of the mixed salt may decrease and the heat treatment time may be prolonged. Conversely, when the mass ratio of the mixed salt and the first mixture is 120:1, the melting point becomes too low, which may weaken the bond within the powder.
이때, 혼합염과 제1혼합물은 제1 혼합물에 사용되는 수소화물의 종류, 첨가량 및 혼함염의 종류에 따라 혼합되는 질량비가 상이해질 수 있다. At this time, the mixed mass ratio of the mixed salt and the first mixture may be different depending on the type and amount of hydride used in the first mixture, and the type of mixed salt.
예를 들어, 수소화물로 TiH2가 1:1 내지 1:3 몰 비로 혼합될 경우, 7:1 내지 20:1 질량비로 혼합될 수 있다.For example, when TiH 2 is mixed as a hydride at a molar ratio of 1:1 to 1:3, it may be mixed at a mass ratio of 7:1 to 20:1.
혼합염과 제1혼합물은 밀링, 믹서 등의 장비를 사용하여 혼합할 수 있으나 이에 한정하는 것은 아니다.The mixed salt and the first mixture can be mixed using equipment such as a mill or mixer, but are not limited to this.
제2혼합물 제조가 완료되면, 혼합염의 공융 녹는점 이상의 온도에서 반응시켜 결정화된 생성물을 제조(S20) 한다. Once the preparation of the second mixture is completed, a crystallized product is prepared by reacting at a temperature above the eutectic melting point of the mixed salt (S20).
결정화(S20) 단계는 TiO2의 환원반응을 유도하여 수소 도핑된 환원된 산화티탄(TiO2-x) 분말의 결정을 형성시키기 위해 수행될 수 있다.The crystallization (S20) step may be performed to induce a reduction reaction of TiO 2 to form crystals of hydrogen-doped reduced titanium oxide (TiO 2-x ) powder.
결정화(S20) 단계는 제2 혼합물을 열처리하는 열처리(S21) 단계 및 열처리된 제2혼합물을 냉각하는 냉각(S22)단계를 포함할 수 있다.The crystallization (S20) step may include a heat treatment (S21) step of heat-treating the second mixture and a cooling (S22) step of cooling the heat-treated second mixture.
열처리(S21) 단계는 TiO2의 환원반응을 유도하기 위해 수행될 수 있다. The heat treatment (S21) step may be performed to induce a reduction reaction of TiO 2 .
열처리(S21) 단계는 제2혼합물을 알루미나 도가니와 같은 반응용기에 넣은 후 반응로에 장입시킨 뒤, 반응로를 가열하는 방식으로 수행될 수 있다. The heat treatment (S21) step can be performed by placing the second mixture in a reaction vessel such as an alumina crucible, charging it into the reaction furnace, and then heating the reaction furnace.
이때, 열처리는 연료를 태워 가열하는 방식, 전기저항, 전자유도, 방전 등 전기의 물리적 특성을 이용하여 가열하는 방식, 가스를 주입하여 가열하는 방식 등 다양한 방식으로 수행될 수 있다.At this time, heat treatment can be performed in various ways, such as heating by burning fuel, heating by using physical characteristics of electricity such as electrical resistance, electromagnetic induction, and discharge, and heating by injecting gas.
한편, 열처리(S21) 단계는 혼합염의 공융 녹는점 이상의 온도에서 수행될 수 있다. Meanwhile, the heat treatment (S21) step may be performed at a temperature higher than the eutectic melting point of the mixed salt.
여기서, 혼합염의 공융 녹는점이란, 두 성분이 고용체를 만들지 않고 액체 상태에서 완전히 녹아 섞이는 점을 말한다. 구체적으로, 혼합염이 모두 액체 상태로 존재할 수 있는 점을 말한다.Here, the eutectic melting point of the mixed salt refers to the point where the two components are completely dissolved and mixed in the liquid state without forming a solid solution. Specifically, it refers to the fact that all mixed salts can exist in a liquid state.
본 발명의 혼합염은 공융 녹는점이 700℃ 미만인 것으로 선택될 수 있으므로, 열처리(S21) 단계는 700℃ 이상의 온도에서 수행될 수 있다. 구체적으로, 열처리(S21) 단계는 700℃ 이상의 온도에서 3시간 이상 수행될 수 있다.Since the mixed salt of the present invention may be selected to have a eutectic melting point of less than 700°C, the heat treatment (S21) step may be performed at a temperature of 700°C or higher. Specifically, the heat treatment (S21) step may be performed at a temperature of 700° C. or higher for 3 hours or more.
만약, 열처리가 700℃ 미만의 온도로 3시간 미만으로 수행되는 경우, 혼합염이 제대로 용융되지 않아 TiO2의 환원이 원활하게 이루어지지 않을 수 있다. If the heat treatment is performed at a temperature of less than 700°C for less than 3 hours, the mixed salt may not melt properly and the reduction of TiO 2 may not occur smoothly.
냉각(S22) 단계는 열처리에 의해 생성된 생성물의 결정을 형성시키기 위해 수행될 수 있다.A cooling (S22) step may be performed to form crystals of the product produced by heat treatment.
냉각(S22) 단계는 반응로를 가스를 사용하여 냉각하는 방식, 자연에서 냉각시키는 방식 등으로 수행될 수 있다.The cooling (S22) step can be performed by cooling the reactor using gas, cooling it naturally, etc.
결정화된 생성물 제조가 완료되면, 결정화된 생성물로부터 수소 도핑된 환원된 산화티탄(TiO2-x) 분말을 수득(S30)한다.When the preparation of the crystallized product is completed, hydrogen-doped reduced titanium oxide (TiO 2-x ) powder is obtained from the crystallized product (S30).
분말 수득(S30) 단계는 결정화된 생성물을 세척하는 세척(S31) 단계, 세척된 결정화된 생성물을 여과하는 여과(S32) 단계 및 여과된 상기 결정화된 생성물을 건조하는 건조 (S33)단계를 포함할 수 있다.The powder obtaining (S30) step may include a washing (S31) step of washing the crystallized product, a filtration (S32) step of filtering the washed crystallized product, and a drying (S33) step of drying the filtered crystallized product. You can.
세척(S31) 단계는 결정화된 생성물에 남아있는 수용성 염을 용해시키기 위해 수행될 수 있다. A washing (S31) step may be performed to dissolve water-soluble salts remaining in the crystallized product.
세척(S31) 단계는 증류수에 결정화된 생성물을 침적하는 방식으로 수행될 수 있다.The washing (S31) step may be performed by immersing the crystallized product in distilled water.
여과(S32)단계는 결정화된 생성물에 불용성 생성물 입자를 여과하기 위해 수행될 수 있다.A filtration (S32) step may be performed to filter out insoluble product particles in the crystallized product.
여과(S32)단계는 자연 여과방식, 흡입 여과방식 등으로 수행될 수 있다.The filtration (S32) step can be performed by natural filtration, suction filtration, etc.
건조(S33)단계는 분말의 물기를 제거하기 위해 수행될 수 있다.The drying (S33) step may be performed to remove moisture from the powder.
건조(S33)단계는 오븐에 건조하는 방식 또는 자연 건조시키는 방식 등으로 수행될 수 있다.The drying (S33) step can be performed by drying in an oven or natural drying.
몇몇 실시예에서 본 발명의 수소 도핑된 환원된 산화티탄(TiO2-x) 분말의 제조방법은 여과된 결정화된 생성물을 열처리하는 후처리(S40) 단계를 더 포함할 수 있다.In some embodiments, the method for producing hydrogen-doped reduced titanium oxide (TiO 2-x ) powder of the present invention may further include a post-treatment (S40) step of heat treating the filtered crystallized product.
후처리(S40) 단계는 수소 도핑된 환원된 산화티탄(TiO2-x) 분말을 보다 안정한 상으로 제조하기 위해 수행될 수 있다. A post-treatment (S40) step may be performed to prepare the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder into a more stable phase.
후처리(S40) 단계는 1시간 내지 3시간 동안 300℃ 이상의 온도로 열처리하는 방식으로 수행될 수 있다. The post-treatment (S40) step may be performed by heat treatment at a temperature of 300°C or higher for 1 to 3 hours.
후처리(S40) 단계가 수행됨에 따라, 수소 도핑된 환원된 산화티탄(TiO2-x) 분말의 열적 화학적 안정성이 향상될 수 있다. 이 경우, 수소 도핑된 환원된 산화티탄(TiO2-x) 분말이 일정 온도 및 압력에서 쉽게 상 변화하는 문제를 방지할 수 있고, 이에, 비표면적이 줄어들어 광 흡수도가 떨어지는 것을 방지할 수 있다.As the post-treatment (S40) step is performed, the thermal and chemical stability of the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder may be improved. In this case, the problem of hydrogen-doped reduced titanium oxide (TiO 2-x ) powder easily changing phase at a certain temperature and pressure can be prevented, and thus the specific surface area can be reduced to prevent light absorption from falling. .
본 발명의 수소 도핑된 환원된 산화티탄(TiO2-x) 분말 제조방법은 TiO2 입자, 수소화물 및 혼합염을 혼합하여 혼합물을 제조하는 단계 및 혼합물을 혼합염의 공융 녹는점 이상의 온도에서 반응시켜 결정화된 생성물 제조하는 단계를 포함하므로, 자외선 및 가시광선에 대한 흡광 성능, 광촉매 성능 및 촉매 안정성이 현저히 향상된 우수한 광촉매를 제조할 수 있다.The method for producing hydrogen-doped reduced titanium oxide (TiO 2-x ) powder of the present invention includes the steps of mixing TiO 2 particles, hydride, and mixed salt to prepare a mixture, and reacting the mixture at a temperature above the eutectic melting point of the mixed salt. Since it includes the step of preparing a crystallized product, an excellent photocatalyst can be manufactured with significantly improved light absorption performance for ultraviolet and visible light, photocatalytic performance, and catalyst stability.
구체적으로, TiO2 내의 산소가 결핍 및 Ti3+ 이온 생성을 통해, 밴드 갭의 크기를 줄일 수 있으며, 수소 도핑을 통해 전자와 홀의 재결합을 방지할 수 있다. Specifically, the size of the band gap can be reduced through oxygen deficiency in TiO 2 and the generation of Ti 3+ ions, and the recombination of electrons and holes can be prevented through hydrogen doping.
또한, 본 발명의 수소 도핑된 환원된 산화티탄(TiO2-x) 분말 제조방법은 TiO2 입자, 수소화물 및 혼합염을 혼합하여 혼합물을 제조하는 단계 및 혼합물을 혼합염의 공융 녹는점 이상의 온도에서 반응시켜 결정화된 생성물 제조하는 단계를 포함하므로, 공정 용이성이 향상될 수 있다.In addition, the method for producing hydrogen-doped reduced titanium oxide (TiO 2-x ) powder of the present invention includes preparing a mixture by mixing TiO 2 particles, hydride, and mixed salt, and mixing the mixture at a temperature above the eutectic melting point of the mixed salt. Since it includes the step of reacting to produce a crystallized product, the ease of processing can be improved.
구체적으로, 혼합염을 첨가하여 가열하는 방식으로 열처리를 수행하므로, 보다 낮은 온도 및 빠른 시간으로 수소 도핑된 환원된 산화티탄(TiO2-x) 분말을 제조할 수 있다.Specifically, since the heat treatment is performed by adding a mixed salt and heating, hydrogen-doped reduced titanium oxide (TiO 2-x ) powder can be produced at a lower temperature and in a faster time.
또한, 수소화물을 첨가하여 가열 및 환원하므로, 산소 결핍, Ti3+ 이온 생성과 동시에 수소 도핑할 수 있으므로, 광 흡수도를 향상시키는 물질을 별도로 코팅하는 제조방법에 비해 공정시간이 단축될 수 있다. In addition, since hydride is added to heat and reduce, hydrogen can be doped at the same time as oxygen deficiency and Ti 3+ ion generation, so the process time can be shortened compared to the manufacturing method of separately coating a material that improves light absorption. .
나아가, 본 발명의 도핑된 환원된 산화티탄 분말(TiO2-x) 제조방법은 수소화물과 혼합염의 종류 및 혼합비율에 따라 산화티탄 분말의 크기 및 형상을 용이하게 제어할 수 있다. Furthermore, the method for producing doped reduced titanium oxide powder (TiO 2-x ) of the present invention can easily control the size and shape of the titanium oxide powder depending on the type and mixing ratio of the hydride and the mixed salt.
구체적으로, 수소화물과 혼합염의 종류 및 혼합비율에 따라 산화티탄의 밴드 갭의 크기, 산소 빈자리의 수 및 산소 빈자리에 수소의 치환 등을 제어함으로써 태양광에 대한 흡광 성능, 광촉매 성능 및 촉매 안정성 등을 용이하게 제어할 수 있다.Specifically, by controlling the size of the band gap of titanium oxide, the number of oxygen vacancies, and substitution of hydrogen for oxygen vacancies, etc., depending on the type and mixing ratio of hydride and mixed salt, solar light absorption performance, photocatalytic performance, and catalyst stability, etc. can be easily controlled.
본 발명의 수소 도핑된 환원된 산화티탄(TiO2-x) 분말은 산소가 결핍된 구조를 갖는다. 구체적으로, TiO2가 환원되어 표면의 산소가 결핍된 구조를 갖는다. TiO2 내의 산소가 결핍되면, Ti의 산화수에도 변화가 발생한다. 구체적으로, Ti4+ 가 Ti3+로 변화한다. Ti3+의 에너지 준위는 Ti4+보다 낮으므로, Ti3+의 밴드 갭은 Ti4+ 의 밴드 갭 보다 낮아질 수 있다. 이에, TiO2의 가시광선에 대한 광 흡수 효율은 향상될 수 있다.The hydrogen-doped reduced titanium oxide (TiO 2-x ) powder of the present invention has an oxygen-deficient structure. Specifically, TiO 2 is reduced and It has a surface oxygen-depleted structure. When oxygen in TiO 2 is deficient, a change occurs in the oxidation number of Ti. Specifically, Ti 4+ changes to Ti 3+ . Since the energy level of Ti 3+ is lower than that of Ti 4+ , the band gap of Ti 3+ may be lower than that of Ti 4+ . Accordingly, the light absorption efficiency of TiO 2 for visible light can be improved.
한편, 산소 결핍된 산화티탄(TiO2-x)은 표면에 산소가 결핍되는 정도에 따라 색이 변화한다. 색 변화는 산소 결핍 정도에 따라 연노란색, 노란색, 회색, 진회색, 검은색으로 진행된다. 이러한 순서로 색 변화가 일어나는 이유는 산화티탄이 많이 환원될수록, 즉, 산화티탄에 산소 결함이 많아질수록, 빛을 흡수할 수 있는 영역이 점점 장파장 쪽으로 이동하기 때문이다.Meanwhile, the color of oxygen-deficient titanium oxide (TiO 2-x ) changes depending on the degree of oxygen deficiency on the surface. The color changes from light yellow, yellow, gray, dark gray, and black depending on the degree of oxygen deficiency. The reason why the color change occurs in this order is because the more titanium oxide is reduced, that is, the more oxygen defects there are in titanium oxide, the area that can absorb light gradually moves toward longer wavelengths.
또한, 본 발명의 수소 도핑된 환원된 산화티탄(TiO2-x) 분말은 산소가 결핍된 자리에 수소가 도핑된 구조를 갖는다. 본 발명의 수소 도핑된 환원된 산화티탄(TiO2-x) 분말은 수소가 산소가 결핍된 자리에 도핑되기 때문에, 전자와 홀의 재결합을 상대적으로 감소시킬 수 있다. 이에 따라, 수소 도핑된 환원된 산화티탄(TiO2-x) 분말은 가시광선에 대한 광 흡수도가 향상될 수 있다.In addition, the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder of the present invention has a structure in which hydrogen is doped at the oxygen-deficient site. Since the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder of the present invention is doped with hydrogen at oxygen-deficient sites, the recombination of electrons and holes can be relatively reduced. Accordingly, the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder may have improved light absorption for visible light.
본 발명의 수소 도핑된 환원된 산화티탄(TiO2-x) 분말은 입자 직경 사이즈가 5nm 내지 100μm일 수 있다.The hydrogen-doped reduced titanium oxide (TiO 2-x ) powder of the present invention may have a particle diameter size of 5 nm to 100 μm.
본 발명의 수소 도핑된 환원된 산화티탄(TiO2-x) 분말은 가시광선 영역의 파장대(400 내지 800nm)에서 0.35 a.u. 이상의 광 흡수도를 갖는다.The hydrogen-doped reduced titanium oxide (TiO 2-x ) powder of the present invention has an optical absorption of 0.35 au or more in the visible light range (400 to 800 nm).
또한, 본 발명의 수소 도핑된 환원된 산화티탄(TiO2-x) 분말은 XRD 스펙트럼은 (110), (101) 및 (211) 회절 피크를 포함할 수 있다. Additionally, the XRD spectrum of the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder of the present invention may include (110), (101), and (211) diffraction peaks.
본 발명의 수소 도핑된 환원된 산화티탄(TiO2-x) 분말은 산소가 결핍되고 수소가 도핑된 구조를 가지므로, 전자와 홀의 재결합을 상대적으로 감소시킬 수 있으며, 이에, 자외선뿐만 아니라 가시광선에 대한 광 흡수도가 향상될 수 있다.Since the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder of the present invention has an oxygen-deficient and hydrogen-doped structure, it can relatively reduce the recombination of electrons and holes, and thus can be used not only in ultraviolet rays but also in visible light. Light absorption can be improved.
이하, 실시예, 비교예 및 실험예를 통하여 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail through examples, comparative examples, and experimental examples.
단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의해 한정되는 것은 아니다.However, the following examples and experimental examples only illustrate the present invention, and the content of the present invention is not limited to the following examples.
실시예는 TiO2, 수소화물 및 혼합염을 혼합하여 혼합물을 제조한 뒤, 혼합염의 공융 녹는점 이상의 온도에서 열처리하고, 냉각한 후 세척, 여과, 건조하여 분말을 제조하였다. 여기서, TiO2로는 P25를 사용하였으며, 수소화물로는 TiH2를 사용하였다. 또한, 혼합염으로는 KCl과 NaCl를 사용하였다.In the example, TiO 2 , hydride, and mixed salt were mixed to prepare a mixture, then heat treated at a temperature above the eutectic melting point of the mixed salt, cooled, washed, filtered, and dried to prepare a powder. Here, P25 was used as TiO 2 and TiH 2 was used as the hydride. Additionally, KCl and NaCl were used as mixed salts.
한편, 비교예는 반응 처리하지 않은 TiO2 P25를 사용하였다.Meanwhile, in the comparative example, TiO 2 P25 without reaction treatment was used.
<실시예 1><Example 1>
다음과 같은 단계를 통해 수소 도핑된 환원된 산화티탄(TiO2-x) 분말을 제조하였다.Hydrogen-doped reduced titanium oxide (TiO 2-x ) powder was prepared through the following steps.
단계 1. TiO2와 TiH2를 각각 1g씩 혼합하여 제1혼합물 제조 Step 1. Preparing a first mixture by mixing 1g each of TiO 2 and TiH 2
단계 2. 제1혼합물에 KCl과 NaCl을 각각 15g씩 섞은 혼합염을 혼합하여 제2혼합물 제조 Step 2. Preparing a second mixture by mixing a mixed salt of 15 g each of KCl and NaCl with the first mixture.
단계 3. 상온에서 시간당 120℃로 승온 후 열처리 온도 800℃에서 3시간 유지 Step 3. Raise the temperature from room temperature to 120℃ per hour and maintain the heat treatment temperature at 800℃ for 3 hours.
단계 4. 노냉(furnace cooling)방식으로 냉각 Step 4. Cooling using furnace cooling method
단계 5. 약 1000ml의 DI water로 30분간 초음파 세척 Step 5. Ultrasonic wash with approximately 1000ml of DI water for 30 minutes.
단계 6. 필터 페이퍼를 이용하여 여과 Step 6. Filter using filter paper
단계 7. 에탄올, 아세톤으로 최종 세척 후, 80℃ 오븐에서 1시간 건조Step 7. After final washing with ethanol and acetone, dry in an oven at 80°C for 1 hour.
<실시예 2 내지 5><Examples 2 to 5>
다음과 같은 단계를 통해 수소 도핑된 환원된 산화티탄(TiO2-x) 분말을 제조하였다.Hydrogen-doped reduced titanium oxide (TiO 2-x ) powder was prepared through the following steps.
단계 1. TiO2와 TiH2를 각각 1g씩 혼합하여 제1혼합물 제조 Step 1. Preparing a first mixture by mixing 1g each of TiO 2 and TiH 2
단계 2. 제1혼합물에 KCl과 NaCl을 각각 15g씩 섞은 혼합염을 혼합하여 제2혼합물 제조 Step 2. Preparing a second mixture by mixing a mixed salt of 15 g each of KCl and NaCl with the first mixture.
단계 3. 상온에서 시간당 120℃로 승온 후 열처리 온도 800℃에서 3시간 유지 Step 3. Raise the temperature from room temperature to 120℃ per hour and maintain the heat treatment temperature at 800℃ for 3 hours.
단계 4. 노냉(furnace cooling)방식으로 냉각 Step 4. Cooling using furnace cooling method
단계 5. 약 1000ml의 DI water로 30분간 초음파 세척 Step 5. Ultrasonic wash with approximately 1000ml of DI water for 30 minutes.
단계 6. 필터 페이퍼를 이용하여 여과 Step 6. Filter using filter paper
단계 7. 에탄올, 아세톤으로 최종 세척 후, 80℃ 오븐에서 1시간 건조Step 7. After final washing with ethanol and acetone, dry in an oven at 80°C for 1 hour.
단계 8. 300℃, 350℃, 400℃, 450℃로 각각 열처리 Step 8. Heat treatment at 300℃, 350℃, 400℃, and 450℃ respectively.
<실시예 6><Example 6>
단계 1. TiO2 1g 과 TiH2 3g을 혼합하여 제1혼합물 제조 Step 1. Preparing the first mixture by mixing 1g of TiO 2 and 3g of TiH 2
단계 2. 제1혼합물에 KCl과 NaCl을 각각 15g씩 섞은 혼합염을 혼합하여 제2혼합물 제조 Step 2. Preparing a second mixture by mixing a mixed salt of 15 g each of KCl and NaCl with the first mixture.
단계 3. 상온에서 시간당 120℃로 승온 후 열처리 온도 800℃에서 3시간 유지 Step 3. Raise the temperature from room temperature to 120℃ per hour and maintain the heat treatment temperature at 800℃ for 3 hours.
단계 4. 노냉(furnace cooling)방식으로 냉각 Step 4. Cooling using furnace cooling method
단계 5. 약 1000ml의 DI water로 30분간 초음파 세척 Step 5. Ultrasonic wash with approximately 1000ml of DI water for 30 minutes.
단계 6. 필터 페이퍼를 이용하여 여과 Step 6. Filter using filter paper
단계 7. 에탄올, 아세톤으로 최종 세척 후, 80℃ 오븐에서 1시간 건조Step 7. After final washing with ethanol and acetone, dry in an oven at 80°C for 1 hour.
<실험예 1> 수소화물 함량에 따른 수소 도핑된 환원된 산화티탄(TiO2-x) 분말의 색 비교<Experimental Example 1> Comparison of colors of hydrogen-doped reduced titanium oxide (TiO 2-x ) powder according to hydride content
실험예 1에서는 TiO2 수소화물의 혼합비율에 따른 수소 도핑된 환원된 산화티탄(TiO2-x) 분말의 색을 비교하기 위해 실시예 1과 실시예 6에 의하여 제조된 수소 도핑된 환원된 산화티탄(TiO2-x) 분말을 육안으로 관찰하였으며, 그 결과를 도 2a 및 도 2b에 나타내었다. In Experimental Example 1, TiO 2 and In order to compare the color of hydrogen-doped reduced titanium oxide (TiO 2-x ) powder according to the mixing ratio of hydride, hydrogen-doped reduced titanium oxide (TiO 2-x) prepared in Examples 1 and 6 were compared. ) The powder was observed with the naked eye, and the results are shown in Figures 2a and 2b.
도 2a는 실시예 1에 의하여 제조된 수소 도핑된 환원된 산화티탄(TiO2-x)을 나타낸 도면이다. Figure 2a is a diagram showing hydrogen-doped reduced titanium oxide (TiO 2-x ) prepared in Example 1.
도 2b는 실시예 6에 의하여 제조된 수소 도핑된 환원된 산화티탄(TiO2-x)을 나타낸 도면이다.Figure 2b is a diagram showing hydrogen-doped reduced titanium oxide (TiO 2-x ) prepared in Example 6.
도 2a 및 도 2b를 참조하면, 실시예 6에 의하여 제조된 수소 도핑된 환원된 산화티탄(TiO2-x) 분말이 실시예 1에 의하여 제조된 수소 도핑된 환원된 산화티탄(TiO2-x) 분말 보다 더욱 진한 흑색을 띄는 것을 알 수 있다. 이를 통해, 수소 도핑된 환원된 산화티탄(TiO2-x) 분말은 수소화물의 함량이 높을수록 진한 흑색을 띄는 것을 알 수 있다. 또한, 색이 어둡다는 것은 가시광선의 흡광도가 높음을 의미하는 것이므로, 수소화물의 함량이 높을수록 가시광선 영역의 흡광도가 높아지는 것을 알 수 있다.Referring to Figures 2a and 2b, the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder prepared according to Example 6 is the hydrogen-doped reduced titanium oxide (TiO 2- x) prepared according to Example 1. ) You can see that it has a darker black color than the powder. Through this, it can be seen that the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder has a darker black color as the hydride content increases. In addition, a dark color means that the absorbance of visible light is high, so it can be seen that the higher the hydride content, the higher the absorbance of visible light.
<실험예 2> 수소 도핑된 환원된 산화티탄(TiO2-x) 분말의 XRD 분석<Experimental Example 2> XRD analysis of hydrogen-doped reduced titanium oxide (TiO 2-x ) powder
실험예 2에서는 본 발명에 따른 수소 도핑된 환원된 산화티탄(TiO2-x) 분말의 결정 구조를 X-선 회절 분석기(XRD)를 이용하여 분석하였다. X-선 회절 분석은 Cu-Kα (0.15406 ㎚)를 사용하여 40 kV 및 30mA의 조건에서 4 ° min-1의 스캔 속도에서 수행하였다. 분말 회절분석도 데이터는 JCPDS 분말 회절분석도 데이터베이스를 사용하여 평가하였다. 측정된 회절 다이어그램이 저장된 라인 패턴과의 일치 여부에 따라 상을 식별하였다. In Experimental Example 2, the crystal structure of hydrogen-doped reduced titanium oxide (TiO 2-x ) powder according to the present invention was analyzed using an X-ray diffraction analyzer (XRD). X-ray diffraction analysis was performed using Cu-Kα (0.15406 ㎚) at a scan rate of 4 ° min -1 under conditions of 40 kV and 30 mA. Powder diffractometry data were evaluated using the JCPDS powder diffractometry database. The phase was identified based on whether the measured diffraction diagram matched the stored line pattern.
도 3은 본 발명에 따른 수소 도핑된 환원된 산화티탄(TiO2-x) 분말의 XRD 분석 결과이다.Figure 3 shows the results of XRD analysis of hydrogen-doped reduced titanium oxide (TiO 2-x ) powder according to the present invention.
도 3을 참조하면, 본 발명에 따른 수소 도핑된 환원된 산화티탄(TiO2-x) 분말은 27.53°(110), 36.15°(101), 54.40°(211)에서 XRD 피크 관찰되었다. 이를 통해 본 발명에 따른 수소 도핑된 환원된 산화티탄(TiO2-x) 분말은 루틸(JCPDS: 00-004-0551) 피크 강도가 가장 강한 것을 알 수 있다.Referring to Figure 3, the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder according to the present invention had XRD peaks observed at 27.53° (110), 36.15° (101), and 54.40° (211). Through this, it can be seen that the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder according to the present invention has the strongest peak intensity of rutile (JCPDS: 00-004-0551).
즉, 본 발명에 따른 수소 도핑된 환원된 산화티탄(TiO2-x) 분말은 루틸 상에 기인하는 것을 확인할 수 있다.That is, it can be confirmed that the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder according to the present invention originates from the rutile phase.
<실험예 3> 수소 도핑된 환원된 산화티탄(TiO2-x) 분말의 SEM 이미지<Experimental Example 3> SEM image of hydrogen-doped reduced titanium oxide (TiO 2-x ) powder
실험예 3에서는 본 발명에 따른 수소 도핑된 환원된 산화티탄(TiO2-x) 분말의 크기 및 형태를 SEM 이미지를 이용하여 분석하였다.In Experimental Example 3, the size and shape of hydrogen-doped reduced titanium oxide (TiO 2-x ) powder according to the present invention were analyzed using SEM images.
도 4a 내지 도 4d는 본 발명에 따른 수소 도핑된 환원된 산화티탄(TiO2-x) 분말의 SEM 이미지를 나타낸 도면이다.Figures 4a to 4d show SEM images of hydrogen-doped reduced titanium oxide (TiO 2-x ) powder according to the present invention.
도 4a 내지 도 4d를 참조하면, 본 발명에 따른 수소 도핑된 환원된 산화티탄(TiO2-x) 분말은 입자 직경 사이즈가 5nm 내지 100μm인 것을 확인할 수 있다.Referring to FIGS. 4A to 4D, it can be seen that the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder according to the present invention has a particle diameter size of 5 nm to 100 μm.
Spectrum 1 Spectrum 1
ElementElement Line TypeLine Type Apparent
Concentration
Apparent
Concentration
K RatioK Ratio Wt%Wt% Wt%
Sigma
Wt%
Sigma
Standard
Label
Standard
Label
Factory StandardFactory Standard Standard
Calibration
Date
Standard
Calibration
Date
CC KseriesKseries 2.892.89 0.028880.02888 5.165.16 0.590.59 C VitC Vit YesYes
OO KSeriesKSeries 19.35019.350 0.065610.06561 31.4131.41 1.081.08 SiO2 SiO 2 YesYes
TiTi KseriesKseries 129.37129.37 1.293671.29367 63.4263.42 1.071.07 TiTi YesYes
TotalTotal 100.00100.00
도 6a 및 [표 1]을 참조하면, Ti가 63.42wt%, O가 31.41wt%로 함유되어 있음을 확인할 수 있다.Referring to Figure 6a and [Table 1], it can be confirmed that Ti is contained at 63.42 wt% and O is contained at 31.41 wt%.
도 6b는 Spectrum 2에 대한 정성분석 결과이며, [표 2]은 정량분석 결과이다.Figure 6b is the qualitative analysis result for Spectrum 2, and [Table 2] is the quantitative analysis result.
Spectrum 2 Spectrum 2
ElementElement Line TypeLine Type Apparent
Concentration
Apparent
Concentration
K RatioK Ratio Wt%Wt% Wt%
Sigma
Wt%
Sigma
Standard
Label
Standard
Label
Factory StandardFactory Standard Standard
Calibration
Date
Standard
Calibration
Date
CC KseriesKseries 3.993.99 0.39940.3994 6.576.57 0.610.61 C VitC Vit YesYes
OO KSeriesKSeries 32.3932.39 0.109010.10901 41.4841.48 0.950.95 SiO2 SiO 2 YesYes
TiTi KseriesKseries 110.24110.24 1.102391.10239 51.9551.95 0.900.90 TiTi YesYes
TotalTotal 100.00100.00
도 6b 및 [표 2]을 참조하면, Ti가 51.95wt%, O가 41.48 wt%로 함유되어 있음을 확인할 수 있다.Referring to Figure 6b and [Table 2], it can be confirmed that Ti is contained at 51.95 wt% and O is contained at 41.48 wt%.
도 6c는 Spectrum 3에 대한 정성분석 결과이며, [표 3]은 정량분석 결과이다.Figure 6c is the qualitative analysis result for Spectrum 3, and [Table 3] is the quantitative analysis result.
Spectrum 3 Spectrum 3
ElementElement Line TypeLine Type Apparent
Concentration
Apparent
Concentration
K RatioK Ratio Wt%Wt% Wt%
Sigma
Wt%
Sigma
Standard
Label
Standard
Label
Factory StandardFactory Standard Standard
Calibration
Date
Standard
Calibration
Date
CC KseriesKseries 5.715.71 0.057110.05711 8.858.85 0.630.63 C VitC Vit YesYes
OO KSeriesKSeries 36.3436.34 0.122290.12229 42.8442.84 0.900.90 SiO2 SiO 2 YesYes
TiTi KseriesKseries 106.11106.11 1.061061.06106 48.3148.31 0.820.82 TiTi YesYes
TotalTotal 100.00100.00
도 6c 및 [표 3]을 참조하면, Ti가 48.31wt%, O가 42.84 wt%로 함유되어 있음을 확인할 수 있다.Referring to Figure 6c and [Table 3], it can be confirmed that Ti is contained at 48.31 wt% and O is contained at 42.84 wt%.
도 6d는 Spectrum 4에 대한 정성분석 결과이며, [표 4]은 정량분석 결과이다.Figure 6d is the qualitative analysis result for Spectrum 4, and [Table 4] is the quantitative analysis result.
Spectrum 4 Spectrum 4
ElementElement Line TypeLine Type Apparent
Concentration
Apparent
Concentration
K RatioK Ratio Wt%Wt% Wt%
Sigma
Wt%
Sigma
Standard
Label
Standard
Label
Factory StandardFactory Standard Standard
Calibration
Date
Standard
Calibration
Date
CC KseriesKseries 4.954.95 0.049530.04953 7.627.62 0.600.60 C VitC Vit YesYes
OO KSeriesKSeries 44.0144.01 0.148100.14810 47.5347.53 0.810.81 SiO2 SiO 2 YesYes
TiTi KseriesKseries 98.9098.90 0.989010.98901 44.8644.86 0.740.74 TiTi YesYes
TotalTotal 100.00100.00
도 6d 및 [표 4]를 참조하면, Ti가 44.86wt%, O가 47.53 wt%로 함유되어 있음을 확인할 수 있다.Referring to Figure 6d and [Table 4], it can be confirmed that Ti is contained at 44.86 wt% and O is contained at 47.53 wt%.
이를 통해, 본 발명에 따른 수소 도핑된 환원된 산화티탄(TiO2-x) 분말은 모든 결정 부분에서 TiO2와 동일한 성분 즉, Ti와 O원소를 포함하고 있음을 확인할 수 있었다. Through this, it was confirmed that the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder according to the present invention contains the same components as TiO 2 , that is, Ti and O elements, in all crystal parts.
실험예 4. 수소 도핑된 환원된 산화티탄(TiO2-x) 분말의 원소 분석Experimental Example 4. Elemental analysis of hydrogen-doped reduced titanium oxide (TiO 2-x ) powder
도 7은 본 발명의 수소 도핑된 환원된 산화티탄(TiO2-x) 분말의 SEM 원소 맵핑(SEM elemental mapping) 측정 결과를 나타낸 도면이다. Figure 7 is a diagram showing the results of SEM elemental mapping of the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder of the present invention.
도 7을 참조하면 본 발명의 수소 도핑된 환원된 산화티탄(TiO2-x) 분말은 Ti와 O가 균일하게 존재함을 확인할 수 있다.Referring to FIG. 7, it can be seen that Ti and O are uniformly present in the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder of the present invention.
이때, C는 분말시료를 올려놓은 카본 테이프로에 의해 도출되며, Pt는 SEM 분석 전처리 과정인 Pt 코팅에 의해 도출된다.At this time, C is derived by carbon tape on which the powder sample is placed, and Pt is derived by Pt coating, which is a pretreatment process for SEM analysis.
실험예 5. 수소 도핑된 환원된 산화티탄(TiO2-x) 분말의 UV-Vis분석Experimental Example 5. UV-Vis analysis of hydrogen-doped reduced titanium oxide (TiO 2-x ) powder
실험예 5에서는 실시예 1 내지 6 및 비교예의 UV-Vis분석을 수행하였다.In Experimental Example 5, UV-Vis analysis of Examples 1 to 6 and Comparative Example was performed.
이때, UV-Vis분석은 Agilent Technology가 제조한 Ultraviolet-Visible-Near Infrared Spectrophotometer(CARY5000)을 통해 수행되었다.At this time, UV-Vis analysis was performed using an Ultraviolet-Visible-Near Infrared Spectrophotometer (CARY5000) manufactured by Agilent Technology.
도 8은 본 발명의 수소 도핑된 환원된 산화티탄(TiO2-x) 분말의 UV-Vis분석 결과를 나타낸 도면이다.Figure 8 is a diagram showing the results of UV-Vis analysis of hydrogen-doped reduced titanium oxide (TiO 2-x ) powder of the present invention.
도 8의 비교예 1은 반응전 TiO2 (P25)에 대한 그래프이다. 실시예 1은 후처리 하지 않은 수소 도핑된 환원된 산화티탄(TiO2-x)에 대한 그래프이며, 실시예 2 내지 5는 각각 300℃, 350℃, 400℃ 450℃로 가열하여 후처리 한 수소 도핑된 환원된 산화티탄(TiO2-x)에 대한 그래프이다. 실시예 6은 TiO2와 수소화물이 1:3의 몰비로 혼합되어 제조된 수소 도핑된 환원된 산화티탄(TiO2-x)에 대한 그래프이다.Comparative Example 1 in FIG. 8 is a graph of TiO 2 (P25) before reaction. Example 1 is a graph of hydrogen-doped reduced titanium oxide (TiO 2-x ) without post-treatment, and Examples 2 to 5 are hydrogen post-processed by heating to 300°C, 350°C, 400°C, and 450°C, respectively. This is a graph for doped reduced titanium oxide (TiO 2-x ). Example 6 is a graph of hydrogen-doped reduced titanium oxide (TiO 2-x ) prepared by mixing TiO 2 and hydride at a molar ratio of 1:3.
도 8을 참조하면, 비교예는 자외선 영역에서만 광을 흡수하며, 가시광선 영역에서는 광을 거의 흡수하지 못하는 것을 알 수 있다. 반면, 실시예 1 내지 6의 경우, 자외선 영역뿐만 아니라 가시광선 영역에 대해서도 광을 흡수하는 것을 알 수 있다. 구체적으로, 실시예 1 내지 6의 경우, 광 가시광선에 대한 광 흡수도가 0.35a.u.이상인 것을 알 수 있다. Referring to FIG. 8, it can be seen that the comparative example absorbs light only in the ultraviolet region and hardly absorbs light in the visible region. On the other hand, in Examples 1 to 6, it can be seen that light is absorbed not only in the ultraviolet region but also in the visible region. Specifically, in the case of Examples 1 to 6, it can be seen that the optical absorption of visible light is 0.35 a.u. or more.
이를 통해, 수소 도핑된 환원된 산화티탄(TiO2-x) 분말이 TiO2 보다 자외선 및 가시광선의 광 흡수 특성이 우수함을 알 수 있다.Through this, it can be seen that hydrogen-doped reduced titanium oxide (TiO 2-x ) powder has better light absorption characteristics of ultraviolet and visible light than TiO 2 .
또한, 후처리 된 실시예 2 내지 6은 후처리 되지 않은 실시예 1과 비교하였을 때, 광 흡수 특성이 거의 유사함을 알 수 있다. 이를 통해, 수소 도핑된 환원된 산화티탄(TiO2-x) 분말은 안정한 상을 형성하기 위해 열처리되어도 광 흡수 특성이 거의 떨어지지 않는 것을 알 수 있다. 즉, 안정한 상을 가지며, 자외선 및 가시광선에 대한 광 흡수 특성이 향상된 수소 도핑된 환원된 산화티탄(TiO2-x) 분말이 제조될 수 있음을 확인할 수 있다.In addition, it can be seen that post-processed Examples 2 to 6 have almost similar light absorption characteristics compared to non-post-treated Example 1. Through this, it can be seen that the light absorption characteristics of the hydrogen-doped reduced titanium oxide (TiO 2-x ) powder are hardly deteriorated even when heat-treated to form a stable phase. That is, it can be confirmed that hydrogen-doped reduced titanium oxide (TiO 2-x ) powder, which has a stable phase and improved light absorption characteristics for ultraviolet and visible light, can be produced.
한편, 실시예 1과 실시예 3을 비교하면, 수소화물의 혼합비율이 더 높은 실시예 3의 자외선 및 가시광선에 대한 광흡수도가 실시예 1보다 높음을 확인할 수 있다. 이를 통해, 수소화물의 혼합비율이 높을수록 자외선 및 가시광선에 대한 광 흡수도가 향상됨을 확인할 수 있다.Meanwhile, when comparing Example 1 and Example 3, it can be confirmed that the light absorption of ultraviolet rays and visible light in Example 3, which has a higher mixing ratio of hydride, is higher than that in Example 1. Through this, it can be seen that the higher the mixing ratio of hydride, the improved light absorption of ultraviolet rays and visible light.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the claims described below rather than the detailed description above, and all changes or modified forms derived from the meaning and scope of the claims and their equivalent concepts should be construed as being included in the scope of the present invention. do.
본 발명은 광촉매 기술로서, 광촉매가 적용되는 여러 산업분야에 이용가능할 수 있다. 예를 들어, 환경, 에너지, 화학제조 등 다양한 산업분야에 사용될 수 있다. The present invention is a photocatalyst technology and can be used in various industrial fields where photocatalysts are applied. For example, it can be used in various industrial fields such as environment, energy, and chemical manufacturing.

Claims (15)

  1. TiO2 입자, 수소화물 및 혼합염을 혼합하는 혼합물 제조단계;A mixture preparation step of mixing TiO 2 particles, hydride, and mixed salt;
    상기 혼합물을 상기 혼합염의 공융 녹는점 이상의 온도에서 반응시켜 결정화된 생성물을 제조하는 결정화단계; 및A crystallization step of reacting the mixture at a temperature above the eutectic melting point of the mixed salt to produce a crystallized product; and
    상기 결정화된 생성물로부터 TiO2-x 분말(상기 식에서 X는 0.00001 내지 2 사이의 유리수임)을 수득하는 분말 수득단계를 포함하는,Comprising a powder obtaining step of obtaining TiO 2-x powder (where X is a rational number between 0.00001 and 2) from the crystallized product,
    수소가 도핑된 환원된 티타니아(TiO2-x) 분말의 제조방법.Method for producing hydrogen-doped reduced titania (TiO 2-x ) powder.
  2. 제1항에 있어서,According to paragraph 1,
    상기 수소화물은The hydride is
    MgH2, NaAlH4, NaBH4, LiAlH4, CaH2, ZrH2, TiH2, VH2, NaH, LiH, KH, RbH, CsH 및 Mg2FeH6로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는,Characterized by one or more selected from the group consisting of MgH 2 , NaAlH 4 , NaBH 4 , LiAlH 4 , CaH 2 , ZrH 2 , TiH 2 , VH 2 , NaH, LiH, KH, RbH, CsH and Mg 2 FeH 6 doing,
    수소가 도핑된 환원된 티타니아(TiO2-x) 분말의 제조방법.Method for producing hydrogen-doped reduced titania (TiO 2-x ) powder.
  3. 제1항에 있어서,According to paragraph 1,
    상기 혼합염은The mixed salt is
    LiCl, NaCl, KCl, RbCl, CsCl, Li2SO4, Na2SO4, K2SO4 및 K3PO4 로 이루어진 군으로부터 선택되는 2종 이상인 것을 특징으로 하는, Characterized in that it is two or more selected from the group consisting of LiCl, NaCl, KCl, RbCl, CsCl, Li 2 SO 4 , Na 2 SO 4 , K 2 SO 4 and K 3 PO 4 ,
    수소가 도핑된 환원된 티타니아(TiO2-x) 분말의 제조방법.Method for producing hydrogen-doped reduced titania (TiO 2-x ) powder.
  4. 제1항에 있어서,According to paragraph 1,
    상기 혼합염은 공융 녹는점이 700℃미만인 것을 특징으로 하는,The mixed salt is characterized in that the eutectic melting point is less than 700°C.
    수소가 도핑된 환원된 티타니아(TiO2-x) 분말의 제조방법.Method for producing hydrogen-doped reduced titania (TiO 2-x ) powder.
  5. 제1항에 있어서,According to paragraph 1,
    상기 혼합물 제조단계는The mixture manufacturing step is
    상기 TiO2 입자와 수소화물을 혼합하여 제1혼합물을 제조하는 제1혼합물 제조단계; 및A first mixture preparation step of mixing the TiO 2 particles and hydride to prepare a first mixture; and
    상기 제1혼합물에 혼합염을 투여하여 제2혼합물을 제조하는 제2혼합물 제조단계를 포함하는,Comprising a second mixture production step of preparing a second mixture by adding a mixed salt to the first mixture,
    수소가 도핑된 환원된 티타니아(TiO2-x) 분말의 제조방법.Method for producing hydrogen-doped reduced titania (TiO 2-x ) powder.
  6. 제5항에 있어서,According to clause 5,
    상기 제1혼합물 제조단계는The first mixture manufacturing step is
    상기 TiO2 입자와 상기 수소화물을 1:1 내지 1:20의 몰 비로 혼합하는 단계를 포함하는,Comprising the step of mixing the TiO 2 particles and the hydride at a molar ratio of 1:1 to 1:20,
    수소가 도핑된 환원된 티타니아(TiO2-x) 분말의 제조방법.Method for producing hydrogen-doped reduced titania (TiO 2-x ) powder.
  7. 제5항에 있어서, According to clause 5,
    상기 제2혼합물 제조단계는The second mixture manufacturing step is
    상기 제1혼합물과 상기 혼합염을 1:5 내지 1:120의 질량 비로 혼합하는 단계를 포함하는,Comprising the step of mixing the first mixture and the mixed salt at a mass ratio of 1:5 to 1:120,
    수소가 도핑된 환원된 티타니아(TiO2-x) 분말의 제조방법.Method for producing hydrogen-doped reduced titania (TiO 2-x ) powder.
  8. 제1항에 있어서,According to paragraph 1,
    상기 결정화단계는The crystallization step is
    열처리단계 및 냉각단계를 포함하는,Including a heat treatment step and a cooling step,
    수소가 도핑된 환원된 티타니아(TiO2-x) 분말의 제조방법.Method for producing hydrogen-doped reduced titania (TiO 2-x ) powder.
  9. 제8항에 있어서,According to clause 8,
    상기 열처리단계는 The heat treatment step is
    700℃이상의 온도에서 3시간 이상 열처리하는 단계를 포함하는,Including the step of heat treatment at a temperature of 700°C or more for more than 3 hours,
    수소가 도핑된 환원된 티타니아(TiO2-x) 분말의 제조방법.Method for producing hydrogen-doped reduced titania (TiO 2-x ) powder.
  10. 제1항에 있어서,According to paragraph 1,
    상기 분말 수득단계는The powder obtaining step is
    상기 결정화된 생성물을 세척하는 세척단계;A washing step of washing the crystallized product;
    상기 세척된 상기 결정화된 생성물을 여과하는 여과단계; 및A filtration step of filtering the washed crystallized product; and
    상기 여과된 상기 결정화된 생성물을 건조하는 단계를 포함하는,comprising drying the filtered crystallized product,
    수소가 도핑된 환원된 티타니아(TiO2-x) 분말의 제조방법.Method for producing hydrogen-doped reduced titania (TiO 2-x ) powder.
  11. 제1항에 있어서, According to paragraph 1,
    상기 수소가 도핑된 환원된 티타니아(TiO2-x) 분말의 제조방법은The method for producing the hydrogen-doped reduced titania (TiO 2-x ) powder is
    건조된 생성물을 열처리하는 후처리 단계를 더 포함하는,Further comprising a post-treatment step of heat treating the dried product,
    수소가 도핑된 환원된 티타니아(TiO2-x) 분말의 제조방법.Method for producing hydrogen-doped reduced titania (TiO 2-x ) powder.
  12. 제11항에 있어서,According to clause 11,
    상기 후처리 단계는The post-processing step is
    1시간 내지 3시간동안 열처리하는 단계를 포함하는,Including heat treatment for 1 hour to 3 hours,
    수소가 도핑된 환원된 티타니아(TiO2-x) 분말의 제조방법.Method for producing hydrogen-doped reduced titania (TiO 2-x ) powder.
  13. 제1항에 있어서,According to paragraph 1,
    상기 수소가 도핑된 환원된 티타니아(TiO2-x)은 입자 직경 사이즈가 5nm 내지 100μm인,The hydrogen-doped reduced titania (TiO 2-x ) has a particle diameter size of 5 nm to 100 μm,
    수소가 도핑된 환원된 티타니아(TiO2-x) 분말.Reduced titania (TiO 2-x ) powder doped with hydrogen.
  14. 제1항에 있어서,According to paragraph 1,
    상기 수소가 도핑된 환원된 티타니아(TiO2-x) 분말은 The hydrogen-doped reduced titania (TiO 2-x ) powder is
    가시광선 영역의 파장대(400 내지 800nm)에서 0.35 a.u. 이상의 광 흡수도를 가지는0.35 a.u. in the visible light range (400 to 800 nm). Having a light absorption of more than
    수소가 도핑된 환원된 티타니아(TiO2-x) 분말.Reduced titania (TiO 2-x ) powder doped with hydrogen.
  15. 제1항에 있어서,According to paragraph 1,
    상기 수소가 도핑된 환원된 티타니아(TiO2-x) 분말은 The hydrogen-doped reduced titania (TiO 2-x ) powder is
    (110), (101) 및 (211) 회절 피크를 포함하는 XRD 스펙트럼을 가지는has an XRD spectrum containing (110), (101) and (211) diffraction peaks.
    수소가 도핑된 환원된 티타니아(TiO2-x) 분말.Reduced titania (TiO 2-x ) powder doped with hydrogen.
PCT/KR2023/006297 2022-05-10 2023-05-09 Hydrogen-doped reduced titania powder and preparation method therefor WO2023219397A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220057323A KR102634585B1 (en) 2022-05-10 2022-05-10 Hydrogen-doped reduced titania powder and method for manufacturing the same
KR10-2022-0057323 2022-05-10

Publications (1)

Publication Number Publication Date
WO2023219397A1 true WO2023219397A1 (en) 2023-11-16

Family

ID=88730715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/006297 WO2023219397A1 (en) 2022-05-10 2023-05-09 Hydrogen-doped reduced titania powder and preparation method therefor

Country Status (2)

Country Link
KR (1) KR102634585B1 (en)
WO (1) WO2023219397A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247002A (en) * 2006-03-16 2007-09-27 Keio Gijuku Electrochemical reduction method for titanium oxide
KR20190072255A (en) * 2017-12-15 2019-06-25 재단법인대구경북과학기술원 A method for preparing reduced titania, reduced titania prepared by the same method, and a light harvester comprising the reduced titania
CN110627116A (en) * 2019-09-06 2019-12-31 吉林大学 Hydrogen-doped TiO (titanium dioxide)2Phase-change nano material and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100073615A (en) 2008-12-23 2010-07-01 주식회사 포스코 A method of preparing titanium suboxides using molten salt electrolysis
JP6565950B2 (en) * 2017-02-02 2019-08-28 トヨタ自動車株式会社 Method for producing garnet-type oxide solid electrolyte

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247002A (en) * 2006-03-16 2007-09-27 Keio Gijuku Electrochemical reduction method for titanium oxide
KR20190072255A (en) * 2017-12-15 2019-06-25 재단법인대구경북과학기술원 A method for preparing reduced titania, reduced titania prepared by the same method, and a light harvester comprising the reduced titania
CN110627116A (en) * 2019-09-06 2019-12-31 吉林大学 Hydrogen-doped TiO (titanium dioxide)2Phase-change nano material and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SANCHEZ-MARTINEZ A, KOOP-SANTA C, CEBALLOS-SANCHEZ O, LÓPEZ-MENA EDGAR R, GONZÁLEZ M A, RANGEL-COBIÁN V, OROZCO-GUAREÑO E, GARCÍA-: "Study of the preparation of TiO 2 powder by different synthesis methods", MATERIALS RESEARCH EXPRESS, IOP PUBLISHING, GB, vol. 6, no. 8, 24 May 2019 (2019-05-24), GB , pages 085085, XP093107397, ISSN: 2053-1591, DOI: 10.1088/2053-1591/ab21e8 *
SINHAMAHAPATRA APURBA; LEE HA-YOUNG; SHEN SHAOHUA; MAO SAMUEL S.; YU JONG-SUNG: "H-doped TiO2-xprepared with MgH2for highly efficient solar-driven hydrogen production", APPLIED CATALYSIS B. ENVIRONMENTAL, ELSEVIER, AMSTERDAM, NL, vol. 237, 15 June 2018 (2018-06-15), AMSTERDAM, NL , pages 613 - 621, XP085441586, ISSN: 0926-3373, DOI: 10.1016/j.apcatb.2018.06.030 *

Also Published As

Publication number Publication date
KR20230157742A (en) 2023-11-17
KR102634585B1 (en) 2024-02-06

Similar Documents

Publication Publication Date Title
WO2012173400A2 (en) Visible light sensitive photocatalyst, method of producing the same, and electrochemical water decomposition cell, water decomposition system, and organic material decomposition system each including the same
WO2013015663A2 (en) Method for reducing carbon dioxide by using sunlight and hydrogen and apparatus for same
WO2014116026A1 (en) Graphene counter electrode for dye-sensitized solar cell, method for manufacturing same, and dye-sensitized solar cell comprising same
WO2023219397A1 (en) Hydrogen-doped reduced titania powder and preparation method therefor
AU637748B2 (en) Doped zinc oxide-based pigment
WO2023282565A1 (en) Method for partially reducing vanadium pentoxide using ammonia solution, and vanadium dioxide powder prepared thereby
US7723610B2 (en) Titanium oxide-based sol-gel polymer
Renuka et al. Synthesis of sunlight driven ZnO/CuO nanocomposite: characterization, optical, electrochemical and photocatalytic studies
WO2017176038A1 (en) Basno3 thin film and low-temperature preparation method therefor
WO2020080844A1 (en) Heat shielding film and method for manufacturing same
Saeed et al. Low cost novel PEO based nano-composite for semiconductor and He–Ne lasers beam attenuation: Structural and optical properties
WO2021256633A1 (en) Eco-friendly heat-shielding composite tungsten composition and method for preparing same
CN112349842B (en) Lead-tin blended perovskite film and preparation method and application thereof
WO2010021454A2 (en) Method of preparing carbon-doped titanium dioxide nanoparticles by decompositing carbon dioxide using thermal plasma
WO2024215125A1 (en) Photocatalyst and method for producing same
KR100658569B1 (en) Titanium oxide based heat radiating coating material
KR100924515B1 (en) Manufacturing Method of Visible Rays Active Anatase Type Titanium Dioxide Photocatalyst
CN108911515A (en) Glass powder with low melting point, glass powder slurry and preparation method thereof and panel encapsulating structure
WO2020085841A1 (en) Photocatalyst and preparation method therefor
WO2022211306A1 (en) Metal oxide/transition metal dichalcogenide heterostructure and method for manufacturing same
WO2022169042A1 (en) Environmentally friendly fine particles for light-heat conversion, dispersion thereof, and production method therefor
WO2012053835A2 (en) Liquid combustion catalyst composition comprising an ionized metal compound
WO2019059738A2 (en) Method for manufacturing cu delafossite photoelectrode using electro-deposition and method for manufacturing hydrogen using photoelectrode manufactured thereby
WO2018110720A1 (en) Method for preparing porous titania thin film by using cellulose nanocrystal
KR20120046510A (en) Manufacturing method of visible rays active anatase-brookite type titanium dioxide photocatalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803820

Country of ref document: EP

Kind code of ref document: A1