WO2018048091A1 - 무선통신 시스템에서 brs 및 pbch를 수신하는 방법 및 이를 위한 장치 - Google Patents

무선통신 시스템에서 brs 및 pbch를 수신하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2018048091A1
WO2018048091A1 PCT/KR2017/007977 KR2017007977W WO2018048091A1 WO 2018048091 A1 WO2018048091 A1 WO 2018048091A1 KR 2017007977 W KR2017007977 W KR 2017007977W WO 2018048091 A1 WO2018048091 A1 WO 2018048091A1
Authority
WO
WIPO (PCT)
Prior art keywords
brs
pbch
ports
power ratio
synchronization signal
Prior art date
Application number
PCT/KR2017/007977
Other languages
English (en)
French (fr)
Inventor
이길봄
김기준
김규석
안민기
채혁진
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/328,830 priority Critical patent/US10764838B2/en
Publication of WO2018048091A1 publication Critical patent/WO2018048091A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/322Power control of broadcast channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method and apparatus for receiving a BRS and PBCH in a wireless communication system.
  • Next-generation 5G systems can be categorized into Enhanced Mobile BroadBand (eMBB) / Ultra-reliable Machine-Type Communications (uMTC) / Massive Machine-Type Communications (mMTC).
  • eMBB is a next generation mobile communication scenario with characteristics such as High Spectrum Efficiency, High User Experienced Data Rate, High Peak Data Rate
  • uMTC is a next generation mobile communication scenario with characteristics such as Ultra Reliable, Ultra Low Latency, Ultra High Availability, etc.
  • mMTC are next generation mobile communication scenarios having low cost, low energy, short packet, and mass connectivity (eg IoT).
  • An object of the present invention is to provide a method for a terminal to receive a beam reference signal (BRS) and a physical broadcast channel (PBCH) in a wireless communication system.
  • BRS beam reference signal
  • PBCH physical broadcast channel
  • Another object of the present invention is to provide a terminal for receiving a beam reference signal (BRS) and a physical broadcast channel (PBCH) in a wireless communication system.
  • BRS beam reference signal
  • PBCH physical broadcast channel
  • a method for receiving a BRS (Bam Reference Signal) and a PBCH (Physical Broadcast Channel) in a wireless communication system includes the BRS per resource element (RE) based on the number of BRS ports; Determining a power ratio of the PBCH; Detecting the BRS and a demodulation reference signal (DMRS) based on the number of BRS ports; And determining whether to compensate a power ratio of the determined BRS and the PBCH to an estimated channel based on the DMRS.
  • BRS Bit Reference Signal
  • PBCH Physical Broadcast Channel
  • the determining step includes determining not to compensate for the power ratio of the BRS and the PBCH when the determined power ratio of the BRS and the PBCH is 1, and the method decodes the PBCH based on the uncompensated channel. It may further comprise the step.
  • the number of ports of the BRS may be 4 or 8.
  • the determining step includes determining to compensate for the power ratio of the BRS and the PBCH when the determined power ratio of the BRS and the PBCH is not 1, and the method compensates by compensating the power ratio of the determined BRS and the PBCH.
  • the method may further include decoding the PBCH based on the received channel.
  • the number of ports of the BRS may be two.
  • the method includes receiving a synchronization signal; And acquiring the number of the BRS ports using the synchronization signal.
  • the synchronization signal may include a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), or an Extended Synchronization Signal (ESS).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • ESS Extended Synchronization Signal
  • the number of BRS ports may be indicated by a signature defined based on the scrambling code of the sync signal.
  • the number of BRS ports may be set cell-specifically or UE-specifically.
  • a terminal receiving a BRS (Beam Reference Signal) and a PBCH (Physical Broadcast Channel) in a wireless communication system, the BRS per RE (Resource Element) based on the number of BRS ports and the Determine a power ratio of a PBCH and detect the BRS and a Demodulation Reference Signal (DMRS) based on the number of BRS ports; And a processor configured to determine whether to compensate a power ratio of the determined BRS and the PBCH to an estimated channel based on the DMRS.
  • BRS Beam Reference Signal
  • PBCH Physical Broadcast Channel
  • the processor may determine not to compensate the power ratio of the BRS and the PBCH when the determined power ratio of the BRS and the PBCH is 1, and the processor may be configured to decode the PBCH based on the uncompensated channel. .
  • the number of ports of the BRS may be 4 or 8.
  • the processor determines to compensate the power ratio of the BRS and the PBCH when the determined power ratio of the BRS and PBCH is not 1, and the processor compensates the power ratio of the determined BRS and PBCH based on the compensated channel. It may be configured to decode the PBCH. In this case, the number of ports of the BRS may be two.
  • the terminal further includes a receiver configured to receive a synchronization signal, and the processor may be configured to obtain the number of the BRS ports using the synchronization signal.
  • the synchronization signal may include a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), or an Extended Synchronization Signal (ESS).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • ESS Extended Synchronization Signal
  • the process may be configured to obtain the number of BRS ports indicated by a signature defined based on the scrambling code of the synchronization signal.
  • the number of BRS ports may be set cell-specifically or UE-specifically.
  • coverage problems can be solved by different BRS and PBCH designs according to the number of BRS ports, and the PBCH can be efficiently decoded.
  • FIG. 1 is a block diagram showing the configuration of a base station 105 and a terminal 110 in a wireless communication system 100.
  • FIG. 2 is a diagram illustrating a frame structure of an LTE / LTE-A system.
  • FIG 3 illustrates a resource grid of a downlink slot of a 3GPP LTE / LTE-A system as an example of a wireless communication system.
  • FIG. 4 illustrates a structure of a downlink subframe of a 3GPP LTE / LTE-A system as an example of a wireless communication system.
  • FIG. 5 illustrates a structure of an uplink subframe used in a 3GPP LTE / LTE-A system as an example of a wireless communication system.
  • a terminal collectively refers to a mobile or fixed user terminal device such as a user equipment (UE), a mobile station (MS), an advanced mobile station (AMS), and the like.
  • the base station collectively refers to any node of the network side that communicates with the terminal such as a Node B, an eNode B, a Base Station, and an Access Point (AP).
  • UE user equipment
  • MS mobile station
  • AMS advanced mobile station
  • AP Access Point
  • a user equipment may receive information from a base station through downlink, and the terminal may also transmit information through uplink.
  • the information transmitted or received by the terminal includes data and various control information, and various physical channels exist according to the type and purpose of the information transmitted or received by the terminal.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) employs OFDMA in downlink and SC-FDMA in uplink as part of Evolved UMTS (E-UMTS) using E-UTRA.
  • LTE-A Advanced is an evolution of 3GPP LTE.
  • FIG. 1 is a block diagram showing the configuration of a base station 105 and a terminal 110 in a wireless communication system 100.
  • the wireless communication system 100 may include one or more base stations and / or one or more base stations. It may include a terminal.
  • the base station 105 includes a transmit (Tx) data processor 115, a symbol modulator 120, a transmitter 125, a transmit / receive antenna 130, a processor 180, a memory 185, and a receiver ( 190, a symbol demodulator 195, and a receive data processor 197.
  • the terminal 110 transmits (Tx) the data processor 165, the symbol modulator 170, the transmitter 175, the transmit / receive antenna 135, the processor 155, the memory 160, the receiver 140, and the symbol. It may include a demodulator 155 and a receive data processor 150.
  • the base station 105 and the terminal 110 are provided with a plurality of transmit and receive antennas. Accordingly, the base station 105 and the terminal 110 according to the present invention support a multiple input multiple output (MIMO) system. In addition, the base station 105 according to the present invention may support both a single user-MIMO (SU-MIMO) and a multi-user-MIMO (MU-MIMO) scheme.
  • MIMO multiple input multiple output
  • SU-MIMO single user-MIMO
  • MU-MIMO multi-user-MIMO
  • the transmit data processor 115 receives the traffic data, formats the received traffic data, codes it, interleaves and modulates (or symbol maps) the coded traffic data, and modulates the symbols ("data"). Symbols ").
  • the symbol modulator 120 receives and processes these data symbols and pilot symbols to provide a stream of symbols.
  • the symbol modulator 120 multiplexes the data and pilot symbols and sends it to the transmitter 125.
  • each transmission symbol may be a data symbol, a pilot symbol, or a signal value of zero.
  • pilot symbols may be sent continuously.
  • the pilot symbols may be frequency division multiplexed (FDM), orthogonal frequency division multiplexed (OFDM), time division multiplexed (TDM), or code division multiplexed (CDM) symbols.
  • Transmitter 125 receives the stream of symbols and converts it into one or more analog signals, and further adjusts (eg, amplifies, filters, and frequency upconverts) the analog signals to provide a wireless channel. Generates a downlink signal suitable for transmission via the transmission antenna 130, the transmission antenna 130 transmits the generated downlink signal to the terminal.
  • the receiving antenna 135 receives the downlink signal from the base station and provides the received signal to the receiver 140.
  • Receiver 140 adjusts the received signal (eg, filtering, amplifying, and frequency downconverting), and digitizes the adjusted signal to obtain samples.
  • the symbol demodulator 145 demodulates the received pilot symbols and provides them to the processor 155 for channel estimation.
  • the symbol demodulator 145 also receives a frequency response estimate for the downlink from the processor 155 and performs data demodulation on the received data symbols to obtain a data symbol estimate (which is an estimate of the transmitted data symbols). Obtain and provide data symbol estimates to a receive (Rx) data processor 150. Receive data processor 150 demodulates (ie, symbol de-maps), deinterleaves, and decodes the data symbol estimates to recover the transmitted traffic data.
  • the processing by symbol demodulator 145 and receiving data processor 150 is complementary to the processing by symbol modulator 120 and transmitting data processor 115 at base station 105, respectively.
  • the terminal 110 is on the uplink, and the transmit data processor 165 processes the traffic data to provide data symbols.
  • the symbol modulator 170 may receive and multiplex data symbols, perform modulation, and provide a stream of symbols to the transmitter 175.
  • the transmitter 175 receives and processes a stream of symbols to generate an uplink signal.
  • the transmit antenna 135 transmits the generated uplink signal to the base station 105.
  • the transmitter and the receiver in the terminal and the base station may be configured as one radio frequency (RF) unit.
  • RF radio frequency
  • an uplink signal is received from the terminal 110 through the reception antenna 130, and the receiver 190 processes the received uplink signal to obtain samples.
  • the symbol demodulator 195 then processes these samples to provide received pilot symbols and data symbol estimates for the uplink.
  • the received data processor 197 processes the data symbol estimates to recover the traffic data transmitted from the terminal 110.
  • Processors 155 and 180 of the terminal 110 and the base station 105 respectively instruct (eg, control, coordinate, manage, etc.) operations at the terminal 110 and the base station 105, respectively.
  • Respective processors 155 and 180 may be connected to memory units 160 and 185 that store program codes and data.
  • the memory 160, 185 is coupled to the processor 180 to store the operating system, applications, and general files.
  • the processors 155 and 180 may also be referred to as controllers, microcontrollers, microprocessors, microcomputers, or the like.
  • the processors 155 and 180 may be implemented by hardware or firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field programmable gate arrays
  • the firmware or software may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and to perform the present invention.
  • the firmware or software configured to be may be provided in the processors 155 and 180 or stored in the memory 160 and 185 to be driven by the processors 155 and 180.
  • the layers of the air interface protocol between the terminal and the base station between the wireless communication system (network) are based on the lower three layers of the open system interconnection (OSI) model, which is well known in the communication system. ), And the third layer L3.
  • the physical layer belongs to the first layer and provides an information transmission service through a physical channel.
  • a Radio Resource Control (RRC) layer belongs to the third layer and provides control radio resources between the UE and the network.
  • the terminal and the base station may exchange RRC messages through the wireless communication network and the RRC layer.
  • the processor 155 of the terminal and the processor 180 of the base station process the signals and data, except for the function of receiving or transmitting the signal and the storage function of the terminal 110 and the base station 105, respectively.
  • the following description does not specifically refer to the processors 155 and 180.
  • the processors 155 and 180 it may be said that a series of operations such as data processing is performed rather than a function of receiving or transmitting a signal.
  • FIG. 2 is a diagram illustrating a frame structure of an LTE / LTE-A system.
  • one frame consists of 10 ms and ten 1 ms subframes.
  • One subframe consists of two 0.5 ms slots, and one slot consists of seven Orthogonal Frequency Division Multiplexing (OFDM) symbols.
  • One resource block (RB) is defined by 12 subcarriers spaced at 15 kHz and 7 OFDM symbols.
  • the base station transmits a Primary Synchronization Signal (PSS) for Synchronization, a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel (PBCH) for system information at the Center Frequency 6RB.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the frame structure, the signal, and the channel positions may be different according to a normal / extended CP (cyclic prefix), a time division duplex (TDD), and a frequency division duplex (FDD).
  • TDD time division duplex
  • FDD frequency division duplex
  • one frame consists of 10 ms and ten 1 ms subframes.
  • the time for transmitting one subframe may be defined as a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe consists of two 0.5 ms slots, and one slot consists of seven (or six) Orthogonal Frequency Division Multiplexing (OFDM) symbols.
  • the 3GPP LTE system uses OFDMA in downlink, and an OFDM symbol represents one symbol period.
  • An OFDM symbol may be referred to as an SC-FDMA symbol or one symbol period.
  • a resource block (RB) is a resource allocation unit and includes a plurality of subcarriers adjacent to one slot.
  • the structure of the radio frame shown in FIG. 2 is exemplary, so that the number of subframes included in the radio frame, the number of slots included in the subframe, or the number of OFDM symbols included in one slot may be changed in various ways. .
  • One resource block is defined by 12 subcarriers spaced at 15 kHz and 7 OFDM symbols.
  • the base station transmits a Primary Synchronization Signal (PSS) for Synchronization, a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel (PBCH) for system information at the Center Frequency 6RB.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • FIG 3 illustrates a resource grid of a downlink slot of a 3GPP LTE / LTE-A system as an example of a wireless communication system.
  • the downlink slot includes a plurality of OFDM symbols in the time domain.
  • One downlink slot may include 7 (or 6) OFDM symbols and the resource block may include 12 subcarriers in the frequency domain.
  • Each element on the resource grid is referred to as a resource element (RE).
  • One RB contains 12x7 (6) REs.
  • the number of RBs included in the downlink slot NRB depends on the downlink transmission band.
  • the structure of an uplink slot is the same as that of a downlink slot, but an OFDM symbol is replaced with an SC-FDMA symbol.
  • FIG. 4 illustrates a structure of a downlink subframe of a 3GPP LTE / LTE-A system as an example of a wireless communication system.
  • up to three (or four) OFDM symbols located at the front of the first slot of a subframe correspond to a control region to which a control channel is allocated.
  • the remaining OFDM symbols correspond to data regions to which the Physical Downlink Shared CHance (PDSCH) is allocated.
  • Examples of a downlink control channel used in LTE include a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), a Physical Hybrid ARQ Indicator Channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols used for transmission of a control channel within the subframe.
  • the PHICH carries a HARQ ACK / NACK (Hybrid Automatic Repeat request acknowledgment / negative-acknowledgment) signal in response to uplink transmission.
  • DCI downlink control information
  • the DCI format is defined as format 0 for uplink, formats 1, 1A, 1B, 1C, 1D, 2, 2A, 3, 3A, and so on for downlink.
  • the DCI format includes a hopping flag, RB assignment, modulation coding scheme (MCS), redundancy version (RV), new data indicator (NDI), transmit power control (TPC), and cyclic shift DM RS, depending on the application.
  • MCS modulation coding scheme
  • RV redundancy version
  • NDI new data indicator
  • TPC transmit power control
  • Information including a reference signal (CQI), a channel quality information (CQI) request, a HARQ process number, a transmitted precoding matrix indicator (TPMI), and a precoding matrix indicator (PMI) confirmation are optionally included.
  • CQI reference signal
  • CQI channel quality information
  • TPMI transmitted precoding matrix indicator
  • PMI pre
  • the PDCCH includes a transmission format and resource allocation information of a downlink shared channel (DL-SCH), a transmission format and resource allocation information of an uplink shared channel (UL-SCH), a paging channel, Resource allocation information of upper-layer control messages such as paging information on PCH), system information on DL-SCH, random access response transmitted on PDSCH, Tx power control command set for individual terminals in terminal group, Tx power control command , The activation instruction information of the Voice over IP (VoIP).
  • a plurality of PDCCHs may be transmitted in the control region.
  • the terminal may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted on an aggregation of one or a plurality of consecutive control channel elements (CCEs).
  • CCEs control channel elements
  • the CCE is a logical allocation unit used to provide a PDCCH with a coding rate based on radio channel conditions.
  • the CCE corresponds to a plurality of resource element groups (REGs).
  • the format of the PDCCH and the number of PDCCH bits are determined according to the number of CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and adds a cyclic redundancy check (CRC) to the control information.
  • the CRC is masked with an identifier (eg, a radio network temporary identifier (RNTI)) according to the owner or purpose of use of the PDCCH.
  • RNTI radio network temporary identifier
  • an identifier eg, cell-RNTI (C-RNTI)
  • C-RNTI cell-RNTI
  • P-RNTI paging-RNTI
  • SI-RNTI system information RNTI
  • RA-RNTI random access-RNTI
  • FIG. 5 illustrates a structure of an uplink subframe used in a 3GPP LTE / LTE-A system as an example of a wireless communication system.
  • an uplink subframe includes a plurality of slots (eg, two).
  • the slot may include different numbers of SC-FDMA symbols according to the CP length.
  • the uplink subframe is divided into a data region and a control region in the frequency domain.
  • the data area includes a PUSCH (Physical Uplink Shared CHannel) and is used to transmit a data signal such as voice.
  • the control region includes a PUCCH (Physical Uplink Control CHannel) and is used to transmit uplink control information (UCI).
  • the PUCCH includes RB pairs located at both ends of the data region on the frequency axis and hops to a slot boundary.
  • PUCCH may be used to transmit the following control information.
  • SR Service Request: Information used for requesting an uplink UL-SCH resource. It is transmitted using OOK (On-Off Keying) method.
  • HARQ ACK / NACK This is a response signal for a downlink data packet on a PDSCH. Indicates whether the downlink data packet was successfully received.
  • One bit of ACK / NACK is transmitted in response to a single downlink codeword (CodeWord, CW), and two bits of ACK / NACK are transmitted in response to two downlink codewords.
  • CQI Channel Quality Indicator
  • MIMO Multiple input multiple output
  • RI rank indicator
  • PMI precoding matrix indicator
  • PTI precoding type indicator
  • the amount of control information (UCI) that a UE can transmit in a subframe depends on the number of SC-FDMA available for control information transmission.
  • SC-FDMA available for transmission of control information means the remaining SC-FDMA symbol except for the SC-FDMA symbol for transmitting the reference signal in the subframe, and in the case of the subframe in which the Sounding Reference Signal (SRS) is set, the last of the subframe SC-FDMA symbols are also excluded.
  • the reference signal is used for coherent detection of the PUCCH.
  • PUCCH supports seven formats according to the transmitted information.
  • PDCCH Physical Downlink Control CHannel
  • the PDCCH is a downlink control channel that transmits a PDSCH ( ⁇ DiCwnlii) power control command for a specific UE.
  • the PDCCH occupies a maximum of 4 OFDM symbols in the time domain and is allocated to the PDCCH by PCFICH.
  • the number of OFDM symbols is transmitted in the frequency domain, and is transmitted over the entire system band, and modulation is QPSK, and resources used for transmitting the PDCCH are called control channel elements (CCEs). It consists of 36 resource elements (RE) and can transmit 72 bits through one CCE
  • the amount of control information transmitted on the PDCCH depends on the transmission mode
  • the control information according to each transmission mode is specified in DCI format.
  • the UE determines the presence or absence of PDSCH / PUSCH transmission according to the PDCCH decoding result, which means that PDCCH scrambling is determined by UE ID information (C-RNTI) of the corresponding UE.
  • C-RNTI UE ID information
  • the UE detects a DCI format that is scrambling by its UE ID and transmits the PDSCH, the UE transmits PDSCH or PUSCH by PDCCH control information. Therefore, the UE should decode a plurality of PDCCHs and check whether there is control information transmitted to the PDCCHs, but the complexity is greatly increased to decode all transmittable PDCCHs, thereby limiting the number of decoding.
  • CCE aggregation levels currently allowed are 1, 2, and 4 , 8, which means that CCE aggregation level 4 concatenates four CCEs and transmits control information of the corresponding UE.
  • PBCH and BRS designs are proposed according to the number of beam reference signals (BRS).
  • BRS beam reference signals
  • the UE defines procedures for PBCH decoding based on the proposed PBCH and BRS design.
  • the PBCH may be transmitted through each of two REs of both edges on the frequency domain in one RB, and the BRS may be transmitted through eight REs.
  • Eight BRS ports are defined by indices 0 through 7 (BRS ports 0 through 7), and the BRS may be multiplexed into one OFDM symbol using an orthogonal cover code (OCC).
  • OOCC orthogonal cover code
  • the PBCH DMRS port may be defined as follows using two REs (a) and (b) shown in FIG. 6.
  • each of (a) and (b) is determined to be a DMRS port 9. That is, in the OCC table shown in FIG. 6, (a) (that is, [1 1 1 1 1 1 1 1 1 1]) indicated by the horizontal axis is DMRS port 8, (b) (that is, [1 -1 1- 1 1 -1 1 -1]) can be determined as DMRS port 9.
  • DMRS port 8 is defined as (a) + (b)
  • DMRS port 9 is defined as (a) to (b).
  • PBCH is transmitted through the two DMRS ports.
  • SFBC Space-Frequency Block Coding
  • Example 1 How to define the location of BRS differently according to the number of BRS (Beam Reference Signal) ports
  • the location of the BRS may be defined differently as shown in FIGS. 6 to 8.
  • the terminal and the base station may share information about the location of the BRS according to the number of BRS ports in advance.
  • the terminal may know the location or allocation pattern of the BRS corresponding to the number of BRS ports acquired based on information shared in advance.
  • the DMRS port is defined in 12 RE intervals along the frequency axis.
  • the terminal may decode the PBCH even if the terminal does not know the number of BRS ports.
  • the channel has high selectivity along the frequency axis, the channel estimation performance is degraded.
  • PBCH and BRS structures are taken differently to minimize the channel estimation performance degradation. In this case, it is assumed that the terminal knows the number of BRS ports.
  • the DMRS may be defined by four spaces (4 REs in RE units in the frequency domain). Therefore, as compared with FIG. 6, performance degradation due to channel selectivity can be reduced.
  • two PBCH REs may be defined per RB.
  • DMRS is defined by 6 spaces (6 REs in RE units in the frequency domain). In comparison with FIG. 6, performance degradation due to channel selectivity can be reduced. In addition, as in FIG. 7, two PBCH REs may be defined per RB.
  • Example 2 Example BRS power per RE and depending on the number of BRS ports at 1 and PBCH Power How to make them different or the same
  • Embodiment 2 defines BRS power and PBCH power per RE differently or equally according to the number of BRSs.
  • Equation 1 represents BRS power per RE according to the number of BRS ports
  • Equation 2 represents PBCH power per RE according to the number of BRS ports.
  • the BRS power when the number of BRS ports is 2 is boosted by 4/3 than when the number of BRS ports is 4 or 8.
  • the number of BRS REs per RB decreases from 8 to 6, but the BRS total power per port allocated to one OFDM symbol is kept the same.
  • port 2 satisfies the same coverage as port 4 and port 8.
  • Equation 2 it can be seen that the PBCH power per RE when the number of BRS ports is 2 is reduced by 2/3 than the PBCH power per RE when the number of BRS ports is 4 or 8. However, as the number of PBCH REs per RB increases from 4 to 6, the total PBCH power per port allocated to one OFDM symbol is the same.
  • Example 3 Example BRS power per RE and depending on the number of BRS ports at 2 and PBCH How to define power ratios differently or equally
  • the power ratio of BRS and PBCH per RE It is defined as. If the number of BRS ports is 8, the BRS power per RE and the PBCH power per RE are the same ( ), If the BRS power per RE and the PBCH power per RE are equal when the number of BRS ports is 4, using Equation 1 / Equation 2, the power ratio according to the number of BRS ports per RE is expressed as in Equation 3 below. Can be represented.
  • the power ratio of BRS and PBCH per RE is 1, and when the number of BRS ports is 2, the power ratio of BRS and PBCH per RE is 2. .
  • the power ratio of BRS and PBCH per RE may be the same or different.
  • the UE may determine the number of BRS (Beam Reference Signal) ports and / or the BRS and PBCH power ratio per RE (see Equation 3) using the synchronization signal.
  • the synchronization signal means PSS / SSS / ESS (Extended Synchronization Signal).
  • the terminal may extract the DMRS from the BRS based on the determined number of BRSs.
  • the UE can decode the PBCH using the channel estimated in the DMRS and the power ratio of the BRS and the PBCH.
  • This section introduces a technique for defining a signature based on the root value of an Extended Synchronization Signal (ESS) or a scrambling code.
  • ESS Extended Synchronization Signal
  • a beam period, a synch subframe index / beam subframe index, and a number of BRSs may be defined in the signature. Therefore, when the BRS number is defined in the signature, the UE determines the BRS number without decoding another physical channel (eg, PBCH).
  • the terminal may determine the number of BRS ports from the synchronization signal. 2) The terminal may extract the BRS and / or DMRS based on the number of BRS ports. 3) The terminal performs channel estimation from the DMRS and performs interpolation. 4) The UE can compensate for BRS and PBCH power ratios according to the number of BRS ports by using Equation 3 in the channel estimated based on DMRS. 5) The UE can decode the PBCH based on the compensated channel. Meanwhile, the BRS and PBCH power ratio compensation may be performed in channel estimation from DMRS or in PBCH decoding. And, if the power ratio is 1, compensation can be omitted.
  • PBCH and BRS designs are proposed according to the number of BRSs.
  • a UE procedure for PBCH decoding is proposed.
  • the base station may generate a plurality of analog beams using a plurality of panels.
  • a total of four analog beams may be generated.
  • the UE performs code division multiplexing (CDM) on a sequence corresponding to each beam to four REs (4REs for BRS) as shown in FIG. 8 so that the UE can distinguish the four base station analog beams.
  • each beam may be frequency division multiplexed (FDM) to different REs.
  • FDM frequency division multiplexed
  • the base station has eight analog beams, eight BRSs are required (of course, the base station may combine the eight analog beams to define only four or two analog beams. You can also CDM 8 REs together.
  • the invention proposed in the present invention can reduce the number of REs (number of REs for BRS) in which a base station having a small number of BRSs (the number of analog beams) reduces the number of BRS-based DMRS frequency intervals, thereby reducing the channel. Robustness to frequency selectivity can be given.
  • the BRS of the present invention may also be referred to as CSI-RS (or MRS) for beam management.
  • the number of BRS may be set to the terminal to be cell-specific or UE-specific.
  • the UE may know the number of BRSs through a master information block (MIB) or a system information block (SIB). If the number of BRSs is UE-specific, the UE may know the number of BRSs through RRC (Radio Resource Control) signaling or MAC-CE (Control Element).
  • MIB master information block
  • SIB system information block
  • RRC Radio Resource Control
  • MAC-CE Control Element
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • a method for receiving BRS and PBCH in a wireless communication system and an apparatus therefor may be industrially applied in various wireless communication systems such as 3GPP LTE / LTE-A and 5G systems.

Abstract

무선통신 시스템에서 단말이 BRS(Beam Reference Signal) 및 PBCH (Physical Broadcast Channel)를 수신하는 방법은, BRS 포트의 수에 기초하여 RE(Resource Element) 당 상기 BRS와 상기 PBCH의 파워 비를 결정하는 단계; 상기 BRS 포트의 수에 기초하여 상기 BRS 및 DMRS(Demodulation Reference Signal)를 검출하는 단계; 및 상기 DMRS에 기초하여 추정된 채널에 상기 결정된 BRS와 상기 PBCH의 파워 비를 보상할지 여부를 결정하는 단계를 포함할 수 있다.

Description

무선통신 시스템에서 BRS 및 PBCH를 수신하는 방법 및 이를 위한 장치
본 발명은 무선통신에 관한 것으로, 보다 상세하게는, 무선통신 시스템에서 BRS 및 PBCH를 수신하는 방법 및 이를 위한 장치에 관한 것이다.
차세대 5G 시스템에서는 Enhanced Mobile BroadBand (eMBB)/Ultra-reliable Machine-Type Communications (uMTC)/Massive Machine-Type Communications (mMTC) 등으로 시나리오를 구분할 수 있다. eMBB는 High Spectrum Efficiency, High User Experienced Data Rate, High Peak Data Rate 등의 특성을 갖는 차세대 이동통신 시나리오이고, uMTC는 Ultra Reliable, Ultra Low Latency, Ultra High Availability 등의 특성을 갖는 차세대 이동통신 시나리오이며 (예를 들어, V2X, Emergency Service, Remote Control), mMTC는 Low Cost, Low Energy, Short Packet, Massive Connectivity 특성을 갖는 차세대 이동통신 시나리오이다(예를 들어, IoT).
이러한 차세대 5G 통신 시스템에서의 BRS와 PBCH를 수신/디코딩하는 방법에 대해서 구체적으로 제안된 바가 없었다.
본 발명에서 이루고자 하는 기술적 과제는 무선통신 시스템에서 단말이 BRS(Beam Reference Signal) 및 PBCH (Physical Broadcast Channel)를 수신하는 방법을 제공하는 데 있다.
본 발명에서 이루고자 하는 다른 기술적 과제는 무선통신 시스템에서 BRS(Beam Reference Signal) 및 PBCH (Physical Broadcast Channel)를 수신하는 단말을 제공하는 데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기의 기술적 과제를 달성하기 위한, 무선통신 시스템에서 단말이 BRS(Beam Reference Signal) 및 PBCH (Physical Broadcast Channel)를 수신하는 방법은, BRS 포트의 수에 기초하여 RE(Resource Element) 당 상기 BRS와 상기 PBCH의 파워 비를 결정하는 단계; 상기 BRS 포트의 수에 기초하여 상기 BRS 및 DMRS(Demodulation Reference Signal)를 검출하는 단계; 및 상기 DMRS에 기초하여 추정된 채널에 상기 결정된 BRS와 상기 PBCH의 파워 비를 보상할지 여부를 결정하는 단계를 포함할 수 있다.
상기 결정 단계는 상기 결정된 BRS와 PBCH의 파워 비가 1인 경우에는 상기 BRS와 상기 PBCH의 파워 비를 보상하지 않도록 결정하는 단계를 포함하고, 상기 방법은 상기 보상되지 않은 채널에 기초하여 상기 PBCH를 디코딩하는 단계를 더 포함할 수 있다. 상기 BRS의 포트의 수는 4 또는 8일 수 있다.
상기 결정 단계는 상기 결정된 BRS와 PBCH의 파워 비가 1이 아닌 경우에는 상기 BRS와 상기 PBCH의 파워 비를 보상하도록 결정하는 단계를 포함하며, 상기 방법은 상기 결정된 BRS와 PBCH의 파워 비를 보상하여 보상된 채널에 기초하여 상기 PBCH를 디코딩하는 단계를 더 포함할 수 있다. 상기 BRS의 포트의 수는 2일 수 있다.
상기 방법은, 동기 신호를 수신하는 단계; 및 상기 동기 신호를 이용하여 상기 BRS 포트의 수를 획득하는 단계를 더 포함할 수 있다. 상기 동기 신호는 Primary Synchronization Signal (PSS), Secondary Synchronization Signal (SSS), 또는 ESS (Extended Synchronization Signal)를 포함할 수 있다. 상기 BRS 포트의 수는 상기 동기 신호의 스크램블링 코드에 기초하여 정의된 시그너처(signature)에 의해 지시될 수 있다. 상기 BRS 포트의 수는 셀-특정(cell-specific)하게 또는 단말-특정(UE-specific)하게 설정될 수 있다.
상기의 다른 기술적 과제를 달성하기 위한, 무선통신 시스템에서 BRS(Beam Reference Signal) 및 PBCH (Physical Broadcast Channel)를 수신하는 단말은, BRS 포트의 수에 기초하여 RE(Resource Element) 당 상기 BRS와 상기 PBCH의 파워 비를 결정하고, 상기 BRS 포트의 수에 기초하여 상기 BRS 및 DMRS(Demodulation Reference Signal)를 검출하며; 및 상기 DMRS에 기초하여 추정된 채널에 상기 결정된 BRS와 상기 PBCH의 파워 비를 보상할지 여부를 결정하도록 구성되는 프로세서를 포함할 수 있다.
상기 프로세서는 상기 결정된 BRS와 PBCH의 파워 비가 1인 경우에는 상기 BRS와 상기 PBCH의 파워 비를 보상하지 않도록 결정하고, 상기 프로세서는 상기 보상되지 않은 채널에 기초하여 상기 PBCH를 디코딩하도록 구성될 수 있다. 이때, 상기 BRS의 포트의 수는 4 또는 8일 수 있다.
상기 프로세서는 상기 결정된 BRS와 PBCH의 파워 비가 1이 아닌 경우에는 상기 BRS와 상기 PBCH의 파워 비를 보상하도록 결정하고, 상기 프로세서는 상기 결정된 BRS와 PBCH의 파워 비를 보상하여 보상된 채널에 기초하여 상기 PBCH를 디코딩하도록 구성될 수 있다. 이때, 상기 BRS의 포트의 수는 2일 수 있다.
상기 단말은 동기 신호를 수신하도록 구성된 수신기를 더 포함하며, 상기 프로세서는 상기 동기 신호를 이용하여 상기 BRS 포트의 수를 획득하도록 구성될 수 있다. 상기 동기 신호는 Primary Synchronization Signal (PSS), Secondary Synchronization Signal (SSS), 또는 ESS (Extended Synchronization Signal)를 포함할 수 있다. 상기 프로세스는 상기 동기 신호의 스크램블링 코드에 기초하여 정의된 시그너처(signature)에 의해 지시되는 상기 BRS 포트의 수를 획득하도록 구성될 수 있다. 상기 BRS 포트의 수는 셀-특정(cell-specific)하게 또는 단말-특정(UE-specific)하게 설정될 수 있다.
본 발명의 일 실시예에 따라, BRS 포트의 수에 따라 다른 BRS 및 PBCH 설계에 의해 커버리지 문제를 해결할 수 있고 효율적으로 PBCH를 디코딩할 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.
도 2는 LTE/LTE-A 시스템의 프레임 구조를 도시한 도면이다.
도 3은 무선통신 시스템의 일 예인 3GPP LTE/LTE-A 시스템의 하향링크 슬롯의 자원 그리드를 예시한 도면이다.
도 4는 무선통신 시스템의 일 예인 3GPP LTE/LTE-A 시스템의 하향링크 서브프레임의 구조를 예시한다.
도 5는 무선통신 시스템의 일 예인 3GPP LTE/LTE-A 시스템에서 사용되는 상향링크 서브프레임의 구조를 예시한다.
도 6은 자원 그리드에서 BRS 포트가 8 포트인 경우의 BRS 및 PBCH 설계 (BRS and PBCH design with BRS ports = 8)를 예시적으로 나타낸 도면이다.
도 7은 자원 그리드에서 BRS 포트가 2 포트인 경우의 BRS 및 PBCH 설계 (BRS and PBCH design with BRS ports = 2)를 예시적으로 나타낸 도면이다.
도 8은 자원 그리드에서 BRS 포트가 4 포트인 경우의 BRS 및 PBCH 설계 (BRS and PBCH design with BRS ports = 4)를 예시적으로 나타낸 도면이다.
도 9는 본 발명의 효과를 설명하기 위한 예시적인 도면이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. 예를 들어, 이하의 상세한 설명은 이동통신 시스템이 3GPP LTE, LTE-A 시스템인 경우를 가정하여 구체적으로 설명하나, 3GPP LTE, LTE-A의 특유한 사항을 제외하고는 다른 임의의 이동통신 시스템에도 적용 가능하다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
아울러, 이하의 설명에 있어서 단말은 UE(User Equipment), MS(Mobile Station), AMS(Advanced Mobile Station) 등 이동 또는 고정형의 사용자단 기기를 통칭하는 것을 가정한다. 또한, 기지국은 Node B, eNode B, Base Station, AP(Access Point) 등 단말과 통신하는 네트워크 단의 임의의 노드를 통칭하는 것을 가정한다. 본 명세서에서는 IEEE 802.16 시스템에 근거하여 설명하지만, 본 발명의 내용들은 각종 다른 통신 시스템에도 적용가능하다.
이동 통신 시스템에서 단말(User Equipment)은 기지국으로부터 하향링크(Downlink)를 통해 정보를 수신할 수 있으며, 단말은 또한 상향링크(Uplink)를 통해 정보를 전송할 수 있다. 단말이 전송 또는 수신하는 정보로는 데이터 및 다양한 제어 정보가 있으며, 단말이 전송 또는 수신하는 정보의 종류 용도에 따라 다양한 물리 채널이 존재한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced 데이터 Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로서 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다.
또한, 이하의 설명에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
도 1은 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.
무선 통신 시스템(100)을 간략화하여 나타내기 위해 하나의 기지국(105)과 하나의 단말(110)(D2D 단말을 포함)을 도시하였지만, 무선 통신 시스템(100)은 하나 이상의 기지국 및/또는 하나 이상의 단말을 포함할 수 있다.
도 1을 참조하면, 기지국(105)은 송신(Tx) 데이터 프로세서(115), 심볼 변조기(120), 송신기(125), 송수신 안테나(130), 프로세서(180), 메모리(185), 수신기(190), 심볼 복조기(195), 수신 데이터 프로세서(197)를 포함할 수 있다. 그리고, 단말(110)은 송신(Tx) 데이터 프로세서(165), 심볼 변조기(170), 송신기(175), 송수신 안테나(135), 프로세서(155), 메모리(160), 수신기(140), 심볼 복조기(155), 수신 데이터 프로세서(150)를 포함할 수 있다. 송수신 안테나(130, 135)가 각각 기지국(105) 및 단말(110)에서 하나로 도시되어 있지만, 기지국(105) 및 단말(110)은 복수 개의 송수신 안테나를 구비하고 있다. 따라서, 본 발명에 따른 기지국(105) 및 단말(110)은 MIMO(Multiple Input Multiple Output) 시스템을 지원한다. 또한, 본 발명에 따른 기지국(105)은 SU-MIMO(Single User-MIMO) MU-MIMO(Multi User-MIMO) 방식 모두를 지원할 수 있다.
하향링크 상에서, 송신 데이터 프로세서(115)는 트래픽 데이터를 수신하고, 수신한 트래픽 데이터를 포맷하여, 코딩하고, 코딩된 트래픽 데이터를 인터리빙하고 변조하여(또는 심볼 매핑하여), 변조 심볼들("데이터 심볼들")을 제공한다. 심볼 변조기(120)는 이 데이터 심볼들과 파일럿 심볼들을 수신 및 처리하여, 심볼들의 스트림을 제공한다.
심볼 변조기(120)는, 데이터 및 파일럿 심볼들을 다중화하여 이를 송신기 (125)로 전송한다. 이때, 각각의 송신 심볼은 데이터 심볼, 파일럿 심볼, 또는 제로의 신호 값일 수도 있다. 각각의 심볼 주기에서, 파일럿 심볼들이 연속적으로 송신될 수도 있다. 파일럿 심볼들은 주파수 분할 다중화(FDM), 직교 주파수 분할 다중화(OFDM), 시분할 다중화(TDM), 또는 코드 분할 다중화(CDM) 심볼일 수 있다.
송신기(125)는 심볼들의 스트림을 수신하여 이를 하나 이상의 아날로그 신호들로 변환하고, 또한, 이 아날로그 신호들을 추가적으로 조절하여(예를 들어, 증폭, 필터링, 및 주파수 업 컨버팅(upconverting) 하여, 무선 채널을 통한 송신에 적합한 하향링크 신호를 발생시킨다. 그러면, 송신 안테나(130)는 발생된 하향링크 신호를 단말로 전송한다.
단말(110)의 구성에서, 수신 안테나(135)는 기지국으로부터의 하향링크 신호를 수신하여 수신된 신호를 수신기(140)로 제공한다. 수신기(140)는 수신된 신호를 조정하고(예를 들어, 필터링, 증폭, 및 주파수 다운컨버팅(downconverting)), 조정된 신호를 디지털화하여 샘플들을 획득한다. 심볼 복조기(145)는 수신된 파일럿 심볼들을 복조하여 채널 추정을 위해 이를 프로세서(155)로 제공한다.
또한, 심볼 복조기(145)는 프로세서(155)로부터 하향링크에 대한 주파수 응답 추정치를 수신하고, 수신된 데이터 심볼들에 대해 데이터 복조를 수행하여, (송신된 데이터 심볼들의 추정치들인) 데이터 심볼 추정치를 획득하고, 데이터 심볼 추정치들을 수신(Rx) 데이터 프로세서(150)로 제공한다. 수신 데이터 프로세서(150)는 데이터 심볼 추정치들을 복조(즉, 심볼 디-매핑(demapping))하고, 디인터리빙(deinterleaving)하고, 디코딩하여, 전송된 트래픽 데이터를 복구한다.
심볼 복조기(145) 및 수신 데이터 프로세서(150)에 의한 처리는 각각 기지국(105)에서의 심볼 변조기(120) 및 송신 데이터 프로세서(115)에 의한 처리에 대해 상보적이다.
단말(110)은 상향링크 상에서, 송신 데이터 프로세서(165)는 트래픽 데이터를 처리하여, 데이터 심볼들을 제공한다. 심볼 변조기(170)는 데이터 심볼들을 수신하여 다중화하고, 변조를 수행하여, 심볼들의 스트림을 송신기(175)로 제공할 수 있다. 송신기(175)는 심볼들의 스트림을 수신 및 처리하여, 상향링크 신호를 발생시킨다. 그리고 송신 안테나(135)는 발생된 상향링크 신호를 기지국(105)으로 전송한다. 단말 및 기지국에서의 송신기 및 수신기는 하나의 RF(Radio Frequency) 유닛으로 구성될 수도 있다.
기지국(105)에서, 단말(110)로부터 상향링크 신호가 수신 안테나(130)를 통해 수신되고, 수신기(190)는 수신한 상향링크 신호를 처리되어 샘플들을 획득한다. 이어서, 심볼 복조기(195)는 이 샘플들을 처리하여, 상향링크에 대해 수신된 파일럿 심볼들 및 데이터 심볼 추정치를 제공한다. 수신 데이터 프로세서(197)는 데이터 심볼 추정치를 처리하여, 단말(110)로부터 전송된 트래픽 데이터를 복구한다.
단말(110) 및 기지국(105) 각각의 프로세서(155, 180)는 각각 단말(110) 및 기지국(105)에서의 동작을 지시(예를 들어, 제어, 조정, 관리 등)한다. 각각의 프로세서들(155, 180)은 프로그램 코드들 및 데이터를 저장하는 메모리 유닛(160, 185)들과 연결될 수 있다. 메모리(160, 185)는 프로세서(180)에 연결되어 오퍼레이팅 시스템, 어플리케이션, 및 일반 파일(general files)들을 저장한다.
프로세서(155, 180)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 호칭될 수 있다. 한편, 프로세서(155, 180)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명의 실시예를 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(155, 180)에 구비될 수 있다.
한편, 펌웨어나 소프트웨어를 이용하여 본 발명의 실시예들을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(155, 180) 내에 구비되거나 메모리(160, 185)에 저장되어 프로세서(155, 180)에 의해 구동될 수 있다.
단말과 기지국이 무선 통신 시스템(네트워크) 사이의 무선 인터페이스 프로토콜의 레이어들은 통신 시스템에서 잘 알려진 OSI(open system interconnection) 모델의 하위 3개 레이어를 기초로 제 1 레이어(L1), 제 2 레이어(L2), 및 제 3 레이어(L3)로 분류될 수 있다. 물리 레이어는 상기 제 1 레이어에 속하며, 물리 채널을 통해 정보 전송 서비스를 제공한다. RRC(Radio Resource Control) 레이어는 상기 제 3 레이어에 속하며 UE와 네트워크 사이의 제어 무선 자원들을 제공한다. 단말, 기지국은 무선 통신 네트워크와 RRC 레이어를 통해 RRC 메시지들을 교환할 수 있다.
본 명세서에서 단말의 프로세서(155)와 기지국의 프로세서(180)는 각각 단말(110) 및 기지국(105)이 신호를 수신하거나 송신하는 기능 및 저장 기능 등을 제외하고, 신호 및 데이터를 처리하는 동작을 수행하지만, 설명의 편의를 위하여 이하에서 특별히 프로세서(155, 180)를 언급하지 않는다. 특별히 프로세서(155, 180)의 언급이 없더라도 신호를 수신하거나 송신하는 기능이 아닌 데이터 처리 등의 일련의 동작들을 수행한다고 할 수 있다.
도 2는 LTE/LTE-A 시스템의 프레임 구조를 도시한 도면이다.
도 2를 참조하면, 하나의 프레임은 10ms으로, 10개의 1ms 서브프레임(subframe)으로 이루어진다. 하나의 서브프레임은 2개의 0.5ms 슬롯(slot)으로 이루어지며, 하나의 슬롯은 7개의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼로 이루어 진다. 15 kHz 간격의 부반송파 12개와 7개의 OFDM 심볼로 하나의 자원 블록(Resource Block, RB)가 정의된다. 기지국은 중심 주파수(Center Frequency) 6RB에서 동기화(Synchronization)를 위한 Primary Synchronization Signal (PSS), Secondary Synchronization Signal (SSS)와 시스템 정보를 위한 Physical Broadcast Channel (PBCH)를 전송한다. 여기서, Normal/Extended CP(Cyclic Prefix), TDD(Time Division Duplex)/FDD(Frequency Division Duplex)에 따라 상기 프레임 구조 및 신호, 채널의 위치에 차이가 있을 수 있다.
도 2를 참조하면, 하나의 프레임은 10ms으로, 10개의 1ms 서브프레임(subframe)으로 이루어진다. 하나의 서브프레임을 전송하기 위한 시간은 transmission time interval (TTI)로 정의될 수 있다. 예를 들어, 하나의 서브프레임은 2개의 0.5ms 슬롯(slot)으로 이루어지며, 하나의 슬롯은 7개(혹은 6개)의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼로 이루어 진다. 3GPP LTE 시스템은 하향링크에서 OFDMA를 사용하고, OFDM 심볼은 한 심볼 구간(period)를 나타낸다. OFDM 심볼은 SC-FDMA 심볼 또는 한 심볼 구간으로 지칭될 수도 있다. 자원블록(Resource Block, RB)은 자원 할당 단위(unit)이고, 한 슬롯에 인접한 복수의 부반송파들을 포함한다. 도 2에 도시된 무선 프레임의 구조는 예시적인 것이어서 무선 프레임에 포함된 서브프레임들의 수, 서브프레임에 포함된 슬롯의 수, 또는 한 슬롯에 포함된 OFDM 심볼들의 수는 다양한 방법으로 변경될 수 있다.
15 kHz 간격의 부반송파 12개와 7개의 OFDM 심볼로 하나의 자원 블록(Resource Block, RB)가 정의된다. 기지국은 중심 주파수(Center Frequency) 6RB에서 동기화(Synchronization)를 위한 Primary Synchronization Signal (PSS), Secondary Synchronization Signal (SSS)와 시스템 정보를 위한 Physical Broadcast Channel (PBCH)를 전송한다. 여기서, Normal/Extended CP(Cyclic Prefix), TDD(Time Division Duplex)/FDD(Frequency Division Duplex)에 따라 상기 무선 프레임 구조 및 신호, 채널의 위치에 차이가 있을 수 있다.
도 3은 무선통신 시스템의 일 예인 3GPP LTE/LTE-A 시스템의 하향링크 슬롯의 자원 그리드를 예시한 도면이다.
도 3을 참조하면, 하향링크 슬롯은 시간 도메인에서 복수의 OFDM 심볼을 포함한다. 하나의 하향링크 슬롯은 7(혹은 6)개의 OFDM 심볼을 포함하고 자원 블록은 주파수 도메인에서 12개의 부반송파를 포함할 수 있다. 자원 그리드 상의 각 요소(element)는 자원 요소(Resource Element, RE)로 지칭된다. 하나의 RB는 12×7(6)개의 RE를 포함한다. 하향링크 슬롯에 포함되는 RB의 개수 NRB는 하향링크 전송 대역에 의존한다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일하되, OFDM 심볼이 SC-FDMA 심볼로 대체된다.
도 4는 무선통신 시스템의 일 예인 3GPP LTE/LTE-A 시스템의 하향링크 서브프레임의 구조를 예시한다.
도 4를 참조하면, 서브프레임의 첫 번째 슬롯에서 앞부분에 위치한 최대 3개(혹은 4개)의 OFDM 심볼은 제어 채널이 할당되는 제어 영역에 대응한다. 남은 OFDM 심볼은 PDSCH(Physical Downlink Shared CHancel)가 할당되는 데이터 영역에 해당한다. LTE에서 사용되는 하향링크 제어 채널의 예는 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical hybrid ARQ indicator Channel) 등을 포함한다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내에서 제어 채널의 전송에 사용되는 OFDM 심볼의 개수에 관한 정보를 나른다. PHICH는 상향링크 전송에 대한 응답으로 HARQ ACK/NACK(Hybrid Automatic Repeat request acknowledgment/negative-acknowledgment) 신호를 나른다.
PDCCH를 통해 전송되는 제어 정보를 DCI(Downlink Control Information)라고 한다. DCI 포맷은 상향링크용으로 포맷 0, 하향링크용으로 포맷 1, 1A, 1B, 1C, 1D, 2, 2A, 3, 3A 등의 포맷이 정의되어 있다. DCI 포맷은 용도에 따라 호핑 플래그(hopping flag), RB 할당, MCS(modulation coding scheme), RV(redundancy version), NDI(new data indicator), TPC(transmit power control), 사이클릭 쉬프트 DM RS(demodulation reference signal), CQI (channel quality information) 요청, HARQ 프로세스 번호, TPMI(transmitted precoding matrix indicator), PMI(precoding matrix indicator) 확인(confirmation) 등의 정보를 선택적으로 포함한다.
PDCCH는 하향링크 공유 채널(downlink shared channel, DL-SCH)의 전송 포맷 및 자원 할당 정보, 상향링크 공유 채널(uplink shared channel, UL-SCH)의 전송 포맷 및 자원 할당 정보, 페이징 채널(paging channel, PCH) 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위-계층 제어 메시지의 자원 할당 정보, 단말 그룹 내의 개별 단말들에 대한 Tx 파워 제어 명령 세트, Tx 파워 제어 명령, VoIP(Voice over IP)의 활성화 지시 정보 등을 나른다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있다. 단말은 복수의 PDCCH를 모니터링 할 수 있다. PDCCH는 하나 또는 복수의 연속된 제어 채널 요소(control channel element, CCE)들의 집합(aggregation) 상에서 전송된다. CCE는 PDCCH에 무선 채널 상태에 기초한 코딩 레이트를 제공하는데 사용되는 논리적 할당 유닛이다. CCE는 복수의 자원 요소 그룹(resource element group, REG)에 대응한다. PDCCH의 포맷 및 PDCCH 비트의 개수는 CCE의 개수에 따라 결정된다. 기지국은 단말에게 전송될 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC(cyclic redundancy check)를 부가한다. CRC는 PDCCH의 소유자 또는 사용 목적에 따라 식별자(예, RNTI(radio network temporary identifier))로 마스킹 된다. 예를 들어, PDCCH가 특정 단말을 위한 것일 경우, 해당 단말의 식별자(예, cell-RNTI (C-RNTI))가 CRC에 마스킹 될 수 있다. PDCCH가 페이징 메시지를 위한 것일 경우, 페이징 식별자(예, paging-RNTI (P-RNTI))가 CRC에 마스킹 될 수 있다. PDCCH가 시스템 정보(보다 구체적으로, 시스템 정보 블록(system information block, SIC))를 위한 것일 경우, SI-RNTI(system information RNTI)가 CRC에 마스킹 될 수 있다. PDCCH가 랜덤 접속 응답을 위한 것일 경우, RA-RNTI(random access-RNTI)가 CRC에 마스킹 될 수 있다.
도 5는 무선통신 시스템의 일 예인 3GPP LTE/LTE-A 시스템에서 사용되는 상향링크 서브프레임의 구조를 예시한다.
도 5를 참조하면, 상향링크 서브프레임은 복수(예, 2개)의 슬롯을 포함한다. 슬롯은 CP 길이에 따라 서로 다른 수의 SC-FDMA 심볼을 포함할 수 있다. 상향링크 서브프레임은 주파수 영역에서 데이터 영역과 제어 영역으로 구분된다. 데이터 영역은 PUSCH(Physical Uplink Shared CHannel)를 포함하고 음성 등의 데이터 신호를 전송하는데 사용된다. 제어 영역은 PUCCH(Physical Uplink Control CHannel)를 포함하고 상향링크 제어 정보(Uplink Control Information, UCI)를 전송하는데 사용된다. PUCCH는 주파수 축에서 데이터 영역의 양끝 부분에 위치한 RB 쌍(RB pair)을 포함하며 슬롯을 경계로 호핑한다.
PUCCH는 다음의 제어 정보를 전송하는데 사용될 수 있다.
- SR(Scheduling Request): 상향링크 UL-SCH 자원을 요청하는데 사용되는 정보이다. OOK(On-Off Keying) 방식을 이용하여 전송된다.
- HARQ ACK/NACK: PDSCH 상의 하향링크 데이터 패킷에 대한 응답 신호이다. 하향링크 데이터 패킷이 성공적으로 수신되었는지 여부를 나타낸다. 단일 하향링크 코드워드(CodeWord, CW)에 대한 응답으로 ACK/NACK 1비트가 전송되고, 두 개의 하향링크 코드워드에 대한 응답으로 ACK/NACK 2비트가 전송된다.
- CQI(Channel Quality Indicator): 하향링크 채널에 대한 피드백 정보이다. MIMO(Multiple Input Multiple Output) 관련 피드백 정보는 RI(Rank Indicator), PMI(Precoding Matrix Indicator), PTI(Precoding Type Indicator) 등을 포함한다. 서브프레임 당 20비트가 사용된다.
단말이 서브프레임에서 전송할 수 있는 제어 정보(UCI)의 양은 제어 정보 전송에 가용한 SC-FDMA의 개수에 의존한다. 제어 정보 전송에 가용한 SC-FDMA는 서브프레임에서 참조 신호 전송을 위한 SC-FDMA 심볼을 제외하고 남은 SC-FDMA 심볼을 의미하고, SRS(Sounding Reference Signal)가 설정된 서브프레임의 경우 서브프레임의 마지막 SC-FDMA 심볼도 제외된다. 참조 신호는 PUCCH의 코히어런트 검출에 사용된다. PUCCH는 전송되는 정보에 따라 7개의 포맷을 지원한다.
PDCCH (Physical Downlink Control CHannel ) 전송
PDCCH는 하향링크 제어 채널로 특정 단말을 위한 PDSCH(ㅔDiCwnlii여러 단말을 위한 power control 명령을 전송하도록 되어 있다. PDCCH는 시간 도메인(time domain)에서는 최대 4개의 OFDM 심볼을 차지하며 PCFICH로 PDCCH에 할당된 OFDM 심볼 수를 지시한다. 한편, 주파수 도메인(frequency domain)에서는 시스템 전 대역에 걸쳐서 전송되며, 변조는 QPSK를 사용한다. PDCCH를 전송을 위하여 사용하는 자원은 CCE (control channel element)로 칭하며, 36개의 resource element (RE)로 구성되어 있어서 하나의 CCE를 통해서 72 bit를 전송할 수 있다. PDCCH에 전송되는 제어 정보의 양은 전송 mode에 따라서 달라진다. 각 전송 mode에 따른 제어 정보는 DCI format으로 규정된다. 단말은 PDSCH/PUSCH 전송 유무를 PDCCH 디코딩 결과에 따라서 판단하게 되는 데, 이는 PDCCH scrambling은 해당 단말의 UE id 정보 (C-RNTI)에 의해서 이루어진다. 즉, 단말은 자신의 UE id에 의해서 scrambling되어 전송된 DCI format을 detection하게 되는 경우 PDCCH 제어 정보에 의해서 PDSCH 수신 또는 PUSCH 송신을 하게 된다. 일반적으로 하나의 subframe에 전송 가능한 PDCCH 수가 다수 개 이므로, 단말은 다수 개의 PDCCH에 대해서 디코딩을 수행하여 자신에게 전송된 제어 정보 유무를 확인해야 한다. 그러나, 모든 전송 가능한 PDCCH에 대해서 디코딩을 수행하기에는 복잡도가 크게 증가하게 되어, 디코딩 수에 제한을 두게 된다. PDCCH를 통해서 제어 정보를 전송하게 되는 경우, CCE는 한 개 또는 다수 개를 연접하여 제어 정보를 전송할 수 있는 데, 이를 CCE aggregation이라고 한다. 현재 허용하고 있는 CCE aggregation level은 1, 2, 4, 8로서, CCE aggregation level 4의 의미는 4개의 CCE를 연접하여 해당 UE의 제어 정보를 전송하게 된다.
이하에서는 BRS (Beam Reference Signal) 수에 따라 다른 PBCH 및 BRS 설계를 제안한다. 그리고, 상기 제안된 PBCH 및 BRS 설계에 기초하여 단말이 PBCH 디코딩을 위한 프로시저들을 정의한다.
도 6은 자원 그리드에서 BRS 포트가 8 포트인 경우의 BRS 및 PBCH 설계 (BRS and PBCH design with BRS ports = 8)를 예시적으로 나타낸 도면이다.
도 6을 참조하면, 한 RB에서 주파수 도메인 상에서 양쪽 에지의 각 2개의 RE를 통해 PBCH가 전송될 수 있고, BRS는 8개의 RE를 통해 전송될 수 있다. 8개의 BRS 포트(port)는 0부터 7까지의 인덱스(BRS 포트 0~7)로 정의하며, BRS는 OCC(Orthogonal Cover Code)을 이용하여 하나의 OFDM 심볼에 다중화될 수 있다. 한편, PBCH DMRS 포트는 도 6에 표시한 (a)과 (b) 두 개의 RE들을 이용하여 다음과 같이 정의할 수 있다.
FDM 방식의 경우에는, (a)와 (b) 각각을, DMRS 포트 9로 결정한다. 즉, 도 6에 도시한 OCC 테이블에서 가로 축으로 표시한 (a) (즉, [1 1 1 1 1 1 1 1 1])를 DMRS 포트 8, (b) (즉, [1 -1 1 -1 1 -1 1 -1])를 DMRS 포트 9로 결정할 수 있다. CDM 방식의 경우에는, DMRS 포트 8은 (a) + (b), DMRS 포트 9은 (a)-(b)로 정의한다.
이하 내용에서는 설명의 편의를 의해, CDM 방식으로 DMRS 포트를 정의하여 내용을 기술한다. 한편, PBCH는 상기 두 개의 DMRS 포트를 통해 전송된다. 그리고, SFBC(Space-Frequency Block Coding)가 상기 PBCH에 적용될 수 있다.
실시예 1: BRS (Beam Reference Signal) 포트 수에 따라 BRS의 위치를 서로 다르게 정의하는 방법
BRS 포트의 수에 따라 BRS의 위치는 이하 도 6 내지 도 8에서 도시한 바와 같이 서로 다르게 정의될 수 있다. 그리고, BRS 포트의 수에 따라 BRS의 위치에 대한 정보는 단말과 기지국이 사전에 공유하고 있을 수 있다. 단말은 BRS 포트의 수를 획득하면 사전에 공유하고 있는 정보에 기초하여 획득한 BRS 포트의 수에 대응하는 BRS의 위치 혹은 할당 패턴을 알 수 있다.
도 6은 BRS 포트 수가 8인 경우의 PBCH 및 BRS의 구조를 나타낸다. 이 때, DMRS 포트는 주파수 축으로 12개의 RE 간격으로 정의된다. 도 6에 도시한 구조의 특징은 BRS 포트 수가 8 이하인 경우, BRS 포트 수와 무관하게 2개의 DMRS 포트를 정의할 수 있다. 결과적으로, 단말은 BRS 포트 수를 모르더라도, PBCH을 디코딩할 수 있다. 그러나, 만약 채널이 주파수 축으로 selectivity가 큰 경우, 채널 추정 성능은 열화 되게 된다. BRS 포트 수에 따라, PBCH 및 BRS 구조를 다르게 가져가서 상기 채널 추정 성능 열화를 최소화한다. 이때, 단말은 BRS 포트 수를 알고 있다고 가정한다.
도 7은 자원 그리드에서 BRS 포트가 2 포트인 경우의 BRS 및 PBCH 설계 (BRS and PBCH design with BRS ports = 2)를 예시적으로 나타낸 도면이다.
도 7에 도시한 바와 같이, DMRS는 4칸 간격 (주파수 도메인 상에서 RE 단위로 4 REs)으로 정의될 수 있다. 따라서, 도 6과 비교하여, 채널 선택성(selectivity)에 의한 성능 열화를 적게 할 수 있다. 또한, 한 RB당 2개의 PBCH RE가 정의될 수 있다.
도 8은 자원 그리드에서 BRS 포트가 4 포트인 경우의 BRS 및 PBCH 설계 (BRS and PBCH design with BRS ports = 4)를 예시적으로 나타낸 도면이다.
도 8에 도시한 바와 같이, DMRS는 6칸 간격 (주파수 도메인 상에서 RE 단위로 6 REs)으로 정의된다. 도 6과 비교하여, 채널 선택성(selectivity)에 의한 성능 열화를 적게 할 수 있다. 또한, 도 7고 마찬가지로 한 RB당 2개의 PBCH RE가 정의될 수 있다.
실시예 2: 실시예 1에서 BRS 포트 수에 따라 RE 당 BRS 파워 및 PBCH 파워를 서로 다르게 혹은 같게 하는 방법
도 7(BRS 포트 수=2)와 도 8 (BRS 포트 수=4)에서 RB당 BRS에 할당 된 RE 수는 각각 6개, 8개이다. 만약 RE 당 BRS 파워가 동일한 경우, 도 7의 구조에 따른 커버리지는 도 8의 구조에 따른 커버리지 보다 감소하게 된다. BRS 수에 따라 커버리지가 달라지는 문제점을 해결하기 위해, 실시예 2는 BRS 수에 따라 RE 당 BRS 파워 및 PBCH 파워를 서로 다르게 혹은 같게 정의한다.
예를 들어, BRS 포트 수가 N일 때, BRS 및 PBCH의 RE 당 파워를 각각
Figure PCTKR2017007977-appb-I000001
Figure PCTKR2017007977-appb-I000002
이라고 정의한다. 그리고, BRS 포트 수가 각각 2와 4, 8일 때 상기 파워를 다음 수학식 1 및 수학식 2와 같이 정의할 수 있다. 수학식 1은 BRS 포트 수에 따른 RE 당 BRS 파워를 나타내고, 수학식 2는 BRS 포트 수에 따른 RE 당 PBCH 파워를 나타낸다.
Figure PCTKR2017007977-appb-M000001
Figure PCTKR2017007977-appb-M000002
상기 수학식에 기술한 수식을 참고하면, BRS 포트 수가 2일 때의 BRS 파워가 BRS 포트 수가 4 혹은 8인 경우보다 4/3만큼 부스팅(boosting)된 것을 보여준다. 이 경우, 포트 수가 2일 때 RB 당 BRS RE의 수가 8에서 6으로 감소하지만, 하나의 OFDM 심볼에 할당된 포트 당 BRS 총 파워(total power)는 동일하게 유지시켜준다. 따라서, 포트 2는 포트 4, 포트 8와 동일한 커버리지를 만족한다.
한편, 상기 수학식 2를 참조하면, BRS 포트 수가 2일 때의 RE 당 PBCH 파워는 BRS 포트 수가 4 혹은 8인 경우의 RE 당 PBCH 파워보다 2/3로 감소함을 알 수 있다. 그러나, RB 당 PBCH RE의 수가 4에서 6으로 늘어남으로, 하나의 OFDM 심볼에 할당된 포트 당 PBCH 총 파워는 동일하다.
실시예 3: 실시예 2에서의 BRS 포트 수에 따라 RE 당 BRS 파워 및 PBCH 파워 비를 서로 다르게 혹은 같게 정의하는 방법
예를 들어, BRS 포트 수가 N일 때, RE 당 BRS 및 PBCH의 파워 비를
Figure PCTKR2017007977-appb-I000003
이라고 정의한다. 만약, BRS 포트 수가 8일 때의 RE 당 BRS 파워와 RE 당 PBCH 파워가 같고(
Figure PCTKR2017007977-appb-I000004
), BRS 포트 수가 4일 때의 RE 당 BRS 파워와 RE 당 PBCH 파워가 같다면, 수학식 1/수학식 2를 그대로 이용하면, RE 당 BRS 포트 수에 따라 파워 비는 다음 수학식 3과 같이 나타낼 수 있다.
Figure PCTKR2017007977-appb-M000003
상기 수학식 3을 참조하면, BRS 포트 수가 4 혹은 8일 때, RE 당 BRS 및 PBCH의 파워비는 1이고, BRS 포트 수가 2일 때, RE 당 BRS 및 PBCH의 파워 비는 2임을 알 수 있다. 이와 같이, BRS 포트 수에 따라, RE 당 BRS 및 PBCH의 파워 비는 같거나 다르게 될 수 있다.
실시예 4
단말은 동기 신호를 이용하여 BRS (Beam Reference Signal) 포트 수 및/또는 RE당 BRS와 PBCH 파워 비 (수학식 3 참조)를 결정할 수 있다. 여기서 동기 신호란, PSS/SSS/ESS (Extended Synchronization Signal)을 의미한다. 단말은 상기 결정된 BRS 수에 기초하여 BRS로부터 DMRS 을 추출할 수 있다. 그리고, 단말은 상기 DMRS에서 추정된 채널 및 BRS와 PBCH의 파워 비를 이용하여 PBCH을 디코딩할 수 있다.
일 예로서, 동기 신호 ESS을 이용하여 BRS 수를 결정하는 예를 살펴본다.
ESS (Extended Synchronization Signal)의 root 값 혹은 스크램블링 코드(scrambling code)를 바탕으로 signature을 정의하는 기법을 소개한다. 이 때, 상기 signature에는 빔 주기(beam period), 동기 서브프레임 인덱스(synch subframe index)/빔 서브프레임 인덱스(beam subframe index), BRS 수가 정의될 수 있다. 따라서, 상기 signature에 BRS 수를 정의한 경우, 다른 물리 채널 (예를 들어, PBCH)의 디코딩 없이, 단말은 BRS 수를 결정한다.
PBCH 디코딩에 대한 단말 프로시저(UE procedure)를 설명한다.
먼저, 1) 단말은 동기 신호로부터 BRS 포트 수를 결정할 수 있다. 2) 단말은 BRS 포트의 수에 기초하여 BRS 및/또는 DMRS를 추출할 수 있다. 3) 단말은 DMRS로부터 채널 추정을 수행하고 보간(interpolation)를 수행한다. 4) 단말은 DMRS에 기초하여 추정된 채널에 상기 수학식 3을 이용하여 BRS 포트의 수에 따른 BRS 및 PBCH 파워 비를 보상할 수 있다. 5) 단말은 상기 보상된 채널에 기초하여 PBCH를 디코딩할 수 있다. 한편, 상기 BRS 및 PBCH 파워 비 보상은 DMRS로부터 채널 추정에서 이루어지거나 혹은 PBCH 디코딩에서 이루어 질 수 있다. 그리고, 만약 상기 파워 비가 1인 경우, 보상은 생략 가능하다.
이상에서 살펴본 바와 같이, BRS 수에 따라 다른 PBCH 및 BRS 설계를 제안하였다. 그리고, 상기 설계를 바탕으로, PBCH 디코딩을 위한 단말 프로시저(UE procedure)를 제안하였다.
도 9는 본 발명의 효과를 설명하기 위한 예시적인 도면이다.
기지국은 복수의 패널(panel)을 이용하여 복수의 아날로그 빔(analog beam)을 생성해낼 수 있다. 일 예로서, 도 9에 도시한 바와 같이, 기지국이 2개의 패널을 가지며, 각 패널(array structure 참조)이 cross-pole로 이루어진 경우, 총 4개의 analog beam을 생성해 낼 수 있다. 이때, 단말이 상기 4개의 기지국 아날로그 빔을 구분할 수 있도록, 도 8에서와 같이 4개의 REs (4REs for BRS) 에 각 빔에 해당하는 시퀀스를 코드 분할 다중화(CDM) 시킨다. 또는, 서로 다른 RE에 각 빔을 주파수 분할 다중화(FDM) 시킬 수도 있다. 만약 기지국이 8개의 아날로그 빔을 가지는 경우, 8개의 BRS가 필요하며 (물론, 기지국이 상기 8개의 아날로그 빔을 조합하여 4개 혹은 2개의 아날로그 빔만을 정의할 수도 있다. 이를 위해, 도 6에서와 같이 8개의 RE에 CDM 시킬 수도 있다.
한편, BRS수가 늘어날수록, BRS 기반의 DMRS 주파수 간격이 커지게 되어, 채널 선택성(selectivity) 면에서 성능이 감소한다. 결과적으로, 본 특허에서 제안한 발명은 BRS 수가 (아날로그 빔 개수가) 작은 기지국은 BRS가 정의되는 RE 수(BRS를 위한 REs의 수)를 감소시켜, BRS 기반의 DMRS 주파수 간격을 좁히게 함으로써, 채널 주파수 선택성에 대한 강건성(robustness)을 줄 수 있다.
본 발명의 BRS는 빔 관리(beam management) 용 CSI-RS (혹은 MRS) 라고도 부를 수 있다. 그리고, 본 발명에서 BRS의 개수는 셀-특정(cell specific)하게 또는 단말-특정(UE specific)하게 단말에게 설정 될 수 있다. BRS의 개수가 셀-특정하게 설정되는 경우에는, 단말은 Master Information Block (MIB) 또는 system information block (SIB)을 통해 BRS 개수를 알 수 있다. BRS의 개수가 단말-특정하게 설정되는 경우에는, 단말은 RRC (Radio Resource Control) 시그널링 또는 MAC-CE (Control Element)를 통해 BRS 개수를 알 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
무선통신 시스템에서 BRS및 PBCH를 수신하는 방법 및 이를 위한 장치는 3GPP LTE/LTE-A, 5G 시스템 등 다양한 무선통신 시스템에서 산업상으로 적용이 가능하다.

Claims (18)

  1. 무선통신 시스템에서 단말이 BRS(Beam Reference Signal) 및 PBCH (Physical Broadcast Channel)를 수신하는 방법에 있어서,
    BRS 포트의 수에 기초하여 RE(Resource Element) 당 상기 BRS와 상기 PBCH의 파워 비를 결정하는 단계;
    상기 BRS 포트의 수에 기초하여 상기 BRS 및 DMRS(Demodulation Reference Signal)를 검출하는 단계; 및
    상기 DMRS에 기초하여 추정된 채널에 상기 결정된 BRS와 상기 PBCH의 파워 비를 보상할지 여부를 결정하는 단계를 포함하는, BRS 및 PBCH 수신 방법.
  2. 제 1항에 있어서,
    상기 결정 단계는 상기 결정된 BRS와 PBCH의 파워 비가 1인 경우에는 상기 BRS와 상기 PBCH의 파워 비를 보상하지 않도록 결정하는 단계를 포함하고,
    상기 보상되지 않은 채널에 기초하여 상기 PBCH를 디코딩하는 단계를 더 포함하는, BRS 및 PBCH 수신 방법.
  3. 제 1항에 있어서,
    상기 결정 단계는 상기 결정된 BRS와 PBCH의 파워 비가 1이 아닌 경우에는 상기 BRS와 상기 PBCH의 파워 비를 보상하도록 결정하는 단계를 포함하며,
    상기 결정된 BRS와 PBCH의 파워 비를 보상하여 보상된 채널에 기초하여 상기 PBCH를 디코딩하는 단계를 더 포함하는, BRS 및 PBCH 수신 방법.
  4. 제 2항에 있어서,
    상기 BRS의 포트의 수는 4 또는 8인, BRS 및 PBCH 수신 방법.
  5. 제 3항에 있어서,
    상기 BRS의 포트의 수는 2인, BRS 및 PBCH 수신 방법.
  6. 제 1항에 있어서,
    동기 신호를 수신하는 단계; 및
    상기 동기 신호를 이용하여 상기 BRS 포트의 수를 획득하는 단계를 더 포함하는, BRS 및 PBCH 수신 방법.
  7. 제 1항에 있어서,
    상기 BRS 포트의 수는 셀-특정(cell-specific)하게 또는 단말-특정(UE-specific)하게 설정되는, PBCH 수신 방법.
  8. 제 6항에 있어서,
    상기 동기 신호는 Primary Synchronization Signal (PSS), Secondary Synchronization Signal (SSS), 또는 ESS (Extended Synchronization Signal)를 포함하는, BRS 및 PBCH 수신 방법.
  9. 제 6항에 있어서,
    상기 BRS 포트의 수는 상기 동기 신호의 스크램블링 코드에 기초하여 정의된 시그너처(signature)에 의해 지시되는, BRS 및 PBCH 수신 방법.
  10. 무선통신 시스템에서 BRS(Beam Reference Signal) 및 PBCH (Physical Broadcast Channel)를 수신하는 단말에 있어서,
    BRS 포트의 수에 기초하여 RE(Resource Element) 당 상기 BRS와 상기 PBCH의 파워 비를 결정하고,
    상기 BRS 포트의 수에 기초하여 상기 BRS 및 DMRS(Demodulation Reference Signal)를 검출하며; 및
    상기 DMRS에 기초하여 추정된 채널에 상기 결정된 BRS와 상기 PBCH의 파워 비를 보상할지 여부를 결정하도록 구성되는 프로세서를 포함하는, 단말.
  11. 제 10항에 있어서,
    상기 프로세서는 상기 결정된 BRS와 PBCH의 파워 비가 1인 경우에는 상기 BRS와 상기 PBCH의 파워 비를 보상하지 않도록 결정하고,
    상기 프로세서는 상기 보상되지 않은 채널에 기초하여 상기 PBCH를 디코딩하도록 구성되는, 단말.
  12. 제 10항에 있어서,
    상기 프로세서는 상기 결정된 BRS와 PBCH의 파워 비가 1이 아닌 경우에는 상기 BRS와 상기 PBCH의 파워 비를 보상하도록 결정하고,
    상기 프로세서는 상기 결정된 BRS와 PBCH의 파워 비를 보상하여 보상된 채널에 기초하여 상기 PBCH를 디코딩하도록 구성되는, 단말.
  13. 제 11항에 있어서,
    상기 BRS의 포트의 수는 4 또는 8인, 단말.
  14. 제 12항에 있어서,
    상기 BRS의 포트의 수는 2인, 단말.
  15. 제 10항에 있어서,
    동기 신호를 수신하도록 구성된 수신기; 및
    상기 프로세서는 상기 동기 신호를 이용하여 상기 BRS 포트의 수를 획득하도록 구성되는, 단말.
  16. 제 15항에 있어서,
    상기 동기 신호는 Primary Synchronization Signal (PSS), Secondary Synchronization Signal (SSS), 또는 ESS (Extended Synchronization Signal)를 포함하는, 단말.
  17. 제 15항에 있어서,
    상기 프로세스는 상기 동기 신호의 스크램블링 코드에 기초하여 정의된 시그너처(signature)에 의해 지시되는 상기 BRS 포트의 수를 획득하는, 단말.
  18. 제 10항에 있어서,
    상기 BRS 포트의 수는 셀-특정(cell-specific)하게 또는 단말-특정(UE-specific)하게 설정되는, 단말.
PCT/KR2017/007977 2016-09-06 2017-07-25 무선통신 시스템에서 brs 및 pbch를 수신하는 방법 및 이를 위한 장치 WO2018048091A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/328,830 US10764838B2 (en) 2016-09-06 2017-07-25 Method for receiving BRS and PBCH in wireless communication system and device for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662384183P 2016-09-06 2016-09-06
US62/384,183 2016-09-06

Publications (1)

Publication Number Publication Date
WO2018048091A1 true WO2018048091A1 (ko) 2018-03-15

Family

ID=61561884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007977 WO2018048091A1 (ko) 2016-09-06 2017-07-25 무선통신 시스템에서 brs 및 pbch를 수신하는 방법 및 이를 위한 장치

Country Status (2)

Country Link
US (1) US10764838B2 (ko)
WO (1) WO2018048091A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10764851B2 (en) 2018-12-13 2020-09-01 Nxp Usa, Inc. Early detection of SSB index using prioritized candidate SSB index ordering

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10567133B2 (en) * 2017-07-24 2020-02-18 Samsung Electronics Co., Ltd. Method and apparatus for synchronization signals and PBCH block enhancement
US10757583B2 (en) * 2017-08-10 2020-08-25 Qualcomm Incorporated Uplink-based positioning reference signaling in multi-beam systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140023690A (ko) * 2012-08-17 2014-02-27 삼성전자주식회사 빔포밍을 이용한 시스템에서 시스템 액세스 방법 및 장치
US20160157267A1 (en) * 2014-03-25 2016-06-02 Telefonaktiebolaget L M Ericsson (Publ) System and Method for Beam-Based Physical Random-Access
WO2016086144A1 (en) * 2014-11-26 2016-06-02 Interdigital Patent Holdings, Inc. Initial access in high frequency wireless systems

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141544A1 (en) * 2012-03-18 2013-09-26 Lg Electronics Inc. Method and apparatus for performing measurement in wireless communication system
CN103428120B (zh) * 2012-05-25 2016-09-14 华为技术有限公司 长期演进系统中删除干扰的方法、数据发送方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140023690A (ko) * 2012-08-17 2014-02-27 삼성전자주식회사 빔포밍을 이용한 시스템에서 시스템 액세스 방법 및 장치
US20160157267A1 (en) * 2014-03-25 2016-06-02 Telefonaktiebolaget L M Ericsson (Publ) System and Method for Beam-Based Physical Random-Access
WO2016086144A1 (en) * 2014-11-26 2016-06-02 Interdigital Patent Holdings, Inc. Initial access in high frequency wireless systems

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA: "Frame Structure Support for Beam Based Common Control Plane", R1-167265, 3GPP TSG-RAN WG1#8 6, 21 August 2016 (2016-08-21), XP051125799 *
NOKIA: "Multi-Beam Common Control Plane Design", R1-167280, 3GPP TSG-RAN WG1 #86, 12 August 2016 (2016-08-12), Gothenburg , Sweden, XP051132601 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10764851B2 (en) 2018-12-13 2020-09-01 Nxp Usa, Inc. Early detection of SSB index using prioritized candidate SSB index ordering

Also Published As

Publication number Publication date
US10764838B2 (en) 2020-09-01
US20190215782A1 (en) 2019-07-11

Similar Documents

Publication Publication Date Title
WO2013002591A2 (ko) 무선 통신 시스템에서 사용자 기기의 신호 송수신 방법
WO2011068358A2 (ko) 경쟁기반 물리 상향링크 데이터 채널을 통한 데이터의 송수신 방법 및 이를 위한 장치
WO2013055193A2 (ko) 무선 통신 시스템에서 제어 정보의 수신 방법 및 장치
WO2013105832A1 (ko) 하향링크 제어 신호 수신 방법 및 사용자기기와, 하향링크 제어 신호 전송 방법 및 기지국
WO2013141546A1 (ko) 데이터 패킷 전송 방법 및 무선기기
WO2012150823A2 (ko) 하향링크 신호 수신방법 및 사용자기기와, 하향링크 신호 전송방법 및 기지국
WO2012150822A2 (ko) 하향링크 신호 수신방법 및 사용자기기와, 하향링크 신호 전송방법 및 기지국
WO2012150836A2 (ko) 무선 통신 시스템에서 제어 정보의 전송 방법 및 이를 위한 장치
WO2013015632A2 (ko) 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
WO2015156605A1 (ko) 무선 통신 시스템에서 장치 대 장치 단말의 데이터 전송 방법 및 장치
WO2013009089A2 (en) Method for transmitting or receiving pdcch and user equipment or base station for the method
WO2014142593A1 (ko) 제어 채널의 송수신 방법 및 이를 위한 장치
WO2016018034A1 (ko) 무선 통신 시스템에서 신호 전송 방법 및 장치
WO2013058564A1 (ko) 무선통신 시스템에서 mtc 단말이 신호를 송수신하는 방법
WO2013012261A2 (ko) 무선통신 시스템에서 자원 할당 정보를 송신 및 수신하는 방법과 이를 위한 장치
WO2012169716A1 (ko) 제어정보 송수신 방법 및 송수신 장치
WO2013125871A1 (ko) 사용자기기의 통신 방법 및 사용자기기와, 기지국의 통신 방법 및 기지국
WO2013055159A2 (ko) 데이터 송수신 방법 및 이를 위한 장치
WO2018084382A1 (ko) 무선통신 시스템에서 sr을 전송하는 방법 및 이를 위한 단말
WO2015174805A1 (ko) 무선 통신 시스템에서 장치 대 장치 단말의 신호 송수신 방법 및 장치
WO2013133607A1 (ko) 신호 전송 방법 및 사용자기기와, 신호 수신 방법 및 기지국
WO2012150773A2 (ko) 무선 통신 시스템에서 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치
WO2016036100A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2015020398A1 (ko) 무선 통신 시스템에서 장치 대 장치 단말의 신호 전송 방법 및 장치
WO2017026848A1 (ko) 무선 신호를 송수신하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17848975

Country of ref document: EP

Kind code of ref document: A1