WO2023219190A1 - Composite release layer for carrier-attached metal foil and metal foil comprising same - Google Patents

Composite release layer for carrier-attached metal foil and metal foil comprising same Download PDF

Info

Publication number
WO2023219190A1
WO2023219190A1 PCT/KR2022/006849 KR2022006849W WO2023219190A1 WO 2023219190 A1 WO2023219190 A1 WO 2023219190A1 KR 2022006849 W KR2022006849 W KR 2022006849W WO 2023219190 A1 WO2023219190 A1 WO 2023219190A1
Authority
WO
WIPO (PCT)
Prior art keywords
release layer
metal
carrier
metal foil
layer
Prior art date
Application number
PCT/KR2022/006849
Other languages
French (fr)
Korean (ko)
Inventor
전성욱
정보묵
김대근
양동민
강진석
박민영
Original Assignee
와이엠티 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 와이엠티 주식회사 filed Critical 와이엠티 주식회사
Publication of WO2023219190A1 publication Critical patent/WO2023219190A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Definitions

  • the present invention relates to a composite release layer for metal foil attached to a carrier and a metal foil containing the same.
  • printed circuit boards can be manufactured by combining metal foil and an insulating resin substrate and then forming circuit wiring on the metal foil through an etching process.
  • a metal foil with high work convenience by securing high adhesion and release force between insulating resin substrates is required.
  • Patent Document 1 discloses that the adhesion between the copper foil and the resin layer is improved by forming particulate protrusions by subjecting the surface of the copper foil on the resin layer side to electrolytic treatment, blast treatment, or oxidation-reduction treatment.
  • metal foil is handled by combining a release layer and a carrier on one side.
  • the metal foil to which the release layer and the carrier are bonded must have heat resistance during the bonding process with the insulating resin substrate or the target substrate, and it is required that the carrier be easily peeled off through the release layer after bonding.
  • a technology has been proposed that applies organic components to the release layer or provides a separate layer between the release layer and the metal foil to increase heat resistance.
  • the present invention manufactures an organic-inorganic composite release layer by mixing a metal component with an organic release layer, and improves the disadvantage of staining when using the existing organic release layer.
  • the object is to provide a layer and a metal foil containing the same.
  • the present invention seeks to provide a composite release layer for metal foil with a carrier that can be applied to copper strike plating by using a metal-containing release layer and an organic-inorganic composite release layer, and a metal foil containing the same.
  • the present invention provides a release layer that allows the carrier to be smoothly removed from the carrier-attached metal foil, wherein the release layer includes a metal-containing release layer formed on the carrier; and an organic-inorganic release layer formed on the metal-containing release layer, wherein the organic-inorganic release layer includes a heterocyclic compound containing nitrogen; Amine-based compounds; and a composite release layer for metal foil with a carrier containing a transition metal compound of groups 3 to 8.
  • the heterocyclic compounds include benzotriazole, mercapto benzimidazole, mercapto benzotriazole, sodium mercapto benzotriazole, and 5-carboxybenzotriazole.
  • (5-Carboxybenzotriazole) 3-Amino-5-mercapto-1,2,4-triazole (3-Amino-5-mercapto-1,2,4-triazole), 3-mercapto-1,2, 4-Mercapto-1,2,4-triazole, Triazole-5-carboxylic acid, 1-methyl-3-mercapto-1,2,4-triazole (1-Methyl-3-mercapto-1,2,4-triazole) and 1-Phenyl-5-mercapto tetrazole (1-Phenyl-5-mercapto tetrazole). there is.
  • the amine-based compound is ethanolamine, 2-(methylamino)ethanol, 2-methoxyethylamine, 2-amino-1-propanol, alaninol, 2-ethoxyethaneamine, N- At least one selected from the group of ethyl-N-propylamine, tributylamine, 2-(dimethylamino)ethanol, N,N-dimethylbenzenamine, N,N-dibutylbutanamine, and N-ethylpropanamine It can be included.
  • the transition metal compound of groups 3 to 8 may be a metal compound containing chromium, molybdenum, tungsten, or titanium.
  • the transition metal compound is an oxide of chromium, molybdenum, tungsten, or titanium; Hydroxides of chromium, molybdenum, tungsten or titanium; Sulfates, nitrates, phosphates, hydrochlorides, fluorides or acetates of chromium, molybdenum, tungsten or titanium; Alternatively, it may include compounds derived from oxides of chromium, molybdenum, tungsten, or titanium.
  • the transition metal compounds of groups 3 to 8 include chromic acid, chromium (III) picolinate, potassium dichromate, chromium oxide, chromyl chloride, chromium sulfate, tungsten dioxide, tungsten trioxide, tungsten disulfide, It may contain tungsten trisulfide, tungsten dichloride, tungsten hexachloride, tungsten tetrachloride, ditungsten decachloride, tungsten trichloride, titanium tetrachloride, titanium disulfide, titanium halide, molybdenum oxide, molybdenum sulfide or molybdenum hexacarbonyl. there is.
  • the metal-containing release layer may include nickel and molybdenum.
  • the metal-containing release layer may include 50 to 80% by weight of Ni and 20 to 50% by weight of molybdenum.
  • the release layer may have a peel strength of 1 to 20 gf/cm when evaluated according to the IPC-TM-650 standard.
  • the metal-containing release layer may have a thickness of 0.01 to 0.2 ⁇ m, and the organic-inorganic release layer may have a thickness of 0.001 to 0.01 ⁇ m.
  • the present invention also provides a metal foil attached to a carrier including the composite release layer.
  • the metal foil attached to the carrier includes: a carrier; The composite release layer provided on the carrier; and a metal layer provided on the composite release layer, wherein the metal layer may include a metal foil including a plurality of protrusions.
  • the metal layer includes: a metal strike layer formed on the release layer; and a metal foil including a plurality of protrusions formed on the metal strike layer.
  • the metal strike layer may be formed under conditions of pH 8 to 11 using metal pyrophosphate.
  • the plurality of protrusions may have flat tops.
  • the composite release layer for metal foil attached to a carrier according to the present invention and the metal foil containing the same are manufactured by mixing metal components in an organic release layer to produce an organic-inorganic composite release layer, which improves the disadvantage that stains may occur when using the existing organic release layer. You can.
  • the composite release layer for metal foil attached to a carrier and the metal foil containing the same use a metal-containing release layer and an organic-inorganic composite release layer and can be applied to copper strike plating using a neutral plating solution.
  • Figure 1 shows a cross section of a conventional carrier-attached metal foil.
  • Figure 2 shows a cross section of a metal foil attached to a carrier according to an embodiment of the present invention.
  • Figure 3 shows a bonding structure of an organic-inorganic release layer according to an embodiment of the present invention.
  • Figure 4 shows the behavior of the organic and inorganic release layer when the release layer is released according to an embodiment of the present invention.
  • Figure 5 shows the phase equilibrium diagram of a chromium compound according to an embodiment of the present invention.
  • Figure 6 shows a phase equilibrium diagram of a transition metal compound according to an embodiment of the present invention, where (a) shows molybdenum, (b) shows titanium, and (c) shows tungsten.
  • Figure 7 shows a plurality of protrusions formed on a metal foil according to an embodiment of the present invention.
  • Figure 8 shows the appearance of protrusions having various shapes according to an embodiment of the present invention.
  • Figure 9 shows a photograph showing a protrusion with a flat top formed according to an embodiment of the present invention.
  • Figure 10 shows a photograph of metal foil after release of the carrier layer according to an embodiment of the present invention.
  • Figure 11 shows a photograph of metal foil after release of the carrier layer according to an embodiment of the present invention.
  • each process forming the method may occur differently from the specified order unless a specific order is clearly stated in the context. That is, each process may occur in the same order as specified, may be performed substantially simultaneously, or may be performed in the opposite order.
  • 'and/or' includes a combination of a plurality of listed items or any of a plurality of listed items.
  • 'A or B' may include 'A', 'B', or 'both A and B'.
  • the present invention relates to a release layer that allows the carrier to be smoothly removed from the carrier-attached metal foil, wherein the release layer includes a metal-containing release layer formed on the carrier; and an organic-inorganic release layer formed on the metal-containing release layer, wherein the organic-inorganic release layer includes a heterocyclic compound containing nitrogen; Amine-based compounds; and a composite release layer for metal foil with a carrier containing a transition metal compound of groups 3 to 8.
  • Figure 1 shows a carrier adhesive release layer including a conventional release layer.
  • the release peeling layer 250 and the release layer 240 of a metal component are used, so the metal component diffuses into the copper foil layer or the metal release layer is deposited on the surface of the copper foil during release.
  • the component of (240) is transferred, causing a defect in which the performance of the copper foil is deteriorated.
  • a technique is used to prevent diffusion and transfer of metal components by using an organic release layer 230 or forming an organic diffusion barrier layer on the surface of the metal release layer (FIG. 1(b)).
  • these organic components have the disadvantage of not being applicable to strike plating, which is widely used in forming metal foil, because they contain nitrogen.
  • Figure 2 shows the metal foil with a carrier of the present invention.
  • a metal-containing release layer is formed on the carrier layer, and an organic-inorganic release layer is formed between the metal-containing release layer and the metal foil to prevent metal diffusion and minimize stains or metal transfer during release.
  • a composite release layer for metal foil with a carrier attached is provided.
  • the release layer includes a metal-containing release layer formed on the carrier; And it may include an organic-inorganic release layer formed on the metal-containing release layer.
  • the metal-containing release layer 220 is a layer formed on the carrier 300 to facilitate release of the carrier, and may include nickel and molybdenum.
  • an organic/inorganic release layer 210 can be additionally used to lower the release force of the metal-containing release layer 220, which will be described later.
  • a nickel-molybdenum alloy plating layer may be formed by simultaneously plating nickel and molybdenum.
  • the carrier layer can be immersed in a plating solution to form the metal-containing release layer, and the plating solution for forming the metal-containing release layer is nickel sulfate (NiSO 4 ) and nickel molybdate (Ni 2 MoO 4 ) may be included as a source of nickel and molybdenum.
  • the mixing ratio of the nickel sulfate and the nickel molybdate may be 1:5 to 5:1 in molar ratio, preferably 1:2 to 2:1 and most preferably 1:1. If mixed outside the above range, the desired release force may not be achieved due to insufficient molybdenum or nickel content, or residue may be generated during release due to excessive release force.
  • the nickel sulfate and the nickel molybdate may each be included in the plating solution at a ratio of 0.1 to 0.5 M. If it is included in less than the above ratio, a release layer of the desired thickness cannot be formed, and if it exceeds the above range, the surface roughness of the release layer may increase due to excessive precipitation.
  • the nickel sulfate and the nickel molybdate are 50 to 80% by weight of Ni and 20% by weight of molybdenum in the metal-containing release layer. It may contain ⁇ 50% by weight. Also, in this case, the molar ratio of nickel and molybdenum may be about 1:1 to 4:1.
  • the surface roughness of the metal-containing release layer is lowered and plated to a uniform thickness, so that the desired release force can be obtained. However, if it is outside the above range, the desired release force cannot be obtained, or residue may be generated during release due to excessive release force. You can.
  • the plating solution may include citric acid or tartaric acid in addition to the nickel sulfate and nickel molybdate.
  • the citric acid or tartaric acid may be mixed in the plating solution at a ratio of 0.2 to 0.4 M. If the content is less than the above ratio, the desired plating may not be performed, and if it is more than the above range, the thickness of the plating layer may not be constant, and the surface roughness may increase undesirably.
  • the organic-inorganic release layer 210 may be formed.
  • the organic-inorganic release layer 210 is a layer that prevents the metal contained in the metal-containing release layer 220 from diffusing into the interior of the metal foil, which will be described later, or from being transferred to the surface of the metal foil during release, and is a heterocycle containing nitrogen. It may include compounds, amine compounds, and transition metal compounds of groups 3 to 8.
  • an organic and inorganic release layer can be formed by including a transition metal compound when forming the organic release layer, and through this, stains generated during release can be minimized.
  • the organic-inorganic release layer includes a heterocyclic compound containing nitrogen, an amine-based compound; and transition metal compounds of groups 3 to 8.
  • the heterocyclic compound containing nitrogen refers to a compound in which one or more atoms constituting the ring of a cyclic compound are replaced with an atom other than carbon. In the case of the present invention, the carbon atom of the ring is replaced with nitrogen. Heterocyclic compounds can be used.
  • the heterocyclic compound is a cyclic compound having two or more nitrogen atoms, more specifically, benzotriazole, mercapto benzimidazole, and mercapto benzotriazole.
  • 1-Methyl-3-mercapto-1,2,4-triazole and 1-phenyl-5-mercaptotetrazole (1 -Phenyl-5-mercapto tetrazole) may include one or more selected from the group consisting of
  • the heterocyclic compound may be used as a single component, but two or more types of heterocyclic compounds may be used in combination to facilitate release during peeling.
  • the mixing ratio of each heterocyclic compound may be 1 to 5: 5 to 1, and is preferably used in a 1:1 ratio, that is, equal amounts can be mixed. . If the heterocyclic compound is mixed in a ratio outside the above range, it is difficult to expect an effect from mixing.
  • the heterocyclic compound may be mixed and used in a plating solution at a ratio of 50 to 200 g/L during plating to form the organic-inorganic release layer. If the heterocyclic compound is mixed at a ratio of less than 50 g/L, the peeling strength of the organic-inorganic release layer may be lowered and the carrier may be separated at an undesirable point, and if the heterocyclic compound is mixed at a ratio exceeding 200 g/L, the amine to be described later Defects may occur during plating due to the presence of heterocyclic compounds that are not dissolved by the base compound.
  • the amine-based compound can be used as a solvent to dissolve the heterocyclic compound and at the same time react with a metal compound to be described later to secure an appropriate mold release force.
  • the amine-based compound refers to a compound in which at least one of the hydrogen atoms of ammonia is replaced with a hydrocarbon.
  • Examples of the primary amine alcohol-based compounds include ethanolamine, 2-(methylamino)ethanol, 2-methoxyethylamine, 2-amino-1-propanol, alaninol, 2-ethoxyethaneamine, N -One or more selected from the group of ethyl-N-propylamine, tributylamine, 2-(dimethylamino)ethanol, N,N-dimethylbenzenamine, N,N-dibutylbutanamine, and N-ethylpropanamine It may include, and most preferably, ethanolamine may be used.
  • the amine-based compound may be included in an amount of 5 to 20 g/L in the plating solution during plating to form the organic-inorganic release layer. If the amine compound is contained in an amount of less than 5 g/L, the heterocyclic compound may not dissolve smoothly, making it difficult to form a smooth organic-inorganic release layer, and if it is contained in a ratio exceeding 20 g/L, the heterocyclic compound may be difficult to form. The ratio of is relatively low, which may reduce the peel strength.
  • an organic release layer is possible even when using a mixture of the heterocyclic compound and the amine-based compound.
  • nitrogen content remains during release, causing stains in many cases. (see left combination in Figure 3).
  • the organic release layer since it is connected to the upper and lower parts of the release layer through bonds by nitrogen oxygen and hydrogen, it has a disadvantage in that residues may be generated during release due to its high release force.
  • an organic-inorganic release layer is manufactured by mixing transition metal compounds of groups 3 to 8, thereby minimizing defects caused by residues and controlling the release force.
  • the organic-inorganic release layer may exist between the metal foil and the metal-containing release layer formed on the top of the carrier.
  • the heterocyclic compound used as the organic component may be connected through a bond between the metal-containing release layer and the metal foil by nitrogen oxygen and hydrogen having a strong bonding force.
  • the transition metal compound included in the organic-inorganic release layer it may be dispersed on the surface of the metal-containing release layer and the surface of the metal foil to form a layer.
  • the transition metal compound layer formed on the surface of the metal-containing release layer and the transition metal compound layer formed on the surface of the metal foil may be bonded to each other using hydroxy groups (see bond on the right side of Figure 3), but this is hydrogen bonding. It is a type of weak covalent bond, and since only some of the transition metals are bonded, it can have weak bonding strength. That is, if the amount of the transition metal compound included in the organic-inorganic release layer increases, the bond between the transition metal compound layers increases, thereby forming an organic-inorganic release layer with weak release force, and if the amount of the transition metal compound decreases, the bond between the transition metal compound layers increases. As the bonds caused by the heterocyclic compound are increased, a release layer with strong release force can be formed.
  • the transition metal compounds of groups 3 to 8 may be used without limitation as long as they are compounds containing transition metals belonging to groups 3 to 8, but are preferably metal compounds containing chromium, molybdenum, tungsten or titanium. .
  • the transition metal compound may be an oxide of chromium, molybdenum, tungsten or titanium; Hydroxides of chromium, molybdenum, tungsten or titanium; Sulfates, nitrates, phosphates, hydrochlorides, fluorides or acetates of chromium, molybdenum, tungsten or titanium; Alternatively, it may include compounds derived from oxides of chromium, molybdenum, tungsten, or titanium.
  • the organic-inorganic release layer has different film formation conditions depending on the type of metal component included in the organic-inorganic release layer, so it is desirable to select and use it appropriately according to each process condition.
  • the hydrous chromium oxide film can be formed between pH 6 and 10 (see Figure 5), and a transition metal compound containing molybdenum can form the hydrous chromium oxide film at pH 3 to 7 (see Figure 6).
  • transition metal compounds containing titanium form a film at pH 2 to 8 ((b) in Figure 6)
  • transition metal compounds containing tungsten form a film at pH 2 to 4 ((c) in Figure 6). This is possible. Therefore, it is desirable to use a compound containing an appropriate metal according to each process condition.
  • the transition metal compound may include chromic acid, chromium (III) picolinate, potassium dichromate, chromium oxide, chromyl chloride, or chromium sulfate.
  • chromic acid it can be most commonly used as a compound produced by dissolving chromium oxide, an oxide of chromium, in water.
  • Chromium(III) picolinate is a chromium compound that is easily degraded and decomposed, and can be easily used to form a Cr-N film.
  • Potassium dichromate has excellent oxidizing power and is the most commonly used chromium compound.
  • Chromium trioxide is commonly used as a metal salt in chrome plating solutions, and chromyl chloride can react with hydrochloric acid to form chromium salt.
  • chromium(III) sulfate a chromium sulfide film can be formed on the surface of the metal-containing release layer.
  • various transition metal compounds can be used in the organic-inorganic release layer, and can be appropriately selected and used according to each process.
  • Transition metal compounds such as molybdenum sulfide or molybdenum hexacarbonyl can be used.
  • the transition metal compound may be included in an amount of 20 to 2000 ppm by weight in the plating solution during plating to form the organic-inorganic release layer. If the transition metal compound is included at less than 20ppm, the stain prevention and release force control effects of the transition metal compound may not appear, and if it is included at a rate exceeding 2000ppm, the release force will be weakened and the carrier will separate at an unwanted time. It can be.
  • the organic-inorganic release layer is preferably performed under conditions of pH 5-7, current density 5-7 ASD, and plating time 20-60 seconds. Within the above range, the organic/inorganic release layer can be formed normally, but if it is outside the above range, the transition metal compound may not be plated on the surface of the carrier layer or it may be difficult to control the release force.
  • the current efficiency may be 5 to 30%.
  • a large amount of hydrogen may be generated, but the organic/inorganic release layer can be formed uniformly.
  • the release layer may have a peel strength of 1 to 20 gf/cm when evaluated according to the IPC-TM-650 standard. If the peel strength of the release layer is less than 1 gf/cm, the carrier may be separated at an undesirable time, and if it exceeds 20 gf/cm, a residue may remain when the carrier is peeled using the release layer.
  • the metal-containing release layer may have a thickness of 0.01 to 0.2 ⁇ m, and the organic-inorganic release layer may have a thickness of 0.001 to 0.01 ⁇ m.
  • the composite release layer may have a smooth release force. However, if the thickness is less than the above range, the metal component of the carrier may diffuse toward the metal foil, and if the thickness exceeds the above range, after release Release layer components may remain in the metal foil.
  • the present invention also provides a metal foil attached to a carrier including the organic-inorganic release layer.
  • the release layer of the present invention can be composed of a composite release layer of a metal-containing release layer and an organic-inorganic release layer. Accordingly, compared to the existing metal foil attached to a carrier, the release layer can minimize the occurrence of stains during release. It can have the advantage of being able to form .
  • the metal foil attached to the carrier includes: a carrier; The composite release layer provided on the carrier; and a metal layer provided on the composite release layer, wherein the metal layer may include a metal foil including a plurality of protrusions.
  • the metal foil 100 includes a plurality of protrusions 10 with flat tops.
  • the protrusions 10 may refer to metal crystal particles protruding vertically upward from the surface of the metal foil 100.
  • the protrusion 10 may include a protruding portion 11 and a flat portion 12 (see FIGS. 2 and 7).
  • the protrusion 11 included in the protrusion 10 is a portion that protrudes from the surface of the metal foil 100 and may have a truncated cone shape or a polygonal pyramid shape. Specifically, as shown in FIG. 2, the protrusion 11 has a truncated cone shape with a flat surface (side surface) or a polygonal pyramid shape with an angulated surface, and as a result, it forms an anchor in close contact with the insulating resin substrate 400. ) The effect is increased, so that the metal foil 100 can be combined with the insulating resin substrate to have high adhesion. More specifically, the protrusion 11 may have one or more shapes selected from the group consisting of a pentagonal pyramid shape, a hexagonal pyramid shape, a heptagonal pyramid shape, and an octagonal pyramid shape among polygonal pyramid shapes.
  • a plurality of fine protrusions 11a may be formed on the protrusion 11 to increase adhesion to the insulating resin substrate by increasing the surface area. Due to these fine protrusions 11a, the protrusion 11 may have a surface roughness (Ra) of 0.05 to 0.3 ⁇ m, specifically 0.08 to 0.2 ⁇ m.
  • the surface roughness (Ra) of the protrusion 11 may be defined as the surface roughness (Ra) of the side surface of the protrusion 11 excluding the flat portion 12.
  • the ratio (b/a) of the base length (a) of the protrusion 11 to the height (b) of the protrusion 11 may be 0.4 to 1.5, specifically 0.6 to 1.2. As the ratio (b/a) is within the above range, it is possible to increase the adhesion between the metal foil 100 and the insulating resin substrate and minimize signal transmission loss during high-frequency signal transmission.
  • the flat portion 12 included in the protrusion 10 is a flat surface provided at the top of the protrusion 11.
  • the flat portion 12 may refer to the upper surface of the protrusion 11 having a truncated cone shape or a polygonal pyramid shape.
  • the present invention has a flat portion where the top (top) of the protrusion 10 is a flat surface.
  • the surface of the metal foil 100 exhibits relatively low illumination, thereby minimizing high-frequency signal transmission loss.
  • the flat portion 12 may have a circular, oval, or polygonal shape (see FIG. 8). Meanwhile, even if fine irregularities are formed on the surface, a case where the fine irregularities are densely formed to form a flat surface can be considered to be included in the category of the flat portion 12 of the present invention.
  • the ratio (c/a) of the base length (a) of the protrusion 11 to the length (c) of the flat portion 12 may be 0.1 to 0.7, specifically 0.2 to 0.6. As the ratio (c/a) is within the above range, it is possible to increase the adhesion between the metal foil 100 and the insulating resin substrate and minimize signal transmission loss during high-frequency signal transmission.
  • the length (c) of the flat part 12 may mean the longest length on the surface forming the flat part 12.
  • the number of such protrusions 10 is per unit area (1 ⁇ m 2 ) of the metal foil 100, considering the adhesion between the metal foil 100 and the insulating resin substrate, high-frequency signal transmission efficiency, and circuit wiring resolution of the metal foil 100. It may be 25 or less, specifically 5 to 20, and more specifically 7 to 15 (see FIG. 9).
  • the protrusions 10 may be formed by electroless plating.
  • the metal foil 100 according to the present invention is manufactured by electroless plating. After the metal seed foil is formed in the electroless plating process, crystal grains continue to grow on the metal seed foil, and a plurality of protrusions 10 are formed on the surface.
  • the metal foil 100 present in can be manufactured.
  • the present invention performs a separate roughening process because a plurality of protrusions 10, which are roughened surfaces, are naturally formed during the manufacturing process of the metal foil 100. The process can be omitted, thereby improving the manufacturing efficiency of the metal foil 100 or/and the printed circuit board.
  • the metal foil 100 is manufactured by electroless plating, it is possible to provide a metal foil 100 that is thinner and more porous than the metal foil manufactured by electrolytic plating.
  • the electroless plating solution used during the electroless plating to manufacture the metal foil 100 according to the present invention is not particularly limited, but may be an electroless plating solution containing a metal ion source and a nitrogen-containing compound.
  • the metal ion source may specifically be one or more copper ion sources selected from the group consisting of copper sulfate, copper chloride, copper nitrate, copper hydroxide, and copper sulfamate.
  • the concentration of this metal ion source may be 0.5 to 300 g/L, specifically 100 to 250 g/L, and more specifically 190 to 200 g/L.
  • the nitrogen-containing compound diffuses metal ions so that a plurality of protrusions 10 are formed on the surface of the metal seed foil formed by the metal ion source.
  • the nitrogen-containing compounds specifically include purine, adenine, guanine, hypoxanthine, xanthine, pyridazine, methylpiperidine, 1,2-di-(2-pyridyl)ethylene, 1,2-di-(pyridyl) ) Ethylene, 2,2'-dipyridylamine, 2,2'-bipyridyl, 2,2'-bipyrimidine, 6,6'-dimethyl-2,2'-dipyridyl, di-2 -It may be one or more selected from the group consisting of pyryl ketone, N,N,N',N'-tetraethylenediamine, 1,8-naphthyridine, 1,6-naphthyridine, and terpyridine.
  • the electroless plating solution may further include one or more additives selected from the group consisting of a chelating agent, a pH adjuster, and a reducing agent.
  • the chelating agent specifically includes tartaric acid, citric acid, acetic acid, malic acid, malonic acid, ascorbic acid, oxalic acid, lactic acid, succinic acid, potassium sodium tartrate, dipotassium tartrate, hydantoin, 1-methylhydantoin, 1,3-dimethyl.
  • concentration of this chelating agent may be 0.5 to 600 g/L, specifically 300 to 450 g/L, and more specifically 400 to 430 g/L.
  • the pH adjuster may specifically be one or more selected from the group consisting of sodium hydroxide, potassium hydroxide, and lithium hydroxide. This pH adjuster may be included in the electroless plating solution so that the pH of the electroless plating solution is adjusted to 8 or more, specifically 10 to 14, and more specifically 11 to 13.5.
  • the reducing agent may be one or more selected from the group consisting of formaldehyde, sodium hypophosphite, sodium hydroxymethane sulfinate, glyoxylic acid, boron hydride, and dimethylamine borane.
  • the concentration of this reducing agent may be 1 to 20 g/L, specifically 5 to 20 g/L.
  • Plating conditions for manufacturing the metal foil 100 by electroless plating with the electroless plating solution can be appropriately adjusted depending on the thickness of the metal foil 100.
  • the electroless plating temperature may be 20 to 60°C, specifically 25 to 40°C
  • the electroless plating time may be 2 to 30 minutes, specifically 5 to 20 minutes.
  • the thickness of the metal foil 100 of the present invention manufactured by electroless plating may be 5 ⁇ m or less, specifically 0.1 to 1 ⁇ m.
  • the components that make up the metal foil 100 of the present invention are not particularly limited as long as they are known metals that can form the circuit layer of a printed circuit board, and specifically, they are selected from the group consisting of copper, silver, gold, nickel, and aluminum. There may be more than one type.
  • the carrier 300 included in the metal foil attached to the carrier according to the present invention prevents the metal layer from being deformed during movement or use of the metal attached to the carrier, and includes metals such as copper, aluminum, etc.; Alternatively, it may be made of polymers such as polyethylene terephthalate (PET), polyphenylene sulfide (PPS), Teflon, etc.
  • the thickness of this carrier may specifically be 10 to 50 ⁇ m.
  • the metal foil attached to a carrier according to the present invention may further include a rust prevention layer provided on the metal layer to protect the metal layer.
  • the rust prevention layer may include zinc, chromium, etc.
  • the metal layer may include: a metal strike layer formed on the release layer; And it may include a metal foil including a plurality of protrusions formed on the metal strike layer.
  • the metal layer may largely be composed of a metal strike layer formed on the release layer and a metal foil on which the plurality of protrusions are formed.
  • the metal strike layer is formed on the release layer and serves as a base for forming the metal foil, and may be formed using a strike plating process.
  • the metal strike layer 110 can be formed on the release layer to facilitate the formation of the metal foil (see Figure 2).
  • the metal strike layer 110 may be formed by a strike plating process, which refers to a process in which plating is performed for a short time under a high current density to increase the adhesion of plating with low adhesion.
  • the main plating process can be performed after the strike plating process, and in the case of the present invention, the metal foil can be formed using the electroless plating process as discussed above.
  • the metal strike layer is formed under conditions of pH 8 to 11 using metal pyrophosphate.
  • the metal contained in the organic-inorganic release layer may be oxidized by the acid, resulting in many stains.
  • the surface of the organic-inorganic release layer is neutral, it may become worse if acid electroplating is performed. Therefore, in the case of the present invention, it is preferable to perform the metal strike plating using a neutral plating solution.
  • the metal strike plating uses metal pyrophosphate as a metal source and can be performed at a current density of 2 to 6 ASD and a temperature of 50 to 60 ° C.
  • sulfate which is used as a metal source in existing plating solutions, can form an acidic plating solution, so in the case of the present invention, it is preferable to use metal pyrophosphate as a metal source.
  • the metal layer formed by strike plating may be a copper or aluminum layer. Therefore, it is preferable that the metal pyrophosphate is copper pyrophosphate or aluminum pyrophosphate.
  • the metal pyrophosphate may be included in the plating solution for the strike plating in an amount of 80 to 110 g/L, preferably 90 g/L. If the metal pyrophosphate is included at less than 80 g/L, it may be difficult to form the metal strike layer, and if it is added at a rate exceeding 110 g/L, the surface roughness of the metal strike layer may increase and defects may occur. .
  • potassium pyrophosphate may be added to form a buffer solution separately from the metal pyrophosphate.
  • This potassium pyrophosphate can maintain the pH of the plating solution appropriately by forming a buffer solution, thereby allowing the strike plating to be performed under neutral conditions.
  • the potassium pyrophosphate is preferably mixed in the plating solution for strike plating at a ratio of 250 to 400 g/L, preferably 290 to 370 g/L, and most preferably 340 g/L. If the potassium pyrophosphate is contained in less than 250 g/L, it may be difficult to maintain pH during strike plating, and if it is contained in a ratio exceeding 400 g/L, potassium may precipitate and cause defects during plating.
  • the strike plating is preferably performed under a current density of 2 to 6 ASD, preferably 3 to 5 ASD, and most preferably 4 ASD. If the current density is less than 2ASD, strike plating may not be performed, resulting in defective plating having a nodule shape. If the current density is more than 6ASD, the roughness may increase on the surface of the strike plating layer, creating a dark red matte surface. In addition, within the above current density range, the current efficiency may be more than 80%, but if it exceeds 6ASD, the current efficiency may rapidly decrease to less than 35%.
  • the strike plating is preferably performed under pH 8.0 to 11.0, preferably pH 8.7 conditions. If the strike plating is performed below pH 8.0, stains may occur on the surface in contact with the release layer as seen above, and if pH exceeds 11.0, the surface shape may have a nodule or spherical shape and defects may occur.
  • the strike plating may be performed at a temperature of 50 to 60°C, preferably 55°C. If the plating temperature is less than 50°C, current efficiency may be reduced, and if it exceeds 60°C, the roughness of the strike layer surface may increase.
  • the metal foil with a carrier according to the present invention may further include an antioxidant layer provided between the release layer and the metal layer.
  • the antioxidant layer may include nickel, phosphorus, etc.
  • the present invention provides a printed circuit board manufactured using the above-described metal foil.
  • the printed circuit board according to the present invention includes a metal circuit layer and an insulating resin layer 400, and the metal circuit layer is derived from the metal foil described above, which will be described as follows.
  • the metal circuit layer included in the printed circuit board according to the present invention is a layer on which circuit wiring is formed. This metal circuit layer is obtained through the process of forming circuit wiring on the above-described metal foil.
  • the present invention can provide a fine and high-resolution printed circuit board.
  • the printed circuit board according to the present invention is manufactured by performing an etching process on a laminate combining the insulating resin base and the above-described metal foil to form circuit wiring in the metal foil, and the metal foil has high adhesion to the insulating resin base. Although they are combined, their thickness is relatively thin, making it possible to form fine, high-resolution circuit wiring in metal foil.
  • the present invention can provide a printed circuit board that exhibits high adhesion between circuit wiring and an insulating resin substrate.
  • the method of forming the circuit wiring is not particularly limited and includes subtractive process, additive process, full additive process, semi additive process, Alternatively, it may be a modified semi additive process.
  • the insulating resin layer 400 included in the printed circuit board according to the present invention is an insulating layer provided on a metal circuit layer.
  • This insulating resin layer 400 may be made of a commonly known insulating resin substrate.
  • the insulating resin layer may be made of a resin substrate (eg, prepreg) having a structure in which inorganic fibers or organic fibers are impregnated with a commonly known resin.
  • the printed circuit board according to the present invention can be manufactured using an insulating resin base material, or can also be manufactured using a coreless method excluding the insulating resin base material.
  • the coreless method may not be particularly limited as long as it is a commonly known method.
  • a carrier foil made of copper foil (Cu foil) with a thickness of about 18 ⁇ m was immersed in 5% by weight sulfuric acid, pickled, and then washed with pure water.
  • the treated carrier foil was immersed in a plating solution containing nickel sulfate (NiSO 4 ), sodium molybdate (Na 2 MoO 4 ), and citric acid (Citrate), and then plating was performed.
  • NiSO 4 nickel sulfate
  • Na 2 MoO 4 sodium molybdate
  • citric acid citric acid
  • Example 1 0.3 0.05 0.3 6 6 40
  • Example 2 0.3 0.1 0.3 6 6 40
  • Example 3 0.3 0.3 0.3 6 6 40
  • Example 4 0.3 0.5 0.3 6 6 40
  • Example 5 0.3 0.8 0.3 6 6 40
  • Example 6 0.05 0.3 0.3 6 6 40
  • Example 7 0.1 0.3 0.3 6 6 40
  • Example 8 0.5 0.3 0.3 6 6 40
  • Example 9 0.8 0.3 0.3 6 6 40
  • Example 10 0.3 0.3 0.2 6 6 40
  • Example 11 0.3 0.3 0.4 6 6 40
  • Example 12 0.3 0.3 0.3 6 4 40
  • Example 14 0.3 0.3 0.3 6 4 40
  • Example 15 0.3 0.3 0.3 6 8 40
  • Example 16 0.3 0.3 0.3 6 10 10
  • Example 17 0.3 0.3 6 6 20
  • Example 18 0.3 0.3 0.3 6 6 60
  • Example 19 0.3 0.3 0.3 6 6 70
  • a metal-containing release layer was formed by changing the contents of nickel sulfate, sodium molybdate, and citric acid and each process condition.
  • the formation of the metal-containing release layer was not smooth under pH conditions below 4 and above 8, and that a large amount of hydrogen gas was generated when a current density of 8ASD was used. Although the amount of hydrogen generated was reduced under the condition of a current density of 4ASD, the plating rate was significantly reduced and an uneven metal-containing mold layer was formed.
  • Example 3 As a result, it was confirmed that the conditions of Example 3 were the most suitable conditions for forming the metal-containing release layer, and in the examples to be described later, the metal-containing release layer manufactured by the method of Example 3 was used.
  • an organic-inorganic release layer on top of the carrier + metal-containing release layer prepared in Example 3, it was immersed in a solution for forming an organic-inorganic release layer. At this time, the optimal organic-inorganic release layer was selected by varying the composition of the solution for forming the organic-inorganic release layer.
  • transition metal compound used in the organic-inorganic release layer was selected.
  • the transition metal compounds (ppm) shown in Table 2 below were added to a solution containing CBTA (5-carboxybenzotriazole, 100 g/L) and ethanolamine (10 g/L), and then immersed for 40 seconds at pH 9 and a temperature of 30°C. Thus, an organic-inorganic release layer was formed.
  • the copper strike plating was performed under the plating conditions shown in Table 3 below.
  • the prepared laminate was placed in an electroless plating bath and electroless plated to form a metal foil (copper foil) with a thickness of 1 ⁇ m on the release layer.
  • metal ion source CuSO 4 5H 2 O
  • nitrogen-containing compound Guanine
  • chelating agent potassium sodium tartrate
  • pH adjuster An electroless plating solution containing (NaOH) and a reducing agent (28% formaldehyde) was used, and electroless plating was performed at 30°C for 10 minutes.
  • the formed metal foil (including a single release layer)/Kraft paper/SUS plate was laminated in that order and pressed at 3.5 MPa pressure for 100 minutes at 200°C under vacuum to prepare a laminate.
  • the peel strength between the copper foil carrier foil (including a single release layer) and the ultra-thin layer was measured according to the IPC-TM-650 standard (BMSP-90P Peel tester, Test speed). : 50 mm/min, Test speed: 90°).
  • Example 22 which is judged to be the optimal condition, has an appropriate peel strength and does not cause staining (Figure 10 (a)), but when 5 ppm of the transition metal compound is used, the It was found that the mold release force control effect was poor, resulting in high mold release force, and it was also confirmed that the nitrogen component of CBTA used as a heterocyclic compound remained, causing stains after desmear ( Figure 10(b)). In addition, when the chromic acid exceeded 2000 ppm (Example 24), it was confirmed that the release force rapidly decreased due to excessive transition metal compounds.
  • Examples 25, 26, and 27 using transition metals other than chromium were found to have appropriate release force, and Examples 28 and 29 using other compounds of chromium also showed appropriate release force. It was confirmed that However, when metal compounds other than transition metal compounds of groups 3 to 8 are used, the release force becomes very weak and stains due to metal components occur (Example 30, Figure 10 (c)). There were cases where it was glued without being molded (Example 31), making it impossible to use.
  • Example 22 instead of the combination of 5-carboxybenzotriazole (100 g/L) and ethanolamine (10 g/L), a heterocyclic compound and an amine compound were added in combination at the ratios shown in Table 5 below, and the current density and plating The effect was measured by changing the time.
  • CBTA 5-carboxybenzotriazole
  • MT 3-mercapto-1,2,4-triazole
  • EA ethanolamine
  • AP 2-amino-1-propanol
  • Plating solution composition (g/L) CBTA MT EA AP
  • Example 32 50 - 10 - Example 33 100 - 10 - Example 34 200 - 10 - Example 35 - 100 10 - Example 36 100 - 5 - Example 37 100 - 10 - Example 38 100 - 20 - Example 39 100 - - 10
  • a laminate was manufactured and tested in the same manner as in Example 22, except that the conditions of Examples 32 to 45 were used.
  • Example 33 which is the optimal condition for the present invention, has appropriate peel strength and does not cause staining (Figure 11 (a)), but as the content of CTBA, a heterocyclic compound, increases, the peel strength decreases. It was confirmed that was rising. In addition, at 200 g/L of this heterocyclic compound, some staining occurred after desmearing, and therefore, it was confirmed that staining occurred at concentrations above this level. Additionally, when 50 g/L was used (Example 32), the content of the heterocyclic compound was reduced, confirming that the metal component of the metal-containing release layer was transferred to the strike copper layer (FIG. 11(b)).
  • Example 35 using a different type of heterocyclic compound, results similar to those of the present invention were seen.
  • Example 39 using AP showed similar results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention relates to a composite release layer for a carrier-attached metal foil and a metal foil comprising same. The present invention provides a composite release layer for a carrier-attached metal foil, the release layer enabling the smooth removal of a carrier from the carrier-attached metal foil, wherein the release layer comprises: a metal-containing release layer formed on the carrier; and an organic and inorganic release layer formed on the metal-containing release layer, the organic and inorganic release layer containing: a heterocyclic compound containing nitrogen; an amine-based compound; and a transition metal compound of groups 3 to 8 of the periodic table.

Description

캐리어 부착 금속박용 복합 이형층 및 이를 포함하는 금속박Composite release layer for carrier-attached metal foil and metal foil containing the same
본 발명은 캐리어 부착 금속박용 복합 이형층 및 이를 포함하는 금속박에 관한 것이다.The present invention relates to a composite release layer for metal foil attached to a carrier and a metal foil containing the same.
통상 인쇄회로기판은 금속박과 절연 수지 기재를 결합한 후 에칭 공정을 통해 금속박에 회로배선을 형성하는 과정을 거쳐 제조될 수 있다. 상기 회로배선을 형성하는 과정에서 금속박의 박리가 발생하는 것을 방지하기 위해, 절연수지 기재간 높은 밀착력 및 이형력을 확보하여 작업 편의성이 높은 금속박이 요구된다.Typically, printed circuit boards can be manufactured by combining metal foil and an insulating resin substrate and then forming circuit wiring on the metal foil through an etching process. In order to prevent delamination of the metal foil from occurring in the process of forming the circuit wiring, a metal foil with high work convenience by securing high adhesion and release force between insulating resin substrates is required.
상기 금속박과 절연 수지 기재 간의 밀착력을 높이기 위해 종래에는 금속박의 표면에 조화 처리를 수행하여 금속박 표면에 요철을 형성하고, 요철이 형성된 금속박 표면에 절연 수지 기재를 올려놓고 프레스 하여 결합시키는 방법이 제안된 바 있다. 구체적으로 특허문헌 1에는 구리박의 수지층 측의 표면에 전해 처리, 블라스트 처리, 또는 산화 환원 처리를 하여 입자상 돌기를 형성시키는 것으로, 구리박과 수지층의 밀착성을 향상시키는 점이 개시되어 있다.In order to increase the adhesion between the metal foil and the insulating resin substrate, a method has been proposed in the past to form irregularities on the surface of the metal foil by performing roughening treatment on the surface of the metal foil, and to place the insulating resin substrate on the surface of the metal foil with the irregularities formed and bond them by pressing. There is a bar. Specifically, Patent Document 1 discloses that the adhesion between the copper foil and the resin layer is improved by forming particulate protrusions by subjecting the surface of the copper foil on the resin layer side to electrolytic treatment, blast treatment, or oxidation-reduction treatment.
그러나 상기 방법은 이미 형성된 금속박에 별도의 조화 처리를 수행하는 것이기 때문에 인쇄회로기판의 제조 효율이 떨어지는 문제점이 있다. 또한 금속박 표면에 형성된 요철에 의해 고주파 신호 전송 효율도 떨어지는 문제점이 있다. 즉, 휴대 전자 기기 등의 고기능화 추세에 따라 대량의 정보를 고속으로 처리하기 위해서는 고주파 신호가 전송되는 과정에서 신호 전송 손실이 최소화되어야 한다. 그런데 금속박 표면에 높은 조도의 요철이 형성되어 있을 경우, 고주파 신호 전송에 장애 요인으로 작용하여 고주파 신호 전송 효율이 떨어지게 되는 것이다.However, since the above method involves performing a separate roughening process on already formed metal foil, there is a problem in that the manufacturing efficiency of the printed circuit board is low. Additionally, there is a problem in that high-frequency signal transmission efficiency is reduced due to irregularities formed on the surface of the metal foil. In other words, in order to process large amounts of information at high speed in accordance with the trend toward higher functionality of portable electronic devices, signal transmission loss must be minimized during the transmission of high-frequency signals. However, when irregularities of high roughness are formed on the surface of the metal foil, they act as an obstacle to high-frequency signal transmission, reducing the efficiency of high-frequency signal transmission.
한편 상기 금속박은 얇은 두께로 인해 절연 수지 기재 또는 대상 기재와의 결합 과정에서 주름이나 꺾임이 쉽게 발생한다. 이를 보완하기 위해 금속박은 그 일면에 이형층과 캐리어를 결합시켜 핸들링된다. 여기서 이형층과 캐리어가 결합된 금속박은 절연 수지 기재 또는 대상 기재와의 결합 과정에서 내열성을 가져야 하고, 결합 후 이형층을 통해 캐리어의 박리가 잘 이루어지는 것이 요구된다. 이를 위해 이형층에 유기물 성분을 적용하거나, 내열성을 높일 수 있는 별도의 층을 이형층과 금속박 사이에 구비하는 기술이 제안된 바 있다.Meanwhile, due to the thin thickness of the metal foil, wrinkles or bends easily occur during the bonding process with the insulating resin substrate or target substrate. To compensate for this, metal foil is handled by combining a release layer and a carrier on one side. Here, the metal foil to which the release layer and the carrier are bonded must have heat resistance during the bonding process with the insulating resin substrate or the target substrate, and it is required that the carrier be easily peeled off through the release layer after bonding. For this purpose, a technology has been proposed that applies organic components to the release layer or provides a separate layer between the release layer and the metal foil to increase heat resistance.
하지만 이런 금속박에 사용되는 유기 이형층의 경우 이형시 얼룩이 발생할 수 있으며, 금속 성분의 이형층의 경우 금속이 구리 내부로 확산하거나 이형이후 동박의 표면에 금속성분이 잔류하는 경우가 있어 불량 발생의 이유로 지적되고 있다. 따라서, 이러한 기존의 이형층의 단점을 해서하기 위한 새로운 이형층의 개발이 필요한 실정이다.However, in the case of the organic release layer used in such metal foil, stains may occur during release, and in the case of a release layer made of metal, the metal may diffuse into the copper or the metal may remain on the surface of the copper foil after release, which is the reason for defects. It is being pointed out. Therefore, there is a need to develop a new release layer to overcome the shortcomings of the existing release layer.
전술한 문제를 해결하기 위하여, 본 발명은 유기이형층에 금속성분을 혼합하여 유무기 복합이형층을 제조하는 것으로 기존의 유기이형층의 사용시 얼룩이 발생할 수 있다는 단점을 개선한 캐리어 부착 금속박용 복합 이형층 및 이를 포함하는 금속박을 제공하고자 한다.In order to solve the above-mentioned problem, the present invention manufactures an organic-inorganic composite release layer by mixing a metal component with an organic release layer, and improves the disadvantage of staining when using the existing organic release layer. The object is to provide a layer and a metal foil containing the same.
또한 본 발명은 금속포함 이형층과 유무기 복합 이형층을 사용하는 것으로 구리 스트라이크(Strike)도금에 적용할 수 있는 캐리어 부착 금속박용 복합 이형층 및 이를 포함하는 금속박을 제공하고자 한다.In addition, the present invention seeks to provide a composite release layer for metal foil with a carrier that can be applied to copper strike plating by using a metal-containing release layer and an organic-inorganic composite release layer, and a metal foil containing the same.
상술한 문제를 해결하기 위해, 본 발명은 캐리어 부착 금속박에서 캐리어가 원활하게 제거될 수 있도록 하는 이형층에 있어서, 상기 이형층은, 캐리어상에 형성되는 금속포함 이형층; 및 상기 금속포함 이형층 상에 형성되는 유무기 이형층을 포함하며, 상기 유무기 이형층은, 질소를 포함하는 헤테로고리 화합물; 아민계 화합물; 및 3족~8족의 전이 금속 화합물을 포함하는 캐리어 부착 금속박용 복합 이형층을 제공한다.In order to solve the above-described problem, the present invention provides a release layer that allows the carrier to be smoothly removed from the carrier-attached metal foil, wherein the release layer includes a metal-containing release layer formed on the carrier; and an organic-inorganic release layer formed on the metal-containing release layer, wherein the organic-inorganic release layer includes a heterocyclic compound containing nitrogen; Amine-based compounds; and a composite release layer for metal foil with a carrier containing a transition metal compound of groups 3 to 8.
상기 헤테로고리 화합물은 벤조트리아졸(Benzotriazole), 머캅토벤지이미다졸(Mercapto benzimidazole), 머캅토벤조트리아졸(Mercapto benzotriazole), 소듐머캅토벤조트리아졸(Sodium mercapto benzotriazole), 5-카르복시벤조트리아졸(5-Carboxybenzotriazole), 3-아미노-5-머캅토-1,2,4-트리아졸(3-Amino-5-mercapto-1,2,4-triazole), 3-머캅토-1,2,4-트리아졸(3-Mercapto-1,2,4-triazole), 트리아졸-5-카르복시산(Triazole-5-carboxylic acid), 1-메틸-3-머캅토-1,2,4-트리아졸(1-Methyl-3-mercapto-1,2,4-triazole) 및 1-페닐-5-머캅토테트라졸(1-Phenyl-5-mercapto tetrazole)로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.The heterocyclic compounds include benzotriazole, mercapto benzimidazole, mercapto benzotriazole, sodium mercapto benzotriazole, and 5-carboxybenzotriazole. (5-Carboxybenzotriazole), 3-Amino-5-mercapto-1,2,4-triazole (3-Amino-5-mercapto-1,2,4-triazole), 3-mercapto-1,2, 4-Mercapto-1,2,4-triazole, Triazole-5-carboxylic acid, 1-methyl-3-mercapto-1,2,4-triazole (1-Methyl-3-mercapto-1,2,4-triazole) and 1-Phenyl-5-mercapto tetrazole (1-Phenyl-5-mercapto tetrazole). there is.
일 실시예에 있어서, 상기 아민계 화합물은 에탄올아민, 2-(메틸아미노)에탄올, 2-메톡시에틸아민, 2-아미노-1-프로판올, 알라니놀, 2-에톡시에탄아민, N-에틸-N-프로필아민, 트리부틸아민, 2-(디메틸아미노)에탄올, N,N-디메틸벤젠아민, N,N-디부틸부탄아민 및 N-에틸프로판아민의 군에서 선택되는 1종 이상을 포함할 수 있다.In one embodiment, the amine-based compound is ethanolamine, 2-(methylamino)ethanol, 2-methoxyethylamine, 2-amino-1-propanol, alaninol, 2-ethoxyethaneamine, N- At least one selected from the group of ethyl-N-propylamine, tributylamine, 2-(dimethylamino)ethanol, N,N-dimethylbenzenamine, N,N-dibutylbutanamine, and N-ethylpropanamine It can be included.
일 실시예에 있어서, 상기 3족~8족의 전이 금속 화합물은, 크롬, 몰리브덴, 텅스텐 또는 티타늄을 포함하는 금속 화합물일 수 있다.In one embodiment, the transition metal compound of groups 3 to 8 may be a metal compound containing chromium, molybdenum, tungsten, or titanium.
일 실시예에 있어서, 상기 전이금속 화합물은, 크롬, 몰리브덴, 텅스텐 또는 티타늄의 산화물; 크롬, 몰리브덴, 텅스텐 또는 티타늄의 수산화물; 크롬, 몰리브덴, 텅스텐 또는 티타늄의 황산염, 질산염, 인산염, 염산염, 불산염 또는 초산염; 또는 크롬, 몰리브덴, 텅스텐 또는 티타늄의 산화물에서 유래된 화합물을 포함할 수 있다.In one embodiment, the transition metal compound is an oxide of chromium, molybdenum, tungsten, or titanium; Hydroxides of chromium, molybdenum, tungsten or titanium; Sulfates, nitrates, phosphates, hydrochlorides, fluorides or acetates of chromium, molybdenum, tungsten or titanium; Alternatively, it may include compounds derived from oxides of chromium, molybdenum, tungsten, or titanium.
일 실시예에 있어서, 상기 3족~8족의 전이 금속 화합물은 크롬산, 크롬(III)피콜리네이트, 중크롬산칼륨, 산화크롬, 크로밀 클로라이드, 황산크롬, 텅스텐디옥사이드, 텅스텐트리옥사이드, 텅스텐디설파이드, 텅스텐트리설파이드, 텅스텐디클로라이드, 텅스텐헥사클로라이드, 텅스텐테트라클로라이드, 디텅스텐데카클로라이드, 텅스텐트리클로라이드, 티타늄테트라클로라이드, 티타늄디설파이드, 티타늄할라이드, 몰리브덴옥사이그, 몰리브덴설파이드 또는 몰리브덴헥사카르보닐을 포함할 수 있다.In one embodiment, the transition metal compounds of groups 3 to 8 include chromic acid, chromium (III) picolinate, potassium dichromate, chromium oxide, chromyl chloride, chromium sulfate, tungsten dioxide, tungsten trioxide, tungsten disulfide, It may contain tungsten trisulfide, tungsten dichloride, tungsten hexachloride, tungsten tetrachloride, ditungsten decachloride, tungsten trichloride, titanium tetrachloride, titanium disulfide, titanium halide, molybdenum oxide, molybdenum sulfide or molybdenum hexacarbonyl. there is.
일 실시예에 있어서, 상기 금속포함 이형층은 니켈 및 몰리브덴을 포함할 수 있다.In one embodiment, the metal-containing release layer may include nickel and molybdenum.
일 실시예에 있어서, 상기 금속포함 이형층은 Ni 50~80중량% 및 몰리브덴 20~50중량%를 포함할 수 있다.In one embodiment, the metal-containing release layer may include 50 to 80% by weight of Ni and 20 to 50% by weight of molybdenum.
일 실시예에 있어서, 상기 이형층은 IPC-TM-650 규격에 의한 평가시 박리강도가 1~20gf/㎝일 수 있다.In one embodiment, the release layer may have a peel strength of 1 to 20 gf/cm when evaluated according to the IPC-TM-650 standard.
일 실시예에 있어서, 상기 금속포함 이형층은 0.01~0.2㎛의 두께를 가지며, 상기 유무기 이형층은 0.001~0.01㎛의 두께를 가질 수 있다.In one embodiment, the metal-containing release layer may have a thickness of 0.01 to 0.2 μm, and the organic-inorganic release layer may have a thickness of 0.001 to 0.01 μm.
본 발명은 또한 상기 복합 이형층을 포함하는 캐리어 부착 금속박을 제공한다.The present invention also provides a metal foil attached to a carrier including the composite release layer.
일 실시예에 있어서, 상기 캐리어 부착 금속박은, 캐리어; 상기 캐리어 상에 구비되는 상기 복합 이형층; 및 상기 복합 이형층 상에 구비되는 금속층을 구비하고, 상기 금속층은 복수의 돌기를 포함하는 금속박을 포함할 수 있다.In one embodiment, the metal foil attached to the carrier includes: a carrier; The composite release layer provided on the carrier; and a metal layer provided on the composite release layer, wherein the metal layer may include a metal foil including a plurality of protrusions.
일 실시예에 있어서, 상기 금속층은, 상기 이형층상에 형성되는 금속 스트라이크층; 및 상기 금속 스트라이크층상에 형성되는 복수의 돌기를 포함하는 금속박을 포함하며 상기 금속 스트라이크층은 금속의 피로인산염을 이용하여 pH 8~11의 조건에서 형성될 수 있다.In one embodiment, the metal layer includes: a metal strike layer formed on the release layer; and a metal foil including a plurality of protrusions formed on the metal strike layer. The metal strike layer may be formed under conditions of pH 8 to 11 using metal pyrophosphate.
일 실시예에 있어서, 상기 복수의 돌기는 상부가 평평한 것일 수 있다.In one embodiment, the plurality of protrusions may have flat tops.
본 발명에 의한 캐리어 부착 금속박용 복합 이형층 및 이를 포함하는 금속박은 유기 이형층에 금속성분을 혼합하여 유무기 복합 이형층을 제조하는 것으로 기존의 유기 이형층의 사용시 얼룩이 발생할 수 있다는 단점을 개선할 수 있다.The composite release layer for metal foil attached to a carrier according to the present invention and the metal foil containing the same are manufactured by mixing metal components in an organic release layer to produce an organic-inorganic composite release layer, which improves the disadvantage that stains may occur when using the existing organic release layer. You can.
또한 캐리어 부착 금속박용 복합 이형층 및 이를 포함하는 금속박은 금속포함 이형층과 유무기 복합 이형층을 사용하는 것으로 중성도금용액을 사용하는 구리 스트라이크(Strike)도금에 적용할 수 있다.In addition, the composite release layer for metal foil attached to a carrier and the metal foil containing the same use a metal-containing release layer and an organic-inorganic composite release layer and can be applied to copper strike plating using a neutral plating solution.
도 1은 기존의 캐리어 부착 금속박의 단면을 나타낸 것이다.Figure 1 shows a cross section of a conventional carrier-attached metal foil.
도 2는 본 발명의 일 실시예에 의한 캐리어 부착 금속박의 단면을 나타낸 것이다.Figure 2 shows a cross section of a metal foil attached to a carrier according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 의한 유무기 이형층의 접합구조를 나타낸 것이다.Figure 3 shows a bonding structure of an organic-inorganic release layer according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 의한 이형층의 이형시 유무기 이형층의 거동을 나타낸 것이다.Figure 4 shows the behavior of the organic and inorganic release layer when the release layer is released according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 의한 크롬 화합물의 상평형도를 나타낸 것이다.Figure 5 shows the phase equilibrium diagram of a chromium compound according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 의한 전이금속화합물의 상평형도를 나타낸 것으로 (a)는 몰리브덴, (b)는 티타늄, (c)는 텅스텐을 각각 나타낸 것이다.Figure 6 shows a phase equilibrium diagram of a transition metal compound according to an embodiment of the present invention, where (a) shows molybdenum, (b) shows titanium, and (c) shows tungsten.
도 7은 본 발명의 일 실시예에 의한 금속박 상에 형성된 복수의 돌기를 나타낸 것이다.Figure 7 shows a plurality of protrusions formed on a metal foil according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 의한 다양한 형상을 가지는 돌기의 모습을 나타낸 것이다.Figure 8 shows the appearance of protrusions having various shapes according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 의한 상부가 평평한 돌기가 형성된 사진을 나타낸 것이다.Figure 9 shows a photograph showing a protrusion with a flat top formed according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 의한 케리어층의 이형 이후 금속박 사진을 나타낸 것이다.Figure 10 shows a photograph of metal foil after release of the carrier layer according to an embodiment of the present invention.
도 11은 본 발명의 일 실시예에 의한 케리어층의 이형 이후 금속박 사진을 나타낸 것이다.Figure 11 shows a photograph of metal foil after release of the carrier layer according to an embodiment of the present invention.
이하에서는 본 발명의 바람직한 실시예를 상세하게 설명한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우 그 상세한 설명을 생략하기로 한다. 명세서 전체에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함하는 것으로 이해되어야 하고, “포함하다” 또는 “가지다”등의 용어는 기술되는 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또, 방법 또는 제조 방법을 수행함에 있어서, 상기 방법을 이루는 각 과정들은 문맥상 명백하게 특정 순서를 기재하지 않은 이상 명기된 순서와 다르게 일어날 수 있다. 즉, 각 과정들은 명기된 순서와 동일하게 일어날 수도 있고 실질적으로 동시에 수행될 수도 있으며 반대의 순서대로 수행될 수도 있다.Hereinafter, preferred embodiments of the present invention will be described in detail. In describing the present invention, if it is determined that a detailed description of related known technologies may obscure the gist of the present invention, the detailed description will be omitted. Throughout the specification, singular expressions should be understood to include plural expressions, unless the context clearly indicates otherwise, and terms such as “comprise” or “have” refer to the features, numbers, steps, operations, or components being described. , it is intended to specify the existence of a part or a combination thereof, but should be understood as not excluding in advance the possibility of the existence or addition of one or more other features, numbers, steps, operations, components, parts, or combinations thereof. . In addition, when performing a method or manufacturing method, each process forming the method may occur differently from the specified order unless a specific order is clearly stated in the context. That is, each process may occur in the same order as specified, may be performed substantially simultaneously, or may be performed in the opposite order.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예를 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Since the present invention can be modified in various ways and can have various embodiments, specific embodiments will be exemplified and explained in detail in the detailed description. However, this is not intended to limit the present invention to specific embodiments, and should be understood to include all transformations, equivalents, and substitutes included in the spirit and technical scope of the present invention.
본 명세서에 개시된 기술은 여기서 설명되는 구현예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 단지, 여기서 소개되는 구현예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 기술의 기술적 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 도면에서 각 장치의 구성요소를 명확하게 표현하기 위하여 상기 구성요소의 폭이나 두께 등의 크기를 다소 확대하여 나타내었다. 전체적으로 도면 설명시 관찰자 시점에서 설명하였고, 일 요소가 다른 요소 위에 위치하는 것으로 언급되는 경우, 이는 상기 일 요소가 다른 요소 위에 바로 위치하거나 또는 그들 요소들 사이에 추가적인 요소가 개재될 수 있다는 의미를 모두 포함한다. 또한, 해당 분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 본 발명의 사상을 다양한 다른 형태로 구현할 수 있을 것이다. 그리고 복수의 도면들 상에서 동일 부호는 실질적으로 서로 동일한 요소를 지칭한다.The technology disclosed in this specification is not limited to the implementation examples described herein and may be embodied in other forms. However, the implementation examples introduced here are provided to ensure that the disclosed content is thorough and complete and that the technical idea of the present technology can be sufficiently conveyed to those skilled in the art. In order to clearly express the components of each device in the drawing, the sizes of the components, such as width and thickness, are shown somewhat enlarged. When describing the drawing as a whole, it is described from the observer's point of view, and when an element is mentioned as being located above another element, this means that the element may be located directly above another element or that additional elements may be interposed between those elements. Includes. Additionally, those skilled in the art will be able to implement the idea of the present invention in various other forms without departing from the technical idea of the present invention. In addition, the same symbols in a plurality of drawings refer to substantially the same elements.
본 명세서에서, '및/또는' 이라는 용어는 복수의 기재된 항목들의 조합 또는 복수의 기재된 항목들 중의 어느 항목을 포함한다. 본 명세서에서, 'A 또는 B'는, 'A', 'B', 또는 'A와 B 모두'를 포함할 수 있다.As used herein, the term 'and/or' includes a combination of a plurality of listed items or any of a plurality of listed items. In this specification, 'A or B' may include 'A', 'B', or 'both A and B'.
본 발명은 캐리어 부착 금속박에서 캐리어가 원활하게 제거될 수 있도록 하는 이형층에 있어서, 상기 이형층은, 캐리어상에 형성되는 금속포함 이형층; 및 상기 금속포함 이형층 상에 형성되는 유무기 이형층을 포함하며, 상기 유무기 이형층은, 질소를 포함하는 헤테로고리 화합물; 아민계 화합물; 및 3족~8족의 전이 금속 화합물을 포함하는 캐리어 부착 금속박용 복합 이형층에 관한 것이다.The present invention relates to a release layer that allows the carrier to be smoothly removed from the carrier-attached metal foil, wherein the release layer includes a metal-containing release layer formed on the carrier; and an organic-inorganic release layer formed on the metal-containing release layer, wherein the organic-inorganic release layer includes a heterocyclic compound containing nitrogen; Amine-based compounds; and a composite release layer for metal foil with a carrier containing a transition metal compound of groups 3 to 8.
도 1은 기존의 이형층을 포함하는 캐리어 부착이형층을 나타낸 것이다.Figure 1 shows a carrier adhesive release layer including a conventional release layer.
기존 이형층(도 1의 (a))의 경우 이형 박리층(250) 금속성분의 이형층(240)을 사용하고 있어 금속 성분이 구리박층에 확산되거나 이형시 구리박의 표면에 상기 금속 이형층(240)의 성분이 전사되어 구리박의 성능이 저하되는 불량이 발생하고 있다. 이를 방지하기 위하여 유기 이형층(230)을 사용하거나 금속 이형층의 표면에 유기 확산방지층을 형성하여 금속성분의 확산 및 전사를 방지하는 기술이 사용되고 있다(도 1의 (b)). 하지만 이러한 유기성분의 경우 질소성분을 함유하고 있어 금속박형성에 많이 사용되는 스트라이크 도금에는 적용되지 못한다는 단점을 가지고 있다. In the case of the existing release layer ((a) in Figure 1), the release peeling layer 250 and the release layer 240 of a metal component are used, so the metal component diffuses into the copper foil layer or the metal release layer is deposited on the surface of the copper foil during release. The component of (240) is transferred, causing a defect in which the performance of the copper foil is deteriorated. To prevent this, a technique is used to prevent diffusion and transfer of metal components by using an organic release layer 230 or forming an organic diffusion barrier layer on the surface of the metal release layer (FIG. 1(b)). However, these organic components have the disadvantage of not being applicable to strike plating, which is widely used in forming metal foil, because they contain nitrogen.
도 2는 본 발명의 캐리어 부착 금속박을 나타낸 것이다.Figure 2 shows the metal foil with a carrier of the present invention.
본 발명의 경우 캐리어층의 상에 금속포함 이형층을 형성하되, 상기 금속포함 이형층과 금속박 사이에 유무기 이형층을 형성하는 것으로 금속의 확산을 방지하면서도 이형시 얼룩이나 금속의 전사를 최소화할 수 있는 캐리어 부착 금속박용 복합 이형층을 제공한다.In the case of the present invention, a metal-containing release layer is formed on the carrier layer, and an organic-inorganic release layer is formed between the metal-containing release layer and the metal foil to prevent metal diffusion and minimize stains or metal transfer during release. Provides a composite release layer for metal foil with a carrier attached.
이를 위하여 이형층은, 캐리어상에 형성되는 금속포함 이형층; 및 상기 금속포함 이형층 상에 형성되는 유무기 이형층을 포함할 수 있다.For this purpose, the release layer includes a metal-containing release layer formed on the carrier; And it may include an organic-inorganic release layer formed on the metal-containing release layer.
상기 금속포함 이형층(220)은 상기 캐리어(300) 상에 형성되어 상기 캐리어의 이형이 용이하도록 하는 층으로, 니켈 및 몰리브덴을 포함할 수 있다.The metal-containing release layer 220 is a layer formed on the carrier 300 to facilitate release of the carrier, and may include nickel and molybdenum.
상기 니켈 및 몰리브덴의 경우 치밀한 이형층을 형성할 수 있어 이형력을 안정적으로 확보할 수 있지만, 금속박에 많이 사용되는 구리 또는 알루미늄과의 친화성을 가지고 있어 단독으로 사용하는 경우 금속박 내로 확산되거나 금속박의 표면에 전사되어 얼룩이 발생하고 있다. 따라서 본 발명의 경우 상기 금속포함 이형층(220)의 이형력을 낮추기 위하여 유무기 이형층(210)을 추가로 사용할 수 있으며, 이에 관해서는 후술하기로 한다.In the case of the nickel and molybdenum, they can form a dense release layer and stably secure the release force, but they have affinity for copper or aluminum, which are commonly used in metal foil, so when used alone, they diffuse into the metal foil or form part of the metal foil. It is transferred to the surface, causing stains. Therefore, in the case of the present invention, an organic/inorganic release layer 210 can be additionally used to lower the release force of the metal-containing release layer 220, which will be described later.
상기 금속포함 이형층(220)의 경우 니켈 및 몰리브덴을 동시에 도금하여 니켈-몰리브덴 합금 도금층이 형성될 수 있다. 이를 상세히 살펴보면 상기 금속포함 이형층을 형성하기 위하여 상기 캐리어층을 도금용액에 침지할 수 있으며, 상기 금속포함 이형층을 형성하기 위한 도금액은 황산니켈(NiSO4) 및 몰리브덴산 니켈(Ni2MoO4)을 니켈 및 몰리브덴의 공급원으로 포함될 수 있다.In the case of the metal-containing release layer 220, a nickel-molybdenum alloy plating layer may be formed by simultaneously plating nickel and molybdenum. Looking at this in detail, the carrier layer can be immersed in a plating solution to form the metal-containing release layer, and the plating solution for forming the metal-containing release layer is nickel sulfate (NiSO 4 ) and nickel molybdate (Ni 2 MoO 4 ) may be included as a source of nickel and molybdenum.
이때 상기 황산니켈 및 상기 몰리브덴산 니켈의 혼합비는 몰비로 1:5~5:1일 수 있으며, 바람직하게는 1:2~2:1 가장 바람직하게는 1:1일 수 있다. 상기 범위를 벗어나서 혼합되는 경우 몰리브덴 또는 니켈의 함량이 부족하여 원하는 이형력을 가질 수 없거나 과도한 이형력으로 인하여 이형시 잔유물이 발생할 수 있다.At this time, the mixing ratio of the nickel sulfate and the nickel molybdate may be 1:5 to 5:1 in molar ratio, preferably 1:2 to 2:1 and most preferably 1:1. If mixed outside the above range, the desired release force may not be achieved due to insufficient molybdenum or nickel content, or residue may be generated during release due to excessive release force.
상기 황산니켈 및 상기 몰리브덴산 니켈은 상기 도금액에 각각 0.1~0.5M의 비율로 포함될 수 있다. 상기 비율 미만으로 포함되는 경우 원하는 두께의 이형층을 형성할 수 없으며, 상기 범위를 초과하는 경우 과도한 석출로 인하여 상기 이형층의 표면조도가 상승할 수 있다.The nickel sulfate and the nickel molybdate may each be included in the plating solution at a ratio of 0.1 to 0.5 M. If it is included in less than the above ratio, a release layer of the desired thickness cannot be formed, and if it exceeds the above range, the surface roughness of the release layer may increase due to excessive precipitation.
상기와 같은 비율로 상기 황산니켈 및 상기 몰리브덴산 니켈을 포함하는 도금액을 이용하여 도금을 수행하는 경우 상기 금속포함 이형층에는 상기 상기 황산니켈 및 상기 몰리브덴산 니켈이 Ni 50~80중량% 및 몰리브덴 20~50중량%를 포함할 수 있다. 또한 이 경우 상기 니켈 및 몰리브덴의 몰비는 약 1:1~4:1일 수 있다. 상기 범위 내에서는 상기 금속포함 이형층의 표면 조도가 낮아지고 균일한 두꼐로 도금되어 원하는 이형력을 가질 수 있지만 상기 범위를 벗어나는 경우 원하는 이형력을 가질 수 없거나 과도한 이형력으로 인하여 이형시 잔유물이 발생할 수 있다.When plating is performed using a plating solution containing the nickel sulfate and the nickel molybdate in the same ratio as above, the nickel sulfate and the nickel molybdate are 50 to 80% by weight of Ni and 20% by weight of molybdenum in the metal-containing release layer. It may contain ~50% by weight. Also, in this case, the molar ratio of nickel and molybdenum may be about 1:1 to 4:1. Within the above range, the surface roughness of the metal-containing release layer is lowered and plated to a uniform thickness, so that the desired release force can be obtained. However, if it is outside the above range, the desired release force cannot be obtained, or residue may be generated during release due to excessive release force. You can.
상기 도금용액은 상기 황산니켈 및 상기 몰리브덴산 니켈이외에 시트르산(Citrate) 또는 타르타르산(Tartrate)을 포함할 수 있다. 상기 시트르산 또는 상기 타르타르산은 상기 도금액에 0.2~0.4M의 비율로 혼합될 수 있다. 상기 비율 미만으로 포함되는 경우 원하는 도금이 수행되지 않을 수 있고 상기 범위를 초과하는 경우 도금층의 두께가 일정하지 않을 수 있으며, 표면조도가 원하지 않게 상승될 수 있다.The plating solution may include citric acid or tartaric acid in addition to the nickel sulfate and nickel molybdate. The citric acid or tartaric acid may be mixed in the plating solution at a ratio of 0.2 to 0.4 M. If the content is less than the above ratio, the desired plating may not be performed, and if it is more than the above range, the thickness of the plating layer may not be constant, and the surface roughness may increase undesirably.
상기와 같이 금속포함 이형층(220)이 형성된 이후 유무기 이형층(210)이 형성될 수 있다. 상기 유무기 이형층(210)은 상기 금속포함 이형층(220)에 포함되어 있는 금속이 후술할 금속박의 내부로 확산되거나 이형시 금속박의 표면에 전사되는 것을 막는 층으로, 질소를 포함하는 헤테로고리 화합물, 아민계 화합물 및 3족~8족의 전이 금속 화합물을 포함할 수 있다.After the metal-containing release layer 220 is formed as described above, the organic-inorganic release layer 210 may be formed. The organic-inorganic release layer 210 is a layer that prevents the metal contained in the metal-containing release layer 220 from diffusing into the interior of the metal foil, which will be described later, or from being transferred to the surface of the metal foil during release, and is a heterocycle containing nitrogen. It may include compounds, amine compounds, and transition metal compounds of groups 3 to 8.
일반적으로 사용되는 유기 이형층의 경우 다량의 질소성분을 함유하고 있으므로 이형시 질소 성분으로 인한 얼룩이 발생할 수 있다. 특히 구리박 형성에 많아 사용되는 스트라이크(Strike) 도금을 수행하는 경우 이러한 얼룩이 더욱 많이 발생하는 것으로 알려져 있다. 따라서 본 발명의 경우 상기 유기 이형층의 형성시 전이금속 화합물을 포함하는 것으로 유무기 이형층을 형성할 수 있으며 이를 통하여 이형시 발생하는 얼룩을 최소화 할 수 있다.Since the commonly used organic release layer contains a large amount of nitrogen, stains due to nitrogen may occur during release. In particular, it is known that such stains occur more often when strike plating, which is widely used in forming copper foil, is performed. Therefore, in the case of the present invention, an organic and inorganic release layer can be formed by including a transition metal compound when forming the organic release layer, and through this, stains generated during release can be minimized.
이를 위하여 상기 유무기 이형층은, 질소를 포함하는 헤테로고리 화합물, 아민계 화합물; 및 3족~8족의 전이 금속 화합물을 포함할 수 있다.For this purpose, the organic-inorganic release layer includes a heterocyclic compound containing nitrogen, an amine-based compound; and transition metal compounds of groups 3 to 8.
상기 질소를 포함하는 헤테로고리 화합물은, 고리형의 화합물의 고리를 구성하는 원자 중 하나 또는 그 이상의 원자가 탄소가 아닌 다른 원자로 대체된 화합물을 의미하는 것으로 본 발명의 경우 상기 고리의 탄소원자가 질소로 대체된 헤테로고리 화합물을 사용할 수 있다. The heterocyclic compound containing nitrogen refers to a compound in which one or more atoms constituting the ring of a cyclic compound are replaced with an atom other than carbon. In the case of the present invention, the carbon atom of the ring is replaced with nitrogen. Heterocyclic compounds can be used.
이를 구체적으로 살펴보면, 상기 헤테로고리 화합물은 2개 이상의 질소원자를 가지는 고리형 화합물, 더욱 구체적으로는 벤조트리아졸(Benzotriazole), 머캅토벤지이미다졸(Mercapto benzimidazole), 머캅토벤조트리아졸(Mercapto benzotriazole), 소듐머캅토벤조트리아졸(Sodium mercapto benzotriazole), 5-카르복시벤조트리아졸(5-Carboxybenzotriazole), 3-아미노-5-머캅토-1,2,4-트리아졸(3-Amino-5-mercapto-1,2,4-triazole), 3-머캅토-1,2,4-트리아졸(3-Mercapto-1,2,4-triazole), 트리아졸-5-카르복시산(Triazole-5-carboxylic acid), 1-메틸-3-머캅토-1,2,4-트리아졸(1-Methyl-3-mercapto-1,2,4-triazole) 및 1-페닐-5-머캅토테트라졸(1-Phenyl-5-mercapto tetrazole)로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다. 이러한 고리형 화합물이 상기 유무기 이형층에 포함되는 것으로 상기 유무기 이형층의 구조가 안정적으로 유지될 수 있으며, 또한 상기 유무기 이형층 상하부 사이의 확산을 저지할 수 있다.Looking at this specifically, the heterocyclic compound is a cyclic compound having two or more nitrogen atoms, more specifically, benzotriazole, mercapto benzimidazole, and mercapto benzotriazole. ), Sodium mercapto benzotriazole, 5-Carboxybenzotriazole, 3-Amino-5-mercapto-1,2,4-triazole (3-Amino-5- mercapto-1,2,4-triazole), 3-Mercapto-1,2,4-triazole, triazole-5-carboxylic acid), 1-Methyl-3-mercapto-1,2,4-triazole and 1-phenyl-5-mercaptotetrazole (1 -Phenyl-5-mercapto tetrazole) may include one or more selected from the group consisting of By including such a cyclic compound in the organic-inorganic release layer, the structure of the organic-inorganic release layer can be stably maintained and diffusion between the top and bottom of the organic-inorganic release layer can be prevented.
또한 상기 헤테로고리 화합물은 하나의 성분이 단독으로 사용될 수도 있지만, 박리시 이형을 쉽게 하기 위하여 2종 이상의 헤테로고리 화합물을 조합하여 사용할 수 있다. 상기와 같이 2종의 헤테로고리 화합물을 포함하는 경우 각 헤테로고리 화합물의 혼합비는 1 내지 5: 5 내지 1의 비율일 수 있으며, 바람직하게는 1:1의 비율로 즉 동량이 혼합되어 사용될 수 있다. 상기 헤테로고리 화합물이 상기 범위를 벗어나는 비율로 혼합되는 경우 혼합에 의한 효과를 기대하기 어렵다. In addition, the heterocyclic compound may be used as a single component, but two or more types of heterocyclic compounds may be used in combination to facilitate release during peeling. When two types of heterocyclic compounds are included as described above, the mixing ratio of each heterocyclic compound may be 1 to 5: 5 to 1, and is preferably used in a 1:1 ratio, that is, equal amounts can be mixed. . If the heterocyclic compound is mixed in a ratio outside the above range, it is difficult to expect an effect from mixing.
아울러 상기 헤테로고리 화합물은 상기 유무기 이형층을 형성하기 위한 도금시 도금액에 50~200g/L의 비율로 혼합되어 사용될 수 있다. 상기 헤테로고리 화합물이 50g/L미만의 비율로 혼합되는 경우 상기 유무기 이형층의 박리강도가 낮아져 캐리어가 원하지 않는 시점에서 분리될 수 있으며, 200g/L를 초과하는 비율로 혼합되는 경우 후술할 아민계 화합물에 의하여 용해되지 않은 헤테로고리 화합물이 존재하여 도금시 불량이 발생할 수 있다.In addition, the heterocyclic compound may be mixed and used in a plating solution at a ratio of 50 to 200 g/L during plating to form the organic-inorganic release layer. If the heterocyclic compound is mixed at a ratio of less than 50 g/L, the peeling strength of the organic-inorganic release layer may be lowered and the carrier may be separated at an undesirable point, and if the heterocyclic compound is mixed at a ratio exceeding 200 g/L, the amine to be described later Defects may occur during plating due to the presence of heterocyclic compounds that are not dissolved by the base compound.
상기 아민계 화합물은 상기 헤테로고리 화합물을 용해하는 용매로 사용됨과 동시에 후술할 금속화합물과 반응하여 적절한 이형력을 확보하는 역할을 할 수 있다. 상기 아민계 화합물의 경우 암모니아의 수소원자중 하나 이상이 탄화수소로 치환된 화합물을 의미하는 것이며 본 발명의 경우 상기 수소원자중 1개만 탄화수로로 치환된 1차 아민계 화합물을 사용하는 것이 바람직하다. 더욱 바람직하게는 상기 1차 아민계 화합물의 탄화수소에 하이드록시기가 부착된 1차 아민 알코올계 화합물을 사용할 수 있다.The amine-based compound can be used as a solvent to dissolve the heterocyclic compound and at the same time react with a metal compound to be described later to secure an appropriate mold release force. In the case of the amine-based compound, it refers to a compound in which at least one of the hydrogen atoms of ammonia is replaced with a hydrocarbon. In the case of the present invention, it is preferable to use a primary amine-based compound in which only one of the hydrogen atoms is replaced with a hydrocarbon. More preferably, a primary amine alcohol-based compound having a hydroxy group attached to the hydrocarbon of the primary amine-based compound may be used.
상기 1차 아민 알코올계 화합물의 일 예로서, 에탄올아민, 2-(메틸아미노)에탄올, 2-메톡시에틸아민, 2-아미노-1-프로판올, 알라니놀, 2-에톡시에탄아민, N-에틸-N-프로필아민, 트리부틸아민, 2-(디메틸아미노)에탄올, N,N-디메틸벤젠아민, N,N-디부틸부탄아민 및 N-에틸프로판아민의 군에서 선택되는 1종 이상을 포함할 수 있으며, 가장 바람직하게는 에탄올아민이 사용될 수 있다.Examples of the primary amine alcohol-based compounds include ethanolamine, 2-(methylamino)ethanol, 2-methoxyethylamine, 2-amino-1-propanol, alaninol, 2-ethoxyethaneamine, N -One or more selected from the group of ethyl-N-propylamine, tributylamine, 2-(dimethylamino)ethanol, N,N-dimethylbenzenamine, N,N-dibutylbutanamine, and N-ethylpropanamine It may include, and most preferably, ethanolamine may be used.
상기 아민계 화합물은 상기 유무기 이형층을 형성하기 위한 도금시 도금액에 5~20g/L가 포함될 수 있다. 상기 아민계 화합물이 5g/L미만으로 포함되는 경우 상기 헤테로고리 화합물의 용해가 원활하지 않아 원활한 유무기 이형층의 형성이 어려울 수 있으며, 20g/L를 초과하는 비율로 포함되는 경우 상기 헤테로고리 화합물의 비율이 상대적으로 낮아져 박리강도가 감소될 수 있다.The amine-based compound may be included in an amount of 5 to 20 g/L in the plating solution during plating to form the organic-inorganic release layer. If the amine compound is contained in an amount of less than 5 g/L, the heterocyclic compound may not dissolve smoothly, making it difficult to form a smooth organic-inorganic release layer, and if it is contained in a ratio exceeding 20 g/L, the heterocyclic compound may be difficult to form. The ratio of is relatively low, which may reduce the peel strength.
상기와 같이 헤테로고리 화합물 및 상기 아민계 화합물을 혼합하여 사용하는 경우에도 유기 이형층의 형성이 가능하지만, 위에서 살펴본 바와 같이 유기 이형층의 경우 이형시 질소 성분이 남아 있어 얼룩이 발생하는 경우가 많이 발생하고 있다(도 3의 좌측 결합 참조). 또한 상기 유기이형층의 경우 상기 이형층의 상부 및 하부와 질소 산소 및 수소에 의한 결합으로 연결되어 있으므로, 높은 이형력을 가짐에 따라 이형시 잔유물이 발생할 수 있다는 단점을 가지고 있다.As described above, the formation of an organic release layer is possible even when using a mixture of the heterocyclic compound and the amine-based compound. However, as seen above, in the case of the organic release layer, nitrogen content remains during release, causing stains in many cases. (see left combination in Figure 3). In addition, in the case of the organic release layer, since it is connected to the upper and lower parts of the release layer through bonds by nitrogen oxygen and hydrogen, it has a disadvantage in that residues may be generated during release due to its high release force.
따라서 본 발명의 경우 이러한 유기 이형층의 단점을 개선하기 위하여 3족~8족의 전이 금속 화합물을 혼합하여 유무기 이형층을 제조하는 것으로 잔유물에 의한 불량을 최소화함과 동시에 이형력을 조절할 수 있다.Therefore, in the case of the present invention, in order to improve the disadvantages of the organic release layer, an organic-inorganic release layer is manufactured by mixing transition metal compounds of groups 3 to 8, thereby minimizing defects caused by residues and controlling the release force. .
이를 상세히 살펴보면 상기 캐리어의 상부에 형성되는 금속포함 이형층과 상기 금속박 사이에는 상기 유무기 이형층이 존재할 수 있다. 이때 상기 유기성분으로 사용되는 헤테로고리 화합물은 상기 금속포함 이형층과 상기 금속박 사이에서 강한 결합력을 가지는 질소 산소 및 수소에 의한 결합으로 연결될 수 있다. 하지만 상기 유무기 이형층에 포함되는 전이금속 화합물의 경우 상기 금속포함 이형층의 표면과 상기 금속박의 표면에 분산되어 층을 형성할 수 있다. 이때 상기 금속포함 이형층의 표면에 형성된 상기 전이금속화합물 층과 상기 금속박의 표면에 형성되는 전이금속 화합물층은 상호간에 하이드록시기를 이용하여 결합될 수 있지만(도 3의 우측 결합 참조), 이는 수소결합이 아닌 약한 공유결합의 일종이며 전이금속중 일부만이 결합되고 있으므로 약한 결합력을 가질 수 있다. 즉 상기 유무기 이형층에 포함되는 전이금속 화합물의 양이 늘어나게 되면 전이금속 화합물 층사이의 결합이 늘어나게 되어 약한 이형력을 가지는 유무기 이형층이 형성될 수 있으며, 전이금속 화합물의 양이 줄어들게 되면 상기 헤테로고리화합물에 의한 결합이 늘어나게 되어 강한 이형력을 가지는 이형층을 형성할 수 있다.Looking at this in detail, the organic-inorganic release layer may exist between the metal foil and the metal-containing release layer formed on the top of the carrier. At this time, the heterocyclic compound used as the organic component may be connected through a bond between the metal-containing release layer and the metal foil by nitrogen oxygen and hydrogen having a strong bonding force. However, in the case of the transition metal compound included in the organic-inorganic release layer, it may be dispersed on the surface of the metal-containing release layer and the surface of the metal foil to form a layer. At this time, the transition metal compound layer formed on the surface of the metal-containing release layer and the transition metal compound layer formed on the surface of the metal foil may be bonded to each other using hydroxy groups (see bond on the right side of Figure 3), but this is hydrogen bonding. It is a type of weak covalent bond, and since only some of the transition metals are bonded, it can have weak bonding strength. That is, if the amount of the transition metal compound included in the organic-inorganic release layer increases, the bond between the transition metal compound layers increases, thereby forming an organic-inorganic release layer with weak release force, and if the amount of the transition metal compound decreases, the bond between the transition metal compound layers increases. As the bonds caused by the heterocyclic compound are increased, a release layer with strong release force can be formed.
또한 상기 유무기 이형층이 분리될 때, 상기 전이금속화합물 층사이의 공유결합이 끊어지게 되어 상기 금속박과 상기 금속포함 이형층의 양측에 이형층 잔유물이 존재할 수 있지만, 이는 극소량의 유무기 성분만을 남기고 있을 뿐, 상기 금속박에 얼룩을 방지함과 동시에 에칭을 가공과정에 의하여 용이하게 제거될 수 있다(도 4 참조).In addition, when the organic-inorganic release layer is separated, the covalent bond between the transition metal compound layers is broken, so release layer residues may exist on both sides of the metal foil and the metal-containing release layer, but this only contains a very small amount of organic and inorganic components. Just leaving it on prevents stains on the metal foil and at the same time, it can be easily removed through the etching process (see Figure 4).
상기 3족~8족의 전이 금속 화합물은 상기 3~8족에 속해있는 전이금속을 포함하는 화합물이라면 제한없이 사용할 수 있지만, 바람직하게는 크롬, 몰리브덴, 텅스텐 또는 티타늄을 포함하는 금속 화합물일 수 있다. The transition metal compounds of groups 3 to 8 may be used without limitation as long as they are compounds containing transition metals belonging to groups 3 to 8, but are preferably metal compounds containing chromium, molybdenum, tungsten or titanium. .
이를 더욱 상세히 살펴보며, 상기 전이금속 화합물은 크롬, 몰리브덴, 텅스텐 또는 티타늄의 산화물; 크롬, 몰리브덴, 텅스텐 또는 티타늄의 수산화물; 크롬, 몰리브덴, 텅스텐 또는 티타늄의 황산염, 질산염, 인산염, 염산염, 불산염 또는 초산염; 또는 크롬, 몰리브덴, 텅스텐 또는 티타늄의 산화물에서 유래된 화합물을 포함할 수 있다.Looking at this in more detail, the transition metal compound may be an oxide of chromium, molybdenum, tungsten or titanium; Hydroxides of chromium, molybdenum, tungsten or titanium; Sulfates, nitrates, phosphates, hydrochlorides, fluorides or acetates of chromium, molybdenum, tungsten or titanium; Alternatively, it may include compounds derived from oxides of chromium, molybdenum, tungsten, or titanium.
특히 상기 유무기 이형층에 포함되는 금속성분의 종류에 따라 상기 유무기 이형층은 그 피막 형성 조건이 상이하므로 각 공정조건에 따라 적절히 선택하여 사용하는 것이 바람직하다. 일예로서, 크롬을 포함하는 전이금속화합물의 경우 pH6~10사이에서 상기 함수산화크롬 피막을 형성할 수 있으며(도 5 참조), 몰리브덴을 포함하는 전이금속 화합물은 pH3~7에서(도 6의 (a)), 티타늄을 포함하는 전이금속화합물은 pH 2~8에서(도 6의 (b)), 텅스텐을 포함하는 전이금속화합물은 pH2~4범위(도 6의 (c))에서 피막의 형성이 가능하다. 따라서 각 공정조건에 따라 적절한 금속을 포함하는 화합물을 사용하는 것이 바람직하다.In particular, the organic-inorganic release layer has different film formation conditions depending on the type of metal component included in the organic-inorganic release layer, so it is desirable to select and use it appropriately according to each process condition. As an example, in the case of a transition metal compound containing chromium, the hydrous chromium oxide film can be formed between pH 6 and 10 (see Figure 5), and a transition metal compound containing molybdenum can form the hydrous chromium oxide film at pH 3 to 7 (see Figure 6). a)), transition metal compounds containing titanium form a film at pH 2 to 8 ((b) in Figure 6), and transition metal compounds containing tungsten form a film at pH 2 to 4 ((c) in Figure 6). This is possible. Therefore, it is desirable to use a compound containing an appropriate metal according to each process condition.
또한 상기 전이금속화합물의 경우 다양한 형태를 가지는 화합물이 사용될 수 있다. 일 예로서, 상기 크롬을 포함하는 전이금속 화합물은 크롬산, 크롬(III)피콜리네이트, 중크롬산칼륨, 산화크롬, 크로밀 클로라이드 또는 황산크롬을 포함할 수 있다.Additionally, in the case of the transition metal compound, compounds having various forms may be used. As an example, the transition metal compound containing chromium may include chromic acid, chromium (III) picolinate, potassium dichromate, chromium oxide, chromyl chloride, or chromium sulfate.
상기 크롬산의 경우 크롬의 산화물인 산화크롬이 물에 용해되어 생성되는 화합물로 가장 보편적으로 사용될 수 있다.In the case of chromic acid, it can be most commonly used as a compound produced by dissolving chromium oxide, an oxide of chromium, in water.
상기 크롬(III)피콜리네이트(Chromium(III) picolinate)는 영해 및 분해가 쉽게 일어나는 크롬화합물로서, Cr-N피막을 형성하는 것에 용이하게 사용될 수 있다.Chromium(III) picolinate is a chromium compound that is easily degraded and decomposed, and can be easily used to form a Cr-N film.
상기 중크롬산칼륨(Potassium dichromate)은 산화력이 우수하며, 가징 보편적으로 사용되는 크롬화합물이다. 상기 산화크롬(Chromium trioxide)은 크롬도금용액의 금속염으로 보편적으로 사용되고 있으며, 크로밀 클로라이드(Chromyl chloride)는 염산과 반응하여 크롬염을 형성할 수 있다. 상기 황산크롬(Chromium(III) sulfate)의 경우 상기 금속포함 이형층의 표면에 크롬황화물 피막을 형성할 수 있다.Potassium dichromate has excellent oxidizing power and is the most commonly used chromium compound. Chromium trioxide is commonly used as a metal salt in chrome plating solutions, and chromyl chloride can react with hydrochloric acid to form chromium salt. In the case of chromium(III) sulfate, a chromium sulfide film can be formed on the surface of the metal-containing release layer.
즉 상기 크롬의 예에서 본 바와 같이 다양한 전이금속화합물이 상기 유무기 이형층에 사용될 수 있으며, 각 공정에 따라 적절히 선택하여 사용될 수 있다.That is, as seen in the example of chromium, various transition metal compounds can be used in the organic-inorganic release layer, and can be appropriately selected and used according to each process.
예를 들어 텅스텐디옥사이드, 텅스텐트리옥사이드, 텅스텐디설파이드, 텅스텐트리설파이드, 텅스텐디클로라이드, 텅스텐헥사클로라이드, 텅스텐테트라클로라이드, 디텅스텐데카클로라이드, 텅스텐트리클로라이드, 티타늄테트라클로라이드, 티타늄디설파이드, 티타늄할라이드, 몰리브덴옥사이그, 몰리브덴설파이드 또는 몰리브덴헥사카르보닐과 같은 전이금속 화합물이 사용될 수 있다.For example, tungsten dioxide, tungsten trioxide, tungsten disulfide, tungsten trisulfide, tungsten dichloride, tungsten hexachloride, tungsten tetrachloride, ditungsten decachloride, tungsten trichloride, titanium tetrachloride, titanium disulfide, titanium halide, molybdenum oxide. Transition metal compounds such as molybdenum sulfide or molybdenum hexacarbonyl can be used.
상기 전이금속 화합물은 상기 유무기 이형층을 형성하기 위한 도금시 도금액에 중량기준 20~2000ppm이 포함될 수 있다. 상기 전이금속 화합물이 20ppm미만으로 포함되는 경우 상기 전이금속 화합물에 의한 얼룩방지 및 이형력 제어효과가 나타나지 않을 수 있으며, 2000ppm을 초과하는 비율로 포함되는 경우 이형력이 약해져 캐리어가 원하지 않는 시점에 분리될 수 있다.The transition metal compound may be included in an amount of 20 to 2000 ppm by weight in the plating solution during plating to form the organic-inorganic release layer. If the transition metal compound is included at less than 20ppm, the stain prevention and release force control effects of the transition metal compound may not appear, and if it is included at a rate exceeding 2000ppm, the release force will be weakened and the carrier will separate at an unwanted time. It can be.
상기 유무기 이형층은 pH5~7 전류밀도 5~7ASD 및 도금시간 20~60초의 조건에서 수행되는 것이 바람직하다. 상기 범위 내에서는 상기 유무기 이형층이 정상적으로 형성될 수 있지만, 상기 범위를 벗어나는 경우 상기 전이금속 화합물이 상기 캐리어층의 표면에 도금되지 못하거나 이형력의 조절이 어려울 수 있다. The organic-inorganic release layer is preferably performed under conditions of pH 5-7, current density 5-7 ASD, and plating time 20-60 seconds. Within the above range, the organic/inorganic release layer can be formed normally, but if it is outside the above range, the transition metal compound may not be plated on the surface of the carrier layer or it may be difficult to control the release force.
아울러 본 발명의 유무기 이형층의 도금과정에서 전류효율은 5~30%를 가질 수 있다. 이러한 고전류 도금의 경우 다량의 수소가 발생할 수 있지만, 상기 유무기 이형층을 균일하게 형성할 수 있다.In addition, during the plating process of the organic-inorganic release layer of the present invention, the current efficiency may be 5 to 30%. In the case of such high current plating, a large amount of hydrogen may be generated, but the organic/inorganic release layer can be formed uniformly.
상기 이형층은 IPC-TM-650 규격에 의한 평가시 박리강도가 1~20gf/㎝일 수 있다. 상기 이형층의 박리강도가 1gf/㎝ 미만인 경우 원하지 않는 시점에 캐리어가 분리될 수 있으며, 20gf/㎝를 초과하는 경우 상기 이형층을 이용한 캐리어 박리시 잔유물이 남을 수 잇다.The release layer may have a peel strength of 1 to 20 gf/cm when evaluated according to the IPC-TM-650 standard. If the peel strength of the release layer is less than 1 gf/cm, the carrier may be separated at an undesirable time, and if it exceeds 20 gf/cm, a residue may remain when the carrier is peeled using the release layer.
또한 금속포함 이형층은 0.01~0.2㎛의 두께를 가지며, 상기 유무기 이형층은 0.001~0.01㎛의 두께를 가질 수 있다. 상기 두께 범위 내에서는 상기 복합 이형층이 원활한 이형력을 가질 수 있지만, 상기 범위 미만의 두께를 가지는 경우 상기 캐리어의 금속성분이 금속박 쪽으로 확산될 수 있으며, 상기 범위를 초과하는 두께를 가지는 경우 이형이후 이형층 성분이 금속박에 잔류할 수 있다.Additionally, the metal-containing release layer may have a thickness of 0.01 to 0.2 μm, and the organic-inorganic release layer may have a thickness of 0.001 to 0.01 μm. Within the above thickness range, the composite release layer may have a smooth release force. However, if the thickness is less than the above range, the metal component of the carrier may diffuse toward the metal foil, and if the thickness exceeds the above range, after release Release layer components may remain in the metal foil.
본 발명은 또한 상기 유무기 이형층을 포함하는 캐리어 부착 금속박을 제공한다. 본 발명의 이형층의 경우 위에서 살펴본 바와 같이 금속 포함 이형층과 유무기 이형층의 복합이형층으로 구성될 수 있으며, 이에 따라 기존의 캐리어 부착 금속박에 비하여 이형시 얼룩발생이 최소화될 수 있는 이형층을 형성할 수 있다는 장점을 가질 수 있다.The present invention also provides a metal foil attached to a carrier including the organic-inorganic release layer. In the case of the release layer of the present invention, as seen above, it can be composed of a composite release layer of a metal-containing release layer and an organic-inorganic release layer. Accordingly, compared to the existing metal foil attached to a carrier, the release layer can minimize the occurrence of stains during release. It can have the advantage of being able to form .
상기 캐리어 부착 금속박은, 캐리어; 상기 캐리어 상에 구비되는 상기 복합 이형층; 및 상기 복합 이형층 상에 구비되는 금속층을 구비하고, 상기 금속층은 복수의 돌기를 포함하는 금속박을 포함할 수 있다.The metal foil attached to the carrier includes: a carrier; The composite release layer provided on the carrier; and a metal layer provided on the composite release layer, wherein the metal layer may include a metal foil including a plurality of protrusions.
본 발명에 따른 금속박(100)은 상부가 평평한 복수의 돌기(10)를 포함한다. 상기 돌기(10)는 금속박(100)의 표면에서 수직 상부방향으로 돌출된 금속 결정 입자를 의미하는 것일 수 있다. 구체적으로 상기 돌기(10)는 돌출부(11)와 평탄부(12)를 포함할 수 있다(도 2 및 도 7 참조).The metal foil 100 according to the present invention includes a plurality of protrusions 10 with flat tops. The protrusions 10 may refer to metal crystal particles protruding vertically upward from the surface of the metal foil 100. Specifically, the protrusion 10 may include a protruding portion 11 and a flat portion 12 (see FIGS. 2 and 7).
상기 돌기(10)에 포함되는 돌출부(11)는 금속박(100)의 표면에서 돌출되는 부분으로, 원뿔대 형상 또는 다각뿔대 형상을 가질 수 있다. 구체적으로 돌출부(11)는 도 2에 도시된 바와 같이 표면(옆면)이 평면인 원뿔대 형상 또는 표면이 각진(angulate) 다각뿔대 형상을 가지는 것으로, 이로 인해 절연 수지 기재(400)와의 밀착 앵커(anchor) 효과가 증대되어, 금속박(100)이 절연 수지 기재와 높은 밀착력을 갖도록 결합될 수 있다. 보다 구체적으로 돌출부(11)는 다각뿔대 형상 중에서도 오각뿔대 형상, 육각뿔대 형상, 칠각뿔대 형상 및 팔각뿔대 형상으로 이루어진 군에서 선택되는 1종 이상의 형상을 가질 수 있다.The protrusion 11 included in the protrusion 10 is a portion that protrudes from the surface of the metal foil 100 and may have a truncated cone shape or a polygonal pyramid shape. Specifically, as shown in FIG. 2, the protrusion 11 has a truncated cone shape with a flat surface (side surface) or a polygonal pyramid shape with an angulated surface, and as a result, it forms an anchor in close contact with the insulating resin substrate 400. ) The effect is increased, so that the metal foil 100 can be combined with the insulating resin substrate to have high adhesion. More specifically, the protrusion 11 may have one or more shapes selected from the group consisting of a pentagonal pyramid shape, a hexagonal pyramid shape, a heptagonal pyramid shape, and an octagonal pyramid shape among polygonal pyramid shapes.
상기 돌출부(11)에는 표면적 증가로 인해 절연 수지 기재와의 밀착력을 높일 수 있도록 하는 복수의 미세돌기(11a)가 형성되어 있을 수 있다. 이러한 미세돌기(11a)에 의해 돌출부(11)는 표면조도(Ra)가 0.05 내지 0.3 ㎛, 구체적으로는 0.08 내지 0.2 ㎛을 나타낼 수 있다. 여기서 돌출부(11)의 표면조도(Ra)는 평탄부(12)를 제외한 돌출부(11) 옆면의 표면조도(Ra)로 정의될 수 있다.A plurality of fine protrusions 11a may be formed on the protrusion 11 to increase adhesion to the insulating resin substrate by increasing the surface area. Due to these fine protrusions 11a, the protrusion 11 may have a surface roughness (Ra) of 0.05 to 0.3 ㎛, specifically 0.08 to 0.2 ㎛. Here, the surface roughness (Ra) of the protrusion 11 may be defined as the surface roughness (Ra) of the side surface of the protrusion 11 excluding the flat portion 12.
한편 상기 돌출부(11)의 밑변 길이(a) 대 돌출부(11)의 높이(b)의 비율(b/a)은 0.4 내지 1.5, 구체적으로는 0.6 내지 1.2일 수 있다. 상기 비율(b/a)이 상기 범위 내임에 따라 금속박(100)과 절연 수지 기재 간의 밀착력을 높이면서 고주파 신호 전송 과정에서 신호 전송 손실이 일어나는 것을 최소화할 수 있다.Meanwhile, the ratio (b/a) of the base length (a) of the protrusion 11 to the height (b) of the protrusion 11 may be 0.4 to 1.5, specifically 0.6 to 1.2. As the ratio (b/a) is within the above range, it is possible to increase the adhesion between the metal foil 100 and the insulating resin substrate and minimize signal transmission loss during high-frequency signal transmission.
상기 돌기(10)에 포함되는 평탄부(12)는 돌출부(11) 상단에 구비되는 평탄(flat)한 면이다. 상기 평탄부(12)는 원뿔대 형상 또는 다각뿔대 형상을 갖는 돌출부(11)의 윗면을 의미할 수 있다. 여기서 밀착력을 높이기 위해 뾰족하거나 동그랗게 돌출되도록 입자(높은 조도의 요철 형성)를 형성함에 따라 고주파 신호 전송 손실이 발생하던 종래와 달리, 본 발명은 돌기(10)의 상부(상단)가 평평한 면인 평탄부(12)로 이루어짐에 따라 금속박(100) 표면이 비교적 저조도를 나타내어 고주파 신호 전송 손실이 일어나는 것을 최소화할 수 있다. 구체적으로 평탄부(12)는 원형, 타원형, 또는 다각형 형상을 가질 수 있다(도 8 참조). 한편 표면에 미세한 요철이 형성되어 있더라도 미세한 요철이 조밀하게 형성되어 평탄한 면을 이루는 경우도 본 발명의 평탄부(12) 범주에 포함되는 것으로 볼 수 있다.The flat portion 12 included in the protrusion 10 is a flat surface provided at the top of the protrusion 11. The flat portion 12 may refer to the upper surface of the protrusion 11 having a truncated cone shape or a polygonal pyramid shape. Here, unlike the prior art, where high-frequency signal transmission loss occurred by forming particles (forming irregularities of high roughness) to protrude sharply or roundly to increase adhesion, the present invention has a flat portion where the top (top) of the protrusion 10 is a flat surface. As it is composed of (12), the surface of the metal foil 100 exhibits relatively low illumination, thereby minimizing high-frequency signal transmission loss. Specifically, the flat portion 12 may have a circular, oval, or polygonal shape (see FIG. 8). Meanwhile, even if fine irregularities are formed on the surface, a case where the fine irregularities are densely formed to form a flat surface can be considered to be included in the category of the flat portion 12 of the present invention.
이러한 돌기(10)에서, 돌출부(11)의 밑변 길이(a) 대 평탄부(12)의 길이(c)의 비율(c/a)은 0.1 내지 0.7, 구체적으로는 0.2 내지 0.6일 수 있다. 상기 비율(c/a)이 상기 범위 내임에 따라 금속박(100)과 절연 수지 기재 간의 밀착력을 높이면서 고주파 신호 전송 과정에서 신호 전송 손실이 일어나는 것을 최소화할 수 있다. 상기 평탄부(12)의 길이(c)는 평탄부(12)를 이루는 면에서 가장 긴 길이를 의미할 수 있다.In this protrusion 10, the ratio (c/a) of the base length (a) of the protrusion 11 to the length (c) of the flat portion 12 may be 0.1 to 0.7, specifically 0.2 to 0.6. As the ratio (c/a) is within the above range, it is possible to increase the adhesion between the metal foil 100 and the insulating resin substrate and minimize signal transmission loss during high-frequency signal transmission. The length (c) of the flat part 12 may mean the longest length on the surface forming the flat part 12.
이와 같은 돌기(10)의 개수는 금속박(100)과 절연 수지 기재 간의 밀착력, 고주파 신호 전송 효율, 금속박(100)의 회로배선 해상도 등을 고려할 때, 금속박(100) 단위 면적(1 ㎛2) 당 25 개 이하, 구체적으로 5 내지 20 개, 보다 구체적으로 7 내지 15 개일 수 있다(도 9 참조).The number of such protrusions 10 is per unit area (1 ㎛ 2 ) of the metal foil 100, considering the adhesion between the metal foil 100 and the insulating resin substrate, high-frequency signal transmission efficiency, and circuit wiring resolution of the metal foil 100. It may be 25 or less, specifically 5 to 20, and more specifically 7 to 15 (see FIG. 9).
상기 돌기(10)는 무전해 도금에 의해 형성될 수 있다. 구체적으로 본 발명에 따른 금속박(100)은 무전해 도금으로 제조되는 것으로, 무전해 도금 과정에서 금속시드박이 형성된 후 금속시드박 상에 결정 입자의 성장이 계속적으로 일어나 복수의 돌기(10)가 표면에 존재하는 금속박(100)이 제조될 수 있다. 여기서 금속박에 별도의 조화 처리를 수행하여 요철을 형성하던 종래와 달리, 본 발명은 금속박(100)의 제조과정에서 자연스럽게 조화면인 복수의 돌기(10)가 형성되기 때문에, 별도의 조화 처리를 수행하는 과정을 생략할 수 있으며, 이로 인해 금속박(100) 또는/및 인쇄회로기판의 제조 효율을 향상시킬 수 있다. 또한 금속박(100)이 무전해 도금에 의해 제조됨에 따라 전해 도금에 의해 제조되는 금속박보다 두께가 얇고 다공성을 갖는 금속박(100)을 제공할 수 있다.The protrusions 10 may be formed by electroless plating. Specifically, the metal foil 100 according to the present invention is manufactured by electroless plating. After the metal seed foil is formed in the electroless plating process, crystal grains continue to grow on the metal seed foil, and a plurality of protrusions 10 are formed on the surface. The metal foil 100 present in can be manufactured. Here, unlike the conventional method of forming irregularities by performing a separate roughening process on the metal foil, the present invention performs a separate roughening process because a plurality of protrusions 10, which are roughened surfaces, are naturally formed during the manufacturing process of the metal foil 100. The process can be omitted, thereby improving the manufacturing efficiency of the metal foil 100 or/and the printed circuit board. In addition, as the metal foil 100 is manufactured by electroless plating, it is possible to provide a metal foil 100 that is thinner and more porous than the metal foil manufactured by electrolytic plating.
본 발명에 따른 금속박(100)의 제조를 위해 상기 무전해 도금 시 사용되는 무전해 도금액은 특별히 한정되지 않으나, 금속 이온 공급원과 질소 함유 화합물을 포함하는 무전해 도금액일 수 있다.The electroless plating solution used during the electroless plating to manufacture the metal foil 100 according to the present invention is not particularly limited, but may be an electroless plating solution containing a metal ion source and a nitrogen-containing compound.
상기 금속 이온 공급원은 구체적으로 황산구리, 염화구리, 질산구리, 수산화구리 및 구리 설파메이트로 이루어진 군에서 선택되는 1종 이상의 구리 이온 공급원일 수 있다. 이러한 금속 이온 공급원의 농도는 0.5 내지 300 g/L, 구체적으로 100 내지 250 g/L, 더욱 구체적으로 190~200g/L일 수 있다.The metal ion source may specifically be one or more copper ion sources selected from the group consisting of copper sulfate, copper chloride, copper nitrate, copper hydroxide, and copper sulfamate. The concentration of this metal ion source may be 0.5 to 300 g/L, specifically 100 to 250 g/L, and more specifically 190 to 200 g/L.
상기 질소 함유 화합물은 금속 이온을 확산시켜 금속 이온 공급원에 의해 형성된 금속시드박 표면에 복수의 돌기(10)가 형성되도록 한다. 상기 질소 함유 화합물은 구체적으로 퓨린, 아데닌, 구아닌, 하이포크산틴, 크산틴, 피리다진, 메틸피페리딘, 1,2-디-(2-피리딜)에틸렌, 1,2-디-(피리딜)에틸렌, 2,2'-디피리딜아민, 2,2'-비피리딜, 2,2'-비피리미딘, 6,6'-디메틸-2,2'-디피리딜, 디-2-피릴케톤, N,N,N',N'-테트라에틸렌디아민, 1,8-나프티리딘, 1,6-나프티리딘 및 터피리딘으로 이루어진 군에서 선택되는 1종 이상일 수 있다. 이러한 질소 함유 화합물의 농도는 0.001 내지 1 g/L, 구체적으로 0.01 내지 0.1 g/L일 수 있다.The nitrogen-containing compound diffuses metal ions so that a plurality of protrusions 10 are formed on the surface of the metal seed foil formed by the metal ion source. The nitrogen-containing compounds specifically include purine, adenine, guanine, hypoxanthine, xanthine, pyridazine, methylpiperidine, 1,2-di-(2-pyridyl)ethylene, 1,2-di-(pyridyl) ) Ethylene, 2,2'-dipyridylamine, 2,2'-bipyridyl, 2,2'-bipyrimidine, 6,6'-dimethyl-2,2'-dipyridyl, di-2 -It may be one or more selected from the group consisting of pyryl ketone, N,N,N',N'-tetraethylenediamine, 1,8-naphthyridine, 1,6-naphthyridine, and terpyridine. The concentration of these nitrogen-containing compounds may be 0.001 to 1 g/L, specifically 0.01 to 0.1 g/L.
상기 무전해 도금액은 킬레이트제, pH 조절제 및 환원제로 이루어진 군에서 선택되는 1종 이상의 첨가제를 더 포함할 수 있다.The electroless plating solution may further include one or more additives selected from the group consisting of a chelating agent, a pH adjuster, and a reducing agent.
상기 킬레이트제는 구체적으로 타르타르산, 시트르산, 아세트산, 말산, 말론산, 아스코르브산, 옥살산, 락트산, 숙신산, 포타슘소듐타르트레이트, 디포타슘타르트레이트, 히단토인, 1-메틸히단토인, 1,3-디메틸히단토인, 5,5-디메틸히단토인, 니트릴로아세트산, 트리에탄올아민, 에틸렌디아민테트라아세트산, 테트라소듐에틸렌디아민테트라아세테이트, N-하이드록시에틸렌디아민트리아세테이트 및 펜타하이드록시 프로필디에틸렌트리아민으로 이루어진 군에서 선택되는 1종 이상일 수 있다. 이러한 킬레이트제의 농도는 0.5 내지 600 g/L, 구체적으로 300 내지 450 g/L, 더욱 구체적으로 400~430g/L 일 수 있다.The chelating agent specifically includes tartaric acid, citric acid, acetic acid, malic acid, malonic acid, ascorbic acid, oxalic acid, lactic acid, succinic acid, potassium sodium tartrate, dipotassium tartrate, hydantoin, 1-methylhydantoin, 1,3-dimethyl. A group consisting of hydantoin, 5,5-dimethylhydantoin, nitriloacetic acid, triethanolamine, ethylenediaminetetraacetic acid, tetrasodium ethylenediaminetetraacetate, N-hydroxyethylenediaminetriacetate and pentahydroxy propyldiethylenetriamine. There may be one or more types selected from. The concentration of this chelating agent may be 0.5 to 600 g/L, specifically 300 to 450 g/L, and more specifically 400 to 430 g/L.
상기 pH 조절제는 구체적으로 수산화나트륨, 수산화칼륨 및 수산화리튬으로 이루어진 군에서 선택되는 1종 이상일 수 있다. 이러한 pH 조절제는 무전해 도금액의 pH가 8 이상, 구체적으로 10 내지 14, 더 구체적으로 11 내지 13.5으로 조절되도록 무전해 도금액에 포함될 수 있다.The pH adjuster may specifically be one or more selected from the group consisting of sodium hydroxide, potassium hydroxide, and lithium hydroxide. This pH adjuster may be included in the electroless plating solution so that the pH of the electroless plating solution is adjusted to 8 or more, specifically 10 to 14, and more specifically 11 to 13.5.
상기 환원제는 구체적으로 포름알데히드, 소듐하이포포스파이트, 소듐하이드록시메탄설피네이트, 글리옥실산, 수소화붕소염 및 디메틸아민보란으로 이루어진 군에서 선택되는 1종 이상일 수 있다. 이러한 환원제의 농도는 1 내지 20 g/L, 구체적으로 5 내지 20 g/L일 수 있다.The reducing agent may be one or more selected from the group consisting of formaldehyde, sodium hypophosphite, sodium hydroxymethane sulfinate, glyoxylic acid, boron hydride, and dimethylamine borane. The concentration of this reducing agent may be 1 to 20 g/L, specifically 5 to 20 g/L.
상기 무전해 도금액으로 무전해 도금하여 금속박(100)을 제조하는 도금 조건은 금속박(100)의 두께에 따라 적절히 조절될 수 있다. 구체적으로 무전해 도금 온도는 20 내지 60 ℃, 구체적으로 25 내지 40 ℃일 수 있고, 무전해 도금 시간은 2 내지 30 분, 구체적으로 5 내지 20 분일 수 있다.Plating conditions for manufacturing the metal foil 100 by electroless plating with the electroless plating solution can be appropriately adjusted depending on the thickness of the metal foil 100. Specifically, the electroless plating temperature may be 20 to 60°C, specifically 25 to 40°C, and the electroless plating time may be 2 to 30 minutes, specifically 5 to 20 minutes.
이와 같이 무전해 도금으로 제조되는 본 발명의 금속박(100)의 두께는 5 ㎛ 이하, 구체적으로 0.1 내지 1 ㎛일 수 있다. 또한 본 발명의 금속박(100)을 이루는 성분은 인쇄회로기판의 회로층을 형성할 수 있는 공지된 금속이라면 특별히 한정되지 않으며, 구체적으로는 구리, 은, 금, 니켈 및 알루미늄으로 이루어진 군에서 선택되는 1종 이상일 수 있다.In this way, the thickness of the metal foil 100 of the present invention manufactured by electroless plating may be 5 ㎛ or less, specifically 0.1 to 1 ㎛. In addition, the components that make up the metal foil 100 of the present invention are not particularly limited as long as they are known metals that can form the circuit layer of a printed circuit board, and specifically, they are selected from the group consisting of copper, silver, gold, nickel, and aluminum. There may be more than one type.
본 발명에 따른 캐리어 부착 금속박에 포함되는 캐리어(300)는 캐리어 부착 금속의 이동 또는 사용 과정에서 금속층이 변형되는 것을 방지하는 것으로, 구리, 알루미늄 등과 같은 금속; 또는 폴리에틸렌테레프탈레이트(PET), 폴리페닐렌설파이드(PPS), 테프론(Teflon) 등과 같은 고분자로 이루어질 수 있다. 이러한 캐리어의 두께는 구체적으로 10 내지 50 ㎛일 수 있다.The carrier 300 included in the metal foil attached to the carrier according to the present invention prevents the metal layer from being deformed during movement or use of the metal attached to the carrier, and includes metals such as copper, aluminum, etc.; Alternatively, it may be made of polymers such as polyethylene terephthalate (PET), polyphenylene sulfide (PPS), Teflon, etc. The thickness of this carrier may specifically be 10 to 50 ㎛.
본 발명에 따른 캐리어 부착 금속박은 금속층의 보호를 위해 금속층 상에 구비되는 방청층을 더 포함할 수 있다. 상기 방청층은 아연, 크롬 등을 포함할 수 있다.The metal foil attached to a carrier according to the present invention may further include a rust prevention layer provided on the metal layer to protect the metal layer. The rust prevention layer may include zinc, chromium, etc.
또한 상기 금속층은 상기 금속층은, 상기 이형층상에 형성되는 금속 스트라이크층; 및 상기 금속 스트라이크층상에 형성되는 복수의 돌기를 포함하는 금속박을 포함할 수 있다.Additionally, the metal layer may include: a metal strike layer formed on the release layer; And it may include a metal foil including a plurality of protrusions formed on the metal strike layer.
상기 금속층은 크게 이형층상에 형성되는 금속 스트라이크(Strike)층 및 상기 복수의 돌기가 형성된 금속박으로 구성될 수 있다. 상기 금속 스트라이크층은 상기 이형층상에 형성되어 상기 금속박이 형성되기 위한 베이스가 되는 층으로 스트라이크 도금공정을 이용하여 형성될 수 있다.The metal layer may largely be composed of a metal strike layer formed on the release layer and a metal foil on which the plurality of protrusions are formed. The metal strike layer is formed on the release layer and serves as a base for forming the metal foil, and may be formed using a strike plating process.
이를 구체적으로 살펴보면 상기 복합 이형층 상에 금속층(100)을 형성하기 위해서는 전해도금공정을 사용해야만 한다. 하지만 본 발명의 경우 상기 금속박이 무전해도금 공정을 이용하여 형성되고 있으므로 상기 이형층상에 금속 스트라이크 층(110)을 형성하여 이러한 금속박의 형성을 원활하게 할 수 있다(도 2 참조).Looking at this specifically, in order to form the metal layer 100 on the composite release layer, an electroplating process must be used. However, in the case of the present invention, since the metal foil is formed using an electroless plating process, the metal strike layer 110 can be formed on the release layer to facilitate the formation of the metal foil (see Figure 2).
상기 금속 스트라이크 층(110)은 스트라이크 도금 공정에 의하여 형성될 수 있으며, 이 스트라이크 도금 공정은 밀착력이 낮은 도금의 밀착성 증가를 위하여 높은 전류밀도 하에서 짧은 시간동안 도금을 수행하는 공정을 의미한다. 대부분의 도금에서는 이러한 스트라이크 도금 공정이후 본도금 공정을 수행할 수 있으며, 본 발명의 경우 위에서 살펴본 바와 같이 무전해도금공정을 이용하여 금속박이 형성될 수 있다.The metal strike layer 110 may be formed by a strike plating process, which refers to a process in which plating is performed for a short time under a high current density to increase the adhesion of plating with low adhesion. In most plating, the main plating process can be performed after the strike plating process, and in the case of the present invention, the metal foil can be formed using the electroless plating process as discussed above.
다만 본 발명의 경우 상기 복합 이형층으로 인한 표면얼룩을 방자하기 위하여 금속 스트라이크층은 금속의 피로인산염을 이용하여 pH 8~11의 조건에서 형성되는 것이 바람직하다.However, in the case of the present invention, in order to prevent surface stains caused by the composite release layer, it is preferable that the metal strike layer is formed under conditions of pH 8 to 11 using metal pyrophosphate.
이를 상세히 살펴보면 상기 본 발명의 복합 이형층을 형성한 다음 기존의 도금에서 사용되는 산성 전기동 도금을 하게 되면 산에 의하여 상기 유무기 이형층에 포함되어 있는 금속이 산화되어 많은 얼룩이 발생할 수 있다. 또한 이러한 얼룩의 경우 상기 유무기 이형층의 표면에 중성을 나타냄에 따라 산성 전기동 도금을 수행하면 더욱 심화될 수 있다. 따라서 본 발명의 경우 중성도금용액을 이용하여 상기 금속 스트라이크 도금을 수행 하는 것이 바람직하다.Looking at this in detail, if the composite release layer of the present invention is formed and then acidic copper electroplating used in conventional plating is performed, the metal contained in the organic-inorganic release layer may be oxidized by the acid, resulting in many stains. In addition, in the case of such stains, since the surface of the organic-inorganic release layer is neutral, it may become worse if acid electroplating is performed. Therefore, in the case of the present invention, it is preferable to perform the metal strike plating using a neutral plating solution.
이를 상세히 살펴보면 상기 금속 스트라이크 도금은 금속피로인산염을 금속 공급원으로 사용하며, 2~6ASD의 전류밀도 및 50~60℃의 온도에서 수행될 수 있다. 위에서 살펴본 바와 같이 기존에 도금액에 금속공급원으로 사용되는 황산염의 경우 산성을 가지는 도금액을 형성할 수 있으므로, 본 발명의 경우 금속 공급원으로 금속의 피로인산염을 사용하는 것이 바람직하다.Looking at this in detail, the metal strike plating uses metal pyrophosphate as a metal source and can be performed at a current density of 2 to 6 ASD and a temperature of 50 to 60 ° C. As seen above, sulfate, which is used as a metal source in existing plating solutions, can form an acidic plating solution, so in the case of the present invention, it is preferable to use metal pyrophosphate as a metal source.
상기 스트라이크 도금에 의하여 형성되는 금속층은 구리 또는 알루미늄 층일 수 있다. 따라서 상기 금속피로인산염은 피로인산구리 또는 피로인산알루미늄인 것이 바람직하다. 상기 금속 피로인산염은 상기 스트라이크 도금을 위한 도금액에 80~110g/L 바람직하게는 90g/L가 포함될 수 있다. 상기 금속 피로인산염이 80g/L미만으로 포함되는 경우 상기 금속 스크라이크층의 형성이 어려울 수 있으며, 110g/L를 초과하는 비율로 첨가되는 경우 금속 스트라이크층의 표면 조도가 상승하여 불량이 발생할 수 있다.The metal layer formed by strike plating may be a copper or aluminum layer. Therefore, it is preferable that the metal pyrophosphate is copper pyrophosphate or aluminum pyrophosphate. The metal pyrophosphate may be included in the plating solution for the strike plating in an amount of 80 to 110 g/L, preferably 90 g/L. If the metal pyrophosphate is included at less than 80 g/L, it may be difficult to form the metal strike layer, and if it is added at a rate exceeding 110 g/L, the surface roughness of the metal strike layer may increase and defects may occur. .
아울러 상기 금속 피로인산염과는 별도로 완충액을 형성하기 위하여 피로인산칼륨이 투입될 수 있다. 이 피로인산칼륨은 완충용액을 형성하는 것으로 상기 도금액의 pH를 적절히 유지할 수 있으며, 이에 따라 상기 스트라이크 도금이 중성조건에서 수행될 수 있도록 할 수 있다.In addition, potassium pyrophosphate may be added to form a buffer solution separately from the metal pyrophosphate. This potassium pyrophosphate can maintain the pH of the plating solution appropriately by forming a buffer solution, thereby allowing the strike plating to be performed under neutral conditions.
상기 피로인산칼륨은 상기 스트라이크 도금을 위한 도금액에 250~400g/L 바람직하게는 290~370g/L, 가장 바람직하게는 340g/L의 비율로 혼합되는 것이 바람직하다. 상기 피로인산칼륨이 250g/L미만으로 포함되는 경우 상기 스트라이크 도금시 pH의 유지가 어려울 수 있으며, 400g/L를 초과하는 비율로 포함되는 경우 칼륨이 석출되어 도금시 불량이 발생할 수 있다.The potassium pyrophosphate is preferably mixed in the plating solution for strike plating at a ratio of 250 to 400 g/L, preferably 290 to 370 g/L, and most preferably 340 g/L. If the potassium pyrophosphate is contained in less than 250 g/L, it may be difficult to maintain pH during strike plating, and if it is contained in a ratio exceeding 400 g/L, potassium may precipitate and cause defects during plating.
상기 스트라이크 도금은 2~6ASD, 바람직하게는 3~5ASD 가장 바람직하게는 4ASD의 전류밀도하에서 수행되는 것이 바람직하다. 상기 전류밀도가 2ASD미만인 경우 스트라이크 도금이 수행되지 않아 Nodule형상을 가지는 불량도금이 발생할 수 있으며, 6ASD를 초과하는 경우 스트라이크 도금층의 표면에 조도가 상승하여 검붉은 무광택 표면이 생성될 수 있다. 또한 상기 전류밀도 범위 내에서는 전류효율이 80%이상을 가질 수 있지만 6ASD를 초과하는 경우 전류효율이 35%미만으로 급감될 수 있다.The strike plating is preferably performed under a current density of 2 to 6 ASD, preferably 3 to 5 ASD, and most preferably 4 ASD. If the current density is less than 2ASD, strike plating may not be performed, resulting in defective plating having a nodule shape. If the current density is more than 6ASD, the roughness may increase on the surface of the strike plating layer, creating a dark red matte surface. In addition, within the above current density range, the current efficiency may be more than 80%, but if it exceeds 6ASD, the current efficiency may rapidly decrease to less than 35%.
또한 상기 스트라이크 도금은 pH8.0~11.0 바람직하게는 pH8.7조건에서 수행되는 것이 바람직하다. pH8.0미만에서 상기 스트라이크 도금을 수행하는 경우 위에서 살펴본 바와 같이 이형층의 접하는 표면에 얼룩이 발생할 수 있으며, pH11.0을 초과하는 경우 표면형상이 Nodule 또는 구형을 가지게 되어 불량이 발생할 수 있다.Additionally, the strike plating is preferably performed under pH 8.0 to 11.0, preferably pH 8.7 conditions. If the strike plating is performed below pH 8.0, stains may occur on the surface in contact with the release layer as seen above, and if pH exceeds 11.0, the surface shape may have a nodule or spherical shape and defects may occur.
또한 상기 스트라이크 도금은 50~60℃의 온도 바람직하게는 55℃의 온도에서 수행될 수 있다. 상기 도금시 온도가 50℃미만인 경우 전류효율이 감소될 수 있으며, 60℃를 초과하는 경우 스트라이크 층 표면의 조도가 증가될 수 있다.Additionally, the strike plating may be performed at a temperature of 50 to 60°C, preferably 55°C. If the plating temperature is less than 50°C, current efficiency may be reduced, and if it exceeds 60°C, the roughness of the strike layer surface may increase.
본 발명에 따른 캐리어 부착 금속박은 이형층과 금속층 사이에 구비되는 산화방지층을 더 포함할 수 있다. 상기 산화방지층은 니켈, 인 등을 포함할 수 있다.The metal foil with a carrier according to the present invention may further include an antioxidant layer provided between the release layer and the metal layer. The antioxidant layer may include nickel, phosphorus, etc.
본 발명은 상술한 금속박을 이용하여 제조된 인쇄회로기판을 제공한다. 구체적으로 본 발명에 따른 인쇄회로기판은 금속 회로층과 절연 수지층(400)을 포함하고, 상기 금속 회로층이 상술한 금속박에서 유래되는 것으로, 이에 대해 설명하면 다음과 같다.The present invention provides a printed circuit board manufactured using the above-described metal foil. Specifically, the printed circuit board according to the present invention includes a metal circuit layer and an insulating resin layer 400, and the metal circuit layer is derived from the metal foil described above, which will be described as follows.
본 발명에 따른 인쇄회로기판에 포함되는 금속 회로층은 회로배선이 형성되어 있는 층이다. 이러한 금속 회로층은 상술한 금속박에 회로배선을 형성하는 과정을 거쳐 얻어진 것으로, 상술한 금속박에 의해 본 발명은 미세하면서 고해상도를 나타내는 인쇄회로기판을 제공할 수 있다. 구체적으로 본 발명에 따른 인쇄회로기판은 절연 수지 기재와 상술한 금속박이 결합된 적층체에, 에칭 공정을 수행하여 금속박에 회로배선을 형성하는 과정으로 제조되는데, 금속박이 절연 수지 기재와 높은 밀착력으로 결합되어 있으면서 두께가 비교적 얇아 금속박에 미세하면서 고해상도를 나타내는 회로배선을 형성할 수 있다. 또한 상술한 금속박에 의해 본 발명은 회로배선과 절연 수지 기재 간에 높은 밀착력을 나타내는 인쇄회로기판을 제공할 수 있다.The metal circuit layer included in the printed circuit board according to the present invention is a layer on which circuit wiring is formed. This metal circuit layer is obtained through the process of forming circuit wiring on the above-described metal foil. By using the above-described metal foil, the present invention can provide a fine and high-resolution printed circuit board. Specifically, the printed circuit board according to the present invention is manufactured by performing an etching process on a laminate combining the insulating resin base and the above-described metal foil to form circuit wiring in the metal foil, and the metal foil has high adhesion to the insulating resin base. Although they are combined, their thickness is relatively thin, making it possible to form fine, high-resolution circuit wiring in metal foil. In addition, by using the above-described metal foil, the present invention can provide a printed circuit board that exhibits high adhesion between circuit wiring and an insulating resin substrate.
상기 회로배선을 형성하는 방법은 특별히 한정되지 않으며, 서브트랙티브법(Subtractive process), 에디티브법(Additive process), 풀 에디티브법(Full additive process), 세미 에디티브법(Semi additive process), 또는 모디파이드 세미 에디티브법(Modified semi additive process)일 수 있다.The method of forming the circuit wiring is not particularly limited and includes subtractive process, additive process, full additive process, semi additive process, Alternatively, it may be a modified semi additive process.
본 발명에 따른 인쇄회로기판에 포함되는 절연 수지층(400)은 금속 회로층 상에 구비되는 절연층이다. 이러한 절연 수지층(400)은 통상적으로 공지된 절연 수지 기재로 이루어질 수 있다. 구체적으로 절연 수지층은 무기 섬유 또는 유기 섬유에 통상적으로 공지된 수지가 함침된 구조의 수지 기재(예를 들어, 프리프레그)로 이루어질 수 있다.The insulating resin layer 400 included in the printed circuit board according to the present invention is an insulating layer provided on a metal circuit layer. This insulating resin layer 400 may be made of a commonly known insulating resin substrate. Specifically, the insulating resin layer may be made of a resin substrate (eg, prepreg) having a structure in which inorganic fibers or organic fibers are impregnated with a commonly known resin.
이러한 본 발명에 따른 인쇄회로기판은 절연 수지 기재를 이용하여 제조되거나, 절연 수지 기재가 배제된 코어 리스(coreless) 공법으로도 제조될 수 있다. 상기 코어 리스 공법은 통상적으로 공지된 공법이라면 특별히 한정되지 않을 수 있다.The printed circuit board according to the present invention can be manufactured using an insulating resin base material, or can also be manufactured using a coreless method excluding the insulating resin base material. The coreless method may not be particularly limited as long as it is a commonly known method.
이하, 본 발명의 바람직한 실시예를 첨부한 도면을 참조하여 당해 분야의 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 설명하기로 한다. 또한, 본 발명을 설명함에 있어 관련된 공지의 기능 또는 공지의 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다. 그리고 도면에 제시된 어떤 특징들은 설명의 용이함을 위해 확대 또는 축소 또는 단순화된 것이고, 도면 및 그 구성요소들이 반드시 적절한 비율로 도시되어 있지는 않다. 그러나 당업자라면 이러한 상세 사항들을 쉽게 이해할 것이다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings so that those skilled in the art can easily implement them. Additionally, in describing the present invention, if it is determined that a detailed description of a related known function or known configuration may unnecessarily obscure the gist of the present invention, the detailed description will be omitted. Additionally, some features presented in the drawings are enlarged, reduced, or simplified for ease of explanation, and the drawings and their components are not necessarily drawn to appropriate scale. However, those skilled in the art will easily understand these details.
실시예 1~19Examples 1 to 19
금속포함 이형층의 형성조건에 따른 효과를 확인하기 위한 실험을 실시하였다.An experiment was conducted to confirm the effect of the formation conditions of the metal-containing release layer.
두께가 약 18 ㎛인 구리 호일(Cu foil)로 이루어진 캐리어박을 5 중량% 황산에 침지시켜 산세처리한 후 순수로 세척하였다.A carrier foil made of copper foil (Cu foil) with a thickness of about 18 ㎛ was immersed in 5% by weight sulfuric acid, pickled, and then washed with pure water.
상기 처리된 캐리어박을 황산니켈(NiSO4), 몰리브덴산나트륨(Na2MoO4), 시트르산(Citrate)을 포함하는 도금액이 침지한 다음, 도금을 수행하였다.The treated carrier foil was immersed in a plating solution containing nickel sulfate (NiSO 4 ), sodium molybdate (Na 2 MoO 4 ), and citric acid (Citrate), and then plating was performed.
이때 상기 금속포함 이형층의 형성에 사용된 조건은 하기의 표 1과 같다.At this time, the conditions used for forming the metal-containing release layer are shown in Table 1 below.
황산니켈(M)Nickel sulfate (M) 몰리브덴산 나트륨(M)Sodium molybdate (M) 시트르산(M)Citric acid (M) pHpH 전류밀도(ASD)Current density (ASD) 도금시간(초)Plating time (seconds)
실시예 1Example 1 0.30.3 0.050.05 0.30.3 66 66 4040
실시예 2Example 2 0.30.3 0.10.1 0.30.3 66 66 4040
실시예 3Example 3 0.30.3 0.30.3 0.30.3 66 66 4040
실시예 4Example 4 0.30.3 0.50.5 0.30.3 66 66 4040
실시예 5Example 5 0.30.3 0.80.8 0.30.3 66 66 4040
실시예 6Example 6 0.050.05 0.30.3 0.30.3 66 66 4040
실시예 7Example 7 0.10.1 0.30.3 0.30.3 66 66 4040
실시예 8Example 8 0.50.5 0.30.3 0.30.3 66 66 4040
실시예 9Example 9 0.80.8 0.30.3 0.30.3 66 66 4040
실시예 10Example 10 0.30.3 0.30.3 0.20.2 66 66 4040
실시예 11Example 11 0.30.3 0.30.3 0.40.4 66 66 4040
실시예 12Example 12 0.30.3 0.30.3 0.30.3 44 66 4040
실시예 13Example 13 0.30.3 0.30.3 0.30.3 88 66 4040
실시예 14Example 14 0.30.3 0.30.3 0.30.3 66 44 4040
실시예 15Example 15 0.30.3 0.30.3 0.30.3 66 88 4040
실시예 16Example 16 0.30.3 0.30.3 0.30.3 66 66 1010
실시예 17Example 17 0.30.3 0.30.3 0.30.3 66 66 2020
실시예 18Example 18 0.30.3 0.30.3 0.30.3 66 66 6060
실시예 19Example 19 0.30.3 0.30.3 0.30.3 66 66 7070
표 1에 나타난 바와 같이 황산니켈, 몰리브덴산나트륨 및 시트르산의 함량과 각 공정조건을 변화시키며 금속포함 이형층을 형성하였다.As shown in Table 1, a metal-containing release layer was formed by changing the contents of nickel sulfate, sodium molybdate, and citric acid and each process condition.
그 결과 니켈과 몰리브덴의 몰비가 1:1~4:1인 경우(실시예 2~4)에만 표면이 균일한 도금을 형성할 수 있었으며, 특히 동량의 몰이 사용된 실시예 3에서 가장 균일한 표면을 가지는 것을 확인할 수 있었다. 다른 비율을 사용한 경우(실시예 1, 5~9)에는 균일하지 못한 표면을 가지거나 각 지점에 따라 금속포함 이형층의 두께가 달라지는 현상이 발생하는 것을 확인하였다.As a result, a uniform surface plating could be formed only when the molar ratio of nickel and molybdenum was 1:1 to 4:1 (Examples 2 to 4), and in particular, Example 3, where the same amount of moles was used, showed the most uniform surface. It was confirmed that it had . When different ratios were used (Examples 1, 5 to 9), it was confirmed that the surface was not uniform or the thickness of the metal-containing release layer varied depending on each point.
또한 pH4이하 및 8이상의 조건에서는 금속포함 이형층의 형성이 원활하지 않았으며, 전류밀도를 8ASD로 사용한 경우 많은 양의 수소기체가 발생하는 것을 확인하였다. 전류밀도 4ASD의 조건에서는 수소의 발생량이 줄어들기는 하였지만, 도금속도가 현저히 감소하여 균일하지 못한 금속포함이형층이 형성되었다.In addition, it was confirmed that the formation of the metal-containing release layer was not smooth under pH conditions below 4 and above 8, and that a large amount of hydrogen gas was generated when a current density of 8ASD was used. Although the amount of hydrogen generated was reduced under the condition of a current density of 4ASD, the plating rate was significantly reduced and an uneven metal-containing mold layer was formed.
결과적으로 상기 실시예 3의 조건이 금속포함 이형층의 형성에 가장 접합한 조건이라는 것을 확인할 수 있었으며, 후술할 실시예에서는 상기 실시예 3의 방법으로 제조되는 금속포함 이형층을 활용하였다.As a result, it was confirmed that the conditions of Example 3 were the most suitable conditions for forming the metal-containing release layer, and in the examples to be described later, the metal-containing release layer manufactured by the method of Example 3 was used.
실시예 20~31Examples 20-31
상기 실시예 3과 같이 제작된 금속포함 이형층 상에 유무기 이형층을 형성하기 위한 실험을 실시하였다.An experiment was conducted to form an organic-inorganic release layer on the metal-containing release layer manufactured as in Example 3.
상기 실시예 3에서 제조된 케리어 + 금속포함 이형층의 상부에 유무기 이형층을 형성하기 위하여 유무기 이형층 형성용 용액에 침지하였다. 이때 상기 유무기 이형층 형성용 용액의 조성을 달리하여 최적의 유무기 이형층을 선정하였다.To form an organic-inorganic release layer on top of the carrier + metal-containing release layer prepared in Example 3, it was immersed in a solution for forming an organic-inorganic release layer. At this time, the optimal organic-inorganic release layer was selected by varying the composition of the solution for forming the organic-inorganic release layer.
일단 상기 유무기 이형층에 사용되는 전이금속 화합물을 선정하기 위한 실험을 실시하였다. CBTA(5-카르복시벤조트리아졸, 100g/L) 및 에탄올아민(10g/L)를 포함한 용액에 하기 표 2의 전이금속 화합물(ppm)을 투입한 다음, pH9, 30℃의 온도에서 40초간 침지하여 유무기 이형층을 형성하였다.First, an experiment was conducted to select a transition metal compound used in the organic-inorganic release layer. The transition metal compounds (ppm) shown in Table 2 below were added to a solution containing CBTA (5-carboxybenzotriazole, 100 g/L) and ethanolamine (10 g/L), and then immersed for 40 seconds at pH 9 and a temperature of 30°C. Thus, an organic-inorganic release layer was formed.
크롬산chromic acid 몰리브덴산molybdic acid 티탄산titanic acid 텅스텐산tungstic acid 중크롬산칼륨Potassium dichromate 황산
크롬
sulfuric acid
chrome
황산
마그네슘
sulfuric acid
magnesium
황산니켈Nickel sulfate
실시예 20Example 20 55 -- -- -- -- -- -- --
실시예 21Example 21 2020 -- -- -- -- -- -- --
실시예 22Example 22 300300 -- -- -- -- -- -- --
실시예 23Example 23 20002000 -- -- -- -- -- -- --
실시예 24Example 24 25002500 -- -- -- -- -- -- --
실시예 25Example 25 -- 300300 -- -- -- -- -- --
실시예 26Example 26 -- -- 300300 -- -- -- -- --
실시예 27Example 27 -- -- -- 300300 -- -- -- --
실시예 28Example 28 -- -- -- -- 300300 -- -- --
실시예 29Example 29 -- -- -- -- -- 300300 -- --
실시예 30Example 30 -- -- -- -- -- -- 300300 --
실시예 31Example 31 -- -- -- -- -- -- -- 300300
상기 실시예 20~31에서 제조된 유무기 이형층이 형성된 이후 이형층상이 구리스트라이크 도금을 수행하였다. After the organic-inorganic release layer prepared in Examples 20 to 31 was formed, copper strike plating was performed on the release layer.
상기 구리 스트라이크 도금은 하기의 표 3의 도금 조건에서 수행되었다.The copper strike plating was performed under the plating conditions shown in Table 3 below.
조건condition
피로인산구리(g/L)Copper pyrophosphate (g/L) 9090
피로인산칼륨(g/L)Potassium pyrophosphate (g/L) 340340
암모니아수(ml/L)Ammonia water (ml/L) 33
온도(℃)Temperature (℃) 5555
pHpH 8.78.7
전류밀도(ASD)Current density (ASD) 44
양극재cathode material 함인동Hamin-dong
상기 구리 스트라이크 층의 형성이 완료된 이후 제조된 적층체를 무전해 도금욕에 투입하고 무전해 도금하여 두께 1 ㎛의 금속박(구리박)을 이형층 상에 형성하였다. 이때, 금속 이온 공급원(CuSO4·5H2O) 190-200 g/L, 질소 함유 화합물(Guanine) 0.01-0.1 g/L, 킬레이트제(포타슘소듐타르트레이트) 405-420 g/L, pH 조절제(NaOH), 환원제 (28% 포름알데히드)를 포함하는 무전해 도금액이 사용되었으며, 무전해 도금은 30℃에서 10 분 동안 이루어졌다.After the formation of the copper strike layer was completed, the prepared laminate was placed in an electroless plating bath and electroless plated to form a metal foil (copper foil) with a thickness of 1 μm on the release layer. At this time, metal ion source (CuSO 4 5H 2 O) 190-200 g/L, nitrogen-containing compound (Guanine) 0.01-0.1 g/L, chelating agent (potassium sodium tartrate) 405-420 g/L, pH adjuster An electroless plating solution containing (NaOH) and a reducing agent (28% formaldehyde) was used, and electroless plating was performed at 30°C for 10 minutes.
상기 형성된 금속박의 밀착성 및 박리강도를 확인하기 위하여 다음의 과정을 수행하였다. The following process was performed to confirm the adhesion and peel strength of the formed metal foil.
상기 형성된 금속박(단일 이형층 포함)/크래프트 페이퍼(Craft paper)/SUS 플레이트(plate) 순으로 적층시키고 진공 하에 200℃에서, 100 분 동안 3.5 MPa 압력으로 가압하여 적층체를 제조하였다.The formed metal foil (including a single release layer)/Kraft paper/SUS plate was laminated in that order and pressed at 3.5 MPa pressure for 100 minutes at 200°C under vacuum to prepare a laminate.
제조된 적층체에서 이형층을 통해 크래프트 페이퍼와 SUS 플레이트를 제거한 후, 구리 호일 캐리어박(단일 이형층 포함)과 극박층간의 박리 강도를 IPC-TM-650 규격(BMSP-90P Peel tester, Test speed: 50 mm/min, Test speed: 90°)에 의거하여 평가하였다.After removing the kraft paper and SUS plate through the release layer from the manufactured laminate, the peel strength between the copper foil carrier foil (including a single release layer) and the ultra-thin layer was measured according to the IPC-TM-650 standard (BMSP-90P Peel tester, Test speed). : 50 mm/min, Test speed: 90°).
또한 상기 박리강도 평가가 완료된 이후 표면의 얼룩발생여부 및 디스미어(Desmear)공정이후 얼룩 발생여부도 평가하였다.In addition, after the peel strength evaluation was completed, it was also evaluated whether stains occurred on the surface and whether stains occurred after the desmear process.
박리강도(gf/cm)Peel strength (gf/cm) 얼룩발생Stains occur 얼룩발생(디스미어이후)Occurrence of stains (after desmear)
프레스전Press exhibition 프레스후After press
실시예 20Example 20 22.1722.17 23.1123.11 XX OO
실시예 21Example 21 18.7418.74 19.2119.21 XX XX
실시예 22Example 22 6.576.57 6.626.62 XX XX
실시예 23Example 23 2.452.45 3.083.08 XX XX
실시예 24Example 24 0.270.27 0.940.94 XX XX
실시예 25Example 25 6.846.84 6.956.95 XX XX
실시예 26Example 26 5.595.59 5.955.95 XX XX
실시예 27Example 27 7.187.18 7.227.22 XX XX
실시예 28Example 28 6.896.89 7.017.01 XX XX
실시예 29Example 29 6.486.48 6.576.57 XX XX
실시예 30Example 30 0.480.48 0.550.55 OO OO
실시예 31Example 31 -- -- OO OO
표 4에 나타난 바와 같이 최적조건으로 판단되는 실시예 22의 경우 적절한 박리강도를 가지고 있음과 동시에 얼룩이 발생하지 않고 있지만(도 10의 (a)), 전이금속화합물을 5ppm사용한 경우 전이금속 화합물에 의한 이형력 제어효과가 떨어져 높은 이형력을 가지는 것으로 나타났으며, 또한 헤테로고리 화합물로 사용된 CBTA의 질소성분이 잔류되어 디스미어 이후 얼룩이 발생하는 것을 확인할 수 있었다(도 10의 (b)). 또한 상기 크롬산이 2000ppm을 초과하는 경우(실시예 24) 과도한 전이금속화합물로 인하여 이형력이 급격히 감소하는 것을 확인할 수 있었다.As shown in Table 4, Example 22, which is judged to be the optimal condition, has an appropriate peel strength and does not cause staining (Figure 10 (a)), but when 5 ppm of the transition metal compound is used, the It was found that the mold release force control effect was poor, resulting in high mold release force, and it was also confirmed that the nitrogen component of CBTA used as a heterocyclic compound remained, causing stains after desmear (Figure 10(b)). In addition, when the chromic acid exceeded 2000 ppm (Example 24), it was confirmed that the release force rapidly decreased due to excessive transition metal compounds.
아울러 상기 크롬이외에 다른 종류의 전이금속을 사용한 실시예 25, 26, 27의 경우에도 적절한 이형력을 가지는 것으로 나타났으며, 크롬의 다른 화합물을 사용한 실시예 28 및 29의 경우에도 적절한 이형력을 가지는 것으로 확인되었다. 다만 3~8족의 전이금속화합물이 아닌 다른 종류의 금속화합물을 사용한 경우 이형력이 매우 약해짐과 동시에 금속성분에 의한 얼룩이 발생하거나(실시예 30, 도 10의 (c)). 이형에 되지 않고 접착되는 경우가 발생하여(실시예 31)사용이 불가능한 것으로 나타났다.In addition, Examples 25, 26, and 27 using transition metals other than chromium were found to have appropriate release force, and Examples 28 and 29 using other compounds of chromium also showed appropriate release force. It was confirmed that However, when metal compounds other than transition metal compounds of groups 3 to 8 are used, the release force becomes very weak and stains due to metal components occur (Example 30, Figure 10 (c)). There were cases where it was glued without being molded (Example 31), making it impossible to use.
다음으로 상기 유무기 복합층에 포함되는 유기성분 및 도금 조건에 의한 효과를 확인하기 위한 실험을 실시하였다.Next, an experiment was conducted to confirm the effect of the organic components contained in the organic-inorganic composite layer and the plating conditions.
상기 실시예 22에서 5-카르복시벤조트리아졸(100g/L) 및 에탄올아민(10g/L)의 조합대신 하기 표 5의 비율로 헤테로고리화합물과 아민계 화합물을 조합하여 투입하였으며, 전류밀도와 도금시간을 변화시켜 그 효과를 측정하였다.(CBTA : 5-카르복시벤조트리아졸, MT : 3-머캅토-1,2,4-트리아졸, EA : 에탄올아민, AP : 2-아미노-1-프로판올)In Example 22, instead of the combination of 5-carboxybenzotriazole (100 g/L) and ethanolamine (10 g/L), a heterocyclic compound and an amine compound were added in combination at the ratios shown in Table 5 below, and the current density and plating The effect was measured by changing the time. (CBTA: 5-carboxybenzotriazole, MT: 3-mercapto-1,2,4-triazole, EA: ethanolamine, AP: 2-amino-1-propanol )
도금액 조성(g/L)Plating solution composition (g/L)
CBTACBTA MTMT EAEA APAP
실시예 32Example 32 5050 -- 1010 --
실시예 33Example 33 100100 -- 1010 --
실시예 34Example 34 200200 -- 1010 --
실시예 35Example 35 -- 100100 1010 --
실시예 36Example 36 100100 -- 55 --
실시예 37Example 37 100100 -- 1010 --
실시예 38Example 38 100100 -- 2020 --
실시예 39Example 39 100100 -- -- 1010
상기 실시예 32~45의 조건을 사용하되 상기 실시예 22와 동일하게 적층체를 제조하고 실험을 실시하였다.A laminate was manufactured and tested in the same manner as in Example 22, except that the conditions of Examples 32 to 45 were used.
박리강도(gf/cm)Peel strength (gf/cm) 얼룩발생Stains occur 얼룩발생(디스미어이후)Occurrence of stains (after desmear)
프레스전Press exhibition 프레스후After press
실시예 32Example 32 1.421.42 1.541.54 OO OO
실시예 33Example 33 6.576.57 6.626.62 XX XX
실시예 34Example 34 18.1818.18 18.2718.27 XX OO
실시예 35Example 35 7.167.16 7.557.55 XX XX
실시예 36Example 36 17.4817.48 18.1118.11 OO OO
실시예 37Example 37 6.576.57 6.626.62 XX XX
실시예 38Example 38 1.151.15 1.281.28 XX OO
실시예 39Example 39 6.486.48 6.586.58 XX XX
표 6에 나타난 바와 같이 본 발명의 최적조건인 실시예 33의 경우 적절한 박리강도를 가짐과 동시에 얼룩이 발생하지 않고 있지만(도 11의 (a)) 헤테로고리 화합물인 CTBA의 함량이 늘어남에 따라 박리강도가 상승되는 것을 확인할 수 있었다. 또한 이러한 헤테로고리 화합물이 200g/L에서는 디스미어이후 약간의 얼룩이 발생하는 경우가 있었으며, 따라서 이 이상의 농도에서는 얼룩이 발생하는 것을 확인할 수 있었다. 또한 50g/L를 사용한 경우(실시예 32) 헤테로고리 화합물의 함량이 줄어들어 금속포함 이형층의 금속 성분이 스트라이크 구리층으로 전사된 것을 확인할 수 있었다(도 11의 (b)).As shown in Table 6, Example 33, which is the optimal condition for the present invention, has appropriate peel strength and does not cause staining (Figure 11 (a)), but as the content of CTBA, a heterocyclic compound, increases, the peel strength decreases. It was confirmed that was rising. In addition, at 200 g/L of this heterocyclic compound, some staining occurred after desmearing, and therefore, it was confirmed that staining occurred at concentrations above this level. Additionally, when 50 g/L was used (Example 32), the content of the heterocyclic compound was reduced, confirming that the metal component of the metal-containing release layer was transferred to the strike copper layer (FIG. 11(b)).
또한 다른 종류의 헤테로고리 화합물을 사용한 실시예 35의 경우에도 본 발명과 유사한 결과를 볼 수 있었다.In addition, in Example 35 using a different type of heterocyclic compound, results similar to those of the present invention were seen.
아민계 화합물의 경우 그 함량이 늘어나게 되면 상대적으로 헤테로고리 화합물의 비율이 낮아지면서 이형력이 감소하는 것을 확인하였으며, 다만, 5g/L를 사용한 실시예 36의 경우 얼룩의 발생(도 11의 (c))이 나타나고 있어 이는 상기 아민계 화합물에 의하여 상기 헤테로고리 화합물의 용해가 완전히 이루어지지 않은 영향으로 보인다. 또한 아민계 화합물을 과량으로 사용한 실시예 38의 경우 프레스 이후 질소성분에 의한 얼룩이 발생하는 것을 확인하였다(도 11의 (d)).In the case of amine-based compounds, it was confirmed that as the content increases, the ratio of heterocyclic compounds relatively decreases and the release force decreases. However, in the case of Example 36 using 5 g/L, stains occurred ((c in Figure 11) )) appears, which appears to be the effect of the heterocyclic compound not being completely dissolved by the amine-based compound. In addition, in the case of Example 38 in which an excessive amount of an amine compound was used, it was confirmed that stains due to nitrogen components occurred after pressing (Figure 11 (d)).
또한 AP를 사용한 실시예 39의 경우에도 유사한 결과를 보이고 있다.Additionally, Example 39 using AP showed similar results.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As the specific parts of the present invention have been described in detail above, it is clear to those skilled in the art that these specific techniques are merely preferred embodiments and do not limit the scope of the present invention. will be. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (14)

  1. 캐리어 부착 금속박에서 캐리어가 원활하게 제거될 수 있도록 하는 이형층에 있어서,In the release layer that allows the carrier to be smoothly removed from the carrier-attached metal foil,
    상기 이형층은,The release layer is,
    캐리어상에 형성되는 금속포함 이형층; 및A metal-containing release layer formed on the carrier; and
    상기 금속포함 이형층 상에 형성되는 유무기 이형층;An organic-inorganic release layer formed on the metal-containing release layer;
    을 포함하며,Includes,
    상기 유무기 이형층은,The organic-inorganic release layer is,
    질소를 포함하는 헤테로고리 화합물;Heterocyclic compounds containing nitrogen;
    아민계 화합물; 및Amine-based compounds; and
    3족~8족의 전이 금속 화합물;Transition metal compounds of groups 3 to 8;
    을 포함하는 것을 특징으로 하는 캐리어 부착 금속박용 복합 이형층.A composite release layer for metal foil attached to a carrier, comprising:
  2. 제1항에 있어서,According to paragraph 1,
    상기 아민계 화합물은 에탄올아민, 2-(메틸아미노)에탄올, 2-메톡시에틸아민, 2-아미노-1-프로판올, 알라니놀, 2-에톡시에탄아민, N-에틸-N-프로필아민, 트리부틸아민, 2-(디메틸아미노)에탄올, N,N-디메틸벤젠아민, N,N-디부틸부탄아민 및 N-에틸프로판아민의 군에서 선택되는 1종 이상을 포함하는 캐리어 부착 금속박용 복합 이형층.The amine compounds include ethanolamine, 2-(methylamino)ethanol, 2-methoxyethylamine, 2-amino-1-propanol, alaninol, 2-ethoxyethaneamine, and N-ethyl-N-propylamine. , for metal foil with a carrier containing at least one member selected from the group of tributylamine, 2-(dimethylamino)ethanol, N,N-dimethylbenzenamine, N,N-dibutylbutanamine, and N-ethylpropanamine. Composite release layer.
  3. 제1항에 있어서,According to paragraph 1,
    상기 헤테로고리 화합물은 벤조트리아졸(Benzotriazole), 머캅토벤지이미다졸(Mercapto benzimidazole), 머캅토벤조트리아졸(Mercapto benzotriazole), 소듐머캅토벤조트리아졸(Sodium mercapto benzotriazole), 5-카르복시벤조트리아졸(5-Carboxybenzotriazole), 3-아미노-5-머캅토-1,2,4-트리아졸(3-Amino-5-mercapto-1,2,4-triazole), 3-머캅토-1,2,4-트리아졸(3-Mercapto-1,2,4-triazole), 트리아졸-5-카르복시산(Triazole-5-carboxylic acid), 1-메틸-3-머캅토-1,2,4-트리아졸(1-Methyl-3-mercapto-1,2,4-triazole) 및 1-페닐-5-머캅토테트라졸(1-Phenyl-5-mercapto tetrazole)로 이루어진 군에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 캐리어 부착 금속박용 복합 이형층.The heterocyclic compounds include benzotriazole, mercapto benzimidazole, mercapto benzotriazole, sodium mercapto benzotriazole, and 5-carboxybenzotriazole. (5-Carboxybenzotriazole), 3-Amino-5-mercapto-1,2,4-triazole (3-Amino-5-mercapto-1,2,4-triazole), 3-mercapto-1,2, 4-Mercapto-1,2,4-triazole, Triazole-5-carboxylic acid, 1-methyl-3-mercapto-1,2,4-triazole (1-Methyl-3-mercapto-1,2,4-triazole) and 1-Phenyl-5-mercapto tetrazole (1-Phenyl-5-mercapto tetrazole). A composite release layer for metal foil with a carrier, characterized by:
  4. 제1항에 있어서,According to paragraph 1,
    상기 3족~8족의 전이 금속 화합물은,The transition metal compounds of groups 3 to 8 are,
    크롬, 몰리브덴, 텅스텐 또는 티타늄을 포함하는 금속 화합물인 캐리어 부착 금속박용 복합 이형층.A composite release layer for metal foil with a carrier, which is a metal compound containing chromium, molybdenum, tungsten or titanium.
  5. 제4항에 있어서,According to paragraph 4,
    상기 전이금속 화합물은;The transition metal compound is;
    크롬, 몰리브덴, 텅스텐 또는 티타늄의 산화물;oxides of chromium, molybdenum, tungsten or titanium;
    크롬, 몰리브덴, 텅스텐 또는 티타늄의 수산화물;Hydroxides of chromium, molybdenum, tungsten or titanium;
    크롬, 몰리브덴, 텅스텐 또는 티타늄의 황산염, 질산염, 인산염, 염산염, 불산염 또는 초산염; 또는Sulfates, nitrates, phosphates, hydrochlorides, fluorides or acetates of chromium, molybdenum, tungsten or titanium; or
    크롬, 몰리브덴, 텅스텐 또는 티타늄의 산화물에서 유래된 화합물;Compounds derived from oxides of chromium, molybdenum, tungsten or titanium;
    을 포함하는 캐리어 부착 금속박용 복합 이형층.A composite release layer for metal foil attached to a carrier comprising a.
  6. 제5항에 있어서,According to clause 5,
    상기 3족~8족의 전이 금속 화합물은 크롬산, 크롬(III)피콜리네이트, 중크롬산칼륨, 산화크롬, 크로밀 클로라이드, 황산크롬, 텅스텐디옥사이드, 텅스텐트리옥사이드, 텅스텐디설파이드, 텅스텐트리설파이드, 텅스텐디클로라이드, 텅스텐헥사클로라이드, 텅스텐테트라클로라이드, 디텅스텐데카클로라이드, 텅스텐트리클로라이드, 티타늄테트라클로라이드, 티타늄디설파이드, 티타늄할라이드, 몰리브덴옥사이그, 몰리브덴설파이드 또는 몰리브덴헥사카르보닐을 포함하는 캐리어 부착 금속박용 복합 이형층.The transition metal compounds of groups 3 to 8 include chromic acid, chromium (III) picolinate, potassium dichromate, chromium oxide, chromyl chloride, chromium sulfate, tungsten dioxide, tungsten trioxide, tungsten disulfide, tungsten trisulfide, and tungsten dioxide. Composite release layer for metal foil with carrier containing chloride, tungsten hexachloride, tungsten tetrachloride, ditungsten decachloride, tungsten trichloride, titanium tetrachloride, titanium disulfide, titanium halide, molybdenum oxide, molybdenum sulfide or molybdenum hexacarbonyl .
  7. 제1항에 있어서,According to paragraph 1,
    상기 금속포함 이형층은 니켈 및 몰리브덴을 포함하는 캐리어 부착 금속박용 복합 이형층.The metal-containing release layer is a composite release layer for metal foil with a carrier containing nickel and molybdenum.
  8. 제7항에 있어서,In clause 7,
    상기 금속포함 이형층은 Ni 50~80중량% 및 몰리브덴 20~50중량%를 포함하는 캐리어 부착 금속박용 복합 이형층.The metal-containing release layer is a composite release layer for metal foil attached to a carrier containing 50 to 80% by weight of Ni and 20 to 50% by weight of molybdenum.
  9. 제1항에 있어서,According to paragraph 1,
    상기 이형층은 IPC-TM-650 규격에 의한 평가시 박리강도가 1~20gf/㎝인 것을 특징으로 하는 캐리어 부착 금속박용 복합 이형층.The release layer is a composite release layer for metal foil attached to a carrier, characterized in that the peel strength is 1 to 20 gf/cm when evaluated according to the IPC-TM-650 standard.
  10. 제1항에 있어서,According to paragraph 1,
    상기 금속포함 이형층은 0.01~0.2㎛의 두께를 가지며, 상기 유무기 이형층은 0.001~0.01㎛의 두께를 가지는 캐리어 부착 금속박용 복합 이형층.The metal-containing release layer has a thickness of 0.01-0.2㎛, and the organic-inorganic release layer has a thickness of 0.001-0.01㎛. A composite release layer for metal foil attached to a carrier.
  11. 제1항에 있어서,According to paragraph 1,
    제1항 내지 제10항 중 어느 한 항의 복합 이형층을 포함하는 캐리어 부착 금속박.A metal foil attached to a carrier comprising the composite release layer of any one of claims 1 to 10.
  12. 제11항에 있어서,According to clause 11,
    상기 캐리어 부착 금속박은,The metal foil attached to the carrier is,
    캐리어;carrier;
    상기 캐리어 상에 구비되는 상기 복합 이형층; 및The composite release layer provided on the carrier; and
    상기 복합 이형층 상에 구비되는 금속층;A metal layer provided on the composite release layer;
    을 구비하고,Equipped with
    상기 금속층은 복수의 돌기를 포함하는 금속박을 포함하는 것을 특징으로 하는 캐리어 부착 금속박.A metal foil with a carrier, characterized in that the metal layer includes a metal foil including a plurality of protrusions.
  13. 제12항에 있어서In paragraph 12
    상기 금속층은,The metal layer is,
    상기 이형층상에 형성되는 금속 스트라이크층; 및a metal strike layer formed on the release layer; and
    상기 금속 스트라이크층상에 형성되는 복수의 돌기를 포함하는 금속박;A metal foil including a plurality of protrusions formed on the metal strike layer;
    을 포함하며Includes
    상기 금속 스트라이크층은 금속의 피로인산염을 이용하여 pH 8~11의 조건에서 형성되는 캐리어 부착 금속박.The metal strike layer is a metal foil attached to a carrier formed under conditions of pH 8 to 11 using metal pyrophosphate.
  14. 제12항에 있어서,According to clause 12,
    상기 복수의 돌기는 상부가 평평한 것인 캐리어 부착 금속박.A metal foil attached to a carrier, wherein the plurality of protrusions have flat tops.
PCT/KR2022/006849 2022-05-09 2022-05-13 Composite release layer for carrier-attached metal foil and metal foil comprising same WO2023219190A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0056810 2022-05-09
KR1020220056810A KR102511335B1 (en) 2022-05-09 2022-05-09 Composite release layer for metal foil with carrier and metal foil comprising the same

Publications (1)

Publication Number Publication Date
WO2023219190A1 true WO2023219190A1 (en) 2023-11-16

Family

ID=85872342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/006849 WO2023219190A1 (en) 2022-05-09 2022-05-13 Composite release layer for carrier-attached metal foil and metal foil comprising same

Country Status (2)

Country Link
KR (1) KR102511335B1 (en)
WO (1) WO2023219190A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215736A (en) * 2000-02-04 2001-08-10 Jsr Corp Photoresist removing solution composition, removing method and circuit board
KR101460553B1 (en) * 2013-08-27 2014-11-12 도레이첨단소재 주식회사 Release film with laminated release layers with crosslink density gradient
KR20160111985A (en) * 2014-05-07 2016-09-27 미쓰이금속광업주식회사 Copper foil with carrier, manufacturing method for copper foil with carrier, copper clad laminate sheet and printed wiring board obtained using copper foil with carrier
KR20180090207A (en) * 2017-02-02 2018-08-10 장 춘 페트로케미컬 컴퍼니 리미티드 A composite thin electrodeposited copper foil and carrier
JP2021035755A (en) * 2019-08-26 2021-03-04 東洋鋼鈑株式会社 Carrier-layer-included metal laminate base material and method for manufacturing the same, metal laminate base material and method for manufacturing the same, and printed wiring board

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100869477B1 (en) 2004-04-26 2008-11-21 주식회사 코오롱 Stamping foil with double release layers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215736A (en) * 2000-02-04 2001-08-10 Jsr Corp Photoresist removing solution composition, removing method and circuit board
KR101460553B1 (en) * 2013-08-27 2014-11-12 도레이첨단소재 주식회사 Release film with laminated release layers with crosslink density gradient
KR20160111985A (en) * 2014-05-07 2016-09-27 미쓰이금속광업주식회사 Copper foil with carrier, manufacturing method for copper foil with carrier, copper clad laminate sheet and printed wiring board obtained using copper foil with carrier
KR20180090207A (en) * 2017-02-02 2018-08-10 장 춘 페트로케미컬 컴퍼니 리미티드 A composite thin electrodeposited copper foil and carrier
JP2021035755A (en) * 2019-08-26 2021-03-04 東洋鋼鈑株式会社 Carrier-layer-included metal laminate base material and method for manufacturing the same, metal laminate base material and method for manufacturing the same, and printed wiring board

Also Published As

Publication number Publication date
KR102511335B1 (en) 2023-03-17

Similar Documents

Publication Publication Date Title
EP2341167B1 (en) Method for surface treatment of copper and copper material
CN105813378B (en) Copper foil with carrier, laminate, printed wiring board, electronic device, and method for manufacturing printed wiring board
TWI603655B (en) Surface-treated copper foil, copper foil with carrier, laminated board, printed wiring board, electronic equipment, and manufacturing method of printed wiring board
TWI435802B (en) Metal polyimide composite, method for manufacturing the same, and method for manufacturing the same
EP0743812A1 (en) Multilayer printed wiring board and process for producing the same
TWI450816B (en) A polyimide complex coated with a metal, a method for producing the composite, and a manufacturing apparatus for the composite
TWI569952B (en) Fabricated copper foil, copper clad laminate, printed wiring board, electronic machine, and printed wiring board manufacturing method
EP3026144A1 (en) Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper-clad laminate, and method for manufacturing printed circuit board
US20060016694A1 (en) Tin-plated film and method for producing the same
WO2005123987A1 (en) Tin-based plating film and method for forming the same
WO2022124842A1 (en) Metal foil, metal foil with carrier comprising same, and printed circuit board comprising same
WO2020226292A1 (en) Laminated structure, flexible copper foil laminated film, and method for manufacturing laminated structure
WO2015102323A1 (en) Copper foil, and electrical component and battery including same
WO2023219190A1 (en) Composite release layer for carrier-attached metal foil and metal foil comprising same
WO2022124843A1 (en) Release layer for metal foil with carrier, and metal foil comprising same
CN109338343B (en) Chemical silver plating solution and silver plating method
JP3812834B2 (en) Electrolytic copper foil with carrier foil, method for producing the same, and copper-clad laminate using the electrolytic copper foil with carrier foil
WO2015056880A1 (en) Method for manufacturing circuit board
WO2021107397A1 (en) Carrier foil-attached metal foil, manufacturing method therefor, and laminate comprising same
JP2009081396A (en) Copper foil for printed wiring board, and processing method of surface thereof
WO2022124825A1 (en) High-strength hot-dip galvanized steel sheet having excellent plating quality, steel sheet for plating, and methods for manufacturing same
WO2022124826A1 (en) High-strength hot-dip galvanized steel sheet with excellent plating quality, steel sheet for plating, and manufacturing methods therefor
WO2023054865A1 (en) Carrier-foil-attached ultra-thin copper foil facilitating micro-hole processing, copper clad laminate comprising same, and manufacturing methods therefor
CN114657610A (en) Preparation method of strippable ultrathin carrier copper foil
JP2755058B2 (en) Metal foil for printed wiring board, method of manufacturing the same, and method of manufacturing wiring board using the metal foil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941777

Country of ref document: EP

Kind code of ref document: A1