WO2023219142A1 - 三次元メカノシグナル細胞培養系を用いて作製した腱/靱帯様人工組織 - Google Patents

三次元メカノシグナル細胞培養系を用いて作製した腱/靱帯様人工組織 Download PDF

Info

Publication number
WO2023219142A1
WO2023219142A1 PCT/JP2023/017788 JP2023017788W WO2023219142A1 WO 2023219142 A1 WO2023219142 A1 WO 2023219142A1 JP 2023017788 W JP2023017788 W JP 2023017788W WO 2023219142 A1 WO2023219142 A1 WO 2023219142A1
Authority
WO
WIPO (PCT)
Prior art keywords
tendon
cells
ligament
gel
artificial tissue
Prior art date
Application number
PCT/JP2023/017788
Other languages
English (en)
French (fr)
Inventor
淺原弘嗣
堤大樹
栗本遼太
Original Assignee
国立大学法人 東京医科歯科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京医科歯科大学 filed Critical 国立大学法人 東京医科歯科大学
Publication of WO2023219142A1 publication Critical patent/WO2023219142A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/24Collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • the present invention relates to a tendon/ligament-like artificial tissue and a method for producing the same. More specifically, the present invention relates to a tendon/ligament-like artificial tissue produced using a three-dimensional mechanosignal cell culture system. The present invention also relates to a method for producing a tendon/ligament-like artificial tissue using a three-dimensional mechanosignal cell culture system, and a composition used therefor.
  • Tendons/ligaments are tissues that perform their functions by accurately and strongly connecting muscles and bones, and disorders and diseases of these tissues can significantly impede patients' daily lives. Furthermore, considering the fact that musculoskeletal disorders are currently a major impediment to a healthy life expectancy and account for approximately 20% of the nursing care factors for the elderly, comparable to dementia and stroke, the regeneration and reconstruction of tendons/ligaments is an important issue in the future. This is an urgent need in a super-aging society.
  • tendon/ligament injuries are a major factor that threatens the life of athletes. Therefore, regeneration and reconstruction of tendons/ligaments are highly desired in the field of sports medicine.
  • tissue-specific master gene has been unknown for a long time, research on the development of tendons/ligaments and regenerative medicine have not made sufficient progress to date.
  • Mkx transcription factor Mohawk
  • Patent document 1 The mouse mesodermal stem cell line C3H10T1/2 into which the Mkx gene was introduced by retrovirus strongly expresses tendon/ligament cell gene markers such as Scleraxis, decorin, and type I collagen compared to the control group (Non-patent Document 1).
  • the main component of tendons is an extracellular matrix consisting of type I collagen and proteoglycans.
  • the formation of structurally meaningful tendon tissue in a living body requires the correct orientation of collagen fibers and tendon cells, and simply transplanting Mkx-expressing cells into a living body is insufficient to create a tissue for regenerative medicine. It is considered that this is insufficient for regeneration.
  • Patent Document 2 describes a method of manufacturing a tendon/ligament-like artificial tissue by embedding collagen-secreting cells in a gel that has the strength to withstand tension load, and culturing the cells while applying tension load to the gel. is disclosed.
  • One of the objects of the present invention is to provide a tendon/ligament-like artificial tissue and a method for manufacturing the same.
  • the present inventors have now developed a new culture method for producing artificial tendons, and have succeeded in producing artificial tendons that are larger, stronger, and have a layered structure similar to biological tendons. Furthermore, it has become possible to produce tissues with sufficient strength not only using cells expressing the Mkx gene but also using mesenchymal stem cells derived from human iPS cells. It is known that tissue repair of tendon injuries such as the Achilles tendon is often delayed, and recovery of full motor function is difficult. Additionally, rotator cuff injuries occur in over 60% of people over 70. Surgical repair of tendons and ligaments includes grafting of autologous tissue, but there are many problems with surgically invasively invading healthy areas, so artificial tendons are used. There are high expectations for the production and clinical application of this method, but there are no reports of satisfactory results.
  • a method for manufacturing a tendon/ligament-like artificial tissue comprising: (a) A step of embedding mesodermal stem cells, mesenchymal stem cells, etc. in a gel that has strength enough to withstand tension load; (b) culturing cells while applying tension to the gel; A method characterized in that step (b) further includes the step of adding and culturing cells and gel.
  • [3] The method according to either [1] or [2], wherein the addition of cells and gel is performed multiple times during the culture period.
  • [4] The method according to any one of [1] to [3], characterized in that the cells are cultured while increasing the rate of extension under tension load.
  • [5] The method according to any one of [1] to [4], wherein the tension load is at an elongation rate of at least 1% per day.
  • [6] The method according to any one of [1] to [5], wherein the cells are C3H10T1/2 cells, cell lines, normal cells, cells derived from tissue stem cells, cells derived from ES cells, or cells derived from iPS cells. .
  • [13] The tendon/ligament-like artificial tissue described in [12], which has an annual ring-like or sheet-like layered structure.
  • [14] The tendon/ligament-like artificial tissue according to [12] or [13], which has collagen fiber orientation parallel to the longitudinal direction.
  • the width in the transverse direction is 2.0 mm or more, 3.0 mm or more, 4.0 mm or more, 5.0 mm or more, 6.0 mm or more, 7.0 mm or more, 8.0 mm or more, 9.0 mm or more, or 10.0 mm or more, [12 ] - [14] The tendon/ligament-like artificial tissue according to any one of [14].
  • Figure 1 shows changes in the expression of tendon- and ligament-specific transcription factors Mkx and Scx, as well as tendon-related genes Bgn, Col1a1, Col3a1, and Fmod, under stretch-stimulated culture of iPSC-MSCs.
  • Figure 2A shows scanning electron microscopy (SEM) images of artificial tendons made from iPSC-MSCs with (right; Stretch+) and without (left; Stretch-) stretch stimulation. It can be seen that in the case of stretch stimulation (Stretch+), the fibers are more oriented.
  • FIG. 2B is a graph showing the distribution of the angle to horizontal fiber orientation with respect to the horizontal direction (Stretch+) and without stretch stimulation (Stretch-).
  • FIG. 3A shows transmission electron microscopy (TEM) images of artificial tendons prepared with (right; Stretch+) and without (left; Stretch-) stretch stimulation.
  • TEM transmission electron microscopy
  • FIG. 3B is a graph showing the fiber diameter distribution of artificial tendons produced with (right; Stretch+) and without (left; Stretch-) stretch stimulation. It can be seen that the diameter of the fibers is larger with stretch stimulation (Stretch+) (average 15.9 nm) than with no stretch stimulation (Stretch-) (average 7.9 nm).
  • FIG. 4 is a procedure for producing a new artificial tendon according to the present disclosure.
  • FIG. 5 is a diagram comparing an artificial tendon produced by a new production method according to the present disclosure and one produced by a conventional method.
  • FIG. 6A is an HE staining image of an axial plane and a sagittal plane of an artificial tendon produced by a new production method according to the present disclosure.
  • FIG. 6B is a SEM image (cross section) of an artificial tendon produced by the new production method according to the present disclosure.
  • FIG. 6C is a SEM image (surface layer) of an artificial tendon produced by the new production method according to the present disclosure.
  • FIG. 7 is a graph showing the results of a tension test of an artificial tendon produced using a conventional three-dimensional mechano-signal cell culture system and an artificial tendon produced using a new three-dimensional mechano-signal cell culture system according to the present disclosure.
  • FIG. 8A is a diagram showing the results of measuring the Achilles functional index (AFI) as an evaluation of walking function recovery after transplanting the artificial tendon produced by the new production method according to the present disclosure into rats.
  • AFI Achilles functional index
  • FIG. 8B is a graph showing the AFI results on the day of surgery (d0), 1 week (1w), 2 weeks (2w), 3 weeks (3w), and 4 weeks (4w). The AFI value is close to 0 under normal conditions, and the value decreases as motor function deteriorates.
  • Figure 9 shows changes in tension (N), tension per unit area (MPa), strain rate (%), and Young's modulus (MPa) after transplantation into rats.
  • Figure 10 shows three-dimensional culture using a flat culture chamber. The number of cells used was 3.0 ⁇ 10 6 cells.
  • the present inventors have developed a new culture method for producing artificial tendons, which is characterized by maturing artificial tendon tissue in a manner similar to the formation of annual rings by introducing tendon cells in stages.
  • they succeeded in creating an artificial tendon that is larger, stronger, and has a layered structure similar to that of biological tendons.
  • the new artificial tendon tissue according to the present disclosure is approximately twice as thick and thick as conventional artificial tendons, and in tension testing, it secures nearly three times the tension compared to conventional methods. I was able to do that.
  • Tendon/ligament-like artificial tissue refers to strong connective tissue mainly composed of type I collagen that has orientation in vivo. Examples include tendons, ligaments, intervertebral disk annulus, and periodontal ligament.
  • Tendons are tissues that connect bones and muscles and transmit muscle contractions to the bones. Tendon damage occurs due to trauma, aging, etc., but tendons are tissues that lack nutrient blood vessels and are difficult to regenerate, so there is a desire for the development of new treatments for tendon damage, such as regenerative medicine.
  • the components of tendon are mainly extracellular matrix and tendon cells.
  • the extracellular matrix is produced by tendon cells and contains collagen (type I collagen as the main component, type III collagen and type V collagen as minor collagens), and proteoglycans (decorin, fibromodulin, biglycan, lumican, etc.) .
  • Ligaments are short bundles of strong connective tissue that connect bones and form joints.
  • the main component is long collagen fibers, mainly type I collagen.
  • Ligaments also have the function of restricting the range of motion of a joint.
  • Ligaments are similar to tendons and fascia in that they are made of connective tissue, but they are connected differently: ligaments connect one bone to another, and tendons connect muscles to bones; Membranes connect muscles to other muscles. All of these are found in the skeletal system of the human body. Ligaments usually do not regenerate on their own.
  • the intervertebral disc annulus fibrosus is a ligament-like tissue that connects vertebral bodies in the spine.
  • the main components are oriented type I collagen and proteoglycans, similar to tendons/ligaments. Since humans walk upright and bipedally, intervertebral discs are constantly loaded with their own weight. Deformation of intervertebral discs caused mainly by aging and excessive pressure is known as intervertebral disc herniation. The only treatments available are anti-inflammation with anti-inflammatory drugs and surgery to remove the deformed area; to date, no method has been discovered to regenerate the intervertebral disc.
  • the periodontal ligament is the connective tissue that connects the tooth root and alveolar bone.
  • the periodontal ligament has the role of anchoring the tooth to the alveolar bone and relieving the pressure exerted on the tooth during mastication.
  • Its main components are type I collagen and type III collagen, similar to those in tendons/ligaments. It is known that undifferentiated mesenchymal stem cells, which have the ability to differentiate into various periodontal tissue cells, are engrafted in the periodontal ligament, and regenerative medicine is useful when periodontal ligament is lost due to tooth extraction or periodontal disease. It is being considered.
  • the tendon/ligament-like artificial tissue according to the present invention can be prepared by three-dimensionally culturing mesodermal stem cells, mesenchymal stem cells, etc. under tension while adding cells and gel.
  • the tendon/ligament-like artificial tissue according to the present invention has a layered structure.
  • the artificial tissue according to the present disclosure may have a layered structure in the form of annual rings or a layered structure in the form of sheets stacked one above the other.
  • the tendon/ligament-like artificial tissue according to the present invention has collagen fibers running more densely than in conventional artificial tendons. Furthermore, in one embodiment, the tendon/ligament-like prosthetic tissue according to the present invention has an orientation of collagen fibers parallel to the longitudinal direction. This orientation of collagen fibers is important for the strength of tendon/ligament-like prosthetic tissues. Note that the orientation of collagen fibers does not require that all collagen fibers be strictly parallel to the longitudinal direction. Furthermore, in one embodiment, the tendon/ligament-like artificial tissue according to the present invention has a tensile strength of, for example, 0.15N or more, preferably at least 0.3N. The tensile strength can be measured, for example, by a breaking test using a creep meter.
  • the tendon/ligament-like artificial tissue according to the present invention can be used in a treatment method that includes a step of transplanting the produced tendon/ligament-like artificial tissue to a human or non-human.
  • the strength can be further increased by bundling a plurality of tendon/ligament-like artificial tissues produced by the method of the present invention.
  • 3D extension culture has been performed using mesenchymal stem cells induced using human iPS cells as cells such as mesodermal stem cells and mesenchymal stem cells, and collagen secretion has been obtained, and artificial tissues can be created. Is possible.
  • mesenchymal stem cells etc.
  • a plurality of cells such as mesodermal stem cells and mesenchymal stem cells can be used. It has been shown that 3D extension culture of mesenchymal stem cells derived from human iPS cells increases tendon-related gene expression and collagen production, making it possible to use these cells.
  • the secreted collagen includes at least type I collagen.
  • the cells include established mesodermal stem cells (mouse C3H10T1/2 cells, etc.), biologically derived mesodermal stem cells (human bone marrow-derived mesodermal stem cells, etc.), iPS cells (preferably human iPS cells) Mesodermal stem cells derived from pluripotent stem cells, such as However, any cell known to those skilled in the art can be appropriately selected and used.
  • the cells can be, for example, C3H10T1/2 cells, cell lines, normal cells, cells derived from tissue stem cells, cells derived from ES cells, or cells derived from iPS cells.
  • the term "cell-derived cell” includes the original cell itself; for example, "tissue stem cell-derived cell” is understood to include the "tissue stem cell” itself.
  • differentiation of cells into mesodermal stem cells is further performed.
  • Induction of differentiation into mesodermal stem cells can be performed using retinoic acid, for example, with reference to the method described in the literature (Takashima Y et al. 2007 Cell. 129(7) 1377-88).
  • the gel can be fibrin gel or collagen gel.
  • the fibrin gel preferably contains protease inhibitors.
  • protease inhibitors include plasmin inhibitors and elastin inhibitors.
  • plasmin inhibitor for example, aprotinin, ⁇ 2-antiplasmin, ⁇ -aminocaproic acid, etc.
  • elastin inhibitor for example, Elastatinal can be used.
  • the concentration of protease inhibitors such as aprotinin ranges, for example, from 0.1 mg/ml to 10 mg/ml, preferably from 0.3 mg/ml to 3 mg/ml.
  • three-dimensional cell culture can be performed while adding cells and gel as appropriate and applying tension.
  • the gel is required to have strength that can withstand tension loads.
  • a gel having the strength to withstand tension load can be obtained, for example, by mixing fibrinogen, thrombin, and aprotinin to prepare a fibrin gel containing aprotinin, as described in the Examples of the present application. , but is not limited to this.
  • collagen gel is used.
  • a system in which cells are three-dimensionally cultured (for example, in a hydrogel) while applying a tension load (extension tension) is referred to as a "three-dimensional mechanosignal cell culture system.”
  • Tension loading can be performed using any method known to those skilled in the art, for example, using Sherpa Pro (Menicon Life Sciences) or STB-140 (Strex Corporation).
  • the tension can be, for example, at a rate of extension of 0.2 to 20% per day, preferably at least 1%.
  • Stretching rate is defined as the rate of increase in chamber width after stretching compared to the pre-stretching state of the three-dimensional culture chamber.
  • extension rate (%) (chamber width after extension ⁇ chamber width before extension)/(chamber width before extension ⁇ 100).
  • the cell mechanosignal culture time is, for example, at least 8 hours/day, preferably 16 hours/day.
  • the culture period for cells is typically 7-30 days. It is preferable to carry out the extension load while gradually increasing the extension rate each day. For example, in a 15-day culture period, the expansion rate on Day 0 is 0%, the expansion rate on Day 1 is 1%, the expansion rate on Day 2 is 2%, the expansion rate on Day 3 is 3%, and the expansion rate on Day 4 is 0%.
  • the rate can be set to 4%, and the extension rate after Day 5 can be set to 5%.
  • Cell and gel additions can be made multiple times at any time during the culture period, eg, additions can be made every other day. Addition of cells and gel may be done at a frequency, for example, once every 12 hours, every 24 hours, every 48 hours, every 72 hours, or every 96 hours. For example, if additions are made every other day, cells and gel may be added on Day 0, Day 2, Day 4, Day 6, and Day 8 during a 15-day culture period, and the frequency of additions may be adjusted. It may be changed or stopped during the culture period. In addition, culture may be performed using a culture chamber that is elongated in the direction of the extension axis and/or a culture chamber that is flat, and the chamber selected may be changed depending on the shape of the desired artificial tendon. Can be done.
  • the number of cells added at one time can be, for example, 1.0 ⁇ 10 5 to 1.0 ⁇ 10 7 , for example, 1.0 ⁇ 10 6 , but is not limited thereto.
  • the amount of gel added at one time can be, for example, 30 to 3000 ⁇ l, such as 100 ⁇ l, 300 ⁇ l, or 500 ⁇ l, but is not limited thereto.
  • the amount of cells and gel added can be changed arbitrarily during the culture period. Additionally, addition of cells and gel can be performed to the entire culture chamber or to a portion thereof.
  • the tendon/ligament-like artificial tissue according to the present disclosure has a width in the transverse direction, for example, 2.0 mm or more, 3.0 mm or more, 4.0 mm or more, 5.0 mm or more, 6.0 mm or more, 7.0 mm or more. , 8.0 mm or more, 9.0 mm or more, or 10.0 mm or more.
  • Decellularization treatment Tendon/ligament-like artificial tissues produced by three-dimensional mechanosignal cell culture can be subjected to decellularization treatment to eliminate living cells contained therein.
  • the decellularization treatment can be performed by any method known to those skilled in the art, such as high hydrostatic pressure treatment, surfactant treatment, microwave irradiation, etc.
  • the three-dimensional cell culture medium composition may contain, for example, fibrinogen from 1 mg/ml to 30 mg/ml, aprotinin from 0.1 mg/ml to 10 mg/ml, and/or thrombin from 0.01 mg/ml to 3 mg/ml, preferably may contain 5 mg/ml to 10 mg/ml fibrinogen, 0.3 mg/ml to 3 mg/ml aprotinin, and/or 0.1 mg/ml to 1 mg/ml thrombin.
  • the three-dimensional cell culture medium composition used in the present invention may contain additional components to increase the strength of the gel.
  • the three-dimensional cell culture medium composition used in the present invention may further contain general medium components used for cell culture.
  • Example 1 Production of artificial tendon by differentiation of iPS cells into iPSC-MSCs and culture under stretch stimulation
  • human iPSCs were induced into neural crest cells (NCCs) with bFGF, SB431542, and CHIR99021 as previously reported (Winston TS., et al, 2019). Thereafter, culture in ⁇ MEM was continued to prepare human MSCs (iPSC-MSCs). Based on reports that Mkx expression is induced by mechanical stress and promotes tendon-related gene expression (Kayama et al., 2016; Suzuki et al., 2016), iPSC-MSCs were cultured under 5% stretch stimulation.
  • Figure 2 shows the fiber arrangement along with scanning electron microscopy (SEM) images of an artificial tendon made from iPSC-MSCs, with images shown at 2000x and 5000x magnification on the left and right, with and without stretching stimulation, and on the top and bottom. has been done.
  • SEM scanning electron microscopy
  • TEM transmission electron microscopy
  • Example 2 Preparation of iPSC-MSC-derived artificial tendon using a new production method iPSC-MSCs were cultured in 3D stretch culture for 15 days (Figure 4).
  • Figure 3 in the conventional method, during a 15-day culture period, the extension rate on Day 0 was set to 0%, the extension rate on Day 1 was set to 1%, and the extension rate on Day 2 was set to 2. %, the extension rate on Day 3 was 3%, the extension rate on Day 4 was 4%, and the extension rate after Day 5 was 5%.
  • the new production method new
  • cells and gel collagen gel
  • Example 3 Decellularization and Chemical Crosslinking of Artificial Tendons To eliminate the risks of immune reactions and tumor formation associated with the use of allogeneic human iPS cells, we decellularized the fabricated artificial tendons. Hyperbaric treatment was used, an established approach for tissue transplantation (Hashimoto Y., et al, 2010). After decellularization, cells were treated with DNase to suppress nucleic acid-dependent inflammation (Crapo PM., et al, 2011). Chemical cross-linking has been reported to be effective for enhancing the mechanical properties of tissues for transplantation (Juncosa-Melvin, N. et al., 2006; Nirmalanandhan VS. et al, 2008). Makris EA., et al., 2014).
  • Example 4 Tension test of newly fabricated artificial tendon
  • a tension test was conducted (Figure 7).
  • the artificial tendon created by adding cells and gel and performing 3D stretch culture is different from the artificial tendon created by performing 3D stretch culture without adding cells and gel using the conventional method. It had a tension nearly three times higher (approximately 0.3N) than the previous one.
  • strain rate %
  • Young's modulus MPa
  • Example 5 Transplantation to rats Because we were able to create a wider artificial tendon, we performed Achilles tendon transplantation in rats.
  • Achilles functional index was calculated from the footprints of treated rats. The AFI value is close to 0 under normal conditions, and the value decreases as motor function deteriorates. More specifically, we painted the soles of the mouse's feet with ink, and had the mouse walk on a narrow path covered with paper, as shown in the figure on the right.
  • Example 6 Production of planar artificial tendon
  • the culture chamber was changed and an iPSC-MSC-derived artificial tendon tissue was produced using the new production method described in this patent.
  • the area of the culture space was increased to ensure a flat culture space.
  • the amount of collagen liquid and cells can be cultured at three times as much as in conventional dumbbell-shaped chambers.
  • the present inventors succeeded in producing an artificial tissue that has a layered structure and collagen fibers running more densely, which has never been observed in existing culture systems. Using this new artificial tissue, it is possible to significantly reduce invasiveness compared to autograft, the most common existing surgical treatment. Additionally, it can be produced from human iPS cells, avoiding xenogenic immune reactions compared to products derived from animals such as pigs.
  • the present invention enables a regenerative medical approach to tendons/ligaments, and can be extremely useful in treating patients with injured tendons/ligaments.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Zoology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Botany (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Materials For Medical Uses (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明は、十分な強度を有する腱/靱帯様人工組織を提供することを目的とする。本発明は、中胚葉系幹細胞、間葉系幹細胞等を張力負荷に耐えうる強度を有するゲル中に包埋し、ゲルに張力負荷をかけながら、かつ細胞とゲルを追加しながら、細胞を培養して、腱/靱帯様人工組織を製造することによって、十分な強度を有する腱/靱帯様人工組織を提供する。中胚葉系幹細胞、間葉系幹細胞等には、ヒトiPS細胞や組織幹細胞等を使用できる。

Description

三次元メカノシグナル細胞培養系を用いて作製した腱/靱帯様人工組織
 本願は、特願2022-78641号(出願日:2022年5月12日)の優先権の利益を享受する出願であり、これは引用することによりその全体が本明細書に取り込まれる。
 本発明は、腱/靱帯様人工組織およびその製造方法に関する。より詳細には、三次元メカノシグナル細胞培養系を用いて作製した腱/靱帯様人工組織に関する。また、本発明は、三次元メカノシグナル細胞培養系を用いた腱/靱帯様人工組織の製造方法、およびそれに用いる組成物にも関する。
 腱/靱帯は、筋と骨を正確かつ強靭に結ぶことで機能を発揮する組織であり、その障害、疾病は患者に日常生活の著しい低下を強いる。また現在、運動器障害は健康寿命の主要な阻害要因であり、認知症や脳卒中に匹敵する高齢者の介護要因の約2割を占めるという事実からも、腱/靱帯の再生、再建は今後の超高齢者社会において急務とされている。
 さらに、腱/靱帯の損傷はアスリートの選手生命を脅かす主要な要因である。そのため腱/靱帯の再生、再建はスポーツ医学の分野においても切望されている。
 しかしながら、組織特異的マスター遺伝子が長らく不明であったため腱/靱帯の発生研究および、再生医療は現在に至るまで十分に進展していない。
 腱/靱帯組織特異的な遺伝子発現パターンの解析により、転写因子Mohawk(Mkx)が同定され、Mkxが腱/靱帯の形成に必須であることがMkxノックアウトマウスを用いた解析により明らかとされた(特許文献1)。レトロウイルスによりMkx遺伝子を導入したマウス中胚葉系幹細胞株C3H10T1/2は、腱/靱帯細胞遺伝子マーカーであるScleraxis、デコリン、I型コラーゲンなどを対照群に比較して強力に発現する(非特許文献1)。
 腱の主成分はI型コラーゲンとプロテオグリカンから成る細胞外基質である。しかしながら、生体における構造的に意味のある腱組織の形成には、コラーゲン線維と腱細胞が正しく配向することが必要であり、単にMkx発現細胞を生体に移植するだけでは、再生医療のための組織再生には不十分であると考えられる。
 特許文献2には、コラーゲン分泌性の細胞を張力負荷に耐えうる強度を有するゲル中に包埋し、ゲルに張力負荷をかけながら細胞を培養して、腱/靱帯様人工組織を製造する方法が開示されている。
特開2011-205964 WO2019/013279A1
Nakamichi R et al. 2016 Nat Commun. 16(7) 12503 Kapacee Z et al. 2010 Matrix Biol. 29(8) 668-77 Liu H et al. 2015 Stem Cells. 33(2) 443-55 Chen X et al. 2012 Sci Rep. 2:977.
 本発明は、腱/靱帯様人工組織およびその製造方法を提供することを目的の一つとする。
 本発明者らは、今回、人工腱作製の新規培養方法を開発し、より大型かつ強固で、生体腱と同様に層状の構造をもつ人工腱の作製に成功した。また、Mkx遺伝子の発現細胞のみならず、ヒトiPS細胞由来の間葉系幹細胞を用いても十分な強度を有する組織を作製することが可能となった。アキレス腱を始めとする腱損傷は、その組織修復は遅延することが多く、完全な運動機能の回復は困難であると知られている。また、肩腱板損傷は70代以上で60%以上に見られる。腱・靭帯の外科的修復には、自己組織の移植(graft)などが行われているが、健康な箇所にまで外科的に侵襲を加えることには多くの問題があるため、人工的な腱の作製と臨床応用が期待されているが、十分な成果を上げた報告はない。
 従来の人工腱作製方法では、培養開始時に細胞とゲルを加えて培養を続ける形を取っており、一度に大量に細胞を加えると細胞壊死を起こし腱が脆弱となるため、作製できる腱の大きさに限界があった。そこで、腱細胞を段階的に導入することで、年輪をつくるような形で人工腱組織を成熟させる。その結果、従来は困難であった大型化や多様な形態への応用が可能なプロトコールが開発された。従来的な腱細胞の導入に加えて、培養の途中に追加でゲルに埋包した腱細胞を加え、さらに伸長培養を続けることで、太さと厚みがそれぞれ2倍程度となった人工腱の作製に成功した。張力検査では従来の方法に比べて、3倍近くの張力を確保することができた。
 さらに、走査型電子顕微鏡にて層構造を持つこと確認した。これまでの作製方法では単相構造しか見られておらず、より生体に近い腱組織を作製することができた。また、ヒトへの臨床応用に向けて、これまで大きさ及び形状の面が課題であったが、本開示に係る作製方法では、自在な大きさおよび形状の人工腱組織を作製できることが示された。具体的には非特許文献1で用いた長軸方向に長い培養チャンバーのみではなく、中心部の培養スペースを平面状に確保した培養チャンバーを用いたところ、従来の約4倍に相当する10mm幅のシート状構造を持った人工靭帯組織の作製が可能となった。これは例えばアキレス腱断裂に対する腱移植だけでなく、肩腱板損傷へのパッチ型の腱様組織など広い応用性を期待することができる。従来は保存的治療のみであった症例においても、低侵襲な治療方法を確立することでその適応範囲を拡大し、多くの症例において応用されることが期待される。
 本発明はこのような知見に基づくものであり、以下の態様を包含する:
[1]腱/靱帯様人工組織の製造方法であって、
 (a)中胚葉系幹細胞、間葉系幹細胞等を張力負荷に耐えうる強度を有するゲル中に包埋する工程、
 (b)ゲルに張力負荷をかけながら細胞を培養する工程、
 工程(b)がさらに、細胞およびゲルを追加して培養する工程を含むことを特徴とする、方法。
[2]伸展長軸方向に細長い形状の培養チャンバーおよび/または平面状の形状の培養チャンバーを用いて培養を行うことを特徴とする、[1]に記載の方法。
[3]細胞およびゲルの追加が培養期間中に複数回行われる、[1]または[2]のいずれか記載の方法。
[4]張力負荷の伸展率を高めながら細胞を培養することを特徴とする、[1]~[3]のいずれか記載の方法。
[5]張力負荷が少なくとも1日あたり1%の伸展率であることを特徴とする、[1]~[4]のいずれか記載の方法。
[6]細胞がC3H10T1/2細胞、細胞株、正常細胞、組織幹細胞由来の細胞、ES細胞由来の細胞、またはiPS細胞由来の細胞である、[1]~[5]のいずれか記載の方法。
[7]ゲルがフィブリンゲルまたはコラーゲンゲルである、[1]~[6]のいずれか記載の方法。
[8]ゲルがプラスミン阻害剤を含有する、[1]~[7]のいずれか記載の方法。
[9]ゲルがアプロチニンを含有する、[1]~[8]のいずれか記載の方法。
[10]さらに(c)脱細胞化処理を行う工程を含む、[1]~[9]のいずれか記載の方法。
[11]脱細胞化処理がマイクロ波照射を含む、[10]記載の方法。
[12]層状構造を有する、腱/靱帯様人工組織。
[13]年輪状またはシート状の層状構造を有する、[12]記載の腱/靱帯様人工組織。
[14]長手方向に平行なコラーゲン線維の配向を有する、[12]または[13]記載の腱/靱帯様人工組織。
[15]短手方向の幅が2.0mm以上、3.0mm以上、4.0mm以上、5.0mm以上、6.0mm以上、7.0mm以上、8.0mm以上、9.0mm以上、または10.0mm以上である、[12]~[14]のいずれか記載の腱/靱帯様人工組織。
[16]少なくとも0.15Nの引っ張り強さを有する、[12]~[15]のいずれか記載の腱/靱帯様人工組織。
[17]少なくとも0.3Nの引っ張り強さを有する、[12]~[16]のいずれか記載の腱/靱帯様人工組織。
[18]I型コラーゲンを含む、[12]~[17]のいずれか記載の腱/靱帯様人工組織。
[19][6]に記載の細胞を含む、[12]~[18]のいずれか記載の腱/靱帯様人工組織。
[20]上記[1]~[11]のいずれか記載の方法を用いて製造される、腱/靱帯様人工組織。
[21]上記[1]~[11]のいずれか記載の方法を用いて製造される、上記[12]~[19]のいずれか記載の腱/靱帯様人工組織。
図1は、iPSC-MSCの伸展刺激培養下で、腱・靭帯特異的な転写因子であるMkxやScxと共に、腱関連の遺伝子であるBgnやCol1a1、Col3a1、Fmodの発現変化を表している。 図2Aは、伸展刺激あり(右;Stretch+)となし(左;Stretch-)のそれぞれの条件で、iPSC-MSCより作製した人工腱の走査電子顕微鏡(SEM)像を示している。伸展刺激あり(Stretch+)の場合には、線維の配向がより整っていることがわかる。 図2Bは、伸展刺激あり(Stretch+)となし(Stretch-)のそれぞれの場合における、水平方向に対する線維の配向の角度(Angle to Horizontal fiber)の分布を表すグラフである。伸展刺激あり(Stretch+)の場合には、水平方向に近い線維が多いことがわかる。 図3Aは、伸展刺激あり(右;Stretch+)となし(左;Stretch-)のそれぞれの条件で作製した人工腱の透過型電子顕微鏡(TEM)像を示している。伸展刺激あり(Stretch+)の場合、線維の径がより大きくなっているのがわかる。 図3Bは、伸展刺激あり(右;Stretch+)となし(左;Stretch-)のそれぞれの条件で作製した人工腱の線維の径(Fiber diameter)の分布を示すグラフである。伸展刺激あり(Stretch+)の場合(平均15.9nm)、伸展刺激なし(Stretch-)の場合(平均7.9nm)にくらべて、線維の径がより大きくなっているのがわかる。 図4は、本開示に係る新たな人工腱の作製手順である。iPSCからiPSC-MSCを誘導した後、ゲルを加えて三次元培養を行うことが示されている。本開示に係る新規の作製手順では、三次元培養の途中で細胞とゲルの追加が行われる。図3に例示されている方法では、細胞とゲルの追加時には張力負荷(stretch)をかけない24時間の培養期間(incubation)が設けられている。 図5は、本開示に係る新たな作製方法で作製した人工腱と従来の方法によるものを比較した図である。 図6Aは、本開示に係る新たな作製方法で作製した人工腱の軸平面(axial)と矢状面(sagittal)のHE染色像である。 図6Bは、本開示に係る新たな作製方法で作製した人工腱のSEM像(断面)である。 図6Cは、本開示に係る新たな作製方法で作製した人工腱のSEM像(表層)である。 図7は、従来の三次元メカノシグナル細胞培養系で作製した人工腱と、本開示に係る新たな三次元メカノシグナル細胞培養系で作製した人工腱の張力検査の結果を示すグラフである。 図8Aは、本開示に係る新たな作製方法で作製した人工腱をラットに移植し、その歩行機能回復評価として、Achilles functional index (AFI)を測定した結果を示す図である。conservationは保存療法、surgeryは手術療法、transplantationは移植の結果を示している。保存療法(conservation)はラットアキレス腱断裂後に処置を行わなかったもの、手術療法(surgery)はアキレス腱断端を縫合したもの、移植(transplantation)はアキレス腱断端部に人工腱を移植したものの結果をそれぞれ示している。normalは正常なラットの結果。 図8Bは、手術当日(d0)、1週間後(1w)、2週間後(2w)、3週間後(3w)および4週間後(4w)におけるAFIの結果を示すグラフである。AFIの値は正常の場合は0に近く、運動機能が低下するほど値が低くなることを意味する。 図9は、ラットへの移植後の張力(N)、単位面積当たりの張力(MPa)、歪率(%)、ヤング率(MPa)の変化を示している。 図10は、平面状の形状の培養チャンバーを用いた三次元培養を示している。細胞数は3.0×106個を使用した。
 上述のとおり、本発明者らは、腱細胞を段階的に導入することで、年輪をつくるような形で人工腱組織を成熟させることを特徴の一つとする人工腱作製の新規培養方法を開発し、より大型かつ強固で、生体腱と同様に層状の構造をもつ人工腱の作製に成功した。本開示に係る新たな人工腱組織は、従来の人工腱に比べて、太さと厚みがそれぞれ2倍程度となっており、張力検査では従来の方法に比べて、3倍近くの張力を確保することができた。
腱/靱帯様人工組織
 腱/靭帯様組織とは、生体内において配向性を有するI型コラーゲンを主体とした、強度を有する結合組織を指すものである。例えば腱、靭帯、椎間板繊維輪、歯根膜などが挙げられる。
 腱は、骨と筋肉を繋ぎ、筋肉の収縮を骨に伝達する組織である。腱の損傷は、外傷や加齢などにより生じるが、腱は栄養血管が乏しく、再生が困難な組織であり、再生医療など新たな腱損傷治療法の開発が望まれている。腱の構成成分は、主に細胞外基質と腱細胞である。細胞外基質は、腱細胞によって産生され、コラーゲン(主成分であるI型コラーゲン、マイナーコラーゲンとしてIII型コラーゲン、V型コラーゲンなど)、プロテオグリカン(デコリン、フィブロモジュリン、ビグリカン、ルミカンなど)が含まれる。
 靭帯は、強靭な結合組織の短い束で、骨と骨を繋ぎ関節を形作る。主成分はI型コラーゲンを主体とする長いコラーゲンの線維である。靭帯には関節の可動域を制限する働きもある。靭帯は、結合組織からできている点で、腱や筋膜と同様であるが、結合の仕方が異なり、靭帯は1本の骨を別の骨に繋ぎ、腱は筋肉を骨に繋ぎ、筋膜は筋肉を他の筋肉に繋ぐ。これらはすべて、人体の骨格系において見られる。靭帯は通常、自然に再生することはない。
 椎間板線維輪は、脊椎において椎体と椎体を接合する靭帯様組織である。主成分は配向性を有するI型コラーゲンとプロテオグリカンであり、腱/靭帯と同様である。人間は直立二足歩行を行うため、椎間板は定常的に自重による荷重負荷を課されている。加齢や過剰な圧力を主要因とする椎間板の変形は椎間板ヘルニアとして知られている。治療法は抗炎症薬による消炎や手術による変形部位の摘出といった対処療法が実施されるのみで、現在までに椎間板を再生する方法は発見されていない。
 歯根膜とは、歯根と歯槽骨を繋ぐ結合組織である。歯根膜には歯牙を歯槽骨に留め、咀嚼時に歯牙に課される圧力緩和する役割を有する。その主成分は腱/靭帯と同様のI型コラーゲン、III型コラーゲンである。歯根膜には多様な歯周組織細胞に分化能を有する未分化間葉系幹細胞が生着していることが知られており、抜歯や歯周病により歯根膜を喪失した場合の再生医療が検討されている。
 本発明に係る腱/靱帯様人工組織は、中胚葉系幹細胞、間葉系幹細胞等を張力負荷の下で、細胞およびゲルを追加しながら、三次元培養することによって調製することができる。一つの態様において、本発明に係る腱/靱帯様人工組織は、層状構造を有する。このように、より生体の組織に近い層構造を有する腱/靱帯様人工組織は、発明者の知る限り、これまで実現されていなかった。このように、いくつかの態様において、本開示に係る人工組織は、年輪状の層状構造または上下に積み重なったシート状の層状構造を有しうる。また、一つの態様において、本発明に係る腱/靱帯様人工組織は、従来の人工腱に比べて、コラーゲン線維がより密に走行している。さらに、一つの態様において、本発明に係る腱/靱帯様人工組織は、長手方向に平行なコラーゲン線維の配向を有する。このようなコラーゲン線維の配向は、腱/靱帯様人工組織の強度にとって重要である。なお、コラーゲン線維の配向は、すべてのコラーゲン線維が厳密に長手方向に平行であることまでは要求されない。また、一つの態様において、本発明に係る腱/靱帯様人工組織は、例えば、0.15N以上、好ましくは少なくとも0.3Nの引っ張り強さを有する。引っ張り強さの測定は、例えば、クリープメーターを用いた破断試験により行うことができる。作製した腱/靱帯様人工組織を生体に移植して機能させるには、十分な強度が必要である。本発明に係る腱/靱帯様人工組織は、ヒトまたは非ヒトに対して、作製した腱/靱帯様人工組織を移植する工程を含む、処置方法に用いられうる。本発明の方法により作製した複数の腱/靱帯様人工組織を束ねるなどすることにより、さらに強度を高めることもできる。なお、中胚葉系幹細胞、間葉系幹細胞等の細胞としてヒトiPS細胞を用いて誘導した間葉系幹細胞を用いて3D伸展培養を行い、コラーゲンの分泌が得られており、人工組織を作製することが可能である。
中胚葉系幹細胞、間葉系幹細胞等 
 本培養法においては、中胚葉系幹細胞、間葉系幹細胞など複数の細胞を用いることができる。ヒトiPS細胞由来の間葉系幹細胞に対して3D伸展培養を行うことで、腱関連の遺伝子発現やコラーゲンの産生が上昇することが明らかとなっており、本細胞を用いることが可能である。分泌されるコラーゲンには少なくともI型コラーゲンが含まれる。細胞としては、例えば、株化された中胚葉系幹細胞(マウスC3H10T1/2細胞など)、生体由来の中胚葉系幹細胞(ヒト骨髄由来中胚葉系幹細胞など)、iPS細胞(好ましくはヒトiPS細胞)などの多能性幹細胞由来の中胚葉系幹細胞を使用することができ、また、生体腱・靭帯組織より単離した細胞などがコラーゲン産生性の細胞の一例として想定されるが、これらに限定はされず、当業者に公知の任意の細胞を適宜選択して使用することができる。細胞は例えば、C3H10T1/2細胞、細胞株、正常細胞、組織幹細胞由来の細胞、ES細胞由来の細胞、またはiPS細胞由来の細胞でありうる。本明細書において「細胞由来の細胞」と言う場合は、元の細胞自体も含まれ、例えば、「組織幹細胞由来の細胞」には「組織幹細胞」自体も含まれるものと解される。
 また、本発明の一つの態様では、腱/靱帯様人工組織の製造過程において、細胞を中胚葉系幹細胞へ分化誘導することがさらに行われる。中胚葉系幹細胞への分化誘導は、例えば、文献(Takashima Y et al. 2007 Cell. 129(7) 1377-88)記載の方法を参考にして、レチノイン酸を用いて行うことができる。
細胞培養
 本発明に係る腱/靱帯様人工組織を製造する際には、細胞をゲル中に包埋して三次元培養することができる。ゲルにはフィブリンゲルまたはコラーゲンゲルを使用することができる。フィブリンゲルは、好ましくはプロテアーゼ阻害剤を含有する。プロテアーゼ阻害剤の一例としてはプラスミン阻害剤やエラスチン阻害剤が挙げられる。プラスミン阻害剤としては、例えば、アプロチニン、α2-antiplasmin、ε-アミノカプロン酸などを使用することができる。エラスチン阻害剤としては、例えば、Elastatinalなどを使用することができる。アプロチニンなどのプロテアーゼ阻害剤をゲル中に含有させることにより、細胞培養時・生体移植時におけるゲルの強度を維持することができる。アプロチニンなどのプロテアーゼ阻害剤の濃度は例えば、0.1mg/ml~10mg/ml、好ましくは0.3mg/ml~3mg/mlの範囲である。
 本発明に係る腱/靱帯様人工組織を製造する際には、細胞の三次元培養を、細胞およびゲルを適宜追加しつつ、張力負荷をかけながら行うことができるが、そのため、細胞培養に用いるゲルには、張力負荷に耐えうる強度を有していることが要求される。張力負荷に耐えうる強度を有するゲルは、例えば、本願の実施例に記載のように、フィブリノゲン、トロンビン、およびアプロチニンを混合して、アプロチニンを含有するフィブリンゲルを調製することにより得ることができるが、これに限定はされない。一つの実施態様においては、例えば、コラーゲンゲルが使用される。本明細書においては、張力負荷(伸展張力)をかけながら細胞を(例えばハイドロゲル内において)三次元培養する系を「三次元メカノシグナル細胞培養系」を呼ぶ。張力負荷は、当業者に公知の任意の方法を用いて行うことができるが、例えば、シェルパプロ(メニコンライフサイエンス)、STB-140(株式会社ストレックス)を使用して行うことができる。張力は例えば、1日あたり0.2~20%の伸展率、好ましくは少なくとも1%の伸展率とすることができる。伸展率は三次元培養チャンバーの伸展前状態に比較した伸展後のチャンバー幅の伸び率として定義される。より具体的には、伸展率(%)=(伸展後チャンバー幅-伸展前チャンバー幅)/(伸展前チャンバー幅×100)により算出される。細胞のメカノシグナル培養時間は例えば、少なくとも8hour/dayであり、好ましくは16hour/dayである。細胞の培養期間は、典型的には7~30日である。伸展負荷は伸展率を1日ごとに徐々に高めながら実施するのが好ましい。例えば、15日間の培養期間において、Day 0の伸展率を0%とし、Day 1の伸展率を1%、Day 2の伸展率を2%、Day 3の伸展率を3%、Day 4の伸展率を4%、Day 5以降の伸展率を5%とすることができる。
 細胞およびゲルの追加は、培養期間中、任意の時点で複数回行うことができ、例えば、1日おきに追加を行うことができる。細胞およびゲルの追加は、例えば、12時間ごと、24時間ごと、48時間ごと、72時間ごと、または96時間ごとに1回の頻度で行ってもよい。例えば、1日おきに追加を行う場合、例えば、15日の培養期間中、Day 0、Day 2、Day 4、Day 6、およびDay 8に細胞とゲルを追加してもよく、追加の頻度を培養期間の途中で変更したり、中止したりしてもよい。また、培養は、伸展長軸方向に細長い形状の培養チャンバーおよび/または平面状の形状の培養チャンバー等を用いて行ってもよく、目的とする人工腱の形状に沿って選択するチャンバーを変えることができる。一度に追加する細胞数は、例えば、1.0×105個から1.0×107個、例えば、1.0×106個とすることができるが、これらに限定はされない。また、一度に追加するゲルは、例えば、30~3000μl、例えば、100μl、300μl、または500μlとすることができるが、これらに限定はされない。追加する細胞およびゲルの量は、培養期間の途中で任意に変更されうる。また、細胞およびゲルの追加は、培養チャンバーの全体に対して、またはその一部に対して行うことができる。いくつかの態様において、本開示に係る腱/靱帯様人工組織は、短手方向の幅が、例えば、2.0mm以上、3.0mm以上、4.0mm以上、5.0mm以上、6.0mm以上、7.0mm以上、8.0mm以上、9.0mm以上、または10.0mm以上でありうる。
脱細胞化処理
 三次元メカノシグナル細胞培養により作製した腱/靱帯様人工組織には、それに含まれる生きた細胞を排除するために脱細胞化処理を行うことができる。脱細胞化処理は、当業者に公知の任意の手法により行うことができるが、例えば、高静水圧処理、界面活性剤処理、マイクロ波照射などにより行うことができる。
培地組成物
 三次元細胞培養用の培地組成としては、例えば、少なくともフィブリノゲン、トロンビンを含有するものであり、好ましくはプロテアーゼ阻害剤を含有するものが使用されうる。三次元細胞培養用培地組成物は、例えば、1mg/ml~30mg/mlのフィブリノゲン、0.1mg/ml~10mg/mlのアプロチニン、および/または0.01mg/ml~3mg/mlのトロンビン、好ましくは、5mg/ml~10mg/mlのフィブリノゲン、0.3mg/ml~3mg/mlのアプロチニン、および/または0.1mg/ml~1mg/mlのトロンビンを含有しうる。本発明で使用される三次元細胞培養用培地組成物は、ゲルの強度を高めるための追加の成分を含んでいてもよい。また、本発明で使用される三次元細胞培養用培地組成物は、細胞の培養に用いられる一般的な培地成分をさらに含んでいてもよい。
 以下に、実施例を示して本発明を具体的に説明するが、これらにより本発明は何ら制限を受けるものではない。
例1:iPS細胞のiPSC-MSCへの分化と伸展刺激下の培養による人工腱の作製
 人工腱組織を作製するための供給源として、多能性と増殖能を示し、ヒトマトリクス遺伝子を発現しうるヒトiPS細胞を利用した。まず、以前に報告(Winston TS., et al, 2019)されたように、ヒトiPSCをbFGFとSB431542、CHIR99021で神経堤細胞(NCC)に誘導させた。その後、αMEMでの培養を続け、ヒトMSC(iPSC-MSC)を調製した。Mkxの発現がメカニカルストレスにより誘導され、腱関連の遺伝子発現を促すという報告(Kayama et al., 2016; Suzuki et al., 2016)に基づき、iPSC-MSCを5%の伸展刺激下にて培養をしたところ、伸展刺激なしと比較して、Mkxなどの腱関連の遺伝子発現が上昇していた(図1)。さらに、伸展刺激を加えて人工腱を作製したところ、刺激なしと比較して、より平行に近く径も大きいコラーゲン線維を有する人工腱を作製できた(図2および3)。図2 は、iPSC-MSCより作製した人工腱の走査電子顕微鏡(SEM)像と共に、線維の配列を示しており、左右に伸展刺激なし/ありで、上下に2000倍と5000倍の像が示されている。SEMで5000倍の像をn=4で撮影し、ImageJに取り込み、ImageJのpluginであるOrientationJで線維の方向を計算した。図3Bは、透過型電子顕微鏡(TEM)像と共に線維の径を示している。ImageJで画像を取り込み、n=4でコラーゲンの幅を計算した。伸展刺激ありの方が、線維幅が広くなっていると考えられる。
例2:新規作製方法によるiPSC-MSC由来の人工腱の調製
 iPSC-MSCを3D伸展培養で15日間培養した(図4)。図3に示されているように、従来の方法(conventional)では15日間の培養期間において、Day 0の伸展率を0%とし、Day 1の伸展率を1%、Day 2の伸展率を2%、Day 3の伸展率を3%、Day 4の伸展率を4%、Day 5以降の伸展率を5%していた。一方で新規作製方法(new)では、15日の培養期間中、Day 0、Day 3、Day 6、Day 9に細胞とゲル(コラーゲンゲル)を追加した。一度に追加する細胞数は、従来の方法で培養開始時(Day 0)に使用したものと同じで1.0×106、ゲルは300μlを使用した。その結果、均一な厚さの人工腱様組織が得られた(図5)。培養の途中に追加でゲルに埋包した腱細胞を加えて伸長培養を続けることにより、従来法のものに比べて、太さと厚みがそれぞれ2倍程度となった人工腱の作製に成功した。また、HE染色と走査型電子顕微鏡(SEM)による分析により、新規方法で作成した人工腱は従来の方法で見られた線維の走行を保ちつつ大型化が可能となり、さらに層状の構造が形成されていることが明らかになった(図6)。
例3:人工腱の脱細胞化と化学的架橋
 同種異系ヒトiPS細胞の使用に関連する免疫反応と腫瘍形成のリスクを排除するために、作製した人工腱を脱細胞化した。組織移植について確立されたアプローチである高圧処置を使用した(Hashimoto Y., et al, 2010)。脱細胞化後、核酸依存性の炎症を抑えるために、細胞をDNaseで処理した(Crapo PM., et al, 2011)。移植用の組織の機械的特性を強化するためには(Juncosa-Melvin, N. et al., 2006; Nirmalanandhan VS. et al, 2008)、化学的架橋が効果的であると報告されている(Makris EA., et al., 2014)。そこで、人工腱の機械的特性を強化するために、N-エチル-N-(3-(ジメチルアミノ)プロピル)カルボジイミド/N-ヒドロキシスクシンイミド(EDC/NHS)を使用して化学架橋を行った。
例4:新規作製した人工腱の張力試験
 作製した人工腱の機械的特性を評価するために、張力試験を行った(図7)。図7のグラフから明らかなように、細胞とゲルを追加して3D伸展培養を行って作製した人工腱は、従来法により細胞とゲルを追加せずに3D伸展培養を行って作製した人工腱よりも、3倍近く高い張力(約0.3N)を有していた。また、歪率(%)やヤング率(MPa)の改善も確認した。これらから、新規方法で作成した人工腱は従来方法と比較して、より幅広となり物性の向上も見られていた。
例5:ラットへの移植
 より幅広の人工腱を作製できたことからラットのアキレス腱移植を行った。歩行機能の評価のために、処置ラットの足跡からAchilles functional index(AFI)を計算した。AFIの値は正常の場合は0に近く、運動機能が低下するほど値が低くなることを意味する。より詳細には、マウスの足底に墨を塗り、右図の紙を敷いた細い道の上をマウスに歩行させる。この際のラットの足跡から、第1指から第5指までの長さ(足指幅(PW))、第2指から第二4指までの長さ(足指幅中間(IT))、第3指先から手関節までの長さ(足跡長(PL))の3つを、術側(E)と正常側(N)のそれぞれで測定し、計算式(AFI = 74 x [(NPL-EPL)/EPL] + 161 [(EPW-NPW)/NPW] + 48 x [(EIT-NIT)/NIT] - 5)に当てはめて、Achilles functional indexを算出した。値が低いほど、アキレス腱の機能が回復していないことを反映している。コントロールの保存療法群(conservation)と手術群(surgery)と比較して、移植(transplantation)により運動機能の早期回復を確認できた(図8)。また、張力評価の面でも人工腱移植は機能的な腱組織の再生を促すことが示唆された(図9)。このように、我々はより幅広かつ強固な人工腱を作製することに成功し、ラットアキレス腱損傷モデルにおいて、作製した人工腱は早期の運動機能の回復と共に腱組織の再生を促進することが考えられた。
例6:平面状人工腱の作製
 培養チャンバーの変更を行い、本特許記載の新規作製方法を用いてiPSC-MSC由来の人工腱組織の作製を行った。培養スペースの面積を増やし、平面状の培養スペースを確保した。ここで使用した培養チャンバーでは、従来のダンベル型のチャンバーでの培養でのコラーゲン液量と細胞量に比べて、それぞれ3倍に増やした量で培養を行うことができる。その結果、約10mm幅の内部構造の密な人工腱組織を作製することに成功した(図10)。
 本明細書には、本発明の好ましい実施態様を示してあるが、そのような実施態様が単に例示の目的で提供されていることは、当業者には明らかであり、当業者であれば、本発明から逸脱することなく、様々な変形、変更、置換を加えることが可能であろう。本明細書に記載されている発明の様々な代替的実施形態が、本発明を実施する際に使用されうることが理解されるべきである。また、本明細書中において参照している特許および特許出願書類を含む、全ての刊行物に記載の内容は、その引用によって、本明細書中に明記された内容と同様に取り込まれていると解釈すべきである。
 本発明者らは、既存の培養系では観察されたことのない、層構造を有し、コラーゲン線維がより密に走行している人工組織を作製することに成功した。この新たな人工組織を用いれば、既存の最も一般的な手術療法である自家移植法と比較して侵襲性を極めて軽減することができる。また、ヒトiPS細胞から作製可能であり、ブタなどの動物由来製品と比較して、異種原性の免疫反応を回避することができる。本件発明は、腱/靱帯の再生医療的なアプローチを可能とするものであり、腱/靱帯を損傷した患者の治療において極めて有用となりうる。

 

Claims (21)

  1.  腱/靱帯様人工組織の製造方法であって、
     (a)中胚葉系幹細胞、間葉系幹細胞等を張力負荷に耐えうる強度を有するゲル中に包埋する工程、
     (b)ゲルに張力負荷をかけながら細胞を培養する工程、
     工程(b)がさらに、細胞およびゲルを追加して培養する工程を含むことを特徴とする、方法。
  2.  伸展長軸方向に細長い形状の培養チャンバーおよび/または平面状の形状の培養チャンバーを用いて培養を行うことを特徴とする、請求項1に記載の方法。
  3.  細胞およびゲルの追加が培養期間中に複数回行われる、請求項1または請求項2のいずれか一項記載の方法。
  4.  張力負荷の伸展率を高めながら細胞を培養することを特徴とする、請求項1~請求項3のいずれか一項記載の方法。
  5.  張力負荷が少なくとも1日あたり1%の伸展率であることを特徴とする、請求項1~請求項4のいずれか一項記載の方法。
  6.  細胞がC3H10T1/2細胞、細胞株、正常細胞、組織幹細胞由来の細胞、ES細胞由来の細胞、またはiPS細胞由来の細胞である、請求項1~請求項5のいずれか一項記載の方法。
  7.  ゲルがフィブリンゲルまたはコラーゲンゲルである、請求項1~請求項6のいずれか一項記載の方法。
  8.  ゲルがプラスミン阻害剤を含有する、請求項1~請求項7のいずれか一項記載の方法。
  9.  ゲルがアプロチニンを含有する、請求項1~請求項8のいずれか一項記載の方法。
  10.  さらに(c)脱細胞化処理を行う工程を含む、請求項1~請求項9のいずれか一項記載の方法。
  11.  脱細胞化処理がマイクロ波照射を含む、請求項10記載の方法。
  12.  層状構造を有する、腱/靱帯様人工組織。
  13.  年輪状またはシート状の層状構造を有する、請求項12記載の腱/靱帯様人工組織。
  14.  長手方向に平行なコラーゲン線維の配向を有する、請求項12または請求項13記載の腱/靱帯様人工組織。
  15.  短手方向の幅が2.0mm以上、3.0mm以上、4.0mm以上、5.0mm以上、6.0mm以上、7.0mm以上、8.0mm以上、9.0mm以上、または10.0mm以上である、請求項12~請求項14のいずれか一項記載の腱/靱帯様人工組織。
  16.  少なくとも0.15Nの引っ張り強さを有する、請求項12~請求項15のいずれか一項記載の腱/靱帯様人工組織。
  17.  少なくとも0.3Nの引っ張り強さを有する、請求項12~請求項16のいずれか一項記載の腱/靱帯様人工組織。
  18.  I型コラーゲンを含む、請求項12~請求項17のいずれか一項記載の腱/靱帯様人工組織。
  19.  請求項6に記載の細胞を含む、請求項12~請求項18のいずれか一項記載の腱/靱帯様人工組織。
  20.  上記請求項1~請求項11のいずれか一項記載の方法を用いて製造される、腱/靱帯様人工組織。
  21.  上記請求項1~請求項11のいずれか一項記載の方法を用いて製造される、上記請求項12~請求項19のいずれか一項記載の腱/靱帯様人工組織。

     
PCT/JP2023/017788 2022-05-12 2023-05-11 三次元メカノシグナル細胞培養系を用いて作製した腱/靱帯様人工組織 WO2023219142A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022078641 2022-05-12
JP2022-078641 2022-05-12

Publications (1)

Publication Number Publication Date
WO2023219142A1 true WO2023219142A1 (ja) 2023-11-16

Family

ID=88730370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017788 WO2023219142A1 (ja) 2022-05-12 2023-05-11 三次元メカノシグナル細胞培養系を用いて作製した腱/靱帯様人工組織

Country Status (1)

Country Link
WO (1) WO2023219142A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052472A1 (ja) * 2014-09-29 2016-04-07 公立大学法人横浜市立大学 三次元細胞集合体の作製方法
WO2019013279A1 (ja) * 2017-07-13 2019-01-17 国立大学法人 東京医科歯科大学 三次元メカノシグナル細胞培養系を用いて作製した腱/靱帯様人工組織

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052472A1 (ja) * 2014-09-29 2016-04-07 公立大学法人横浜市立大学 三次元細胞集合体の作製方法
WO2019013279A1 (ja) * 2017-07-13 2019-01-17 国立大学法人 東京医科歯科大学 三次元メカノシグナル細胞培養系を用いて作製した腱/靱帯様人工組織

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KATAOKA KENSUKE, KURIMOTO RYOTA, TSUTSUMI HIROKI, CHIBA TOMOKI, KATO TOMOMI, SHISHIDO KANA, KATO MARIKO, ITO YOSHIAKI, CHO YUICHIR: "In vitro Neo-Genesis of Tendon/Ligament-Like Tissue by Combination of Mohawk and a Three-Dimensional Cyclic Mechanical Stretch Culture System", FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, FRONTIERS MEDIA, CH, vol. 8, 2 June 2020 (2020-06-02), CH , pages 307, XP093107361, ISSN: 2296-634X, DOI: 10.3389/fcell.2020.00307 *
TSUTSUMI HIROKI, KURIMOTO RYOTA, NAKAMICHI RYO, CHIBA TOMOKI, MATSUSHIMA TAKAHIDE, FUJII YUTA, SANADA RISA, KATO TOMOMI, SHISHIDO : "Generation of a tendon-like tissue from human iPS cells", JOURNAL OF TISSUE ENGINEERING, SAGE PUBLICATIONS LTD., GB, vol. 13, 1 January 2022 (2022-01-01), GB , pages 204173142210740, XP093107362, ISSN: 2041-7314, DOI: 10.1177/20417314221074018 *

Similar Documents

Publication Publication Date Title
Makris et al. The knee meniscus: structure–function, pathophysiology, current repair techniques, and prospects for regeneration
Awad et al. Repair of patellar tendon injuries using a cell–collagen composite
US7799325B2 (en) Removal of hypertrophic scars
Abou Neel et al. Collagen—emerging collagen based therapies hit the patient
JP5179459B2 (ja) 組織工学による靱帯、腱、および他の組織を産生するためのマトリックス
US20060039896A1 (en) Augmentation and repair of age-related soft tissue defects
Goulet et al. Tendons and ligaments
US20080299213A2 (en) Augmentation and repair of spincter defects with cells including adipocytic cells
CN102614546B (zh) 用于组织修复和生物人造组织工程的细胞片及其制备方法
Kaizawa et al. Human tendon–derived collagen hydrogel significantly improves biomechanical properties of the tendon-bone interface in a chronic rotator cuff injury model
CN104011201A (zh) 用于治疗椎间盘退变性疾病的成纤维细胞
US20080152628A1 (en) Augmentation and repair of spincter defects with cells including mesenchymal cells
Mihaly et al. Engineering skeletal muscle: building complexity to achieve functionality
Gordon et al. Biologically enhanced healing of the rotator cuff
WO2023219142A1 (ja) 三次元メカノシグナル細胞培養系を用いて作製した腱/靱帯様人工組織
WO2019013279A1 (ja) 三次元メカノシグナル細胞培養系を用いて作製した腱/靱帯様人工組織
RU2428996C2 (ru) Биотрансплантат для коррекции дефектов мягких тканей (варианты), способ получения биотрансплантата (варианты) и способ коррекции дефектов мягких тканей
WO2004042038A1 (de) Verfahren zur behandlung von erkranktem,degeneriertem oder geschädigtem gewebe unter verwendung von in vitro hergestelltem dreidimensionalem gewebe in kombination mit gewebezellen und/oder exogenen faktoren
AU7059898A (en) Dermal sheath tissue in wound healing
US20080112935A1 (en) Augmentation and repair of spincter defects with cells including fibroblasts
US20090130066A1 (en) Augmentation and repair of sphincter defects with cells including muscle cells
Paul et al. Tissue and organ regeneration: An introduction
US20080267923A2 (en) Hair undifferentiated cells
JP2020530375A (ja) 多相組織スキャフォールド構築物
Scheurer 3D Bioprinting of anatomically accurate Implants for Meniscus Tissue Engineering

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803616

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)