WO2023219382A1 - 무선 통신 시스템에서 가변 트래픽을 위한 송수신 방법 및 장치 - Google Patents

무선 통신 시스템에서 가변 트래픽을 위한 송수신 방법 및 장치 Download PDF

Info

Publication number
WO2023219382A1
WO2023219382A1 PCT/KR2023/006262 KR2023006262W WO2023219382A1 WO 2023219382 A1 WO2023219382 A1 WO 2023219382A1 KR 2023006262 W KR2023006262 W KR 2023006262W WO 2023219382 A1 WO2023219382 A1 WO 2023219382A1
Authority
WO
WIPO (PCT)
Prior art keywords
mcs
configured grant
mcs index
information
modulation
Prior art date
Application number
PCT/KR2023/006262
Other languages
English (en)
French (fr)
Inventor
박기현
Original Assignee
주식회사 케이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230057506A external-priority patent/KR20230157252A/ko
Application filed by 주식회사 케이티 filed Critical 주식회사 케이티
Publication of WO2023219382A1 publication Critical patent/WO2023219382A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • This specification relates to the 3GPP 5G NR system.
  • next-generation 5G system which is an improved wireless broadband communication system than the existing LTE system
  • NewRAT communication scenarios are divided into Enhanced Mobile BroadBand (eMBB) / Ultra-reliability and low-latency communication (URLLC) / Massive Machine-Type Communications (mMTC).
  • eMBB Enhanced Mobile BroadBand
  • URLLC Ultra-reliability and low-latency communication
  • mMTC Massive Machine-Type Communications
  • eMBB is a next-generation mobile communication scenario with characteristics such as High Spectrum Efficiency, High User Experienced Data Rate, and High Peak Data Rate
  • URLLC is a next-generation mobile communication scenario with characteristics such as Ultra Reliable, Ultra Low Latency, and Ultra High Availability.
  • mMTC is a next-generation mobile communication scenario with Low Cost, Low Energy, Short Packet, and Massive Connectivity characteristics. (e.g., IoT).
  • the present disclosure seeks to provide a method and device for performing uplink transmission and reception by changing a variable MCS (modulation and coding scheme), that is, MCS index, in a wireless communication system.
  • MCS modulation and coding scheme
  • An embodiment of the present specification is a wireless communication system in which a terminal sets a plurality of MCS (modulation and coding scheme) candidate indexes related to a configured grant, and performs uplink processing based on the configured grant.
  • MCS modulation and coding scheme
  • uplink transmission is performed based on one MCS index among the plurality of MCS (modulation and coding scheme) candidate indexes, and the one MCS index is selected to be variable. do.
  • a base station sets a plurality of MCS (modulation and coding scheme) candidate indexes related to a configured grant, and based on the configured grant, Uplink reception is performed based on one MCS index among the plurality of MCS (modulation and coding scheme) candidate indexes, and the one MCS index is variable by the terminal. Provides a method of selection.
  • MCS modulation and coding scheme
  • embodiments of the present invention include, in a wireless communication system, at least one processor, and at least one memory that stores instructions and is operably electrically connectable to the at least one processor.
  • the operations performed are: setting a plurality of MCS (modulation and coding scheme) candidate indexes related to the configured grant, and setting the configured grant (configured grant).
  • Uplink transmission is performed based on a grant.
  • Uplink transmission is performed based on one MCS index among the plurality of MCS (modulation and coding scheme) candidate indexes, and the one MCS index is Provides communication devices that are selected to be variable.
  • embodiments of the present invention include, in a wireless communication system, at least one processor, and at least one memory that stores instructions and is operably electrically connectable to the at least one processor.
  • the operations performed are: setting a plurality of MCS (modulation and coding scheme) candidate indexes related to the configured grant, and setting the configured grant (configured grant).
  • Uplink reception is performed based on a grant. Uplink reception is performed based on one MCS index among the plurality of MCS (modulation and coding scheme) candidate indexes, and the one MCS index is Provides a base station that is selected to be variable by the terminal.
  • the terminal may transmit information about the one MCS index to the base station.
  • information about the one MCS index can be transmitted from the terminal to the base station through a demodulation-reference signal (DM-RS).
  • DM-RS demodulation-reference signal
  • the terminal can determine the transmission power based on the one MCS index. And, the base station can perform decoding of uplink data based on information about one received MCS index.
  • the base station may transmit information about the plurality of modulation and coding scheme (MCS) candidate indices related to the configured grant to the terminal through radio resource control (RRC) signaling.
  • RRC radio resource control
  • the base station may transmit information about the plurality of modulation and coding scheme (MCS) candidate indices related to the configured grant to the terminal through downlink control information (DCI).
  • DCI downlink control information
  • uplink transmission and reception can be performed efficiently with respect to power by changing a variable MCS (modulation and coding scheme), that is, MCS index, in a wireless communication system.
  • MCS modulation and coding scheme
  • 1 is a diagram illustrating a wireless communication system.
  • Figure 2 illustrates the structure of a radio frame used in NR.
  • 3A to 3C are illustrative diagrams illustrating an example architecture for wireless communication services.
  • Figure 4 illustrates the slot structure of an NR frame.
  • Figure 5 shows examples of subframe types in NR.
  • Figure 6 illustrates the structure of a self-contained slot.
  • Figure 7 illustrates uplink transmission and reception based on a configured grant according to the disclosure of this specification.
  • Figure 8 illustrates uplink transmission and reception based on a configured grant to which 2-repetition is applied according to the disclosure of this specification.
  • Figure 9 illustrates uplink transmission and reception based on a configured grant in which 2-occasion is applied to 2-repetition according to the disclosure of this specification.
  • Figure 10 shows a method of operating a terminal according to an embodiment of the present specification.
  • Figure 11 shows a method of operating a base station according to an embodiment of the present specification.
  • Figure 12 shows a device according to one embodiment of the present specification.
  • Figure 13 is a block diagram showing the configuration of a terminal according to an embodiment of the present specification.
  • Figure 14 shows a configuration block diagram of a processor on which the disclosure of the present specification is implemented.
  • FIG. 15 is a block diagram showing in detail the transceiver of the first device shown in FIG. 12 or the transceiver unit of the device shown in FIG. 13.
  • first, second, etc. used in this specification may be used to describe various components, but the components should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another.
  • a first component may be named a second component without departing from the scope of rights, and similarly, the second component may also be named a first component.
  • a component When a component is mentioned as being connected or connected to another component, it may be directly connected or connected to the other component, but other components may also exist in between. On the other hand, when it is mentioned that a component is directly connected or directly connected to another component, it should be understood that no other components exist in the middle.
  • a or B may mean “only A,” “only B,” or “both A and B.” In other words, in this specification, “A or B” may be interpreted as “A and/or B.”
  • A, B or C means “only A,” “only B,” “only C,” or “any and all combinations of A, B, and C ( It can mean “any combination of A, B and C)”.
  • the slash (/) or comma used in this specification may mean “and/or.”
  • A/B can mean “A and/or B.”
  • A/B can mean “only A,” “only B,” or “both A and B.”
  • A, B, C can mean “A, B, or C.”
  • At least one of A and B may mean “only A,” “only B,” or “both A and B.”
  • the expression “at least one of A or B” or “at least one of A and/or B” means “at least one It can be interpreted the same as “at least one of A and B.”
  • At least one of A, B and C means “only A”, “only B”, “only C”, or “A, B and C”. It can mean “any combination of A, B and C.”
  • at least one of A, B or C” or “at least one of A, B and/or C” means It may mean “at least one of A, B and C.”
  • control information Physical Downlink Control Channel
  • PDCCH Physical Downlink Control Channel
  • parentheses used in this specification may mean “for example.” Specifically, when “control information (PDCCH)” is indicated, “PDCCH (Physical Downlink Control Channel)” may be proposed as an example of “control information.” In other words, “control information” in this specification is not limited to “PDCCH,” and “PDDCH” may be proposed as an example of “control information.” Additionally, even when “control information (i.e., PDCCH)” is indicated, “PDCCH” may be proposed as an example of “control information.”
  • a UE User Equipment
  • the illustrated UE may also be referred to by terms such as terminal or ME (mobile equipment).
  • the UE may be a portable device such as a laptop, mobile phone, PDA, smart phone, or multimedia device, or may be a non-portable device such as a PC or vehicle-mounted device.
  • UE is used as an example of a device capable of wireless communication (e.g., wireless communication device, wireless device, or wireless device). Operations performed by the UE may be performed by any device capable of wireless communication.
  • a device capable of wireless communication may also be referred to as a wireless communication device, wireless device, or wireless device.
  • base station generally refers to a fixed station that communicates with wireless devices, such as eNodeB (evolved-NodeB), eNB (evolved-NodeB), BTS (Base Transceiver System), and access point ( It can be used as a comprehensive term including Access Point), gNB (Next generation NodeB), RRH (remote radio head), TP (transmission point), RP (reception point), relay, etc.
  • wireless devices such as eNodeB (evolved-NodeB), eNB (evolved-NodeB), BTS (Base Transceiver System), and access point ( It can be used as a comprehensive term including Access Point), gNB (Next generation NodeB), RRH (remote radio head), TP (transmission point), RP (reception point), relay, etc.
  • eNodeB evolved-NodeB
  • eNB evolved-NodeB
  • BTS Base Transceiver System
  • access point It can be used as
  • LTE long term evolution
  • LTE-A LTE-Advanced
  • 5G 5th generation
  • the 5th generation mobile communication as defined by the International Telecommunication Union (ITU), refers to providing a data transmission speed of up to 20Gbps and an experienced transmission speed of at least 100Mbps anywhere.
  • the official name is referred to as ‘IMT-2020’.
  • ITU proposes three major usage scenarios, such as enhanced Mobile BroadBand (eMBB), massive Machine Type Communication (mMTC), and Ultra Reliable and Low Latency Communications (URLLC).
  • eMBB enhanced Mobile BroadBand
  • mMTC massive Machine Type Communication
  • URLLC Ultra Reliable and Low Latency Communications
  • URLLC addresses usage scenarios that require high reliability and low latency.
  • services such as autonomous driving, factory automation, and augmented reality require high reliability and low latency (e.g., latency of less than 1 ms).
  • the current 4G (LTE) latency is statistically 21-43ms (best 10%), 33-75ms (median). This is insufficient to support services that require latency of 1ms or less.
  • LTE Long Term Evolution
  • the eMBB usage scenario concerns a usage scenario requiring mobile ultra-wideband.
  • the 5th generation mobile communication system supports higher capacity than the current 4G LTE, increases the density of mobile broadband users, and can support D2D (Device to Device), high stability, and MTC (Machine type communication).
  • 5G research and development also targets lower latency and lower battery consumption than 4G mobile communication systems to better implement the Internet of Things.
  • a new radio access technology (New RAT or NR) may be proposed.
  • the NR frequency band can be defined as two types of frequency ranges (FR1, FR2).
  • the values of the frequency range may be changed.
  • the frequency ranges of the two types (FR1, FR2) may be as shown in Table 1 below.
  • FR1 may mean “sub 6GHz range”
  • FR2 may mean “above 6GHz range” and may be called millimeter wave (mmW). .
  • mmW millimeter wave
  • FR1 may include a band from 410MHz to 7125MHz as shown in Table 1. That is, FR1 may include a frequency band of 6GHz (or 5850, 5900, 5925 MHz, etc.). For example, the frequency band above 6 GHz (or 5850, 5900, 5925 MHz, etc.) included within FR1 may include an unlicensed band. Unlicensed bands can be used for a variety of purposes, for example, for communications for vehicles (e.g. autonomous driving). Meanwhile, 3GPP-based communication standards provide resource elements carrying information originating from higher layers.
  • Downlink physical channels corresponding to and downlink physical signals corresponding to resource elements that are used by the physical layer but do not carry information originating from the upper layer are defined.
  • format indicator channel (PCFICH), physical downlink control channel (PDCCH), and physical hybrid ARQ indicator channel (PHICH) are defined as downlink physical channels, and reference signals and synchronization signals are defined as downlink physical signals.
  • a reference signal also referred to as a pilot, refers to a signal with a predefined special waveform known to both the gNB and the UE, for example, cell specific RS (cell specific RS), UE- UE-specific RS (UE-RS), positioning RS (PRS), and channel state information RS (CSI-RS) are defined as downlink reference signals.
  • cell specific RS cell specific RS
  • UE-RS UE-UE-specific RS
  • PRS positioning RS
  • CSI-RS channel state information RS
  • the 3GPP LTE/LTE-A standard corresponds to uplink physical channels corresponding to resource elements carrying information originating from upper layers, and resource elements used by the physical layer but not carrying information originating from upper layers. Uplink physical signals are defined.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • PRACH physical random access channel
  • DMRS demodulation reference signal
  • SRS sounding reference signal
  • PDCCH Physical Downlink Control CHannel
  • PCFICH Physical Control Format Indicator CHannel
  • PHICH Physical Hybrid automatic retransmit request Indicator CHannel
  • PDSCH Physical Downlink Shared CHannel
  • DCI Downlink Control Information
  • CFI Control Format Indicator
  • Downlink ACK/NACK ACKnowlegement/Negative ACK
  • PUCCH Physical Uplink Control CHannel
  • PUSCH Physical Uplink Shared CHannel
  • PRACH Physical Random Access CHannel
  • UCI Uplink Control Information
  • 1 is a diagram illustrating a wireless communication system.
  • a wireless communication system includes at least one base station (BS).
  • the BS is divided into gNodeB (or gNB) 20a and eNodeB (or eNB) 20b.
  • the gNB (20a) supports 5th generation mobile communication.
  • the eNB (20b) supports 4th generation mobile communication, that is, long term evolution (LTE).
  • LTE long term evolution
  • Each base station 20a and 20b provides communication services for a specific geographic area (generally referred to as a cell) 20-1, 20-2, and 20-3.
  • a cell can be further divided into multiple areas (referred to as sectors).
  • a user equipment usually belongs to one cell, and the cell to which the UE belongs is called a serving cell.
  • a base station that provides communication services to a serving cell is called a serving BS. Since the wireless communication system is a cellular system, there are other cells adjacent to the serving cell. Other cells adjacent to the serving cell are called neighboring cells.
  • a base station that provides communication services to a neighboring cell is called a neighboring base station (neighbor BS).
  • the serving cell and neighboring cells are determined relatively based on the UE.
  • downlink refers to communication from the base station 20 to the UE
  • uplink refers to communication from the UE 10 to the base station 20.
  • the transmitter may be part of the base station 20 and the receiver may be part of the UE 10.
  • the transmitter may be part of the UE 10 and the receiver may be part of the base station 20.
  • wireless communication systems can be broadly divided into FDD (frequency division duplex) and TDD (time division duplex) methods.
  • FDD frequency division duplex
  • TDD time division duplex
  • uplink transmission and downlink transmission occur while occupying different frequency bands.
  • TDD time division duplex
  • uplink transmission and downlink transmission occupy the same frequency band and occur at different times.
  • the channel response of the TDD method is substantially reciprocal. This means that in a given frequency region, the downlink channel response and the uplink channel response are almost identical. Therefore, in a wireless communication system based on TDD, there is an advantage that the downlink channel response can be obtained from the uplink channel response.
  • uplink transmission and downlink transmission are time-divided over the entire frequency band, so downlink transmission by the base station and uplink transmission by the UE cannot be performed simultaneously.
  • uplink transmission and downlink transmission are performed in different subframes.
  • Figure 2 illustrates the structure of a radio frame used in NR.
  • uplink and downlink transmission consists of frames.
  • a wireless frame is 10ms long and is defined as two 5ms half-frames (HF).
  • a half-frame is defined as five 1ms subframes (Subframe, SF).
  • a subframe is divided into one or more slots, and the number of slots in a subframe depends on SCS (Subcarrier Spacing).
  • Each slot contains 12 or 14 OFDM(A) symbols depending on the cyclic prefix (CP). When regular CP is used, each slot contains 14 symbols. When extended CP is used, each slot contains 12 symbols.
  • the symbol may include an OFDM symbol (or CP-OFDM symbol) and an SC-FDMA symbol (or DFT-s-OFDM symbol).
  • multiple numerologies may be provided to the terminal. For example, if SCS is 15kHz, it supports wide area in traditional cellular bands, and if SCS is 30kHz/60kHz, it supports dense-urban, lower latency. And it supports a wider carrier bandwidth, and when SCS is 60kHz or higher, it supports a bandwidth greater than 24.25GHz to overcome phase noise.
  • the numerology can be defined by CP (cycle prefix) length and subcarrier spacing (SCS).
  • One cell can provide multiple numerologies to a terminal.
  • the index of numerology is expressed as ⁇
  • each subcarrier spacing and the corresponding CP length can be as shown in the table below.
  • N slot symb the number of OFDM symbols per slot
  • N frame, ⁇ slot the number of slots per frame
  • N subframe, ⁇ slot the number of slots per subframe
  • ⁇ ⁇ f 2 ⁇ 15 [kHz] N- slot symbol N frame, ⁇ slot N subframe, ⁇ slot 0 15 14 10 One One 30 14 20 2 2 60 14 40 4 3 120 14 80 8 4 240 14 160 16 5 480 14 320 32 6 960 14 640 64
  • the index of numerology is expressed as ⁇
  • the number of OFDM symbols per slot (N slot symb )
  • the number of slots per frame (N frame, ⁇ slot )
  • the number of slots per subframe (N subframe, ⁇ slot ) is as shown in the table below.
  • OFDM(A) numerology e.g., SCS, CP length, etc.
  • OFDM(A) numerology e.g., SCS, CP length, etc.
  • the (absolute time) interval of time resources e.g., SF, slot, or TTI
  • TU Time Unit
  • 3A to 3C are illustrative diagrams showing an example architecture for wireless communication services.
  • the UE is connected to an LTE/LTE-A-based cell and an NR-based cell in a dual connectivity (DC) manner.
  • DC dual connectivity
  • the NR-based cell is connected to the existing core network for 4th generation mobile communication, that is, EPC (Evolved Packet Core).
  • EPC Evolved Packet Core
  • the LTE/LTE-A based cell is connected to the core network for 5th generation mobile communication, that is, the 5G core network.
  • NSA non-standalone
  • the UE is connected only to NR-based cells.
  • the service method based on this architecture is called SA (standalone).
  • reception from the base station uses a downlink subframe, and transmission to the base station uses an uplink subframe.
  • This method can be applied to paired and unpaired spectra.
  • a pair of spectrum means that it contains two carrier spectra for downlink and uplink operations.
  • one carrier may include a downlink band and an uplink band that are paired with each other.
  • Figure 4 illustrates the slot structure of the NR frame.
  • a slot includes a plurality of symbols in the time domain. For example, in the case of a general CP, one slot includes 14 symbols, but in the case of an extended CP, one slot includes 12 symbols.
  • a carrier wave includes a plurality of subcarriers in the frequency domain.
  • RB Resource Block
  • BWP Bandwidth Part
  • N e.g., 4
  • Downlink or uplink transmission is performed through an activated BWP, and at a given time, only one BWP among the BWPs configured for the terminal can be activated.
  • Each element in the resource grid is referred to as a Resource Element (RE), and one complex symbol can be mapped.
  • RE Resource Element
  • Figure 5 shows examples of subframe types in NR.
  • the transmission time interval (TTI) shown in FIG. 5 may be called a subframe or slot for NR (or new RAT).
  • the subframe (or slot) of FIG. 5 can be used in a TDD system of NR (or new RAT) to minimize data transmission delay.
  • a subframe (or slot) includes 14 symbols. The first symbol of a subframe (or slot) can be used for a downlink (DL) control channel, and the last symbol of a subframe (or slot) can be used for an uplink (UL) control channel. The remaining symbols can be used for DL data transmission or UL data transmission.
  • downlink transmission and uplink transmission can proceed sequentially in one subframe (or slot). Accordingly, downlink data may be received within a subframe (or slot), and an uplink acknowledgment (ACK/NACK) may be transmitted within the subframe (or slot).
  • ACK/NACK uplink acknowledgment
  • This subframe (or slot) structure may be referred to as a self-contained subframe (or slot).
  • the first N symbols in a slot can be used to transmit a DL control channel (hereinafter, DL control area), and the last M symbols in a slot can be used to transmit a UL control channel (hereinafter, UL control area).
  • N and M are each integers greater than or equal to 0.
  • the resource area (hereinafter referred to as data area) between the DL control area and the UL control area may be used for DL data transmission or may be used for UL data transmission.
  • a physical downlink control channel (PDCCH) may be transmitted in the DL control area
  • PDSCH physical downlink shared channel
  • a physical uplink control channel (PUCCH) may be transmitted in the UL control area
  • PUSCH physical uplink shared channel
  • this subframe (or slot) structure has the advantage of minimizing the final data transmission waiting time by reducing the time it takes to retransmit data with reception errors.
  • a time gap may be required in the transition process from transmission mode to reception mode or from reception mode to transmission mode.
  • some OFDM symbols when switching from DL to UL in the subframe structure can be set to a guard period (GP).
  • Figure 6 illustrates the structure of a self-contained slot.
  • a frame features a self-contained structure in which a DL control channel, DL or UL data, and UL control channel can all be included in one slot.
  • the first N symbols in a slot may be used to transmit a DL control channel (hereinafter, DL control area), and the last M symbols in a slot may be used to transmit a UL control channel (hereinafter, UL control area).
  • N and M are each integers greater than or equal to 0.
  • the resource area (hereinafter referred to as data area) between the DL control area and the UL control area may be used for DL data transmission or may be used for UL data transmission.
  • data area The resource area (hereinafter referred to as data area) between the DL control area and the UL control area may be used for DL data transmission or may be used for UL data transmission.
  • data area The resource area (hereinafter referred to as data area) between the DL control area and the UL control area may be used for DL data transmission or may be used for
  • DL area (i) DL data area, (ii) DL control area + DL data area
  • UL area (i) UL data area, (ii) UL data area + UL control area
  • PDCCH may be transmitted in the DL control area, and PDSCH may be transmitted in the DL data area.
  • PUCCH may be transmitted in the UL control area, and PUSCH may be transmitted in the UL data area.
  • DCI Downlink Control Information
  • DL data scheduling information for example, DL data scheduling information, UL data scheduling information, etc.
  • UCI Uplink Control Information
  • ACK/NACK Positive Acknowledgment/Negative Acknowledgment
  • CSI Channel State Information
  • SR Scheduling Request
  • 3GPP NR uses semi-persistent scheduling for downlink and configured grant for uplink to schedule periodic traffic.
  • the period is set with an RRC (radio resource control) message/information called SPS-Config, and then scrambled with CS-RNTI (Configured Scheduling RNTI (Radio Network Temporary Identifier)).
  • CS-RNTI Configured Scheduling RNTI (Radio Network Temporary Identifier)
  • DCI downlink control information
  • Uplink is divided into configured grant Type 1 and configured grant Type 2.
  • time/frequency resources, period, and MCS (modulation and coding scheme) setting values are set by RRC.
  • Type 2 All are set and transmitted, and in the case of Type 2, based on the cycle set by RRC, actual transmission is indicated with time/frequency resources and MCS setting values through DCI scrambled with CS-RNTI.
  • an RRC message/information called ConfiguredGrantConfig is used for configuration, and within this RRC message/information, a message/information called rrc-ConfiguredUplinkGrant containing indications of resources and MCS values may or may not be defined. If defined, it is Type 1. , If not defined, it is defined as configured grant Type 2.
  • the transmission of the physical uplink shared channel is accompanied by a physical downlink control channel (PDCCH), but the PUSCH is based on a configured grant. Transmission may not involve PDCCH.
  • PDCCH physical downlink control channel
  • uplink resources are preset by the base station without a dynamic grant (uplink grant through scheduling DCI) is called a 'configured grant'.
  • RRC upper layer
  • the period of the uplink grant is set by higher layer (RRC) signaling, and the uplink grant is provided by signaling the activation/deactivation of the configured grant through the PDCCH.
  • RRC higher layer
  • Figure 7 illustrates uplink transmission and reception based on a configured grant.
  • the base station transmits configured grant configuration information to the terminal through RRC signaling (S701).
  • the configured grant configuration information transmitted from the base station to the terminal may include period information for performing uplink transmission using the configured grant.
  • the terminal periodically performs uplink transmission using a configured grant based on period information received and included in configured grant configuration information (S702 to S703).
  • uplink transmission of the configured grant may be repeatedly transmitted within the configured grant period. This may be based on number of repetitions information included in configured grant configuration information.
  • the terminal can transmit periodic data without receiving PDCCH, which is very advantageous in terms of terminal power management, but has the disadvantage of wasting resources when the traffic volume is periodic but variable.
  • XR extended reality
  • Enhancements for NR an item of Rel-18
  • Configured Grant Type 1 which is advantageous in terms of power savings because the transmission area is guaranteed and PDCCH can not be received.
  • it is expected to use Configured Grant Type 1, which is advantageous in terms of power savings because the transmission area is guaranteed and PDCCH can not be received.
  • it even when instantaneous traffic is low, it must occupy a large transmission space for transmission. Inefficient power consumption may occur.
  • the present specification seeks to provide a method of using variable MCS in an NR transmission/reception environment and a device using the same.
  • it may be applied when the terminal is configured for periodic scheduling.
  • it is intended to provide a method and a device using the same to change/variable the MCS index used in uplink configured grant type 1 (Configured Grant Type 1).
  • the methods disclosed in this specification are (1) a method for changing the MCS index in anticipation of blind decoding, (2) a method for changing the MCS index using DM-RS, and (3) CSI Provides a method for changing the MCS index using a feedback report.
  • the method disclosed in this specification is basically a method that allows selecting an MCS index appropriate for the transmission block to be sent when utilizing a set time/frequency resource.
  • the terminal can transmit at a lower power level and still be able to transmit sufficiently for the base station to receive.
  • the first disclosure is a method for determining and receiving the actually used MCS by performing blind decoding at the base station when the terminal randomly selects and transmits an MCS among a plurality of MCS index candidates.
  • the terminal selects one MCS index from among the plurality of MCS index candidate indexes set, and performs uplink transmission based on the selected MCS index.
  • uplink transmission may be physical uplink shared channel (PUSCH) transmission.
  • the base station performs decoding on the uplink transmission received from the terminal, and at this time, identifies the MCS used in the uplink transmission. By identifying the MCS used in uplink transmission at the base station, the terminal can transmit information about this to the base station.
  • the terminal may select one MCS index from among the plurality of MCS index candidate indexes set, and transmit information about the selected MCS index to the base station.
  • the base station can perform decoding on uplink transmission based on information about the one MCS index received from the terminal.
  • uplink transmission may be configured grant (CG)-PUSCH transmission.
  • CG grant
  • uplink transmission and reception will be described.
  • Figure 8 illustrates uplink transmission and reception based on a configured grant to which 2-repetition is applied according to the disclosure of this specification.
  • uplink transmission that is, CG-PUSCH transmission
  • CG-PUSCH transmission is performed based on a configured grant period (ConfiguredGrantPeriod).
  • uplink control information may be transmitted by being multiplexed or piggybacked on resources (or grants) for CG-PUSCH transmission.
  • UCI transmitted through resources for CG-PUSCH transmission may include all or part of CSI feedback, hybrid automatic repeat and request (HARQ) information, and configured grant-uplink control information (CG-UCI).
  • HARQ hybrid automatic repeat and request
  • CG-UCI configured grant-uplink control information
  • CG-PUSCH transmission may be repeatedly transmitted within the configured grant period (ConfiguredGrantPeriod), which may be based on number of repetitions information.
  • Number of repetitions information may be included in configured grant configuration information transmitted from the base station to the terminal.
  • Figure 8 illustrates the case where the number of repetitions is 2.
  • Figure 9 illustrates uplink transmission and reception based on a configured grant in which 2-occasion is applied to 2-repetition according to the disclosure of this specification.
  • uplink transmission that is, CG-PUSCH transmission
  • CG-PUSCH transmission is performed based on a configured grant period (ConfiguredGrantPeriod), similar to the previous FIG. 8.
  • uplink control information may be transmitted by being multiplexed or piggybacked on resources (or grants) for CG-PUSCH transmission.
  • UCI transmitted through resources for CG-PUSCH transmission includes all or all of CSI feedback, HARQ (hybrid automatic repeat and request) information, and a plurality of CG-UCIs (eg, CG-UCI1 and CG-UCI1) Some may be included.
  • CG-PUSCH transmission may be repeatedly transmitted within a configured grant period (ConfiguredGrantPeriod), which may be based on number of repetitions information.
  • Number of repetitions information may be included in configured grant configuration information transmitted from the base station to the terminal.
  • ConfiguredGrantPeriod configured grant period
  • Number of repetitions information may be included in configured grant configuration information transmitted from the base station to the terminal.
  • UCI uplink control information
  • configuration information for multiple (transmission) occasions may be included in configured grant configuration information transmitted from the base station to the terminal.
  • it may be transmitted to the terminal through separate configuration information that is different from the configured grant configuration information.
  • PUSCH transmitted through multiple occasions may be referred to as multi-PUSCH transmission.
  • a method may be used to indicate, rather than a single, plural MCS index and/or value to be used by the UE in advance through the upper layer, that is, RRC.
  • the MCS value to be used in the configured grant (CG) is indicated through the mcsandTBS (Modulation and Coding Scheme and Transport Block Size) field. Multiple values are indicated through the mcsandTBS field.
  • the MCS value may be indicated, or may be indicated in the form of the maximum/minimum available MCS index.
  • the MCS index interval or range to be used may be additionally defined in advance or indicated in a new RRC message/information.
  • the MCS value to be used is indicated through DCI, and in this case, multiple MCS values may be indicated to be referenced.
  • specific MCS values may be indicated in an additionally permitted form. For example, if the indicated MCS index and/or value is k, the terminal can select the MCS index and/or value from k, k-5, k-10, k-15, ... there is. Alternatively, you can choose between k, k+5, and k-5.
  • interval 5 is used as an example, and this interval can be defined in advance or set through RRC.
  • auxiliary information to operate multiple MCS in RRC for configured grant Type 2 change type such as interval between available MCS indexes or increase/decrease, or maximum/minimum available MCS index You can instruct/configure, etc.
  • the configured grant configuration information described above can be used or additional RRC messages/information can be used.
  • the terminal may instruct the RRC to sequentially select lower or higher MCS values according to a defined pattern, or to select them when necessary. In this case, whether and how to apply the pattern in the Activation DCI can be indicated through the MCS index or additional fields. For example, the terminal can select only the MCS index that is equal to or lower than the MCS index indicated in the DCI.
  • the terminal can adjust the transmission power based on the MCS selected by the terminal.
  • the transmission power can be changed by the offset when deltaMCS is applied from the power value when using the existing indicated or standard MCS index.
  • the power change value is determined by the difference in spectral efficiency between the MCS index specified in the configured grant and the MCS index used for actual transmission, or the difference in BPRE (Bits Per RE) determined by each MCS index. It can be used to As an example, an RRC parameter that will indicate a change in transmission power according to the changed MCS value may be introduced.
  • a reference MCS value that serves as a standard for determining whether to apply deltaMCS and determine transmission power may be indicated. This reference MCS value may be the maximum or minimum MCS value to be used by the terminal to which the previously described method will be applied.
  • the second disclosure is a method for a terminal to transmit MCS index information to be used for uplink transmission through a demodulation-reference signal (DM-RS).
  • DM-RS demodulation-reference signal
  • This can be communicated in the form of a change in the location of the resource or a change in the sequence in which it is used. What this indicates may be a specific MCS index, a + or - specific value from a preset MCS index, or a + or - specific value from the last used MCS index.
  • a change in DM-RS may be a change in the sequence used, a change in the cyclic shift of the sequence, a change in the location of the mapping RE (resource element), or a change in the location of the mapping symbol. It may be a change in the number of mapping symbols, or it may be a combination of these.
  • the third disclosure is a method of determining the MCS based on the report when the terminal sends a periodic or aperiodic CSI feedback report while transmitting using a configured grant.
  • the UE may set the MCS closest to the channel quality indicator (CQI) value reported by the UE and perform subsequent configured grant transmission. This operation can only be performed when the MCS index determined depending on the CQI is larger or smaller than the set MCS index.
  • CQI channel quality indicator
  • the methods and/or methods provided in this specification may be applied independently or may be operated in combination in any form.
  • the terminal can still additionally select an MCS index at a specific interval based on the changed MCS setting value, as in the first initiation method.
  • the terms used in the present invention are arbitrary names whose meanings are easy to understand, and the present invention can be applied even when other terms with the same meaning are actually used.
  • Figure 10 shows a method of operating a terminal according to an embodiment of the present specification.
  • the terminal sets a plurality of MCS (modulation and coding scheme) candidate indexes related to a configured grant (S1001).
  • information on the plurality of MCS (modulation and coding scheme) candidate indices related to the configured grant may be received from the base station through radio resource control (RRC) signaling, or DCI (downlink It can also be received through control information).
  • RRC radio resource control
  • DCI downlink It can also be received through control information.
  • configured grant Type 1 information on the plurality of MCS (modulation and coding scheme) candidate indexes is received through radio resource control (RRC) signaling, and the configured grant (configured grant) grant) In the case of Type 2, it is received through DCI (downlink control information).
  • uplink transmission is performed based on the configured grant (S1002).
  • uplink transmission is performed based on one MCS index among the plurality of MCS (modulation and coding scheme) candidate indexes, and this one MCS index can be selected to be variable. In other words, an MCS index different from the MCS index previously used for uplink transmission is selected and uplink transmission is performed using this.
  • the terminal can determine the transmission power based on the one MCS index. Additionally, the terminal can transmit information about the one MCS index to the base station. At this time, the terminal can transmit the information about the one MCS index to the base station using a demodulation-reference signal (DM-RS).
  • DM-RS demodulation-reference signal
  • Figure 11 shows a method of operating a base station according to an embodiment of the present specification.
  • the base station sets a plurality of MCS (modulation and coding scheme) candidate indexes related to a configured grant (S1101). Thereafter, information on the plurality of modulation and coding scheme (MCS) candidate indexes related to the configured grant may be transmitted to the terminal through radio resource control (RRC) signaling, or downlink control information (DCI) ) can also be transmitted through.
  • RRC radio resource control
  • DCI downlink control information
  • the base station sets a plurality of MCS (modulation and coding scheme) candidate indexes related to the configured grant
  • RRC radio resource control
  • DCI downlink control information
  • uplink reception is performed based on the configured grant (S1102).
  • uplink reception is performed based on one MCS index among the plurality of MCS (modulation and coding scheme) candidate indexes, and this one MCS index can be selected to be variable by the terminal.
  • an MCS index different from the MCS index previously used for uplink reception is selected by the terminal and uplink reception is performed using this.
  • the base station can receive information about the one MCS index selected by the terminal from the terminal.
  • information about the one MCS index is received from the terminal using a demodulation-reference signal (DM-RS). You can receive it.
  • DM-RS demodulation-reference signal
  • the base station may perform decoding of uplink data based on information about the received one MCS index.
  • Figure 12 shows a device according to one embodiment of the present specification.
  • a wireless communication system may include a first device 100a and a second device 100b.
  • the first device 100a may be a base station, a network node, a transmitting terminal, a receiving terminal, a wireless device, a wireless communication device, a vehicle, a vehicle equipped with an autonomous driving function, a connected car, or a drone (Unmanned Aerial Vehicle, UAV), AI (Artificial Intelligence) module, robot, AR (Augmented Reality) device, VR (Virtual Reality) device, MR (Mixed Reality) device, hologram device, public safety device, MTC device, IoT device, medical device, pin It may be a tech device (or financial device), security device, climate/environment device, device related to 5G service, or other device related to the 4th Industrial Revolution field.
  • the second device 100b is a base station, a network node, a transmitting terminal, a receiving terminal, a wireless device, a wireless communication device, a vehicle, a vehicle equipped with an autonomous driving function, a connected car, and a drone (Unmanned Aerial Vehicle, UAV), AI (Artificial Intelligence) module, robot, AR (Augmented Reality) device, VR (Virtual Reality) device, MR (Mixed Reality) device, hologram device, public safety device, MTC device, IoT device, medical device, pin It may be a tech device (or financial device), security device, climate/environment device, device related to 5G service, or other device related to the 4th Industrial Revolution field.
  • the first device 100a may include at least one processor such as the processor 1020a, at least one memory such as the memory 1010a, and at least one transceiver such as the transceiver 1031a.
  • the processor 1020a may perform the functions, procedures, and/or methods described above.
  • the processor 1020a may perform one or more protocols.
  • the processor 1020a may perform one or more layers of a wireless interface protocol.
  • the memory 1010a is connected to the processor 1020a and can store various types of information and/or commands.
  • the transceiver 1031a is connected to the processor 1020a and can be controlled to transmit and receive wireless signals.
  • the second device 100b may include at least one processor such as the processor 1020b, at least one memory device such as the memory 1010b, and at least one transceiver such as the transceiver 1031b.
  • the processor 1020b may perform the functions, procedures, and/or methods described above.
  • the processor 1020b may implement one or more protocols.
  • the processor 1020b may implement one or more layers of a wireless interface protocol.
  • the memory 1010b is connected to the processor 1020b and can store various types of information and/or commands.
  • the transceiver 1031b is connected to the processor 1020b and can be controlled to transmit and receive wireless signals.
  • the memory 1010a and/or the memory 1010b may be connected to each other inside or outside the processor 1020a and/or the processor 1020b, and may be connected to other processors through various technologies such as wired or wireless connection. It may also be connected to .
  • the first device 100a and/or the second device 100b may have one or more antennas.
  • antenna 1036a and/or antenna 1036b may be configured to transmit and receive wireless signals.
  • Figure 13 is a block diagram showing the configuration of a terminal according to an embodiment of the present specification.
  • Figure 13 is a diagram illustrating the device of Figure 12 in more detail.
  • the device includes a memory 1010, a processor 1020, a transceiver 1031, a power management module 1091, a battery 1092, a display 1041, an input unit 1053, a speaker 1042, and a microphone 1052.
  • a subscriber identification module (SIM) card and one or more antennas.
  • Processor 1020 may be configured to implement the suggested functions, procedures and/or methods described herein. Layers of a radio interface protocol may be implemented in the processor 1020.
  • Processor 1020 may include an application-specific integrated circuit (ASIC), other chipset, logic circuit, and/or data processing device.
  • the processor 1020 may be an application processor (AP).
  • the processor 1020 may include at least one of a digital signal processor (DSP), a central processing unit (CPU), a graphics processing unit (GPU), and a modem (modulator and demodulator).
  • DSP digital signal processor
  • CPU central processing unit
  • GPU graphics processing unit
  • modem modulator and demodulator
  • processors 1020 include SNAPDRAGONTM series processors manufactured by Qualcomm®, EXYNOSTM series processors manufactured by Samsung®, A series processors manufactured by Apple®, HELIOTM series processors manufactured by MediaTek®, INTEL® It may be an ATOMTM series processor manufactured by, a KIRINTTM series processor manufactured by HiSilicon®, or a corresponding next-generation processor.
  • the power management module 1091 manages power for the processor 1020 and/or the transceiver 1031.
  • Battery 1092 supplies power to power management module 1091.
  • the display 1041 outputs the results processed by the processor 1020.
  • Input unit 1053 receives input to be used by processor 1020.
  • the input unit 1053 may be displayed on the display 1041.
  • a SIM card is an integrated circuit used to securely store an international mobile subscriber identity (IMSI) and its associated keys, which are used to identify and authenticate subscribers in mobile phone devices such as mobile phones and computers. You can also store contact information on many SIM cards.
  • IMSI international mobile subscriber identity
  • the memory 1010 is operably coupled to the processor 1020 and stores various information for operating the processor 610.
  • Memory 1010 may include read-only memory (ROM), random access memory (RAM), flash memory, memory cards, storage media, and/or other storage devices.
  • ROM read-only memory
  • RAM random access memory
  • flash memory memory cards
  • storage media storage media
  • other storage devices such as hard disk drives, floppy disk drives, and the like.
  • modules eg, procedures, functions, etc.
  • Modules may be stored in memory 1010 and executed by processor 1020.
  • the memory 1010 may be implemented inside the processor 1020. Alternatively, the memory 1010 may be implemented external to the processor 1020 and may be communicatively connected to the processor 1020 through various means known in the art.
  • the transceiver 1031 is operably coupled to the processor 1020 and transmits and/or receives wireless signals.
  • the transceiver unit 1031 includes a transmitter and a receiver.
  • the transceiver 1031 may include a baseband circuit for processing radio frequency signals.
  • the transceiver controls one or more antennas to transmit and/or receive wireless signals.
  • the processor 1020 transmits command information to the transceiver 1031 to initiate communication, for example, to transmit a wireless signal constituting voice communication data.
  • the antenna functions to transmit and receive wireless signals.
  • the transceiver 1031 may transfer the signal and convert the signal to baseband for processing by the processor 1020.
  • the processed signal may be converted into audible or readable information output through the speaker 1042.
  • the speaker 1042 outputs sound-related results processed by the processor 1020.
  • Microphone 1052 receives sound-related input to be used by processor 1020.
  • the user inputs command information such as a phone number, for example, by pressing (or touching) a button on the input unit 1053 or by voice activation using the microphone 1052.
  • the processor 1020 receives this command information and processes it to perform appropriate functions, such as calling a phone number. Operational data can be extracted from the SIM card or memory 1010. Additionally, the processor 1020 may display command information or driving information on the display 1041 for the user's recognition and convenience.
  • Figure 14 shows a configuration block diagram of a processor on which the disclosure of the present specification is implemented.
  • the processor 1020 on which the disclosure of the present disclosure is implemented includes a plurality of circuitry to implement the proposed functions, procedures and/or methods described herein. can do.
  • the processor 1020 may include a first circuit 1020-1, a second circuit 1020-2, and a third circuit 1020-3.
  • the processor 1020 may include more circuits. Each circuit may include a plurality of transistors.
  • the processor 1020 may be called an application-specific integrated circuit (ASIC) or an application processor (AP), and includes at least one of a digital signal processor (DSP), a central processing unit (CPU), and a graphics processing unit (GPU). can do.
  • ASIC application-specific integrated circuit
  • AP application processor
  • DSP digital signal processor
  • CPU central processing unit
  • GPU graphics processing unit
  • FIG. 15 is a block diagram showing in detail the transceiver of the first device shown in FIG. 12 or the transceiver unit of the device shown in FIG. 13.
  • the transceiver 1031 includes a transmitter 1031-1 and a receiver 1031-2.
  • the transmitter (1031-1) includes a Discrete Fourier Transform (DFT) unit (1031-11), a subcarrier mapper (1031-12), an IFFT unit (1031-13), a CP insertion unit (1031-14), and a wireless transmitter (1031). -15).
  • the transmitter 1031-1 may further include a modulator.
  • it may further include, for example, a scramble unit (not shown), a modulation mapper (not shown), a layer mapper (not shown), and a layer permutator (not shown), This may be placed prior to the DFT unit 1031-11.
  • the transmitter 1031-1 first passes information through the DFT 1031-11 before mapping the signal to the subcarrier.
  • the signal spread (or precoded in the same sense) by the DFT unit 1031-11 is subcarrier mapped through the subcarrier mapper 1031-12, and then again in the IFFT (Inverse Fast Fourier Transform) unit 1031-12. 13) to create a signal on the time axis.
  • IFFT Inverse Fast Fourier Transform
  • the DFT unit 1031-11 performs DFT on the input symbols and outputs complex-valued symbols. For example, when Ntx symbols are input (where Ntx is a natural number), the DFT size is Ntx.
  • the DFT unit 1031-11 may be called a transform precoder.
  • the subcarrier mapper 1031-12 maps the complex symbols to each subcarrier in the frequency domain. The complex symbols may be mapped to resource elements corresponding to resource blocks allocated for data transmission.
  • the subcarrier mapper 1031-12 may be called a resource element mapper.
  • the IFFT unit 1031-13 performs IFFT on the input symbols and outputs a baseband signal for data that is a time domain signal.
  • the CP insertion unit 1031-14 copies a part of the latter part of the basic band signal for data and inserts it into the front part of the basic band signal for data.
  • CP insertion ISI (Inter-Symbol Interference) and ICI (Inter-Carrier Interference) are prevented, and orthogonality can be maintained even in multi-path channels.
  • the receiver 1031-2 includes a wireless reception unit 1031-21, a CP removal unit 1031-22, an FFT unit 1031-23, and an equalization unit 1031-24.
  • the wireless receiving unit 1031-21, CP removing unit 1031-22, and FFT unit 1031-23 of the receiver 1031-2 are the wireless transmitting unit 1031-15 in the transmitting end 1031-1, It performs the reverse function of the CP insertion unit (1031-14) and the IFF unit (1031-13).
  • the receiver 1031-2 may further include a demodulator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 상향링크 송수신을 수행하는 방법 및 장치를 제공한다. 설정된 그랜트(configured grant)와 관련된 복수 개의 MCS(modulation and coding scheme) 후보 인덱스(index)들을 설정하고, 설정된 그랜트(configured grant)를 기초로 하는 상향링크 송수신을 수행한다. 여기서, 상향링크 송수신은 복수 개의 MCS(modulation and coding scheme) 후보 인덱스(index)들 중 하나의 MCS 인덱스를 기초로 수행되고, 상기 하나의 MCS 인덱스는 가변 되도록 선택된다.

Description

무선 통신 시스템에서 가변 트래픽을 위한 송수신 방법 및 장치
본 명세서는 3GPP 5G NR 시스템에 관한 것이다.
시대의 흐름에 따라 더욱 많은 통신 기기들이 더욱 큰 통신 트래픽을 요구하게 되면서, 기존 LTE 시스템보다 향상된 무선 광대역 통신인 차세대 5G 시스템이 요구되고 있다. NewRAT이라고 명칭되는, 이러한 차세대 5G 시스템에서는 Enhanced Mobile BroadBand (eMBB) / Ultra-reliability and low-latency communication (URLLC) / Massive Machine-Type Communications (mMTC) 등으로 통신 시나리오가 구분된다.
여기서, eMBB는 High Spectrum Efficiency, High User Experienced Data Rate, High Peak Data Rate 등의 특성을 갖는 차세대 이동통신 시나리오이고, URLLC는 Ultra Reliable, Ultra Low Latency, Ultra High Availability 등의 특성을 갖는 차세대 이동통신 시나리오이며 (e.g., V2X, Emergency Service, Remote Control), mMTC는 Low Cost, Low Energy, Short Packet, Massive Connectivity 특성을 갖는 차세대 이동통신 시나리오이다. (e.g., IoT).
본 명세서의 개시는 무선 통신 시스템에서 가변 MCS(modulation and coding scheme) 즉, MCS 인덱스(index)를 변화시켜 상향링크 송수신을 수행하는 방법 및 장치를 제공하고자 한다.
본 명세서의 실시예는 무선 통신 시스템에서, 단말이 설정된 그랜트(configured grant)와 관련된 복수 개의 MCS(modulation and coding scheme) 후보 인덱스(index)들을 설정하고, 설정된 그랜트(configured grant)를 기초로 하는 상향링크 전송을 수행하는데, 상향링크 전송은 상기 복수 개의 MCS(modulation and coding scheme) 후보 인덱스(index)들 중 하나의 MCS 인덱스를 기초로 수행되고, 상기 하나의 MCS 인덱스는 가변 되도록 선택되는 방법을 제공한다.
또한, 본 발명의 실시예는 무선 통신 시스템에서, 기지국이 설정된 그랜트(configured grant)와 관련된 복수 개의 MCS(modulation and coding scheme) 후보 인덱스(index)들을 설정하고, 설정된 그랜트(configured grant)를 기초로 하는 상향링크 수신을 수행하는데, 상향링크 수신은 상기 복수 개의 MCS(modulation and coding scheme) 후보 인덱스(index)들 중 하나의 MCS 인덱스를 기초로 수행되고, 상기 하나의 MCS 인덱스는 단말에 의해 가변 되도록 선택되는 방법을 제공한다.
또한, 본 발명의 실시예는 무선 통신 시스템에서, 적어도 하나의 프로세서와, 명령어(instructions)를 저장하고, 적어도 하나의 프로세서와 동작 가능하게(operably) 전기적으로 연결가능한, 적어도 하나의 메모리를 포함하고, 명령어가 적어도 하나의 프로세서에 의해서 실행되는 것에 기초하여, 수행되는 동작은: 설정된 그랜트(configured grant)와 관련된 복수 개의 MCS(modulation and coding scheme) 후보 인덱스(index)들을 설정하고, 설정된 그랜트(configured grant)를 기초로 하는 상향링크 전송을 수행하는데, 상향링크 전송은 상기 복수 개의 MCS(modulation and coding scheme) 후보 인덱스(index)들 중 하나의 MCS 인덱스를 기초로 수행되고, 상기 하나의 MCS 인덱스는 가변 되도록 선택되는 통신 기기를 제공한다.
또한, 본 발명의 실시예는 무선 통신 시스템에서, 적어도 하나의 프로세서와, 명령어(instructions)를 저장하고, 적어도 하나의 프로세서와 동작 가능하게(operably) 전기적으로 연결가능한, 적어도 하나의 메모리를 포함하고, 명령어가 적어도 하나의 프로세서에 의해서 실행되는 것에 기초하여, 수행되는 동작은: 설정된 그랜트(configured grant)와 관련된 복수 개의 MCS(modulation and coding scheme) 후보 인덱스(index)들을 설정하고, 설정된 그랜트(configured grant)를 기초로 하는 상향링크 수신을 수행하는데, 상향링크 수신은 상기 복수 개의 MCS(modulation and coding scheme) 후보 인덱스(index)들 중 하나의 MCS 인덱스를 기초로 수행되고, 상기 하나의 MCS 인덱스는 단말에 의해 가변 되도록 선택되는 기지국을 제공한다.
상기 하나의 MCS 인덱스에 대한 정보를 단말(또는, 통신 기기)이 기지국으로 전송할 수 있다. 여기서, 상기 하나의 MCS 인덱스에 대한 정보는 DM-RS(demodulation-reference signal)를 통해 단말이 기지국으로 전송할 수 있다.
단말은 상기 하나의 MCS 인덱스를 기초로 송신 전력을 결정할 수 있다. 그리고, 기지국은 수신된 하나의 MCS 인덱스에 대한 정보를 기초로 상향링크 데이터의 디코딩을 수행할 수 있다.
상기 설정된 그랜트(configured grant)와 관련된 상기 복수 개의 MCS(modulation and coding scheme) 후보 인덱스들에 대한 정보를 RRC(radio resource control, RRC) 시그널링을 통해 기지국이 단말로 전송할 수 있다. 또는, 상기 설정된 그랜트(configured grant)와 관련된 상기 복수 개의 MCS(modulation and coding scheme) 후보 인덱스들에 대한 정보를 DCI(downlink control information)를 통해 기지국이 단말로 전송할 수 있다.
본 명세서의 개시에 따르면, 무선 통신 시스템에서 가변 MCS(modulation and coding scheme) 즉, MCS 인덱스(index)를 변화시켜 상향링크 송수신을 전력에 대해 효율적으로 수행할 수 있다.
도 1은 무선 통신 시스템을 예시한 도면이다.
도 2는 NR에서 사용되는 무선 프레임의 구조를 예시한다.
도 3a 내지 도 3c는 무선 통신 서비스를 위한 예시적인 아키텍처를 나타낸 예시도들이다.
도 4는 NR 프레임의 슬롯 구조를 예시한다.
도 5는 NR에서의 서브프레임 유형의 예를 도시한다.
도 6은 자기-완비(self-contained) 슬롯의 구조를 예시한다.
도 7은 본 명세서 개시에 따른 설정된 그랜트(configured grant)에 기초한 상향링크 송수신을 예시한다.
도 8은 본 명세서 개시에 따른 2-반복(repetition)이 적용된 설정된 그랜트(configured grant)에 기초한 상향링크 송수신을 예시한다.
도 9는 본 명세서 개시에 따른 2-반복(repetition)에 2-기회(occasion)가 적용된 설정된 그랜트(configured grant)에 기초한 상향링크 송수신을 예시한다.
도 10는 본 명세서의 일 실시예에 따른 단말의 동작 방법을 나타낸다.
도 11는 본 명세서의 일 실시예에 따른 기지국의 동작 방법을 나타낸다.
도 12는 본 명세서의 일 실시예에 따른 장치를 나타낸다.
도 13은 본 명세서의 일 실시예에 따른 단말의 구성을 나타낸 블록도이다.
도 14는 본 명세서의 개시가 구현된 프로세서의 구성 블록도를 나타낸다.
도 15는 도 12에 도시된 제1 장치의 송수신기 또는 도 13에 도시된 장치의 송수신부를 상세하게 나타낸 블록도이다.
본 명세서에서 사용되는 기술적 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 명세서의 내용을 한정하려는 의도가 아님을 유의해야 한다. 또한, 본 명세서에서 사용되는 기술적 용어는 본 명세서에서 특별히 다른 의미로 정의되지 않는 한, 본 명세서의 개시가 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나, 과도하게 축소된 의미로 해석되지 않아야 한다. 또한, 본 명세서에서 사용되는 기술적인 용어가 본 명세서의 내용과 사상을 정확하게 표현하지 못하는 잘못된 기술적 용어일 때에는, 당업자가 올바르게 이해할 수 있는 기술적 용어로 대체되어 이해되어야 할 것이다. 또한, 본 명세서에서 사용되는 일반적인 용어는 사전에 정의되어 있는 바에 따라, 또는 전후 문맥상에 따라 해석되어야 하며, 과도하게 축소된 의미로 해석되지 않아야 한다.
또한, 본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, 구성된다 또는 가지다 등의 용어는 명세서 상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.
또한, 본 명세서에서 사용되는 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 권리 범위를 벗어나지 않으면서 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다.
어떤 구성 요소가 다른 구성 요소에 연결되어 있다거나 접속되어 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성 요소가 존재할 수도 있다. 반면에, 어떤 구성 요소가 다른 구성 요소에 직접 연결되어 있다거나 직접 접속되어 있다고 언급된 때에는, 중간에 다른 구성 요소가 존재하지 않는 것으로 이해되어야 할 것이다.
이하, 첨부된 도면을 참조하여 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 또한, 본 명세서의 내용을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서의 내용과 사상을 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서의 내용과 사상이 제한되는 것으로 해석되어서는 아니됨을 유의해야 한다. 본 명세서의 내용과 사상은 첨부된 도면 외에 모든 변경, 균등물 내지 대체물에 까지도 확장되는 것으로 해석되어야 한다.
본 명세서에서 “A 또는 B(A or B)”는 “오직 A”, “오직 B” 또는 “A와 B 모두”를 의미할 수 있다. 달리 표현하면, 본 명세서에서 “A 또는 B(A or B)”는 “A 및/또는 B(A and/or B)”으로 해석될 수 있다. 예를 들어, 본 명세서에서 “A, B 또는 C(A, B or C)”는 “오직 A”, “오직 B”, “오직 C”, 또는 “A, B 및 C의 임의의 모든 조합(any combination of A, B and C)”를 의미할 수 있다.
본 명세서에서 사용되는 슬래쉬(/)나 쉼표(comma)는 “및/또는(and/or)”을 의미할 수 있다. 예를 들어, “A/B”는 “A 및/또는 B”를 의미할 수 있다. 이에 따라 “A/B”는 “오직 A”, “오직 B”, 또는 “A와 B 모두”를 의미할 수 있다. 예를 들어, “A, B, C”는 “A, B 또는 C”를 의미할 수 있다.
본 명세서에서 “적어도 하나의 A 및 B(at least one of A and B)”는, “오직 A”, “오직 B” 또는 “A와 B 모두”를 의미할 수 있다. 또한, 본 명세서에서 “적어도 하나의 A 또는 B(at least one of A or B)”나 “적어도 하나의 A 및/또는 B(at least one of A and/or B)”라는 표현은 “적어도 하나의 A 및 B(at least one of A and B)”와 동일하게 해석될 수 있다.
또한, 본 명세서에서 “적어도 하나의 A, B 및 C(at least one of A, B and C)”는, “오직 A”, “오직 B”, “오직 C”, 또는 “A, B 및 C의 임의의 모든 조합(any combination of A, B and C)”를 의미할 수 있다. 또한, “적어도 하나의 A, B 또는 C(at least one of A, B or C)”나 “적어도 하나의 A, B 및/또는 C(at least one of A, B and/or C)”는 “적어도 하나의 A, B 및 C(at least one of A, B and C)”를 의미할 수 있다.
또한, 본 명세서에서 사용되는 괄호는 “예를 들어(for example)”를 의미할 수 있다. 구체적으로, “제어 정보(PDCCH)”로 표시된 경우, “제어 정보”의 일례로 “PDCCH(Physical Downlink Control Channel)”가 제안된 것일 수 있다. 달리 표현하면 본 명세서의 “제어 정보”는 “PDCCH”로 제한(limit)되지 않고, “PDDCH”가 “제어 정보”의 일례로 제안될 것일 수 있다. 또한, “제어 정보(즉, PDCCH)”로 표시된 경우에도, “제어 정보”의 일례로 “PDCCH”가 제안된 것일 수 있다.
본 명세서에서 하나의 도면 내에서 개별적으로 설명되는 기술적 특징은, 개별적으로 구현될 수도 있고, 동시에 구현될 수도 있다.
첨부된 도면에서는 예시적으로 UE(User Equipment)가 도시되어 있으나, 도시된 상기 UE는 단말(Terminal), ME(Mobile Equipment) 등의 용어로 언급될 수도 있다. 또한, 상기 UE는 노트북, 휴대폰, PDA, 스마트 폰(Smart Phone), 멀티미디어 기기 등과 같이 휴대 가능한 기기일 수 있거나, PC, 차량 탑재 장치와 같이 휴대 불가능한 기기일 수 있다.
이하에서, UE는 무선 통신이 가능한 장치(예: 무선 통신 장치, 무선 장치, 또는 무선 기기)의 예시로 사용된다. UE가 수행하는 동작은 무선 통신이 가능한 임의의 장치에 의해 수행될 수 있다. 무선 통신이 가능한 장치 무선 통신 장치, 무선 장치, 또는 무선 기기 등으로도 지칭될 수도 있다.
이하에서 사용되는 용어인 기지국은, 일반적으로 무선 기기와 통신하는 고정된 지점(fixed station)을 말하며, eNodeB(evolved-NodeB), eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point), gNB(Next generation NodeB), RRH(remote radio head), TP(transmission point), RP(reception point), 중계기(relay) 등을 포함하는 포괄적인 용어로 사용될 수 있다.
본 명세서는 LTE 시스템, LTE-A 시스템 및 NR 시스템을 사용하여 실시예들을 설명하지만, 이러한 실시예들은 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다.
<무선 통신 시스템>
4세대 이동통신을 위한 LTE(long term evolution)/LTE-Advanced(LTE-A)의 성공에 힘입어, 차세대 즉, 5세대(소위 5G) 이동통신에 대한 상용화 완료 및 후속 연구도 계속 진행되고 있다.
국제전기통신연합(ITU)이 정의하는 5세대 이동통신은 최대 20Gbps의 데이터 전송 속도와 어디에서든 최소 100Mbps 이상의 체감 전송 속도를 제공하는 것을 말한다. 정식 명칭은 ‘IMT-2020’이라고 지칭된다.
ITU에서는 3대 사용 시나리오, 예컨대 eMBB(enhanced Mobile BroadBand) mMTC(massive Machine Type Communication) 및 URLLC(Ultra Reliable and Low Latency Communications)를 제시하고 있다.
URLLC는 높은 신뢰성과 낮은 지연시간을 요구하는 사용 시나리에 관한 것이다. 예를 들면, 자동주행, 공장자동화, 증강현실과 같은 서비스는 높은 신뢰성과 낮은 지연시간(예컨대, 1ms 이하의 지연시간)을 요구한다. 현재 4G (LTE)의 지연시간은 통계적으로 21-43ms (best 10%), 33-75ms (median) 이다. 이는 1ms 이하의 지연시간을 요구하는 서비스를 지원하기에 부족하다. 다음으로, eMBB 사용 시나리오는 이동 초광대역을 요구하는 사용 시나리오에 관한 것이다.
즉, 5세대 이동통신 시스템은 현재의 4G LTE보다 높은 용량을 지원하며, 모바일 광대역 사용자의 밀도를 높이고, D2D(Device to Device), 높은 안정성 및 MTC(Machine type communication)를 지원할 수 있다. 5G 연구 개발은 또한 사물의 인터넷을 보다 잘 구현하기 위해 4G 이동 통신 시스템 보다 낮은 대기 시간과 낮은 배터리 소모를 목표로 한다. 이러한 5G 이동 통신을 위해서 새로운 무선 액세스 기술(new radio access technology: New RAT 또는 NR)이 제시될 수 있다.
NR 주파수 밴드(frequency band)는 2가지 type(FR1, FR2)의 주파수 범위(frequency range)로 정의될 수 있다. 주파수 범위의 수치는 변경될 수 있으며, 예를 들어, 2가지 type(FR1, FR2)의 주파수 범위는 하기 표 1과 같을 수 있다. 설명의 편의를 위해 NR 시스템에서 사용되는 주파수 범위 중 FR1은 “sub 6GHz range”를 의미할 수 있고, FR2는 “above 6GHz range”를 의미할 수 있고 밀리미터 웨이브(millimeter wave, mmW)로 불릴 수 있다.
Frequency Range designation Corresponding frequency range Subcarrier Spacing
FR1 410MHz - 7125MHz 15, 30, 60kHz
FR2 24250MHz - 52600MHz 60, 120, 240kHz
NR 시스템의 주파수 범위의 수치는 변경될 수 있다. 예를 들어, FR1은 표 1와 같이 410MHz 내지 7125MHz의 대역을 포함할 수 있다. 즉, FR1은 6GHz (또는 5850, 5900, 5925 MHz 등) 이상의 주파수 대역을 포함할 수 있다. 예를 들어, FR1 내에서 포함되는 6GHz (또는 5850, 5900, 5925 MHz 등) 이상의 주파수 대역은 비면허 대역(unlicensed band)을 포함할 수 있다. 비면허 대역은 다양한 용도로 사용될 수 있고, 예를 들어, 차량을 위한 통신(예를 들어, 자율주행)을 위해 사용될 수 있다.한편, 3GPP 기반 통신 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 하향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 하향링크 물리 신호들을 정의된다. 예를 들어, 물리 하향링크 공유 채널(physical downlink shared channel, PDSCH), 물리 브로드캐스트 채널(physical broadcast channel, PBCH), 물리 멀티캐스트 채널(physical multicast channel, PMCH), 물리 제어 포맷 지시자 채널(physical control format indicator channel, PCFICH), 물리 하향링크 제어 채널(physical downlink control channel, PDCCH) 및 물리 하이브리드 ARQ 지시자 채널(physical hybrid ARQ indicator channel, PHICH)들이 하향링크 물리 채널들로서 정의되어 있으며, 참조 신호와 동기 신호가 하향링크 물리 신호들로서 정의되어 있다. 파일럿(pilot)이라고도 지칭되는 참조 신호(reference signal, RS)는 gNB와 UE가 서로 알고 있는 기 정의된 특별한 파형의 신호를 의미하는데, 예를 들어, 셀 특정적 RS(cell specific RS), UE-특정적 RS(UE-specific RS, UE-RS), 포지셔닝 RS(positioning RS, PRS) 및 채널 상태 정보 RS(channel state information RS, CSI-RS)가 하향링크 참조 신호로서 정의된다. 3GPP LTE/LTE-A 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 상향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 상향링크 물리 신호들을 정의하고 있다. 예를 들어, 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH), 물리 상향링크 제어 채널(physical uplink control channel, PUCCH), 물리 임의 접속 채널(physical random access channel, PRACH)가 상향링크 물리 채널로서 정의되며, 상향링크 제어/데이터 신호를 위한 복조 참조 신호(demodulation reference signal, DMRS)와 상향링크 채널 측정에 사용되는 사운딩 참조 신호(sounding reference signal, SRS)가 정의된다.
본 명세서에서 PDCCH(Physical Downlink Control CHannel)/PCFICH(Physical Control Format Indicator CHannel)/PHICH((Physical Hybrid automatic retransmit request Indicator CHannel)/PDSCH(Physical Downlink Shared CHannel)은 각각 DCI(Downlink Control Information)/CFI(Control Format Indicator)/하향링크 ACK/NACK(ACKnowlegement/Negative ACK)/하향링크 데이터를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 또한, PUCCH(Physical Uplink Control CHannel)/PUSCH(Physical Uplink Shared CHannel)/PRACH(Physical Random Access CHannel)는 각각 UCI(Uplink Control Information)/상향링크 데이터/랜덤 엑세스 신호를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다.
도 1은 무선 통신 시스템을 예시한 도면이다.
도 1을 참조하여 알 수 있는 바와 같이, 무선 통신 시스템은 적어도 하나의 기지국(base station: BS)을 포함한다. 상기 BS는 gNodeB(혹은 gNB)(20a)와 eNodeB(혹은 eNB)(20b)로 구분된다. 상기 gNB(20a)는 5세대 이동통신을 지원한다. 상기 eNB(20b)는 4세대 이동통신, 즉 LTE(long term evolution)를 지원한다.
각 기지국(20a 및 20b)은 특정한 지리적 영역(일반적으로 셀이라고 함)(20-1, 20-2, 20-3)에 대해 통신 서비스를 제공한다. 셀은 다시 다수의 영역(섹터라고 함)으로 나누어질 수 있다.
UE(user equipment)는 통상적으로 하나의 셀에 속하는데, UE가 속한 셀을 서빙 셀(serving cell)이라 한다. 서빙 셀에 대해 통신 서비스를 제공하는 기지국을 서빙 기지국(serving BS)이라 한다. 무선 통신 시스템은 셀룰러 시스템(cellular system)이므로, 서빙 셀에 인접하는 다른 셀이 존재한다. 서빙 셀에 인접하는 다른 셀을 인접 셀(neighbor cell)이라 한다. 인접 셀에 대해 통신 서비스를 제공하는 기지국을 인접 기지국(neighbor BS)이라 한다. 서빙 셀 및 인접 셀은 UE를 기준으로 상대적으로 결정된다.
이하에서, 하향링크는 기지국(20)에서 UE(10)로의 통신을 의미하며, 상향링크는 UE(10)에서 기지국(20)으로의 통신을 의미한다. 하향링크에서 송신기는 기지국(20)의 일부분이고, 수신기는 UE(10)의 일부분일 수 있다. 상향링크에서 송신기는 UE(10)의 일부분이고, 수신기는 기지국(20)의 일부분일 수 있다.
한편, 무선 통신 시스템은 크게 FDD(frequency division duplex) 방식과 TDD(time division duplex) 방식으로 나눌 수 있다. FDD 방식에 의하면 상향링크 전송과 하향링크 전송이 서로 다른 주파수 대역을 차지하면서 이루어진다. TDD 방식에 의하면 상향링크 전송과 하향링크 전송이 같은 주파수 대역을 차지하면서 서로 다른 시간에 이루어진다. TDD 방식의 채널 응답은 실질적으로 상호적(reciprocal)이다. 이는 주어진 주파수 영역에서 하향링크 채널 응답과 상향링크 채널 응답이 거의 동일하다는 것이다. 따라서, TDD에 기반한 무선통신 시스템에서 하향링크 채널 응답은 상향링크 채널 응답으로부터 얻어질 수 있는 장점이 있다. TDD 방식은 전체 주파수 대역을 상향링크 전송과 하향링크 전송이 시분할되므로 기지국에 의한 하향링크 전송과 UE에 의한 상향링크 전송이 동시에 수행될 수 없다. 상향링크 전송과 하향링크 전송이 서브프레임 단위로 구분되는 TDD 시스템에서, 상향링크 전송과 하향링크 전송은 서로 다른 서브프레임에서 수행된다.
도 2는 NR에서 사용되는 무선 프레임의 구조를 예시한다.
NR에서 상향링크 및 하향링크 전송은 프레임으로 구성된다. 무선 프레임은 10ms의 길이를 가지며, 2개의 5ms 하프-프레임(Half-Frame, HF)으로 정의된다. 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)으로 정의된다. 서브프레임은 하나 이상의 슬롯으로 분할되며, 서브프레임 내 슬롯 개수는 SCS(Subcarrier Spacing)에 의존한다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(A) 심볼을 포함한다. 일반 CP가 사용되는 경우, 각 슬롯은 14개의 심볼을 포함한다. 확장 CP가 사용되는 경우, 각 슬롯은 12개의 심볼을 포함한다. 여기서, 심볼은 OFDM 심볼 (혹은, CP-OFDM 심볼), SC-FDMA 심볼 (혹은, DFT-s-OFDM 심볼)을 포함할 수 있다.
<다양한 뉴머롤로지(numerology)의 지원>
NR 시스템에서는 무선 통신 기술의 발달에 따라, 단말에 다수의 뉴머롤로지(numerology)가 제공될 수도 있다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)을 지원하며, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)을 지원하며, SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)을 극복하기 위해 24.25GHz보다 큰 대역폭을 지원한다.
상기 뉴머롤로지는 CP(cycle prefix) 길이와 부반송파 간격(Subcarrier Spacing: SCS)에 의해 정의될 수 있다. 하나의 셀은 복수의 뉴머롤로지를 단말로 제공할 수 있다. 뉴머롤로지의 인덱스를 μ로 나타낼 때, 각 부반송파 간격과 해당하는 CP 길이는 아래의 표와 같을 수 있다.
μ △f=2μ15 [kHz] CP
0 15 일반
1 30 일반
2 60 일반, 확장
3 120 일반
4 240 일반
5 480 일반
6 960 일반
일반 CP의 경우, 뉴머롤로지의 인덱스를 μ로 나타낼 때, 슬롯 당 OFDM 심볼 개수(Nslot symb), 프레임당 슬롯 개수(Nframe,μ slot) 그리고, 서브프레임 당 슬롯 개수(Nsubframe,μ slot)는 아래의 표와 같다.
μ △f=2μ15 [kHz] Nslot symb Nframe,μ slot Nsubframe,μ slot
0 15 14 10 1
1 30 14 20 2
2 60 14 40 4
3 120 14 80 8
4 240 14 160 16
5 480 14 320 32
6 960 14 640 64
확장 CP의 경우, 뉴머롤로지의 인덱스를 μ로 나타낼 때, 슬롯 당 OFDM 심볼 개수(Nslot symb), 프레임당 슬롯 개수(Nframe,μ slot) 그리고, 서브프레임 당 슬롯 개수(Nsubframe,μ slot)는 아래의 표와 같다.
μ SCS (15*2u) Nslot symb Nframe,μ slot Nsubframe,μ slot
2 60KHz (u=2) 12 40 4
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들 간에 OFDM(A) 뉴머롤러지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들 간에 상이하게 설정될 수 있다.
도 3a 내지 도 3c는 무선 통신의 서비스를 위한 예시적인 아키텍처를 나타낸 예시도들이다.
도 3a를 참조하면, UE는 LTE/LTE-A 기반의 셀과 그리고 NR 기반의 셀에 DC(dual connectivity) 방식으로 연결되어 있다.
상기 NR 기반의 셀은 기존 4세대 이동통신을 위한 코어 네트워크(core network), 즉 EPC(Evolved Packet Core)에 연결된다.
도 3b를 참조하면, 도 3a와 달리 LTE/LTE-A 기반의 셀은 5세대 이동통신을 위한 코어 네트워크 즉, 5G 코어 네트워크에 연결되어 있다.
위 도 3a 및 도 3b에 도시된 바와 같은 아키텍처에 기반한 서비스 방식을 NSA(non-standalone)라고 한다.
도 3c를 참조하면, UE는 NR 기반의 셀에만 연결되어 있다. 이러한 아키텍처에 기반한 서비스 방식을 SA(standalone)이라고 한다.
한편, 상기 NR에서, 기지국으로부터의 수신은 하향링크 서브프레임을 이용하고, 기지국으로의 송신은 상향링크 서브프레임을 이용하는 것이 고려될 수 있다. 이 방식은 쌍으로 된 스펙트럼 및 쌍을 이루지 않은 스펙트럼에 적용될 수 있다. 한 쌍의 스펙트럼은 하향링크 및 상향링크 동작을 위해 두 개의 반송파 스펙트럼을 포함된다는 것을 의미한다. 예를 들어, 한 쌍의 스펙트럼에서, 하나의 반송파는 서로 쌍을 이루는 하향링크 대역 및 상향링크 대역을 포함할 수 있다.
도 4는 NR 프레임의 슬롯 구조를 예시한다.
슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 일반 CP의 경우 하나의 슬롯이 14개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 12개의 심볼을 포함한다. 반송파는 주파수 도메인에서 복수의 부반송파를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의된다. BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 (physical, P)RB로 정의되며, 하나의 뉴머롤로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 단말은 하향링크와 상향링크에서 각각 최대 N개(예, 4개)의 BWP가 구성될 수 있다. 하향링크 또는 상향링크 전송은 활성화된 BWP를 통해서 수행되며, 정해진 시간(at a given time)에는 단말에게 구성된 BWP들 중 하나의 BWP만 활성화될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.
도 5는 NR에서의 서브프레임 유형의 예를 도시한다.
도 5에 도시된 TTI(transmission time interval)는 NR(또는 new RAT)을 위한 서브프레임 또는 슬롯으로 불릴 수 있다. 도 5의 서브프레임(또는 슬롯)은, 데이터 전송 지연을 최소화하기 위해 NR(또는 new RAT)의 TDD 시스템에서 사용될 수 있다. 도 5에 도시 된 바와 같이, 서브프레임(또는 슬롯)은 14 개의 심볼을 포함한다. 서브프레임(또는 슬롯)의 앞부분 심볼은 하향링크(downlink, DL) 제어 채널을 위해서 사용될 수 있고, 서브프레임(또는 슬롯)의 뒷부분 심볼은 상향링크(uplink, UL) 제어 채널을 위해서 사용될 수 있다. 나머지 심볼들은 DL 데이터 전송 또는 UL 데이터 전송을 위해 사용될 수 있다. 이러한 서브프레임(또는 슬롯) 구조에 따르면, 하향링크 전송과 상향링크 전송은 하나의 서브프레임(또는 슬롯)에서 순차적으로 진행될 수 있다. 따라서, 서브프레임(또는 슬롯) 내에서 하향링크 데이터가 수신될 수 있고, 그 서브프레임(또는 슬롯) 내에서 상향링크 확인 응답(ACK/NACK)이 전송될 수도 있다.
이러한 서브프레임(또는 슬롯)의 구조를 자기-완비(self-contained) 서브프레임(또는 슬롯)이라고 할 수 있다.
구체적으로, 슬롯 내의 처음 N개의 심볼은 DL 제어 채널을 전송하는데 사용되고(이하, DL 제어 영역), 슬롯 내의 마지막 M개의 심볼은 UL 제어 채널을 전송하는데 사용될 수 있다(이하, UL 제어 영역). N과 M은 각각 0 이상의 정수이다. DL 제어 영역과 UL 제어 영역의 사이에 있는 자원 영역(이하, 데이터 영역)은 DL 데이터 전송을 위해 사용되거나, UL 데이터 전송을 위해 사용될 수 있다. 예를 들어, DL 제어 영역에서는 물리 하향링크 제어 채널(physical downlink control channel, PDCCH)이 전송될 수 있고, DL 데이터 영역에서는 물리 하향링크 공유 채널(physical downlink shared channel, PDSCH)이 전송될 수 있다. UL 제어 영역에서는 물리 상향링크 제어 채널(physical uplink control channel, PUCCH)이 전송될 수 있고, UL 데이터 영역에서는 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH)이 전송될 수 있다.
이러한 서브프레임(또는 슬롯)의 구조를 사용하면, 수신 오류가 발생한 데이터를 재전송하는 데 걸리는 시간이 줄어들어 최종 데이터 전송 대기 시간이 최소화될 수 있는 장점이 있다. 이와 같은 자기-완비(self-contained) 서브프레임(또는 슬롯) 구조에서, 송신 모드에서 수신 모드로 또는 수신 모드에서 송신 모드로의 전이 과정에 시간 차(time gap)가 필요할 수 있다. 이를 위해, 서브 프레임 구조에서 DL에서 UL로 전환할 때의 일부 OFDM 심볼은 보호 구간(Guard Period: GP)으로 설정될 수 있다.
도 6은 자기-완비(self-contained) 슬롯의 구조를 예시한다.
NR 시스템에서 프레임은 하나의 슬롯 내에 DL 제어 채널, DL 또는 UL 데이터, UL 제어 채널 등이 모두 포함될 수 있는 자기-완비 구조를 특징으로 한다. 예를 들어, 슬롯 내의 처음 N개의 심볼은 DL 제어 채널을 전송하는데 사용되고(이하, DL 제어 영역), 슬롯 내의 마지막 M개의 심볼은 UL 제어 채널을 전송하는데 사용될 수 있다(이하, UL 제어 영역). N과 M은 각각 0 이상의 정수이다. DL 제어 영역과 UL 제어 영역의 사이에 있는 자원 영역(이하, 데이터 영역)은 DL 데이터 전송을 위해 사용되거나, UL 데이터 전송을 위해 사용될 수 있다. 일 예로, 다음의 구성을 고려할 수 있다. 각 구간은 시간 순서대로 나열되었다.
1. DL only 구성
2. UL only 구성
3. 혼합된(Mixed) UL-DL 구성
- DL 영역 + GP(Guard Period) + UL 제어 영역
- DL 제어 영역 + GP + UL 영역
DL 영역: (i) DL 데이터 영역, (ii) DL 제어 영역 + DL 데이터 영역
UL 영역: (i) UL 데이터 영역, (ii) UL 데이터 영역 + UL 제어 영역
DL 제어 영역에서는 PDCCH가 전송될 수 있고, DL 데이터 영역에서는 PDSCH가 전송될 수 있다. UL 제어 영역에서는 PUCCH가 전송될 수 있고, UL 데이터 영역에서는 PUSCH가 전송될 수 있다. PDCCH에서는 DCI(Downlink Control Information) 예를 들어, DL 데이터 스케줄링 정보, UL 데이터 스케줄링 정보 등이 전송될 수 있다. PUCCH에서는 UCI(Uplink Control Information) 예를 들어, DL 데이터에 대한 ACK/NACK(Positive Acknowledgement/Negative Acknowledgement) 정보, CSI(Channel State Information) 정보, SR(Scheduling Request) 등이 전송될 수 있다. GP는 기지국과 단말이 송신 모드에서 수신 모드로 전환하는 과정 또는 수신 모드에서 송신 모드로 전환하는 과정에서 시간 갭을 제공한다. 서브프레임 내에서 DL에서 UL로 전환되는 시점의 일부 심볼이 GP로 설정될 수 있다.
<본 명세서의 개시>
3GPP NR에서는 주기적인 트래픽을 스케줄링하기 위해 하향링크(downlink)의 경우 반-정적 스케줄링(semi-persistent scheduling)을, 상향링크(uplink)의 경우 설정된 그랜트(configured grant)를 사용한다. 구체적으로는, 하향링크의 경우 SPS-Config라는 RRC(radio resource control) 메시지/정보로 주기(period) 등을 설정한 후, CS-RNTI(Configured Scheduling RNTI(Radio Network Temporary Identifier))로 스크램블(scramble)된 DCI(downlink control information)를 통해 활성화/비활성화 지시 및 자원 설정을 수행한다. 상향링크는 설정된 그랜트(configured grant) Type 1과 설정된 그랜트(configured grant) Type 2로 나뉘는데, Type 1의 경우 RRC로 시간/주파수 자원과 주기(period), MCS(modulation and coding scheme) 설정 값 등을 모두 설정하고 전송하며, Type 2의 경우 RRC로 설정한 주기를 기반으로 마찬가지로 CS-RNTI로 스크램블(scramble)된 DCI로 시간/주파수 자원과 MCS 설정 값으로 실제 전송을 지시한다. 이 때, 설정을 위해 ConfiguredGrantConfig 라는 RRC 메시지/정보가 사용되고 이 RRC 메시지/정보 내에 자원과 MCS 값의 지시가 포함되는 rrc-ConfiguredUplinkGrant 라는 메시지/정보가 정의되거나 되지 않을 수 있는데, 정의되는 경우 Type 1로, 정의되지 않는 경우 설정된 그랜트(configured grant) Type 2로 정의된다.
동적(dynamic) 스케줄링에서는 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH)의 전송에 물리 하향링크 제어 채널(physical downlink control channel, PDCCH)이 수반되지만, 설정된 그랜트(configured grant)를 기초로 한 PUSCH 전송에는 PDCCH가 수반되지 않을 수 있다. 이와 같이, 동적인 그랜트 (스케줄링 DCI를 통한 상향링크 그랜트) 없이 기지국에 의해 상향링크 자원이 미리 설정되는 동작을 '설정된 그랜트(configured grant)'라 칭한다.
앞서 설명한 설정된 그랜트(configured grant)를 정리하면 다음과 같이 두 가지 타입(type)으로 요약할 수 있다.
- Type 1: 상위 계층(RRC) 시그널링에 의해 일정 주기의 상향링크 그랜트가 제공됨. (별도의 제1 계층 시그널링 없이 설정됨)
- Type 2: 상위 계층(RRC) 시그널링에 의해 상향링크 그랜트의 주기가 설정되고, PDCCH를 통해 설정된 그랜트(configured grant)의 활성화/비활성화가 시그널링 됨으로써 상향링크 그랜트가 제공됨.
도 7은 설정된 그랜트(configured grant)에 기초한 상향링크 송수신을 예시한다.
도 7을 참조하면, 기지국은 설정된 그랜트(configured grant) 구성(configuration) 정보를 RRC 시그널링을 통해 단말로 전송한다 (S701). 기지국이 단말로 전송하는 설정된 그랜트(configured grant) 구성 정보에는 설정된 그랜트(configured grant)를 이용하여 상향링크 전송을 수행하는 위한 주기(period) 정보가 포함될 수 있다. 단말을 설정된 그랜트(configured grant) 구성 정보에 포함되어 수신된 주기 정보를 기초로 설정된 그랜트(configured grant)를 이용하여 주기적으로 상향링크 전송을 수행한다 (S702 내지 S703). 또한, 도 7에서는 도시하지 않았지만, 설정된 그랜트(configured grant) 주기 내에서, 설정된 그랜트(configured grant) 상향링크 전송은 반복 전송될 수 있다. 이는 설정된 그랜트(configured grant) 구성(configuration) 정보에 포함된 반복 횟수(number of repetitions) 정보에 기초할 수 있다.
앞서 설명한 설정된 그랜트(configured grant) Type 1의 경우, 단말이 PDCCH 수신 없이 주기적 데이터의 송신이 가능하여 단말 전력 관리 측면에서 매우 유리하지만, 트래픽 량이 주기적이지만 가변적인 경우 자원 낭비가 발생하는 단점이 있다. 특히, Rel-18의 아이템인 XR(extended reality) Enhancements for NR에서 주기적이고 가변적인 트래픽 특성을 가진 XR 단말 환경에서 단말 전력 절감(power saving) 기술을 스터디하고 있는데, XR의 경우 주기적인 데이터의 낮은 지연 전송이 중요하다. 이를 위해 전송 영역이 보장되고 PDCCH 수신을 하지 않을 수 있어 전력절감 측면에서 유리한 설정된 그랜트 타입 1(Configured Grant Type 1)의 활용이 예상되는데, 순시 트래픽이 낮을 때에도 큰 전송 공간을 차지하여 송신하여야 하기 때문에 비효율적인 전력 소모가 발생할 수 있다.
따라서, 본 명세서에서는 NR 송수신 환경에서 가변 MCS를 사용하는 방법 및 이를 이용한 장치를 제공하고자 한다. 일 예로, 단말이 주기적인 스케줄링을 설정 받은 경우에 적용될 될 수 있다. 바람직하게는, 상향링크 설정된 그랜트 타입 1(Configured Grant Type 1)에서 사용되는 MCS 인덱스(index)를 변화/가변 되도록 하는 방법 및 이를 이용한 장치를 제공하고자 한다.
본 명세서에서의 개시된 방안은, (1) 블라인드 디코딩을 기대하여 MCS 인덱스를 변화시키는 방법에 대한 방안, (2) DM-RS를 사용하여 MCS 인덱스를 변화시키는 방법에 대한 방안, 그리고 (3) CSI 피드백 리포트를 사용하여 MCS 인덱스를 변화시키는 방법에 대한 방안을 제공한다.
본 명세서에서의 개시된 방안은, 기본적으로 정해진 시간/주파수 자원을 활용할 때 보내야 할 전송 블록(Transmission block)에 맞는 MCS 인덱스를 선택할 수 있도록 하는 방안이다. 이 경우, 낮아진 부호율 및 변조 기법에 의해 단말은 더 낮은 전력으로 전송해도 충분히 기지국이 수신할 수 있는 전송을 수행할 수 있다.
I. 제1 개시: 블라인드 디코딩을 기대하여 MCS 인덱스를 변화시키는 방법에 대한 방안
제1 개시는, 복수 개의 MCS 인덱스 후보 중에서 단말이 임의로 선택하여 MCS를 전송하면, 기지국에서 블라인드 디코딩을 수행하여 실제 사용된 MCS를 판별 및 수신하는 방법에 대한 방안이다.
즉, 단말이 설정된 복수 개의 MCS 인덱스 후보 인덱스들 중에서 하나의 MCS 인덱스를 선택하고, 선택된 하나의 MCS 인덱스를 기초로 상향링크 전송을 수행한다. 여기서, 상향링크 전송은 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH) 전송일 수 있다. 기지국은 단말로부터 수신된 상향링크 전송에 대해 디코딩을 수행하는데, 이 때 상향링크 전송에서 사용된 MCS를 확인(identifying)한다. 기지국에서 상향링크 전송에서 사용된 MCS를 확인(identifying)하는 것은, 단말이 이에 대한 정보를 기지국으로 전송할 수 있다. 단말이 설정된 복수 개의 MCS 인덱스 후보 인덱스들 중에서 하나의 MCS 인덱스를 선택하고, 선택한 하나의 MCS 인덱스에 대한 정보를 기지국으로 전송할 수 있다. 기지국은 단말로부터 수신된 상기 하나의 MCS 인덱스에 대한 정보를 기초로 상향링크 전송에 대한 디코딩을 수행할 수 있다.
또한, 상향링크 전송은 설정된 그랜트(configured grant, CG)-PUSCH 전송일 수 있다. 이하에서는, 이에 대한 상향링크 송수신을 설명한다.
도 8은 본 명세서 개시에 따른 2-반복(repetition)이 적용된 설정된 그랜트(configured grant)에 기초한 상향링크 송수신을 예시한다.
도 8을 참조하면, 설정된 그랜트 주기(configured grant period, ConfiguredGrantPeriod)를 기초로 상향링크 전송 즉, CG-PUSCH 전송이 수행된다. 여기서, CG-PUSCH 전송을 위한 자원(또는, 그랜트)에 멀티플렉싱 또는 피기백(piggyback) 되어 UCI(uplink control information)가 전송될 수 있다. CG-PUSCH 전송을 위한 자원을 통해 전송되는 UCI에는 CSI 피드백(feedback), HARQ(hybrid automatic repeat and request) 정보 및 CG-UCI(configured grant-uplink control information) 중 전부 또는 일부가 포함될 수 있다.
한편, 설정된 그랜트 주기(configured grant period, ConfiguredGrantPeriod) 내에서 CG-PUSCH 전송은 반복 전송될 수 있는데, 이는 반복 횟수(number of repetitions) 정보에 기초할 수 있다. 반복 횟수(number of repetitions) 정보는 기지국이 단말로 전송하는 설정된 그랜트(configured grant) 구성(configuration) 정보에 포함될 수 있다. 도 8에서는 반복 횟수(number of repetitions)가 2인 경우를 예시하고 있다.
도 9는 본 명세서 개시에 따른 2-반복(repetition)에 2-기회(occasion)가 적용된 설정된 그랜트(configured grant)에 기초한 상향링크 송수신을 예시한다.
도 9을 참조하면, 앞서의 도 8과 마찬가지로 설정된 그랜트 주기(configured grant period, ConfiguredGrantPeriod)를 기초로 상향링크 전송 즉, CG-PUSCH 전송이 수행된다. 그리고, CG-PUSCH 전송을 위한 자원(또는, 그랜트)에 멀티플렉싱 또는 피기백(piggyback) 되어 UCI(uplink control information)가 전송될 수 있다. CG-PUSCH 전송을 위한 자원을 통해 전송되는 UCI에는 CSI 피드백(feedback), HARQ(hybrid automatic repeat and request) 정보 및 복수의 CG-UCI들(일 예로, CG-UCI1 및 CG-UCI1) 중 전부 또는 일부가 포함될 수 있다.
또한, 앞서의 도 8과 마찬가지로 설정된 그랜트 주기(configured grant period, ConfiguredGrantPeriod) 내에서 CG-PUSCH 전송은 반복 전송될 수 있는데, 이는 반복 횟수(number of repetitions) 정보에 기초할 수 있다. 반복 횟수(number of repetitions) 정보는 기지국이 단말로 전송하는 설정된 그랜트(configured grant) 구성(configuration) 정보에 포함될 수 있다. 도 9에서는 반복 횟수(number of repetitions)가 2인 경우를 예시하면서, 추가로 복수의 (전송) 기회들(multiple occasions)이 구성되고 이를 통해서, CG-PUSCH 전송 및 UCI(uplink control information)가 전송되는 것을 나타내고 있다. 여기서, 복수의 (전송) 기회들(multiple occasions)에 대한 구성 정보는, 기지국이 단말로 전송하는 설정된 그랜트(configured grant) 구성(configuration) 정보에 포함될 수 있다. 혹은, 설정된 그랜트(configured grant) 구성(configuration) 정보와는 다른 별도의 구성(configuration) 정보를 통해 단말로 전송될 수 있다. 도 9에 예시한 것처럼, 복수의 기회들(multiple occasions)을 통해 전송되는 PUSCH를 multi-PUSCH 전송이라고 칭할 수 있다.
이하에서는, MCS 인덱스를 변화시키는 방법에 대한 방안과 연관된 복수 개의 MCS 후보 인덱스를 사전 설정하는 방법과 송신 전력 결정 방법에 대해 설명한다.
i) 복수 개의 MCS 후보 인덱스를 사전 설정하는 방법
상위계층 즉, RRC를 통해 사전에 단말이 사용할 MCS 인덱스 및/또는 값을 단일이 아닌 복수 개를 지시하는 방법이 사용될 수 있다. 일 예로, 설정된 그랜트(configured grant) Type 1의 경우, mcsandTBS (Modulation and Coding Scheme and Transport Block Size) 필드를 통해 해당 설정된 그랜트(configured grant, CG)에서 사용될 MCS 값이 지시되는데, mcsandTBS 필드를 통해 복수의 MCS 값이 지시되거나, 사용 가능한 최대/최소 MCS 인덱스 형태로 지시될 수 있다. 대표 MCS 인덱스만 지시되는 경우에는 사용할 MCS 인덱스 간격 혹은 범위가 추가적으로 사전에 정의되거나 혹은 새로운 RRC 메시지/정보로 지시될 수 있다. 혹은, 설정된 그랜트(configured grant) Type 2의 경우 DCI를 통해 사용할 MCS 값이 지시되는데, 이 때 복수의 MCS 값들이 참조되도록 지시될 수도 있다. 혹은, 사용할 MCS 값이 지시될 때 특정의 MCS 값들이 추가적으로 허용되는 형태로 지시될 수 있다. 예를 들어, 지시되는 MCS 인덱스 및/또는 값이 k인 경우, 단말은 MCS 인덱스 및/또는 값을 k, k-5, k-10, k-15, ... 가운데에서 선택할 수 있게 할 수 있다. 혹은, k, k+5, k-5 가운데에서 선택할 수 있게 할 수 있다. 여기서는 간격 5를 예시로 들었는데 이 간격의 경우 사전에 정의되거나, RRC를 통해 설정될 수 있다. 일 예로, 설정된 그랜트(configured grant) Type 2를 위해 RRC에서 복수의 MCS를 운용하기 위한 보조 정보를 이용해서, 가용 MCS 인덱스 간 간격이나 증가/감소 등의 변화 타입, 혹은 사용 가능한 최대/최소 MCS 인덱스 등을 지시/구성할 수 있다. 이를 위해, 앞서 설명한 설정된 그랜트(configured grant) 구성(configuration) 정보를 이용하거나 추가적인 RRC 메시지/정보를 이용할 수 있다. 예컨대, 단말이 RRC로, 정의된 패턴대로 순차적으로 낮은, 혹은 높은 MCS 값을 선택하도록, 혹은 필요시 선택할 수 있도록 지시할 수 있다. 이 경우 활성(Activation) DCI에서 패턴 적용 여부 및 적용 방식을 MCS 인덱스, 혹은 추가적인 필드를 통해 지시할 수 있다. 예컨대 DCI에서 지시된 MCS 인덱스보다 같거나 낮은 MCS 인덱스만을 단말이 선택하도록 할 수 있다.
ii) 송신 전력 결정 방법
: 단말은 자신이 선택한 MCS를 기반으로 송신 전력을 조절할 수 있다. 예를 들어, 기존 지시된, 혹은 기준 MCS 인덱스를 사용할 때의 전력값에서 deltaMCS가 적용되었을 때의 오프셋만큼 송신 전력을 변경할 수 있다. 구체적으로는, 설정된 그랜트(Configured Grant)에서 지정한 MCS 인덱스와 실제 전송에 사용한 MCS 인덱스의 스펙트럼 효율성(spectral efficiency) 차이 혹은 각 MCS 인덱스로 결정되는 BPRE(Bits Per RE)의 차이를 전력 변화 값을 결정하는 데 사용할 수 있다. 일 예로, 변화된 MCS 값에 따른 송신 전력 변경을 지시할 RRC 파라미터가 도입될 수 있다. 특히 deltaMCS 적용 여부 및 송신 전력 결정의 기준이 되는 레퍼런스 MCS 값이 지시될 수 있다. 이 레퍼런스 MCS 값은 앞서 설명한 방법을 적용할 단말이 사용할 최대 혹은 최소 MCS 값일 수 있다.
II. 제2 개시: DM-RS를 사용하여 MCS 인덱스를 변화시키는 방법에 대한 방안
제2 개시는, 단말이 상향링크 전송에 사용할 MCS 인덱스 정보를 DM-RS(demodulation-reference signal)를 통해 전송하는 방법에 대한 방안이다. 이는 자원의 위치의 변화나 사용되는 시퀀스의 변화 형태로 전달할 수 있다. 이것이 지시하는 것은 구체적인 MCS 인덱스일 수도 있고, 사전에 설정된 MCS 인덱스에서 +, 혹은 - 특정 값일 수도 있으며, 마지막으로 사용한 MCS 인덱스에서 +, 혹은 - 특정 값일 수도 있다. 예컨대, 사용 가능한 DM-RS 시퀀스를 두 가지로 설정하고, 여기에 두 가지의 MCS 인덱스를 사전에 매핑할 수 있다. 혹은 사용 가능한 DM-RS 시퀀스를 세 가지로 설정하고, 여기에 각각 MCS 인덱스 증가, MCS 인덱스 유지, MCS 인덱스 감소를 매핑할 수 있다. DM-RS의 변화는 사용되는 시퀀스의 변화일 수도 있고, 시퀀스의 순환 시프트(cyclic shift)의 변화일 수도 있으며, 매핑 RE(resource element) 위치의 변화일 수도 있고, 매핑 심볼(symbol) 위치의 변화일 수도 있고, 매핑 심볼 수의 변화일 수도 있으며, 이들의 조합일 수도 있다.
III. 제3 개시: CSI 피드백 리포트를 사용하여 MCS 인덱스를 변화시키는 방법에 대한 방안
제3 개시는, 단말이 설정된 그랜트(configured grant)를 사용하여 전송하는 중에, 주기적, 혹은 비주기적인 CSI 피드백(feedback) 리포트를 보내는 경우, 해당 리포트에 의거하여 MCS를 결정하는 방법이다. 예컨대, 단말은 자신이 보고한 CQI(channel quality indicator) 값에 가장 가까운 MCS를 설정하여 이후의 설정된 그랜트(configured grant) 전송을 수행할 수 있다. 이 동작은 설정된 MCS 인덱스보다 CQI에 의존하여 결정되는 MCS 인덱스가 크거나 혹은 작을 때에만 동작할 수 있다.
본 명세서에서 제공된 방안 및/또는 방법은 각각 독립적으로 적용될 수도 있고, 임의의 형태로 조합되어 운용될 수도 있다. 예컨대 제3 개시의 방안에 의해 MCS 설정이 바뀌어 운용될 때 단말은 여전히 제1 개시의 방안과 같이 특정 간격의 MCS 인덱스를 바뀐 MCS 설정값을 기준으로 추가적으로 선택할 수 있다. 또한, 본 발명에서 사용한 용어는 새로운 용어의 경우 의미의 이해가 용이한 임의의 명칭을 사용하였으며, 실제로는 동일한 의미를 가지는 다른 용어가 사용되는 경우에도 본 발명이 적용될 수 있다.
<본 명세서의 실시예의 정리>
도 10는 본 명세서의 일실시예에 따른 단말의 동작 방법을 나타낸다.
도 10을 참조하면, 단말은 설정된 그랜트(configured grant)와 관련된 복수 개의 MCS(modulation and coding scheme) 후보 인덱스(index)들을 설정한다 (S1001). 이를 위해서, 설정된 그랜트(configured grant)와 관련된 상기 복수 개의 MCS(modulation and coding scheme) 후보 인덱스들에 대한 정보를 기지국으로부터 RRC(radio resource control, RRC) 시그널링을 통해 수신할 수도 있고, 또는 DCI(downlink control information)를 통해 수신할 수도 있다. 바람직하게는, 설정된 그랜트(configured grant) Type 1인 경우는 상기 복수 개의 MCS(modulation and coding scheme) 후보 인덱스들에 대한 정보를 RRC(radio resource control, RRC) 시그널링을 통해 수신하고, 설정된 그랜트(configured grant) Type 2인 경우는 DCI(downlink control information)를 통해 수신한다.
이후, 설정된 그랜트(configured grant)를 기초로 하는 상향링크 전송을 수행한다 (S1002). 여기서, 상향링크 전송은 상기 복수 개의 MCS(modulation and coding scheme) 후보 인덱스(index)들 중 하나의 MCS 인덱스를 기초로 수행되는데, 이 하나의 MCS 인덱스는 가변 되도록 선택될 수 있다. 다시 말하면, 이전에 상향링크 전송에 사용된 MCS 인덱스와 다른 MCS 인덱스를 선택하고 이를 이용하여 상향링크 전송을 수행한다.
이후, 단말은 상기 하나의 MCS 인덱스를 기초로 송신 전력을 결정할 수 있다. 또한, 단말은 상기 하나의 MCS 인덱스에 대한 정보를 기지국으로 전송할 수 있는데, 이 때 DM-RS(demodulation-reference signal)를 이용하여 상기 하나의 MCS 인덱스에 대한 정보를 기지국으로 전송할 수 있다.
도 11는 본 명세서의 일실시예에 따른 기지국의 동작 방법을 나타낸다.
도 11을 참조하면, 기지국은 설정된 그랜트(configured grant)와 관련된 복수 개의 MCS(modulation and coding scheme) 후보 인덱스(index)들을 설정한다 (S1101). 이후, 설정된 그랜트(configured grant)와 관련된 상기 복수 개의 MCS(modulation and coding scheme) 후보 인덱스들에 대한 정보를 단말로 RRC(radio resource control, RRC) 시그널링을 통해 전송할 수도 있고, 또는 DCI(downlink control information)를 통해 전송할 수도 있다. 바람직하게는, 설정된 그랜트(configured grant) Type 1인 경우는 상기 복수 개의 MCS(modulation and coding scheme) 후보 인덱스들에 대한 정보를 RRC(radio resource control, RRC) 시그널링을 통해 전송하고, 설정된 그랜트(configured grant) Type 2인 경우는 DCI(downlink control information)를 통해 전송한다.
이후, 설정된 그랜트(configured grant)를 기초로 하는 상향링크 수신을 수행한다 (S1102). 여기서, 상향링크 수신은 상기 복수 개의 MCS(modulation and coding scheme) 후보 인덱스(index)들 중 하나의 MCS 인덱스를 기초로 수행되는데, 이 하나의 MCS 인덱스는 단말의 의해 가변 되도록 선택될 수 있다. 다시 말하면, 이전에 상향링크 수신에 사용된 MCS 인덱스와 다른 MCS 인덱스가 단말에 의해서 선택되고 이를 이용하여 상향링크 수신을 수행한다. 이를 위해서, 기지국은 단말에 의해서 선택된 상기 하나의 MCS 인덱스에 대한 정보를 단말로부터 수신할 수 있는데, 이 때 DM-RS(demodulation-reference signal)를 이용하여 상기 하나의 MCS 인덱스에 대한 정보를 단말로부터 수신할 수 있다.
이후, 기지국은 상기 수신된 하나의 MCS 인덱스에 대한 정보를 기초로 상향링크 데이터의 디코딩을 수행할 수 있다.
<본 명세서의 개시가 적용될 수 있는 장치 일반>
지금까지 설명한, 본 명세서의 개시들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 명세서의 개시들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 구체적으로는 도면을 참조하여 설명하기로 한다.
도 12는 본 명세서의 일 실시예에 따른 장치를 나타낸다.
도 12를 참조하면, 무선 통신 시스템은 제1 장치(100a)와 제2 장치(100b)를 포함할 수 있다.
상기 제1 장치(100a)는 기지국, 네트워크 노드, 전송 단말, 수신 단말, 무선 장치, 무선 통신 기기, 차량, 자율주행 기능을 탑재한 차량, 커넥티드카(Connected Car), 드론(Unmanned Aerial Vehicle, UAV), AI(Artificial Intelligence) 모듈, 로봇, AR(Augmented Reality) 장치, VR(Virtual Reality) 장치, MR(Mixed Reality) 장치, 홀로그램 장치, 공공 안전 장치, MTC 장치, IoT 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, 5G 서비스와 관련된 장치 또는 그 이외 4차 산업 혁명 분야와 관련된 장치일 수 있다.
상기 제2 장치(100b)는 기지국, 네트워크 노드, 전송 단말, 수신 단말, 무선 장치, 무선 통신 기기, 차량, 자율주행 기능을 탑재한 차량, 커넥티드카(Connected Car), 드론(Unmanned Aerial Vehicle, UAV), AI(Artificial Intelligence) 모듈, 로봇, AR(Augmented Reality) 장치, VR(Virtual Reality) 장치, MR(Mixed Reality) 장치, 홀로그램 장치, 공공 안전 장치, MTC 장치, IoT 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, 5G 서비스와 관련된 장치 또는 그 이외 4차 산업 혁명 분야와 관련된 장치일 수 있다.
상기 제1 장치(100a)는 프로세서(1020a)와 같은 적어도 하나 이상의 프로세서와, 메모리(1010a)와 같은 적어도 하나 이상의 메모리와, 송수신기(1031a)과 같은 적어도 하나 이상의 송수신기를 포함할 수 있다. 상기 프로세서(1020a)는 전술한 기능, 절차, 및/또는 방법들을 수행할 수 있다. 상기 프로세서(1020a)는 하나 이상의 프로토콜을 수행할 수 있다. 예를 들어, 상기 프로세서(1020a)는 무선 인터페이스 프로토콜의 하나 이상의 계층들을 수행할 수 있다. 상기 메모리(1010a)는 상기 프로세서(1020a)와 연결되고, 다양한 형태의 정보 및/또는 명령을 저장할 수 있다. 상기 송수신기(1031a)는 상기 프로세서(1020a)와 연결되고, 무선 시그널을 송수신하도록 제어될 수 있다.
상기 제2 장치(100b)는 프로세서(1020b)와 같은 적어도 하나의 프로세서와, 메모리(1010b)와 같은 적어도 하나 이상의 메모리 장치와, 송수신기(1031b)와 같은 적어도 하나의 송수신기를 포함할 수 있다. 상기 프로세서(1020b)는 전술한 기능, 절차, 및/또는 방법들을 수행할 수 있다. 상기 프로세서(1020b)는 하나 이상의 프로토콜을 구현할 수 있다. 예를 들어, 상기 프로세서(1020b)는 무선 인터페이스 프로토콜의 하나 이상의 계층들을 구현할 수 있다. 상기 메모리(1010b)는 상기 프로세서(1020b)와 연결되고, 다양한 형태의 정보 및/또는 명령을 저장할 수 있다. 상기 송수신기(1031b)는 상기 프로세서(1020b)와 연결되고, 무선 시그널을 송수신하도록 제어될 수 있다.
상기 메모리(1010a) 및/또는 상기 메모리(1010b)는, 상기 프로세서(1020a) 및/또는 상기 프로세서(1020b)의 내부 또는 외부에서 각기 연결될 수도 있고, 유선 또는 무선 연결과 같이 다양한 기술을 통해 다른 프로세서에 연결될 수도 있다.
상기 제1 장치(100a) 및/또는 상기 제2 장치(100b)는 하나 이상의 안테나를 가질 수 있다. 예를 들어, 안테나(1036a) 및/또는 안테나(1036b)는 무선 신호를 송수신하도록 구성될 수 있다.
도 13은 본 명세서의 일 실시예에 따른 단말의 구성을 나타낸 블록도이다.
특히, 도 13에서는 앞서 도 12의 장치를 보다 상세히 예시하는 도면이다.
장치는 메모리(1010), 프로세서(1020), 송수신부(1031), 전력 관리 모듈(1091), 배터리(1092), 디스플레이(1041), 입력부(1053), 스피커(1042) 및 마이크(1052), SIM(subscriber identification module) 카드, 하나 이상의 안테나를 포함한다.
프로세서(1020)는 본 명세서에서 설명된 제안된 기능, 절차 및/또는 방법을 구현하도록 구성될 수 있다. 무선 인터페이스 프로토콜(radio interface protocol)의 계층들은 프로세서(1020)에서 구현될 수 있다. 프로세서(1020)는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 프로세서(1020)는 AP(application processor)일 수 있다. 프로세서(1020)는 DSP(digital signal processor), CPU(central processing unit), GPU(graphics processing unit), 모뎀(Modem; modulator and demodulator) 중 적어도 하나를 포함할 수 있다. 프로세서(1020)의 예는 Qualcomm®에 의해 제조된 SNAPDRAGONTM 시리즈 프로세서, Samsung®에 의해 제조된 EXYNOSTM 시리즈 프로세서, Apple®에 의해 제조된 A 시리즈 프로세서, MediaTek®에 의해 제조된 HELIOTM 시리즈 프로세서, INTEL®에 의해 제조된 ATOMTM 시리즈 프로세서, HiSilicon®에 의해 제조된 KIRINTM 시리즈 프로세서 또는 대응하는 차세대 프로세서일 수 있다.
전력 관리 모듈(1091)은 프로세서(1020) 및/또는 송수신부(1031)에 대한 전력을 관리한다. 배터리(1092)는 전력 관리 모듈(1091)에 전력을 공급한다. 디스플레이(1041)는 프로세서(1020)에 의해 처리된 결과를 출력한다. 입력부(1053)는 프로세서(1020)에 의해 사용될 입력을 수신한다. 입력부(1053)는 디스플레이(1041) 상에 표시될 수 있다. SIM 카드는 휴대 전화 및 컴퓨터와 같은 휴대 전화 장치에서 가입자를 식별하고 인증하는 데에 사용되는 IMSI(international mobile subscriber identity) 및 그와 관련된 키를 안전하게 저장하기 위하여 사용되는 집적 회로이다. 많은 SIM 카드에 연락처 정보를 저장할 수도 있다.
메모리(1010)는 프로세서(1020)와 동작 가능하게 결합되고, 프로세서(610)를 동작시키기 위한 다양한 정보를 저장한다. 메모리(1010)는 ROM(read-only memory), RAM(random access memory), 플래시 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. 실시예가 소프트웨어로 구현되는 경우, 본 명세서에서 설명된 기술들은 본 명세서에서 설명된 기능을 수행하는 모듈(예컨대, 절차, 기능 등)로 구현될 수 있다. 모듈은 메모리(1010)에 저장될 수 있고 프로세서(1020)에 의해 실행될 수 있다. 메모리(1010)는 프로세서(1020) 내부에 구현될 수 있다. 또는, 메모리(1010)는 프로세서(1020) 외부에 구현될 수 있으며, 기술 분야에서 공지된 다양한 수단을 통해 프로세서(1020)에 통신 가능하게 연결될 수 있다.
송수신부(1031)는 프로세서(1020)와 동작 가능하게 결합되고, 무선 신호를 송신 및/또는 수신한다. 송수신부(1031)는 전송기와 수신기를 포함한다. 송수신부(1031)는 무선 주파수 신호를 처리하기 위한 기저 대역 회로를 포함할 수 있다. 송수신부는 무선 신호를 송신 및/또는 수신하도록 하나 이상의 안테나를 제어한다. 프로세서(1020)는 통신을 개시하기 위하여 예를 들어, 음성 통신 데이터를 구성하는 무선 신호를 전송하도록 명령 정보를 송수신부(1031)에 전달한다. 안테나는 무선 신호를 송신 및 수신하는 기능을 한다. 무선 신호를 수신할 때, 송수신부(1031)은 프로세서(1020)에 의해 처리하기 위하여 신호를 전달하고 기저 대역으로 신호를 변환할 수 있다. 처리된 신호는 스피커(1042)를 통해 출력되는 가청 또는 가독 정보로 변환될 수 있다.
스피커(1042)는 프로세서(1020)에 의해 처리된 소리 관련 결과를 출력한다. 마이크(1052)는 프로세서(1020)에 의해 사용될 소리 관련 입력을 수신한다.
사용자는 예를 들어, 입력부(1053)의 버튼을 누르거나(혹은 터치하거나) 또는 마이크(1052)를 이용한 음성 구동(voice activation)에 의해 전화 번호 등과 같은 명령 정보를 입력한다. 프로세서(1020)는 이러한 명령 정보를 수신하고, 전화 번호로 전화를 거는 등 적절한 기능을 수행하도록 처리한다. 구동 상의 데이터(operational data)는 심카드 또는 메모리(1010)로부터 추출할 수 있다. 또한, 프로세서(1020)는 사용자가 인지하고 또한 편의를 위해 명령 정보 또는 구동 정보를 디스플레이(1041) 상에 디스플레이 할 수 있다.
도 14는 본 명세서의 개시가 구현된 프로세서의 구성 블록도를 나타낸다.
도 14를 참조하여 알 수 있는 바와 같이, 본 명세서의 개시가 구현된 프로세서(1020)은 본 명세서에서 설명된 제안된 기능, 절차 및/또는 방법을 구현하기 위해, 복수의 회로(circuitry)를 포함할 수 있다. 예컨대, 상기 프로세서(1020)은 제1 회로(1020-1), 제2 회로(1020-2) 그리고 제3 회로(1020-3)를 포함할 수 있다. 또한, 도시되지는 않았으나, 상기 프로세서(1020)은 더 많은 회로를 포함할 수 있다. 각 회로는 복수의 트랜지시터를 포함할 수 있다.
상기 프로세서(1020)는 ASIC(application-specific integrated circuit) 또는 AP(application processor)로 불릴 수 있으며, DSP(digital signal processor), CPU(central processing unit), GPU(graphics processing unit) 중 적어도 하나를 포함할 수 있다.
도 15는 도 12에 도시된 제1 장치의 송수신기 또는 도 13에 도시된 장치의 송수신부를 상세하게 나타낸 블록도이다.
도 15를 참조하면, 송수신부(1031)는 송신기(1031-1)과 수신기(1031-2)를 포함한다. 상기 송신기(1031-1)은 DFT(Discrete Fourier Transform)부(1031-11), 부반송파 맵퍼(1031-12), IFFT부(1031-13) 및 CP 삽입부(1031-14), 무선 송신부(1031-15)를 포함한다. 상기 송신기(1031-1)는 변조기(modulator)를 더 포함할 수 있다. 또한, 예컨대 스크램블 유닛(미도시; scramble unit), 모듈레이션 맵퍼(미도시; modulation mapper), 레이어 맵퍼(미도시; layer mapper) 및 레이어 퍼뮤테이터(미도시; layer permutator)를 더 포함할 수 있으며, 이는 상기 DFT부(1031-11)에 앞서 배치될 수 있다. 즉, PAPR(peak-to-average power ratio)의 증가를 방지하기 위해서, 상기 송신기(1031-1)는 부반송파에 신호를 매핑하기 이전에 먼저 정보를 DFT(1031-11)를 거치도록 한다. DFT부(1031-11)에 의해 확산(spreading)(또는 동일한 의미로 프리코딩)된 신호를 부반송파 매퍼(1031-12)를 통해 부반송파 매핑을 한 뒤에 다시 IFFT(Inverse Fast Fourier Transform)부(1031-13)를 거쳐 시간축 상의 신호로 만들어준다.
DFT부(1031-11)는 입력되는 심벌들에 DFT를 수행하여 복소수 심벌들(complex-valued 심볼)을 출력한다. 예를 들어, Ntx 심벌들이 입력되면(단, Ntx는 자연수), DFT 크기(size)는 Ntx이다. DFT부(1031-11)는 변환 프리코더(transform precoder)라 불릴 수 있다. 부반송파 맵퍼(1031-12)는 상기 복소수 심벌들을 주파수 영역의 각 부반송파에 맵핑시킨다. 상기 복소수 심벌들은 데이터 전송을 위해 할당된 자원 블록에 대응하는 자원 요소들에 맵핑될 수 있다. 부반송파 맵퍼(1031-12)는 자원 맵퍼(resource element mapper)라 불릴 수 있다. IFFT부(1031-13)는 입력되는 심벌에 대해 IFFT를 수행하여 시간 영역 신호인 데이터를 위한 기본 대역(baseband) 신호를 출력한다. CP 삽입부(1031-14)는 데이터를 위한 기본 대역 신호의 뒷부분 일부를 복사하여 데이터를 위한 기본 대역 신호의 앞부분에 삽입한다. CP 삽입을 통해 ISI(Inter-심볼 Interference), ICI(Inter-Carrier Interference)가 방지되어 다중 경로 채널에서도 직교성이 유지될 수 있다.
다른 한편, 수신기(1031-2)는 무선 수신부(1031-21), CP 제거부(1031-22), FFT부(1031-23), 그리고 등화부(1031-24) 등을 포함한다. 상기 수신기(1031-2)의 무선 수신부(1031-21), CP 제거부(1031-22), FFT부(1031-23)는 상기 송신단(1031-1)에서의 무선 송신부(1031-15), CP 삽입부(1031-14), IFF부(1031-13)의 역기능을 수행한다. 상기 수신기(1031-2)는 복조기(demodulator)를 더 포함할 수 있다.
이상에서는 바람직한 실시예를 예시적으로 설명하였으나, 본 명세서의 개시는 이와 같은 특정 실시예에만 한정되는 것은 아니므로, 본 명세서의 사상 및 특허청구범위에 기재된 범주 내에서 다양한 형태로 수정, 변경, 또는 개선될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 설명되는 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 권리범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.
본 명세서에 기재된 청구항들은 다양한 방식으로 조합될 수 있다. 예를 들어, 본 명세서의 방법 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 명세서의 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다. 또한, 본 명세서의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 명세서의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다.

Claims (18)

  1. 무선 통신 시스템에서 단말이 상향링크(uplink) 전송을 수행하는 방법에 있어서,
    설정된 그랜트(configured grant)와 관련된 복수 개의 MCS(modulation and coding scheme) 후보 인덱스(index)들을 설정하는 단계; 및
    상기 설정된 그랜트(configured grant)를 기초로 하는 상향링크 전송을 수행하는 단계를 포함하고,
    상기 상향링크 전송은 상기 복수 개의 MCS(modulation and coding scheme) 후보 인덱스(index)들 중 하나의 MCS 인덱스를 기초로 수행되고, 상기 하나의 MCS 인덱스는 가변 되도록 선택되는, 방법.
  2. 제1항에 있어서,
    상기 하나의 MCS 인덱스에 대한 정보를 전송하는 단계를 더 포함하는, 방법.
  3. 제1항에 있어서,
    상기 하나의 MCS 인덱스를 기초로 송신 전력을 결정하는 단계를 더 포함하는, 방법.
  4. 제1항에 있어서,
    상기 설정된 그랜트(configured grant)와 관련된 상기 복수 개의 MCS(modulation and coding scheme) 후보 인덱스들에 대한 정보를 RRC(radio resource control, RRC) 시그널링을 통해 수신하는 단계를 더 포함하는, 방법.
  5. 제1항에 있어서,
    상기 설정된 그랜트(configured grant)와 관련된 상기 복수 개의 MCS(modulation and coding scheme) 후보 인덱스들에 대한 정보를 DCI(downlink control information)를 통해 수신하는 단계를 더 포함하는, 방법.
  6. 제2항에 있어서,
    상기 하나의 MCS 인덱스에 대한 정보는 DM-RS(demodulation-reference signal)를 통해 전송되는, 방법.
  7. 무선 통신 시스템에서 기지국이 상향링크(uplink) 수신을 수행하는 방법에 있어서,
    설정된 그랜트(configured grant)와 관련된 복수 개의 MCS(modulation and coding scheme) 후보 인덱스(index)들을 설정하는 단계; 및
    상기 설정된 그랜트(configured grant)를 기초로 하는 상향링크 수신을 수행하는 단계를 포함하고,
    상기 상향링크 수신은 상기 복수 개의 MCS(modulation and coding scheme) 후보 인덱스(index)들 중 하나의 MCS 인덱스를 기초로 수행되고, 상기 하나의 MCS 인덱스는 단말의 의해 가변 되도록 선택되는, 방법.
  8. 제7항에 있어서,
    상기 하나의 MCS 인덱스에 대한 정보를 수신하는 단계를 더 포함하는, 방법.
  9. 제8항에 있어서,
    상기 수신된 하나의 MCS 인덱스에 대한 정보를 기초로 상향링크 데이터의 디코딩을 수행하는 단계를 더 포함하는, 방법.
  10. 제7항에 있어서,
    상기 설정된 그랜트(configured grant)와 관련된 상기 복수 개의 MCS(modulation and coding scheme) 후보 인덱스들에 대한 정보를 RRC(radio resource control, RRC) 시그널링을 통해 전송하는 단계를 더 포함하는, 방법.
  11. 제7항에 있어서,
    상기 설정된 그랜트(configured grant)와 관련된 상기 복수 개의 MCS(modulation and coding scheme) 후보 인덱스들에 대한 정보를 DCI(downlink control information)를 통해 전송하는 단계를 더 포함하는, 방법.
  12. 제8항에 있어서,
    상기 하나의 MCS 인덱스에 대한 정보는 DM-RS(demodulation-reference signal)를 통해 수신되는, 방법.
  13. 무선 통신 시스템에서의 통신 기기로서,
    적어도 하나의 프로세서; 및
    명령어(instructions)를 저장하고, 상기 적어도 하나의 프로세서와 동작 가능하게(operably) 전기적으로 연결가능한, 적어도 하나의 메모리를 포함하고, 상기 명령어가 상기 적어도 하나의 프로세서에 의해서 실행되는 것에 기초하여, 수행되는 동작은:
    설정된 그랜트(configured grant)와 관련된 복수 개의 MCS(modulation and coding scheme) 후보 인덱스(index)들을 설정하는 단계와, 그리고
    상기 설정된 그랜트(configured grant)를 기초로 하는 상향링크 전송을 수행하는 단계를 포함하고,
    상기 상향링크 전송은 상기 복수 개의 MCS(modulation and coding scheme) 후보 인덱스(index)들 중 하나의 MCS 인덱스를 기초로 수행되고, 상기 하나의 MCS 인덱스는 가변 되도록 선택되는, 통신 기기.
  14. 제13항에 있어서,
    상기 명령어가 상기 적어도 하나의 프로세서에 의해서 실행되는 것에 기초하여, 수행되는 동작은:
    상기 하나의 MCS 인덱스에 대한 정보를 전송하는 단계를 더 포함하는, 통신 기기.
  15. 제13항에 있어서,
    상기 명령어가 상기 적어도 하나의 프로세서에 의해서 실행되는 것에 기초하여, 수행되는 동작은:
    상기 선택된 하나의 MCS 인덱스를 기초로 송신 전력을 결정하는 단계를 더 포함하는, 통신 기기.
  16. 제13항에 있어서,
    상기 명령어가 상기 적어도 하나의 프로세서에 의해서 실행되는 것에 기초하여, 수행되는 동작은:
    상기 설정된 그랜트(configured grant)와 관련된 상기 복수 개의 MCS(modulation and coding scheme) 후보 인덱스들에 대한 정보를 RRC(radio resource control, RRC) 시그널링을 통해 수신하는 단계를 더 포함하는, 통신 기기.
  17. 제13항에 있어서,
    상기 설정된 그랜트(configured grant)와 관련된 상기 복수 개의 MCS(modulation and coding scheme) 후보 인덱스들에 대한 정보를 DCI(downlink control information)를 통해 수신하는 단계를 더 포함하는, 통신 기기.
  18. 제14항에 있어서,
    상기 하나의 MCS 인덱스에 대한 정보는 DM-RS(demodulation-reference signal)를 통해 전송되는, 통신 기기.
PCT/KR2023/006262 2022-05-09 2023-05-09 무선 통신 시스템에서 가변 트래픽을 위한 송수신 방법 및 장치 WO2023219382A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220056834 2022-05-09
KR10-2022-0056834 2022-05-09
KR10-2023-0057506 2023-05-03
KR1020230057506A KR20230157252A (ko) 2022-05-09 2023-05-03 무선 통신 시스템에서 가변 트래픽을 위한 송수신 방법 및 장치

Publications (1)

Publication Number Publication Date
WO2023219382A1 true WO2023219382A1 (ko) 2023-11-16

Family

ID=88730673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/006262 WO2023219382A1 (ko) 2022-05-09 2023-05-09 무선 통신 시스템에서 가변 트래픽을 위한 송수신 방법 및 장치

Country Status (1)

Country Link
WO (1) WO2023219382A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9025685B2 (en) * 2007-01-30 2015-05-05 Lg Electronics Inc. Method and apparatus for selecting modulation and coding scheme (MCS) index based on frequency selectivity
US20180279337A1 (en) * 2017-03-21 2018-09-27 Samsung Electronics Co, Ltd. Method and apparatus for wireless communication using modulation, coding schemes, and channel quality indicators
KR101955278B1 (ko) * 2014-01-30 2019-03-08 인텔 코포레이션 256-qam 가능한 사용자 장비가 노드와 원활하게 동작하기 위한 메커니즘
KR102203619B1 (ko) * 2014-04-25 2021-01-14 퀄컴 인코포레이티드 Lte 업링크에서 변조 코딩 방식(mcs) 표 표시
US20210297225A1 (en) * 2015-01-28 2021-09-23 Interdigital Patent Holdings, Inc. Uplink feedback methods for operating with a large number of carriers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9025685B2 (en) * 2007-01-30 2015-05-05 Lg Electronics Inc. Method and apparatus for selecting modulation and coding scheme (MCS) index based on frequency selectivity
KR101955278B1 (ko) * 2014-01-30 2019-03-08 인텔 코포레이션 256-qam 가능한 사용자 장비가 노드와 원활하게 동작하기 위한 메커니즘
KR102203619B1 (ko) * 2014-04-25 2021-01-14 퀄컴 인코포레이티드 Lte 업링크에서 변조 코딩 방식(mcs) 표 표시
US20210297225A1 (en) * 2015-01-28 2021-09-23 Interdigital Patent Holdings, Inc. Uplink feedback methods for operating with a large number of carriers
US20180279337A1 (en) * 2017-03-21 2018-09-27 Samsung Electronics Co, Ltd. Method and apparatus for wireless communication using modulation, coding schemes, and channel quality indicators

Similar Documents

Publication Publication Date Title
WO2012150822A2 (ko) 하향링크 신호 수신방법 및 사용자기기와, 하향링크 신호 전송방법 및 기지국
WO2013055173A2 (ko) 무선 통신 시스템에서 단말이 신호를 송수신하는 방법 및 이를 위한 장치
US9131499B2 (en) Method for signaling a subframe pattern for preventing inter-cell interference from occurring in heterogeneous network system and apparatus for the same
WO2013141594A1 (ko) Ack/nack 신호 전송 또는 수신 방법
WO2013125871A1 (ko) 사용자기기의 통신 방법 및 사용자기기와, 기지국의 통신 방법 및 기지국
WO2020122577A1 (en) Method and apparatus for timing configuration of discovery signal and channel
WO2015163730A1 (en) Method and apparatus for deciding maximum uplink transmission power in wireless communication system
WO2013141546A1 (ko) 데이터 패킷 전송 방법 및 무선기기
EP3932130A1 (en) Method and apparatus for performing channel multiplexing for millimeter wireless communication
WO2010126259A2 (ko) 무선 통신 시스템에서 제어 정보 수신 방법 및 이를 위한 장치
WO2018070757A1 (en) Method and apparatus for transmitting and receiving multiple timing transmission schemes in wireless cellular communication system
WO2016099101A1 (ko) 상향링크 전송 파워 제어 방법 및 장치
WO2012141490A2 (ko) 무선 통신 시스템에서 셀 간 간섭을 완화하기 위한 신호 송수신 방법 및 이를 위한 장치
WO2011129632A2 (ko) 제어 신호의 비주기적 전송을 제어하는 방법 및 이를 이용한 제어 신호의 송수신 방법 및 장치
KR20210117611A (ko) Ai를 이용한 이동통신 방법
WO2016105174A1 (ko) 무선 통신 시스템에서 장치 대 장치 통신 단말의 릴레이 방법 및 장치
WO2020040534A1 (ko) 무선 통신 시스템의 물리 제어 채널 수신 방법 및 이를 이용하는 장치
WO2018093180A1 (ko) 차세대 무선 네트워크에서 상향링크 제어정보를 송수신하는 방법 및 그 장치
WO2018174543A1 (ko) 무선 통신 시스템에서 참조 신호 자원 할당 방법 및 이를 위한 장치
WO2021029577A1 (ko) 사이드링크 통신을 위해 bwp를 스위칭하는 방법 및 통신 기기
WO2019125021A1 (ko) 차세대 통신 시스템에서 이중 연결을 위한 단말 성능 보고 방법 및 이를 위한 장치
WO2019143127A1 (ko) 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치
WO2019194574A1 (en) Method and apparatus for supporting relay operation for urllc in wireless communication system
WO2012115450A2 (ko) 다중 셀 협력 무선 통신 시스템에서 제어 채널 전송 방법 및 이를 위한 장치
WO2018048091A1 (ko) 무선통신 시스템에서 brs 및 pbch를 수신하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803805

Country of ref document: EP

Kind code of ref document: A1