WO2023219010A1 - Resin composition, film, optical filter, solid-state imaging element, image display device, infrared sensor, camera module, and compound - Google Patents

Resin composition, film, optical filter, solid-state imaging element, image display device, infrared sensor, camera module, and compound Download PDF

Info

Publication number
WO2023219010A1
WO2023219010A1 PCT/JP2023/016844 JP2023016844W WO2023219010A1 WO 2023219010 A1 WO2023219010 A1 WO 2023219010A1 JP 2023016844 W JP2023016844 W JP 2023016844W WO 2023219010 A1 WO2023219010 A1 WO 2023219010A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
formula
resin composition
substituent
Prior art date
Application number
PCT/JP2023/016844
Other languages
French (fr)
Japanese (ja)
Inventor
一成 八木
直幸 花木
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023219010A1 publication Critical patent/WO2023219010A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/01Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms
    • C07C311/02Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C311/09Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton the carbon skeleton being further substituted by at least two halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/12Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D495/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/006Preparation of organic pigments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B11/00Filters or other obturators specially adapted for photographic purposes

Definitions

  • the present invention relates to a resin composition containing an infrared absorbing dye.
  • the present invention also relates to a film, an optical filter, a solid-state image sensor, an image display device, an infrared sensor, and a camera module using the resin composition.
  • the invention also relates to compounds.
  • CCDs charge-coupled devices
  • CMOSs complementary metal oxide semiconductors
  • These solid-state image sensors use silicon photodiodes sensitive to infrared rays in their light receiving portions. For this reason, an infrared cut filter may be provided to correct visibility.
  • Infrared cut filters are manufactured using resin compositions containing infrared absorbing dyes and resins.
  • Patent Document 1 describes that an infrared cut filter or the like is manufactured using a resin composition containing an infrared absorbing dye containing an iminium compound and a resin.
  • an object of the present invention is to provide a resin composition that can form a film with excellent heat resistance and light resistance.
  • Another object of the present invention is to provide a film, an optical filter, a solid-state image sensor, an image display device, an infrared sensor, a camera module, and a compound.
  • the present invention provides the following. ⁇ 1> At least one infrared absorbing dye A selected from a dye A1 represented by formula (1) and a dye multimer A2 containing two or more dye structures derived from the dye A1 in one molecule, A resin composition comprising a resin;
  • R L101 to R L105 represent a hydrogen atom or a substituent
  • R L103 and R L104 combine to form a ring.
  • X 101 to X 103 each independently represent a nitrogen atom or -CR X101 -
  • R X101 represents a hydrogen atom or a substituent
  • X 104 and X 105 each independently represent a nitrogen atom or -CR X102 -
  • R represents a hydrogen atom or a substituent
  • R Ar101 and R Ar102 each represent independently represents a hydrogen atom or a substituent
  • n101 represents an integer of 1 to 3
  • Y 101 and Y 102 each independently represent -OR Y101 , -NR Y102 RY103 or -SR Y104
  • R Y101 to R Y104 each independently represent
  • X 103 in the above formula (1) is -CR X101 -, R X101 is a hydrogen atom or a substituent, The resin composition according to ⁇ 1>, wherein L 102 and L 103 are each a sulfur atom.
  • X 103 in the above formula (1) is -CR X101 -
  • R X101 is a hydrogen atom or a substituent
  • L 102 and L 103 are each a sulfur atom
  • R L103 and R L104 are each independently a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, is an aryl group or a heteroaryl group
  • Y 101 and Y 102 are each independently -NR Y102 R Y103
  • R Y102 and R Y103 are each independently a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a heteroaryl
  • R Y102 and R Y103 may be bonded via a single bond or a divalent linking group to form a ring.
  • ⁇ 7> The resin composition according to ⁇ 6>, wherein the maximum absorption wavelength of the infrared absorbing agent other than the infrared absorbing dye A is on the shorter wavelength side than the maximum absorption wavelength of the infrared absorbing dye A.
  • ⁇ 8> The resin composition according to any one of ⁇ 1> to ⁇ 7>, wherein the maximum absorption wavelength of the infrared absorbing dye A is in a wavelength range of 700 to 1800 nm.
  • ⁇ 10> A film obtained using the resin composition according to any one of ⁇ 1> to ⁇ 9>.
  • An optical filter comprising the film according to ⁇ 10>.
  • ⁇ 12> A solid-state imaging device comprising the film according to ⁇ 10>.
  • ⁇ 13> An image display device including the film according to ⁇ 10>.
  • Ar 401 represents an aryl group or a heteroaryl group
  • R 401 to R 404 each independently represent a hydrogen atom, an alkyl group, an aryl group or a heteroaryl group
  • R 405 and R 406 each independently represent an alkyl group, an aryl group, a heteroaryl group, an aryloxy group, a heteroaryloxy group, an alkoxy group or a cyano group
  • R 407 and R 408 each independently represent an alkyl group or an aryl group
  • n401 and n402 each independently represent an integer from 0 to 4
  • q4 represents 1 or 2
  • Z 4 represents a q4-valent counteranion.
  • Ar 501 represents an aryl group or a heteroaryl group
  • R 501 to R 504 each independently represent a hydrogen atom, an alkyl group, an aryl group or a heteroaryl group
  • R 505 and R 506 each independently represent an alkyl group, an aryl group, a heteroaryl group, an aryloxy group, a heteroaryloxy group, an alkoxy group or a cyano group
  • n 501 and n 502 each independently represent an integer from 0 to 4
  • q5 represents 1 or 2
  • Z 5 represents a q5-valent counteranion.
  • the present invention it is possible to provide a resin composition that can form a film with excellent heat resistance and light resistance. Further, the present invention can provide a film, an optical filter, a solid-state imaging device, an image display device, an infrared sensor, a camera module, and a compound.
  • FIG. 1 is a schematic diagram showing one embodiment of an infrared sensor.
  • is used to include the numerical values described before and after it as a lower limit and an upper limit.
  • the description that does not indicate substituted or unsubstituted includes a group having a substituent (atomic group) as well as a group having no substituent (atomic group).
  • the term "alkyl group” includes not only an alkyl group without a substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • exposure includes not only exposure using light but also drawing using particle beams such as electron beams and ion beams, unless otherwise specified.
  • the light used for exposure include actinic rays or radiation such as the bright line spectrum of a mercury lamp, far ultraviolet rays typified by excimer laser, extreme ultraviolet rays (EUV light), X-rays, and electron beams.
  • EUV light extreme ultraviolet rays
  • (meth)acrylate” represents acrylate and/or methacrylate
  • (meth)acrylic represents both acrylic and/or methacrylic
  • (meth)acrylate” represents acrylic and/or methacrylate.
  • Acryloyl refers to acryloyl and/or methacryloyl.
  • the weight average molecular weight and number average molecular weight are defined as polystyrene equivalent values measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • Me in the chemical formula represents a methyl group
  • Et represents an ethyl group
  • Bu represents a butyl group
  • Ph represents a phenyl group.
  • infrared rays refer to light (electromagnetic waves) with a wavelength of 700 to 2500 nm.
  • the total solid content refers to the total mass of all components of the composition excluding the solvent.
  • the term "process” is used not only to refer to an independent process, but also to include any process that achieves the intended effect even if it cannot be clearly distinguished from other processes. .
  • the resin composition of the present invention includes at least one infrared absorbing dye A selected from a dye A1 represented by formula (1) and a dye multimer A2 containing two or more dye structures derived from the dye A1 in one molecule; It is characterized by containing a resin.
  • the resin composition of the present invention By using the resin composition of the present invention, a film with excellent heat resistance and light resistance can be formed. It is presumed that the infrared absorbing dye A is likely to form associations in the resin during film formation. By associating infrared absorbing dye A in the resin, the frequency of contact with chemical species that induce decomposition such as oxygen and water is reduced, and the decomposition of infrared absorbing dye A is suppressed, resulting in excellent heat resistance and light resistance. It is presumed that a film could be formed.
  • the resin composition of the present invention can be used as a resin composition for optical filters.
  • Types of optical filters include infrared cut filters and infrared transmission filters.
  • the resin composition of the present invention comprises at least one infrared absorbing dye A2 selected from a dye A1 represented by formula (1) and a dye multimer A2 containing two or more dye structures derived from the above-mentioned dye A1 in one molecule. including.
  • the above-mentioned infrared absorbing dye will also be referred to as a specific infrared absorbing dye.
  • the specific infrared absorbing dye may be a dye or a pigment.
  • the specific infrared absorbing dye preferably has a solubility of 0.1 g/100 g or less at 25° C. in both propylene glycol monomethyl ether acetate and water.
  • the average particle size of the pigment is preferably 20 to 300 nm, more preferably 25 to 250 nm, and even more preferably 30 to 200 nm.
  • the term "average particle size" as used herein means the average particle size of secondary particles which are aggregates of primary pigment particles.
  • the particle size distribution of the secondary particles of the pigment (hereinafter also simply referred to as “particle size distribution”) is such that the secondary particles having an average particle size of ⁇ 100 nm account for 70% by mass or more of the total, preferably 80% by mass or more. It is preferable that it is at least % by mass. Note that the particle size distribution of the secondary particles can be measured using scattering intensity distribution.
  • R L101 to R L105 include alkyl groups, alkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, alkoxy groups, aryloxy groups, and alkenyloxy groups, and it is an alkyl group or an aryl group.
  • the number of carbon atoms in the alkyl group is preferably 1 to 10, more preferably 1 to 6, and even more preferably 1 to 4.
  • the alkyl group may be straight, branched or cyclic.
  • the alkenyl group preferably has 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms, and even more preferably 2 to 4 carbon atoms.
  • the alkenyl group may be either straight or branched.
  • the number of carbon atoms in the alkynyl group is preferably 2 to 10, more preferably 2 to 6, even more preferably 2 to 4.
  • the alkynyl group may be either straight or branched.
  • the number of carbon atoms in the aryl group is preferably 6 to 20, more preferably 6 to 12. Further, the aryl group is preferably a monocyclic aryl group.
  • the heteroaryl group preferably has a 5-membered ring or a 6-membered ring.
  • the hetero atoms constituting the ring of the heteroaryl group are preferably oxygen atoms, nitrogen atoms, and sulfur atoms.
  • the number of heteroatoms constituting the ring of the heteroaryl group is preferably 1 to 3.
  • the number of carbon atoms in the alkoxy group is preferably 1 to 10, more preferably 1 to 6, and even more preferably 1 to 4.
  • the alkoxy group may be either straight or branched.
  • the number of carbon atoms in the aryloxy group is preferably 6 to 20, more preferably 6 to 12.
  • the alkenyloxy group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 4 carbon atoms.
  • the alkenyloxy group may be either straight or branched.
  • X 101 to X 103 each independently represent a nitrogen atom or -CR X101 -, and R X101 represents a hydrogen atom or a substituent.
  • R X101 represents a hydrogen atom or a substituent.
  • R represents a substituent represented by R , an alkenyloxy group or an amino group. These groups may further have a substituent.
  • the substituent include the groups listed for the substituent T described later, a group containing an anion described below, and an ethylenically unsaturated bond-containing group.
  • the ethylenically unsaturated bond-containing group include a vinyl group, a (meth)allyl group, a (meth)acryloyl group, and the like.
  • the number of carbon atoms in the alkyl group is preferably 1 to 10, more preferably 1 to 6, and even more preferably 1 to 4.
  • the alkyl group may be straight, branched or cyclic.
  • the alkenyl group preferably has 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms, and even more preferably 2 to 4 carbon atoms.
  • the alkenyl group may be either straight or branched.
  • the number of carbon atoms in the alkynyl group is preferably 2 to 10, more preferably 2 to 6, even more preferably 2 to 4.
  • the alkynyl group may be either straight or branched.
  • the number of carbon atoms in the aryl group is preferably 6 to 20, more preferably 6 to 12.
  • the aryl group is preferably a monocyclic aryl group.
  • the heteroaryl group preferably has a 5-membered ring or a 6-membered ring.
  • the hetero atoms constituting the ring of the heteroaryl group are preferably oxygen atoms, nitrogen atoms, and sulfur atoms.
  • the number of heteroatoms constituting the ring of the heteroaryl group is preferably 1 to 3.
  • the number of carbon atoms in the alkoxy group is preferably 1 to 10, more preferably 1 to 6, and even more preferably 1 to 4.
  • the alkoxy group may be either straight or branched.
  • the number of carbon atoms in the aryloxy group is preferably 6 to 20, more preferably 6 to 12.
  • the alkenyloxy group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 4 carbon atoms.
  • the alkenyloxy group may be either straight or branched.
  • R More preferably, it is a monocyclic aryl group having a substituent, even more preferably a monocyclic aryl group having a substituent at the ortho position.
  • substituents include the groups listed in substituent T described below, groups containing anions described below, ethylenically unsaturated bond-containing groups, and alkyl groups, sulfo groups, carboxy groups, salts of carboxy groups, Preferably, it is a salt of a sulfo group, a group containing an anion described below, or a group containing an ethylenically unsaturated bond.
  • X 101 and X 102 in formula (1) are each independently -CR X101 -.
  • R X101 is preferably a hydrogen atom.
  • X 103 in formula (1) is preferably -CR X101 -.
  • R A monocyclic aryl group having a substituent at the ortho position is even more preferable, and a monocyclic aryl group having a substituent at the ortho position is particularly preferable.
  • R X102 represents a hydrogen atom or a substituent. Examples of the substituent represented by R X102 include the groups described above as the substituent represented by R X101 , and the preferred ranges are also the same.
  • L 102 is preferably a sulfur atom because the maximum absorption wavelength can be present on the longer wavelength side.
  • L 103 is preferably a sulfur atom because the maximum absorption wavelength can be present on the longer wavelength side. It is particularly preferable that L 102 and L 103 are each a sulfur atom
  • R Ar101 and R Ar102 examples include the groups described above as the substituent represented by R X101 , and the preferred ranges are also the same.
  • n101 represents an integer from 1 to 3, preferably 1 or 2, and more preferably 1.
  • the number of carbon atoms in the arylene group represented by Ar 101 and Ar 102 in formula (1) is preferably 6 to 20, more preferably 6 to 12. Furthermore, the arylene group is preferably a monocyclic arylene group.
  • the heterocyclic group represented by Ar 101 and Ar 102 in formula (1) is preferably a 5-membered ring or a 6-membered ring.
  • the hetero atoms constituting the ring of the heterocyclic group are preferably oxygen atoms, nitrogen atoms, and sulfur atoms.
  • the number of heteroatoms constituting the ring of the heterocyclic group is preferably 1 to 3.
  • a preferred embodiment includes an embodiment in which Ar 101 and Ar 102 are each independently an arylene group.
  • *2 is preferably a bond with Y 101 or Y 102 in formula (1).
  • Y 101 and Y 102 in formula (1) each independently represent -OR Y101 , -NR Y102 RY103 or -SR Y104, and R Y101 to R Y104 each independently represent a hydrogen atom or an alkyl group. , represents an alkenyl group, an alkynyl group, an aryl group, or a heteroaryl group, and R Y102 and R Y103 may be bonded via a single bond or a divalent linking group to form a ring.
  • R Y101 to R Y104 are each independently preferably an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a heteroaryl group, more preferably an alkyl group or an aryl group, and preferably an aryl group. More preferred.
  • the number of carbon atoms in the alkyl group represented by R Y101 to R Y104 is preferably 1 to 10, more preferably 1 to 6, and even more preferably 1 to 4.
  • the alkyl group may be straight, branched or cyclic.
  • the alkyl group may further have a substituent. Examples of the substituent include the groups listed for the substituent T described later, a group containing an anion described below, and an ethylenically unsaturated bond-containing group.
  • the alkenyl group represented by R Y101 to R Y104 preferably has 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms, and still more preferably 2 to 4 carbon atoms.
  • the alkenyl group may be either straight or branched.
  • the alkenyl group may further have a substituent.
  • substituents include the groups listed for the substituent T described later, a group containing an anion described below, and an ethylenically unsaturated bond-containing group.
  • the number of carbon atoms in the alkynyl group represented by R Y101 to R Y104 is preferably 2 to 10, more preferably 2 to 6, and even more preferably 2 to 4.
  • the alkynyl group may be either straight or branched.
  • the alkynyl group may further have a substituent. Examples of the substituent include the groups listed for the substituent T described later, a group containing an anion described below, and an ethylenically unsaturated bond-containing group.
  • the number of carbon atoms in the aryl group represented by R Y101 to R Y104 is preferably 6 to 20, more preferably 6 to 12. Further, the aryl group is preferably a monocyclic aryl group. The aryl group may further have a substituent. Examples of the substituent include the groups listed for the substituent T described later, a group containing an anion described below, and an ethylenically unsaturated bond-containing group.
  • the heteroaryl group represented by R Y101 to R Y104 is preferably a 5-membered ring or a 6-membered ring. The hetero atoms constituting the ring of the heteroaryl group are preferably oxygen atoms, nitrogen atoms, and sulfur atoms.
  • the number of heteroatoms constituting the ring of the heteroaryl group is preferably 1 to 3.
  • the heteroaryl group may further have a substituent. Examples of the substituent include the groups listed for the substituent T described later, a group containing an anion described below, and an ethylenically unsaturated bond-containing group.
  • -NR Y102 R Y102 and R Y103 in R Y103 may be bonded via a single bond or a divalent linking group to form a ring.
  • the divalent linking group include -CR Y111 R Y112 -, -O-, -S-, and a combination of two or more of these.
  • R Y111 and R Y112 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an aryl group, or a heteroaryl group. These groups may further have a substituent. Examples of the substituent include the groups listed for the substituent T described later, a group containing an anion described below, and an ethylenically unsaturated bond-containing group.
  • Y 101 and Y 102 in formula (1) are each independently -NR Y102 R Y103 .
  • Ar 101 and X 101 may be bonded via a single bond or a divalent linking group to form a 5-membered ring or a 6-membered ring
  • Ar 101 and Y 101 may be bonded via a single bond or a divalent linking group to form a 5-membered ring or a 6-membered ring
  • Ar 102 and X 102 may be bonded via a single bond or a divalent linking group to form a 5-membered ring or a 6-membered ring
  • Ar 102 and Y 102 may be bonded via a single bond or a divalent linking group to form a 5-membered ring or a 6-membered ring.
  • Examples of the above-mentioned divalent linking group include -CR Y121 R Y122 -, -O-, -S-, and a group combining two or more of these.
  • R Y121 and R Y122 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an aryl group, or a heteroaryl group. These groups may further have a substituent. Examples of the substituent include the groups listed for the substituent T described later, a group containing an anion described below, and an ethylenically unsaturated bond-containing group.
  • Z 1 in formula (1) represents a counter ion.
  • Counter ions include counter anions and counter cations.
  • the counter cation may be an inorganic cation or an organic cation.
  • inorganic cations include monovalent metal cations such as Na (sodium) cation, Li (lithium) cation, and K (potassium) cation; Mg (magnesium) cation, Ca (calcium) cation, and Sr (strontium).
  • organic cations examples include ammonium cations (tetraalkylammonium cations, trialkylammonium cations, etc.), imidazolium cations, pyridinium cations (pyridinium cations, N-methylpyridinium cations, N-ethylpyridinium cations, etc.), phosphonium cations, etc. .
  • the counter cation is preferably an inorganic cation, and more preferably a Na cation, Li cation, K cation, Mg cation, or Ba cation, because it can further improve light resistance and heat resistance.
  • the counter anion may be an organic anion or an inorganic anion.
  • Counter anions include the anion represented by formula (AN1), the anion represented by formula (AN2), the anion represented by formula (AN3), the anion represented by formula (AN4), and the anion represented by formula (AN5).
  • R AN1 and R AN2 each independently represent a halogen atom or an alkyl group, and R AN1 and R AN2 may be combined to form a ring;
  • R AN3 to R AN5 each independently represent a halogen atom or an alkyl group, and R AN3 and R AN4 , R AN4 and R AN5 , or R AN3 and R AN5 are bonded together.
  • R AN6 to R AN9 each independently represent a halogen atom, an alkyl group, an aryl group, an alkoxy group, an aryloxy group, or a cyano group
  • RAN10 represents a halogenated hydrocarbon group which may be connected by a linking group having a nitrogen atom or an oxygen atom
  • R AN11 to R AN16 each independently represent a halogen atom or a halogenated hydrocarbon group.
  • the halogen atoms represented by R AN1 and R AN2 in formula (AN1), the halogen atoms represented by R AN3 to R AN5 in formula (AN2), and the halogen atoms represented by R AN6 to R AN9 in formula (AN3) include fluorine. Atom, chlorine atom, bromine atom, and iodine atom are mentioned, and fluorine atom is preferable.
  • the number of carbon atoms in the alkyl group represented by R AN1 and R AN2 in formula (AN1), the alkyl group represented by R AN3 to R AN5 in formula (AN2), and the alkyl group represented by R AN6 to R AN9 in formula (AN3) is , 1 to 10 are preferred, 1 to 6 are more preferred, and 1 to 3 are still more preferred.
  • the alkyl group may be linear, branched, or cyclic, preferably linear or branched, and more preferably linear.
  • the alkyl group may have a substituent or may be unsubstituted.
  • the alkyl group is preferably an alkyl group having a halogen atom as a substituent, and more preferably an alkyl group having a fluorine atom as a substituent (fluoroalkyl group). Further, the fluoroalkyl group is preferably a perfluoroalkyl group.
  • the number of carbon atoms in the aryl group represented by R AN6 to R AN9 in formula (AN3) is preferably 6 to 20, more preferably 6 to 12, and even more preferably 6.
  • the aryl group may have a substituent or may be unsubstituted. Examples of substituents include halogen atoms and alkyl groups.
  • the halogen atom is preferably a fluorine atom.
  • the alkyl group is preferably a fluoroalkyl group.
  • the number of carbon atoms in the alkoxy group represented by R AN6 to R AN9 in formula (AN3) is preferably 1 to 10, more preferably 1 to 6, and even more preferably 1 to 3.
  • the alkoxy group may be linear, branched, or cyclic, preferably linear or branched, and more preferably linear.
  • the alkoxy group may have a substituent or may be unsubstituted. Examples of substituents include halogen atoms and alkyl groups.
  • the halogen atom is preferably a fluorine atom.
  • the alkyl group is preferably a fluoroalkyl group.
  • the number of carbon atoms in the aryloxy group represented by R AN6 to R AN9 in formula (AN3) is preferably 6 to 20, more preferably 6 to 12, and even more preferably 6.
  • the aryloxy group may have a substituent or may be unsubstituted. Examples of substituents include halogen atoms and alkyl groups.
  • the halogen atom is preferably a fluorine atom.
  • the alkyl group is preferably a fluoroalkyl group.
  • R AN1 and R AN2 in formula (AN1) may be combined to form a ring.
  • RAN3 and RAN4 , RAN4 and RAN5 , or RAN3 and RAN5 in formula (AN2) may be bonded to form a ring.
  • RAN10 in formula (AN4) represents a halogenated hydrocarbon group which may be connected by a linking group having a nitrogen atom or an oxygen atom.
  • the halogenated hydrocarbon group refers to a monovalent hydrocarbon group substituted with a halogen atom, and is preferably a monovalent hydrocarbon group substituted with a fluorine atom.
  • the hydrocarbon group include an alkyl group and an aryl group.
  • the monovalent hydrocarbon group substituted with a halogen atom may further have a substituent.
  • the linking group having a nitrogen atom or an oxygen atom include -O-, -CO-, -COO-, -CO-NH-, and the like.
  • R AN11 to R AN16 in formula (AN5) each independently represent a halogen atom or a halogenated hydrocarbon group.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, with a fluorine atom being preferred.
  • the halogenated hydrocarbon group is preferably an alkyl group having a halogen atom as a substituent, and more preferably an alkyl group having a fluorine atom as a substituent.
  • heteropolyacid anions and isopolyate anions include tungstate anions ([W 6 O 19 ] 2- , [W 10 O 32 ] 4- , [WO 4 ] 2-, etc.), molybdate anions ([Mo 2 O 7 ] 2- , [Mo 6 O 19 ] 2- , [Mo 8 O 26 ] 4-, etc.), phosphotungstate anions ([PW 4 O 20 ] 4- , [PW 12 O 40 ] 3- , [P 2 W 15 O 56 ] 12- , [P 2 W 17 O 61 ] 10- , [P 2 W 18 O 62 ] 6-, etc.), phosphomolybdate anion ([P 2 Mo 18 O 62 ] 6-) , [PMo 12 O 40 ] 3- ), phosphotungsten molybdate anion ([PW 12-x Mo x O 40 ] 3- (x is an integer from 1 to 11), [P 2 W 18-y Mo y O 62 ] 6- (y is an integer
  • the counter anion may be a divalent or higher anion.
  • divalent or higher anions include anions having two or more monovalent anions in one molecule, such as imide anions, methide anions, borate anions, and sulfonate anions.
  • p1 represents an integer from 0 to 5
  • q1 represents an integer from 1 to 5.
  • p1 is preferably an integer of 0 to 3, more preferably an integer of 0 to 2.
  • q1 is preferably an integer of 1 to 3, more preferably 1 or 2, and even more preferably 1.
  • p1 is an integer of 1 or more
  • the counter ion represented by Z 1 is preferably a counter anion.
  • the product of the valence of the positive charge in [ ] in formula (1) and q1 is preferably the same value as the product of the valence of the charge of the counter anion represented by Z 1 and p1.
  • p1 is an integer of 1 or more
  • the counter ion represented by Z 1 is preferably a counter cation.
  • the product of the negative charge valence in [ ] in formula (1) and q1 is preferably the same value as the product of the charge valence of the counter cation represented by Z 1 and p1.
  • Z 1 is preferably absent, that is, p1 is 0 and q1 is 1.
  • the dye A1 is a dye represented by formula (2).
  • R X111 and R X112 each independently represent a hydrogen atom or a substituent
  • X 203 represents a nitrogen atom or -CR X101 -
  • R X101 represents a hydrogen atom or a substituent
  • X 104 and X 105 each independently represent a nitrogen atom or -CR X102 -
  • R Ar201 and R Ar202 each represent independently represents a hydrogen atom or a substituent
  • n201 represents an integer of 1 to 3
  • Y 201 and Y 202 each independently represent -OR Y101 , -NR Y102 RY
  • L 201 , L 202 , L 203 , X 203 , Y 201 , Y 202 , Z 2 , q2, p2 in formula (2) are the same as L 101 , L 102 , L 103 , X 103 , Y 101 in formula (1 ) , Y 102 , Z 1 , q1, and p1, and the preferred ranges are also the same.
  • R X111 and R X112 in formula (2) include the groups described as the substituent represented by R X101 in formula (1), and the preferred ranges are also the same.
  • R X111 and R X112 in formula (2) are preferably hydrogen atoms.
  • the above X 104 and X 105 have the same meanings as X 104 and X 105 described in formula (1), and the preferred ranges are also the same.
  • R Ar201 , R Ar202 and n201 have the same meanings as R Ar101 , R Ar102 and n101 explained in formula (1), and their preferred ranges are also the same.
  • a preferred embodiment includes an embodiment in which Ar 201 and Ar 202 are each independently an arylene group.
  • *2 is preferably a bond with Y 201 or Y 202 in formula (2).
  • Ar 201 and X 201 may be bonded via a single bond or a divalent linking group to form a 5-membered ring or a 6-membered ring
  • Ar 201 and Y 201 may be bonded via a single bond or a divalent linking group to form a 5-membered ring or a 6-membered ring
  • Ar 202 and X 202 may be bonded via a single bond or a divalent linking group to form a 5-membered ring or a 6-membered ring
  • Ar 202 and Y 202 may be bonded via a single bond or a divalent linking group to form a 5-membered ring or a 6-membered ring.
  • Examples of the above-mentioned divalent linking group include -CR Y121 R Y122 -, -O-, -S-, and a group combining two or more of these.
  • R Y121 and R Y122 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an aryl group, or a heteroaryl group. These groups may further have a substituent. Examples of the substituent include the groups listed for the substituent T described later, a group containing an anion described below, and an ethylenically unsaturated bond-containing group.
  • the dye A1 is a dye (compound) represented by formula (4).
  • the dye (compound) represented by formula (4) is also a compound of the present invention.
  • Ar 401 represents an aryl group or a heteroaryl group
  • R 401 to R 404 each independently represent a hydrogen atom, an alkyl group, an aryl group or a heteroaryl group
  • R 405 and R 406 each independently represent an alkyl group, an aryl group, a heteroaryl group, an aryloxy group, a heteroaryloxy group, an alkoxy group or a cyano group
  • R 407 and R 408 each independently represent an alkyl group or an aryl group
  • n401 and n402 each independently represent an integer from 0 to 4
  • q4 represents 1 or 2
  • Z 4 represents a q4-valent counteranion.
  • the number of carbon atoms in the aryl group represented by Ar 401 is preferably 6 to 20, more preferably 6 to 12. Further, the aryl group is preferably a monocyclic aryl group.
  • the heteroaryl group represented by Ar 401 is preferably a 5-membered ring or a 6-membered ring.
  • the hetero atoms constituting the ring of the heteroaryl group are preferably oxygen atoms, nitrogen atoms, and sulfur atoms.
  • the number of heteroatoms constituting the ring of the heteroaryl group is preferably 1 to 3.
  • the above aryl group and heteroaryl group may further have a substituent.
  • substituents examples include the groups listed for the substituent T described later, a group containing an anion described below, and an ethylenically unsaturated bond-containing group.
  • ethylenically unsaturated bond-containing group examples include a vinyl group, a (meth)allyl group, a (meth)acryloyl group, and the like.
  • Ar 401 is preferably an aryl group, more preferably a monocyclic aryl group, even more preferably a monocyclic aryl group having a substituent, and even more preferably a monocyclic aryl group having a substituent at the ortho position. Particularly preferred is an aryl group.
  • substituents examples include the groups listed in substituent T described below, groups containing anions described below, ethylenically unsaturated bond-containing groups, and alkyl groups, sulfo groups, carboxy groups, salts of carboxy groups, A salt of a sulfo group, a group containing an anion as described below, or a group containing an ethylenically unsaturated bond is preferable.
  • R 401 to R 404 each independently represent a hydrogen atom, an alkyl group, an aryl group, or a heteroaryl group, and preferably an alkyl group or an aryl group.
  • the number of carbon atoms in the alkyl group represented by R 401 to R 404 is preferably 1 to 10, more preferably 1 to 6, and even more preferably 1 to 4.
  • the alkyl group may be straight, branched or cyclic.
  • the alkyl group may further have a substituent. Examples of the substituent include the groups listed for the substituent T described later, a group containing an anion described below, and an ethylenically unsaturated bond-containing group.
  • the number of carbon atoms in the aryl group represented by R 401 to R 404 is preferably 6 to 20, more preferably 6 to 12. Further, the aryl group is preferably a monocyclic aryl group. The aryl group may further have a substituent. Examples of the substituent include the groups listed for the substituent T described later, a group containing an anion described below, and an ethylenically unsaturated bond-containing group.
  • the heteroaryl group represented by R 401 to R 404 is preferably a 5-membered ring or a 6-membered ring. The hetero atoms constituting the ring of the heteroaryl group are preferably oxygen atoms, nitrogen atoms, and sulfur atoms.
  • the number of heteroatoms constituting the ring of the heteroaryl group is preferably 1 to 3.
  • the heteroaryl group may further have a substituent. Examples of the substituent include the groups listed for the substituent T described later, a group containing an anion described below, and an ethylenically unsaturated bond-containing group.
  • R 405 and R 406 each independently represent an alkyl group, an aryl group, a heteroaryl group, an aryloxy group, a heteroaryloxy group, an alkoxy group, or a cyano group.
  • n401 and n402 each independently represent an integer of 0 to 4, preferably an integer of 0 to 2, more preferably 0 or 1, and even more preferably 0.
  • Examples of the q4-valent counter anion represented by Z 4 include the above-mentioned counter anions.
  • the dye A1 is a dye (compound) represented by formula (5).
  • the dye (compound) represented by formula (5) is also a compound of the present invention.
  • Ar 501 represents an aryl group or a heteroaryl group
  • R 501 to R 504 each independently represent a hydrogen atom, an alkyl group, an aryl group or a heteroaryl group
  • R 505 and R 506 each independently represent an alkyl group, an aryl group, a heteroaryl group, an aryloxy group, a heteroaryloxy group, an alkoxy group or a cyano group
  • n 501 and n 502 each independently represent an integer from 0 to 4
  • q5 represents 1 or 2
  • Z 5 represents a q5-valent counteranion.
  • Ar 501 , R 501 to R 506 , n 501 , n 502 , q5 and Z 5 in formula (5) are the same as Ar 401 , R 401 to R 406 , n 401 , n 402 , q4 and Z 4 in formula (4) It has the same meaning as , and the preferred range is also the same.
  • the specific infrared absorbing dye may be a dye multimer A2 (hereinafter also simply referred to as a dye multimer) containing two or more dye structures derived from the above dye A1 in one molecule.
  • the dye multimer examples include a dye multimer having a repeating unit represented by formula (A) (hereinafter also referred to as dye multimer (A)), a dye multimer having a repeating unit represented by formula (C) ( (hereinafter also referred to as dye multimer (C)), the dye multimer represented by formula (D) (hereinafter also referred to as dye multimer (D)), and dye multimer (A) or dye multimer ( D) is preferred.
  • A dye multimer having a repeating unit represented by formula (A)
  • C dye multimer having a repeating unit represented by formula (C)
  • dye multimer (D) the dye multimer represented by formula (hereinafter also referred to as dye multimer (D)
  • dye multimer (A) or dye multimer ( D) is preferred.
  • the dye multimer (A) contains a repeating unit represented by formula (A).
  • the proportion of the repeating unit represented by formula (A) is preferably 10% by mass or more of all repeating units constituting the dye multimer (A), more preferably 20% by mass or more, even more preferably 30% by mass or more, Particularly preferred is 50% by mass or more.
  • the upper limit can be 100% by mass or less, or 95% by mass or less.
  • a 1 represents a trivalent linking group
  • L 1 represents a single bond or a divalent linking group
  • DyeI represents a dye structure derived from the above dye A1.
  • the trivalent linking group represented by A1 in formula (A) includes a poly(meth)acrylic linking group, a polyalkyleneimine linking group, a polyester linking group, a polyurethane linking group, a polyurea linking group, and a polyamide linking group.
  • Examples include a linking group, a polyether linking group, a polystyrene linking group, a bisphenol linking group, a novolak linking group, and a poly(meth)acrylic linking group is preferred.
  • L 1 in formula (A) represents a single bond or a divalent linking group.
  • R represents a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group.
  • the alkylene group preferably has 1 to 30 carbon atoms.
  • the upper limit is more preferably 25 or less, and even more preferably 20 or less.
  • the lower limit is more preferably 2 or more, and even more preferably 3 or more.
  • the alkylene group may be linear, branched, or cyclic.
  • the alkylene group may have a substituent or may be unsubstituted.
  • the number of carbon atoms in the arylene group is preferably 6 to 20, more preferably 6 to 12.
  • the arylene group may have a substituent or may be unsubstituted.
  • the heterocyclic group preferably has a 5-membered ring or a 6-membered ring.
  • the hetero atoms constituting the ring of the heterocyclic group are preferably oxygen atoms, nitrogen atoms, and sulfur atoms.
  • the number of heteroatoms constituting the ring of the heterocyclic group is preferably 1 to 3.
  • the heterocyclic group may have a substituent or may be unsubstituted.
  • L 1 is preferably an alkylene group, an arylene group, -NH-, -CO-, -O-, -COO-, -OCO-, -S-, or a linking group combining two or more of these; More preferably, the connecting group is a combination of at least one selected from arylene groups and arylene groups and one or more selected from -O-, -COO-, -OCO-, and -S-.
  • the divalent linking group represented by L 1 is also preferably a group containing -S- or -O-.
  • the number of atoms constituting the chain connecting DyeI and A 1 is preferably 2 or more, more preferably 3 or more.
  • the upper limit can be, for example, 30 or less, or 25 or less.
  • the dye structure derived from dye A1 represented by DyeI in formula (A) is preferably a residue obtained by removing one hydrogen atom from the dye (dye A1) represented by formula (1) described above. Furthermore, any of the sites X 101 to X 103 , L 101 to L 103 , Ar 101 , Ar 102 , Y 101 , and Y 102 in formula (1) includes a connecting portion with L 1 in formula (A). More preferably, X 103 in formula (1) includes a linkage with L 1 in formula (A).
  • the dye multimer (A) may contain other repeating units in addition to the repeating unit represented by formula (A).
  • Examples of other repeating units include repeating units having a polymerizable group and repeating units having an acid group.
  • the polymerizable group include ethylenically unsaturated bond-containing groups such as a vinyl group, a (meth)allyl group, and a (meth)acryloyl group.
  • the acid group include a carboxy group, a sulfo group, and a phosphoric acid group.
  • the proportion of repeating units having a polymerizable group is preferably 50% by mass or less of all repeating units constituting the dye multimer (A).
  • the lower limit is preferably 1% by mass or more, more preferably 3% by mass or more.
  • the upper limit is preferably 35% by mass or less, more preferably 30% by mass or less.
  • the proportion of repeating units having acid groups is preferably 50% by mass or less of all repeating units constituting the dye multimer (A).
  • the lower limit is preferably 1% by mass or more, more preferably 3% by mass or more.
  • the upper limit is preferably 35% by mass or less, more preferably 30% by mass or less.
  • the dye multimer (A) is produced by (1) a method of synthesizing dye A1 having a polymerizable group by addition polymerization, (2) a method of synthesizing a dye A1 having a polymerizable group, and (2) a polymer having a highly reactive functional group such as an isocyanate group, an acid anhydride group, or an epoxy group. It can be synthesized by a method such as a method of reacting a highly reactive functional group with a dye A1 having a reactive functional group (hydroxy group, primary or secondary amino group, carboxy group, etc.).
  • the dye multimer (A) is preferably a radical polymer obtained by radical polymerization using dye A1 having an ethylenically unsaturated bond.
  • the dye multimer (C) contains a repeating unit represented by formula (C).
  • the proportion of the repeating unit represented by formula (C) is preferably 10% by mass or more of all the repeating units constituting the dye multimer (C), more preferably 20% by mass or more, even more preferably 30% by mass or more, Particularly preferred is 50% by mass or more.
  • the upper limit can be 100% by mass or less, or 95% by mass or less.
  • L 3 represents a single bond or a divalent linking group
  • DyeIII represents the dye structure derived from the above dye A1
  • m represents 0 or 1.
  • L 3 in formula (C) represents a single bond or a divalent linking group.
  • Each R independently represents a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group.
  • the number of carbon atoms in the alkyl group and alkylene group is preferably 1 to 30.
  • the upper limit is more preferably 25 or less, and even more preferably 20 or less.
  • the lower limit is more preferably 2 or more, and even more preferably 3 or more.
  • the alkyl group and alkylene group may be linear, branched, or cyclic.
  • the number of carbon atoms in the aryl group and arylene group is preferably 6 to 20, more preferably 6 to 12.
  • the heterocyclic group preferably has a 5-membered ring or a 6-membered ring.
  • the hetero atoms constituting the ring of the heterocyclic group are preferably oxygen atoms, nitrogen atoms, and sulfur atoms.
  • the number of heteroatoms constituting the ring of the heterocyclic group is preferably 1 to 3.
  • the alkylene group, arylene group, heterocyclic group, alkyl group and aryl group may be unsubstituted or may have a substituent. Examples of the substituent include the groups listed below for substituent T, a polymerizable group, and an acid group.
  • L 3 in formula (C) is an alkylene group, an arylene group, -NH-, -CO-, -O-, -COO-, -OCO-, -S-, -SO 2 -, or a combination of two or more of these.
  • a linking group is preferred.
  • the dye structure derived from dye A1 represented by DyeIII of formula (C) is preferably a residue obtained by removing two hydrogen atoms from the dye (dye A1) represented by formula (1) described above. Furthermore, any of the sites X 101 to X 103 , L 101 to L 103 , Ar 101 , Ar 102 , Y 101 , and Y 102 in formula (1) includes a connecting portion with L 1 in formula (A). It is preferable.
  • n in formula (C) represents 0 or 1, and 1 is preferable.
  • the dye multimer (C) may contain other repeating units described for the dye multimer (A).
  • the dye multimer (D) is a compound represented by formula (D).
  • L 4 represents a (n+k)-valent linking group
  • n represents an integer from 2 to 20
  • k represents an integer from 0 to 20
  • DyeIV represents the dye structure derived from the above dye A1
  • P 4 represents a substituent
  • Each of the n DyeIVs may be different, When k is 2 or more, the plurality of P4s may be different from each other, n+k represents an integer from 2 to 20.
  • n is preferably 2 to 14, more preferably 2 to 8, particularly preferably 2 to 7, and even more preferably 2 to 6.
  • k is preferably 0 to 13.
  • the lower limit can be 1 or more, or 2 or more.
  • the upper limit is preferably 10 or less, more preferably 8 or less, even more preferably 7 or less, and even more preferably 6 or less.
  • the (n+k)-valent linking group represented by L 4 in formula (D) includes 1 to 100 carbon atoms, 0 to 10 nitrogen atoms, 0 to 50 oxygen atoms, 1 Mention may be made of groups consisting of from 3 to 200 hydrogen atoms and from 0 to 20 sulfur atoms.
  • the (n+k)-valent linking group is preferably the following structural unit or a group formed by combining two or more of the following structural units (which may form a ring structure). * in the formula below represents a bond.
  • the (n+k)-valent linking group represented by L 4 is preferably a linking group derived from a polyfunctional thiol, a linking group derived from a polyfunctional alcohol, or a linking group derived from an acid anhydride, More preferably, it is a linking group derived from a polyfunctional thiol.
  • the (n+k)-valent linking group represented by L 4 is preferably a group represented by any one of formulas (Za-1) to (Za-5).
  • La 2 represents a divalent group
  • Ta 2 represents a single bond or a divalent linking group
  • the two Ta 2s present may be the same or different from each other.
  • La 3 represents a trivalent group
  • Ta 3 represents a single bond or a divalent linking group
  • the three Ta 3s present may be the same or different from each other.
  • La 4 represents a tetravalent group
  • Ta 4 represents a single bond or a divalent linking group
  • the four Ta 4s present may be the same or different from each other. .
  • La 5 represents a pentavalent group
  • Ta 5 represents a single bond or a divalent linking group
  • the five Ta 5s present may be the same or different from each other.
  • La 6 represents a hexavalent group
  • Ta 6 represents a single bond or a divalent linking group
  • the six Ta 6s present may be the same or different from each other.
  • * represents a bond.
  • Each R independently represents a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group.
  • the number of carbon atoms in the alkyl group and alkylene group is preferably 1 to 30.
  • the upper limit is more preferably 25 or less, and even more preferably 20 or less.
  • the lower limit is more preferably 2 or more, and even more preferably 3 or more.
  • the alkyl group and alkylene group may be linear, branched, or cyclic.
  • the number of carbon atoms in the aryl group and arylene group is preferably 6 to 20, more preferably 6 to 12.
  • the heterocyclic group preferably has a 5-membered ring or a 6-membered ring.
  • the hetero atoms constituting the ring of the heterocyclic group are preferably oxygen atoms, nitrogen atoms, and sulfur atoms.
  • the number of heteroatoms constituting the ring of the heterocyclic group is preferably 1 to 3.
  • the alkylene group, arylene group, heterocyclic group, alkyl group and aryl group may be unsubstituted or may have a substituent. Examples of the substituent include the groups listed below for substituent T, a polymerizable group, and an acid group.
  • Examples of the trivalent group represented by La 3 include a group obtained by removing one hydrogen atom from the above divalent linking group.
  • Examples of the tetravalent group represented by La 4 include a group obtained by removing two hydrogen atoms from the above divalent linking group.
  • Examples of the pentavalent group represented by La 5 include a group obtained by removing three hydrogen atoms from the above divalent linking group.
  • Examples of the hexavalent group represented by La 6 include a group obtained by removing four hydrogen atoms from the above divalent linking group.
  • the trivalent to hexavalent groups represented by La 3 to La 6 may have the above-mentioned substituents.
  • (n+k)-valent linking groups include the linking groups described in paragraph numbers 0071 to 0072 of JP-A No. 2008-222950, and the linking groups described in paragraph number 0176 of JP-A No. 2013-029760. , and the linking groups described in paragraph numbers 0022 to 0024 of International Publication No. 2016/031442.
  • the dye structure derived from dye A1 represented by Dye IV of formula (D) is preferably a residue obtained by removing one hydrogen atom from the dye (dye A1) represented by formula (1) described above. Furthermore, any of the sites X 101 to X 103 , L 101 to L 103 , Ar 101 , Ar 102 , Y 101 , and Y 102 in formula (1) includes a connecting portion with L 1 in formula (A). More preferably, X 103 in formula (1) includes a linkage with L 1 in formula (A).
  • substituent represented by P 4 in formula (D) examples include the groups listed below for substituent T, acid groups, and polymerizable groups. Further, the substituent represented by P 4 may be a monovalent polymer chain having a repeating unit. The monovalent polymer chain having repeating units is preferably a monovalent polymer chain having repeating units derived from a vinyl compound. When k is 2 or more, the k P4s may be the same or different.
  • P 4 When P 4 is a monovalent polymer chain having repeating units and k is 1, P 4 contains 2 to 20 repeating units (preferably 2 to 15 repeating units, more preferably 2 to 15 repeating units) derived from a vinyl compound. It is preferable to use a monovalent polymer chain having 1 to 10 polymer chains. In addition, when P 4 is a monovalent polymer chain having repeating units and k is 2 or more, the average number of vinyl compound-derived repeating units in k P 4 is 2 to 20 ( The number is preferably 2 to 15, more preferably 2 to 10. When P 4 is a monovalent polymer chain having repeating units, the number of repeating units and the average value of the number of repeating units can be determined by nuclear magnetic resonance (NMR).
  • NMR nuclear magnetic resonance
  • examples of the repeating unit constituting P 4 include other repeating units explained in explaining the embodiment of the dye multimer (A) mentioned above. . It is preferable that the other repeating unit has one or more types selected from the above-mentioned repeating unit having an acid group and repeating unit having a polymerizable group.
  • the proportion of the repeating unit containing an acid group is preferably 10 to 80 mol%, and 10 to 65 mol%, based on the total repeating units of P 4 . is more preferable.
  • the proportion of the repeating unit having a polymerizable group is preferably 10 to 80 mol%, and 10 to 65 mol%, based on the total repeating units of P 4 . % is more preferable.
  • substituent T examples include the following groups.
  • Halogen atom e.g. fluorine atom, chlorine atom, bromine atom, iodine atom
  • alkyl group preferably an alkyl group having 1 to 30 carbon atoms
  • alkenyl group preferably an alkenyl group having 2 to 30 carbon atoms
  • alkynyl group preferably an alkynyl group having 2 to 30 carbon atoms
  • an aryl group preferably an aryl group having 6 to 30 carbon atoms
  • an amino group preferably an amino group having 0 to 30 carbon atoms
  • an alkoxy group preferably an amino group having 0 to 30 carbon atoms
  • 1 to 30 alkoxy groups aryloxy groups (preferably aryloxy groups having 6 to 30 carbon atoms), heteroaryloxy groups
  • acyl groups preferably acyl groups having 2 to 30 carbon atoms
  • alkoxycarbonyl groups preferably is an alkoxycarbonyl group having 2 to 30 carbon
  • atoms or atomic groups constituting the salts include alkali metal ions (Li + , Na + , K + , etc.), alkaline earth metal ions ( Ca 2+ , Mg 2+ , etc.), ammonium ions (tetraalkylammonium ions, trialkylammonium ions, etc.), imidazolium ions, pyridinium ions (pyridinium ions, N-methylpyridinium ions, N-ethylpyridinium ions, etc.), phosphonium ions, etc. can be mentioned.
  • These groups may further have a substituent when the group is a substitutable group. Examples of the substituent include the groups described above for the substituent T.
  • anion-containing group examples include a group represented by formula (P-1) and a group represented by formula (P-2).
  • Lp 1 in formula (P-1) represents a single bond or a divalent linking group.
  • the divalent linking group represented by Lp 1 is an alkylene group having 1 to 6 carbon atoms, an arylene group having 6 to 12 carbon atoms, -NR Lp1 -, -O-, -S-, -CO-, -SO 2 - Or a group consisting of a combination thereof, etc. can be mentioned.
  • At least some of the hydrogen atoms in the alkylene group are preferably substituted with fluorine atoms, and more preferably a perfluoroalkylene group.
  • alkylene groups include difluoromethylene groups, tetrafluoroethylene groups, hexafluoropropylene groups, and the like. It is preferable that at least some of the hydrogen atoms of the arylene group are substituted with fluorine atoms.
  • Specific examples of such an arylene group include a tetrafluorophenylene group, a hexafluoro-1-naphthylene group, a hexafluoro-2-naphthylene group, and the like.
  • Lp 1 in formula (P-1) is a single bond, a group consisting of a combination of -NR Lp1 -, -SO 2 and an alkylene group containing a fluorine atom, or a combination of -O- and an arylene group containing a fluorine atom. or a group consisting of a combination of -NR Lp1 -, -SO 2 and an alkylene group containing a fluorine atom.
  • Xp 1 in formula (P-1) represents -SO 3 - , -COO - , -PO 4 H - or an anion containing a boron atom, and is preferably -SO 3 - or -COO - .
  • Lp 2 in formula (P-2) represents a single bond or a divalent linking group, and is preferably a single bond.
  • Examples of the divalent linking group represented by Lp 2 include an alkylene group having 1 to 6 carbon atoms, an arylene group having 6 to 12 carbon atoms, -O-, -S-, or a group consisting of a combination thereof.
  • Lp 3 in formula (P-2) represents -SO 2 - or -CO-, and preferably -SO 2 -.
  • G in formula (P-2) represents a carbon atom or a nitrogen atom, and is preferably a nitrogen atom.
  • n in formula (P-2) represents 2 when G is a carbon atom, and represents 1 when G is a nitrogen atom.
  • Rp 1 in formula (P-2) represents an alkyl group containing a fluorine atom or an aryl group containing a fluorine atom.
  • the number of carbon atoms in the alkyl group containing a fluorine atom represented by Rp 1 is preferably 1 to 10, more preferably 1 to 6, and even more preferably 1 to 3.
  • the number of carbon atoms in the fluorine atom-containing aryl group represented by Rp 1 is preferably 6 to 20, more preferably 6 to 14, and even more preferably 6 to 10.
  • the alkyl group containing a fluorine atom and the aryl group containing a fluorine atom may further have a substituent. Examples of the substituent include the groups listed above for the substituent T.
  • the LUMO (Lowest Unoccupied Molecular Orbital) level of the dye A1 is high.
  • the LUMO level of the dye A1 is preferably ⁇ 6.5 eV or higher, more preferably ⁇ 6.0 eV or higher, and still more preferably ⁇ 5.5 eV or higher.
  • the LUMO level of the dye A1 is determined by, for example, optimizing the structure of the cation moiety of the dye A1 using the quantum chemical calculation program Gaussian09 under conditions of functional B3LYP/basis set 6-31g(d)/vacuum. It can be determined by performing calculations.
  • Specific examples of specific infrared absorbing dyes include compounds having the structures shown below. Resonance structures of these compounds are also mentioned as specific examples of specific compounds. In the structural formula shown below, Bu represents a butyl group and Ph represents a phenyl group.
  • the compound represented by formula (4) can be synthesized using a known method according to the following synthesis scheme, for example.
  • the types and amounts of the solvent, catalyst, and reagent used, as well as synthesis conditions such as reaction time and reaction temperature, can be adjusted as appropriate.
  • Compound 4A is reacted with a brominating agent such as N-bromosuccinimide (NBS) to provide compound 4B. Thereafter, bispinacolborane is reacted in the presence of a palladium catalyst to obtain 4C in which bromine is replaced with boron.
  • the bromine moiety of Compound 4D synthesized by a known method is lithiated with alkyllithium, and then reacted with a dichlorosilicon compound to obtain Compound 4E.
  • Compound 4E is reacted with an alkyllithium and then reacted with 1,2-dibromo-1,1,2,2,-tetrachloroethane to obtain compound 4F.
  • Compound 4C and Compound 4F are reacted in the presence of a palladium catalyst (Suzuki-Miyaura reaction conditions) to obtain Compound 4G.
  • Compound 4G is reacted under acidic conditions to deprotect the acetal moiety, and compound 4H is synthesized.
  • Compound 4I is obtained by reacting Compound 4H with a Grignard reagent. Thereafter, a reaction is performed under acidic conditions to obtain compound 4J.
  • a salt compound having the desired anion By reacting Compound 4J with a salt compound having the desired anion, a compound represented by formula (4) in which the chloride anion is replaced with the desired anion can be obtained.
  • the compound represented by formula (5) can be synthesized in the same manner except for using thionyl chloride instead of the dichlorosilicon compound in the compound 4E synthesis step in the synthesis of the compound represented by formula (4).
  • a compound represented by formula (5) can be synthesized using the formula (5).
  • the maximum absorption wavelength of the specific infrared absorbing dye is preferably in a wavelength range of 700 to 1800 nm, more preferably in a wavelength range of 1000 to 1800 nm, and even more preferably in a wavelength range of 1030 to 1750 nm. , it is even more preferable that the wavelength be in the range of 1050 to 1700 nm, and still more preferably be in the wavelength range of 1070 to 1650 nm.
  • the ratio of the absorbance A max at the maximum absorption wavelength of the specific infrared absorbing dye to the absorbance A max +200 at the maximum absorption wavelength + 200 nm, A max + 200 /A max is preferably 4.5 or more, and preferably 10 or more. is more preferable, and even more preferably 30 or more.
  • the upper limit is preferably 90 or less, for example. According to this aspect, it is possible to form an optical filter with excellent contrast between infrared transmittance and light blocking performance.
  • the content of the specific infrared absorbing dye is preferably 1% by mass or more, more preferably 2% by mass or more, and even more preferably 5% by mass or more based on the total solid content of the resin composition.
  • the upper limit of the content of the specific infrared absorbing dye is preferably 50% by mass or less, more preferably 40% by mass or less, and even more preferably 30% by mass or less.
  • the resin composition may contain only one type of specific infrared absorbing dye, or may contain two or more types. When two or more types are included, it is preferable that their total amount falls within the above range.
  • the resin composition of the present invention can contain an infrared absorber (another infrared absorber) other than the above-mentioned specific infrared absorbing dye. Furthermore, by containing other infrared absorbers, it is possible to form a film that can block infrared rays in a wider wavelength range.
  • Other infrared absorbers may be dyes or pigments.
  • the maximum absorption wavelength of the other infrared absorbent is preferably within a wavelength range of 700 to 1800 nm, more preferably within a wavelength range of 1000 to 1800 nm, and even more preferably within a wavelength range of 1030 to 1750 nm.
  • the wavelength range is from 1050 to 1700 nm, even more preferably from 1070 to 1650 nm.
  • the maximum absorption wavelength of the other infrared absorbing agent is preferably on the shorter wavelength side than the maximum absorption wavelength of the above-mentioned specific infrared absorbing dye.
  • the difference between the maximum absorption wavelength of other infrared absorbers and the maximum absorption wavelength of the above-mentioned specific infrared absorbing dye is 50 to 1000 nm because it is possible to form a film that can block infrared rays in a wider wavelength range. It is preferable that there be.
  • the upper limit is preferably 800 nm or less, more preferably 500 nm or less.
  • the lower limit is preferably 100 nm or more, more preferably 150 nm or more.
  • infrared absorbers include pyrrolopyrrole compounds, polymethine compounds, squarylium compounds, phthalocyanine compounds, naphthalocyanine compounds, quaterylene compounds, merocyanine compounds, croconium compounds, oxonol compounds, iminium compounds, dithiol compounds, triarylmethane compounds, and pyrromethene compounds. , azomethine compounds, anthraquinone compounds, dibenzofuranone compounds, dithiolene metal complexes, metal oxides, metal borides, and the like. As other infrared absorbers, polymethine compounds, squarylium compounds, and oxonol compounds are preferably used.
  • These compounds generally tend to have low heat resistance and light resistance, but by using them together with the above-mentioned specific infrared-absorbing dyes, they can be adsorbed to the aggregates of the above-mentioned specific infrared-absorbing dyes during film formation. It is presumed that the specific infrared absorbing dye forms an association with the specific infrared absorbing dye, and it is possible to form a film with excellent light resistance and heat resistance, so that the effects of the present invention are more significantly exhibited.
  • Examples of pyrrolopyrrole compounds include compounds described in paragraph numbers 0016 to 0058 of JP2009-263614A, compounds described in paragraphs 0037 to 0052 of JP2011-068731A, and compounds described in WO2015/166873A. Examples include compounds described in paragraph numbers 0010 to 0033. Examples of squarylium compounds include compounds described in paragraph numbers 0044 to 0049 of JP-A No. 2011-208101, compounds described in paragraph numbers 0060 to 0061 of Japanese Patent No. 6065169, and paragraph number 0040 of International Publication No. 2016/181987.
  • 2012-077153 oxytitanium phthalocyanine described in JP-A 2006-343631, and paragraphs 0013 to 0029 of JP-A 2013-195480.
  • the vanadium phthalocyanine compound described in Patent No. 6081771 and the compound described in International Publication No. 2020/071470.
  • naphthalocyanine compounds include compounds described in paragraph number 0093 of JP-A No. 2012-077153.
  • dithiolene metal complex include compounds described in Japanese Patent No. 5733804.
  • metal oxide examples include indium tin oxide, antimony tin oxide, zinc oxide, Al-doped zinc oxide, fluorine-doped tin dioxide, niobium-doped titanium dioxide, and tungsten oxide.
  • metal borides include lanthanum boride.
  • Commercially available lanthanum boride products include LaB 6 -F (manufactured by Nippon Shinkinzoku Co., Ltd.).
  • a metal boride the compound described in International Publication No. 2017/119394 can also be used.
  • commercially available indium tin oxide products include F-ITO (manufactured by DOWA Hitech Co., Ltd.).
  • infrared absorbers include squarylium compounds described in JP2017-197437A, squarylium compounds described in JP2017-025311A, squarylium compounds described in International Publication No. 2016/154782, and Japanese Patent No. 5884953.
  • Linked squarylium compounds compounds having a pyrrole bis-type squarylium skeleton or croconium skeleton described in JP 2017-141215, dihydrocarbazole bis-type squarylium compounds described in JP 2017-082029, JP 2017-068120 Asymmetric compounds described in paragraph numbers 0027 to 0114 of the publication, pyrrole ring-containing compounds (carbazole type) described in JP 2017-067963, phthalocyanine compounds described in Patent No. 6251530, etc. are used. You can also do that.
  • tungsten oxide represented by the following formula described in paragraph number 0025 of European Patent No. 3,628,645 can also be used.
  • M 1 and M 2 represent ammonium cations or metal cations, a is 0.01 to 0.5, b is 0 to 0.5, c is 1, and d is 2.5 to 3.
  • e is 0.01 to 0.75, n is 1, 2 or 3, m is 1, 2 or 3, and R represents a hydrocarbon group which may have a substituent. represent.
  • the content of the other infrared absorbing agent is preferably 5 to 500 parts by mass based on 100 parts by mass of the above-mentioned specific infrared absorbing dye.
  • the upper limit is preferably 200 parts by mass or less, more preferably 100 parts by mass or less.
  • the lower limit is preferably 10 parts by mass or more, more preferably 15 parts by mass or more.
  • the total content of the above-mentioned specific infrared absorbing dye and other infrared absorbing agent is preferably 2% by mass or more, more preferably 5% by mass or more, and 10% by mass or more based on the total solid content of the resin composition. More preferably, it is at least % by mass.
  • the upper limit of the total content is preferably 50% by mass or less, more preferably 40% by mass or less, and even more preferably 30% by mass or less.
  • the resin composition of the present invention contains a resin.
  • the resin is blended, for example, for dispersing pigments and the like in a resin composition or for use as a binder.
  • a resin used mainly for dispersing pigments and the like in a resin composition is also referred to as a dispersant.
  • this use of the resin is just one example, and the resin can also be used for purposes other than this use.
  • the weight average molecular weight of the resin is preferably 3,000 to 2,000,000.
  • the upper limit is preferably 1,000,000 or less, more preferably 500,000 or less.
  • the lower limit is preferably 4000 or more, more preferably 5000 or more.
  • resins include (meth)acrylic resin, epoxy resin, ene thiol resin, polycarbonate resin, polyether resin, polyarylate resin, polysulfone resin, polyethersulfone resin, polyphenylene resin, polyarylene ether phosphine oxide resin, polyimide resin, Examples include polyamide resin, polyamideimide resin, polyolefin resin, cyclic olefin resin, polyester resin, styrene resin, vinyl acetate resin, polyvinyl alcohol resin, polyvinyl acetal resin, polyurethane resin, and polyurea resin. One type of these resins may be used alone, or two or more types may be used in combination.
  • norbornene resin is preferable from the viewpoint of improving heat resistance.
  • Commercially available norbornene resins include, for example, the ARTON series manufactured by JSR Corporation (eg, ARTON F4520).
  • the resins include the resin described in the examples of International Publication No. 2016/088645, the resin described in JP 2017-057265, the resin described in JP 2017-032685, and the resin described in JP 2017-032685.
  • a resin having a fluorene skeleton can also be preferably used.
  • the description in US Patent Application Publication No. 2017/0102610 can be referred to, the contents of which are incorporated herein.
  • examples of the resin include resins described in paragraphs 0199 to 0233 of JP2020-186373A, alkali-soluble resins described in JP2020-186325A, and Korean Patent Publication No. 10-2020-0078339.
  • the resin represented by Formula 1, the resin described in JP-A No. 2021-134350, can also be used.
  • a resin having acid groups examples include a carboxy group, a phosphoric acid group, a sulfo group, and a phenolic hydroxy group. The number of these acid groups may be one, or two or more.
  • a resin having an acid group can also be used as a dispersant.
  • the acid value of the resin having acid groups is preferably 30 to 500 mgKOH/g.
  • the lower limit is preferably 50 mgKOH/g or more, more preferably 70 mgKOH/g or more.
  • the upper limit is preferably 400 mgKOH/g or less, more preferably 200 mgKOH/g or less, even more preferably 150 mgKOH/g or less, and most preferably 120 mgKOH/g or less.
  • a resin containing a repeating unit derived from a compound represented by formula (ED1) and/or a compound represented by formula (ED2) (hereinafter, these compounds may be referred to as "ether dimer") is used. It is also preferable to include.
  • R 1 and R 2 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 25 carbon atoms which may have a substituent.
  • R represents a hydrogen atom or an organic group having 1 to 30 carbon atoms.
  • the description in JP-A No. 2010-168539 can be referred to.
  • paragraph number 0317 of JP-A-2013-029760 can be referred to, the contents of which are incorporated herein.
  • the resin it is also preferable to use a resin having a polymerizable group.
  • the polymerizable group is preferably an ethylenically unsaturated bond-containing group and a cyclic ether group, and more preferably an ethylenically unsaturated bond-containing group.
  • R 1 represents a hydrogen atom or a methyl group
  • R 21 and R 22 each independently represent an alkylene group
  • n represents an integer of 0 to 15.
  • the alkylene group represented by R 21 and R 22 preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, even more preferably 1 to 3 carbon atoms, and particularly 2 or 3 carbon atoms.
  • n represents an integer of 0 to 15, preferably an integer of 0 to 5, more preferably an integer of 0 to 4, even more preferably an integer of 0 to 3.
  • Examples of the compound represented by formula (X) include ethylene oxide- or propylene oxide-modified (meth)acrylate of paracumylphenol.
  • Commercially available products include Aronix M-110 (manufactured by Toagosei Co., Ltd.).
  • the resin composition of the present invention preferably contains a resin as a dispersant.
  • the dispersant include acidic dispersants (acidic resins) and basic dispersants (basic resins).
  • the acidic dispersant (acidic resin) refers to a resin in which the amount of acid groups is greater than the amount of basic groups.
  • the acidic dispersant (acidic resin) is preferably a resin in which the amount of acid groups is 70 mol % or more when the total amount of acid groups and basic groups is 100 mol %.
  • the acid group that the acidic dispersant (acidic resin) has is preferably a carboxy group.
  • the acid value of the acidic dispersant (acidic resin) is preferably 10 to 105 mgKOH/g.
  • the basic dispersant refers to a resin in which the amount of basic groups is greater than the amount of acid groups.
  • the basic dispersant (basic resin) is preferably a resin in which the amount of basic groups exceeds 50 mol% when the total amount of acid groups and basic groups is 100 mol%.
  • the basic group that the basic dispersant has is preferably an amino group.
  • the resin used as a dispersant is a graft resin.
  • the descriptions in paragraphs 0025 to 0094 of JP-A No. 2012-255128 can be referred to, the contents of which are incorporated herein.
  • the resin used as a dispersant is a polyimine-based dispersant containing a nitrogen atom in at least one of the main chain and the side chain.
  • the polyimine dispersant has a main chain having a partial structure having a functional group with a pKa of 14 or less, a side chain having 40 to 10,000 atoms, and a basic nitrogen atom in at least one of the main chain and the side chain.
  • the resin has The basic nitrogen atom is not particularly limited as long as it exhibits basicity.
  • the resin used as the dispersant has a structure in which a plurality of polymer chains are bonded to the core portion.
  • resins include dendrimers (including star-shaped polymers).
  • specific examples of dendrimers include polymer compounds C-1 to C-31 described in paragraph numbers 0196 to 0209 of JP-A No. 2013-043962.
  • the resin used as a dispersant is also preferably a resin containing a repeating unit having an ethylenically unsaturated bond-containing group in its side chain.
  • the content of the repeating unit having an ethylenically unsaturated bond-containing group in its side chain is preferably 10 mol% or more, more preferably 10 to 80 mol%, and more preferably 20 to 70 mol% of the total repeating units of the resin. More preferably, it is mol%.
  • resins described in JP 2018-087939, block copolymers (EB-1) to (EB-9) described in paragraph numbers 0219 to 0221 of Patent No. 6432077, and international publication Polyethyleneimine having a polyester side chain described in No. 2016/104803, block copolymer described in International Publication No. 2019/125940, block polymer having an acrylamide structural unit described in JP 2020-066687, A block polymer having an acrylamide structural unit described in JP-A No. 2020-066688, a dispersant described in International Publication No. 2016/104803, etc. can also be used.
  • Dispersants are also available as commercial products, and specific examples include the DISPERBYK series manufactured by BYK Chemie, the SOLSPERSE series manufactured by Japan Lubrizol, the Efka series manufactured by BASF, and Ajinomoto Fine Techno Co., Ltd. Examples include the Ajisper series manufactured by Manufacturer. Further, the product described in paragraph number 0129 of JP 2012-137564A and the product described in paragraph number 0235 of JP 2017-194662A can also be used as a dispersant.
  • the content of the resin in the total solid content of the resin composition is preferably 1 to 95% by mass.
  • the lower limit is preferably 2% by mass or more, more preferably 5% by mass or more, even more preferably 7% by mass or more, and particularly preferably 10% by mass or more.
  • the upper limit is preferably 90% by mass or less, more preferably 85% by mass or less.
  • the content of the resin in the total solid content of the resin composition is preferably 1 to 75% by mass.
  • the upper limit is preferably 70% by mass or less, more preferably 65% by mass or less.
  • the lower limit is preferably 2% by mass or more, more preferably 5% by mass or more, even more preferably 7% by mass or more, and particularly preferably 10% by mass or more.
  • the content of the resin as a dispersant in the total solid content of the resin composition is preferably 0.1 to 40% by mass.
  • the upper limit is preferably 25% by mass or less, more preferably 20% by mass or less.
  • the lower limit is preferably 0.5% by mass or more, more preferably 1% by mass or more.
  • the content of the resin as a dispersant is preferably 1 to 200 parts by weight per 100 parts by weight of the pigment.
  • the upper limit is preferably 150 parts by mass or less, more preferably 125 parts by mass or less, and even more preferably 100 parts by mass or less.
  • the lower limit is preferably 2.5 parts by mass or more, more preferably 5 parts by mass or more, and even more preferably 10 parts by mass or more.
  • the resin composition of the present invention may contain only one type of resin, or may contain two or more types of resin. When two or more types of resin are included, the total amount thereof is preferably within the above range.
  • the resin composition of the present invention contains a solvent.
  • the solvent include water and organic solvents, with organic solvents being preferred.
  • the organic solvent include ester solvents, ketone solvents, alcohol solvents, amide solvents, ether solvents, and hydrocarbon solvents.
  • paragraph number 0223 of International Publication No. 2015/166779 can be referred to, the contents of which are incorporated herein.
  • Ester solvents substituted with a cyclic alkyl group and ketone solvents substituted with a cyclic alkyl group can also be preferably used.
  • organic solvents include polyethylene glycol monomethyl ether, dichloromethane, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, ethyl cellosolve acetate, ethyl lactate, diethylene glycol dimethyl ether, butyl acetate, methyl 3-methoxypropionate, 2 -Heptanone, 2-pentanone, 3-pentanone, 4-heptanone, cyclohexanone, 2-methylcyclohexanone, 3-methylcyclohexanone, 4-methylcyclohexanone, cycloheptanone, cyclooctanone, cyclohexyl acetate, cyclopentanone, ethyl carbitol Acetate, butyl carbitol acetate, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N
  • aromatic hydrocarbons benzene, toluene, xylene, ethylbenzene, etc.
  • organic solvents for environmental reasons (for example, 50 mass ppm (parts) based on the total amount of organic solvents). per million), 10 mass ppm or less, and 1 mass ppm or less).
  • an organic solvent with a low metal content it is preferable to use an organic solvent with a low metal content, and the metal content of the organic solvent is preferably 10 mass ppb (parts per billion) or less, for example. If necessary, an organic solvent at a mass ppt (parts per trillion) level may be used, and such an organic solvent is provided by Toyo Gosei Co., Ltd. (Kagaku Kogyo Nippo, November 13, 2015).
  • Examples of methods for removing impurities such as metals from organic solvents include distillation (molecular distillation, thin film distillation, etc.) and filtration using a filter.
  • the filter pore diameter of the filter used for filtration is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 3 ⁇ m or less.
  • the material of the filter is preferably polytetrafluoroethylene, polyethylene, or nylon.
  • the organic solvent may contain isomers (compounds with the same number of atoms but different structures). Moreover, only one type of isomer may be included, or multiple types may be included.
  • the content of peroxide in the organic solvent is 0.8 mmol/L or less, and it is more preferable that the organic solvent contains substantially no peroxide.
  • the content of the solvent in the resin composition is preferably 10 to 97% by mass.
  • the lower limit is preferably 30% by mass or more, more preferably 40% by mass or more, even more preferably 50% by mass or more, even more preferably 60% by mass or more, and 70% by mass. It is particularly preferable that it is above.
  • the upper limit is preferably 96% by mass or less, more preferably 95% by mass or less.
  • the composition may contain only one kind of solvent, or may contain two or more kinds. When two or more types are included, it is preferable that their total amount falls within the above range.
  • the resin composition of the present invention can further contain a pigment derivative.
  • Pigment derivatives are used as dispersion aids.
  • Examples of pigment derivatives include compounds having a structure in which an acid group or a basic group is bonded to a pigment skeleton.
  • the pigment skeletons constituting the pigment derivatives include squarylium pigment skeleton, pyrrolopyrrole pigment skeleton, diketopyrrolopyrrole pigment skeleton, quinacridone pigment skeleton, anthraquinone pigment skeleton, dianthraquinone pigment skeleton, benzisoindole pigment skeleton, and thiazine indigo pigment skeleton.
  • azo dye skeleton quinophthalone dye skeleton, phthalocyanine dye skeleton, naphthalocyanine dye skeleton, dioxazine dye skeleton, perylene dye skeleton, perinone dye skeleton, benzimidazolone dye skeleton, benzothiazole dye skeleton, benzimidazole dye skeleton and benzoxazole dye skeleton can be mentioned.
  • Examples of the acid group include a carboxyl group, a sulfo group, a phosphoric acid group, a boronic acid group, a carboxylic acid amide group, a sulfonic acid amide group, an imide acid group, and salts thereof.
  • Atoms or atomic groups constituting the salt include alkali metal ions (Li + , Na + , K + , etc.), alkaline earth metal ions (Ca 2+ , Mg 2+ , etc.), ammonium ions, imidazolium ions, pyridinium ions, Examples include phosphonium ions.
  • As the carboxylic acid amide group a group represented by -NHCOR A1 is preferable.
  • a group represented by -NHSO 2 R A2 is preferable.
  • the imide acid group is preferably a group represented by -SO 2 NHSO 2 R A3 , -CONHSO 2 R A4 , -CONHCOR A5 or -SO 2 NHCOR A6 , and -SO 2 NHSO 2 R A3 is more preferred.
  • R A1 to R A6 each independently represent an alkyl group or an aryl group.
  • the alkyl group and aryl group represented by R A1 to R A6 may have a substituent.
  • the substituent is preferably a halogen atom, more preferably a fluorine atom.
  • Examples of the basic group include an amino group, a pyridinyl group and its salts, an ammonium group salt, and a phthalimidomethyl group.
  • Examples of atoms or atomic groups constituting the salt include hydroxide ions, halogen ions, carboxylate ions, sulfonate ions, and phenoxide ions.
  • pigment derivatives include compounds described in Examples below.
  • Compounds described in JP-A-10-195326, paragraph numbers 0086 to 0098 of International Publication No. 2011/024896, and paragraph numbers 0063 to 0094 of International Publication No. 2012/102399 are also included, and the contents of these are incorporated herein by reference. be incorporated into.
  • the content of the pigment derivative is preferably 1 to 50 parts by weight based on 100 parts by weight of the pigment.
  • the lower limit is preferably 3 parts by mass or more, more preferably 5 parts by mass or more.
  • the upper limit is preferably 40 parts by mass or less, more preferably 30 parts by mass or less. Only one type of pigment derivative may be used, or two or more types may be used. When two or more types are used, it is preferable that the total amount falls within the above range.
  • the resin composition of the present invention can further contain a polymerizable compound.
  • the polymerizable compound include a compound having an ethylenically unsaturated bond-containing group, a compound having a cyclic ether group, a compound having a methylol group, a compound having an alkoxymethyl group, and the like.
  • the ethylenically unsaturated bond-containing group include a vinyl group, a (meth)allyl group, a (meth)acryloyl group, and the like.
  • the cyclic ether group include an epoxy group and an oxetanyl group. It is also preferable that the polymerizable compound is a radically polymerizable compound.
  • the radically polymerizable compound include compounds having an ethylenically unsaturated bond-containing group.
  • the polymerizable compound may be in any chemical form such as a monomer, prepolymer, or oligomer, but monomers are preferred.
  • the molecular weight of the monomer-type polymerizable compound is preferably less than 2,000, more preferably 1,500 or less.
  • the lower limit of the molecular weight of the polymerizable monomer is preferably 100 or more, more preferably 200 or more.
  • the compound having an ethylenically unsaturated bond-containing group as a polymerizable monomer is preferably a 3- to 15-functional (meth)acrylate compound, more preferably a 3- to 6-functional (meth)acrylate compound.
  • Specific examples include paragraph numbers 0095 to 0108 of JP 2009-288705, paragraph 0227 of JP 2013-029760, paragraph 0254 to 0257 of JP 2008-292970, and JP 2013-253224. Described in paragraph numbers 0034 to 0038 of the publication, paragraph number 0477 of JP 2012-208494, JP 2017-048367, JP 6057891, JP 6031807, JP 2017-194662. , the contents of which are incorporated herein.
  • Examples of compounds having an ethylenically unsaturated bond-containing group include dipentaerythritol tri(meth)acrylate (commercially available product: KAYARAD D-330; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol tetra(meth)acrylate (commercially available)
  • Examples of commercially available products include KAYARAD D-320 (manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol penta(meth)acrylate (commercially available products are KAYARAD D-310; manufactured by Nippon Kayaku Co., Ltd.), and dipentaerythritol hexa (meth) ) acrylate (commercially available products are KAYARAD DPHA; manufactured by Nippon Kayaku Co., Ltd.; NK ester A-DPH-12E; manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), and the (meth)acryloyl group
  • diglycerin EO (ethylene oxide) modified (meth)acrylate commercially available product is M-460; manufactured by Toagosei
  • pentaerythritol tetraacrylate Shin Nakamura Chemical Co., Ltd.
  • NK ester A-TMMT 1,6-hexanediol diacrylate
  • RP-1040 manufactured by Nippon Kayaku Co., Ltd.
  • Aronix TO-2349 manufactured by Nippon Kayaku Co., Ltd.
  • NK Oligo UA-7200 Shin Nakamura Chemical Co., Ltd.
  • 8UH-1006, 8UH-1012 Taisei Fine Chemical Co., Ltd.
  • Examples of compounds having an ethylenically unsaturated bond-containing group include trimethylolpropane tri(meth)acrylate, trimethylolpropanepropylene oxide-modified tri(meth)acrylate, trimethylolpropaneethylene oxide-modified tri(meth)acrylate, and isocyanuric acid ethylene oxide-modified tri(meth)acrylate. It is also preferable to use trifunctional (meth)acrylate compounds such as (meth)acrylate and pentaerythritol tri(meth)acrylate. Commercially available trifunctional (meth)acrylate compounds include Aronix M-309, M-310, M-321, M-350, M-360, M-313, M-315, M-306, M-305.
  • M-303, M-452, M-450 (manufactured by Toagosei Co., Ltd.), NK ester A9300, A-GLY-9E, A-GLY-20E, A-TMM-3, A-TMM-3L, A -TMM-3LM-N, A-TMPT, TMPT (manufactured by Shin Nakamura Chemical Co., Ltd.), KAYARAD GPO-303, TMPTA, THE-330, TPA-330, PET-30 (manufactured by Nippon Kayaku Co., Ltd.) Examples include.
  • the compound having an ethylenically unsaturated bond-containing group may further have an acid group such as a carboxy group, a sulfo group, or a phosphoric acid group.
  • an acid group such as a carboxy group, a sulfo group, or a phosphoric acid group.
  • Commercially available products of such compounds include Aronix M-305, M-510, M-520, Aronix TO-2349 (manufactured by Toagosei Co., Ltd.), and the like.
  • a compound having a caprolactone structure can also be used.
  • the description in paragraphs 0042 to 0045 of JP-A No. 2013-253224 can be referred to, the contents of which are incorporated herein.
  • Examples of compounds having a caprolactone structure include DPCA-20, DPCA-30, DPCA-60, and DPCA-120, which are commercially available as a series from Nippon Kayaku Co., Ltd.
  • a compound having an ethylenically unsaturated bond-containing group and an alkyleneoxy group can also be used.
  • Such a compound is preferably a compound having an ethylenically unsaturated bond-containing group and an ethyleneoxy group and/or a propyleneoxy group, and preferably a compound having an ethylenically unsaturated bond-containing group and an ethyleneoxy group. More preferably, it is a 3- to 6-functional (meth)acrylate compound having 4 to 20 ethyleneoxy groups.
  • SR-494 a tetrafunctional (meth)acrylate having four ethyleneoxy groups manufactured by Sartomer, and trifunctional (meth)acrylate having three isobutyleneoxy groups manufactured by Nippon Kayaku Co., Ltd.
  • examples include KAYARAD TPA-330.
  • a polymerizable compound having a fluorene skeleton can also be used.
  • Commercially available products include Ogsol EA-0200 and EA-0300 (manufactured by Osaka Gas Chemical Co., Ltd., (meth)acrylate monomer having a fluorene skeleton).
  • the compound having an ethylenically unsaturated bond-containing group it is also preferable to use a compound substantially free of environmentally regulated substances such as toluene.
  • Commercially available products of such compounds include KAYARAD DPHA LT, KAYARAD DPEA-12 LT (manufactured by Nippon Kayaku Co., Ltd.), and the like.
  • Examples of the compound having a cyclic ether group include a compound having an epoxy group, a compound having an oxetanyl group, etc., and a compound having an epoxy group is preferable.
  • Examples of compounds having epoxy groups include compounds having 1 to 100 epoxy groups in one molecule.
  • the upper limit of the number of epoxy groups can be, for example, 10 or less, or 5 or less.
  • the lower limit of the number of epoxy groups is preferably 2 or more.
  • the compound having a cyclic ether group may be a low molecular compound (for example, molecular weight less than 1000) or a macromolecule (for example, molecular weight 1000 or more, in the case of a polymer, the weight average molecular weight is 1000 or more).
  • the weight average molecular weight of the cyclic ether group is preferably 200 to 100,000, more preferably 500 to 50,000.
  • the upper limit of the weight average molecular weight is preferably 10,000 or less, more preferably 5,000 or less, and even more preferably 3,000 or less.
  • Examples of compounds having a cyclic ether group include compounds described in paragraph numbers 0034 to 0036 of JP-A No. 2013-011869, compounds described in paragraph numbers 0147 to 0156 of JP-A-2014-043556, and JP-A No. 2014. Compounds described in paragraph numbers 0085 to 0092 of JP-A-089408 and compounds described in JP-A-2017-179172 can also be used.
  • Examples of compounds having a methylol group include compounds in which a methylol group is bonded to a nitrogen atom or a carbon atom forming an aromatic ring.
  • Examples of compounds having an alkoxymethyl group include compounds in which an alkoxymethyl group is bonded to a nitrogen atom or a carbon atom forming an aromatic ring.
  • Compounds in which an alkoxymethyl group or a methylol group is bonded to a nitrogen atom include alkoxymethylated melamine, methylolated melamine, alkoxymethylated benzoguanamine, methylolated benzoguanamine, alkoxymethylated glycoluril, methylolated glycoluril, alkoxymethylated Preferred are urea and methylolated urea. Further, compounds described in paragraphs 0134 to 0147 of JP-A No. 2004-295116 and paragraphs 0095 to 0126 of JP-A No. 2014-089408 can also be used.
  • the content of the polymerizable compound in the total solid content of the resin composition is preferably 0.1 to 50% by mass.
  • the lower limit is preferably 0.5% by mass or more, more preferably 1% by mass or more, and even more preferably 3% by mass or more.
  • the upper limit is preferably 40% by mass or less, more preferably 30% by mass or less, and even more preferably 25% by mass or less.
  • the resin composition of the present invention may contain only one kind of polymerizable compound, or may contain two or more kinds of polymerizable compounds. When two or more types of polymerizable compounds are included, it is preferable that the total amount thereof falls within the above range.
  • the resin composition of the present invention contains a polymerizable compound
  • the photopolymerization initiator is not particularly limited and can be appropriately selected from known photopolymerization initiators. For example, compounds having photosensitivity to light in the ultraviolet to visible range are preferred.
  • the photopolymerization initiator is preferably a radical photopolymerization initiator.
  • photopolymerization initiators include halogenated hydrocarbon derivatives (e.g., compounds with a triazine skeleton, compounds with an oxadiazole skeleton, etc.), acylphosphine compounds, hexaarylbiimidazole compounds, oxime compounds, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, ⁇ -hydroxyketone compounds, ⁇ -aminoketone compounds, and the like.
  • halogenated hydrocarbon derivatives e.g., compounds with a triazine skeleton, compounds with an oxadiazole skeleton, etc.
  • acylphosphine compounds e.g., acylphosphine compounds, hexaarylbiimidazole compounds, oxime compounds, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, ⁇ -hydroxyketone compounds, ⁇ -aminoketone compounds, and the like.
  • photopolymerization initiators include trihalomethyltriazine compounds, benzyl dimethyl ketal compounds, ⁇ -hydroxyketone compounds, ⁇ -aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, metallocene compounds, oxime compounds, and hexaarylbylene compounds.
  • imidazole compounds onium compounds, benzothiazole compounds, benzophenone compounds, acetophenone compounds, cyclopentadiene-benzene-iron complexes, halomethyloxadiazole compounds and 3-aryl substituted coumarin compounds, oxime compounds, ⁇ -hydroxyketones
  • the compound is more preferably a compound selected from a compound, an ⁇ -aminoketone compound, and an acylphosphine compound, and even more preferably an oxime compound.
  • photopolymerization initiators compounds described in paragraphs 0065 to 0111 of JP-A-2014-130173, compounds described in Japanese Patent No. 6301489, MATERIAL STAGE 37 to 60p, vol. 19, No.
  • hexaarylbiimidazole compounds include 2,2',4-tris(2-chlorophenyl)-5-(3,4-dimethoxyphenyl)-4,5-diphenyl-1,1'-biimidazole, etc. can be mentioned.
  • ⁇ -hydroxyketone compounds include Omnirad 184, Omnirad 1173, Omnirad 2959, Omnirad 127 (manufactured by IGM Resins B.V.), Irgacure 184, and Irgacure 1. 173, Irgacure 2959, Irgacure 127 (all BASF (manufactured by a company).
  • Commercially available ⁇ -aminoketone compounds include Omnirad 907, Omnirad 369, Omnirad 369E, Omnirad 379EG (manufactured by IGM Resins B.V.), Irgacure 907, and Irgacure.
  • acylphosphine compounds include Omnirad 819, Omnirad TPO (manufactured by IGM Resins B.V.), Irgacure 819, Irgacure TPO (manufactured by BASF), and the like.
  • Examples of oxime compounds include the compounds described in JP-A No. 2001-233842, the compounds described in JP-A No. 2000-080068, the compounds described in JP-A No. 2006-342166, and the compounds described in J. C. S. Perkin II (1979, pp. 1653-1660); C. S. Perkin II (1979, pp. 156-162), Journal of Photopolymer Science and Technology (1995, pp. 202-232), JP-A-2000 - Compounds described in Publication No. 066385, Compounds described in Japanese Patent Publication No. 2004-534797, compounds described in Japanese Patent Application Publication No. 2006-342166, compounds described in Japanese Patent Application Publication No. 2017-019766, compounds described in Japanese Patent No.
  • oxime compounds include 3-benzoyloxyiminobutan-2-one, 3-acetoxyiminobutan-2-one, 3-propionyloxyiminobutan-2-one, 2-acetoxyiminopentan-3-one, 2-acetoxyimino-1-phenylpropan-1-one, 2-benzoyloxyimino-1-phenylpropan-1-one, 3-(4-toluenesulfonyloxy)iminobutan-2-one, 2-ethoxycarbonyloxyimino -1-phenylpropan-1-one, 1-[4-(phenylthio)phenyl]-3-cyclohexyl-propane-1,2-dione-2-(O-acetyloxime), and the like.
  • an oxime compound having a fluorene ring can also be used.
  • oxime compounds having a fluorene ring include compounds described in JP-A No. 2014-137466, compounds described in Japanese Patent No. 6636081, compounds described in Korean Patent Publication No. 10-2016-0109444, and Examples include fluorenylaminoketone photoinitiators described in Table 2020-507664 and oxime ester compounds described in International Publication No. 2021/023144.
  • an oxime compound having a skeleton in which at least one benzene ring of the carbazole ring is a naphthalene ring is also possible.
  • Specific examples of such oxime compounds include compounds described in International Publication No. 2013/083505.
  • an oxime compound having a fluorine atom can also be used as a photopolymerization initiator.
  • oxime compounds having a fluorine atom include compounds described in JP-A No. 2010-262028, compounds 24, 36 to 40 described in Japanese Patent Application Publication No. 2014-500852, and compounds described in JP-A No. 2013-164471. Examples include compound (C-3).
  • an oxime compound having a nitro group can be used as the photopolymerization initiator. It is also preferable that the oxime compound having a nitro group is in the form of a dimer.
  • Specific examples of oxime compounds having a nitro group include compounds described in paragraph numbers 0031 to 0047 of JP 2013-114249, paragraphs 0008 to 0012, and 0070 to 0079 of JP 2014-137466, Examples include compounds described in paragraph numbers 0007 to 0025 of Japanese Patent No. 4223071, and Adeka Arcles NCI-831 (manufactured by ADEKA Corporation).
  • an oxime compound having a benzofuran skeleton can also be used.
  • Specific examples include OE-01 to OE-75 described in International Publication No. 2015/036910.
  • photopolymerization initiator it is also possible to use an oxime compound in which a substituent having a hydroxy group is bonded to a carbazole skeleton.
  • photopolymerization initiators include compounds described in International Publication No. 2019/088055.
  • oxime compounds preferably used in the present invention are shown below, but the present invention is not limited thereto.
  • the oxime compound is preferably a compound having a maximum absorption wavelength in a wavelength range of 350 to 500 nm, more preferably a compound having a maximum absorption wavelength in a wavelength range of 360 to 480 nm.
  • the molar extinction coefficient of the oxime compound at a wavelength of 365 nm or 405 nm is preferably high, more preferably from 1000 to 300,000, even more preferably from 2000 to 300,000, and even more preferably from 5000 to 200,000. It is particularly preferable that there be.
  • the molar extinction coefficient of a compound can be measured using a known method. For example, it is preferable to measure with a spectrophotometer (Cary-5 spectrophotometer manufactured by Varian) using an ethyl acetate solvent at a concentration of 0.01 g/L.
  • a difunctional, trifunctional or more functional photoradical polymerization initiator may be used as the photopolymerization initiator.
  • a radical photopolymerization initiator two or more radicals are generated from one molecule of the radical photopolymerization initiator, so that good sensitivity can be obtained.
  • the crystallinity decreases and the solubility in solvents improves, making it difficult to precipitate over time, thereby improving the stability of the resin composition over time.
  • Specific examples of bifunctional or trifunctional or more functional photoradical polymerization initiators include those listed in Japanese Patent Publication No. 2010-527339, Japanese Patent Publication No. 2011-524436, International Publication No.
  • the content of the photopolymerization initiator is preferably 0.1 to 40% by weight, more preferably 0.5 to 35% by weight, and even more preferably 1 to 30% by weight based on the total solid content of the resin composition.
  • the resin composition may contain only one type of photopolymerization initiator, or may contain two or more types of photopolymerization initiators. When two or more types are included, it is preferable that their total amount falls within the above range.
  • the resin composition of the present invention contains a compound having a cyclic ether group, it is preferable that it further contains a curing agent.
  • the curing agent include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, polyhydric carboxylic acids, and thiol compounds.
  • Specific examples of the curing agent include succinic acid, trimellitic acid, pyromellitic acid, N,N-dimethyl-4-aminopyridine, pentaerythritol tetrakis (3-mercaptopropionate), and the like.
  • the curing agent compounds described in paragraph numbers 0072 to 0078 of JP-A No. 2016-075720 and compounds described in JP-A No.
  • the content of the curing agent is preferably 0.01 to 20 parts by weight, more preferably 0.01 to 10 parts by weight, and 0.1 to 6.0 parts by weight per 100 parts by weight of the compound having a cyclic ether group. is even more preferable.
  • the resin composition of the present invention can contain a chromatic colorant.
  • a chromatic colorant means a colorant other than a white colorant and a black colorant.
  • the chromatic colorant is preferably a colorant having absorption in a wavelength range of 400 nm or more and less than 650 nm.
  • Chromatic colorants include red colorants, green colorants, blue colorants, yellow colorants, purple colorants, and orange colorants.
  • the chromatic colorant may be a pigment or a dye.
  • a pigment and a dye may be used together.
  • the pigment may be either an inorganic pigment or an organic pigment.
  • an inorganic pigment or an organic-inorganic pigment partially substituted with an organic chromophore can also be used. By replacing inorganic pigments or organic-inorganic pigments with organic chromophores, hue design can be facilitated.
  • the average primary particle diameter of the pigment is preferably 1 to 200 nm.
  • the lower limit is preferably 5 nm or more, more preferably 10 nm or more.
  • the upper limit is preferably 180 nm or less, more preferably 150 nm or less, and even more preferably 100 nm or less.
  • the average primary particle diameter of the pigment can be determined from a photograph obtained by observing the primary particles of the pigment using a transmission electron microscope. Specifically, the projected area of the primary particles of the pigment is determined, and the corresponding circular equivalent diameter is calculated as the primary particle diameter of the pigment.
  • the average primary particle diameter in the present invention is the arithmetic mean value of the primary particle diameters of 400 pigment primary particles.
  • the primary particles of pigment refer to independent particles without agglomeration.
  • the crystallite size determined from the half-width of the peak derived from any crystal plane in the X-ray diffraction spectrum when the CuK ⁇ ray of the pigment is used as the X-ray source is preferably 0.1 nm to 100 nm, and preferably 0.1 nm to 100 nm.
  • the thickness is more preferably 5 nm to 50 nm, even more preferably 1 nm to 30 nm, and particularly preferably 5 nm to 25 nm.
  • the specific surface area of the pigment is preferably 1 to 300 m 2 /g.
  • the lower limit is preferably 10 m 2 /g or more, more preferably 30 m 2 /g or more.
  • the upper limit is preferably 250 m 2 /g or less, more preferably 200 m 2 /g or less.
  • the value of the specific surface area is determined according to DIN 66131: determination of the specific surface area of solids by gas adsorption according to the BET (Brunauer, Emmett and Teller) method. Determination of specific surface area of solids by adsorption).
  • the chromatic colorant preferably contains a pigment.
  • the content of pigment in the chromatic colorant is preferably 50% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, and even more preferably 90% by mass or more. It is particularly preferable. Examples of pigments include those shown below.
  • red pigments C. I. Pigment Green 7, 10, 36, 37, 58, 59, 62, 63, 64 (phthalocyanine type), 65 (phthalocyanine type), 66 (phthalocyanine type), etc.
  • green pigments C. I. Pigment Violet 1, 19, 23, 27, 32, 37, 42, 60 (triarylmethane type), 61 (xanthene type), etc.
  • purple pigments C. I. Pigment Blue 1,2,15,15:1,15:2,15:3,15:4,15:6,16,22,29,60,64,66,79,80,87 (monoazo type), 88 (methine type), etc. (the above are blue pigments).
  • halogenated zinc phthalocyanine pigments have an average number of halogen atoms in one molecule of 10 to 14, an average number of bromine atoms of 8 to 12, and an average of 2 to 5 chlorine atoms. You can also use Specific examples include compounds described in International Publication No. 2015/118720.
  • a green pigment a compound described in Chinese Patent Application No. 106909027, a phthalocyanine compound having a phosphoric acid ester as a ligand described in International Publication No. 2012/102395, a phthalocyanine compound described in JP-A No.
  • a phthalocyanine compound a phthalocyanine compound described in JP 2018-180023, a compound described in JP 2019-038958, a core-shell type dye described in JP 2020-076995, etc. can also be used.
  • an aluminum phthalocyanine compound having a phosphorus atom can also be used as the blue pigment.
  • Specific examples include compounds described in paragraph numbers 0022 to 0030 of JP-A No. 2012-247591 and paragraph number 0047 of JP-A No. 2011-157478.
  • JP 2018-062644 The quinophthalone compound described in JP 2018-203798, the quinophthalone compound described in JP 2018-062578, and Japanese Patent No. 6432076.
  • red pigment As a red pigment, a diketopyrrolopyrrole compound in which at least one bromine atom is substituted in the structure described in JP 2017-201384, a diketopyrrolopyrrole compound described in paragraph numbers 0016 to 0022 of Patent No. 6248838, Diketopyrrolopyrrole compounds described in International Publication No. 2012/102399, diketopyrrolopyrrole compounds described in International Publication No. 2012/117965, naphthol azo compounds described in JP2012-229344A, Patent No. 6516119 Red pigment described in the publication, red pigment described in Patent No.
  • the descriptions in Japanese Patent No. 6561862, Japanese Patent No. 6413872, Japanese Patent No. 6281345, and Japanese Patent Application Laid-open No. 2020-026503 can be referred to. Incorporated herein.
  • the crystallite size in the plane direction corresponding to the maximum peak in the X-ray diffraction pattern among the eight planes ( ⁇ 1 ⁇ 1 ⁇ 1) of the crystal lattice planes is 140 ⁇ or less. It is also preferable to use one.
  • Dyes can also be used as chromatic colorants. There are no particular restrictions on the dye, and any known dye can be used. For example, pyrazole azo dyes, anilinoazo dyes, triarylmethane dyes, anthraquinone dyes, anthrapyridone dyes, benzylidene dyes, oxonol dyes, pyrazolotriazole azo dyes, pyridone azo dyes, cyanine dyes, and phenothiazines. Examples include pyrrolopyrazole azomethine dyes, xanthene dyes, phthalocyanine dyes, benzopyran dyes, indigo dyes, pyrromethene dyes, and the like.
  • Pigment multimers can also be used as chromatic colorants.
  • the dye multimer is preferably a dye that is dissolved in a solvent. Further, the dye multimer may form particles. When the dye multimer is in the form of particles, it is usually used in a state of being dispersed in a solvent.
  • the dye multimer in a particle state can be obtained, for example, by emulsion polymerization, and specific examples include the compound and manufacturing method described in JP-A No. 2015-214682.
  • the dye multimer has two or more dye structures in one molecule, and preferably has three or more dye structures. The upper limit is not particularly limited, but may be 100 or less.
  • the plurality of dye structures contained in one molecule may be the same dye structure or may be different dye structures.
  • the weight average molecular weight (Mw) of the dye multimer is preferably 2,000 to 50,000.
  • the lower limit is more preferably 3,000 or more, and even more preferably 6,000 or more.
  • the upper limit is more preferably 30,000 or less, and even more preferably 20,000 or less.
  • Dye multimers are described in JP 2011-213925, JP 2013-041097, JP 2015-028144, JP 2015-030742, WO 2016/031442, etc. Compounds can also be used.
  • Chromatic colorants include triarylmethane dye polymers described in Korean Patent Publication No. 10-2020-0028160, xanthene compounds described in JP 2020-117638, and International Publication No. 2020/174991.
  • phthalocyanine compounds, isoindoline compounds or their salts described in JP-A No. 2020-160279, compounds represented by formula 1 described in Korean Published Patent No. 10-2020-0069442, Korean Published Patent No. 10- Compounds represented by formula 1 described in Korean Publication No. 2020-0069730, compounds represented by formula 1 described in Korean Publication Patent No. 10-2020-0069070, and compounds represented by formula 1 described in Korean Publication Patent No. 10-2020-0069067. Compound represented by formula 1 described in Korean Patent Publication No.
  • halogenated zinc phthalocyanine pigment described in Patent No. 6809649, JP 2020-180176 Isoindoline compounds described in JP-A No. 2021-187913, phenothiazine compounds described in JP-A No. 2021-187913, halogenated zinc phthalocyanine described in International Publication No. 2022/004261, and halogenated compounds described in International Publication No. 2021/250883.
  • Zinc phthalocyanine can be used.
  • the other colorant may be a rotaxane, and the dye skeleton may be used in the cyclic structure of the rotaxane, in the rod-like structure, or in both structures.
  • the content of the chromatic colorant is preferably 1 to 50% by mass based on the total solid content of the resin composition of the present invention.
  • the total amount thereof is preferably within the above range.
  • the resin composition of the present invention does not substantially contain a chromatic colorant.
  • the case where the resin composition of the present invention does not substantially contain a chromatic colorant means that the content of the chromatic colorant in the total solid content of the resin composition of the present invention is 0.5% by mass or less. It is preferably 0.1% by mass or less, and more preferably does not contain a chromatic colorant.
  • the resin composition of the present invention can also contain a coloring material that transmits infrared rays and blocks visible light (hereinafter also referred to as a coloring material that blocks visible light).
  • a resin composition containing a coloring material that blocks visible light is preferably used as a resin composition for forming an infrared transmission filter.
  • the coloring material that blocks visible light is preferably a coloring material that absorbs light in the wavelength range from violet to red. Further, the coloring material that blocks visible light is preferably a coloring material that blocks light in a wavelength range of 450 to 650 nm. Further, the coloring material that blocks visible light is preferably a coloring material that transmits light with a wavelength of 900 to 1500 nm.
  • the coloring material that blocks visible light preferably satisfies at least one of the following requirements (A) and (B).
  • B Contains an organic black colorant.
  • Examples of the chromatic colorant include those mentioned above.
  • Examples of the organic black colorant include bisbenzofuranone compounds, azomethine compounds, perylene compounds, and azo compounds, with bisbenzofuranone compounds and perylene compounds being preferred.
  • Examples of bisbenzofuranone compounds include compounds described in Japanese Patent Application Publication No. 2010-534726, Japanese Patent Application Publication No. 2012-515233, and Japanese Patent Application Publication No. 2012-515234, and for example, as "Irgaphor Black" manufactured by BASF. available.
  • Examples of perylene compounds include compounds described in paragraph numbers 0016 to 0020 of JP-A No. 2017-226821, C.I. I. Pigment Black 31, 32, etc.
  • Examples of the azomethine compound include compounds described in JP-A-01-170601 and JP-A-02-034664, and are available as "Chromofine Black A1103" manufactured by Dainichiseika Kaisha, Ltd., for example.
  • examples of the combination of chromatic colorants include the following embodiments (1) to (8).
  • An embodiment containing a green colorant, a blue colorant, a purple colorant, and a red colorant An embodiment containing a green colorant, a blue colorant, a purple colorant, and a red colorant.
  • Embodiment containing a purple colorant and an orange colorant Embodiment containing a green colorant, a purple colorant, and a red colorant.
  • Embodiment containing a green colorant and a red colorant Embodiment containing a green colorant and a red colorant.
  • the content of the coloring material that blocks visible light is preferably 1 to 50% by mass based on the total solid content of the resin composition.
  • the lower limit is preferably 5% by mass or more, more preferably 10% by mass or more, even more preferably 20% by mass or more, and particularly preferably 30% by mass or more.
  • the resin composition of the present invention does not substantially contain a coloring material that blocks visible light.
  • a coloring material that blocks visible light means that the content of the colorant that blocks visible light in the total solid content of the resin composition of the present invention is This means 0.5% by mass or less, preferably 0.1% by mass or less, and more preferably no coloring material that blocks visible light.
  • the resin composition of the present invention contains a surfactant.
  • a surfactant various surfactants such as fluorine surfactants, nonionic surfactants, cationic surfactants, anionic surfactants, and silicone surfactants can be used.
  • the surfactant is preferably a silicone surfactant or a fluorine surfactant. Examples of the surfactant include the surfactants described in paragraph numbers 0238 to 0245 of International Publication No. 2015/166779, the contents of which are incorporated herein.
  • fluorine-based surfactants examples include surfactants described in paragraph numbers 0060 to 0064 of JP 2014-041318 (corresponding paragraph numbers 0060 to 0064 of WO 2014/017669), and the like; Examples include the surfactants described in paragraph numbers 0117 to 0132 of Publication No. 132503 and the surfactants described in JP-A-2020-008634, the contents of which are incorporated herein.
  • Commercially available fluorosurfactants include Megafac F-171, F-172, F-173, F-176, F-177, F-141, F-142, F-143, F-144.
  • fluorine-based surfactants there are also acrylic compounds that have a molecular structure with a functional group containing a fluorine atom, and when heated, the functional group containing a fluorine atom is cut off and the fluorine atom volatizes. It can be used suitably.
  • fluorine-based surfactants include the Megafac DS series manufactured by DIC Corporation (Kagaku Kogyo Nippo (February 22, 2016), Nikkei Sangyo Shimbun (February 23, 2016)), An example is DS-21.
  • fluorinated surfactant it is also preferable to use a polymer of a fluorine atom-containing vinyl ether compound having a fluorinated alkyl group or a fluorinated alkylene ether group and a hydrophilic vinyl ether compound as the fluorinated surfactant.
  • fluorine-based surfactants include the fluorine-based surfactants described in JP-A No. 2016-216602, the content of which is incorporated herein.
  • a block polymer can also be used as the fluorosurfactant.
  • a fluorine-based surfactant a (meth) having a repeating unit derived from a (meth)acrylate compound having a fluorine atom and two or more (preferably five or more) alkyleneoxy groups (preferably ethyleneoxy group, propyleneoxy group)
  • a fluorine-containing polymer compound containing a repeating unit derived from an acrylate compound can also be preferably used.
  • the fluorine-containing surfactants described in paragraph numbers 0016 to 0037 of JP-A-2010-032698 and the following compounds are also exemplified as the fluorine-containing surfactant used in the present invention.
  • the weight average molecular weight of the above compound is preferably 3,000 to 50,000, for example 14,000. In the above compounds, % indicating the proportion of repeating units is mol%.
  • a fluoropolymer having an ethylenically unsaturated bond-containing group in its side chain can also be used as the fluorinated surfactant.
  • Specific examples include compounds described in paragraph numbers 0050 to 0090 and paragraph numbers 0289 to 0295 of JP-A No. 2010-164965, Megafac RS-101, RS-102, RS-718K manufactured by DIC Corporation, Examples include RS-72-K.
  • the fluorine-based surfactant compounds described in paragraph numbers 0015 to 0158 of JP-A No. 2015-117327 can also be used.
  • a fluorine-containing imide salt compound represented by formula (fi-1) is also preferable to use as a surfactant.
  • m represents 1 or 2
  • n represents an integer of 1 to 4
  • a represents 1 or 2
  • X a+ represents an a-valent metal ion, a primary ammonium ion, or Represents a secondary ammonium ion, tertiary ammonium ion, quaternary ammonium ion or NH 4 + .
  • nonionic surfactants include glycerol, trimethylolpropane, trimethylolethane, and their ethoxylates and propoxylates (e.g., glycerol propoxylate, glycerol ethoxylate, etc.), polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, Polyoxyethylene oleyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, sorbitan fatty acid ester, Pluronic L10, L31, L61, L62, 10R5, 17R2, 25R2 (BASF Tetronic 304, 701, 704, 901, 904, 150R1 (manufactured by BASF), Solsperse 20000 (manufactured by Japan Lubrizol Co., Ltd.), NCW-101, NCW-1001, NCW-1002 (manufactured by Japan
  • cationic surfactant examples include tetraalkylammonium salts, alkylamine salts, benzalkonium salts, alkylpyridium salts, imidazolium salts, and the like. Specific examples include dihydroxyethylstearylamine, 2-heptadecenyl-hydroxyethylimidazoline, lauryldimethylbenzylammonium chloride, cetylpyridinium chloride, stearamidemethylpyridium chloride, and the like.
  • Anionic surfactants include dodecylbenzenesulfonic acid, sodium dodecylbenzenesulfonate, sodium lauryl sulfate, sodium alkyldiphenyl ether disulfonate, sodium alkylnaphthalenesulfonate, sodium dialkylsulfosuccinate, sodium stearate, potassium oleate, sodium dioctyl Sulfosuccinate, sodium polyoxyethylene alkyl ether sulfate, sodium polyoxyethylene alkyl ether sulfate, sodium polyoxyethylene alkyl phenyl ether sulfate, sodium dialkyl sulfosuccinate, sodium stearate, sodium oleate, t-octylphenoxyethoxypolyethoxyethyl Examples include sodium sulfate salt.
  • silicone surfactants examples include SH8400, SH8400 FLUID, FZ-2122, 67 Additive, 74 Additive, M Additive, SF 8419 OIL (manufactured by Dow Toray Industries, Inc.), TSF-4440, TSF-4300 , TSF-4445, TSF-4460, TSF-4452 (manufactured by Momentive Performance Materials), KP-341, KF-6000, KF-6001, KF-6002, KF-6003 (manufactured by Shin-Etsu Chemical Co., Ltd.) Co., Ltd.), BYK-307, BYK-322, BYK-323, BYK-330, BYK-3760, BYK-UV3510 (manufactured by BYK-Chemie Co., Ltd.), and the like.
  • a compound having the following structure can also be used as the silicone surfactant.
  • the content of the surfactant is preferably 0.001 to 1% by mass, more preferably 0.001 to 0.5% by mass, and even more preferably 0.001 to 0.2% by mass based on the total solid content of the resin composition.
  • the resin composition may contain only one type of surfactant, or may contain two or more types of surfactant. When two or more types are included, it is preferable that their total amount falls within the above range.
  • the resin composition of the present invention can contain a polymerization inhibitor.
  • Polymerization inhibitors include hydroquinone, p-methoxyphenol, di-tert-butyl-p-cresol, pyrogallol, tert-butylcatechol, benzoquinone, 4,4'-thiobis(3-methyl-6-tert-butylphenol), Examples include 2,2'-methylenebis(4-methyl-6-t-butylphenol) and N-nitrosophenylhydroxyamine salts (ammonium salts, cerous salts, etc.), with p-methoxyphenol being preferred.
  • the content of the polymerization inhibitor is preferably 0.0001 to 5% by mass based on the total solid content of the resin composition.
  • the resin composition may contain only one kind of polymerization inhibitor, or may contain two or more kinds of polymerization inhibitors. When two or more types are included, it is preferable that their total amount falls within the above range.
  • the resin composition of the present invention can contain a silane coupling agent.
  • a silane coupling agent means a silane compound having a hydrolyzable group and other functional groups.
  • hydrolyzable group refers to a substituent that is directly bonded to a silicon atom and can form a siloxane bond through at least one of a hydrolysis reaction and a condensation reaction. Examples of the hydrolyzable group include a halogen atom, an alkoxy group, an acyloxy group, and an alkoxy group is preferred. That is, the silane coupling agent is preferably a compound having an alkoxysilyl group.
  • Examples of functional groups other than hydrolyzable groups include vinyl groups, (meth)acryloyl groups, mercapto groups, epoxy groups, oxetanyl groups, amino groups, ureido groups, sulfide groups, isocyanate groups, and phenyl groups. (meth)acryloyl group and epoxy group are preferred.
  • Examples of the silane coupling agent include compounds described in paragraph numbers 0018 to 0036 of JP-A No. 2009-288703, and compounds described in paragraph numbers 0056 to 0066 of JP-A No. 2009-242604, the contents of which are incorporated herein by reference. Incorporated into the specification.
  • the content of the silane coupling agent is preferably 0.01 to 15.0% by mass, more preferably 0.05 to 10.0% by mass based on the total solid content of the resin composition.
  • the resin composition may contain only one type of silane coupling agent, or may contain two or more types. When two or more types are included, it is preferable that their total amount falls within the above range.
  • the resin composition of the present invention can contain an ultraviolet absorber.
  • the ultraviolet absorber include conjugated diene compounds, aminodiene compounds, salicylate compounds, benzophenone compounds, benzotriazole compounds, acrylonitrile compounds, hydroxyphenyltriazine compounds, indole compounds, triazine compounds, dibenzoyl compounds, and the like. Specific examples of such compounds include paragraph numbers 0038 to 0052 of JP2009-217221A, paragraphs 0052 to 0072 of JP2012-208374A, and paragraphs 0317 to 0317 of JP2013-068814A.
  • UV absorbers include the Tinuvin series and Uvinul series manufactured by BASF.
  • examples of the benzotriazole compound include the MYUA series manufactured by Miyoshi Yushi (Kagaku Kogyo Nippo, February 1, 2016).
  • the ultraviolet absorbers include compounds described in paragraph numbers 0049 to 0059 of Patent No. 6268967, compounds described in paragraph numbers 0059 to 0076 of International Publication No.
  • the content of the ultraviolet absorber is preferably 0.01 to 30% by mass, more preferably 0.05 to 25% by mass based on the total solid content of the resin composition.
  • the resin composition may contain only one type of ultraviolet absorber, or may contain two or more types of ultraviolet absorbers. When two or more types are included, it is preferable that their total amount falls within the above range.
  • the resin composition of the present invention can contain an antioxidant.
  • the antioxidant include phenolic antioxidants, amine antioxidants, phosphorus antioxidants, sulfur antioxidants, and the like.
  • examples of phenolic antioxidants include hindered phenol compounds.
  • the phenolic antioxidant is preferably a compound having a substituent at a site adjacent to the phenolic hydroxy group (ortho position).
  • the above-mentioned substituents are preferably substituted or unsubstituted alkyl groups having 1 to 22 carbon atoms.
  • the antioxidant is a compound having a phenol group and a phosphite group in the same molecule.
  • antioxidants include, for example, Adekastab AO-20, Adekastab AO-30, Adekastab AO-40, Adekastab AO-50, Adekastab AO-50F, Adekastab AO-60, Adekastab AO-60G, Adekastab AO-80. , ADEKA STAB AO-330, ADEKA STAB AO-412S, ADEKA STAB 2112, ADEKA STAB PEP-36, ADEKA STAB HP-10 (manufactured by ADEKA Co., Ltd.), and JP-650 (manufactured by Johoku Kagaku Kogyo Co., Ltd.).
  • the antioxidants include compounds described in paragraph numbers 0023 to 0048 of Patent No.
  • the content of the antioxidant is preferably 0.01 to 20% by mass, more preferably 0.3 to 15% by mass based on the total solid content of the resin composition.
  • the resin composition may contain only one type of antioxidant, or may contain two or more types of antioxidant. When two or more types are included, it is preferable that their total amount falls within the above range.
  • the resin composition of the present invention may contain sensitizers, curing accelerators, fillers, thermosetting accelerators, plasticizers, and other auxiliary agents (e.g., conductive particles, antifoaming agents, flame retardants, (leveling agents, peeling accelerators, fragrances, surface tension regulators, chain transfer agents, etc.) may also be included.
  • auxiliary agents e.g., conductive particles, antifoaming agents, flame retardants, (leveling agents, peeling accelerators, fragrances, surface tension regulators, chain transfer agents, etc.
  • the resin composition of the present invention may contain a latent antioxidant, if necessary.
  • a latent antioxidant is a compound whose moiety that functions as an antioxidant is protected with a protecting group, and is heated at 100 to 250°C or heated at 80 to 200°C in the presence of an acid/base catalyst. Examples include compounds that function as antioxidants by removing protective groups. Examples of the latent antioxidant include compounds described in WO 2014/021023, WO 2017/030005, and JP 2017-008219. Commercially available latent antioxidants include Adeka Arcles GPA-5001 (manufactured by ADEKA Co., Ltd.).
  • the container for storing the resin composition of the present invention is not particularly limited, and any known container can be used.
  • the inner wall of the container is preferably made of glass, stainless steel, etc. for the purpose of preventing metal elution from the inner wall of the container, increasing stability of the resin composition over time, and suppressing component deterioration.
  • the resin composition of the present invention can be prepared by mixing the above-mentioned components.
  • the resin composition may be prepared by dissolving or dispersing all the components in a solvent at the same time, or, if necessary, two or more solutions or dispersions containing each component as appropriate may be prepared. may be prepared in advance and mixed at the time of use (at the time of application) to prepare a resin composition.
  • the preparation of the resin composition may include a process of dispersing the pigment.
  • mechanical forces used for dispersing pigments include compression, squeezing, impact, shearing, cavitation, and the like.
  • Specific examples of these processes include bead mills, sand mills, roll mills, ball mills, paint shakers, microfluidizers, high speed impellers, sand grinders, flow jet mixers, high pressure wet atomization, ultrasonic dispersion, and the like.
  • pulverizing pigments in a sand mill (bead mill) it is preferable to use small-diameter beads or increase the filling rate of the beads, thereby increasing the pulverizing efficiency.
  • the process and dispersion machine for dispersing pigments are described in ⁇ Complete Works of Dispersion Technology, Published by Information Technology Corporation, July 15, 2005'' and ⁇ Dispersion technology centered on suspension (solid/liquid dispersion system) and industrial
  • the process and dispersion machine described in Paragraph No. 0022 of JP 2015-157893 A, "Practical Application Comprehensive Data Collection, Published by Management Development Center Publishing Department, October 10, 1978" can be suitably used.
  • the pigment may be subjected to a finer treatment in a salt milling step. For the materials, equipment, processing conditions, etc.
  • Bead materials used for dispersion include zirconia, agate, quartz, titania, tungsten carbide, silicon nitride, alumina, stainless steel, and glass.
  • an inorganic compound having a Mohs hardness of 2 or more can also be used for the beads.
  • the resin composition may contain 1 to 10,000 ppm of the beads.
  • any filter that has been conventionally used for filtration and the like can be used without particular limitation.
  • fluororesins such as polytetrafluoroethylene (PTFE), polyamide resins such as nylon (e.g. nylon-6, nylon-6,6), polyolefin resins (high density, ultra-high molecular weight) such as polyethylene, polypropylene (PP), etc.
  • filters using materials such as polyolefin resin (including polyolefin resin). Among these materials, polypropylene (including high-density polypropylene) and nylon are preferred.
  • the pore diameter of the filter is preferably 0.01 to 7.0 ⁇ m, more preferably 0.01 to 3.0 ⁇ m, and even more preferably 0.05 to 0.5 ⁇ m. If the pore diameter of the filter is within the above range, fine foreign matter can be removed more reliably.
  • the pore size value of the filter reference can be made to the nominal value of the filter manufacturer.
  • various filters provided by Nippon Pole Co., Ltd. DFA4201NXEY, DFA4201NAEY, DFA4201J006P, etc.
  • Advantech Toyo Co., Ltd., Nippon Entegris Co., Ltd. (formerly Nippon Microlith Co., Ltd.), Kitz Microfilter Co., Ltd., etc. can be used. .
  • fibrous filter media include polypropylene fibers, nylon fibers, and glass fibers.
  • Commercially available products include the SBP type series (SBP008, etc.), the TPR type series (TPR002, TPR005, etc.), and the SHPX type series (SHPX003, etc.) manufactured by Loki Techno.
  • filters When using filters, different filters (for example, a first filter and a second filter, etc.) may be combined. At that time, filtration with each filter may be performed only once, or may be performed two or more times. Further, filters having different pore diameters within the above-mentioned range may be combined. Alternatively, only the dispersion liquid may be filtered with the first filter, and then filtered with the second filter after other components are mixed.
  • filters for example, a first filter and a second filter, etc.
  • the membrane of the present invention is obtained from the resin composition of the present invention described above.
  • the film of the present invention can be preferably used as an optical filter.
  • Applications of the optical filter are not particularly limited, but include infrared cut filters, infrared transmission filters, and the like.
  • Examples of the infrared cut filter include an infrared cut filter on the light receiving side of the solid-state image sensor (for example, an infrared cut filter for a wafer level lens, etc.), and an infrared cut filter on the back side of the solid-state image sensor (opposite side to the light receiving side).
  • infrared cut filters for environmental light sensors (for example, illuminance sensors that detect the illuminance and color tone of the environment in which the information terminal device is placed and adjust the color tone of the display, and color correction sensors that adjust the color tone). It will be done. In particular, it can be preferably used as an infrared cut filter on the light receiving side of a solid-state image sensor. Examples of the infrared transmission filter include a filter that can block visible light and selectively transmit infrared rays having a specific wavelength or more.
  • the film of the present invention may have a pattern or may be a film without a pattern (flat film). Further, the membrane of the present invention may be used by being laminated on a support, or the membrane of the present invention may be used by being peeled off from the support. Examples of the support include semiconductor base materials such as silicon substrates and transparent base materials.
  • a charge coupled device CCD
  • CMOS complementary metal oxide semiconductor
  • transparent conductive film etc.
  • CCD charge coupled device
  • CMOS complementary metal oxide semiconductor
  • a partition wall that isolates each pixel may be formed on the semiconductor substrate. Examples of the partition wall include metals, metal oxides, black matrices, and the like.
  • an undercoat layer may be provided on the semiconductor substrate, if necessary, for improving adhesion with the upper layer, preventing substance diffusion, or flattening the substrate surface.
  • the transparent substrate used as the support is not particularly limited as long as it is made of a material that can transmit at least visible light.
  • Examples include base materials made of materials such as glass and resin.
  • resins include polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyolefin resins such as polyethylene, polypropylene, and ethylene vinyl acetate copolymers, acrylic resins such as norbornene resins, polyacrylates, and polymethyl methacrylates, urethane resins, and vinyl chloride resins. , fluororesin, polycarbonate resin, polyvinyl butyral resin, polyvinyl alcohol resin, and the like.
  • glass examples include soda lime glass, borosilicate glass, alkali-free glass, quartz glass, and glass containing copper.
  • glass containing copper examples include phosphate glass containing copper, fluorophosphate glass containing copper, and the like.
  • a commercially available glass containing copper can also be used. Examples of commercially available glass containing copper include NF-50 (manufactured by AGC Techno Glass Co., Ltd.).
  • the thickness of the film of the present invention can be adjusted as appropriate depending on the purpose.
  • the thickness of the film can be 200 ⁇ m or less, 150 ⁇ m or less, 120 ⁇ m or less, 20 ⁇ m or less, 10 ⁇ m or less, and 5 ⁇ m or less. You can also do it.
  • the lower limit of the film thickness is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more.
  • the film of the present invention When the film of the present invention is used as an infrared cut filter, it is preferable that the film of the present invention has a maximum absorption wavelength in a wavelength range of 650 to 1500 nm (preferably a wavelength of 660 to 1200 nm, more preferably a wavelength of 660 to 1000 nm).
  • the average transmittance of light with a wavelength of 420 to 550 nm is preferably 50% or more, more preferably 70% or more, even more preferably 80% or more, and especially 85% or more.
  • the transmittance over the entire wavelength range of 420 to 550 nm is preferably 50% or more, more preferably 70% or more, and even more preferably 80% or more.
  • the film of the present invention preferably has a transmittance of 15% or less at at least one point in the wavelength range of 650 to 1500 nm (preferably wavelength 660 to 1200 nm, more preferably wavelength 660 to 1000 nm), and preferably 10% or less.
  • the content is more preferably 5% or less, and even more preferably 5% or less.
  • the film of the present invention preferably has an average absorbance of less than 0.030, more preferably less than 0.025, in the wavelength range of 420 to 550 nm, when the absorbance at the maximum absorption wavelength is 1.
  • the film of the present invention preferably has, for example, any one of the following spectral properties (i1) to (i3).
  • a film having such spectral characteristics can block light in a wavelength range of 400 to 850 nm and transmit light with a wavelength exceeding 950 nm.
  • the maximum value of transmittance in the wavelength range of 400 to 950 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the minimum value of transmittance in the wavelength range of 1100 to 1500 nm is 70% or more (preferably 75% or more, more preferably 80% or more).
  • a film having such spectral characteristics can block light in a wavelength range of 400 to 950 nm and transmit light with a wavelength exceeding 1050 nm.
  • the maximum value of transmittance in the wavelength range of 400 to 1050 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the minimum value of transmittance in the wavelength range of 1200 to 1500 nm is 70% or more (preferably 75% or more, more preferably 80% or more).
  • a film having such spectral characteristics can block light in the wavelength range of 400 to 1050 nm and transmit light with a wavelength exceeding 1150 nm.
  • the film of the present invention can also be used in combination with a color filter containing a chromatic colorant.
  • a color filter can be manufactured using a coloring composition containing a chromatic colorant.
  • the color filter is preferably disposed on the optical path of the film of the present invention.
  • the film of the present invention may be formed on a support different from the support on which the color filter is formed, and the film of the present invention may be formed on a support different from the support on which the color filter is formed.
  • Other members for example, microlenses, flattening layers, etc. constituting the solid-state imaging device may be interposed between the film and the color filter.
  • the film of the present invention is suitable for solid-state imaging devices such as CCDs (charge-coupled devices) and CMOSs (complementary metal oxide semiconductors) (the imaging section uses compound semiconductors such as InGaAs, organic semiconductors, quantum dots, etc. in addition to Si). It can be used in various devices such as infrared sensors, light emitting devices, optical communication devices (both transmitting and receiving), and image display devices.
  • CCDs charge-coupled devices
  • CMOSs complementary metal oxide semiconductors
  • the imaging section uses compound semiconductors such as InGaAs, organic semiconductors, quantum dots, etc. in addition to Si). It can be used in various devices such as infrared sensors, light emitting devices, optical communication devices (both transmitting and receiving), and image display devices.
  • the film of the present invention can be manufactured through a step of applying the resin composition of the present invention.
  • Examples of the support include those mentioned above.
  • a method for applying the resin composition a known method can be used. For example, drop casting method; slit coating method; spray method; roll coating method; spin coating method; casting coating method; slit and spin method; Various methods such as inkjet (for example, on-demand method, piezo method, thermal method), ejection printing such as nozzle jet, flexo printing, screen printing, gravure printing, reverse offset printing, metal mask printing, etc. Examples include printing method; transfer method using a mold etc.; nanoimprint method.
  • the application method for inkjet is not particularly limited, and for example, the method shown in "Expanding and Usable Inkjet - Infinite Possibilities Seen in Patents," Published February 2005, Sumibe Techno Research (especially from page 115). 133 pages), and methods described in JP-A No. 2003-262716, JP-A No. 2003-185831, JP-A No. 2003-261827, JP-A No. 2012-126830, JP-A No. 2006-169325, etc. Can be mentioned.
  • the resin composition layer formed by applying the resin composition may be dried (prebaked).
  • the prebaking temperature is preferably 150°C or lower, more preferably 120°C or lower, and even more preferably 110°C or lower.
  • the lower limit can be, for example, 50°C or higher, or 80°C or higher.
  • the prebake time is preferably 10 seconds to 3000 seconds, more preferably 40 to 2500 seconds, and even more preferably 80 to 220 seconds. Drying can be performed using a hot plate, oven, or the like.
  • the film manufacturing method may further include a step of forming a pattern.
  • the pattern forming method include a pattern forming method using a photolithography method and a pattern forming method using a dry etching method, and a pattern forming method using a photolithography method is preferable. Note that when the film of the present invention is used as a flat film, the step of forming a pattern may not be performed. Hereinafter, the process of forming a pattern will be described in detail.
  • the pattern forming method using the photolithography method includes a step of exposing a resin composition layer formed by applying the resin composition of the present invention to light in a pattern (exposure step), and developing the unexposed portions of the resin composition layer. It is preferable to include a step of removing and forming a pattern (developing step). If necessary, a step of baking the developed pattern (post-bake step) may be provided. Each step will be explained below.
  • the resin composition layer is exposed in a pattern.
  • the resin composition layer can be exposed in a pattern by exposing the resin composition layer to light through a mask having a predetermined mask pattern using a stepper exposure machine, a scanner exposure machine, or the like. This allows the exposed portion to be cured.
  • Radiation (light) that can be used during exposure includes g-line, i-line, etc. Furthermore, light with a wavelength of 300 nm or less (preferably light with a wavelength of 180 to 300 nm) can also be used. Examples of light with a wavelength of 300 nm or less include KrF rays (wavelength 248 nm), ArF rays (wavelength 193 nm), and KrF rays (wavelength 248 nm). Furthermore, a long-wave light source of 300 nm or more can also be used.
  • pulse exposure is an exposure method in which exposure is performed by repeating light irradiation and pauses in short cycles (for example, on the millisecond level or less).
  • the irradiation amount is, for example, preferably 0.03 to 2.5 J/cm 2 , more preferably 0.05 to 1.0 J/cm 2 .
  • the oxygen concentration at the time of exposure can be appropriately selected, and in addition to being carried out in the atmosphere, for example, in a low oxygen atmosphere with an oxygen concentration of 19% by volume or less (for example, 15% by volume, 5% by volume, or substantially
  • the exposure may be performed in an oxygen-free environment (in the absence of oxygen), or in a high oxygen atmosphere with an oxygen concentration of more than 21 volume % (for example, 22 volume %, 30 volume %, or 50 volume %).
  • the exposure illuminance can be set as appropriate, and is usually selected from the range of 1000W/m 2 to 100000W/m 2 (for example, 5000W/m 2 , 15000W/m 2 , or 35000W/m 2 ). I can do it.
  • the oxygen concentration and the exposure illuminance may be appropriately combined.
  • the illumination intensity may be 10,000 W/m 2 at an oxygen concentration of 10% by volume, or 20,000 W/m 2 at an oxygen concentration of 35% by volume.
  • the unexposed portions of the resin composition layer after exposure are removed by development to form a pattern.
  • the unexposed portions of the resin composition layer can be removed by development using a developer.
  • the temperature of the developer is preferably, for example, 20 to 30°C.
  • the development time is preferably 20 to 180 seconds.
  • the process of shaking off the developer every 60 seconds and supplying a new developer may be repeated several times.
  • Examples of the developer include organic solvents, alkaline developers, and alkaline developers are preferably used.
  • an alkaline aqueous solution (alkaline developer) prepared by diluting an alkaline agent with pure water is preferable.
  • alkaline agents include ammonia, ethylamine, diethylamine, dimethylethanolamine, diglycolamine, diethanolamine, hydroxyamine, ethylenediamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide.
  • alkaline compounds examples include alkaline compounds and inorganic alkaline compounds such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium bicarbonate, sodium silicate, and sodium metasilicate.
  • alkali agent compounds with a large molecular weight are preferable from the environmental and safety standpoints.
  • the concentration of the alkaline agent in the alkaline aqueous solution is preferably 0.001 to 10% by mass, more preferably 0.01 to 1% by mass.
  • the developer may further contain a surfactant.
  • the surfactant nonionic surfactants are preferred.
  • the developing solution may be manufactured as a concentrated solution and then diluted to a required concentration before use.
  • the dilution ratio is not particularly limited, but can be set, for example, in the range of 1.5 to 100 times. It is also preferable to wash (rinse) with pure water after development. Further, rinsing is preferably performed by supplying a rinsing liquid to the developed resin composition layer while rotating the support on which the developed resin composition layer is formed.
  • the nozzle that discharges the rinsing liquid from the center of the support it is also preferable to move the nozzle that discharges the rinsing liquid from the center of the support to the peripheral edge of the support.
  • the nozzle may be moved while gradually decreasing its moving speed.
  • Additional exposure processing and post-bake are post-development curing processing to complete curing.
  • the heating temperature in post-baking is, for example, preferably 100 to 240°C, more preferably 200 to 240°C.
  • Post-baking can be carried out in a continuous or batch manner using a heating means such as a hot plate, convection oven (hot air circulation dryer), or high-frequency heater to maintain the developed film under the above conditions.
  • the light used for exposure is preferably light with a wavelength of 400 nm or less. Further, the additional exposure process may be performed by the method described in Korean Patent Publication No. 10-2017-0122130.
  • Pattern formation by the dry etching method involves coating the resin composition on a support and curing the resin composition layer to form a cured material layer, and then forming a patterned photo on this cured material layer. This can be carried out by a method such as forming a resist layer, and then dry etching the cured material layer using an etching gas using the patterned photoresist layer as a mask. In forming the photoresist layer, it is preferable to perform a prebaking process. Regarding pattern formation by the dry etching method, the descriptions in paragraphs 0010 to 0067 of JP-A No. 2013-064993 can be referred to, and the contents thereof are incorporated into the present specification.
  • optical filter of the present invention has the film of the present invention described above.
  • Types of optical filters include infrared cut filters and infrared transmission filters.
  • the optical filter of the invention may further include a copper-containing layer, a dielectric multilayer film, an ultraviolet absorbing layer, and the like.
  • the ultraviolet absorbing layer include the absorbing layers described in paragraph numbers 0040 to 0070 and 0119 to 0145 of International Publication No. 2015/099060.
  • the dielectric multilayer film include the dielectric multilayer films described in paragraph numbers 0255 to 0259 of JP-A No. 2014-041318.
  • a glass substrate made of glass containing copper (copper-containing glass substrate) or a layer containing a copper complex (copper complex-containing layer) can also be used.
  • Examples of the copper-containing glass substrate include phosphate glass containing copper, fluorophosphate glass containing copper, and the like.
  • Commercially available copper-containing glasses include NF-50 (manufactured by AGC Techno Glass Co., Ltd.), BG-60, BG-61 (all manufactured by Schott Co., Ltd.), and CD5000 (manufactured by HOYA Co., Ltd.).
  • Preferred base materials include transparent base materials made of materials such as glass and resin, and it is also preferred to form a film directly on various elements.
  • resins examples include polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyolefin resins such as polyethylene, polypropylene, and ethylene vinyl acetate copolymers, acrylic resins such as norbornene resins, polyacrylates, and polymethyl methacrylates, urethane resins, and vinyl chloride resins. , fluororesin, polycarbonate resin, polyvinyl butyral resin, polyvinyl alcohol resin, and the like.
  • the glass include soda lime glass, borosilicate glass, alkali-free glass, quartz glass, and glass containing copper.
  • the solid-state imaging device of the present invention includes the film of the present invention described above.
  • the structure of the solid-state image sensor is not particularly limited as long as it has the film of the present invention and functions as a solid-state image sensor. For example, the following configurations may be mentioned.
  • the device On the support, there is a transfer electrode made of polysilicon or the like and a plurality of photodiodes that constitute the light-receiving area of the solid-state image sensor, and a light-shielding material made of tungsten or the like with only the light-receiving part of the photodiode opened above the photodiode and the transfer electrode.
  • the device has a device protective film made of silicon nitride or the like formed to cover the entire surface of the light shielding film and the photodiode light receiving part on the light shielding film, and has the film of the present invention on the device protective film. be.
  • the color filter may have a structure in which a film forming each pixel is embedded in a space partitioned into, for example, a lattice shape by partition walls.
  • the partition wall preferably has a lower refractive index than each pixel. Examples of imaging devices having such a structure include devices described in Japanese Patent Application Laid-open Nos. 2012-227478 and 2014-179577.
  • the image display device of the present invention includes the film of the present invention.
  • Examples of the image display device include a liquid crystal display device and an organic electroluminescence (organic EL) display device.
  • organic EL organic electroluminescence
  • image display devices see, for example, “Electronic Display Devices (written by Akio Sasaki, published by Industrial Research Institute Co., Ltd., 1990)” and “Display Devices (written by Junaki Ibuki, published by Sangyo Tosho Co., Ltd., published in 1989). Publication)” etc.
  • liquid crystal display devices are described, for example, in “Next Generation Liquid Crystal Display Technology (edited by Tatsuo Uchida, published by Kogyo Chosenkai Co., Ltd., 1994)”.
  • the image display device may include a white organic EL element.
  • the white organic EL element preferably has a tandem structure.
  • Japanese Patent Application Laid-open No. 2003-045676 supervised by Akiyoshi Mikami, "The forefront of organic EL technology development - High brightness, high precision, long life, collection of know-how", Technical Information Association, It is described in pages 326-328, 2008, etc.
  • the spectrum of white light emitted by the organic EL element preferably has strong maximum emission peaks in the blue region (430 to 485 nm), green region (530 to 580 nm), and yellow region (580 to 620 nm). In addition to these emission peaks, it is more preferable to have a maximum emission peak in the red region (650 to 700 nm).
  • the film of the present invention can also be used as an infrared transmitting film provided in an opening for infrared communication formed in a frame portion of a protective plate for a display device.
  • the infrared sensor of the present invention includes the film of the present invention described above.
  • the configuration of the infrared sensor is not particularly limited as long as it functions as an infrared sensor. EMBODIMENT OF THE INVENTION Hereinafter, one embodiment of the infrared sensor of this invention is described using drawings.
  • numeral 110 is a solid-state image sensor.
  • An infrared cut filter 111 and an infrared transmission filter 114 are arranged on the imaging area of the solid-state image sensor 110.
  • a color filter 112 is arranged on the infrared cut filter 111.
  • a microlens 115 is arranged on the incident light hv side of the color filter 112 and the infrared transmission filter 114.
  • a flattening layer 116 is formed to cover the microlens 115.
  • the infrared cut filter 111 can be formed using the resin composition of the present invention.
  • the color filter 112 is a color filter in which pixels that transmit and absorb light of a specific wavelength in the visible region are formed, and there is no particular limitation, and a conventionally known color filter for forming pixels can be used. For example, a color filter in which red (R), green (G), and blue (B) pixels are formed is used. For example, the descriptions in paragraph numbers 0214 to 0263 of JP-A No. 2014-043556 can be referred to, and the contents thereof are incorporated herein.
  • the characteristics of the infrared transmission filter 114 are selected depending on the emission wavelength of the infrared LED used.
  • the infrared transmission filter 114 can be formed using the resin composition of the present invention.
  • an infrared cut filter other than the infrared cut filter 111 may be further disposed on the flattening layer 116.
  • Other infrared cut filters include those having a layer containing copper and/or a dielectric multilayer film. Details of these are mentioned above.
  • a dual band pass filter may be used as another infrared cut filter.
  • the camera module of the present invention includes a solid-state image sensor and the above-described film of the present invention.
  • the camera module further includes a lens and a circuit that processes images obtained from the solid-state image sensor.
  • the solid-state image sensor used in the camera module may be the solid-state image sensor according to the present disclosure described above, or may be a known solid-state image sensor.
  • the lens used in the camera module and the circuit that processes the image obtained from the solid-state image sensor known ones can be used.
  • camera modules described in JP-A No. 2016-006476 and JP-A No. 2014-197190 can be referred to, and the contents thereof are incorporated into this specification.
  • the film of the present invention can also be used in light emitting devices.
  • the structure of the light emitting element is not particularly limited as long as it functions as a light emitting element, and light emitting diodes (LEDs), organic light emitting diodes (OLEDs), quantum dot light emitting diodes (QLEDs), vertical cavity surface emitting lasers ( VICSEL), etc.
  • the film of the present invention may be formed directly on the light emitting element, or may be placed on the light emitting path.
  • the film of the present invention can also be used in optical communication devices.
  • the configuration of the optical communication element is not particularly limited as long as it functions as an optical communication element, and may be either a transmitting element or a receiving element.
  • Examples of the optical communication device include an infrared remote control, an infrared transceiver, an optical interposer, and an optical interconnection.
  • the film of the present invention may be formed directly on the receiving element, directly on the transmitting element, or placed on the transmitting/receiving path.
  • the weight average molecular weight of the resin was measured using HPC-8220GPC (manufactured by Tosoh Corporation) as a measuring device, TSKguardcolumn SuperHZ-L as a guard column, and TSKgel SuperHZM-M, TSKgel SuperHZ4000, TSKgel SuperH as a column.
  • pigment 017, 018 Compounds 017, 018 (infrared absorbing pigments) shown in the specific examples of the specific infrared absorbing pigments mentioned above IR101 to IR103: Compounds with the following structure (infrared absorbing dyes) PB15:6: C. I. Pigment Blue 15:6 (blue colorant) PR254: C. I. Pigment Red 254 (red colorant)
  • Dis-001 Resin with the following structure (the numerical value appended to the main chain is the molar ratio, and the numerical value appended to the side chain is the number of repeating units.
  • Weight average molecular weight 25,000 Dis-002: Resin with the following structure (the numerical value appended to the main chain is the molar ratio, and the numerical value appended to the side chain is the number of repeating units. Weight average molecular weight 9800)
  • ⁇ Manufacture of resin composition Materials other than the solvents shown in the table below are mixed in the proportions shown in the table below, the solvents shown in the table below are added to adjust the solid content concentration to 20% by mass, and the mixture is stirred to form nylon with a pore size of 0.45 ⁇ m. filter (manufactured by Nippon Pall Co., Ltd.) to produce a resin composition.
  • the numerical values in the blending amount column in the table are values in parts by mass in terms of solid content.
  • B001 Polymethyl methacrylate (weight average molecular weight 24,000, dispersity 1.8)
  • B003 Resin with the following structure (the numbers added to the main chain are the molar ratio of repeating units, weight average molecular weight 15000, dispersity 2.1)
  • B004 Resin with the following structure (weight average molecular weight 25,000, degree of dispersion 2.2, glass transition temperature 310°C)
  • (Polymerizable compound) M-1 Aronix M-305 (manufactured by Toagosei Co., Ltd., a mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate.
  • pentaerythritol triacrylate The content of pentaerythritol triacrylate is 55% by mass to 63% by mass.
  • M-2 KAYARAD RP-1040 (manufactured by Nippon Kayaku Co., Ltd., ethylene oxide modified pentaerythritol tetraacrylate)
  • M-3 Aronix M-510 (manufactured by Toagosei Co., Ltd., polybasic acid-modified acrylic oligomer)
  • EPICLON N-695 manufactured by DIC Corporation, o-cresol novolac type epoxy compound
  • C-1 Irgacure OXE01 (manufactured by BASF, oxime ester compound)
  • C-2 Irgacure OXE02 (manufactured by BASF, oxime ester compound)
  • F-1 Megafac RS-72-K (manufactured by DIC Corporation, fluorine-based surfactant)
  • F-2 Compound with the following structure (weight average molecular weight 14,000, the numerical value of % indicating the proportion of repeating units is mol%)
  • F-3 KF-6001 (manufactured by Shin-Etsu Chemical Co., Ltd., polydimethylsiloxane modified with carbinol at both ends, hydroxyl value 62 mgKOH/g, silicone surfactant)
  • U-1 Uvinul3050 (manufactured by BASF)
  • the transmittance of the glass substrate on which the above film was formed was measured in the wavelength range of 400 to 2000 nm using an ultraviolet-visible near-infrared spectrophotometer U-4100 (manufactured by Hitachi High-Tech Corporation).
  • the wavelength at which the transmittance is 20% ( ⁇ L20 ) and the wavelength at which the transmittance is 90% ( ⁇ L90 ), which is on the longer wavelength side than the maximum absorption wavelength, and the maximum absorption The wavelength at which the transmittance is 20% ( ⁇ S20 ) and the wavelength at which the transmittance is 90% ( ⁇ S90 ), which are shorter than the wavelength, are determined, and the rectangularity of each light-shielding area is determined using the following criteria. was evaluated.
  • the transmittance of the glass substrate on which the above film was formed was measured in the wavelength range of 400 to 2000 nm using an ultraviolet-visible near-infrared spectrophotometer U-4100 (manufactured by Hitachi High-Tech Corporation). Next, the glass substrate on which the above film was formed was irradiated with a xenon lamp at 100,000 lux for 20 hours (equivalent to 2 million lux ⁇ h), and the transmittance of the film after irradiation with the xenon lamp was measured.
  • the amount of change in transmittance ( ⁇ T) at each wavelength in the wavelength range of 800 to 2000 nm before and after irradiation with a xenon lamp is determined, and the light resistance is evaluated using the following criteria based on the largest value of ⁇ T in the entire measurement wavelength range. did. The smaller the value of ⁇ T, the better the light resistance.
  • Amount of change in transmittance ( ⁇ T)
  • the examples were excellent in evaluation of light resistance and heat resistance. Furthermore, the examples had excellent evaluation of rectangularity on the long wavelength side, had a steep slope of transmittance on the long wavelength side with respect to the maximum absorption wavelength, and had excellent contrast between transmittance and light shielding properties. Further, for the films obtained using the resin compositions of Examples 28 and 53, the average transmittance in the wavelength range of 400 to 1000 nm was less than 5%.
  • the plate was heated at 100° C. for 2 minutes.
  • FPA-3000i5+ manufactured by Canon Inc.
  • a 2 ⁇ m Bayer pattern was exposed through a mask at an exposure dose of 1000 mJ/cm 2 .
  • paddle development was performed at 23° C. for 60 seconds using a 0.3% by mass aqueous solution of tetramethylammonium hydroxide (TMAH).
  • TMAH tetramethylammonium hydroxide
  • 110 solid-state image sensor
  • 111 infrared cut filter
  • 112 color filter
  • 114 infrared transmission filter
  • 115 microlens
  • 116 flattening layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

This resin composition contains a resin and at least one infrared-absorbing dye A selected from a dye A1 represented by formula (1) and die multimers A2 including two or more dye structures derived from the dye A1 per molecule. The present invention also pertains to a film, an optical filter, a solid-state imaging element, an image display device, an infrared sensor, a camera module, and a compound.

Description

樹脂組成物、膜、光学フィルタ、固体撮像素子、画像表示装置、赤外線センサ、カメラモジュールおよび化合物Resin compositions, films, optical filters, solid-state imaging devices, image display devices, infrared sensors, camera modules and compounds
 本発明は、赤外線吸収色素を含む樹脂組成物に関する。また、本発明は、樹脂組成物を用いた膜、光学フィルタ、固体撮像素子、画像表示装置、赤外線センサおよびカメラモジュールに関する。また、本発明は化合物に関する。 The present invention relates to a resin composition containing an infrared absorbing dye. The present invention also relates to a film, an optical filter, a solid-state image sensor, an image display device, an infrared sensor, and a camera module using the resin composition. The invention also relates to compounds.
 ビデオカメラ、デジタルスチルカメラ、カメラ機能付き携帯電話などには、カラー画像の固体撮像素子である、CCD(電荷結合素子)や、CMOS(相補型金属酸化膜半導体)が用いられている。これら固体撮像素子は、その受光部において赤外線に感度を有するシリコンフォトダイオードを使用している。このため、赤外線カットフィルタを設けて視感度補正を行うことがある。赤外線カットフィルタは、赤外線吸収色素と樹脂とを含む樹脂組成物などを用いて製造されている。 Video cameras, digital still cameras, mobile phones with camera functions, and the like use CCDs (charge-coupled devices) and CMOSs (complementary metal oxide semiconductors), which are solid-state imaging devices for color images. These solid-state image sensors use silicon photodiodes sensitive to infrared rays in their light receiving portions. For this reason, an infrared cut filter may be provided to correct visibility. Infrared cut filters are manufactured using resin compositions containing infrared absorbing dyes and resins.
 特許文献1には、イミニウム化合物を含む赤外線吸収色素と、樹脂とを含む樹脂組成物を用いて赤外線カットフィルタなどを製造することが記載されている。 Patent Document 1 describes that an infrared cut filter or the like is manufactured using a resin composition containing an infrared absorbing dye containing an iminium compound and a resin.
特開2007-233368号公報Japanese Patent Application Publication No. 2007-233368
 近年、赤外線吸収色素と樹脂を含む樹脂組成物を用いて得られる膜について、耐熱性や耐光性の性能についての更なる向上が求められている。 In recent years, there has been a demand for further improvements in the heat resistance and light resistance of films obtained using resin compositions containing infrared absorbing dyes and resins.
 よって、本発明の目的は耐熱性および耐光性に優れた膜を形成できる樹脂組成物を提供することにある。また、本発明の目的は、膜、光学フィルタ、固体撮像素子、画像表示装置、赤外線センサ、カメラモジュールおよび化合物を提供することにある。 Therefore, an object of the present invention is to provide a resin composition that can form a film with excellent heat resistance and light resistance. Another object of the present invention is to provide a film, an optical filter, a solid-state image sensor, an image display device, an infrared sensor, a camera module, and a compound.
 本発明は以下を提供する。
 <1> 式(1)で表される色素A1および上記色素A1由来の色素構造を1分子中に2以上含む色素多量体A2から選ばれる少なくとも1種の赤外線吸収色素Aと、
 樹脂と、を含む、樹脂組成物;
 式(1)中、L101は、-P(=O)(RL101)-、-P(=S)(RL102)-、-Si(RL103)(RL104)-、-B(RL105)-、-S(=O)-または-S(=O)-を表し、RL101~RL105は、水素原子または置換基を表し、RL103とRL104は結合して環を形成していてもよく、
 X101~X103は、それぞれ独立して、窒素原子または-CRX101-を表し、RX101は、水素原子または置換基を表し、
 L102およびL103は、それぞれ独立して、硫黄原子または-X104=X105-を表し、X104およびX105は、それぞれ独立して、窒素原子または-CRX102-を表し、RX102は、水素原子または置換基を表し、
 Ar101およびAr102は、それぞれ独立して、-(CRAr101=CRAr102n101-、アリーレン基、複素環基またはこれらの基を2以上組み合わせた基を表し、RAr101およびRAr102は、それぞれ独立して水素原子または置換基を表し、n101は1~3の整数を表し、
 Y101およびY102は、それぞれ独立して、-ORY101、-NRY102Y103または-SRY104を表し、RY101~RY104は、それぞれ独立して、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基を表し、RY102とRY103は単結合または2価の連結基を介して結合して環を形成していてもよく、
 Ar101とX101は、単結合または2価の連結基を介して結合して5員環または6員環を形成していてもよく、
 Ar101とY101は、単結合または2価の連結基を介して結合して5員環または6員環を形成していてもよく、
 Ar102とX102は、単結合または2価の連結基を介して結合して5員環または6員環を形成していてもよく、
 Ar102とY102は、単結合または2価の連結基を介して結合して5員環または6員環を形成していてもよく、
 Zは対イオンを表し、
 p1は0~5の整数を表し、
 q1は、1~5の整数を表す。
 <2> 上記式(1)のX103は-CRX101-であり、RX101は水素原子または置換基であり、
 L102およびL103は、それぞれ硫黄原子である、<1>に記載の樹脂組成物。
 <3> 上記式(1)のX103は-CRX101-であり、RX101は水素原子または置換基であり、
 L102およびL103は、それぞれ硫黄原子であり、
 L101は、-P(=O)(RL101)-であり、RL101は、水素原子または置換基である、<1>に記載の樹脂組成物。
 <4> 上記式(1)のX103は-CRX101-であり、RX101は水素原子または置換基であり、
 L102およびL103は、それぞれ硫黄原子であり、
 L101は、-P(=O)(RL101)-であり、RL101は、水素原子または置換基であり、
 Y101およびY102は、それぞれ独立して、-NRY102Y103であり、RY102およびRY103は、それぞれ独立して、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基であり、RY102とRY103は単結合または2価の連結基を介して結合して環を形成していてもよい、<1>に記載の樹脂組成物。
 <5> 上記式(1)のX103は-CRX101-であり、RX101は水素原子または置換基であり、
 L102およびL103は、それぞれ硫黄原子であり、
 L101は、-Si(RL103)(RL104)-または-S(=O)-であり、RL103およびRL104は、それぞれ独立して、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基であり、
 Y101およびY102は、それぞれ独立して、-NRY102Y103であり、RY102およびRY103は、それぞれ独立して、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基であり、RY102とRY103は単結合または2価の連結基を介して結合して環を形成していてもよい、<1>に記載の樹脂組成物。
 <6> 更に、上記赤外線吸収色素A以外の赤外線吸収剤を含む、<1>~<5>のいずれか1つに記載の樹脂組成物。
 <7> 上記赤外線吸収色素A以外の赤外線吸収剤の極大吸収波長が、上記赤外線吸収色素Aの極大吸収波長よりも短波長側に存在する、<6>に記載の樹脂組成物。
 <8> 上記赤外線吸収色素Aの極大吸収波長が、波長700~1800nmの範囲に存在する、<1>~<7>のいずれか1つに記載の樹脂組成物。
 <9> 更に重合性化合物と、光重合開始剤とを含む、<1>~<8>のいずれか1つに記載の樹脂組成物。
 <10> <1>~<9>のいずれか1つに記載の樹脂組成物を用いて得られた膜。
 <11> <10>に記載の膜を含む光学フィルタ。
 <12> <10>に記載の膜を含む固体撮像素子。
 <13> <10>に記載の膜を含む画像表示装置。
 <14> <10>に記載の膜を含む赤外線センサ。
 <15> <10>に記載の膜を含むカメラモジュール。
 <16> 式(4)で表される化合物;
 式中、Ar401はアリール基またはヘテロアリール基を表し、
 R401~R404は、それぞれ独立して水素原子、アルキル基、アリール基またはヘテロアリール基を表し、
 R405およびR406は、それぞれ独立してアルキル基、アリール基、ヘテロアリール基、アリールオキシ基、ヘテロアリールオキシ基、アルコキシ基またはシアノ基を表し、
 R407およびR408は、それぞれ独立してアルキル基またはアリール基を表し、
 n401およびn402はそれぞれ独立して0~4の整数を表し、
 q4は1または2を表し、
 Zはq4価の対アニオンを表す。
 <17> 式(5)で表される化合物;
 式中、Ar501は、アリール基またはヘテロアリール基を表し、
501~R504は、それぞれ独立して水素原子、アルキル基、アリール基またはヘテロアリール基を表し、
 R505およびR506は、それぞれ独立してアルキル基、アリール基、ヘテロアリール基、アリールオキシ基、ヘテロアリールオキシ基、アルコキシ基またはシアノ基を表し、
 n501およびn502は、それぞれ独立して0~4の整数を表し、
 q5は1または2を表し、
 Zはq5価の対アニオンを表す。
The present invention provides the following.
<1> At least one infrared absorbing dye A selected from a dye A1 represented by formula (1) and a dye multimer A2 containing two or more dye structures derived from the dye A1 in one molecule,
A resin composition comprising a resin;
In formula (1), L 101 is -P(=O)(R L101 )-, -P(=S)(R L102 )-, -Si(R L103 )(R L104 )-, -B(R L105 )-, -S(=O) 2 - or -S(=O)-, R L101 to R L105 represent a hydrogen atom or a substituent, and R L103 and R L104 combine to form a ring. It is okay to do
X 101 to X 103 each independently represent a nitrogen atom or -CR X101 -, R X101 represents a hydrogen atom or a substituent,
L 102 and L 103 each independently represent a sulfur atom or -X 104 =X 105 -, X 104 and X 105 each independently represent a nitrogen atom or -CR X102 -, and R , represents a hydrogen atom or a substituent,
Ar 101 and Ar 102 each independently represent -(CR Ar101 = CR Ar102 ) n101 -, an arylene group, a heterocyclic group, or a group combining two or more of these groups, and R Ar101 and R Ar102 each represent independently represents a hydrogen atom or a substituent, n101 represents an integer of 1 to 3,
Y 101 and Y 102 each independently represent -OR Y101 , -NR Y102 RY103 or -SR Y104, and R Y101 to R Y104 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl represents a group, an aryl group or a heteroaryl group, and R Y102 and R Y103 may be bonded via a single bond or a divalent linking group to form a ring,
Ar 101 and X 101 may be bonded via a single bond or a divalent linking group to form a 5-membered ring or a 6-membered ring,
Ar 101 and Y 101 may be bonded via a single bond or a divalent linking group to form a 5-membered ring or a 6-membered ring,
Ar 102 and X 102 may be bonded via a single bond or a divalent linking group to form a 5-membered ring or a 6-membered ring,
Ar 102 and Y 102 may be bonded via a single bond or a divalent linking group to form a 5-membered ring or a 6-membered ring,
Z 1 represents a counter ion,
p1 represents an integer from 0 to 5,
q1 represents an integer from 1 to 5.
<2> X 103 in the above formula (1) is -CR X101 -, R X101 is a hydrogen atom or a substituent,
The resin composition according to <1>, wherein L 102 and L 103 are each a sulfur atom.
<3> X 103 in the above formula (1) is -CR X101 -, R X101 is a hydrogen atom or a substituent,
L 102 and L 103 are each a sulfur atom,
The resin composition according to <1>, wherein L 101 is -P(=O)(R L101 )-, and R L101 is a hydrogen atom or a substituent.
<4> X 103 in the above formula (1) is -CR X101 -, R X101 is a hydrogen atom or a substituent,
L 102 and L 103 are each a sulfur atom,
L 101 is -P(=O)(R L101 )-, R L101 is a hydrogen atom or a substituent,
Y 101 and Y 102 are each independently -NR Y102 R Y103 , and R Y102 and R Y103 are each independently a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a heteroaryl group. The resin composition according to <1>, wherein R Y102 and R Y103 may be bonded via a single bond or a divalent linking group to form a ring.
<5> X 103 in the above formula (1) is -CR X101 -, R X101 is a hydrogen atom or a substituent,
L 102 and L 103 are each a sulfur atom,
L 101 is -Si(R L103 )(R L104 )- or -S(=O)-, and R L103 and R L104 are each independently a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, is an aryl group or a heteroaryl group,
Y 101 and Y 102 are each independently -NR Y102 R Y103 , and R Y102 and R Y103 are each independently a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a heteroaryl group. The resin composition according to <1>, wherein R Y102 and R Y103 may be bonded via a single bond or a divalent linking group to form a ring.
<6> The resin composition according to any one of <1> to <5>, further comprising an infrared absorber other than the infrared absorbing dye A.
<7> The resin composition according to <6>, wherein the maximum absorption wavelength of the infrared absorbing agent other than the infrared absorbing dye A is on the shorter wavelength side than the maximum absorption wavelength of the infrared absorbing dye A.
<8> The resin composition according to any one of <1> to <7>, wherein the maximum absorption wavelength of the infrared absorbing dye A is in a wavelength range of 700 to 1800 nm.
<9> The resin composition according to any one of <1> to <8>, further comprising a polymerizable compound and a photopolymerization initiator.
<10> A film obtained using the resin composition according to any one of <1> to <9>.
<11> An optical filter comprising the film according to <10>.
<12> A solid-state imaging device comprising the film according to <10>.
<13> An image display device including the film according to <10>.
<14> An infrared sensor comprising the film according to <10>.
<15> A camera module including the film according to <10>.
<16> Compound represented by formula (4);
In the formula, Ar 401 represents an aryl group or a heteroaryl group,
R 401 to R 404 each independently represent a hydrogen atom, an alkyl group, an aryl group or a heteroaryl group,
R 405 and R 406 each independently represent an alkyl group, an aryl group, a heteroaryl group, an aryloxy group, a heteroaryloxy group, an alkoxy group or a cyano group,
R 407 and R 408 each independently represent an alkyl group or an aryl group,
n401 and n402 each independently represent an integer from 0 to 4,
q4 represents 1 or 2,
Z 4 represents a q4-valent counteranion.
<17> Compound represented by formula (5);
In the formula, Ar 501 represents an aryl group or a heteroaryl group,
R 501 to R 504 each independently represent a hydrogen atom, an alkyl group, an aryl group or a heteroaryl group,
R 505 and R 506 each independently represent an alkyl group, an aryl group, a heteroaryl group, an aryloxy group, a heteroaryloxy group, an alkoxy group or a cyano group,
n 501 and n 502 each independently represent an integer from 0 to 4,
q5 represents 1 or 2,
Z 5 represents a q5-valent counteranion.
 本発明によれば、耐熱性および耐光性に優れた膜を形成できる樹脂組成物を提供することができる。また、本発明は、膜、光学フィルタ、固体撮像素子、画像表示装置、赤外線センサ、カメラモジュールおよび化合物を提供することができる。 According to the present invention, it is possible to provide a resin composition that can form a film with excellent heat resistance and light resistance. Further, the present invention can provide a film, an optical filter, a solid-state imaging device, an image display device, an infrared sensor, a camera module, and a compound.
赤外線センサの一実施形態を示す概略図である。FIG. 1 is a schematic diagram showing one embodiment of an infrared sensor.
 以下において、本発明の内容について詳細に説明する。
 本明細書において、「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本明細書における基(原子団)の表記において、置換および無置換を記していない表記は、置換基を有さない基(原子団)と共に置換基を有する基(原子団)をも包含する。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。
 本明細書において「露光」とは、特に断らない限り、光を用いた露光のみならず、電子線、イオンビーム等の粒子線を用いた描画も露光に含める。また、露光に用いられる光としては、水銀灯の輝線スペクトル、エキシマレーザに代表される遠紫外線、極紫外線(EUV光)、X線、電子線等の活性光線または放射線が挙げられる。
 本明細書において、「(メタ)アクリレート」は、アクリレートおよびメタクリレートの双方、または、いずれかを表し、「(メタ)アクリル」は、アクリルおよびメタクリルの双方、または、いずれかを表し、「(メタ)アクリロイル」は、アクリロイルおよびメタクリロイルの双方、または、いずれかを表す。
 本明細書において、重量平均分子量および数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)測定でのポリスチレン換算値として定義される。
 本明細書において、化学式中のMeはメチル基を表し、Etはエチル基を表し、Buはブチル基を表し、Phはフェニル基を表す。
 本明細書において、赤外線とは、波長700~2500nmの光(電磁波)をいう。
 本明細書において、全固形分とは、組成物の全成分から溶剤を除いた成分の総質量をいう。
 本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
The content of the present invention will be explained in detail below.
In this specification, "~" is used to include the numerical values described before and after it as a lower limit and an upper limit.
In the description of a group (atomic group) in this specification, the description that does not indicate substituted or unsubstituted includes a group having a substituent (atomic group) as well as a group having no substituent (atomic group). For example, the term "alkyl group" includes not only an alkyl group without a substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
In this specification, "exposure" includes not only exposure using light but also drawing using particle beams such as electron beams and ion beams, unless otherwise specified. Examples of the light used for exposure include actinic rays or radiation such as the bright line spectrum of a mercury lamp, far ultraviolet rays typified by excimer laser, extreme ultraviolet rays (EUV light), X-rays, and electron beams.
In the present specification, "(meth)acrylate" represents acrylate and/or methacrylate, "(meth)acrylic" represents both acrylic and/or methacrylic, and "(meth)acrylate" represents acrylic and/or methacrylate. ) "Acryloyl" refers to acryloyl and/or methacryloyl.
In this specification, the weight average molecular weight and number average molecular weight are defined as polystyrene equivalent values measured by gel permeation chromatography (GPC).
In this specification, Me in the chemical formula represents a methyl group, Et represents an ethyl group, Bu represents a butyl group, and Ph represents a phenyl group.
In this specification, infrared rays refer to light (electromagnetic waves) with a wavelength of 700 to 2500 nm.
In this specification, the total solid content refers to the total mass of all components of the composition excluding the solvent.
In this specification, the term "process" is used not only to refer to an independent process, but also to include any process that achieves the intended effect even if it cannot be clearly distinguished from other processes. .
<樹脂組成物>
 本発明の樹脂組成物は、式(1)で表される色素A1および色素A1由来の色素構造を1分子中に2以上含む色素多量体A2から選ばれる少なくとも1種の赤外線吸収色素Aと、
 樹脂と、を含むことを特徴とする。
<Resin composition>
The resin composition of the present invention includes at least one infrared absorbing dye A selected from a dye A1 represented by formula (1) and a dye multimer A2 containing two or more dye structures derived from the dye A1 in one molecule;
It is characterized by containing a resin.
 本発明の樹脂組成物を用いることで、耐熱性および耐光性に優れた膜を形成することができる。上記赤外線吸収色素Aは、製膜時に樹脂中で会合を形成し易いと推測される。赤外線吸収色素Aが樹脂中で会合することで、酸素や水といった分解を誘発する化学種との接触頻度が下がり、赤外線吸収色素Aの分解が抑制され、その結果、耐熱性及び耐光性に優れた膜を形成することができたと推測される。 By using the resin composition of the present invention, a film with excellent heat resistance and light resistance can be formed. It is presumed that the infrared absorbing dye A is likely to form associations in the resin during film formation. By associating infrared absorbing dye A in the resin, the frequency of contact with chemical species that induce decomposition such as oxygen and water is reduced, and the decomposition of infrared absorbing dye A is suppressed, resulting in excellent heat resistance and light resistance. It is presumed that a film could be formed.
 また、上記赤外線吸収色素Aを用いることで、極大吸収波長よりも長波長側における透過率の傾斜が急峻で、透過性と遮光性のコントラストに優れた膜を形成することができる。このような分光特性を有する膜は、赤外線カットフィルタや、赤外線透過フィルタなどの光学フィルタとして好ましく用いられる。このため、本発明の樹脂組成物は、光学フィルタ用の樹脂組成物として用いることができる。光学フィルタの種類としては、赤外線カットフィルタおよび赤外線透過フィルタなどが挙げられる。 Furthermore, by using the above-mentioned infrared absorbing dye A, it is possible to form a film with a steep slope of transmittance on the longer wavelength side than the maximum absorption wavelength and excellent contrast between transmittance and light-shielding properties. A film having such spectral characteristics is preferably used as an optical filter such as an infrared cut filter or an infrared transmission filter. Therefore, the resin composition of the present invention can be used as a resin composition for optical filters. Types of optical filters include infrared cut filters and infrared transmission filters.
 以下、本発明の樹脂組成物に用いられる各成分について説明する。 Each component used in the resin composition of the present invention will be explained below.
<<特定赤外線吸収色素>>
 本発明の樹脂組成物は、式(1)で表される色素A1および前述の色素A1由来の色素構造を1分子中に2以上含む色素多量体A2から選ばれる少なくとも1種の赤外線吸収色素Aを含む。以下、前述の赤外線吸収色素を、特定赤外線吸収色素ともいう。
<<Specific infrared absorbing dye>>
The resin composition of the present invention comprises at least one infrared absorbing dye A2 selected from a dye A1 represented by formula (1) and a dye multimer A2 containing two or more dye structures derived from the above-mentioned dye A1 in one molecule. including. Hereinafter, the above-mentioned infrared absorbing dye will also be referred to as a specific infrared absorbing dye.
 特定赤外線吸収色素は、染料であってもよく、顔料であっても良い。
 特定赤外線吸収色素が顔料である場合、特定赤外線吸収色素は、プロピレングリコールモノメチルエーテルアセテ-トおよび水のいずれに対しても、25℃における溶解度が0.1g/100g以下が好ましい。また、特定赤外線吸収色素が顔料である場合、顔料の平均粒径は、20~300nmであることが好ましく、25~250nmであることがより好ましく、30~200nmであることが更に好ましい。ここでいう「平均粒径」とは、顔料の一次粒子が集合した二次粒子についての平均粒径を意味する。また、顔料の二次粒子の粒径分布(以下、単に「粒径分布」ともいう。)は、(平均粒径±100)nmに入る二次粒子が全体の70質量%以上、好ましくは80質量%以上であることが好ましい。なお、二次粒子の粒径分布は、散乱強度分布を用いて測定することができる。
The specific infrared absorbing dye may be a dye or a pigment.
When the specific infrared absorbing dye is a pigment, the specific infrared absorbing dye preferably has a solubility of 0.1 g/100 g or less at 25° C. in both propylene glycol monomethyl ether acetate and water. Further, when the specific infrared absorbing dye is a pigment, the average particle size of the pigment is preferably 20 to 300 nm, more preferably 25 to 250 nm, and even more preferably 30 to 200 nm. The term "average particle size" as used herein means the average particle size of secondary particles which are aggregates of primary pigment particles. In addition, the particle size distribution of the secondary particles of the pigment (hereinafter also simply referred to as "particle size distribution") is such that the secondary particles having an average particle size of ±100 nm account for 70% by mass or more of the total, preferably 80% by mass or more. It is preferable that it is at least % by mass. Note that the particle size distribution of the secondary particles can be measured using scattering intensity distribution.
-色素A1-
 まず、式(1)で表される色素A1について説明する。
-Dye A1-
First, the dye A1 represented by formula (1) will be explained.
 式(1)のL101は、-P(=O)(RL101)-、-P(=S)(RL102)-、-Si(RL103)(RL104)-、-B(RL105)-、-S(=O)-または-S(=O)-を表し、RL101~RL105は、それぞれ独立して水素原子または置換基を表す。
 RL101~RL105が表す置換基としては、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基、アリールオキシ基およびアルケニルオキシ基が挙げられ、アルキル基またはアリール基であることが好ましく、アリール基であることがより好ましい。これらの基は更に置換基を有していてもよい。置換基としては、後述する置換基Tで挙げた基および後述するアニオンを含む基などが挙げられる。
 アルキル基の炭素数は、1~10が好ましく、1~6がより好ましく、1~4が更に好ましい。アルキル基は、直截、分岐および環状のいずれでもよい。
 アルケニル基の炭素数は、2~10が好ましく、2~6がより好ましく、2~4が更に好ましい。アルケニル基は、直截及び分岐のいずれでもよい。
 アルキニル基の炭素数は、2~10が好ましく、2~6がより好ましく、2~4が更に好ましい。アルキニル基は、直截及び分岐のいずれでもよい。
 アリール基の炭素数は、6~20が好ましく、6~12がより好ましい。また、アリール基は、単環のアリール基であることが好ましい。
 ヘテロアリール基は、5員環または6員環が好ましい。ヘテロアリール基の環を構成するヘテロ原子は、酸素原子、窒素原子および硫黄原子が好ましい。ヘテロアリール基の環を構成するヘテロ原子の数は、1~3個が好ましい。
 アルコキシ基の炭素数は、1~10が好ましく、1~6がより好ましく、1~4が更に好ましい。アルコキシ基は、直截及び分岐のいずれでもよい。
 アリールオキシ基の炭素数は、6~20が好ましく、6~12がより好ましい。
 アルケニルオキシ基の炭素数は、1~10が好ましく、1~6がより好ましく、1~4が更に好ましい。アルケニルオキシ基は、直截及び分岐のいずれでもよい。
L 101 in formula (1) is -P(=O)(R L101 )-, -P(=S)(R L102 )-, -Si(R L103 )(R L104 )-, -B(R L105 )-, -S(=O) 2 - or -S(=O)-, and R L101 to R L105 each independently represent a hydrogen atom or a substituent.
Examples of the substituents represented by R L101 to R L105 include alkyl groups, alkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, alkoxy groups, aryloxy groups, and alkenyloxy groups, and it is an alkyl group or an aryl group. is preferable, and an aryl group is more preferable. These groups may further have a substituent. Examples of the substituent include the groups listed for the substituent T described below and the anion-containing groups described below.
The number of carbon atoms in the alkyl group is preferably 1 to 10, more preferably 1 to 6, and even more preferably 1 to 4. The alkyl group may be straight, branched or cyclic.
The alkenyl group preferably has 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms, and even more preferably 2 to 4 carbon atoms. The alkenyl group may be either straight or branched.
The number of carbon atoms in the alkynyl group is preferably 2 to 10, more preferably 2 to 6, even more preferably 2 to 4. The alkynyl group may be either straight or branched.
The number of carbon atoms in the aryl group is preferably 6 to 20, more preferably 6 to 12. Further, the aryl group is preferably a monocyclic aryl group.
The heteroaryl group preferably has a 5-membered ring or a 6-membered ring. The hetero atoms constituting the ring of the heteroaryl group are preferably oxygen atoms, nitrogen atoms, and sulfur atoms. The number of heteroatoms constituting the ring of the heteroaryl group is preferably 1 to 3.
The number of carbon atoms in the alkoxy group is preferably 1 to 10, more preferably 1 to 6, and even more preferably 1 to 4. The alkoxy group may be either straight or branched.
The number of carbon atoms in the aryloxy group is preferably 6 to 20, more preferably 6 to 12.
The alkenyloxy group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 4 carbon atoms. The alkenyloxy group may be either straight or branched.
 式(1)のL101は、極大吸収波長の長波長化および耐光性をより向上できるという理由から-P(=O)(RL101)-であることが好ましい。 L 101 in formula (1) is preferably -P(=O)(R L101 )- because the maximum absorption wavelength can be made longer and the light resistance can be further improved.
 式(1)のL101は、-Si(RL103)(RL104)-または-S(=O)-であることも好ましい。 It is also preferable that L 101 in formula (1) is -Si(R L103 )(R L104 )- or -S(=O)-.
 式(1)のX101~X103は、それぞれ独立して、窒素原子または-CRX101-を表し、RX101は、水素原子または置換基を表す。RX101が表す置換基としては、後述する置換基Tで挙げた基が挙げられ、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、ヒドロキシ基、アルコキシ基、アリールオキシ基、アルケニルオキシ基またはアミノ基であることが好ましい。これらの基は更に置換基を有していてもよい。置換基としては、後述する置換基Tで挙げた基、後述するアニオンを含む基、エチレン性不飽和結合含有基などが挙げられる。エチレン性不飽和結合含有基としては、ビニル基、(メタ)アリル基、(メタ)アクリロイル基などが挙げられる。
 アルキル基の炭素数は、1~10が好ましく、1~6がより好ましく、1~4が更に好ましい。アルキル基は、直截、分岐および環状のいずれでもよい。
 アルケニル基の炭素数は、2~10が好ましく、2~6がより好ましく、2~4が更に好ましい。アルケニル基は、直截及び分岐のいずれでもよい。
 アルキニル基の炭素数は、2~10が好ましく、2~6がより好ましく、2~4が更に好ましい。アルキニル基は、直截及び分岐のいずれでもよい。
 アリール基の炭素数は、6~20が好ましく、6~12がより好ましい。また、アリール基は、単環のアリール基であることが好ましい。
 ヘテロアリール基は、5員環または6員環が好ましい。ヘテロアリール基の環を構成するヘテロ原子は、酸素原子、窒素原子および硫黄原子が好ましい。ヘテロアリール基の環を構成するヘテロ原子の数は、1~3個が好ましい。
 アルコキシ基の炭素数は、1~10が好ましく、1~6がより好ましく、1~4が更に好ましい。アルコキシ基は、直截及び分岐のいずれでもよい。
 アリールオキシ基の炭素数は、6~20が好ましく、6~12がより好ましい。
 アルケニルオキシ基の炭素数は、1~10が好ましく、1~6がより好ましく、1~4が更に好ましい。アルケニルオキシ基は、直截及び分岐のいずれでもよい。
In formula (1), X 101 to X 103 each independently represent a nitrogen atom or -CR X101 -, and R X101 represents a hydrogen atom or a substituent. Examples of the substituent represented by R , an alkenyloxy group or an amino group. These groups may further have a substituent. Examples of the substituent include the groups listed for the substituent T described later, a group containing an anion described below, and an ethylenically unsaturated bond-containing group. Examples of the ethylenically unsaturated bond-containing group include a vinyl group, a (meth)allyl group, a (meth)acryloyl group, and the like.
The number of carbon atoms in the alkyl group is preferably 1 to 10, more preferably 1 to 6, and even more preferably 1 to 4. The alkyl group may be straight, branched or cyclic.
The alkenyl group preferably has 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms, and even more preferably 2 to 4 carbon atoms. The alkenyl group may be either straight or branched.
The number of carbon atoms in the alkynyl group is preferably 2 to 10, more preferably 2 to 6, even more preferably 2 to 4. The alkynyl group may be either straight or branched.
The number of carbon atoms in the aryl group is preferably 6 to 20, more preferably 6 to 12. Further, the aryl group is preferably a monocyclic aryl group.
The heteroaryl group preferably has a 5-membered ring or a 6-membered ring. The hetero atoms constituting the ring of the heteroaryl group are preferably oxygen atoms, nitrogen atoms, and sulfur atoms. The number of heteroatoms constituting the ring of the heteroaryl group is preferably 1 to 3.
The number of carbon atoms in the alkoxy group is preferably 1 to 10, more preferably 1 to 6, and even more preferably 1 to 4. The alkoxy group may be either straight or branched.
The number of carbon atoms in the aryloxy group is preferably 6 to 20, more preferably 6 to 12.
The alkenyloxy group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 4 carbon atoms. The alkenyloxy group may be either straight or branched.
 RX101は、化合物の溶解性や可視透明性をより向上させることができるという理由から、アリール基またはヘテロアリール基であることが好ましく、アリール基であることがより好ましく、単環のアリール基であることが更に好ましく、置換基を有する単環のアリール基であることがより一層好ましく、オルト位に置換基を有する単環のアリール基であることが特に好ましい。上記の置換基としては、後述する置換基Tで挙げた基、後述するアニオンを含む基、エチレン性不飽和結合含有基などが挙げられ、アルキル基、スルホ基、カルボキシ基、カルボキシ基の塩、スルホ基の塩、後述するアニオンを含む基またはエチレン性不飽和結合含有基であることが好ましい。 R More preferably, it is a monocyclic aryl group having a substituent, even more preferably a monocyclic aryl group having a substituent at the ortho position. Examples of the above-mentioned substituents include the groups listed in substituent T described below, groups containing anions described below, ethylenically unsaturated bond-containing groups, and alkyl groups, sulfo groups, carboxy groups, salts of carboxy groups, Preferably, it is a salt of a sulfo group, a group containing an anion described below, or a group containing an ethylenically unsaturated bond.
 式(1)のX101およびX102は、それぞれ独立して、-CRX101-であることが好ましい。また、RX101は、水素原子であることが好ましい。 It is preferable that X 101 and X 102 in formula (1) are each independently -CR X101 -. Furthermore, R X101 is preferably a hydrogen atom.
 式(1)のX103は、-CRX101-であることが好ましい。また、RX101は、置換基であることが好ましく、アリール基またはヘテロアリール基であることが好ましく、アリール基であることがより好ましく、単環のアリール基であることが更に好ましく、置換基を有する単環のアリール基であることがより一層好ましく、オルト位に置換基を有する単環のアリール基であることが特に好ましい。 X 103 in formula (1) is preferably -CR X101 -. In addition, R A monocyclic aryl group having a substituent at the ortho position is even more preferable, and a monocyclic aryl group having a substituent at the ortho position is particularly preferable.
 式(1)のL102およびL103は、それぞれ独立して、硫黄原子または-X104=X105-を表し、X104およびX105は、それぞれ独立して、窒素原子または-CRX102-を表し、RX102は、水素原子または置換基を表す。RX102が表す置換基としては、上述したRX101が表す置換基として説明した基が挙げられ、好ましい範囲も同様である。
 L102は、極大吸収波長をより長波長側に存在させることができるという理由から、硫黄原子であることが好ましい。
 L103は、極大吸収波長をより長波長側に存在させることができるという理由から、硫黄原子であることが好ましい。
 L102およびL103は、それぞれ硫黄原子であることが特に好ましい
In formula (1), L 102 and L 103 each independently represent a sulfur atom or -X 104 =X 105 -, and X 104 and X 105 each independently represent a nitrogen atom or -CR X102 -. and R X102 represents a hydrogen atom or a substituent. Examples of the substituent represented by R X102 include the groups described above as the substituent represented by R X101 , and the preferred ranges are also the same.
L 102 is preferably a sulfur atom because the maximum absorption wavelength can be present on the longer wavelength side.
L 103 is preferably a sulfur atom because the maximum absorption wavelength can be present on the longer wavelength side.
It is particularly preferable that L 102 and L 103 are each a sulfur atom
 式(1)のAr101およびAr102は、それぞれ独立して、-(CRAr101=CRAr102n101-、アリーレン基、複素環基またはこれらの基を2以上組み合わせた基を表し、RAr101およびRAr102は、それぞれ独立して水素原子または置換基を表し、n101は1~3の整数を表す。 Ar 101 and Ar 102 in formula (1) each independently represent -(CR Ar101 = CR Ar102 ) n101 -, an arylene group, a heterocyclic group, or a group combining two or more of these groups, and R Ar101 and R Ar102 each independently represents a hydrogen atom or a substituent, and n101 represents an integer of 1 to 3.
 RAr101およびRAr102が表す置換基としては、上述したRX101が表す置換基として説明した基が挙げられ、好ましい範囲も同様である。 Examples of the substituent represented by R Ar101 and R Ar102 include the groups described above as the substituent represented by R X101 , and the preferred ranges are also the same.
 n101は1~3の整数を表し、1または2であることが好ましく、1であることがより好ましい。 n101 represents an integer from 1 to 3, preferably 1 or 2, and more preferably 1.
 式(1)のAr101およびAr102が表すアリーレン基の炭素数は、6~20が好ましく、6~12がより好ましい。また、アリーレン基は、単環のアリーレン基であることが好ましい。
 式(1)のAr101およびAr102が表す複素環基は、5員環または6員環が好ましい。複素環基の環を構成するヘテロ原子は、酸素原子、窒素原子および硫黄原子が好ましい。複素環基の環を構成するヘテロ原子の数は、1~3個が好ましい。
The number of carbon atoms in the arylene group represented by Ar 101 and Ar 102 in formula (1) is preferably 6 to 20, more preferably 6 to 12. Furthermore, the arylene group is preferably a monocyclic arylene group.
The heterocyclic group represented by Ar 101 and Ar 102 in formula (1) is preferably a 5-membered ring or a 6-membered ring. The hetero atoms constituting the ring of the heterocyclic group are preferably oxygen atoms, nitrogen atoms, and sulfur atoms. The number of heteroatoms constituting the ring of the heterocyclic group is preferably 1 to 3.
 式(1)のAr101およびAr102は、それぞれ独立して、-(CRAr101=CRAr102n101-、アリーレン基またはこれらを組み合わせた基であることが好ましい。
 好ましい一態様として、Ar101およびAr102が、それぞれ独立して、アリーレン基である態様が挙げられる。
 好ましい別の態様として、Ar101およびAr102が、それぞれ独立して、-(CRAr101=CRAr102n101-とアリーレン基とを組み合わせた基である態様が挙げられる。上記の-(CRAr101=CRAr102n101-とアリーレン基とを組み合わせた基は、*1-(CRAr101=CRAr102n101-アリーレン基-*2であることが好ましい。また、*2は、式(1)のY101またはY102との結合手であることが好ましい。
Ar 101 and Ar 102 in formula (1) are preferably each independently -(CR Ar101 =CR Ar102 ) n101 -, an arylene group, or a group combining these.
A preferred embodiment includes an embodiment in which Ar 101 and Ar 102 are each independently an arylene group.
Another preferred embodiment includes an embodiment in which Ar 101 and Ar 102 are each independently a group combining -(CR Ar101 =CR Ar102 ) n101 - and an arylene group. The group combining the above -(CR Ar101 = CR Ar102 ) n101 - and an arylene group is preferably *1 -(CR Ar101 = CR Ar102 ) n101 -arylene group - *2 . Further, *2 is preferably a bond with Y 101 or Y 102 in formula (1).
 式(1)のY101およびY102は、それぞれ独立して、-ORY101、-NRY102Y103または-SRY104を表し、RY101~RY104は、それぞれ独立して、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基を表し、RY102とRY103は単結合または2価の連結基を介して結合して環を形成していてもよい。 Y 101 and Y 102 in formula (1) each independently represent -OR Y101 , -NR Y102 RY103 or -SR Y104, and R Y101 to R Y104 each independently represent a hydrogen atom or an alkyl group. , represents an alkenyl group, an alkynyl group, an aryl group, or a heteroaryl group, and R Y102 and R Y103 may be bonded via a single bond or a divalent linking group to form a ring.
 RY101~RY104は、それぞれ独立してアルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基であることが好ましく、アルキル基またはアリール基であることがより好ましく、アリール基であることが更に好ましい。 R Y101 to R Y104 are each independently preferably an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a heteroaryl group, more preferably an alkyl group or an aryl group, and preferably an aryl group. More preferred.
 RY101~RY104が表すアルキル基の炭素数は、1~10が好ましく、1~6がより好ましく、1~4が更に好ましい。アルキル基は、直截、分岐および環状のいずれでもよい。アルキル基は、更に置換基を有していてもよい。置換基としては、後述する置換基Tで挙げた基、後述するアニオンを含む基、エチレン性不飽和結合含有基などが挙げられる。
 RY101~RY104が表すアルケニル基の炭素数は、2~10が好ましく、2~6がより好ましく、2~4が更に好ましい。アルケニル基は、直截及び分岐のいずれでもよい。アルケニル基は、更に置換基を有していてもよい。置換基としては、後述する置換基Tで挙げた基、後述するアニオンを含む基、エチレン性不飽和結合含有基などが挙げられる。
 RY101~RY104が表すアルキニル基の炭素数は、2~10が好ましく、2~6がより好ましく、2~4が更に好ましい。アルキニル基は、直截及び分岐のいずれでもよい。アルキニル基は、更に置換基を有していてもよい。置換基としては、後述する置換基Tで挙げた基、後述するアニオンを含む基、エチレン性不飽和結合含有基などが挙げられる。
 RY101~RY104が表すアリール基の炭素数は、6~20が好ましく、6~12がより好ましい。また、アリール基は、単環のアリール基であることが好ましい。アリール基は、更に置換基を有していてもよい。置換基としては、後述する置換基Tで挙げた基、後述するアニオンを含む基、エチレン性不飽和結合含有基などが挙げられる。
 RY101~RY104が表すヘテロアリール基は、5員環または6員環が好ましい。ヘテロアリール基の環を構成するヘテロ原子は、酸素原子、窒素原子および硫黄原子が好ましい。ヘテロアリール基の環を構成するヘテロ原子の数は、1~3個が好ましい。ヘテロアリール基は、更に置換基を有していてもよい。置換基としては、後述する置換基Tで挙げた基、後述するアニオンを含む基、エチレン性不飽和結合含有基などが挙げられる。
The number of carbon atoms in the alkyl group represented by R Y101 to R Y104 is preferably 1 to 10, more preferably 1 to 6, and even more preferably 1 to 4. The alkyl group may be straight, branched or cyclic. The alkyl group may further have a substituent. Examples of the substituent include the groups listed for the substituent T described later, a group containing an anion described below, and an ethylenically unsaturated bond-containing group.
The alkenyl group represented by R Y101 to R Y104 preferably has 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms, and still more preferably 2 to 4 carbon atoms. The alkenyl group may be either straight or branched. The alkenyl group may further have a substituent. Examples of the substituent include the groups listed for the substituent T described later, a group containing an anion described below, and an ethylenically unsaturated bond-containing group.
The number of carbon atoms in the alkynyl group represented by R Y101 to R Y104 is preferably 2 to 10, more preferably 2 to 6, and even more preferably 2 to 4. The alkynyl group may be either straight or branched. The alkynyl group may further have a substituent. Examples of the substituent include the groups listed for the substituent T described later, a group containing an anion described below, and an ethylenically unsaturated bond-containing group.
The number of carbon atoms in the aryl group represented by R Y101 to R Y104 is preferably 6 to 20, more preferably 6 to 12. Further, the aryl group is preferably a monocyclic aryl group. The aryl group may further have a substituent. Examples of the substituent include the groups listed for the substituent T described later, a group containing an anion described below, and an ethylenically unsaturated bond-containing group.
The heteroaryl group represented by R Y101 to R Y104 is preferably a 5-membered ring or a 6-membered ring. The hetero atoms constituting the ring of the heteroaryl group are preferably oxygen atoms, nitrogen atoms, and sulfur atoms. The number of heteroatoms constituting the ring of the heteroaryl group is preferably 1 to 3. The heteroaryl group may further have a substituent. Examples of the substituent include the groups listed for the substituent T described later, a group containing an anion described below, and an ethylenically unsaturated bond-containing group.
 -NRY102Y103におけるRY102とRY103は、単結合または2価の連結基を介して結合して環を形成していてもよい。2価の連結基としては、-CRY111Y112-、-O-、-S-およびこれらを2以上組み合わせた基などが挙げられる。RY111およびRY112は、それぞれ独立して水素原子、ハロゲン原子、アルキル基、アリール基またはヘテロアリール基を表す。これらの基は更に置換基を有していてもよい。置換基としては、後述する置換基Tで挙げた基、後述するアニオンを含む基、エチレン性不飽和結合含有基などが挙げられる。 -NR Y102 R Y102 and R Y103 in R Y103 may be bonded via a single bond or a divalent linking group to form a ring. Examples of the divalent linking group include -CR Y111 R Y112 -, -O-, -S-, and a combination of two or more of these. R Y111 and R Y112 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an aryl group, or a heteroaryl group. These groups may further have a substituent. Examples of the substituent include the groups listed for the substituent T described later, a group containing an anion described below, and an ethylenically unsaturated bond-containing group.
 式(1)のY101およびY102は、それぞれ独立して-NRY102Y103であることが好ましい。 It is preferable that Y 101 and Y 102 in formula (1) are each independently -NR Y102 R Y103 .
 式(1)において、Ar101とX101は、単結合または2価の連結基を介して結合して5員環または6員環を形成していてもよく、
 Ar101とY101は、単結合または2価の連結基を介して結合して5員環または6員環を形成していてもよく、
 Ar102とX102は、単結合または2価の連結基を介して結合して5員環または6員環を形成していてもよく、
 Ar102とY102は、単結合または2価の連結基を介して結合して5員環または6員環を形成していてもよい。
In formula (1), Ar 101 and X 101 may be bonded via a single bond or a divalent linking group to form a 5-membered ring or a 6-membered ring,
Ar 101 and Y 101 may be bonded via a single bond or a divalent linking group to form a 5-membered ring or a 6-membered ring,
Ar 102 and X 102 may be bonded via a single bond or a divalent linking group to form a 5-membered ring or a 6-membered ring,
Ar 102 and Y 102 may be bonded via a single bond or a divalent linking group to form a 5-membered ring or a 6-membered ring.
 上記の2価の連結基としては、-CRY121Y122-、-O-、-S-およびこれらを2以上組み合わせた基などが挙げられる。RY121およびRY122は、それぞれ独立して水素原子、ハロゲン原子、アルキル基、アリール基またはヘテロアリール基を表す。これらの基は更に置換基を有していてもよい。置換基としては、後述する置換基Tで挙げた基、後述するアニオンを含む基、エチレン性不飽和結合含有基などが挙げられる。 Examples of the above-mentioned divalent linking group include -CR Y121 R Y122 -, -O-, -S-, and a group combining two or more of these. R Y121 and R Y122 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an aryl group, or a heteroaryl group. These groups may further have a substituent. Examples of the substituent include the groups listed for the substituent T described later, a group containing an anion described below, and an ethylenically unsaturated bond-containing group.
 式(1)のZは対イオンを表す。対イオンとしては、対アニオンおよび対カチオンが挙げられる。 Z 1 in formula (1) represents a counter ion. Counter ions include counter anions and counter cations.
 対カチオンとしては、無機カチオンであってもよく、有機カチオンであってもよい。
 無機カチオンとしては、無機カチオンとしては、Na(ナトリウム)カチオン、Li(リチウム)カチオン、K(カリウム)カチオンなどの1価の金属カチオン;Mg(マグネシウム)カチオン、Ca(カルシウム)カチオン、Sr(ストロンチウム)カチオン、Ba(バリウム)カチオン、Ti(チタン)カチオン、Zr(ジルコニウム)カチオン、Cr(クロム)カチオン、Mn(マンガン)カチオン、Fe(鉄)カチオン、Co(コバルト)カチオン、Ni(ニッケル)カチオン、Cu(銅)カチオン、Zn(亜鉛)カチオン、Cd(カドミウム)カチオン、Al(アルミニウム)カチオン、In(インジウム)カチオン、Sn(錫)カチオン、Pb(鉛)カチオンおよびBi(ビスマス)カチオンなど2価以上の金属カチオンなどが挙げられる。
 有機カチオンとしては、アンモニウムカチオン(テトラアルキルアンモニウムカチオン、トリアルキルアンモニウムカチオンなど)、イミダゾリウムカチオン、ピリジニウムカチオン(ピリジニウムカチオン、N-メチルピリジニウムカチオン及びN-エチルピリジニウムカチオンなど)、ホスホニウムカチオンなどが挙げられる。
 対カチオンは、耐光性及び耐熱性をより向上させることができるという理由から、無機カチオンであることが好ましく、Naカチオン、Liカチオン、Kカチオン、MgカチオンまたはBaカチオンであることがより好ましい。
The counter cation may be an inorganic cation or an organic cation.
Examples of inorganic cations include monovalent metal cations such as Na (sodium) cation, Li (lithium) cation, and K (potassium) cation; Mg (magnesium) cation, Ca (calcium) cation, and Sr (strontium). ) cation, Ba (barium) cation, Ti (titanium) cation, Zr (zirconium) cation, Cr (chromium) cation, Mn (manganese) cation, Fe (iron) cation, Co (cobalt) cation, Ni (nickel) cation , Cu (copper) cation, Zn (zinc) cation, Cd (cadmium) cation, Al (aluminum) cation, In (indium) cation, Sn (tin) cation, Pb (lead) cation, Bi (bismuth) cation, etc.2 Examples include metal cations with higher valences.
Examples of organic cations include ammonium cations (tetraalkylammonium cations, trialkylammonium cations, etc.), imidazolium cations, pyridinium cations (pyridinium cations, N-methylpyridinium cations, N-ethylpyridinium cations, etc.), phosphonium cations, etc. .
The counter cation is preferably an inorganic cation, and more preferably a Na cation, Li cation, K cation, Mg cation, or Ba cation, because it can further improve light resistance and heat resistance.
 対アニオンは、有機アニオンであってもよく、無機アニオンであってもよい。対アニオンとしては、式(AN1)で表されるアニオン、式(AN2)で表されるアニオン、式(AN3)で表されるアニオン、式(AN4)で表されるアニオン、式(AN5)で表されるアニオン、フッ素アニオン、塩素アニオン、臭素アニオン、ヨウ素アニオン、シアン化物イオン、過塩素酸アニオン、カルボン酸アニオン、スルホン酸アニオン、リン酸アニオン、ヘテロポリ酸(リンタングステン酸、リンモリブデン酸、リンタングストモリブデン酸、ケイタングステン酸、ケイモリブデン酸、ケイタングストモリブデン酸等)アニオン、イソポリ酸(タングステン酸、モリブデン酸等)アニオン等が挙げられる。
The counter anion may be an organic anion or an inorganic anion. Counter anions include the anion represented by formula (AN1), the anion represented by formula (AN2), the anion represented by formula (AN3), the anion represented by formula (AN4), and the anion represented by formula (AN5). Anions represented: fluorine anion, chlorine anion, bromine anion, iodine anion, cyanide ion, perchlorate anion, carboxylate anion, sulfonate anion, phosphate anion, heteropolyacid (phosphotungstic acid, phosphomolybdic acid, phosphorus anion) Gustomolybdic acid, silicotungstic acid, silicomolybdic acid, silicotungstomolybdic acid, etc.) anion, isopolyacid (tungstic acid, molybdic acid, etc.) anion, and the like.
 式(AN1)中、RAN1およびRAN2は、それぞれ独立してハロゲン原子またはアルキル基を表し、RAN1とRAN2は、結合して環を形成していてもよい;
 式(AN2)中、RAN3~RAN5は、それぞれ独立して、ハロゲン原子またはアルキル基を表し、RAN3とRAN4、RAN4とRAN5、または、RAN3とRAN5は、結合して環を形成していてもよい;
 式(AN3)中、RAN6~RAN9は、それぞれ独立して、ハロゲン原子、アルキル基、アリール基、アルコキシ基、アリールオキシ基またはシアノ基を表す;
 式(AN4)中、RAN10は、窒素原子または酸素原子を有する連結基により連結されていても良いハロゲン化炭化水素基を表す;
 式(AN5)中、RAN11~RAN16は、それぞれ独立してハロゲン原子またはハロゲン化炭化水素基を表す。
In formula (AN1), R AN1 and R AN2 each independently represent a halogen atom or an alkyl group, and R AN1 and R AN2 may be combined to form a ring;
In formula (AN2), R AN3 to R AN5 each independently represent a halogen atom or an alkyl group, and R AN3 and R AN4 , R AN4 and R AN5 , or R AN3 and R AN5 are bonded together. May form a ring;
In formula (AN3), R AN6 to R AN9 each independently represent a halogen atom, an alkyl group, an aryl group, an alkoxy group, an aryloxy group, or a cyano group;
In formula (AN4), RAN10 represents a halogenated hydrocarbon group which may be connected by a linking group having a nitrogen atom or an oxygen atom;
In formula (AN5), R AN11 to R AN16 each independently represent a halogen atom or a halogenated hydrocarbon group.
 式(AN1)のRAN1およびRAN2が表すハロゲン原子、式(AN2)のRAN3~RAN5が表すハロゲン原子、および、式(AN3)のRAN6~RAN9が表すハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、フッ素原子であることが好ましい。 The halogen atoms represented by R AN1 and R AN2 in formula (AN1), the halogen atoms represented by R AN3 to R AN5 in formula (AN2), and the halogen atoms represented by R AN6 to R AN9 in formula (AN3) include fluorine. Atom, chlorine atom, bromine atom, and iodine atom are mentioned, and fluorine atom is preferable.
 式(AN1)のRAN1およびRAN2が表すアルキル基、式(AN2)のRAN3~RAN5が表すアルキル基、および、式(AN3)のRAN6~RAN9が表すアルキル基の炭素数は、1~10が好ましく、1~6がより好ましく、1~3が更に好ましい。アルキル基は、直鎖、分岐、環状が挙げられ、直鎖または分岐が好ましく、直鎖がより好ましい。アルキル基は、置換基を有していてもよく、無置換であってもよい。アルキル基は、ハロゲン原子を置換基として有するアルキル基であることが好ましく、フッ素原子を置換基として有するアルキル基(フルオロアルキル基)であることがより好ましい。また、フルオロアルキル基は、パーフルオロアルキル基であることが好ましい。 The number of carbon atoms in the alkyl group represented by R AN1 and R AN2 in formula (AN1), the alkyl group represented by R AN3 to R AN5 in formula (AN2), and the alkyl group represented by R AN6 to R AN9 in formula (AN3) is , 1 to 10 are preferred, 1 to 6 are more preferred, and 1 to 3 are still more preferred. The alkyl group may be linear, branched, or cyclic, preferably linear or branched, and more preferably linear. The alkyl group may have a substituent or may be unsubstituted. The alkyl group is preferably an alkyl group having a halogen atom as a substituent, and more preferably an alkyl group having a fluorine atom as a substituent (fluoroalkyl group). Further, the fluoroalkyl group is preferably a perfluoroalkyl group.
 式(AN3)のRAN6~RAN9が表すアリール基の炭素数は、6~20が好ましく、6~12がより好ましく、6が更に好ましい。アリール基は、置換基を有していてもよく、無置換であってもよい。置換基としては、ハロゲン原子およびアルキル基が挙げられる。ハロゲン原子としては、フッ素原子であることが好ましい。アルキル基としては、フルオロアルキル基であることが好ましい。 The number of carbon atoms in the aryl group represented by R AN6 to R AN9 in formula (AN3) is preferably 6 to 20, more preferably 6 to 12, and even more preferably 6. The aryl group may have a substituent or may be unsubstituted. Examples of substituents include halogen atoms and alkyl groups. The halogen atom is preferably a fluorine atom. The alkyl group is preferably a fluoroalkyl group.
 式(AN3)のRAN6~RAN9が表すアルコキシ基の炭素数は、1~10が好ましく、1~6がより好ましく、1~3が更に好ましい。アルコキシ基は、直鎖、分岐、環状が挙げられ、直鎖または分岐が好ましく、直鎖がより好ましい。アルコキシ基は、置換基を有していてもよく、無置換であってもよい。置換基としては、ハロゲン原子およびアルキル基が挙げられる。ハロゲン原子としては、フッ素原子であることが好ましい。アルキル基としては、フルオロアルキル基であることが好ましい。 The number of carbon atoms in the alkoxy group represented by R AN6 to R AN9 in formula (AN3) is preferably 1 to 10, more preferably 1 to 6, and even more preferably 1 to 3. The alkoxy group may be linear, branched, or cyclic, preferably linear or branched, and more preferably linear. The alkoxy group may have a substituent or may be unsubstituted. Examples of substituents include halogen atoms and alkyl groups. The halogen atom is preferably a fluorine atom. The alkyl group is preferably a fluoroalkyl group.
 式(AN3)のRAN6~RAN9が表すアリールオキシ基の炭素数は、6~20が好ましく、6~12がより好ましく、6が更に好ましい。アリールオキシ基は、置換基を有していてもよく、無置換であってもよい。置換基としては、ハロゲン原子およびアルキル基が挙げられる。ハロゲン原子としては、フッ素原子であることが好ましい。アルキル基としては、フルオロアルキル基であることが好ましい。 The number of carbon atoms in the aryloxy group represented by R AN6 to R AN9 in formula (AN3) is preferably 6 to 20, more preferably 6 to 12, and even more preferably 6. The aryloxy group may have a substituent or may be unsubstituted. Examples of substituents include halogen atoms and alkyl groups. The halogen atom is preferably a fluorine atom. The alkyl group is preferably a fluoroalkyl group.
 式(AN1)のRAN1とRAN2は結合して環を形成していてもよい。式(AN2)のRAN3とRAN4、RAN4とRAN5、または、RAN3とRAN5は、結合して環を形成していてもよい。 R AN1 and R AN2 in formula (AN1) may be combined to form a ring. RAN3 and RAN4 , RAN4 and RAN5 , or RAN3 and RAN5 in formula (AN2) may be bonded to form a ring.
 式(AN4)のRAN10は、窒素原子または酸素原子を有する連結基により連結されていても良いハロゲン化炭化水素基を表す。ハロゲン化炭化水素基とは、ハロゲン原子で置換された1価の炭化水素基を指し、フッ素原子で置換された1価の炭化水素基であることが好ましい。炭化水素基としては、アルキル基、アリール基などが挙げられる。ハロゲン原子で置換された1価の炭化水素基はさらに置換基を有していてもよい。窒素原子または酸素原子を有する連結基としては、-O-、―CO-、-COO-、-CO-NH-などが挙げられる。 RAN10 in formula (AN4) represents a halogenated hydrocarbon group which may be connected by a linking group having a nitrogen atom or an oxygen atom. The halogenated hydrocarbon group refers to a monovalent hydrocarbon group substituted with a halogen atom, and is preferably a monovalent hydrocarbon group substituted with a fluorine atom. Examples of the hydrocarbon group include an alkyl group and an aryl group. The monovalent hydrocarbon group substituted with a halogen atom may further have a substituent. Examples of the linking group having a nitrogen atom or an oxygen atom include -O-, -CO-, -COO-, -CO-NH-, and the like.
 式(AN5)のRAN11~RAN16は、それぞれ独立してハロゲン原子またはハロゲン化炭化水素基を表す。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、フッ素原子であることが好ましい。ハロゲン化炭化水素基としては、ハロゲン原子を置換基として有するアルキル基であることが好ましく、フッ素原子を置換基として有するアルキル基であることがより好ましい。 R AN11 to R AN16 in formula (AN5) each independently represent a halogen atom or a halogenated hydrocarbon group. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, with a fluorine atom being preferred. The halogenated hydrocarbon group is preferably an alkyl group having a halogen atom as a substituent, and more preferably an alkyl group having a fluorine atom as a substituent.
 ヘテロポリ酸アニオンおよびイソポリ酸アニオンの具体例としては、タングステン酸アニオン([W192-、[W10324-、[WO2-など)、モリブデン酸アニオン([Mo]2-、[Mo19]2-、[Mo26]4-など)、リンタングステン酸アニオン([PW204-、[PW12403-、[P1556]12-、[P1761]10-、[P18626-など)、リンモリブデン酸アニオン([PMo1862]6-、[PMo12403-など)、リンタングステンモリブデン酸アニオン([PW12-xMo403-(xは1~11の整数)、[P18-yMo626-(yは1~17の整数)など)、ケイタングステン酸アニオン([SiW34]10-、[SiW1036]8-、[SiW1139]8-、[SiW12404-など)、ケイモリブデン酸アニオン([SiMo12404-など)、ケイタングストモリブデン酸アニオン([SiW12-xMo404-(xは1~11の整数)など)、およびタングステン系イソポリ酸アニオンが挙げられる。 Specific examples of heteropolyacid anions and isopolyate anions include tungstate anions ([W 6 O 19 ] 2- , [W 10 O 32 ] 4- , [WO 4 ] 2-, etc.), molybdate anions ([Mo 2 O 7 ] 2- , [Mo 6 O 19 ] 2- , [Mo 8 O 26 ] 4-, etc.), phosphotungstate anions ([PW 4 O 20 ] 4- , [PW 12 O 40 ] 3- , [P 2 W 15 O 56 ] 12- , [P 2 W 17 O 61 ] 10- , [P 2 W 18 O 62 ] 6-, etc.), phosphomolybdate anion ([P 2 Mo 18 O 62 ] 6-) , [PMo 12 O 40 ] 3- ), phosphotungsten molybdate anion ([PW 12-x Mo x O 40 ] 3- (x is an integer from 1 to 11), [P 2 W 18-y Mo y O 62 ] 6- (y is an integer from 1 to 17), etc.), silicotungstate anions ([SiW 9 O 34 ] 10- , [SiW 10 O 36 ] 8- , [SiW 11 O 39 ] 8- , [SiW 12 O 40 ] 4- , etc.), silicomolybdate anions ([SiMo 12 O 40 ] 4-, etc.), silicomolybdate anions ([SiW 12-x Mo x O 40 ] 4- (x is 1 to 11), (integer), etc.), and tungsten-based isopolya acid anions.
 対アニオンは、2価以上のアニオンであってもよい。2価以上のアニオンとしては、イミドアニオン、メチドアニオン、ボレートアニオン、スルホン酸アニオンなどの1価のアニオンを1分子中に2以上有するアニオンなどが挙げられる。 The counter anion may be a divalent or higher anion. Examples of divalent or higher anions include anions having two or more monovalent anions in one molecule, such as imide anions, methide anions, borate anions, and sulfonate anions.
 式(1)のp1は0~5の整数を表し、q1は、1~5の整数を表す。p1は0~3の整数であることが好ましく、0~2の整数であることがより好ましい。q1は、1~3の整数であることが好ましく、1または2であることがより好ましく、1であることが更に好ましい。 In formula (1), p1 represents an integer from 0 to 5, and q1 represents an integer from 1 to 5. p1 is preferably an integer of 0 to 3, more preferably an integer of 0 to 2. q1 is preferably an integer of 1 to 3, more preferably 1 or 2, and even more preferably 1.
 式(1)中の[ ]内の電荷が正電荷に偏っている場合は、p1は1以上の整数であり、かつ、Zが表す対イオンは、対アニオンであることが好ましい。また、式(1)中の[ ]内の正電荷の価数とq1との積は、Zが表す対アニオンの電荷の価数とp1との積と同じ値であることが好ましい。
 式(1)中の[ ]内の電荷が負電荷に偏っている場合は、p1は1以上の整数であり、かつ、Zが表す対イオンは、対カチオンであることが好ましい。また、式(1)中の[ ]内の負電荷の価数とq1との積は、Zが表す対カチオンの電荷の価数とp1との積と同じ値であることが好ましい。
 式(1)中の[ ]内の電荷が電気的に中性である場合には、Zは、存在しない、すなわち、p1は0であり、q1は1であることが好ましい。
When the charges in [ ] in formula (1) are biased toward positive charges, p1 is an integer of 1 or more, and the counter ion represented by Z 1 is preferably a counter anion. Further, the product of the valence of the positive charge in [ ] in formula (1) and q1 is preferably the same value as the product of the valence of the charge of the counter anion represented by Z 1 and p1.
When the charges in [ ] in formula (1) are biased toward negative charges, p1 is an integer of 1 or more, and the counter ion represented by Z 1 is preferably a counter cation. Furthermore, the product of the negative charge valence in [ ] in formula (1) and q1 is preferably the same value as the product of the charge valence of the counter cation represented by Z 1 and p1.
When the charge in brackets [ ] in formula (1) is electrically neutral, Z 1 is preferably absent, that is, p1 is 0 and q1 is 1.
 色素A1は、式(2)で表される色素であることも好ましい。
It is also preferable that the dye A1 is a dye represented by formula (2).
 式(2)中、L201は、-P(=O)(RL101)-、-P(=S)(RL102)-、-Si(RL103)(RL104)-、-B(RL105)-、-S(=O)-または-S(=O)-を表し、RL101~RL105は、それぞれ独立して水素原子または置換基を表し、RL103とRL104は結合して環を形成していてもよく、
 RX111およびRX112は、それぞれ独立して水素原子または置換基を表し、
 X203は、窒素原子または-CRX101-を表し、RX101は、水素原子または置換基を表し、
 L202~L205は、それぞれ独立して、硫黄原子または-X104=X105-を表し、X104およびX105は、それぞれ独立して、窒素原子または-CRX102-を表し、RX102は、水素原子または置換基を表し、
 Ar201およびAr202は、それぞれ独立して、-(CRAr201=CRAr202n201-、アリーレン基、複素環基またはこれらの基を2以上組み合わせた基を表し、RAr201およびRAr202は、それぞれ独立して水素原子または置換基を表し、n201は1~3の整数を表し、
 Y201およびY202は、それぞれ独立して、-ORY101、-NRY102Y103または-SRY104を表し、RY101~RY104は、それぞれ独立して、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基を表し、RY102とRY103は単結合または2価の連結基を介して結合して環を形成していてもよく、
 Ar201とX201は、単結合または2価の連結基を介して結合して5員環または6員環を形成していてもよく、
 Ar201とY201は、単結合または2価の連結基を介して結合して5員環または6員環を形成していてもよく、
 Ar202とX202は、単結合または2価の連結基を介して結合して5員環または6員環を形成していてもよく、
 Ar202とY202は、単結合または2価の連結基を介して結合して5員環または6員環を形成していてもよく、
 Zは対イオンを表し、
 p2は0~5の整数を表し、
 q2は、1~5の整数を表す。
In formula (2), L 201 is -P(=O)(R L101 )-, -P(=S)(R L102 )-, -Si(R L103 )(R L104 )-, -B(R L105 )-, -S(=O) 2 - or -S(=O)-, R L101 to R L105 each independently represent a hydrogen atom or a substituent, and R L103 and R L104 are bonded. may form a ring,
R X111 and R X112 each independently represent a hydrogen atom or a substituent,
X 203 represents a nitrogen atom or -CR X101 -, R X101 represents a hydrogen atom or a substituent,
L 202 to L 205 each independently represent a sulfur atom or -X 104 =X 105 -, X 104 and X 105 each independently represent a nitrogen atom or -CR X102 -, and R , represents a hydrogen atom or a substituent,
Ar 201 and Ar 202 each independently represent -(CR Ar201 = CR Ar202 ) n201 -, an arylene group, a heterocyclic group, or a group combining two or more of these groups, and R Ar201 and R Ar202 each represent independently represents a hydrogen atom or a substituent, n201 represents an integer of 1 to 3,
Y 201 and Y 202 each independently represent -OR Y101 , -NR Y102 RY103 or -SR Y104, and R Y101 to R Y104 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl represents a group, an aryl group or a heteroaryl group, and R Y102 and R Y103 may be bonded via a single bond or a divalent linking group to form a ring,
Ar 201 and X 201 may be bonded via a single bond or a divalent linking group to form a 5-membered ring or a 6-membered ring,
Ar 201 and Y 201 may be bonded via a single bond or a divalent linking group to form a 5-membered ring or a 6-membered ring,
Ar 202 and X 202 may be bonded via a single bond or a divalent linking group to form a 5-membered ring or a 6-membered ring,
Ar 202 and Y 202 may be bonded via a single bond or a divalent linking group to form a 5-membered ring or a 6-membered ring,
Z 2 represents a counterion,
p2 represents an integer from 0 to 5,
q2 represents an integer from 1 to 5.
 式(2)のL201、L202、L203、X203、Y201、Y202、Z、q2、p2は、式(1)のL101、L102、L103、X103、Y101、Y102、Z、q1、p1と同義であり、好ましい範囲も同様である。 L 201 , L 202 , L 203 , X 203 , Y 201 , Y 202 , Z 2 , q2, p2 in formula (2) are the same as L 101 , L 102 , L 103 , X 103 , Y 101 in formula (1 ) , Y 102 , Z 1 , q1, and p1, and the preferred ranges are also the same.
 式(2)のRX111およびRX112が表す置換基は、式(1)におけるRX101が表す置換基として説明した基が挙げられ、好ましい範囲も同様である。式(2)のRX111およびRX112は水素原子であることが好ましい。 The substituents represented by R X111 and R X112 in formula (2) include the groups described as the substituent represented by R X101 in formula (1), and the preferred ranges are also the same. R X111 and R X112 in formula (2) are preferably hydrogen atoms.
 式(2)のL204およびL205は、それぞれ独立して、硫黄原子または-X104=X105-を表し、硫黄原子であることが好ましい。上記X104およびX105は、式(1)で説明したX104およびX105と同義であり、好ましい範囲も同様である。 L 204 and L 205 in formula (2) each independently represent a sulfur atom or -X 104 =X 105 -, and are preferably sulfur atoms. The above X 104 and X 105 have the same meanings as X 104 and X 105 described in formula (1), and the preferred ranges are also the same.
 式(2)のAr201およびAr202は、それぞれ独立して、-(CRAr201=CRAr202n201-、アリーレン基、複素環基またはこれらの基を2以上組み合わせた基を表し、RAr201およびRAr202は、それぞれ独立して水素原子または置換基を表し、n201は1~3の整数を表す。RAr201、RAr202およびn201は、式(1)で説明したRAr101、RAr102およびn101と同義であり、好ましい範囲も同様である。 Ar 201 and Ar 202 in formula (2) each independently represent -(CR Ar201 = CR Ar202 ) n201 -, an arylene group, a heterocyclic group, or a group combining two or more of these groups, and R Ar201 and R Ar202 each independently represents a hydrogen atom or a substituent, and n201 represents an integer of 1 to 3. R Ar201 , R Ar202 and n201 have the same meanings as R Ar101 , R Ar102 and n101 explained in formula (1), and their preferred ranges are also the same.
 式(2)のAr201およびAr202は、それぞれ独立して、-(CRAr201=CRAr202n201-、アリーレン基またはこれらを組み合わせた基であることが好ましい。
 好ましい一態様として、Ar201およびAr202が、それぞれ独立して、アリーレン基である態様が挙げられる。
 好ましい別の態様として、Ar201およびAr202が、それぞれ独立して、-(CRAr201=CRAr202n201-とアリーレン基とを組み合わせた基である態様が挙げられる。上記の-(CRAr201=CRAr202n201-とアリーレン基とを組み合わせた基は、*1-(CRAr201=CRAr202n201-アリーレン基-*2であることが好ましい。また、*2は、式(2)のY201またはY202との結合手であることが好ましい。
Ar 201 and Ar 202 in formula (2) are preferably each independently -(CR Ar201 =CR Ar202 ) n201 -, an arylene group, or a group combining these.
A preferred embodiment includes an embodiment in which Ar 201 and Ar 202 are each independently an arylene group.
Another preferred embodiment includes an embodiment in which Ar 201 and Ar 202 are each independently a group combining -(CR Ar201 =CR Ar202 ) n201 - and an arylene group. The group combining the above -(CR Ar201 = CR Ar202 ) n201 - and an arylene group is preferably *1 -(CR Ar201 = CR Ar202 ) n201 -arylene group - *2 . Further, *2 is preferably a bond with Y 201 or Y 202 in formula (2).
 式(2)において、Ar201とX201は、単結合または2価の連結基を介して結合して5員環または6員環を形成していてもよく、
 Ar201とY201は、単結合または2価の連結基を介して結合して5員環または6員環を形成していてもよく、
 Ar202とX202は、単結合または2価の連結基を介して結合して5員環または6員環を形成していてもよく、
 Ar202とY202は、単結合または2価の連結基を介して結合して5員環または6員環を形成していてもよい。
In formula (2), Ar 201 and X 201 may be bonded via a single bond or a divalent linking group to form a 5-membered ring or a 6-membered ring,
Ar 201 and Y 201 may be bonded via a single bond or a divalent linking group to form a 5-membered ring or a 6-membered ring,
Ar 202 and X 202 may be bonded via a single bond or a divalent linking group to form a 5-membered ring or a 6-membered ring,
Ar 202 and Y 202 may be bonded via a single bond or a divalent linking group to form a 5-membered ring or a 6-membered ring.
 上記の2価の連結基としては、-CRY121Y122-、-O-、-S-およびこれらを2以上組み合わせた基などが挙げられる。RY121およびRY122は、それぞれ独立して水素原子、ハロゲン原子、アルキル基、アリール基またはヘテロアリール基を表す。これらの基は更に置換基を有していてもよい。置換基としては、後述する置換基Tで挙げた基、後述するアニオンを含む基、エチレン性不飽和結合含有基などが挙げられる。 Examples of the above-mentioned divalent linking group include -CR Y121 R Y122 -, -O-, -S-, and a group combining two or more of these. R Y121 and R Y122 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an aryl group, or a heteroaryl group. These groups may further have a substituent. Examples of the substituent include the groups listed for the substituent T described later, a group containing an anion described below, and an ethylenically unsaturated bond-containing group.
 色素A1は、式(4)で表される色素(化合物)であることも好ましい。式(4)で表される色素(化合物)は本発明の化合物でもある。
 式中、Ar401はアリール基またはヘテロアリール基を表し、
 R401~R404は、それぞれ独立して水素原子、アルキル基、アリール基またはヘテロアリール基を表し、
 R405およびR406は、それぞれ独立してアルキル基、アリール基、ヘテロアリール基、アリールオキシ基、ヘテロアリールオキシ基、アルコキシ基またはシアノ基を表し、
 R407およびR408は、それぞれ独立してアルキル基またはアリール基を表し、
 n401およびn402はそれぞれ独立して0~4の整数を表し、
 q4は1または2を表し、
 Zはq4価の対アニオンを表す。
It is also preferable that the dye A1 is a dye (compound) represented by formula (4). The dye (compound) represented by formula (4) is also a compound of the present invention.
In the formula, Ar 401 represents an aryl group or a heteroaryl group,
R 401 to R 404 each independently represent a hydrogen atom, an alkyl group, an aryl group or a heteroaryl group,
R 405 and R 406 each independently represent an alkyl group, an aryl group, a heteroaryl group, an aryloxy group, a heteroaryloxy group, an alkoxy group or a cyano group,
R 407 and R 408 each independently represent an alkyl group or an aryl group,
n401 and n402 each independently represent an integer from 0 to 4,
q4 represents 1 or 2,
Z 4 represents a q4-valent counteranion.
 Ar401が表すアリール基の炭素数は、6~20が好ましく、6~12がより好ましい。また、アリール基は、単環のアリール基であることが好ましい。
 Ar401が表すヘテロアリール基は、5員環または6員環が好ましい。ヘテロアリール基の環を構成するヘテロ原子は、酸素原子、窒素原子および硫黄原子が好ましい。ヘテロアリール基の環を構成するヘテロ原子の数は、1~3個が好ましい。
 上記アリール基及びヘテロアリール基は更に置換基を有していてもよい。置換基としては、後述する置換基Tで挙げた基、後述するアニオンを含む基、エチレン性不飽和結合含有基などが挙げられる。エチレン性不飽和結合含有基としては、ビニル基、(メタ)アリル基、(メタ)アクリロイル基などが挙げられる。
 Ar401は、アリール基であることが好ましく、単環のアリール基であることがより好ましく、置換基を有する単環のアリール基であることが更に好ましく、オルト位に置換基を有する単環のアリール基であることが特に好ましい。上記の置換基としては、後述する置換基Tで挙げた基、後述するアニオンを含む基、エチレン性不飽和結合含有基などが挙げられ、アルキル基、スルホ基、カルボキシ基、カルボキシ基の塩、スルホ基の塩、後述するアニオンを含む基またはエチレン性不飽和結合含有基であることが好ましい
The number of carbon atoms in the aryl group represented by Ar 401 is preferably 6 to 20, more preferably 6 to 12. Further, the aryl group is preferably a monocyclic aryl group.
The heteroaryl group represented by Ar 401 is preferably a 5-membered ring or a 6-membered ring. The hetero atoms constituting the ring of the heteroaryl group are preferably oxygen atoms, nitrogen atoms, and sulfur atoms. The number of heteroatoms constituting the ring of the heteroaryl group is preferably 1 to 3.
The above aryl group and heteroaryl group may further have a substituent. Examples of the substituent include the groups listed for the substituent T described later, a group containing an anion described below, and an ethylenically unsaturated bond-containing group. Examples of the ethylenically unsaturated bond-containing group include a vinyl group, a (meth)allyl group, a (meth)acryloyl group, and the like.
Ar 401 is preferably an aryl group, more preferably a monocyclic aryl group, even more preferably a monocyclic aryl group having a substituent, and even more preferably a monocyclic aryl group having a substituent at the ortho position. Particularly preferred is an aryl group. Examples of the above-mentioned substituents include the groups listed in substituent T described below, groups containing anions described below, ethylenically unsaturated bond-containing groups, and alkyl groups, sulfo groups, carboxy groups, salts of carboxy groups, A salt of a sulfo group, a group containing an anion as described below, or a group containing an ethylenically unsaturated bond is preferable.
 R401~R404は、それぞれ独立して水素原子、アルキル基、アリール基またはヘテロアリール基を表し、アルキル基またはアリール基であることが好ましい。
 R401~R404が表すアルキル基の炭素数は、1~10が好ましく、1~6がより好ましく、1~4が更に好ましい。アルキル基は、直截、分岐および環状のいずれでもよい。アルキル基は、更に置換基を有していてもよい。置換基としては、後述する置換基Tで挙げた基、後述するアニオンを含む基、エチレン性不飽和結合含有基などが挙げられる。
 R401~R404が表すアリール基の炭素数は、6~20が好ましく、6~12がより好ましい。また、アリール基は、単環のアリール基であることが好ましい。アリール基は、更に置換基を有していてもよい。置換基としては、後述する置換基Tで挙げた基、後述するアニオンを含む基、エチレン性不飽和結合含有基などが挙げられる。
 R401~R404が表すヘテロアリール基は、5員環または6員環が好ましい。ヘテロアリール基の環を構成するヘテロ原子は、酸素原子、窒素原子および硫黄原子が好ましい。ヘテロアリール基の環を構成するヘテロ原子の数は、1~3個が好ましい。ヘテロアリール基は、更に置換基を有していてもよい。置換基としては、後述する置換基Tで挙げた基、後述するアニオンを含む基、エチレン性不飽和結合含有基などが挙げられる。
R 401 to R 404 each independently represent a hydrogen atom, an alkyl group, an aryl group, or a heteroaryl group, and preferably an alkyl group or an aryl group.
The number of carbon atoms in the alkyl group represented by R 401 to R 404 is preferably 1 to 10, more preferably 1 to 6, and even more preferably 1 to 4. The alkyl group may be straight, branched or cyclic. The alkyl group may further have a substituent. Examples of the substituent include the groups listed for the substituent T described later, a group containing an anion described below, and an ethylenically unsaturated bond-containing group.
The number of carbon atoms in the aryl group represented by R 401 to R 404 is preferably 6 to 20, more preferably 6 to 12. Further, the aryl group is preferably a monocyclic aryl group. The aryl group may further have a substituent. Examples of the substituent include the groups listed for the substituent T described later, a group containing an anion described below, and an ethylenically unsaturated bond-containing group.
The heteroaryl group represented by R 401 to R 404 is preferably a 5-membered ring or a 6-membered ring. The hetero atoms constituting the ring of the heteroaryl group are preferably oxygen atoms, nitrogen atoms, and sulfur atoms. The number of heteroatoms constituting the ring of the heteroaryl group is preferably 1 to 3. The heteroaryl group may further have a substituent. Examples of the substituent include the groups listed for the substituent T described later, a group containing an anion described below, and an ethylenically unsaturated bond-containing group.
 R405およびR406は、それぞれ独立してアルキル基、アリール基、ヘテロアリール基、アリールオキシ基、ヘテロアリールオキシ基、アルコキシ基またはシアノ基を表す。 R 405 and R 406 each independently represent an alkyl group, an aryl group, a heteroaryl group, an aryloxy group, a heteroaryloxy group, an alkoxy group, or a cyano group.
 n401およびn402はそれぞれ独立して0~4の整数を表し、0~2の整数であることが好ましく、0または1であることがより好ましく、0であることが更に好ましい。 n401 and n402 each independently represent an integer of 0 to 4, preferably an integer of 0 to 2, more preferably 0 or 1, and even more preferably 0.
 Zが表すq4価の対アニオンとしては、上述した対アニオンが挙げられる。 Examples of the q4-valent counter anion represented by Z 4 include the above-mentioned counter anions.
 色素A1は、式(5)で表される色素(化合物)であることも好ましい。式(5)で表される色素(化合物)は本発明の化合物でもある。
 式中、Ar501は、アリール基またはヘテロアリール基を表し、
501~R504は、それぞれ独立して水素原子、アルキル基、アリール基またはヘテロアリール基を表し、
 R505およびR506は、それぞれ独立してアルキル基、アリール基、ヘテロアリール基、アリールオキシ基、ヘテロアリールオキシ基、アルコキシ基またはシアノ基を表し、
 n501およびn502は、それぞれ独立して0~4の整数を表し、
 q5は1または2を表し、
 Zはq5価の対アニオンを表す。
It is also preferable that the dye A1 is a dye (compound) represented by formula (5). The dye (compound) represented by formula (5) is also a compound of the present invention.
In the formula, Ar 501 represents an aryl group or a heteroaryl group,
R 501 to R 504 each independently represent a hydrogen atom, an alkyl group, an aryl group or a heteroaryl group,
R 505 and R 506 each independently represent an alkyl group, an aryl group, a heteroaryl group, an aryloxy group, a heteroaryloxy group, an alkoxy group or a cyano group,
n 501 and n 502 each independently represent an integer from 0 to 4,
q5 represents 1 or 2,
Z 5 represents a q5-valent counteranion.
 式(5)のAr501、R501~R506、n501、n502、q5およびZは、式(4)のAr401、R401~R406、n401、n402、q4およびZと同義であり、好ましい範囲も同様である。 Ar 501 , R 501 to R 506 , n 501 , n 502 , q5 and Z 5 in formula (5) are the same as Ar 401 , R 401 to R 406 , n 401 , n 402 , q4 and Z 4 in formula (4) It has the same meaning as , and the preferred range is also the same.
-色素多量体A2-
 特定赤外線吸収色素は、前述の色素A1由来の色素構造を1分子中に2以上含む色素多量体A2(以下、単に、色素多量体ともいう)であってもよい。
-Dye multimer A2-
The specific infrared absorbing dye may be a dye multimer A2 (hereinafter also simply referred to as a dye multimer) containing two or more dye structures derived from the above dye A1 in one molecule.
 色素多量体としては、式(A)で表される繰り返し単位を有する色素多量体(以下、色素多量体(A)ともいう)、式(C)で表される繰り返し単位を有する色素多量体(以下、色素多量体(C)ともいう)、式(D)で表される色素多量体(以下、色素多量体(D)ともいう)が挙げられ、色素多量体(A)または色素多量体(D)であることが好ましい。 Examples of the dye multimer include a dye multimer having a repeating unit represented by formula (A) (hereinafter also referred to as dye multimer (A)), a dye multimer having a repeating unit represented by formula (C) ( (hereinafter also referred to as dye multimer (C)), the dye multimer represented by formula (D) (hereinafter also referred to as dye multimer (D)), and dye multimer (A) or dye multimer ( D) is preferred.
(色素多量体(A))
 色素多量体(A)は、式(A)で表される繰り返し単位を含む。式(A)で表される繰り返し単位の割合は、色素多量体(A)を構成する全繰り返し単位の10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上が更に好ましく、50質量%以上が特に好ましい。上限は、100質量%以下とすることもでき、95質量%以下とすることもできる。
 式(A)中、Aは3価の連結基を表し、
 Lは単結合または2価の連結基を表し、
 DyeIは、上記色素A1由来の色素構造を表す。
(Dye multimer (A))
The dye multimer (A) contains a repeating unit represented by formula (A). The proportion of the repeating unit represented by formula (A) is preferably 10% by mass or more of all repeating units constituting the dye multimer (A), more preferably 20% by mass or more, even more preferably 30% by mass or more, Particularly preferred is 50% by mass or more. The upper limit can be 100% by mass or less, or 95% by mass or less.
In formula (A), A 1 represents a trivalent linking group,
L 1 represents a single bond or a divalent linking group,
DyeI represents a dye structure derived from the above dye A1.
 式(A)のAが表す3価の連結基としては、ポリ(メタ)アクリル系連結基、ポリアルキレンイミン系連結基、ポリエステル系連結基、ポリウレタン系連結基、ポリウレア系連結基、ポリアミド系連結基、ポリエーテル系連結基、ポリスチレン系連結基、ビスフェノール系連結基、ノボラック系連結基などが挙げられ、ポリ(メタ)アクリル系連結基であることが好ましい。 The trivalent linking group represented by A1 in formula (A) includes a poly(meth)acrylic linking group, a polyalkyleneimine linking group, a polyester linking group, a polyurethane linking group, a polyurea linking group, and a polyamide linking group. Examples include a linking group, a polyether linking group, a polystyrene linking group, a bisphenol linking group, a novolak linking group, and a poly(meth)acrylic linking group is preferred.
 式(A)のLは単結合または2価の連結基を表す。2価の連結基としては、アルキレン基、アリーレン基、複素環基、-CH=CH-、-O-、-S-、-CO-、-COO-、-NR-、-CONR-、-OCO-、-SO-、-SO-およびこれらを2個以上を連結して形成される連結基が挙げられる。Rは、水素原子、アルキル基、アリール基または複素環基を表す。 L 1 in formula (A) represents a single bond or a divalent linking group. Divalent linking groups include alkylene groups, arylene groups, heterocyclic groups, -CH=CH-, -O-, -S-, -CO-, -COO-, -NR-, -CONR-, -OCO -, -SO-, -SO 2 -, and a linking group formed by linking two or more of these. R represents a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group.
 アルキレン基の炭素数は、1~30が好ましい。上限は、25以下がより好ましく、20以下が更に好ましい。下限は、2以上がより好ましく、3以上が更に好ましい。アルキレン基は、直鎖、分岐、環状のいずれでもよい。アルキレン基は、置換基を有していてもよく、無置換であってもよい。
 アリーレン基の炭素数は、6~20が好ましく、6~12がより好ましい。アリーレン基は置換基を有していてもよく、無置換であってもよい。
 複素環基は、5員環または6員環が好ましい。複素環基の環を構成するヘテロ原子は、酸素原子、窒素原子および硫黄原子が好ましい。複素環基の環を構成するヘテロ原子の数は、1~3個が好ましい。複素環基は、置換基を有していてもよく、無置換であってもよい。
The alkylene group preferably has 1 to 30 carbon atoms. The upper limit is more preferably 25 or less, and even more preferably 20 or less. The lower limit is more preferably 2 or more, and even more preferably 3 or more. The alkylene group may be linear, branched, or cyclic. The alkylene group may have a substituent or may be unsubstituted.
The number of carbon atoms in the arylene group is preferably 6 to 20, more preferably 6 to 12. The arylene group may have a substituent or may be unsubstituted.
The heterocyclic group preferably has a 5-membered ring or a 6-membered ring. The hetero atoms constituting the ring of the heterocyclic group are preferably oxygen atoms, nitrogen atoms, and sulfur atoms. The number of heteroatoms constituting the ring of the heterocyclic group is preferably 1 to 3. The heterocyclic group may have a substituent or may be unsubstituted.
 Lは、アルキレン基、アリーレン基、-NH-、-CO-、-O-、-COO-、-OCO-、-S-またはこれらを2以上組み合わせた連結基であることが好ましく、アルキレン基およびアリーレン基から選ばれる少なくとも1種と、-O-、-COO-、-OCO-および-S-から選ばれる1種以上とを組み合わせた連結基であることがより好ましい。Lが表す2価の連結基は、-S-または-O-を含む基であることも好ましい。 L 1 is preferably an alkylene group, an arylene group, -NH-, -CO-, -O-, -COO-, -OCO-, -S-, or a linking group combining two or more of these; More preferably, the connecting group is a combination of at least one selected from arylene groups and arylene groups and one or more selected from -O-, -COO-, -OCO-, and -S-. The divalent linking group represented by L 1 is also preferably a group containing -S- or -O-.
 Lにおいて、DyeIとAとをつなぐ鎖を構成する原子の数は、2個以上であることが好ましく、3個以上であることがより好ましい。上限は、例えば30個以下とすることができ、25個以下とすることもできる In L 1 , the number of atoms constituting the chain connecting DyeI and A 1 is preferably 2 or more, more preferably 3 or more. The upper limit can be, for example, 30 or less, or 25 or less.
 式(A)のDyeIが表す色素A1由来の色素構造は、上述した式(1)で表される色素(色素A1)から水素原子を1個取り除いた残基であることが好ましい。
 また、式(1)のX101~X103、L101~L103、Ar101、Ar102、Y101、Y102のいずれかの部位が、式(A)のLとの連結部を含むことが好ましく、式(1)のX103が、式(A)のLとの連結部を含むことがより好ましい。
The dye structure derived from dye A1 represented by DyeI in formula (A) is preferably a residue obtained by removing one hydrogen atom from the dye (dye A1) represented by formula (1) described above.
Furthermore, any of the sites X 101 to X 103 , L 101 to L 103 , Ar 101 , Ar 102 , Y 101 , and Y 102 in formula (1) includes a connecting portion with L 1 in formula (A). More preferably, X 103 in formula (1) includes a linkage with L 1 in formula (A).
 色素多量体(A)は、式(A)で表される繰り返し単位の他に、他の繰り返し単位を含んでいてもよい。他の繰り返し単位は、重合性基を有する繰り返し単位、酸基を有する繰り返し単位等が挙げられる。重合性基としては、ビニル基、(メタ)アリル基、(メタ)アクリロイル基などのエチレン性不飽和結合含有基などが挙げられる。酸基としては、カルボキシ基、スルホ基、リン酸基などが挙げられる。 The dye multimer (A) may contain other repeating units in addition to the repeating unit represented by formula (A). Examples of other repeating units include repeating units having a polymerizable group and repeating units having an acid group. Examples of the polymerizable group include ethylenically unsaturated bond-containing groups such as a vinyl group, a (meth)allyl group, and a (meth)acryloyl group. Examples of the acid group include a carboxy group, a sulfo group, and a phosphoric acid group.
 重合性基を有する繰り返し単位の割合は、色素多量体(A)を構成する全繰り返し単位の50質量%以下であることが好ましい。下限は、1質量%以上が好ましく、3質量%以上がより好ましい。上限は、35質量%以下が好ましく、30質量%以下がより好ましい。 The proportion of repeating units having a polymerizable group is preferably 50% by mass or less of all repeating units constituting the dye multimer (A). The lower limit is preferably 1% by mass or more, more preferably 3% by mass or more. The upper limit is preferably 35% by mass or less, more preferably 30% by mass or less.
 酸基を有する繰り返し単位の割合は、色素多量体(A)を構成する全繰り返し単位の50質量%以下であることが好ましい。下限は、1質量%以上が好ましく、3質量%以上がより好ましい。上限は、35質量%以下が好ましく、30質量%以下がより好ましい。 The proportion of repeating units having acid groups is preferably 50% by mass or less of all repeating units constituting the dye multimer (A). The lower limit is preferably 1% by mass or more, more preferably 3% by mass or more. The upper limit is preferably 35% by mass or less, more preferably 30% by mass or less.
 色素多量体(A)は、(1)重合性基を有する色素A1を付加重合により合成する方法、(2)イソシアネート基、酸無水物基またはエポキシ基等の高反応性官能基を有するポリマーと、高反応性官能基と反応可能な官能基(ヒドロキシ基、一級または二級アミノ基、カルボキシ基等)を有する色素A1とを反応させる方法などの方法により合成できる。付加重合には公知の付加重合(ラジカル重合、アニオン重合、カチオン重合)が適用できるが、このうち、特にラジカル重合により合成することが反応条件を穏和化でき、色素骨格を分解させないため好ましい。ラジカル重合には、公知の反応条件を適用することができる。色素多量体(A)は、耐熱性の観点から、エチレン性不飽和結合を有する色素A1を用いてラジカル重合して得られたラジカル重合体であることが好ましい。 The dye multimer (A) is produced by (1) a method of synthesizing dye A1 having a polymerizable group by addition polymerization, (2) a method of synthesizing a dye A1 having a polymerizable group, and (2) a polymer having a highly reactive functional group such as an isocyanate group, an acid anhydride group, or an epoxy group. It can be synthesized by a method such as a method of reacting a highly reactive functional group with a dye A1 having a reactive functional group (hydroxy group, primary or secondary amino group, carboxy group, etc.). Known addition polymerizations (radical polymerization, anionic polymerization, cationic polymerization) can be applied to the addition polymerization, but among these, synthesis by radical polymerization is particularly preferable because the reaction conditions can be moderated and the dye skeleton is not decomposed. Known reaction conditions can be applied to radical polymerization. From the viewpoint of heat resistance, the dye multimer (A) is preferably a radical polymer obtained by radical polymerization using dye A1 having an ethylenically unsaturated bond.
(色素多量体(C))
 色素多量体(C)は、式(C)で表される繰り返し単位を含む。式(C)で表される繰り返し単位の割合は、色素多量体(C)を構成する全繰り返し単位の10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上が更に好ましく、50質量%以上が特に好ましい。上限は、100質量%以下とすることもでき、95質量%以下とすることもできる。
 式(C)中、Lは単結合または2価の連結基を表し、
 DyeIIIは、上記色素A1由来の色素構造を表し、
 mは0または1を表す。
(Dye multimer (C))
The dye multimer (C) contains a repeating unit represented by formula (C). The proportion of the repeating unit represented by formula (C) is preferably 10% by mass or more of all the repeating units constituting the dye multimer (C), more preferably 20% by mass or more, even more preferably 30% by mass or more, Particularly preferred is 50% by mass or more. The upper limit can be 100% by mass or less, or 95% by mass or less.
In formula (C), L 3 represents a single bond or a divalent linking group,
DyeIII represents the dye structure derived from the above dye A1,
m represents 0 or 1.
 式(C)のLは単結合または2価の連結基を表す。2価の連結基としては、アルキレン基、アリーレン基、複素環基、-CH=CH-、-O-、-S-、-CO-、-COO-、-NR-、-CONR-、-OCO-、-SO-、-SO-およびこれらを2個以上連結して形成される連結基が挙げられる。Rは、それぞれ独立に、水素原子、アルキル基、アリール基、または複素環基を表す。 L 3 in formula (C) represents a single bond or a divalent linking group. Divalent linking groups include alkylene groups, arylene groups, heterocyclic groups, -CH=CH-, -O-, -S-, -CO-, -COO-, -NR-, -CONR-, -OCO -, -SO-, -SO 2 -, and a linking group formed by linking two or more of these. Each R independently represents a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group.
 アルキル基およびアルキレン基の炭素数は、1~30が好ましい。上限は、25以下がより好ましく、20以下が更に好ましい。下限は、2以上がより好ましく、3以上が更に好ましい。アルキル基およびアルキレン基は、直鎖、分岐、環状のいずれでもよい。
 アリール基およびアリーレン基の炭素数は、6~20が好ましく、6~12がより好ましい。
 複素環基は、5員環または6員環が好ましい。複素環基の環を構成するヘテロ原子は、酸素原子、窒素原子および硫黄原子が好ましい。複素環基の環を構成するヘテロ原子の数は、1~3個が好ましい。
 アルキレン基、アリーレン基、複素環基、アルキル基およびアリール基は、無置換であってもよく、置換基を有してもよい。置換基としては、後述する置換基Tで挙げた基、重合性基、酸基が挙げられる。
The number of carbon atoms in the alkyl group and alkylene group is preferably 1 to 30. The upper limit is more preferably 25 or less, and even more preferably 20 or less. The lower limit is more preferably 2 or more, and even more preferably 3 or more. The alkyl group and alkylene group may be linear, branched, or cyclic.
The number of carbon atoms in the aryl group and arylene group is preferably 6 to 20, more preferably 6 to 12.
The heterocyclic group preferably has a 5-membered ring or a 6-membered ring. The hetero atoms constituting the ring of the heterocyclic group are preferably oxygen atoms, nitrogen atoms, and sulfur atoms. The number of heteroatoms constituting the ring of the heterocyclic group is preferably 1 to 3.
The alkylene group, arylene group, heterocyclic group, alkyl group and aryl group may be unsubstituted or may have a substituent. Examples of the substituent include the groups listed below for substituent T, a polymerizable group, and an acid group.
 式(C)のLは、アルキレン基、アリーレン基、-NH-、-CO-、-O-、-COO-、-OCO-、-S-、-SO-およびこれらを2以上組み合わせた連結基が好ましい。 L 3 in formula (C) is an alkylene group, an arylene group, -NH-, -CO-, -O-, -COO-, -OCO-, -S-, -SO 2 -, or a combination of two or more of these. A linking group is preferred.
 式(C)のDyeIIIが表す色素A1由来の色素構造は、上述した式(1)で表される色素(色素A1)から水素原子を2個取り除いた残基であることが好ましい。
 また、式(1)のX101~X103、L101~L103、Ar101、Ar102、Y101、Y102のいずれかの部位が、式(A)のLとの連結部を含むことが好ましい。
The dye structure derived from dye A1 represented by DyeIII of formula (C) is preferably a residue obtained by removing two hydrogen atoms from the dye (dye A1) represented by formula (1) described above.
Furthermore, any of the sites X 101 to X 103 , L 101 to L 103 , Ar 101 , Ar 102 , Y 101 , and Y 102 in formula (1) includes a connecting portion with L 1 in formula (A). It is preferable.
 式(C)のmは0または1を表し、1が好ましい。 m in formula (C) represents 0 or 1, and 1 is preferable.
 色素多量体(C)は、一般式(C)で表される繰り返し単位の他に、色素多量体(A)で説明した他の繰り返し単位を含んでいてもよい。 In addition to the repeating unit represented by the general formula (C), the dye multimer (C) may contain other repeating units described for the dye multimer (A).
(色素多量体(D))
 色素多量体(D)は、式(D)で表される化合物である。
 式(D)中、Lは(n+k)価の連結基を表し、
 nは2~20の整数を表し、
 kは0~20の整数を表し、
 DyeIVは、上記色素A1由来の色素構造を表し、
 Pは、置換基を表し、
 n個のDyeIVはそれぞれ異なっていてもよく、
 kが2以上の場合、複数のPはそれぞれ異なっていても良く、
 n+kは、2~20の整数を表す。
(Dye multimer (D))
The dye multimer (D) is a compound represented by formula (D).
In formula (D), L 4 represents a (n+k)-valent linking group,
n represents an integer from 2 to 20,
k represents an integer from 0 to 20,
DyeIV represents the dye structure derived from the above dye A1,
P 4 represents a substituent,
Each of the n DyeIVs may be different,
When k is 2 or more, the plurality of P4s may be different from each other,
n+k represents an integer from 2 to 20.
 式(D)のnは2~14が好ましく、2~8がより好ましく、2~7が特に好ましく、2~6が一層好ましい。
 式(D)のkは0~13が好ましい。下限は、1以上とすることもでき、2以上とすることもできる。上限は10以下が好ましく、8以下がより好ましく、7以下が更に好ましく、6以下がより一層好ましい。
In formula (D), n is preferably 2 to 14, more preferably 2 to 8, particularly preferably 2 to 7, and even more preferably 2 to 6.
In formula (D), k is preferably 0 to 13. The lower limit can be 1 or more, or 2 or more. The upper limit is preferably 10 or less, more preferably 8 or less, even more preferably 7 or less, and even more preferably 6 or less.
 式(D)のLが表す(n+k)価の連結基としては、1個から100個までの炭素原子、0個から10個までの窒素原子、0個から50個までの酸素原子、1個から200個までの水素原子、および0個から20個までの硫黄原子から成り立つ基が挙げられる。(n+k)価の連結基としては、下記の構造単位または以下の構造単位が2以上組み合わさって構成される基(環構造を形成していてもよい)であることが好ましい。以下の式中の*は結合手を表す。
The (n+k)-valent linking group represented by L 4 in formula (D) includes 1 to 100 carbon atoms, 0 to 10 nitrogen atoms, 0 to 50 oxygen atoms, 1 Mention may be made of groups consisting of from 3 to 200 hydrogen atoms and from 0 to 20 sulfur atoms. The (n+k)-valent linking group is preferably the following structural unit or a group formed by combining two or more of the following structural units (which may form a ring structure). * in the formula below represents a bond.
 Lが表す(n+k)価の連結基は、多官能チオールから誘導される連結基、多官能アルコールから誘導される連結基、または、酸無水物から誘導される連結基であることが好ましく、多官能チオールから誘導される連結基であることがより好ましい。 The (n+k)-valent linking group represented by L 4 is preferably a linking group derived from a polyfunctional thiol, a linking group derived from a polyfunctional alcohol, or a linking group derived from an acid anhydride, More preferably, it is a linking group derived from a polyfunctional thiol.
 Lが表す(n+k)価の連結基は、式(Za-1)~(Za-5)のいずれかで表される基であることが好ましい。
 式(Za-1)中、Laは2価の基を表し、Taは単結合又は2価の連結基を表し、2個存在するTaは互いに同一であっても異なっていてもよい。
 式(Za-2)中、Laは3価の基を表し、Taは単結合又は2価の連結基を表し、3個存在するTaは互いに同一であっても異なっていてもよい。
 式(Za-3)中、Laは4価の基を表し、Taは単結合又は2価の連結基を表し、4個存在するTaは互いに同一であっても異なっていてもよい。
 式(Za-4)中、Laは5価の基を表し、Taは単結合又は2価の連結基を表し、5個存在するTaは互いに同一であっても異なっていてもよい。
 式(Za-5)中、Laは6価の基を表し、Taは単結合又は2価の連結基を表し、6個存在するTaは互いに同一であっても異なっていてもよい。
 上記式中、*は結合手を表す。
The (n+k)-valent linking group represented by L 4 is preferably a group represented by any one of formulas (Za-1) to (Za-5).
In formula (Za-1), La 2 represents a divalent group, Ta 2 represents a single bond or a divalent linking group, and the two Ta 2s present may be the same or different from each other. .
In formula (Za-2), La 3 represents a trivalent group, Ta 3 represents a single bond or a divalent linking group, and the three Ta 3s present may be the same or different from each other. .
In formula (Za-3), La 4 represents a tetravalent group, Ta 4 represents a single bond or a divalent linking group, and the four Ta 4s present may be the same or different from each other. .
In formula (Za-4), La 5 represents a pentavalent group, Ta 5 represents a single bond or a divalent linking group, and the five Ta 5s present may be the same or different from each other. .
In formula (Za-5), La 6 represents a hexavalent group, Ta 6 represents a single bond or a divalent linking group, and the six Ta 6s present may be the same or different from each other. .
In the above formula, * represents a bond.
 La、Ta~Taが表す2価の連結基としては、アルキレン基、アリーレン基、複素環基、-CH=CH-、-O-、-S-、-CO-、-COO-、-NR-、-CONR-、-OCO-、-SO-、-SO-およびこれらを2個以上連結して形成される連結基が挙げられる。Rは、それぞれ独立に、水素原子、アルキル基、アリール基、または複素環基を表す。 The divalent linking groups represented by La 2 , Ta 2 to Ta 6 include alkylene groups, arylene groups, heterocyclic groups, -CH=CH-, -O-, -S-, -CO-, -COO-, Examples include -NR-, -CONR-, -OCO-, -SO-, -SO 2 -, and a linking group formed by linking two or more of these. Each R independently represents a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group.
 アルキル基およびアルキレン基の炭素数は、1~30が好ましい。上限は、25以下がより好ましく、20以下が更に好ましい。下限は、2以上がより好ましく、3以上が更に好ましい。アルキル基およびアルキレン基は、直鎖、分岐、環状のいずれでもよい。
 アリール基およびアリーレン基の炭素数は、6~20が好ましく、6~12がより好ましい。
 複素環基は、5員環または6員環が好ましい。複素環基の環を構成するヘテロ原子は、酸素原子、窒素原子および硫黄原子が好ましい。複素環基の環を構成するヘテロ原子の数は、1~3個が好ましい。
 アルキレン基、アリーレン基、複素環基、アルキル基およびアリール基は、無置換であってもよく、置換基を有してもよい。置換基としては、後述する置換基Tで挙げた基、重合性基、酸基が挙げられる。
The number of carbon atoms in the alkyl group and alkylene group is preferably 1 to 30. The upper limit is more preferably 25 or less, and even more preferably 20 or less. The lower limit is more preferably 2 or more, and even more preferably 3 or more. The alkyl group and alkylene group may be linear, branched, or cyclic.
The number of carbon atoms in the aryl group and arylene group is preferably 6 to 20, more preferably 6 to 12.
The heterocyclic group preferably has a 5-membered ring or a 6-membered ring. The hetero atoms constituting the ring of the heterocyclic group are preferably oxygen atoms, nitrogen atoms, and sulfur atoms. The number of heteroatoms constituting the ring of the heterocyclic group is preferably 1 to 3.
The alkylene group, arylene group, heterocyclic group, alkyl group and aryl group may be unsubstituted or may have a substituent. Examples of the substituent include the groups listed below for substituent T, a polymerizable group, and an acid group.
 Laが表す3価の基としては、上記の2価の連結基から水素原子を1個除いた基が挙げられる。Laが表す4価の基としては、上記の2価の連結基から水素原子を2個除いた基が挙げられる。Laが表す5価の基としては、上記の2価の連結基から水素原子を3個除いた基が挙げられる。Laが表す6価の基としては、上記の2価の連結基から水素原子を4個除いた基が挙げられる。La~Laが表す3~6価の基は、上述した置換基を有してもよい。 Examples of the trivalent group represented by La 3 include a group obtained by removing one hydrogen atom from the above divalent linking group. Examples of the tetravalent group represented by La 4 include a group obtained by removing two hydrogen atoms from the above divalent linking group. Examples of the pentavalent group represented by La 5 include a group obtained by removing three hydrogen atoms from the above divalent linking group. Examples of the hexavalent group represented by La 6 include a group obtained by removing four hydrogen atoms from the above divalent linking group. The trivalent to hexavalent groups represented by La 3 to La 6 may have the above-mentioned substituents.
 (n+k)価の連結基の具体例としては、特開2008-222950号公報の段落番号0071~0072に記載された連結基、特開2013-029760号公報の段落番号0176に記載された連結基、国際公開第2016/031442号の段落番号0022~0024に記載された連結基などが挙げられる。 Specific examples of (n+k)-valent linking groups include the linking groups described in paragraph numbers 0071 to 0072 of JP-A No. 2008-222950, and the linking groups described in paragraph number 0176 of JP-A No. 2013-029760. , and the linking groups described in paragraph numbers 0022 to 0024 of International Publication No. 2016/031442.
 式(D)のDyeIVが表す色素A1由来の色素構造は、上述した式(1)で表される色素(色素A1)から水素原子を1個取り除いた残基であることが好ましい。
 また、式(1)のX101~X103、L101~L103、Ar101、Ar102、Y101、Y102のいずれかの部位が、式(A)のLとの連結部を含むことが好ましく、式(1)のX103が、式(A)のLとの連結部を含むことがより好ましい。
The dye structure derived from dye A1 represented by Dye IV of formula (D) is preferably a residue obtained by removing one hydrogen atom from the dye (dye A1) represented by formula (1) described above.
Furthermore, any of the sites X 101 to X 103 , L 101 to L 103 , Ar 101 , Ar 102 , Y 101 , and Y 102 in formula (1) includes a connecting portion with L 1 in formula (A). More preferably, X 103 in formula (1) includes a linkage with L 1 in formula (A).
 式(D)のPが表す置換基としては、後述する置換基Tで挙げた基、酸基、重合性基等が挙げられる。また、Pが表す置換基は、繰り返し単位を有する1価のポリマー鎖であってもよい。繰り返し単位を有する1価のポリマー鎖としては、ビニル化合物由来の繰り返し単位を有する1価のポリマー鎖が好ましい。kが2以上の場合、k個のPは、同一であっても、異なっていてもよい。 Examples of the substituent represented by P 4 in formula (D) include the groups listed below for substituent T, acid groups, and polymerizable groups. Further, the substituent represented by P 4 may be a monovalent polymer chain having a repeating unit. The monovalent polymer chain having repeating units is preferably a monovalent polymer chain having repeating units derived from a vinyl compound. When k is 2 or more, the k P4s may be the same or different.
 Pが繰り返し単位を有する1価のポリマー鎖であり、かつ、kが1の場合、Pはビニル化合物由来の繰り返し単位を2~20個(好ましくは、2~15個、さらに好ましくは2~10個)有する1価のポリマー鎖であることが好ましい。また、Pが繰り返し単位を有する1価のポリマー鎖であり、かつ、kが2以上の場合、k個のPにおけるビニル化合物由来の繰り返し単位の個数の平均値は、2~20個(好ましくは、2~15個、さらに好ましくは2~10個)であることが好ましい。
 Pが繰り返し単位を有する1価のポリマー鎖である場合、繰り返し単位の数、および、繰り返し単位の個数の平均値は、核磁気共鳴(NMR)により求めることができる。
When P 4 is a monovalent polymer chain having repeating units and k is 1, P 4 contains 2 to 20 repeating units (preferably 2 to 15 repeating units, more preferably 2 to 15 repeating units) derived from a vinyl compound. It is preferable to use a monovalent polymer chain having 1 to 10 polymer chains. In addition, when P 4 is a monovalent polymer chain having repeating units and k is 2 or more, the average number of vinyl compound-derived repeating units in k P 4 is 2 to 20 ( The number is preferably 2 to 15, more preferably 2 to 10.
When P 4 is a monovalent polymer chain having repeating units, the number of repeating units and the average value of the number of repeating units can be determined by nuclear magnetic resonance (NMR).
 Pが繰り返し単位を有する1価のポリマー鎖である場合、Pを構成する繰り返し単位としては、上述した色素多量体(A)の態様を説明する中で説明した他の繰り返し単位が挙げられる。他の繰り返し単位は、上述した酸基を有する繰り返し単位および重合性基を有する繰り返し単位から選ばれる1種以上を有することが好ましい。
 Pが、酸基を含む繰り返し単位を含む場合、酸基を含む繰り返し単位の割合は、Pの全繰り返し単位に対して、10~80モル%であることが好ましく、10~65モル%がより好ましい。
 Pが重合性基を有する繰り返し単位を含む場合、重合性基を有する繰り返し単位の割合は、Pの全繰り返し単位に対して、10~80モル%であることが好ましく、10~65モル%がより好ましい。
When P 4 is a monovalent polymer chain having a repeating unit, examples of the repeating unit constituting P 4 include other repeating units explained in explaining the embodiment of the dye multimer (A) mentioned above. . It is preferable that the other repeating unit has one or more types selected from the above-mentioned repeating unit having an acid group and repeating unit having a polymerizable group.
When P 4 contains a repeating unit containing an acid group, the proportion of the repeating unit containing an acid group is preferably 10 to 80 mol%, and 10 to 65 mol%, based on the total repeating units of P 4 . is more preferable.
When P 4 contains a repeating unit having a polymerizable group, the proportion of the repeating unit having a polymerizable group is preferably 10 to 80 mol%, and 10 to 65 mol%, based on the total repeating units of P 4 . % is more preferable.
-置換基T-
 置換基Tとしては、次の基が挙げられる。ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アルキル基(好ましくは炭素数1~30のアルキル基)、アルケニル基(好ましくは炭素数2~30のアルケニル基)、アルキニル基(好ましくは炭素数2~30のアルキニル基)、アリール基(好ましくは炭素数6~30のアリール基)、アミノ基(好ましくは炭素数0~30のアミノ基)、アルコキシ基(好ましくは炭素数1~30のアルコキシ基)、アリールオキシ基(好ましくは炭素数6~30のアリールオキシ基)、ヘテロアリールオキシ基、アシル基(好ましくは炭素数2~30のアシル基)、アルコキシカルボニル基(好ましくは炭素数2~30のアルコキシカルボニル基)、アリールオキシカルボニル基(好ましくは炭素数7~30のアリールオキシカルボニル基)、ヘテロアリールオキシカルボニル基、アシルオキシ基(好ましくは炭素数2~30のアシルオキシ基)、アシルアミノ基(好ましくは炭素数2~30のアシルアミノ基)、アルコキシカルボニルアミノ基(好ましくは炭素数2~30のアルコキシカルボニルアミノ基)、アリールオキシカルボニルアミノ基(好ましくは炭素数7~30のアリールオキシカルボニルアミノ基)、スルファモイル基(好ましくは炭素数0~30のスルファモイル基)、カルバモイル基(好ましくは炭素数1~30のカルバモイル基)、アルキルチオ基(好ましくは炭素数1~30のアルキルチオ基)、アリールチオ基(好ましくは炭素数6~30のアリールチオ基)、ヘテロアリールチオ基(好ましくは炭素数1~30)、アルキルスルホニル基(好ましくは炭素数1~30)、アリールスルホニル基(好ましくは炭素数6~30)、ヘテロアリールスルホニル基(好ましくは炭素数1~30)、アルキルスルフィニル基(好ましくは炭素数1~30)、アリールスルフィニル基(好ましくは炭素数6~30)、ヘテロアリールスルフィニル基(好ましくは炭素数1~30)、ウレイド基(好ましくは炭素数1~30)、ヒドロキシ基、カルボキシ基、カルボキシ基の塩、スルホ基、スルホ基の塩、リン酸基、リン酸基の塩、カルボン酸アミド基、スルホン酸アミド基、イミド酸基、メルカプト基、シアノ基、アルキルスルフィノ基、アリールスルフィノ基、ヒドラジノ基、イミノ基、ヘテロアリール基(好ましくは炭素数1~30)。カルボキシ基の塩、スルホ基の塩、およびリン酸基の塩において、塩を構成する原子または原子団としては、アルカリ金属イオン(Li、Na、Kなど)、アルカリ土類金属イオン(Ca2+、Mg2+など)、アンモニウムイオン(テトラアルキルアンモニウムイオン、トリアルキルアンモニウムイオンなど)、イミダゾリウムイオン、ピリジニウムイオン(ピリジニウムイオン、N-メチルピリジニウムイオン及びN-エチルピリジニウムイオンなど)、ホスホニウムイオンなどが挙げられる。これらの基は、さらに置換可能な基である場合、さらに置換基を有してもよい。置換基としては、上述した置換基Tで説明した基が挙げられる。
-Substituent T-
Examples of the substituent T include the following groups. Halogen atom (e.g. fluorine atom, chlorine atom, bromine atom, iodine atom), alkyl group (preferably an alkyl group having 1 to 30 carbon atoms), alkenyl group (preferably an alkenyl group having 2 to 30 carbon atoms), alkynyl group (preferably an alkynyl group having 2 to 30 carbon atoms), an aryl group (preferably an aryl group having 6 to 30 carbon atoms), an amino group (preferably an amino group having 0 to 30 carbon atoms), an alkoxy group (preferably an amino group having 0 to 30 carbon atoms), 1 to 30 alkoxy groups), aryloxy groups (preferably aryloxy groups having 6 to 30 carbon atoms), heteroaryloxy groups, acyl groups (preferably acyl groups having 2 to 30 carbon atoms), alkoxycarbonyl groups (preferably is an alkoxycarbonyl group having 2 to 30 carbon atoms), an aryloxycarbonyl group (preferably an aryloxycarbonyl group having 7 to 30 carbon atoms), a heteroaryloxycarbonyl group, an acyloxy group (preferably an acyloxy group having 2 to 30 carbon atoms) ), acylamino group (preferably acylamino group having 2 to 30 carbon atoms), alkoxycarbonylamino group (preferably alkoxycarbonylamino group having 2 to 30 carbon atoms), aryloxycarbonylamino group (preferably 7 to 30 carbon atoms) aryloxycarbonylamino group), sulfamoyl group (preferably a sulfamoyl group having 0 to 30 carbon atoms), carbamoyl group (preferably a carbamoyl group having 1 to 30 carbon atoms), alkylthio group (preferably an alkylthio group having 1 to 30 carbon atoms) ), arylthio group (preferably arylthio group having 6 to 30 carbon atoms), heteroarylthio group (preferably having 1 to 30 carbon atoms), alkylsulfonyl group (preferably having 1 to 30 carbon atoms), arylsulfonyl group (preferably carbon number 6-30), heteroarylsulfonyl group (preferably carbon number 1-30), alkylsulfinyl group (preferably carbon number 1-30), arylsulfinyl group (preferably carbon number 6-30), heteroarylsulfinyl group group (preferably 1 to 30 carbon atoms), ureido group (preferably 1 to 30 carbon atoms), hydroxy group, carboxy group, salt of carboxy group, sulfo group, salt of sulfo group, phosphoric acid group, phosphoric acid group salt, carboxylic acid amide group, sulfonic acid amide group, imide acid group, mercapto group, cyano group, alkylsulfino group, arylsulfino group, hydrazino group, imino group, heteroaryl group (preferably having 1 to 30 carbon atoms) . In the salts of carboxy groups, salts of sulfo groups, and salts of phosphoric acid groups, atoms or atomic groups constituting the salts include alkali metal ions (Li + , Na + , K + , etc.), alkaline earth metal ions ( Ca 2+ , Mg 2+ , etc.), ammonium ions (tetraalkylammonium ions, trialkylammonium ions, etc.), imidazolium ions, pyridinium ions (pyridinium ions, N-methylpyridinium ions, N-ethylpyridinium ions, etc.), phosphonium ions, etc. can be mentioned. These groups may further have a substituent when the group is a substitutable group. Examples of the substituent include the groups described above for the substituent T.
 -アニオンを含む基-
 アニオンを含む基としては、式(P-1)で表される基、および、式(P-2)で表される基が挙げられる。
-Group containing anion-
Examples of the anion-containing group include a group represented by formula (P-1) and a group represented by formula (P-2).
 式(Pー1)のLpは単結合または2価の連結基を表す。Lpが表す2価の連結基は、炭素数1~6のアルキレン基、炭素数6~12のアリーレン基、-NRLp1-、-O-、-S-、-CO-、-SO-またはこれらの組み合わせからなる基等が挙げられる。上記アルキレン基の水素原子の少なくとも一部はフッ素原子で置換されていることが好ましく、パーフルオロアルキレン基であることがより好ましい。このようなアルキレン基の具体例としては、ジフルオロメチレン基、テトラフルオロエチレン基、ヘキサフルオロプロピレン基などが挙げられる。上記アリーレン基の水素原子の少なくとも一部はフッ素原子で置換されていることが好ましい。このようなアリーレン基の具体例としては、テトラフルオロフェニレン基、ヘキサフルオロ-1-ナフチレン基、ヘキサフルオロ-2-ナフチレン基などが挙げられる。
 式(Pー1)のLpは、単結合、-NRLp1-と-SOとフッ素原子を含むアルキレン基との組み合わせからなる基、-O-とフッ素原子を含むアリーレン基との組み合わせからなる基、または、-NRLp1-と-SOとフッ素原子を含むアルキレン基との組み合わせからなる基であることが好ましい。
 式(Pー1)のXpは、-SO 、-COO、-POまたはホウ素原子を含むアニオンを表し、-SO または-COOであることが好ましい。
Lp 1 in formula (P-1) represents a single bond or a divalent linking group. The divalent linking group represented by Lp 1 is an alkylene group having 1 to 6 carbon atoms, an arylene group having 6 to 12 carbon atoms, -NR Lp1 -, -O-, -S-, -CO-, -SO 2 - Or a group consisting of a combination thereof, etc. can be mentioned. At least some of the hydrogen atoms in the alkylene group are preferably substituted with fluorine atoms, and more preferably a perfluoroalkylene group. Specific examples of such alkylene groups include difluoromethylene groups, tetrafluoroethylene groups, hexafluoropropylene groups, and the like. It is preferable that at least some of the hydrogen atoms of the arylene group are substituted with fluorine atoms. Specific examples of such an arylene group include a tetrafluorophenylene group, a hexafluoro-1-naphthylene group, a hexafluoro-2-naphthylene group, and the like.
Lp 1 in formula (P-1) is a single bond, a group consisting of a combination of -NR Lp1 -, -SO 2 and an alkylene group containing a fluorine atom, or a combination of -O- and an arylene group containing a fluorine atom. or a group consisting of a combination of -NR Lp1 -, -SO 2 and an alkylene group containing a fluorine atom.
Xp 1 in formula (P-1) represents -SO 3 - , -COO - , -PO 4 H - or an anion containing a boron atom, and is preferably -SO 3 - or -COO - .
 式(P-2)のLpは、単結合または2価の連結基を表し、単結合であることが好ましい。Lpが表す2価の連結基としては、炭素数1~6のアルキレン基、炭素数6~12のアリーレン基、-O-、-S-、またはこれらの組み合わせからなる基等が挙げられる。
 式(Pー2)のLpは、-SO-または-CO-を表し、-SO-であることが好ましい。
 式(Pー2)のGは、炭素原子または窒素原子を表し、窒素原子であることが好ましい。
 式(Pー2)のnは、Gが炭素原子の場合は2を表し、Gが窒素原子の場合は1を表す。
 式(Pー2)のRpは、フッ素原子を含むアルキル基またはフッ素原子を含むアリール基を表す。nが2の場合、2つのRpはそれぞれ同一でも異なっていても良い。Rpが表すフッ素原子を含むアルキル基の炭素数は、1~10が好ましく、1~6がより好ましく、1~3がさらに好ましい。Rpが表すフッ素原子を含むアリール基の炭素数は、6~20が好ましく、6~14がより好ましく、6~10がさらに好ましい。フッ素原子を含むアルキル基およびフッ素原子を含むアリール基はさらに置換基を有していてもよい。置換基としては、上述した置換基Tで挙げた基などが挙げられる。
Lp 2 in formula (P-2) represents a single bond or a divalent linking group, and is preferably a single bond. Examples of the divalent linking group represented by Lp 2 include an alkylene group having 1 to 6 carbon atoms, an arylene group having 6 to 12 carbon atoms, -O-, -S-, or a group consisting of a combination thereof.
Lp 3 in formula (P-2) represents -SO 2 - or -CO-, and preferably -SO 2 -.
G in formula (P-2) represents a carbon atom or a nitrogen atom, and is preferably a nitrogen atom.
n in formula (P-2) represents 2 when G is a carbon atom, and represents 1 when G is a nitrogen atom.
Rp 1 in formula (P-2) represents an alkyl group containing a fluorine atom or an aryl group containing a fluorine atom. When n is 2, the two Rp 1 's may be the same or different. The number of carbon atoms in the alkyl group containing a fluorine atom represented by Rp 1 is preferably 1 to 10, more preferably 1 to 6, and even more preferably 1 to 3. The number of carbon atoms in the fluorine atom-containing aryl group represented by Rp 1 is preferably 6 to 20, more preferably 6 to 14, and even more preferably 6 to 10. The alkyl group containing a fluorine atom and the aryl group containing a fluorine atom may further have a substituent. Examples of the substituent include the groups listed above for the substituent T.
 一電子還元や求核剤による色素A1の分解を防ぐ観点から、色素A1のLUMO(Lowest Unoccupied Molecular Orbital)準位は高い方が好ましい。色素A1のLUMO準位は、-6.5eV以上であることが好ましく、-6.0eV以上であることがより好ましく、-5.5eV以上であることが更に好ましい。色素A1のLUMO準位は、例えば、色素A1のカチオン部分の構造に対して、量子化学計算プログラムGaussian09を用いて汎関数B3LYP/基底関数6-31g(d)/真空下の条件で構造最適化計算を実施することで求めることが出来る。 From the viewpoint of preventing one-electron reduction or decomposition of the dye A1 by a nucleophile, it is preferable that the LUMO (Lowest Unoccupied Molecular Orbital) level of the dye A1 is high. The LUMO level of the dye A1 is preferably −6.5 eV or higher, more preferably −6.0 eV or higher, and still more preferably −5.5 eV or higher. The LUMO level of the dye A1 is determined by, for example, optimizing the structure of the cation moiety of the dye A1 using the quantum chemical calculation program Gaussian09 under conditions of functional B3LYP/basis set 6-31g(d)/vacuum. It can be determined by performing calculations.
-具体例について-
 特定赤外線吸収色素の具体例としては、以下に示す構造の化合物が挙げられる。これらの化合物の共鳴構造体も特定化合物の具体例として挙げられる。以下に示す構造式中、Buはブチル基を表し、Phはフェニル基を表す。
-About specific examples-
Specific examples of specific infrared absorbing dyes include compounds having the structures shown below. Resonance structures of these compounds are also mentioned as specific examples of specific compounds. In the structural formula shown below, Bu represents a butyl group and Ph represents a phenyl group.
 式(4)で表される化合物は、例えば、下記の合成スキームに従い公知の手法を用いて合成することができる。使用する溶剤、触媒、試薬の種類や量、ならびに反応時間や反応温度などの合成条件は適宜調整することが可能である。
The compound represented by formula (4) can be synthesized using a known method according to the following synthesis scheme, for example. The types and amounts of the solvent, catalyst, and reagent used, as well as synthesis conditions such as reaction time and reaction temperature, can be adjusted as appropriate.
 化合物4AをN-ブロモコハク酸イミド(NBS)などの臭素化剤と反応させて化合物4Bを得る。その後、ビスピナコールボランをパラジウム触媒存在下に反応させることで、臭素がホウ素に置換した4Cを得る。
 公知の方法で合成した化合物4Dに対して臭素部位をアルキルリチウムにてリチウム化した後にジクロロケイ素化合物と反応させて化合物4Eを得る。化合物4Eに対してアルキルリチウムを反応させ、その後1,2-ジブロモ-1,1,2,2,-テトラクロロエタンを反応させることで化合物4Fを得る。
 化合物4Cと化合物4Fをパラジウム触媒存在下(鈴木-宮浦反応条件)で反応させて、化合物4Gを得る。化合物4Gを酸性条件で反応してアセタール部位の脱保護を行い、化合物4Hを合成する。
 化合物4Hにグリニヤール試薬を反応させて化合物4I得る。その後、酸性条件下で反応させて化合物4Jを得る。
 化合物4Jに対して、目的のアニオンを有する塩化合物を反応させることで、塩化物アニオンを目的のアニオンへ交換した式(4)で表される化合物を得ることができる。
Compound 4A is reacted with a brominating agent such as N-bromosuccinimide (NBS) to provide compound 4B. Thereafter, bispinacolborane is reacted in the presence of a palladium catalyst to obtain 4C in which bromine is replaced with boron.
The bromine moiety of Compound 4D synthesized by a known method is lithiated with alkyllithium, and then reacted with a dichlorosilicon compound to obtain Compound 4E. Compound 4E is reacted with an alkyllithium and then reacted with 1,2-dibromo-1,1,2,2,-tetrachloroethane to obtain compound 4F.
Compound 4C and Compound 4F are reacted in the presence of a palladium catalyst (Suzuki-Miyaura reaction conditions) to obtain Compound 4G. Compound 4G is reacted under acidic conditions to deprotect the acetal moiety, and compound 4H is synthesized.
Compound 4I is obtained by reacting Compound 4H with a Grignard reagent. Thereafter, a reaction is performed under acidic conditions to obtain compound 4J.
By reacting Compound 4J with a salt compound having the desired anion, a compound represented by formula (4) in which the chloride anion is replaced with the desired anion can be obtained.
 式(5)で表される化合物は、式(4)で表される化合物の合成における化合物4E合成工程において、ジクロロケイ素化合物の代わりに塩化チオニルを用いて、それ以外は同様に合成を行うことで式(5)で表される化合物を合成することができる。 The compound represented by formula (5) can be synthesized in the same manner except for using thionyl chloride instead of the dichlorosilicon compound in the compound 4E synthesis step in the synthesis of the compound represented by formula (4). A compound represented by formula (5) can be synthesized using the formula (5).
 特定赤外線吸収色素の極大吸収波長は、波長700~1800nmの範囲に存在することが好ましく、波長1000~1800nmの範囲に存在することがより好ましく、波長1030~1750nmの範囲に存在することが更に好ましく、波長1050~1700nmの範囲に存在することがより一層好ましく、波長1070~1650nmの範囲に存在することが更に一層好ましい。 The maximum absorption wavelength of the specific infrared absorbing dye is preferably in a wavelength range of 700 to 1800 nm, more preferably in a wavelength range of 1000 to 1800 nm, and even more preferably in a wavelength range of 1030 to 1750 nm. , it is even more preferable that the wavelength be in the range of 1050 to 1700 nm, and still more preferably be in the wavelength range of 1070 to 1650 nm.
 特定赤外線吸収色素の極大吸収波長における吸光度Amaxと、極大吸収波長+200nmの波長における吸光度Amax+200との比である、Amax+200/Amaxは4.5以上であることが好ましく、10以上であることがより好ましく、30以上であることが更に好ましい。上限は、例えば、90以下が好ましい。この態様によれば、赤外線の透過性と遮光性のコントラストに優れた光学フィルタを形成することができる。 The ratio of the absorbance A max at the maximum absorption wavelength of the specific infrared absorbing dye to the absorbance A max +200 at the maximum absorption wavelength + 200 nm, A max + 200 /A max , is preferably 4.5 or more, and preferably 10 or more. is more preferable, and even more preferably 30 or more. The upper limit is preferably 90 or less, for example. According to this aspect, it is possible to form an optical filter with excellent contrast between infrared transmittance and light blocking performance.
 特定赤外線吸収色素の含有量は、樹脂組成物の全固形分中1質量%以上であることが好ましく、2質量%以上であることがより好ましく、5質量%以上であることが更に好ましい。特定赤外線吸収色素の含有量の上限は、50質量%以下であることが好ましく、40質量%以下であることがより好ましく、30質量%以下であることが更に好ましい。樹脂組成物は特定赤外線吸収色素を1種のみ含んでいてもよく、2種以上含んでいてもよい。2種以上含む場合は、それらの合計量が上記範囲となることが好ましい。 The content of the specific infrared absorbing dye is preferably 1% by mass or more, more preferably 2% by mass or more, and even more preferably 5% by mass or more based on the total solid content of the resin composition. The upper limit of the content of the specific infrared absorbing dye is preferably 50% by mass or less, more preferably 40% by mass or less, and even more preferably 30% by mass or less. The resin composition may contain only one type of specific infrared absorbing dye, or may contain two or more types. When two or more types are included, it is preferable that their total amount falls within the above range.
<<他の赤外線吸収剤>>
 本発明の樹脂組成物は、上述した特定赤外線吸収色素以外の赤外線吸収剤(他の赤外線吸収剤)を含有することができる。更に他の赤外線吸収剤を含有することで、より幅広い波長範囲の赤外線を遮蔽できる膜を形成することができる。他の赤外線吸収剤は、染料であってもよく、顔料であってもよい。
<<Other infrared absorbers>>
The resin composition of the present invention can contain an infrared absorber (another infrared absorber) other than the above-mentioned specific infrared absorbing dye. Furthermore, by containing other infrared absorbers, it is possible to form a film that can block infrared rays in a wider wavelength range. Other infrared absorbers may be dyes or pigments.
 他の赤外線吸収剤の極大吸収波長は、波長700~1800nmの範囲に存在することが好ましく、波長1000~1800nmの範囲に存在することがより好ましく、波長1030~1750nmの範囲に存在することが更に好ましく、波長1050~1700nmの範囲に存在することがより一層好ましく、波長1070~1650nmの範囲に存在することが更に一層好ましい。 The maximum absorption wavelength of the other infrared absorbent is preferably within a wavelength range of 700 to 1800 nm, more preferably within a wavelength range of 1000 to 1800 nm, and even more preferably within a wavelength range of 1030 to 1750 nm. Preferably, the wavelength range is from 1050 to 1700 nm, even more preferably from 1070 to 1650 nm.
 また、他の赤外線吸収剤の極大吸収波長は、上述した特定赤外線吸収色素の最大吸収波長よりも短波長側に存在する好ましい。
 また、他の赤外線吸収剤の極大吸収波長と上述した特定赤外線吸収色素の最大吸収波長との差は、より幅広い波長範囲の赤外線を遮蔽できる膜を形成することができるという理由から50~1000nmであることが好ましい。上限は、800nm以下であることが好ましく、500nm以下であることがより好ましい。下限は、100nm以上であることが好ましく、150nm以上であることがより好ましい。
Further, the maximum absorption wavelength of the other infrared absorbing agent is preferably on the shorter wavelength side than the maximum absorption wavelength of the above-mentioned specific infrared absorbing dye.
In addition, the difference between the maximum absorption wavelength of other infrared absorbers and the maximum absorption wavelength of the above-mentioned specific infrared absorbing dye is 50 to 1000 nm because it is possible to form a film that can block infrared rays in a wider wavelength range. It is preferable that there be. The upper limit is preferably 800 nm or less, more preferably 500 nm or less. The lower limit is preferably 100 nm or more, more preferably 150 nm or more.
 他の赤外線吸収剤としては、ピロロピロール化合物、ポリメチン化合物、スクアリリウム化合物、フタロシアニン化合物、ナフタロシアニン化合物、クアテリレン化合物、メロシアニン化合物、クロコニウム化合物、オキソノール化合物、イミニウム化合物、ジチオール化合物、トリアリールメタン化合物、ピロメテン化合物、アゾメチン化合物、アントラキノン化合物、ジベンゾフラノン化合物、ジチオレン金属錯体、金属酸化物、金属ホウ化物等が挙げられる。
 他の赤外線吸収剤としては、ポリメチン化合物、スクアリリウム化合物、オキソノール化合物が好ましく用いられる。これらの化合物は、一般的に耐熱性や耐光性が低い傾向にあるが、上述した特定赤外線吸収色素を併用することにより、製膜時に上述した特定赤外線吸収色素の会合体に吸着したり、上述した特定赤外線吸収色素とともに会合形成すると推測され、耐光性及び耐熱性に優れた膜を形成することができるので、本発明の効果がより顕著に発揮される。
Other infrared absorbers include pyrrolopyrrole compounds, polymethine compounds, squarylium compounds, phthalocyanine compounds, naphthalocyanine compounds, quaterylene compounds, merocyanine compounds, croconium compounds, oxonol compounds, iminium compounds, dithiol compounds, triarylmethane compounds, and pyrromethene compounds. , azomethine compounds, anthraquinone compounds, dibenzofuranone compounds, dithiolene metal complexes, metal oxides, metal borides, and the like.
As other infrared absorbers, polymethine compounds, squarylium compounds, and oxonol compounds are preferably used. These compounds generally tend to have low heat resistance and light resistance, but by using them together with the above-mentioned specific infrared-absorbing dyes, they can be adsorbed to the aggregates of the above-mentioned specific infrared-absorbing dyes during film formation. It is presumed that the specific infrared absorbing dye forms an association with the specific infrared absorbing dye, and it is possible to form a film with excellent light resistance and heat resistance, so that the effects of the present invention are more significantly exhibited.
 ピロロピロール化合物としては、特開2009-263614号公報の段落番号0016~0058に記載の化合物、特開2011-068731号公報の段落番号0037~0052に記載の化合物、国際公開第2015/166873号の段落番号0010~0033に記載の化合物などが挙げられる。スクアリリウム化合物としては、特開2011-208101号公報の段落番号0044~0049に記載の化合物、特許第6065169号公報の段落番号0060~0061に記載の化合物、国際公開第2016/181987号の段落番号0040に記載の化合物、特開2015-176046号公報に記載の化合物、国際公開第2016/190162号の段落番号0072に記載の化合物、特開2016-074649号公報の段落番号0196~0228に記載の化合物、特開2017-067963号公報の段落番号0124に記載の化合物、国際公開第2017/135359号に記載の化合物、特開2017-114956号公報に記載の化合物、特許6197940号公報に記載の化合物、国際公開第2016/120166号に記載の化合物などが挙げられる。ポリメチン化合物としては、特開2009-108267号公報の段落番号0044~0045に記載の化合物、特開2002-194040号公報の段落番号0026~0030に記載の化合物、特開2015-172004号公報に記載の化合物、特開2015-172102号公報に記載の化合物、特開2008-088426号公報に記載の化合物、国際公開第2016/190162号の段落番号0090に記載の化合物、特開2017-031394号公報に記載の化合物などが挙げられる。クロコニウム化合物としては、特開2017-082029号公報に記載の化合物が挙げられる。イミニウム化合物としては、例えば、特表2008-528706号公報に記載の化合物、特開2012-012399号公報に記載の化合物、特開2007-092060号公報に記載の化合物、国際公開第2018/043564号の段落番号0048~0063に記載の化合物が挙げられる。フタロシアニン化合物としては、特開2012-077153号公報の段落番号0093に記載の化合物、特開2006-343631号公報に記載のオキシチタニウムフタロシアニン、特開2013-195480号公報の段落番号0013~0029に記載の化合物、特許第6081771号公報に記載のバナジウムフタロシアニン化合物、国際公開第2020/071470号に記載の化合物が挙げられる。ナフタロシアニン化合物としては、特開2012-077153号公報の段落番号0093に記載の化合物が挙げられる。ジチオレン金属錯体としては、特許第5733804号公報に記載の化合物が挙げられる。金属酸化物としては、例えば、酸化インジウムスズ、酸化アンチモンスズ、酸化亜鉛、Alドープ酸化亜鉛、フッ素ドープ二酸化スズ、ニオブドープ二酸化チタン、酸化タングステンなどが挙げられる。酸化タングステンの詳細については、特開2016-006476号公報の段落番号0080を参酌でき、この内容は本明細書に組み込まれる。金属ホウ化物としては、ホウ化ランタンなどが挙げられる。ホウ化ランタンの市販品としては、LaB-F(日本新金属(株)製)などが挙げられる。また、金属ホウ化物としては、国際公開第2017/119394号に記載の化合物を用いることもできる。酸化インジウムスズの市販品としては、F-ITO(DOWAハイテック(株)製)などが挙げられる。 Examples of pyrrolopyrrole compounds include compounds described in paragraph numbers 0016 to 0058 of JP2009-263614A, compounds described in paragraphs 0037 to 0052 of JP2011-068731A, and compounds described in WO2015/166873A. Examples include compounds described in paragraph numbers 0010 to 0033. Examples of squarylium compounds include compounds described in paragraph numbers 0044 to 0049 of JP-A No. 2011-208101, compounds described in paragraph numbers 0060 to 0061 of Japanese Patent No. 6065169, and paragraph number 0040 of International Publication No. 2016/181987. Compounds described in JP 2015-176046, Compounds described in paragraph number 0072 of WO 2016/190162, Compounds described in paragraph numbers 0196 to 0228 of JP 2016-074649 , the compound described in paragraph number 0124 of JP 2017-067963, the compound described in WO 2017/135359, the compound described in JP 2017-114956, the compound described in JP 6197940, Examples include compounds described in International Publication No. 2016/120166. Examples of polymethine compounds include compounds described in paragraph numbers 0044 to 0045 of JP2009-108267A, compounds described in paragraphs 0026 to 0030 of JP2002-194040A, and compounds described in JP2015-172004A. Compounds described in JP 2015-172102, compounds described in JP 2008-088426, compounds described in paragraph number 0090 of WO 2016/190162, JP 2017-031394 Examples include the compounds described in . Examples of the croconium compound include compounds described in JP-A No. 2017-082029. Examples of iminium compounds include compounds described in Japanese Patent Publication No. 2008-528706, compounds described in Japanese Patent Application Publication No. 2012-012399, compounds described in Japanese Patent Application Publication No. 2007-092060, and International Publication No. 2018/043564. Examples include the compounds described in paragraph numbers 0048 to 0063 of . Examples of phthalocyanine compounds include compounds described in paragraph number 0093 of JP-A No. 2012-077153, oxytitanium phthalocyanine described in JP-A 2006-343631, and paragraphs 0013 to 0029 of JP-A 2013-195480. , the vanadium phthalocyanine compound described in Patent No. 6081771, and the compound described in International Publication No. 2020/071470. Examples of naphthalocyanine compounds include compounds described in paragraph number 0093 of JP-A No. 2012-077153. Examples of the dithiolene metal complex include compounds described in Japanese Patent No. 5733804. Examples of the metal oxide include indium tin oxide, antimony tin oxide, zinc oxide, Al-doped zinc oxide, fluorine-doped tin dioxide, niobium-doped titanium dioxide, and tungsten oxide. For details on tungsten oxide, paragraph number 0080 of JP-A-2016-006476 can be referred to, the contents of which are incorporated herein. Examples of metal borides include lanthanum boride. Commercially available lanthanum boride products include LaB 6 -F (manufactured by Nippon Shinkinzoku Co., Ltd.). Moreover, as a metal boride, the compound described in International Publication No. 2017/119394 can also be used. Commercially available indium tin oxide products include F-ITO (manufactured by DOWA Hitech Co., Ltd.).
 他の赤外線吸収剤としては、特開2017-197437号公報に記載のスクアリリウム化合物、特開2017-025311号公報に記載のスクアリリウム化合物、国際公開第2016/154782号に記載のスクアリリウム化合物、特許第5884953号公報に記載のスクアリリウム化合物、特許第6036689号公報に記載のスクアリリウム化合物、特許第5810604号公報に記載のスクアリリウム化合物、国際公開第2017/213047号の段落番号0090~0107に記載のスクアリリウム化合物、特開2018-054760号公報の段落番号0019~0075に記載のピロール環含有化合物、特開2018-040955号公報の段落番号0078~0082に記載のピロール環含有化合物、特開2018-002773号公報の段落番号0043~0069に記載のピロール環含有化合物、特開2018-041047号公報の段落番号0024~0086に記載のアミドα位に芳香環を有するスクアリリウム化合物、特開2017-179131号公報に記載のアミド連結型スクアリリウム化合物、特開2017-141215号公報に記載のピロールビス型スクアリリウム骨格又はクロコニウム骨格を有する化合物、特開2017-082029号公報に記載されたジヒドロカルバゾールビス型のスクアリリウム化合物、特開2017-068120号公報の段落番号0027~0114に記載の非対称型の化合物、特開2017-067963号公報に記載されたピロール環含有化合物(カルバゾール型)、特許第6251530号公報に記載されたフタロシアニン化合物などを用いることもできる。 Other infrared absorbers include squarylium compounds described in JP2017-197437A, squarylium compounds described in JP2017-025311A, squarylium compounds described in International Publication No. 2016/154782, and Japanese Patent No. 5884953. Squarylium compounds described in Japanese Patent No. 6036689, squarylium compounds described in Japanese Patent No. 5810604, squarylium compounds described in paragraphs 0090 to 0107 of International Publication No. 2017/213047, Pyrrole ring-containing compounds described in paragraph numbers 0019 to 0075 of JP-A No. 2018-054760, pyrrole ring-containing compounds described in paragraph numbers 0078 to 0082 of JP-A No. 2018-040955, paragraphs of JP-A No. 2018-002773 Pyrrole ring-containing compounds described in Nos. 0043 to 0069, squarylium compounds having an aromatic ring at the amide α-position described in paragraph numbers 0024 to 0086 of JP 2018-041047, and amides described in JP 2017-179131. Linked squarylium compounds, compounds having a pyrrole bis-type squarylium skeleton or croconium skeleton described in JP 2017-141215, dihydrocarbazole bis-type squarylium compounds described in JP 2017-082029, JP 2017-068120 Asymmetric compounds described in paragraph numbers 0027 to 0114 of the publication, pyrrole ring-containing compounds (carbazole type) described in JP 2017-067963, phthalocyanine compounds described in Patent No. 6251530, etc. are used. You can also do that.
 他の赤外線吸収剤として、欧州特許第3628645号明細書の段落番号0025に記載の下記式で表される酸化タングステンを用いることもできる。
 M (P(O)
 M、Mはアンモニウムカチオンまたは金属カチオンを表し、aは0.01~0.5であり、bは0~0.5であり、cは1であり、dは2.5~3であり、eは0.01~0.75であり、nは1、2または3であり、mは1、2または3であり、Rは、置換基を有していてもよい炭化水素基を表す。
As another infrared absorber, tungsten oxide represented by the following formula described in paragraph number 0025 of European Patent No. 3,628,645 can also be used.
M 1 a M 2 b W c O d (P(O) n R m ) e
M 1 and M 2 represent ammonium cations or metal cations, a is 0.01 to 0.5, b is 0 to 0.5, c is 1, and d is 2.5 to 3. , e is 0.01 to 0.75, n is 1, 2 or 3, m is 1, 2 or 3, and R represents a hydrocarbon group which may have a substituent. represent.
 他の赤外線吸収剤の含有量は、上述した特定赤外線吸収色素100質量部に対し5~500質量部であることが好ましい。上限は、200質量部以下であることが好ましく、100質量部以下であることがより好ましい。下限は、10質量部以上であることが好ましく、15質量部以上であることがより好ましい。
 上述した特定赤外線吸収色素と他の赤外線吸収剤との合計の含有量は、樹脂組成物の全固形分中2質量%以上であることが好ましく、5質量%以上であることがより好ましく、10質量%以上であることが更に好ましい。上記合計の含有量の上限は、50質量%以下であることが好ましく、40質量%以下であることがより好ましく、30質量%以下であることが更に好ましい。
The content of the other infrared absorbing agent is preferably 5 to 500 parts by mass based on 100 parts by mass of the above-mentioned specific infrared absorbing dye. The upper limit is preferably 200 parts by mass or less, more preferably 100 parts by mass or less. The lower limit is preferably 10 parts by mass or more, more preferably 15 parts by mass or more.
The total content of the above-mentioned specific infrared absorbing dye and other infrared absorbing agent is preferably 2% by mass or more, more preferably 5% by mass or more, and 10% by mass or more based on the total solid content of the resin composition. More preferably, it is at least % by mass. The upper limit of the total content is preferably 50% by mass or less, more preferably 40% by mass or less, and even more preferably 30% by mass or less.
<<樹脂>>
 本発明の樹脂組成物は樹脂を含有する。樹脂は、例えば、顔料等を樹脂組成物中で分散させる用途や、バインダーの用途で配合される。なお、主に顔料等を樹脂組成物中で分散させるために用いられる樹脂を分散剤ともいう。ただし、樹脂のこのような用途は一例であって、このような用途以外を目的として樹脂を使用することもできる。
<<Resin>>
The resin composition of the present invention contains a resin. The resin is blended, for example, for dispersing pigments and the like in a resin composition or for use as a binder. Note that a resin used mainly for dispersing pigments and the like in a resin composition is also referred to as a dispersant. However, this use of the resin is just one example, and the resin can also be used for purposes other than this use.
 樹脂の重量平均分子量は、3000~2000000が好ましい。上限は、1000000以下が好ましく、500000以下がより好ましい。下限は、4000以上が好ましく、5000以上がより好ましい。 The weight average molecular weight of the resin is preferably 3,000 to 2,000,000. The upper limit is preferably 1,000,000 or less, more preferably 500,000 or less. The lower limit is preferably 4000 or more, more preferably 5000 or more.
 樹脂としては、(メタ)アクリル樹脂、エポキシ樹脂、エン・チオール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリアリレート樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレン樹脂、ポリアリーレンエーテルホスフィンオキシド樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、ポリエステル樹脂、スチレン樹脂、酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポリビニルアセタール樹脂、ポリウレタン樹脂、ポリウレア樹脂などが挙げられる。これらの樹脂から1種を単独で使用してもよく、2種以上を混合して使用してもよい。環状オレフィン樹脂としては、耐熱性向上の観点からノルボルネン樹脂が好ましい。ノルボルネン樹脂の市販品としては、例えば、JSR(株)製のARTONシリーズ(例えば、ARTON F4520)などが挙げられる。また、樹脂としては、国際公開第2016/088645号の実施例に記載された樹脂、特開2017-057265号公報に記載された樹脂、特開2017-032685号公報に記載された樹脂、特開2017-075248号公報に記載された樹脂、特開2017-066240号公報に記載された樹脂、特開2017-167513号公報に記載された樹脂、特開2017-173787号公報に記載された樹脂、特開2017-206689号公報の段落番号0041~0060に記載された樹脂、特開2018-010856号公報の段落番号0022~0071に記載された樹脂、特開2016-222891号公報に記載されたブロックポリイソシアネート樹脂、特開2020-122052号公報に記載された樹脂、特開2020-111656号公報に記載された樹脂、特開2020-139021号公報に記載された樹脂、特開2017-138503号公報に記載の主鎖に環構造を有する構成単位と側鎖にビフェニル基を有する構成単位とを含む樹脂を用いることもできる。また、樹脂としては、フルオレン骨格を有する樹脂を好ましく用いることもできる。フルオレン骨格を有する樹脂については、米国特許出願公開第2017/0102610号明細書の記載を参酌でき、この内容は本明細書に組み込まれる。また、樹脂としては、特開2020-186373号公報の段落0199~0233に記載の樹脂、特開2020-186325号公報に記載のアルカリ可溶性樹脂、韓国公開特許第10-2020-0078339号公報に記載の式1で表される樹脂、特開2021-134350号公報に記載された樹脂を用いることもできる。 Examples of resins include (meth)acrylic resin, epoxy resin, ene thiol resin, polycarbonate resin, polyether resin, polyarylate resin, polysulfone resin, polyethersulfone resin, polyphenylene resin, polyarylene ether phosphine oxide resin, polyimide resin, Examples include polyamide resin, polyamideimide resin, polyolefin resin, cyclic olefin resin, polyester resin, styrene resin, vinyl acetate resin, polyvinyl alcohol resin, polyvinyl acetal resin, polyurethane resin, and polyurea resin. One type of these resins may be used alone, or two or more types may be used in combination. As the cyclic olefin resin, norbornene resin is preferable from the viewpoint of improving heat resistance. Commercially available norbornene resins include, for example, the ARTON series manufactured by JSR Corporation (eg, ARTON F4520). In addition, the resins include the resin described in the examples of International Publication No. 2016/088645, the resin described in JP 2017-057265, the resin described in JP 2017-032685, and the resin described in JP 2017-032685. The resin described in JP 2017-075248, the resin described in JP 2017-066240, the resin described in JP 2017-167513, the resin described in JP 2017-173787, Resins described in paragraph numbers 0041 to 0060 of JP 2017-206689, resins described in paragraph numbers 0022 to 0071 of JP 2018-010856, and blocks described in JP 2016-222891. Polyisocyanate resin, resin described in JP 2020-122052, resin described in JP 2020-111656, resin described in JP 2020-139021, JP 2017-138503 It is also possible to use a resin containing a constitutional unit having a ring structure in the main chain and a constitutional unit having a biphenyl group in the side chain as described in . Further, as the resin, a resin having a fluorene skeleton can also be preferably used. Regarding the resin having a fluorene skeleton, the description in US Patent Application Publication No. 2017/0102610 can be referred to, the contents of which are incorporated herein. In addition, examples of the resin include resins described in paragraphs 0199 to 0233 of JP2020-186373A, alkali-soluble resins described in JP2020-186325A, and Korean Patent Publication No. 10-2020-0078339. The resin represented by Formula 1, the resin described in JP-A No. 2021-134350, can also be used.
 樹脂として、酸基を有する樹脂を用いることが好ましい。酸基としては、例えば、カルボキシ基、リン酸基、スルホ基、フェノール性ヒドロキシ基などが挙げられる。これら酸基は、1種のみであってもよいし、2種以上であってもよい。酸基を有する樹脂は分散剤として用いることもできる。酸基を有する樹脂の酸価は、30~500mgKOH/gが好ましい。下限は、50mgKOH/g以上が好ましく、70mgKOH/g以上がより好ましい。上限は、400mgKOH/g以下が好ましく、200mgKOH/g以下がより好ましく、150mgKOH/g以下が更に好ましく、120mgKOH/g以下が最も好ましい。 It is preferable to use a resin having acid groups as the resin. Examples of the acid group include a carboxy group, a phosphoric acid group, a sulfo group, and a phenolic hydroxy group. The number of these acid groups may be one, or two or more. A resin having an acid group can also be used as a dispersant. The acid value of the resin having acid groups is preferably 30 to 500 mgKOH/g. The lower limit is preferably 50 mgKOH/g or more, more preferably 70 mgKOH/g or more. The upper limit is preferably 400 mgKOH/g or less, more preferably 200 mgKOH/g or less, even more preferably 150 mgKOH/g or less, and most preferably 120 mgKOH/g or less.
 樹脂としては、式(ED1)で示される化合物および/または式(ED2)で表される化合物(以下、これらの化合物を「エーテルダイマー」と称することもある。)由来の繰り返し単位を含む樹脂を含むことも好ましい。 As the resin, a resin containing a repeating unit derived from a compound represented by formula (ED1) and/or a compound represented by formula (ED2) (hereinafter, these compounds may be referred to as "ether dimer") is used. It is also preferable to include.
 式(ED1)中、RおよびRは、それぞれ独立して、水素原子または置換基を有していてもよい炭素数1~25の炭化水素基を表す。
 式(ED2)中、Rは、水素原子または炭素数1~30の有機基を表す。式(ED2)の具体例としては、特開2010-168539号公報の記載を参酌できる。
In formula (ED1), R 1 and R 2 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 25 carbon atoms which may have a substituent.
In formula (ED2), R represents a hydrogen atom or an organic group having 1 to 30 carbon atoms. As a specific example of formula (ED2), the description in JP-A No. 2010-168539 can be referred to.
 エーテルダイマーの具体例については、特開2013-029760号公報の段落番号0317を参酌することができ、この内容は本明細書に組み込まれる。 For specific examples of ether dimers, paragraph number 0317 of JP-A-2013-029760 can be referred to, the contents of which are incorporated herein.
 樹脂としては、重合性基を有する樹脂を用いることも好ましい。重合性基は、エチレン性不飽和結合含有基および環状エーテル基であることが好ましく、エチレン性不飽和結合含有基であることがより好ましい。 As the resin, it is also preferable to use a resin having a polymerizable group. The polymerizable group is preferably an ethylenically unsaturated bond-containing group and a cyclic ether group, and more preferably an ethylenically unsaturated bond-containing group.
 樹脂としては、式(X)で表される化合物由来の繰り返し単位を含む樹脂を用いることも好ましい。
 式中、Rは水素原子またはメチル基を表し、R21およびR22はそれぞれ独立してアルキレン基を表し、nは0~15の整数を表す。R21およびR22が表すアルキレン基の炭素数は1~10であることが好ましく、1~5であることがより好ましく、1~3であることが更に好ましく、2または3であることが特に好ましい。nは0~15の整数を表し、0~5の整数であることが好ましく、0~4の整数であることがより好ましく、0~3の整数であることが更に好ましい。
As the resin, it is also preferable to use a resin containing a repeating unit derived from a compound represented by formula (X).
In the formula, R 1 represents a hydrogen atom or a methyl group, R 21 and R 22 each independently represent an alkylene group, and n represents an integer of 0 to 15. The alkylene group represented by R 21 and R 22 preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, even more preferably 1 to 3 carbon atoms, and particularly 2 or 3 carbon atoms. preferable. n represents an integer of 0 to 15, preferably an integer of 0 to 5, more preferably an integer of 0 to 4, even more preferably an integer of 0 to 3.
 式(X)で表される化合物としては、パラクミルフェノールのエチレンオキサイドまたはプロピレンオキサイド変性(メタ)アクリレートなどが挙げられる。市販品としては、アロニックスM-110(東亞合成(株)製)などが挙げられる。 Examples of the compound represented by formula (X) include ethylene oxide- or propylene oxide-modified (meth)acrylate of paracumylphenol. Commercially available products include Aronix M-110 (manufactured by Toagosei Co., Ltd.).
 本発明の樹脂組成物は、分散剤としての樹脂を含有することが好ましい。分散剤としては、酸性分散剤(酸性樹脂)、塩基性分散剤(塩基性樹脂)が挙げられる。ここで、酸性分散剤(酸性樹脂)とは、酸基の量が塩基性基の量よりも多い樹脂を表す。酸性分散剤(酸性樹脂)としては、酸基の量と塩基性基の量の合計量を100モル%としたときに、酸基の量が70モル%以上である樹脂が好ましい。酸性分散剤(酸性樹脂)が有する酸基は、カルボキシ基が好ましい。酸性分散剤(酸性樹脂)の酸価は、10~105mgKOH/gが好ましい。また、塩基性分散剤(塩基性樹脂)とは、塩基性基の量が酸基の量よりも多い樹脂を表す。塩基性分散剤(塩基性樹脂)としては、酸基の量と塩基性基の量の合計量を100モル%としたときに、塩基性基の量が50モル%を超える樹脂が好ましい。塩基性分散剤が有する塩基性基は、アミノ基が好ましい。 The resin composition of the present invention preferably contains a resin as a dispersant. Examples of the dispersant include acidic dispersants (acidic resins) and basic dispersants (basic resins). Here, the acidic dispersant (acidic resin) refers to a resin in which the amount of acid groups is greater than the amount of basic groups. The acidic dispersant (acidic resin) is preferably a resin in which the amount of acid groups is 70 mol % or more when the total amount of acid groups and basic groups is 100 mol %. The acid group that the acidic dispersant (acidic resin) has is preferably a carboxy group. The acid value of the acidic dispersant (acidic resin) is preferably 10 to 105 mgKOH/g. Moreover, the basic dispersant (basic resin) refers to a resin in which the amount of basic groups is greater than the amount of acid groups. The basic dispersant (basic resin) is preferably a resin in which the amount of basic groups exceeds 50 mol% when the total amount of acid groups and basic groups is 100 mol%. The basic group that the basic dispersant has is preferably an amino group.
 分散剤として用いる樹脂は、グラフト樹脂であることも好ましい。グラフト樹脂の詳細については、特開2012-255128号公報の段落番号0025~0094の記載を参酌でき、この内容は本明細書に組み込まれる。 It is also preferable that the resin used as a dispersant is a graft resin. For details of the graft resin, the descriptions in paragraphs 0025 to 0094 of JP-A No. 2012-255128 can be referred to, the contents of which are incorporated herein.
 分散剤として用いる樹脂は、主鎖及び側鎖の少なくとも一方に窒素原子を含むポリイミン系分散剤であることも好ましい。ポリイミン系分散剤としては、pKa14以下の官能基を有する部分構造を有する主鎖と、原子数40~10000の側鎖とを有し、かつ主鎖及び側鎖の少なくとも一方に塩基性窒素原子を有する樹脂が好ましい。塩基性窒素原子は、塩基性を呈する窒素原子であれば特に制限はない。ポリイミン系分散剤については、特開2009-203462号公報の段落番号0022~0097、特開2012-255128号公報の段落番号0102~0166の記載を参酌でき、これらの内容は本明細書に組み込まれる。 It is also preferable that the resin used as a dispersant is a polyimine-based dispersant containing a nitrogen atom in at least one of the main chain and the side chain. The polyimine dispersant has a main chain having a partial structure having a functional group with a pKa of 14 or less, a side chain having 40 to 10,000 atoms, and a basic nitrogen atom in at least one of the main chain and the side chain. Preferably, the resin has The basic nitrogen atom is not particularly limited as long as it exhibits basicity. Regarding the polyimine dispersant, the descriptions in paragraph numbers 0022 to 0097 of JP 2009-203462A and paragraph numbers 0102 to 0166 of JP 2012-255128 can be referred to, and the contents of these are incorporated herein. .
 分散剤として用いる樹脂は、コア部に複数個のポリマー鎖が結合した構造の樹脂であることも好ましい。このような樹脂としては、例えば、デンドリマー(星型ポリマーを含む)が挙げられる。また、デンドリマーの具体例としては、特開2013-043962号公報の段落番号0196~0209に記載された高分子化合物C-1~C-31などが挙げられる。 It is also preferable that the resin used as the dispersant has a structure in which a plurality of polymer chains are bonded to the core portion. Examples of such resins include dendrimers (including star-shaped polymers). Further, specific examples of dendrimers include polymer compounds C-1 to C-31 described in paragraph numbers 0196 to 0209 of JP-A No. 2013-043962.
 分散剤として用いる樹脂は、エチレン性不飽和結合含有基を側鎖に有する繰り返し単位を含む樹脂であることも好ましい。エチレン性不飽和結合含有基を側鎖に有する繰り返し単位の含有量は、樹脂の全繰り返し単位中10モル%以上であることが好ましく、10~80モル%であることがより好ましく、20~70モル%であることが更に好ましい。 The resin used as a dispersant is also preferably a resin containing a repeating unit having an ethylenically unsaturated bond-containing group in its side chain. The content of the repeating unit having an ethylenically unsaturated bond-containing group in its side chain is preferably 10 mol% or more, more preferably 10 to 80 mol%, and more preferably 20 to 70 mol% of the total repeating units of the resin. More preferably, it is mol%.
 分散剤として、特開2018-087939号公報に記載された樹脂、特許第6432077号公報の段落番号0219~0221に記載されたブロック共重合体(EB-1)~(EB-9)、国際公開第2016/104803号に記載のポリエステル側鎖を有するポリエチレンイミン、国際公開第2019/125940号に記載のブロック共重合体、特開2020-066687号公報に記載のアクリルアミド構造単位を有するブロックポリマー、特開2020-066688号公報に記載のアクリルアミド構造単位を有するブロックポリマー、国際公開第2016/104803号に記載の分散剤などを用いることもできる。 As a dispersant, resins described in JP 2018-087939, block copolymers (EB-1) to (EB-9) described in paragraph numbers 0219 to 0221 of Patent No. 6432077, and international publication Polyethyleneimine having a polyester side chain described in No. 2016/104803, block copolymer described in International Publication No. 2019/125940, block polymer having an acrylamide structural unit described in JP 2020-066687, A block polymer having an acrylamide structural unit described in JP-A No. 2020-066688, a dispersant described in International Publication No. 2016/104803, etc. can also be used.
 分散剤は、市販品としても入手可能であり、そのような具体例としては、ビックケミー社製のDISPERBYKシリーズ、日本ルーブリゾール社製のSOLSPERSEシリーズ、BASF社製のEfkaシリーズ、味の素ファインテクノ(株)製のアジスパーシリーズ等が挙げられる。また、特開2012-137564号公報の段落番号0129に記載された製品、特開2017-194662号公報の段落番号0235に記載された製品を分散剤として用いることもできる。 Dispersants are also available as commercial products, and specific examples include the DISPERBYK series manufactured by BYK Chemie, the SOLSPERSE series manufactured by Japan Lubrizol, the Efka series manufactured by BASF, and Ajinomoto Fine Techno Co., Ltd. Examples include the Ajisper series manufactured by Manufacturer. Further, the product described in paragraph number 0129 of JP 2012-137564A and the product described in paragraph number 0235 of JP 2017-194662A can also be used as a dispersant.
 樹脂組成物の全固形分中における樹脂の含有量は、1~95質量%が好ましい。下限は2質量%以上が好ましく、5質量%以上がより好ましく、7質量%以上が更に好ましく、10質量%以上が特に好ましい。上限は、90質量%以下が好ましく、85質量%以下がより好ましい。
 また、本発明の樹脂組成物が、更に後述する重合性化合物を含有する場合には、樹脂組成物の全固形分中における樹脂の含有量は、1~75質量%であることが好ましい。上限は、70質量%以下が好ましく、65質量%以下がより好ましい。下限は2質量%以上が好ましく、5質量%以上がより好ましく、7質量%以上が更に好ましく、10質量%以上が特に好ましい。
The content of the resin in the total solid content of the resin composition is preferably 1 to 95% by mass. The lower limit is preferably 2% by mass or more, more preferably 5% by mass or more, even more preferably 7% by mass or more, and particularly preferably 10% by mass or more. The upper limit is preferably 90% by mass or less, more preferably 85% by mass or less.
Further, when the resin composition of the present invention further contains a polymerizable compound described below, the content of the resin in the total solid content of the resin composition is preferably 1 to 75% by mass. The upper limit is preferably 70% by mass or less, more preferably 65% by mass or less. The lower limit is preferably 2% by mass or more, more preferably 5% by mass or more, even more preferably 7% by mass or more, and particularly preferably 10% by mass or more.
 本発明の樹脂組成物が分散剤としての樹脂を含有する場合、樹脂組成物の全固形分中における分散剤としての樹脂の含有量は、0.1~40質量%が好ましい。上限は、25質量%以下が好ましく、20質量%以下がより好ましい。下限は、0.5質量%以上が好ましく、1質量%以上がより好ましい。また、分散剤としての樹脂の含有量は、顔料100質量部に対して、1~200質量部が好ましい。上限は、150質量部以下が好ましく、125質量部以下がより好ましく、100質量部以下が更に好ましい。下限は、2.5質量部以上が好ましく、5質量部以上がより好ましく、10質量部以上が更に好ましい。 When the resin composition of the present invention contains a resin as a dispersant, the content of the resin as a dispersant in the total solid content of the resin composition is preferably 0.1 to 40% by mass. The upper limit is preferably 25% by mass or less, more preferably 20% by mass or less. The lower limit is preferably 0.5% by mass or more, more preferably 1% by mass or more. Further, the content of the resin as a dispersant is preferably 1 to 200 parts by weight per 100 parts by weight of the pigment. The upper limit is preferably 150 parts by mass or less, more preferably 125 parts by mass or less, and even more preferably 100 parts by mass or less. The lower limit is preferably 2.5 parts by mass or more, more preferably 5 parts by mass or more, and even more preferably 10 parts by mass or more.
 本発明の樹脂組成物は、樹脂を1種のみ含んでいてもよいし、2種以上含んでいてもよい。樹脂を2種以上含む場合は、それらの合計量が上記範囲となることが好ましい。 The resin composition of the present invention may contain only one type of resin, or may contain two or more types of resin. When two or more types of resin are included, the total amount thereof is preferably within the above range.
<<溶剤>>
 本発明の樹脂組成物は溶剤を含有することが好ましい。溶剤としては、水、有機溶剤が挙げられ、有機溶剤であることが好ましい。有機溶剤としては、エステル系溶剤、ケトン系溶剤、アルコール系溶剤、アミド系溶剤、エーテル系溶剤、炭化水素系溶剤などが挙げられる。これらの詳細については、国際公開第2015/166779号の段落番号0223を参酌でき、この内容は本明細書に組み込まれる。また、環状アルキル基が置換したエステル系溶剤、環状アルキル基が置換したケトン系溶剤も好ましく用いることもできる。有機溶剤の具体例としては、ポリエチレングリコールモノメチルエーテル、ジクロロメタン、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エチルセロソルブアセテート、乳酸エチル、ジエチレングリコールジメチルエーテル、酢酸ブチル、3-メトキシプロピオン酸メチル、2-ヘプタノン、2-ペンタノン、3-ペンタノン、4-ヘプタノン、シクロヘキサノン、2-メチルシクロヘキサノン、3-メチルシクロヘキサノン、4-メチルシクロヘキサノン、シクロヘプタノン、シクロオクタノン、酢酸シクロヘキシル、シクロペンタノン、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、プロピレングリコールジアセテート、3-メトキシブタノール、メチルエチルケトン、ガンマブチロラクトン、スルホラン、アニソール、1,4-ジアセトキシブタン、ジエチレングリコールモノエチルエーテルアセタート、二酢酸ブタン-1,3-ジイル、ジプロピレングリコールメチルエーテルアセタート、ジアセトンアルコール(別名としてダイアセトンアルコール、4-ヒドロキシ-4-メチル-2-ペンタノン)、2-メトキシプロピルアセテート、2-メトキシ-1-プロパノール、イソプロピルアルコールなどが挙げられる。ただし有機溶剤としての芳香族炭化水素類(ベンゼン、トルエン、キシレン、エチルベンゼン等)は、環境面等の理由により低減したほうがよい場合がある(例えば、有機溶剤全量に対して、50質量ppm(parts per million)以下とすることもでき、10質量ppm以下とすることもでき、1質量ppm以下とすることもできる)。
<<Solvent>>
It is preferable that the resin composition of the present invention contains a solvent. Examples of the solvent include water and organic solvents, with organic solvents being preferred. Examples of the organic solvent include ester solvents, ketone solvents, alcohol solvents, amide solvents, ether solvents, and hydrocarbon solvents. For these details, paragraph number 0223 of International Publication No. 2015/166779 can be referred to, the contents of which are incorporated herein. Ester solvents substituted with a cyclic alkyl group and ketone solvents substituted with a cyclic alkyl group can also be preferably used. Specific examples of organic solvents include polyethylene glycol monomethyl ether, dichloromethane, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, ethyl cellosolve acetate, ethyl lactate, diethylene glycol dimethyl ether, butyl acetate, methyl 3-methoxypropionate, 2 -Heptanone, 2-pentanone, 3-pentanone, 4-heptanone, cyclohexanone, 2-methylcyclohexanone, 3-methylcyclohexanone, 4-methylcyclohexanone, cycloheptanone, cyclooctanone, cyclohexyl acetate, cyclopentanone, ethyl carbitol Acetate, butyl carbitol acetate, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, propylene glycol diacetate, 3-methoxy Butanol, methyl ethyl ketone, gamma butyrolactone, sulfolane, anisole, 1,4-diacetoxybutane, diethylene glycol monoethyl ether acetate, butane-1,3-diyl diacetate, dipropylene glycol methyl ether acetate, diacetone alcohol (also known as Examples include diacetone alcohol, 4-hydroxy-4-methyl-2-pentanone), 2-methoxypropyl acetate, 2-methoxy-1-propanol, and isopropyl alcohol. However, it may be better to reduce the amount of aromatic hydrocarbons (benzene, toluene, xylene, ethylbenzene, etc.) used as organic solvents for environmental reasons (for example, 50 mass ppm (parts) based on the total amount of organic solvents). per million), 10 mass ppm or less, and 1 mass ppm or less).
 本発明においては、金属含有量の少ない有機溶剤を用いることが好ましく、有機溶剤の金属含有量は、例えば10質量ppb(parts per billion)以下であることが好ましい。必要に応じて質量ppt(parts per trillion)レベルの有機溶剤を用いてもよく、そのような有機溶剤は例えば東洋合成社が提供している(化学工業日報、2015年11月13日)。 In the present invention, it is preferable to use an organic solvent with a low metal content, and the metal content of the organic solvent is preferably 10 mass ppb (parts per billion) or less, for example. If necessary, an organic solvent at a mass ppt (parts per trillion) level may be used, and such an organic solvent is provided by Toyo Gosei Co., Ltd. (Kagaku Kogyo Nippo, November 13, 2015).
 有機溶剤から金属等の不純物を除去する方法としては、例えば、蒸留(分子蒸留や薄膜蒸留等)やフィルタを用いたろ過を挙げることができる。ろ過に用いるフィルタのフィルタ孔径としては、10μm以下が好ましく、5μm以下がより好ましく、3μm以下が更に好ましい。フィルタの材質は、ポリテトラフロロエチレン、ポリエチレンまたはナイロンが好ましい。 Examples of methods for removing impurities such as metals from organic solvents include distillation (molecular distillation, thin film distillation, etc.) and filtration using a filter. The filter pore diameter of the filter used for filtration is preferably 10 μm or less, more preferably 5 μm or less, and even more preferably 3 μm or less. The material of the filter is preferably polytetrafluoroethylene, polyethylene, or nylon.
 有機溶剤は、異性体(原子数が同じであるが構造が異なる化合物)が含まれていてもよい。また、異性体は、1種のみが含まれていてもよいし、複数種含まれていてもよい。 The organic solvent may contain isomers (compounds with the same number of atoms but different structures). Moreover, only one type of isomer may be included, or multiple types may be included.
 有機溶剤中の過酸化物の含有率が0.8mmol/L以下であることが好ましく、過酸化物を実質的に含まないことがより好ましい。 It is preferable that the content of peroxide in the organic solvent is 0.8 mmol/L or less, and it is more preferable that the organic solvent contains substantially no peroxide.
 樹脂組成物中における溶剤の含有量は、10~97質量%であることが好ましい。下限は、30質量%以上であることが好ましく、40質量%以上であることがより好ましく、50質量%以上であることが更に好ましく、60質量%以上であることがより一層好ましく、70質量%以上であることが特に好ましい。上限は、96質量%以下であることが好ましく、95質量%以下であることがより好ましい。組成物は溶剤を1種のみ含んでいてもよく、2種以上含んでいてもよい。2種以上含む場合は、それらの合計量が上記範囲となることが好ましい。 The content of the solvent in the resin composition is preferably 10 to 97% by mass. The lower limit is preferably 30% by mass or more, more preferably 40% by mass or more, even more preferably 50% by mass or more, even more preferably 60% by mass or more, and 70% by mass. It is particularly preferable that it is above. The upper limit is preferably 96% by mass or less, more preferably 95% by mass or less. The composition may contain only one kind of solvent, or may contain two or more kinds. When two or more types are included, it is preferable that their total amount falls within the above range.
<<顔料誘導体>>
 本発明の樹脂組成物は、更に顔料誘導体を含有することができる。顔料誘導体は分散助剤として用いられる。顔料誘導体としては、色素骨格に酸基または塩基性基が結合した構造を有する化合物が挙げられる。
<<Pigment derivative>>
The resin composition of the present invention can further contain a pigment derivative. Pigment derivatives are used as dispersion aids. Examples of pigment derivatives include compounds having a structure in which an acid group or a basic group is bonded to a pigment skeleton.
 顔料誘導体を構成する色素骨格としては、スクアリリウム色素骨格、ピロロピロール色素骨格、ジケトピロロピロール色素骨格、キナクリドン色素骨格、アントラキノン色素骨格、ジアントラキノン色素骨格、ベンゾイソインドール色素骨格、チアジンインジゴ色素骨格、アゾ色素骨格、キノフタロン色素骨格、フタロシアニン色素骨格、ナフタロシアニン色素骨格、ジオキサジン色素骨格、ペリレン色素骨格、ペリノン色素骨格、ベンゾイミダゾロン色素骨格、ベンゾチアゾール色素骨格、ベンゾイミダゾール色素骨格およびベンゾオキサゾール色素骨格が挙げられる。 The pigment skeletons constituting the pigment derivatives include squarylium pigment skeleton, pyrrolopyrrole pigment skeleton, diketopyrrolopyrrole pigment skeleton, quinacridone pigment skeleton, anthraquinone pigment skeleton, dianthraquinone pigment skeleton, benzisoindole pigment skeleton, and thiazine indigo pigment skeleton. , azo dye skeleton, quinophthalone dye skeleton, phthalocyanine dye skeleton, naphthalocyanine dye skeleton, dioxazine dye skeleton, perylene dye skeleton, perinone dye skeleton, benzimidazolone dye skeleton, benzothiazole dye skeleton, benzimidazole dye skeleton and benzoxazole dye skeleton can be mentioned.
 酸基としては、カルボキシ基、スルホ基、リン酸基、ボロン酸基、カルボン酸アミド基、スルホン酸アミド基、イミド酸基及びこれらの塩等が挙げられる。塩を構成する原子または原子団としては、アルカリ金属イオン(Li、Na、Kなど)、アルカリ土類金属イオン(Ca2+、Mg2+など)、アンモニウムイオン、イミダゾリウムイオン、ピリジニウムイオン、ホスホニウムイオンなどが挙げられる。カルボン酸アミド基としては、-NHCORA1で表される基が好ましい。スルホン酸アミド基としては、-NHSOA2で表される基が好ましい。イミド酸基としては、-SONHSOA3、-CONHSOA4、-CONHCORA5または-SONHCORA6で表される基が好ましく、-SONHSOA3がより好ましい。RA1~RA6は、それぞれ独立に、アルキル基またはアリール基を表す。RA1~RA6が表すアルキル基及びアリール基は、置換基を有してもよい。置換基としてはハロゲン原子であることが好ましく、フッ素原子であることがより好ましい。 Examples of the acid group include a carboxyl group, a sulfo group, a phosphoric acid group, a boronic acid group, a carboxylic acid amide group, a sulfonic acid amide group, an imide acid group, and salts thereof. Atoms or atomic groups constituting the salt include alkali metal ions (Li + , Na + , K + , etc.), alkaline earth metal ions (Ca 2+ , Mg 2+ , etc.), ammonium ions, imidazolium ions, pyridinium ions, Examples include phosphonium ions. As the carboxylic acid amide group, a group represented by -NHCOR A1 is preferable. As the sulfonic acid amide group, a group represented by -NHSO 2 R A2 is preferable. The imide acid group is preferably a group represented by -SO 2 NHSO 2 R A3 , -CONHSO 2 R A4 , -CONHCOR A5 or -SO 2 NHCOR A6 , and -SO 2 NHSO 2 R A3 is more preferred. R A1 to R A6 each independently represent an alkyl group or an aryl group. The alkyl group and aryl group represented by R A1 to R A6 may have a substituent. The substituent is preferably a halogen atom, more preferably a fluorine atom.
 塩基性基としては、アミノ基、ピリジニル基およびその塩、アンモニウム基の塩、並びにフタルイミドメチル基が挙げられる。塩を構成する原子または原子団としては、水酸化物イオン、ハロゲンイオン、カルボン酸イオン、スルホン酸イオン、フェノキシドイオンなどが挙げられる。 Examples of the basic group include an amino group, a pyridinyl group and its salts, an ammonium group salt, and a phthalimidomethyl group. Examples of atoms or atomic groups constituting the salt include hydroxide ions, halogen ions, carboxylate ions, sulfonate ions, and phenoxide ions.
 顔料誘導体の具体例としては、後述する実施例に記載の化合物が挙げられる。また、特開昭56-118462号公報、特開昭63-264674号公報、特開平01-217077号公報、特開平03-009961号公報、特開平03-026767号公報、特開平03-153780号公報、特開平03-045662号公報、特開平04-285669号公報、特開平06-145546号公報、特開平06-212088号公報、特開平06-240158号公報、特開平10-030063号公報、特開平10-195326号公報、国際公開第2011/024896号の段落番号0086~0098、国際公開第2012/102399号の段落番号0063~0094に記載の化合物も挙げられ、これらの内容は本明細書に組み込まれる。 Specific examples of pigment derivatives include compounds described in Examples below. Also, JP-A-56-118462, JP-A-63-264674, JP-A-01-217077, JP-A-03-009961, JP-A-03-026767, and JP-A-03-153780. Publication, JP 03-045662, JP 04-285669, JP 06-145546, JP 06-212088, JP 06-240158, JP 10-030063, Compounds described in JP-A-10-195326, paragraph numbers 0086 to 0098 of International Publication No. 2011/024896, and paragraph numbers 0063 to 0094 of International Publication No. 2012/102399 are also included, and the contents of these are incorporated herein by reference. be incorporated into.
 顔料誘導体の含有量は、顔料100質量部に対し、1~50質量部が好ましい。下限値は、3質量部以上が好ましく、5質量部以上がより好ましい。上限値は、40質量部以下が好ましく、30質量部以下がより好ましい。顔料誘導体は1種のみを用いてもよく、2種以上を用いてもよい。2種以上を用いる場合は、合計量が上記範囲となることが好ましい。 The content of the pigment derivative is preferably 1 to 50 parts by weight based on 100 parts by weight of the pigment. The lower limit is preferably 3 parts by mass or more, more preferably 5 parts by mass or more. The upper limit is preferably 40 parts by mass or less, more preferably 30 parts by mass or less. Only one type of pigment derivative may be used, or two or more types may be used. When two or more types are used, it is preferable that the total amount falls within the above range.
<<重合性化合物>>
 本発明の樹脂組成物は、更に重合性化合物を含有することができる。重合性化合物としては、エチレン性不飽和結合含有基を有する化合物、環状エーテル基を有する化合物、メチロール基を有する化合物、アルコキシメチル基を有する化合物等が挙げられる。エチレン性不飽和結合含有基としては、ビニル基、(メタ)アリル基、(メタ)アクリロイル基などが挙げられる。環状エーテル基としては、エポキシ基、オキセタニル基などが挙げられる。
 重合性化合物は、ラジカル重合性化合物であることも好ましい。ラジカル重合性化合物としては、エチレン性不飽和結合含有基を有する化合物などが挙げられる。
<<Polymerizable compound>>
The resin composition of the present invention can further contain a polymerizable compound. Examples of the polymerizable compound include a compound having an ethylenically unsaturated bond-containing group, a compound having a cyclic ether group, a compound having a methylol group, a compound having an alkoxymethyl group, and the like. Examples of the ethylenically unsaturated bond-containing group include a vinyl group, a (meth)allyl group, a (meth)acryloyl group, and the like. Examples of the cyclic ether group include an epoxy group and an oxetanyl group.
It is also preferable that the polymerizable compound is a radically polymerizable compound. Examples of the radically polymerizable compound include compounds having an ethylenically unsaturated bond-containing group.
 重合性化合物は、モノマー、プレポリマー、オリゴマーなどの化学的形態のいずれであってもよいが、モノマーが好ましい。 The polymerizable compound may be in any chemical form such as a monomer, prepolymer, or oligomer, but monomers are preferred.
 モノマータイプの重合性化合物(重合性モノマー)の分子量は、2000未満であることが好ましく、1500以下であることがより好ましい。重合性モノマーの分子量の下限は100以上であることが好ましく、200以上であることがより好ましい。 The molecular weight of the monomer-type polymerizable compound (polymerizable monomer) is preferably less than 2,000, more preferably 1,500 or less. The lower limit of the molecular weight of the polymerizable monomer is preferably 100 or more, more preferably 200 or more.
 重合性モノマーとしてのエチレン性不飽和結合含有基を有する化合物は、3~15官能の(メタ)アクリレート化合物であることが好ましく、3~6官能の(メタ)アクリレート化合物であることがより好ましい。具体例としては、特開2009-288705号公報の段落番号0095~0108、特開2013-029760号公報の段落0227、特開2008-292970号公報の段落番号0254~0257、特開2013-253224号公報の段落番号0034~0038、特開2012-208494号公報の段落番号0477、特開2017-048367号公報、特許第6057891号公報、特許第6031807号公報、特開2017-194662号公報に記載されている化合物が挙げられ、これらの内容は本明細書に組み込まれる。 The compound having an ethylenically unsaturated bond-containing group as a polymerizable monomer is preferably a 3- to 15-functional (meth)acrylate compound, more preferably a 3- to 6-functional (meth)acrylate compound. Specific examples include paragraph numbers 0095 to 0108 of JP 2009-288705, paragraph 0227 of JP 2013-029760, paragraph 0254 to 0257 of JP 2008-292970, and JP 2013-253224. Described in paragraph numbers 0034 to 0038 of the publication, paragraph number 0477 of JP 2012-208494, JP 2017-048367, JP 6057891, JP 6031807, JP 2017-194662. , the contents of which are incorporated herein.
 エチレン性不飽和結合含有基を有する化合物としては、ジペンタエリスリトールトリ(メタ)アクリレート(市販品としてはKAYARAD D-330;日本化薬(株)製)、ジペンタエリスリトールテトラ(メタ)アクリレート(市販品としてはKAYARAD D-320;日本化薬(株)製)、ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としてはKAYARAD D-310;日本化薬(株)製)、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としてはKAYARAD DPHA;日本化薬(株)製、NKエステルA-DPH-12E;新中村化学工業(株)製)、およびこれらの化合物の(メタ)アクリロイル基がエチレングリコールおよび/またはプロピレングリコール残基を介して結合している構造の化合物(例えば、サートマー社から市販されている、SR454、SR499)などが挙げられる。また、エチレン性不飽和結合含有基を有する化合物としては、ジグリセリンEO(エチレンオキシド)変性(メタ)アクリレート(市販品としてはM-460;東亞合成製)、ペンタエリスリトールテトラアクリレート(新中村化学工業(株)製、NKエステルA-TMMT)、1,6-ヘキサンジオールジアクリレート(日本化薬(株)製、KAYARAD HDDA)、RP-1040(日本化薬(株)製)、アロニックスTO-2349(東亞合成(株)製)、NKオリゴUA-7200(新中村化学工業(株)製)、8UH-1006、8UH-1012(大成ファインケミカル(株)製)、ライトアクリレートPOB-A0(共栄社化学(株)製)などを用いることもできる。 Examples of compounds having an ethylenically unsaturated bond-containing group include dipentaerythritol tri(meth)acrylate (commercially available product: KAYARAD D-330; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol tetra(meth)acrylate (commercially available) Examples of commercially available products include KAYARAD D-320 (manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol penta(meth)acrylate (commercially available products are KAYARAD D-310; manufactured by Nippon Kayaku Co., Ltd.), and dipentaerythritol hexa (meth) ) acrylate (commercially available products are KAYARAD DPHA; manufactured by Nippon Kayaku Co., Ltd.; NK ester A-DPH-12E; manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), and the (meth)acryloyl group of these compounds is ethylene glycol and and/or compounds having a structure in which they are bonded via a propylene glycol residue (eg, SR454, SR499, commercially available from Sartomer). Further, as compounds having an ethylenically unsaturated bond-containing group, diglycerin EO (ethylene oxide) modified (meth)acrylate (commercially available product is M-460; manufactured by Toagosei), pentaerythritol tetraacrylate (Shin Nakamura Chemical Co., Ltd.) (manufactured by Nippon Kayaku Co., Ltd., NK ester A-TMMT), 1,6-hexanediol diacrylate (manufactured by Nippon Kayaku Co., Ltd., KAYARAD HDDA), RP-1040 (manufactured by Nippon Kayaku Co., Ltd.), Aronix TO-2349 (manufactured by Nippon Kayaku Co., Ltd.) Toagosei Co., Ltd.), NK Oligo UA-7200 (Shin Nakamura Chemical Co., Ltd.), 8UH-1006, 8UH-1012 (Taisei Fine Chemical Co., Ltd.), Light Acrylate POB-A0 (Kyoeisha Chemical Co., Ltd.) ) etc. can also be used.
 エチレン性不飽和結合含有基を有する化合物としては、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンプロピレンオキシド変性トリ(メタ)アクリレート、トリメチロールプロパンエチレンオキシド変性トリ(メタ)アクリレート、イソシアヌル酸エチレンオキシド変性トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートなどの3官能の(メタ)アクリレート化合物を用いることも好ましい。3官能の(メタ)アクリレート化合物の市販品としては、アロニックスM-309、M-310、M-321、M-350、M-360、M-313、M-315、M-306、M-305、M-303、M-452、M-450(東亞合成(株)製)、NKエステル A9300、A-GLY-9E、A-GLY-20E、A-TMM-3、A-TMM-3L、A-TMM-3LM-N、A-TMPT、TMPT(新中村化学工業(株)製)、KAYARAD GPO-303、TMPTA、THE-330、TPA-330、PET-30(日本化薬(株)製)などが挙げられる。 Examples of compounds having an ethylenically unsaturated bond-containing group include trimethylolpropane tri(meth)acrylate, trimethylolpropanepropylene oxide-modified tri(meth)acrylate, trimethylolpropaneethylene oxide-modified tri(meth)acrylate, and isocyanuric acid ethylene oxide-modified tri(meth)acrylate. It is also preferable to use trifunctional (meth)acrylate compounds such as (meth)acrylate and pentaerythritol tri(meth)acrylate. Commercially available trifunctional (meth)acrylate compounds include Aronix M-309, M-310, M-321, M-350, M-360, M-313, M-315, M-306, M-305. , M-303, M-452, M-450 (manufactured by Toagosei Co., Ltd.), NK ester A9300, A-GLY-9E, A-GLY-20E, A-TMM-3, A-TMM-3L, A -TMM-3LM-N, A-TMPT, TMPT (manufactured by Shin Nakamura Chemical Co., Ltd.), KAYARAD GPO-303, TMPTA, THE-330, TPA-330, PET-30 (manufactured by Nippon Kayaku Co., Ltd.) Examples include.
 エチレン性不飽和結合含有基を有する化合物は、更に、カルボキシ基、スルホ基、リン酸基等の酸基を有していてもよい。このような化合物の市販品としては、アロニックスM-305、M-510、M-520、アロニックスTO-2349(東亞合成(株)製)等が挙げられる。 The compound having an ethylenically unsaturated bond-containing group may further have an acid group such as a carboxy group, a sulfo group, or a phosphoric acid group. Commercially available products of such compounds include Aronix M-305, M-510, M-520, Aronix TO-2349 (manufactured by Toagosei Co., Ltd.), and the like.
 エチレン性不飽和結合含有基を有する化合物としては、カプロラクトン構造を有する化合物を用いることもできる。カプロラクトン構造を有する化合物については、特開2013-253224号公報の段落0042~0045の記載を参酌することができ、この内容は本明細書に組み込まれる。カプロラクトン構造を有する化合物は、例えば、日本化薬(株)からシリーズとして市販されている、DPCA-20、DPCA-30、DPCA-60、DPCA-120等が挙げられる。 As the compound having an ethylenically unsaturated bond-containing group, a compound having a caprolactone structure can also be used. Regarding the compound having a caprolactone structure, the description in paragraphs 0042 to 0045 of JP-A No. 2013-253224 can be referred to, the contents of which are incorporated herein. Examples of compounds having a caprolactone structure include DPCA-20, DPCA-30, DPCA-60, and DPCA-120, which are commercially available as a series from Nippon Kayaku Co., Ltd.
 エチレン性不飽和結合含有基を有する化合物としては、エチレン性不飽和結合含有基とアルキレンオキシ基を有する化合物を用いることもできる。このような化合物は、エチレン性不飽和結合含有基と、エチレンオキシ基および/またはプロピレンオキシ基とを有する化合物であることが好ましく、エチレン性不飽和結合含有基とエチレンオキシ基とを有する化合物であることがより好ましく、エチレンオキシ基を4~20個有する3~6官能(メタ)アクリレート化合物であることがさらに好ましい。市販品としては、例えばサートマー社製のエチレンオキシ基を4個有する4官能(メタ)アクリレートであるSR-494、日本化薬(株)製のイソブチレンオキシ基を3個有する3官能(メタ)アクリレートであるKAYARAD TPA-330などが挙げられる。 As the compound having an ethylenically unsaturated bond-containing group, a compound having an ethylenically unsaturated bond-containing group and an alkyleneoxy group can also be used. Such a compound is preferably a compound having an ethylenically unsaturated bond-containing group and an ethyleneoxy group and/or a propyleneoxy group, and preferably a compound having an ethylenically unsaturated bond-containing group and an ethyleneoxy group. More preferably, it is a 3- to 6-functional (meth)acrylate compound having 4 to 20 ethyleneoxy groups. Commercially available products include, for example, SR-494, a tetrafunctional (meth)acrylate having four ethyleneoxy groups manufactured by Sartomer, and trifunctional (meth)acrylate having three isobutyleneoxy groups manufactured by Nippon Kayaku Co., Ltd. Examples include KAYARAD TPA-330.
 エチレン性不飽和結合含有基を有する化合物としては、フルオレン骨格を有する重合性化合物を用いることもできる。市販品としては、オグソールEA-0200、EA-0300(大阪ガスケミカル(株)製、フルオレン骨格を有する(メタ)アクリレートモノマー)などが挙げられる。 As the compound having an ethylenically unsaturated bond-containing group, a polymerizable compound having a fluorene skeleton can also be used. Commercially available products include Ogsol EA-0200 and EA-0300 (manufactured by Osaka Gas Chemical Co., Ltd., (meth)acrylate monomer having a fluorene skeleton).
 エチレン性不飽和結合含有基を有する化合物としては、トルエンなどの環境規制物質を実質的に含まない化合物を用いることも好ましい。このような化合物の市販品としては、KAYARAD DPHA LT、KAYARAD DPEA-12 LT(日本化薬(株)製)などが挙げられる。 As the compound having an ethylenically unsaturated bond-containing group, it is also preferable to use a compound substantially free of environmentally regulated substances such as toluene. Commercially available products of such compounds include KAYARAD DPHA LT, KAYARAD DPEA-12 LT (manufactured by Nippon Kayaku Co., Ltd.), and the like.
 環状エーテル基を有する化合物としては、エポキシ基を有する化合物、オキセタニル基を有する化合物などが挙げられ、エポキシ基を有する化合物であることが好ましい。エポキシ基を有する化合物としては、1分子内にエポキシ基を1~100個有する化合物が挙げられる。エポキシ基の数の上限は、例えば、10個以下とすることもでき、5個以下とすることもできる。エポキシ基の数の下限は、2個以上が好ましい。 Examples of the compound having a cyclic ether group include a compound having an epoxy group, a compound having an oxetanyl group, etc., and a compound having an epoxy group is preferable. Examples of compounds having epoxy groups include compounds having 1 to 100 epoxy groups in one molecule. The upper limit of the number of epoxy groups can be, for example, 10 or less, or 5 or less. The lower limit of the number of epoxy groups is preferably 2 or more.
 環状エーテル基を有する化合物は、低分子化合物(例えば分子量1000未満)でもよいし、高分子化合物(macromolecule)(例えば、分子量1000以上、ポリマーの場合は、重量平均分子量が1000以上)でもよい。環状エーテル基の重量平均分子量は、200~100000が好ましく、500~50000がより好ましい。重量平均分子量の上限は、10000以下が好ましく、5000以下がより好ましく、3000以下が更に好ましい。 The compound having a cyclic ether group may be a low molecular compound (for example, molecular weight less than 1000) or a macromolecule (for example, molecular weight 1000 or more, in the case of a polymer, the weight average molecular weight is 1000 or more). The weight average molecular weight of the cyclic ether group is preferably 200 to 100,000, more preferably 500 to 50,000. The upper limit of the weight average molecular weight is preferably 10,000 or less, more preferably 5,000 or less, and even more preferably 3,000 or less.
 環状エーテル基を有する化合物としては、特開2013-011869号公報の段落番号0034~0036に記載された化合物、特開2014-043556号公報の段落番号0147~0156に記載された化合物、特開2014-089408号公報の段落番号0085~0092に記載された化合物、特開2017-179172号公報に記載された化合物を用いることもできる。 Examples of compounds having a cyclic ether group include compounds described in paragraph numbers 0034 to 0036 of JP-A No. 2013-011869, compounds described in paragraph numbers 0147 to 0156 of JP-A-2014-043556, and JP-A No. 2014. Compounds described in paragraph numbers 0085 to 0092 of JP-A-089408 and compounds described in JP-A-2017-179172 can also be used.
 環状エーテル基を有する化合物の市販品としては、デナコール EX-212L、EX-212、EX-214L、EX-214、EX-216L、EX-216、EX-321L、EX-321、EX-850L、EX-850(以上、ナガセケムテックス(株)製)、ADEKA RESIN EP-4000S、EP-4003S、EP-4010S、EP-4011S(以上、(株)ADEKA製)、NC-2000、NC-3000、NC-7300、XD-1000、EPPN-501、EPPN-502(以上、(株)ADEKA製)、セロキサイド2021P、セロキサイド2081、セロキサイド2083、セロキサイド2085、EHPE3150、EPOLEAD PB 3600、PB 4700(以上、(株)ダイセル製)、サイクロマーP ACA 200M、ACA 230AA、ACA Z250、ACA Z251、ACA Z300、ACA Z320(以上、(株)ダイセル製)、jER1031S、jER157S65、jER152、jER154、jER157S70(以上、三菱ケミカル(株)製)、アロンオキセタンOXT-121、OXT-221、OX-SQ、PNOX(以上、東亞合成(株)製)、アデカグリシロール ED-505((株)ADEKA製、エポキシ基含有モノマー)、EPICLON N-695(DIC(株)製)、マープルーフG-0150M、G-0105SA、G-0130SP、G-0250SP、G-1005S、G-1005SA、G-1010S、G-2050M、G-01100、G-01758(日油(株)製、エポキシ基含有ポリマー)、OXT-101、OXT-121、OXT-212、OXT-221(以上、東亞合成(株)製、オキセタニル基含有モノマー)、OXE-10、OXE-30(以上、大阪有機化学工業(株)製、オキセタニル基含有モノマー)などが挙げられる。 Commercially available compounds having a cyclic ether group include Denacol EX-212L, EX-212, EX-214L, EX-214, EX-216L, EX-216, EX-321L, EX-321, EX-850L, EX -850 (manufactured by Nagase ChemteX Corporation), ADEKA RESIN EP-4000S, EP-4003S, EP-4010S, EP-4011S (manufactured by ADEKA Corporation), NC-2000, NC-3000, NC -7300, ) Daicel), Cyclomer P ACA 200M, ACA 230AA, ACA Z250, ACA Z251, ACA Z300, ACA Z320 (manufactured by Daicel Corporation), jER1031S, jER157S65, jER152, jER154, jER157S70 (all manufactured by Mitsubishi Chemical Corporation) ), Aronoxetane OXT-121, OXT-221, OX-SQ, PNOX (manufactured by Toagosei Co., Ltd.), ADEKA Glycilol ED-505 (manufactured by ADEKA Co., Ltd., epoxy group-containing monomer), EPICLON N-695 (manufactured by DIC Corporation), Marproof G-0150M, G-0105SA, G-0130SP, G-0250SP, G-1005S, G-1005SA, G-1010S, G-2050M, G-01100, G -01758 (manufactured by NOF Corporation, epoxy group-containing polymer), OXT-101, OXT-121, OXT-212, OXT-221 (all of the above, manufactured by Toagosei Co., Ltd., oxetanyl group-containing monomer), OXE-10 , OXE-30 (monomer containing an oxetanyl group, manufactured by Osaka Organic Chemical Industry Co., Ltd.), and the like.
 メチロール基を有する化合物(以下、メチロール化合物ともいう)としては、メチロール基が窒素原子または芳香族環を形成する炭素原子に結合している化合物が挙げられる。アルコキシメチル基を有する化合物(以下、アルコキシメチル化合物ともいう)としては、アルコキシメチル基が窒素原子または芳香族環を形成する炭素原子に結合している化合物が挙げられる。アルコキシメチル基またはメチロール基が窒素原子に結合している化合物としては、アルコキシメチル化メラミン、メチロール化メラミン、アルコキシメチル化ベンゾグアナミン、メチロール化ベンゾグアナミン、アルコキシメチル化グリコールウリル、メチロール化グリコールウリル、アルコキシメチル化尿素およびメチロール化尿素等が好ましい。また、特開2004-295116号公報の段落0134~0147、特開2014-089408号公報の段落0095~0126に記載された化合物を用いることもできる。 Examples of compounds having a methylol group (hereinafter also referred to as methylol compounds) include compounds in which a methylol group is bonded to a nitrogen atom or a carbon atom forming an aromatic ring. Examples of compounds having an alkoxymethyl group (hereinafter also referred to as alkoxymethyl compounds) include compounds in which an alkoxymethyl group is bonded to a nitrogen atom or a carbon atom forming an aromatic ring. Compounds in which an alkoxymethyl group or a methylol group is bonded to a nitrogen atom include alkoxymethylated melamine, methylolated melamine, alkoxymethylated benzoguanamine, methylolated benzoguanamine, alkoxymethylated glycoluril, methylolated glycoluril, alkoxymethylated Preferred are urea and methylolated urea. Further, compounds described in paragraphs 0134 to 0147 of JP-A No. 2004-295116 and paragraphs 0095 to 0126 of JP-A No. 2014-089408 can also be used.
 樹脂組成物の全固形分中における重合性化合物の含有量は0.1~50質量%であることが好ましい。下限は、0.5質量%以上であることが好ましく、1質量%以上であることがより好ましく、3質量%以上であることが更に好ましい。上限は、40質量%以下であることが好ましく、30質量%以下であることがより好ましく、25質量%以下であることが更に好ましい。本発明の樹脂組成物は、重合性化合物を1種のみ含んでいてもよいし、2種以上含んでいてもよい。重合性化合物を2種以上含む場合は、それらの合計量が上記範囲となることが好ましい。 The content of the polymerizable compound in the total solid content of the resin composition is preferably 0.1 to 50% by mass. The lower limit is preferably 0.5% by mass or more, more preferably 1% by mass or more, and even more preferably 3% by mass or more. The upper limit is preferably 40% by mass or less, more preferably 30% by mass or less, and even more preferably 25% by mass or less. The resin composition of the present invention may contain only one kind of polymerizable compound, or may contain two or more kinds of polymerizable compounds. When two or more types of polymerizable compounds are included, it is preferable that the total amount thereof falls within the above range.
<<光重合開始剤>>
 本発明の樹脂組成物が重合性化合物を含む場合、本発明の樹脂組成物は更に光重合開始剤を含有することが好ましい。光重合開始剤としては、特に制限はなく、公知の光重合開始剤の中から適宜選択することができる。例えば、紫外線領域から可視領域の光線に対して感光性を有する化合物が好ましい。重合性化合物としてラジカル重合性化合物を用いた場合には、光重合開始剤は、光ラジカル重合開始剤であることが好ましい。
<<Photopolymerization initiator>>
When the resin composition of the present invention contains a polymerizable compound, it is preferable that the resin composition of the present invention further contains a photopolymerization initiator. The photopolymerization initiator is not particularly limited and can be appropriately selected from known photopolymerization initiators. For example, compounds having photosensitivity to light in the ultraviolet to visible range are preferred. When a radically polymerizable compound is used as the polymerizable compound, the photopolymerization initiator is preferably a radical photopolymerization initiator.
 光重合開始剤としては、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有する化合物、オキサジアゾール骨格を有する化合物など)、アシルホスフィン化合物、ヘキサアリールビイミダゾール化合物、オキシム化合物、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、α-ヒドロキシケトン化合物、α-アミノケトン化合物などが挙げられる。光重合開始剤は、露光感度の観点から、トリハロメチルトリアジン化合物、ベンジルジメチルケタール化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、アシルホスフィン化合物、ホスフィンオキサイド化合物、メタロセン化合物、オキシム化合物、ヘキサアリールビイミダゾール化合物、オニウム化合物、ベンゾチアゾール化合物、ベンゾフェノン化合物、アセトフェノン化合物、シクロペンタジエン-ベンゼン-鉄錯体、ハロメチルオキサジアゾール化合物および3-アリール置換クマリン化合物であることが好ましく、オキシム化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、および、アシルホスフィン化合物から選ばれる化合物であることがより好ましく、オキシム化合物であることが更に好ましい。また、光重合開始剤としては、特開2014-130173号公報の段落0065~0111に記載された化合物、特許第6301489号公報に記載された化合物、MATERIAL STAGE 37~60p,vol.19,No.3,2019に記載されたパーオキサイド系光重合開始剤、国際公開第2018/221177号に記載の光重合開始剤、国際公開第2018/110179号に記載の光重合開始剤、特開2019-043864号公報に記載の光重合開始剤、特開2019-044030号公報に記載の光重合開始剤、特開2019-167313号公報に記載の過酸化物系開始剤、特開2020-055992号公報に記載のオキサゾリジン基を有するアミノアセトフェノン系開始剤、特開2013-190459号公報に記載のオキシム系光重合開始剤、特開2020-172619号公報に記載の重合体、国際公開第2020/152120号に記載の式1で表される化合物、特開2021-181406号公報に記載の化合物などが挙げられ、これらの内容は本明細書に組み込まれる。 Examples of photopolymerization initiators include halogenated hydrocarbon derivatives (e.g., compounds with a triazine skeleton, compounds with an oxadiazole skeleton, etc.), acylphosphine compounds, hexaarylbiimidazole compounds, oxime compounds, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, α-hydroxyketone compounds, α-aminoketone compounds, and the like. From the viewpoint of exposure sensitivity, photopolymerization initiators include trihalomethyltriazine compounds, benzyl dimethyl ketal compounds, α-hydroxyketone compounds, α-aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, metallocene compounds, oxime compounds, and hexaarylbylene compounds. Preferred are imidazole compounds, onium compounds, benzothiazole compounds, benzophenone compounds, acetophenone compounds, cyclopentadiene-benzene-iron complexes, halomethyloxadiazole compounds and 3-aryl substituted coumarin compounds, oxime compounds, α-hydroxyketones The compound is more preferably a compound selected from a compound, an α-aminoketone compound, and an acylphosphine compound, and even more preferably an oxime compound. In addition, as photopolymerization initiators, compounds described in paragraphs 0065 to 0111 of JP-A-2014-130173, compounds described in Japanese Patent No. 6301489, MATERIAL STAGE 37 to 60p, vol. 19, No. 3,2019, the photopolymerization initiator described in International Publication No. 2018/221177, the photopolymerization initiator described in International Publication No. 2018/110179, JP 2019-043864 The photopolymerization initiator described in JP-A No. 2019-044030, the peroxide-based initiator described in JP-A No. 2019-167313, the photopolymerization initiator described in JP-A No. 2020-055992 The aminoacetophenone initiator having an oxazolidine group as described, the oxime photopolymerization initiator described in JP 2013-190459, the polymer described in JP 2020-172619, the WO 2020/152120 Examples include the compound represented by Formula 1, the compound described in JP-A-2021-181406, and the contents thereof are incorporated herein.
 ヘキサアリールビイミダゾール化合物の具体例としては、2,2’,4-トリス(2-クロロフェニル)-5-(3,4-ジメトキシフェニル)-4,5-ジフェニル-1,1’-ビイミダゾールなどが挙げられる。 Specific examples of hexaarylbiimidazole compounds include 2,2',4-tris(2-chlorophenyl)-5-(3,4-dimethoxyphenyl)-4,5-diphenyl-1,1'-biimidazole, etc. can be mentioned.
 α-ヒドロキシケトン化合物の市販品としては、Omnirad 184、Omnirad 1173、Omnirad 2959、Omnirad 127(以上、IGM Resins B.V.社製)、Irgacure 184、Irgacure 1173、Irgacure 2959、Irgacure 127(以上、BASF社製)などが挙げられる。α-アミノケトン化合物の市販品としては、Omnirad 907、Omnirad 369、Omnirad 369E、Omnirad 379EG(以上、IGM Resins B.V.社製)、Irgacure 907、Irgacure 369、Irgacure 369E、Irgacure 379EG(以上、BASF社製)などが挙げられる。アシルホスフィン化合物の市販品としては、Omnirad 819、Omnirad TPO(以上、IGM Resins B.V.社製)、Irgacure 819、Irgacure TPO(以上、BASF社製)などが挙げられる。 Commercially available α-hydroxyketone compounds include Omnirad 184, Omnirad 1173, Omnirad 2959, Omnirad 127 (manufactured by IGM Resins B.V.), Irgacure 184, and Irgacure 1. 173, Irgacure 2959, Irgacure 127 (all BASF (manufactured by a company). Commercially available α-aminoketone compounds include Omnirad 907, Omnirad 369, Omnirad 369E, Omnirad 379EG (manufactured by IGM Resins B.V.), Irgacure 907, and Irgacure. 369, Irgacure 369E, Irgacure 379EG (all manufactured by BASF) (manufactured by). Commercially available acylphosphine compounds include Omnirad 819, Omnirad TPO (manufactured by IGM Resins B.V.), Irgacure 819, Irgacure TPO (manufactured by BASF), and the like.
 オキシム化合物としては、特開2001-233842号公報に記載の化合物、特開2000-080068号公報に記載の化合物、特開2006-342166号公報に記載の化合物、J.C.S.Perkin II(1979年、pp.1653-1660)に記載の化合物、J.C.S.Perkin II(1979年、pp.156-162)に記載の化合物、Journal of Photopolymer Science and Technology(1995年、pp.202-232)に記載の化合物、特開2000-066385号公報に記載の化合物、特表2004-534797号公報に記載の化合物、特開2006-342166号公報に記載の化合物、特開2017-019766号公報に記載の化合物、特許第6065596号公報に記載の化合物、国際公開第2015/152153号に記載の化合物、国際公開第2017/051680号に記載の化合物、特開2017-198865号公報に記載の化合物、国際公開第2017/164127号の段落番号0025~0038に記載の化合物、国際公開第2013/167515号、国際公開第2017/169819号、特開2019-168654号公報の段落番号0029~0044に記載の化合物、特開2021-173858号公報の一般式(1)で表される化合物や段落0022から0024に記載の化合物、特開2021-170089号公報の一般式(1)で表される化合物や段落0117から0120に記載の化合物などが挙げられる。オキシム化合物の具体例としては、3-ベンゾイルオキシイミノブタン-2-オン、3-アセトキシイミノブタン-2-オン、3-プロピオニルオキシイミノブタン-2-オン、2-アセトキシイミノペンタン-3-オン、2-アセトキシイミノ-1-フェニルプロパン-1-オン、2-ベンゾイルオキシイミノ-1-フェニルプロパン-1-オン、3-(4-トルエンスルホニルオキシ)イミノブタン-2-オン、2-エトキシカルボニルオキシイミノ-1-フェニルプロパン-1-オン、1-[4-(フェニルチオ)フェニル]-3-シクロヘキシル-プロパン-1,2-ジオン-2-(O-アセチルオキシム)などが挙げられる。市販品としては、Irgacure OXE01、Irgacure OXE02、Irgacure OXE03、Irgacure OXE04(以上、BASF社製)、TR-PBG-301、TR-PBG-304、TR-PBG-327(TRONLY社製)、アデカオプトマーN-1919((株)ADEKA製、特開2012-014052号公報に記載の光重合開始剤2)が挙げられる。また、オキシム化合物としては、着色性が無い化合物や、透明性が高く変色し難い化合物を用いることも好ましい。市販品としては、アデカアークルズNCI-730、NCI-831、NCI-930(以上、(株)ADEKA製)などが挙げられる。 Examples of oxime compounds include the compounds described in JP-A No. 2001-233842, the compounds described in JP-A No. 2000-080068, the compounds described in JP-A No. 2006-342166, and the compounds described in J. C. S. Perkin II (1979, pp. 1653-1660); C. S. Perkin II (1979, pp. 156-162), Journal of Photopolymer Science and Technology (1995, pp. 202-232), JP-A-2000 - Compounds described in Publication No. 066385, Compounds described in Japanese Patent Publication No. 2004-534797, compounds described in Japanese Patent Application Publication No. 2006-342166, compounds described in Japanese Patent Application Publication No. 2017-019766, compounds described in Japanese Patent No. 6065596, International Publication No. 2015 /152153, the compound described in International Publication No. 2017/051680, the compound described in JP 2017-198865, the compound described in paragraph numbers 0025 to 0038 of International Publication No. 2017/164127, Compounds described in paragraph numbers 0029 to 0044 of International Publication No. 2013/167515, International Publication No. 2017/169819, JP 2019-168654, and general formula (1) of JP 2021-173858 Examples include compounds represented by the general formula (1) and compounds described in paragraphs 0117 to 0120 of JP-A-2021-170089. Specific examples of oxime compounds include 3-benzoyloxyiminobutan-2-one, 3-acetoxyiminobutan-2-one, 3-propionyloxyiminobutan-2-one, 2-acetoxyiminopentan-3-one, 2-acetoxyimino-1-phenylpropan-1-one, 2-benzoyloxyimino-1-phenylpropan-1-one, 3-(4-toluenesulfonyloxy)iminobutan-2-one, 2-ethoxycarbonyloxyimino -1-phenylpropan-1-one, 1-[4-(phenylthio)phenyl]-3-cyclohexyl-propane-1,2-dione-2-(O-acetyloxime), and the like. Commercially available products include Irgacure OXE01, Irgacure OXE02, Irgacure OXE03, Irgacure OXE04 (manufactured by BASF), TR-PBG-301, TR-PBG-304, TR-PBG-327 (TRONL). manufactured by Y Company), Adeka Optomer N-1919 (manufactured by ADEKA Co., Ltd., photopolymerization initiator 2) described in JP-A-2012-014052 can be mentioned. Further, as the oxime compound, it is also preferable to use a compound without coloring property or a compound with high transparency and resistance to discoloration. Commercially available products include ADEKA Arkles NCI-730, NCI-831, and NCI-930 (manufactured by ADEKA Co., Ltd.).
 光重合開始剤としては、フルオレン環を有するオキシム化合物を用いることもできる。フルオレン環を有するオキシム化合物の具体例としては、特開2014-137466号公報に記載の化合物、特許6636081号公報に記載の化合物、韓国公開特許第10-2016-0109444号公報に記載の化合物、特表2020-507664号公報に記載のフルオレニルアミノケトン類光開始剤、国際公開第2021/023144号に記載のオキシムエステル化合物が挙げられる。 As the photopolymerization initiator, an oxime compound having a fluorene ring can also be used. Specific examples of oxime compounds having a fluorene ring include compounds described in JP-A No. 2014-137466, compounds described in Japanese Patent No. 6636081, compounds described in Korean Patent Publication No. 10-2016-0109444, and Examples include fluorenylaminoketone photoinitiators described in Table 2020-507664 and oxime ester compounds described in International Publication No. 2021/023144.
 光重合開始剤としては、カルバゾール環の少なくとも1つのベンゼン環がナフタレン環となった骨格を有するオキシム化合物を用いることもできる。そのようなオキシム化合物の具体例としては、国際公開第2013/083505号に記載の化合物が挙げられる。 As the photopolymerization initiator, it is also possible to use an oxime compound having a skeleton in which at least one benzene ring of the carbazole ring is a naphthalene ring. Specific examples of such oxime compounds include compounds described in International Publication No. 2013/083505.
 光重合開始剤としては、フッ素原子を有するオキシム化合物を用いることもできる。フッ素原子を有するオキシム化合物の具体例としては、特開2010-262028号公報に記載の化合物、特表2014-500852号公報に記載の化合物24、36~40、特開2013-164471号公報に記載の化合物(C-3)などが挙げられる。 As a photopolymerization initiator, an oxime compound having a fluorine atom can also be used. Specific examples of oxime compounds having a fluorine atom include compounds described in JP-A No. 2010-262028, compounds 24, 36 to 40 described in Japanese Patent Application Publication No. 2014-500852, and compounds described in JP-A No. 2013-164471. Examples include compound (C-3).
 光重合開始剤としては、ニトロ基を有するオキシム化合物を用いることができる。ニトロ基を有するオキシム化合物は、二量体とすることも好ましい。ニトロ基を有するオキシム化合物の具体例としては、特開2013-114249号公報の段落番号0031~0047、特開2014-137466号公報の段落番号0008~0012、0070~0079に記載されている化合物、特許4223071号公報の段落番号0007~0025に記載されている化合物、アデカアークルズNCI-831((株)ADEKA製)が挙げられる。 As the photopolymerization initiator, an oxime compound having a nitro group can be used. It is also preferable that the oxime compound having a nitro group is in the form of a dimer. Specific examples of oxime compounds having a nitro group include compounds described in paragraph numbers 0031 to 0047 of JP 2013-114249, paragraphs 0008 to 0012, and 0070 to 0079 of JP 2014-137466, Examples include compounds described in paragraph numbers 0007 to 0025 of Japanese Patent No. 4223071, and Adeka Arcles NCI-831 (manufactured by ADEKA Corporation).
 光重合開始剤としては、ベンゾフラン骨格を有するオキシム化合物を用いることもできる。具体例としては、国際公開第2015/036910号に記載されているOE-01~OE-75が挙げられる。 As a photopolymerization initiator, an oxime compound having a benzofuran skeleton can also be used. Specific examples include OE-01 to OE-75 described in International Publication No. 2015/036910.
 光重合開始剤としては、カルバゾール骨格にヒドロキシ基を有する置換基が結合したオキシム化合物を用いることもできる。このような光重合開始剤としては国際公開第2019/088055号に記載された化合物などが挙げられる。 As a photopolymerization initiator, it is also possible to use an oxime compound in which a substituent having a hydroxy group is bonded to a carbazole skeleton. Examples of such photopolymerization initiators include compounds described in International Publication No. 2019/088055.
 本発明において好ましく使用されるオキシム化合物の具体例を以下に示すが、本発明はこれらに限定されるものではない。 Specific examples of oxime compounds preferably used in the present invention are shown below, but the present invention is not limited thereto.
 オキシム化合物は、波長350~500nmの範囲に極大吸収波長を有する化合物が好ましく、波長360~480nmの範囲に極大吸収波長を有する化合物がより好ましい。また、オキシム化合物の波長365nm又は波長405nmにおけるモル吸光係数は、感度の観点から、高いことが好ましく、1000~300000であることがより好ましく、2000~300000であることが更に好ましく、5000~200000であることが特に好ましい。化合物のモル吸光係数は、公知の方法を用いて測定することができる。例えば、分光光度計(Varian社製Cary-5 spectrophotometer)にて、酢酸エチル溶媒を用い、0.01g/Lの濃度で測定することが好ましい。 The oxime compound is preferably a compound having a maximum absorption wavelength in a wavelength range of 350 to 500 nm, more preferably a compound having a maximum absorption wavelength in a wavelength range of 360 to 480 nm. In addition, from the viewpoint of sensitivity, the molar extinction coefficient of the oxime compound at a wavelength of 365 nm or 405 nm is preferably high, more preferably from 1000 to 300,000, even more preferably from 2000 to 300,000, and even more preferably from 5000 to 200,000. It is particularly preferable that there be. The molar extinction coefficient of a compound can be measured using a known method. For example, it is preferable to measure with a spectrophotometer (Cary-5 spectrophotometer manufactured by Varian) using an ethyl acetate solvent at a concentration of 0.01 g/L.
 光重合開始剤としては、2官能あるいは3官能以上の光ラジカル重合開始剤を用いてもよい。そのような光ラジカル重合開始剤を用いることにより、光ラジカル重合開始剤の1分子から2つ以上のラジカルが発生するため、良好な感度が得られる。また、非対称構造の化合物を用いた場合においては、結晶性が低下して溶剤などへの溶解性が向上して、経時で析出しにくくなり、樹脂組成物の経時安定性を向上させることができる。2官能あるいは3官能以上の光ラジカル重合開始剤の具体例としては、特表2010-527339号公報、特表2011-524436号公報、国際公開第2015/004565号、特表2016-532675号公報の段落番号0407~0412、国際公開第2017/033680号の段落番号0039~0055に記載されているオキシム化合物の2量体、特表2013-522445号公報に記載されている化合物(E)および化合物(G)、国際公開第2016/034963号に記載されているCmpd1~7、特表2017-523465号公報の段落番号0007に記載されているオキシムエステル系開始剤、特開2017-167399号公報の段落番号0020~0033に記載されている光開始剤、特開2017-151342号公報の段落番号0017~0026に記載されている光重合開始剤(A)、特許第6469669号公報に記載されているオキシムエステル系開始剤などが挙げられる。 As the photopolymerization initiator, a difunctional, trifunctional or more functional photoradical polymerization initiator may be used. By using such a radical photopolymerization initiator, two or more radicals are generated from one molecule of the radical photopolymerization initiator, so that good sensitivity can be obtained. In addition, when a compound with an asymmetric structure is used, the crystallinity decreases and the solubility in solvents improves, making it difficult to precipitate over time, thereby improving the stability of the resin composition over time. . Specific examples of bifunctional or trifunctional or more functional photoradical polymerization initiators include those listed in Japanese Patent Publication No. 2010-527339, Japanese Patent Publication No. 2011-524436, International Publication No. 2015/004565, and Japanese Patent Application Publication No. 2016-532675. Dimers of oxime compounds described in paragraph numbers 0407 to 0412, paragraph numbers 0039 to 0055 of International Publication No. 2017/033680, compound (E) and compound ( G), Cmpd 1 to 7 described in International Publication No. 2016/034963, oxime ester initiator described in paragraph number 0007 of Japanese Patent Application Publication No. 2017-523465, paragraph of Japanese Patent Application Publication No. 2017-167399 Photoinitiators described in paragraph numbers 0020 to 0033, photoinitiators (A) described in paragraph numbers 0017 to 0026 of JP2017-151342A, oxime described in Japanese Patent No. 6469669 Examples include ester-based initiators.
 光重合開始剤の含有量は、樹脂組成物の全固形分中0.1~40質量%が好ましく、0.5~35質量%がより好ましく、1~30質量%が更に好ましい。樹脂組成物は光重合開始剤を1種のみ含んでいてもよく、2種以上含んでいてもよい。2種以上含む場合は、それらの合計量が上記範囲となることが好ましい。 The content of the photopolymerization initiator is preferably 0.1 to 40% by weight, more preferably 0.5 to 35% by weight, and even more preferably 1 to 30% by weight based on the total solid content of the resin composition. The resin composition may contain only one type of photopolymerization initiator, or may contain two or more types of photopolymerization initiators. When two or more types are included, it is preferable that their total amount falls within the above range.
<<硬化剤>>
 本発明の樹脂組成物が環状エーテル基を有する化合物を含む場合、硬化剤をさらに含むことが好ましい。硬化剤としては、例えばアミン系化合物、酸無水物系化合物、アミド系化合物、フェノール化合物、多価カルボン酸、チオール化合物などが挙げられる。硬化剤の具体例としては、コハク酸、トリメリット酸、ピロメリット酸、N,N-ジメチル-4-アミノピリジン、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)などが挙げられる。硬化剤は、特開2016-075720号公報の段落番号0072~0078に記載の化合物、特開2017-036379号公報に記載の化合物を用いることもできる。硬化剤の含有量は、環状エーテル基を有する化合物の100質量部に対し、0.01~20質量部が好ましく、0.01~10質量部がより好ましく、0.1~6.0質量部がさらに好ましい。
<<Curing agent>>
When the resin composition of the present invention contains a compound having a cyclic ether group, it is preferable that it further contains a curing agent. Examples of the curing agent include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, polyhydric carboxylic acids, and thiol compounds. Specific examples of the curing agent include succinic acid, trimellitic acid, pyromellitic acid, N,N-dimethyl-4-aminopyridine, pentaerythritol tetrakis (3-mercaptopropionate), and the like. As the curing agent, compounds described in paragraph numbers 0072 to 0078 of JP-A No. 2016-075720 and compounds described in JP-A No. 2017-036379 can also be used. The content of the curing agent is preferably 0.01 to 20 parts by weight, more preferably 0.01 to 10 parts by weight, and 0.1 to 6.0 parts by weight per 100 parts by weight of the compound having a cyclic ether group. is even more preferable.
<<有彩色着色剤>>
 本発明の樹脂組成物は、有彩色着色剤を含有することができる。本発明において、有彩色着色剤とは、白色着色剤および黒色着色剤以外の着色剤を意味する。有彩色着色剤は、波長400nm以上650nm未満の範囲に吸収を有する着色剤が好ましい。
<<Chromatic colorant>>
The resin composition of the present invention can contain a chromatic colorant. In the present invention, a chromatic colorant means a colorant other than a white colorant and a black colorant. The chromatic colorant is preferably a colorant having absorption in a wavelength range of 400 nm or more and less than 650 nm.
 有彩色着色剤としては、赤色着色剤、緑色着色剤、青色着色剤、黄色着色剤、紫色着色剤およびオレンジ色着色剤が挙げられる。有彩色着色剤は、顔料であってもよく、染料であってもよい。顔料と染料とを併用してもよい。また、顔料は、無機顔料、有機顔料のいずれでもよい。また、顔料には、無機顔料または有機-無機顔料の一部を有機発色団で置換した材料を用いることもできる。無機顔料や有機-無機顔料を有機発色団で置換することで、色相設計をしやすくできる。 Chromatic colorants include red colorants, green colorants, blue colorants, yellow colorants, purple colorants, and orange colorants. The chromatic colorant may be a pigment or a dye. A pigment and a dye may be used together. Further, the pigment may be either an inorganic pigment or an organic pigment. Further, as the pigment, an inorganic pigment or an organic-inorganic pigment partially substituted with an organic chromophore can also be used. By replacing inorganic pigments or organic-inorganic pigments with organic chromophores, hue design can be facilitated.
 顔料の平均一次粒子径は、1~200nmが好ましい。下限は5nm以上が好ましく、10nm以上がより好ましい。上限は、180nm以下が好ましく、150nm以下がより好ましく、100nm以下が更に好ましい。顔料の平均一次粒子径が上記範囲であれば、樹脂組成物中における顔料の分散安定性が良好である。なお、本発明において、顔料の一次粒子径は、顔料の一次粒子を透過型電子顕微鏡により観察し、得られた画像写真から求めることができる。具体的には、顔料の一次粒子の投影面積を求め、それに対応する円相当径を顔料の一次粒子径として算出する。また、本発明における平均一次粒子径は、400個の顔料の一次粒子についての一次粒子径の算術平均値とする。また、顔料の一次粒子とは、凝集のない独立した粒子をいう。 The average primary particle diameter of the pigment is preferably 1 to 200 nm. The lower limit is preferably 5 nm or more, more preferably 10 nm or more. The upper limit is preferably 180 nm or less, more preferably 150 nm or less, and even more preferably 100 nm or less. When the average primary particle diameter of the pigment is within the above range, the dispersion stability of the pigment in the resin composition is good. In the present invention, the primary particle diameter of the pigment can be determined from a photograph obtained by observing the primary particles of the pigment using a transmission electron microscope. Specifically, the projected area of the primary particles of the pigment is determined, and the corresponding circular equivalent diameter is calculated as the primary particle diameter of the pigment. Further, the average primary particle diameter in the present invention is the arithmetic mean value of the primary particle diameters of 400 pigment primary particles. Moreover, the primary particles of pigment refer to independent particles without agglomeration.
 顔料のCuKα線をX線源としたときのX線回折スペクトルにおけるいずれかの結晶面に由来するピークの半値幅より求めた結晶子サイズは、0.1nm~100nmであることが好ましく、0.5nm~50nmであることがより好ましく、1nm~30nmであることが更に好ましく、5nm~25nmであることが特に好ましい。 The crystallite size determined from the half-width of the peak derived from any crystal plane in the X-ray diffraction spectrum when the CuKα ray of the pigment is used as the X-ray source is preferably 0.1 nm to 100 nm, and preferably 0.1 nm to 100 nm. The thickness is more preferably 5 nm to 50 nm, even more preferably 1 nm to 30 nm, and particularly preferably 5 nm to 25 nm.
 顔料の比表面積は1~300m/gであることが好ましい。下限は10m/g以上であることが好ましく、30m/g以上であることがより好ましい。上限は、250m/g以下であることが好ましく、200m/g以下であることがより好ましい。比表面積の値は、BET(Brunauer、EmmettおよびTeller)法に準じてDIN 66131:determination of the specific surface area  of solids by gas adsorption(ガス吸着による固体の比表面積の測定)に従って測定することができる。 The specific surface area of the pigment is preferably 1 to 300 m 2 /g. The lower limit is preferably 10 m 2 /g or more, more preferably 30 m 2 /g or more. The upper limit is preferably 250 m 2 /g or less, more preferably 200 m 2 /g or less. The value of the specific surface area is determined according to DIN 66131: determination of the specific surface area of solids by gas adsorption according to the BET (Brunauer, Emmett and Teller) method. Determination of specific surface area of solids by adsorption).
 有彩色着色剤は、顔料を含むものであることが好ましい。有彩色着色剤中における顔料の含有量は、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、90質量%以上であることが特に好ましい。顔料としては以下に示すものが挙げられる。 The chromatic colorant preferably contains a pigment. The content of pigment in the chromatic colorant is preferably 50% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, and even more preferably 90% by mass or more. It is particularly preferable. Examples of pigments include those shown below.
 カラーインデックス(C.I.)Pigment Yellow 1,2,3,4,5,6,10,11,12,13,14,15,16,17,18,20,24,31,32,34,35,35:1,36,36:1,37,37:1,40,42,43,53,55,60,61,62,63,65,73,74,77,81,83,86,93,94,95,97,98,100,101,104,106,108,109,110,113,114,115,116,117,118,119,120,123,125,126,127,128,129,137,138,139,147,148,150,151,152,153,154,155,156,161,162,164,166,167,168,169,170,171,172,173,174,175,176,177,179,180,181,182,185,187,188,193,194,199,213,214,215,228,231,232(メチン系),233(キノリン系),234(アミノケトン系),235(アミノケトン系),236(アミノケトン系)等(以上、黄色顔料)、
 C.I.Pigment Orange 2,5,13,16,17:1,31,34,36,38,43,46,48,49,51,52,55,59,60,61,62,64,71,73等(以上、オレンジ色顔料)、
 C.I.Pigment Red 1,2,3,4,5,6,7,9,10,14,17,22,23,31,38,41,48:1,48:2,48:3,48:4,49,49:1,49:2,52:1,52:2,53:1,57:1,60:1,63:1,66,67,81:1,81:2,81:3,83,88,90,105,112,119,122,123,144,146,149,150,155,166,168,169,170,171,172,175,176,177,178,179,184,185,187,188,190,200,202,206,207,208,209,210,216,220,224,226,242,246,254,255,264,269,270,272,279,291,294(キサンテン系、Organo Ultramarine、Bluish Red),295(モノアゾ系),296(ジアゾ系),297(アミノケトン系)等(以上、赤色顔料)、
 C.I.Pigment Green 7,10,36,37,58,59,62,63,64(フタロシアニン系),65(フタロシアニン系),66(フタロシアニン系)等(以上、緑色顔料)、
 C.I.Pigment Violet 1,19,23,27,32,37,42,60(トリアリールメタン系),61(キサンテン系)等(以上、紫色顔料)、
 C.I.Pigment Blue 1,2,15,15:1,15:2,15:3,15:4,15:6,16,22,29,60,64,66,79,80,87(モノアゾ系),88(メチン系)等(以上、青色顔料)。
Color Index (C.I.) Pigment Yellow 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 24, 31, 32, 34, 35, 35: 1, 36, 36: 1, 37, 37: 1, 40, 42, 43, 53, 55, 60, 61, 62, 63, 65, 73, 74, 77, 81, 83, 86, 93, 94, 95, 97, 98, 100, 101, 104, 106, 108, 109, 110, 113, 114, 115, 116, 117, 118, 119, 120, 123, 125, 126, 127, 128, 129, 137, 138, 139, 147, 148, 150, 151, 152, 153, 154, 155, 156, 161, 162, 164, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 179, 180, 181, 182, 185, 187, 188, 193, 194, 199, 213, 214, 215, 228, 231, 232 (methine type), 233 (quinoline type), 234 ( (aminoketone type), 235 (aminoketone type), 236 (aminoketone type), etc. (yellow pigments),
C. I. Pigment Orange 2, 5, 13, 16, 17: 1, 31, 34, 36, 38, 43, 46, 48, 49, 51, 52, 55, 59, 60, 61, 62, 64, 71, 73, etc. (Above, orange pigment)
C. I. Pigment Red 1, 2, 3, 4, 5, 6, 7, 9, 10, 14, 17, 22, 23, 31, 38, 41, 48: 1, 48: 2, 48: 3, 48: 4, 49, 49:1, 49:2, 52:1, 52:2, 53:1, 57:1, 60:1, 63:1, 66, 67, 81:1, 81:2, 81:3, 83, 88, 90, 105, 112, 119, 122, 123, 144, 146, 149, 150, 155, 166, 168, 169, 170, 171, 172, 175, 176, 177, 178, 179, 184, 185, 187, 188, 190, 200, 202, 206, 207, 208, 209, 210, 216, 220, 224, 226, 242, 246, 254, 255, 264, 269, 270, 272, 279, 291, 294 (xanthene type, Organo Ultramarine, Bluish Red), 295 (monoazo type), 296 (diazo type), 297 (aminoketone type), etc. (red pigments),
C. I. Pigment Green 7, 10, 36, 37, 58, 59, 62, 63, 64 (phthalocyanine type), 65 (phthalocyanine type), 66 (phthalocyanine type), etc. (green pigments),
C. I. Pigment Violet 1, 19, 23, 27, 32, 37, 42, 60 (triarylmethane type), 61 (xanthene type), etc. (purple pigments),
C. I. Pigment Blue 1,2,15,15:1,15:2,15:3,15:4,15:6,16,22,29,60,64,66,79,80,87 (monoazo type), 88 (methine type), etc. (the above are blue pigments).
 また、緑色顔料として、1分子中のハロゲン原子数が平均10~14個であり、臭素原子数が平均8~12個であり、塩素原子数が平均2~5個であるハロゲン化亜鉛フタロシアニン顔料を用いることもできる。具体例としては、国際公開第2015/118720号に記載の化合物が挙げられる。また、緑色顔料として中国特許出願第106909027号明細書に記載の化合物、国際公開第2012/102395号に記載のリン酸エステルを配位子として有するフタロシアニン化合物、特開2019-008014号公報に記載のフタロシアニン化合物、特開2018-180023号公報に記載のフタロシアニン化合物、特開2019-038958号公報に記載の化合物、特開2020-076995号公報に記載のコアシェル型色素などを用いることもできる。 In addition, as a green pigment, halogenated zinc phthalocyanine pigments have an average number of halogen atoms in one molecule of 10 to 14, an average number of bromine atoms of 8 to 12, and an average of 2 to 5 chlorine atoms. You can also use Specific examples include compounds described in International Publication No. 2015/118720. In addition, as a green pigment, a compound described in Chinese Patent Application No. 106909027, a phthalocyanine compound having a phosphoric acid ester as a ligand described in International Publication No. 2012/102395, a phthalocyanine compound described in JP-A No. 2019-008014, A phthalocyanine compound, a phthalocyanine compound described in JP 2018-180023, a compound described in JP 2019-038958, a core-shell type dye described in JP 2020-076995, etc. can also be used.
 また、青色顔料として、リン原子を有するアルミニウムフタロシアニン化合物を用いることもできる。具体例としては、特開2012-247591号公報の段落番号0022~0030、特開2011-157478号公報の段落番号0047に記載の化合物が挙げられる。 Additionally, an aluminum phthalocyanine compound having a phosphorus atom can also be used as the blue pigment. Specific examples include compounds described in paragraph numbers 0022 to 0030 of JP-A No. 2012-247591 and paragraph number 0047 of JP-A No. 2011-157478.
 また、黄色顔料として、特開2017-201003号公報に記載の化合物、特開2017-197719号公報に記載の化合物、特開2017-171912号公報の段落番号0011~0062、0137~0276に記載の化合物、特開2017-171913号公報の段落番号0010~0062、0138~0295に記載の化合物、特開2017-171914号公報の段落番号0011~0062、0139~0190に記載の化合物、特開2017-171915号公報の段落番号0010~0065、0142~0222に記載の化合物、特開2013-054339号公報の段落番号0011~0034に記載のキノフタロン化合物、特開2014-026228号公報の段落番号0013~0058に記載のキノフタロン化合物、特開2018-062644号公報に記載のイソインドリン化合物、特開2018-203798号公報に記載のキノフタロン化合物、特開2018-062578号公報に記載のキノフタロン化合物、特許第6432076号公報に記載のキノフタロン化合物、特開2018-155881号公報に記載のキノフタロン化合物、特開2018-111757号公報に記載のキノフタロン化合物、特開2018-040835号公報に記載のキノフタロン化合物、特開2017-197640号公報に記載のキノフタロン化合物、特開2016-145282号公報に記載のキノフタロン化合物、特開2014-085565号公報に記載のキノフタロン化合物、特開2014-021139号公報に記載のキノフタロン化合物、特開2013-209614号公報に記載のキノフタロン化合物、特開2013-209435号公報に記載のキノフタロン化合物、特開2013-181015号公報に記載のキノフタロン化合物、特開2013-061622号公報に記載のキノフタロン化合物、特開2013-032486号公報に記載のキノフタロン化合物、特開2012-226110号公報に記載のキノフタロン化合物、特開2008-074987号公報に記載のキノフタロン化合物、特開2008-081565号公報に記載のキノフタロン化合物、特開2008-074986号公報に記載のキノフタロン化合物、特開2008-074985号公報に記載のキノフタロン化合物、特開2008-050420号公報に記載のキノフタロン化合物、特開2008-031281号公報に記載のキノフタロン化合物、特公昭48-032765号公報に記載のキノフタロン化合物、特開2019-008014号公報に記載のキノフタロン化合物、特許第6607427号公報に記載のキノフタロン化合物、韓国公開特許第10-2014-0034963号公報に記載の化合物、特開2017-095706号公報に記載の化合物、台湾特許出願公開第201920495号公報に記載の化合物、特許第6607427号公報に記載の化合物、特開2020-033525号公報に記載の化合物、特開2020-033524号公報に記載の化合物、特開2020-033523号公報に記載の化合物、特開2020-033522号公報に記載の化合物、特開2020-033521号公報に記載の化合物、国際公開第2020/045200号に記載の化合物、国際公開第2020/045199号に記載の化合物、国際公開第2020/045197号に記載の化合物を用いることもできる。また、これらの化合物を多量体化したものも、色価向上の観点から好ましく用いられる。 In addition, as yellow pigments, compounds described in JP-A No. 2017-201003, compounds described in JP-A No. 2017-197719, and compounds described in paragraph numbers 0011-0062 and 0137-0276 of JP-A No. 2017-171912 are used. Compounds, compounds described in paragraph numbers 0010 to 0062, 0138 to 0295 of JP 2017-171913, compounds described in paragraph numbers 0011 to 0062, 0139 to 0190 of JP 2017-171914, JP 2017- Compounds described in paragraph numbers 0010 to 0065 and 0142 to 0222 of JP-A No. 171915, quinophthalone compounds described in paragraph numbers 0011 to 0034 of JP-A No. 2013-054339, and paragraph numbers 0013 to 0058 of JP-A-2014-026228. The quinophthalone compound described in JP 2018-062644, the quinophthalone compound described in JP 2018-203798, the quinophthalone compound described in JP 2018-062578, and Japanese Patent No. 6432076. Quinophthalone compounds described in the publication, quinophthalone compounds described in JP2018-155881, quinophthalone compounds described in JP2018-111757, quinophthalone compounds described in JP2018-040835, JP2017- Quinophthalone compounds described in JP 2016-145282, quinophthalone compounds described in JP 2014-085565, quinophthalone compounds described in JP 2014-021139, JP 2014-021139; Quinophthalone compounds described in JP2013-209614, quinophthalone compounds described in JP2013-209435, quinophthalone compounds described in JP2013-181015, quinophthalone compounds described in JP2013-061622, Quinophthalone compounds described in JP2013-032486A, quinophthalone compounds described in JP2012-226110A, quinophthalone compounds described in JP2008-074987A, quinophthalone compounds described in JP2008-081565A Compounds, quinophthalone compounds described in JP 2008-074986, quinophthalone compounds described in JP 2008-074985, quinophthalone compounds described in JP 2008-050420, quinophthalone compounds described in JP 2008-031281 Quinophthalone compounds described in Japanese Patent Publication No. 48-032765, Quinophthalone compounds described in Japanese Patent Application Publication No. 2019-008014, Quinophthalone compounds described in Japanese Patent No. 6607427, Korean Published Patent No. 10-2014-0034963 Compounds described in Japanese Patent Publication No. 2017-095706, compounds described in Taiwan Patent Application Publication No. 201920495, compounds described in Japanese Patent No. 6607427, compounds described in Japanese Patent Application Publication No. 2020-033525 Compounds described in JP2020-033524A, compounds described in JP2020-033523A, compounds described in JP2020-033522A, compounds described in JP2020-033521A Compounds described in International Publication No. 2020/045200, compounds described in International Publication No. 2020/045199, and compounds described in International Publication No. 2020/045197 can also be used. Furthermore, polymerized versions of these compounds are also preferably used from the viewpoint of improving color value.
 赤色顔料として、特開2017-201384号公報に記載の構造中に少なくとも1つの臭素原子が置換したジケトピロロピロール化合物、特許第6248838号の段落番号0016~0022に記載のジケトピロロピロール化合物、国際公開第2012/102399号に記載のジケトピロロピロール化合物、国際公開第2012/117965号に記載のジケトピロロピロール化合物、特開2012-229344号公報に記載のナフトールアゾ化合物、特許第6516119号公報に記載の赤色顔料、特許第6525101号公報に記載の赤色顔料、特開2020-090632号公報の段落番号0229に記載の臭素化ジケトピロロピロール化合物、韓国公開特許第10-2019-0140741号公報に記載のアントラキノン化合物、韓国公開特許第10-2019-0140744号公報に記載のアントラキノン化合物、特開2020-079396号公報に記載のペリレン化合物などを用いることもできる。また、赤色顔料として、芳香族環に対して、酸素原子、硫黄原子または窒素原子が結合した基が導入された芳香族環基がジケトピロロピロール骨格に結合した構造を有する化合物を用いることもできる。 As a red pigment, a diketopyrrolopyrrole compound in which at least one bromine atom is substituted in the structure described in JP 2017-201384, a diketopyrrolopyrrole compound described in paragraph numbers 0016 to 0022 of Patent No. 6248838, Diketopyrrolopyrrole compounds described in International Publication No. 2012/102399, diketopyrrolopyrrole compounds described in International Publication No. 2012/117965, naphthol azo compounds described in JP2012-229344A, Patent No. 6516119 Red pigment described in the publication, red pigment described in Patent No. 6525101, brominated diketopyrrolopyrrole compound described in paragraph number 0229 of JP 2020-090632, Korean Published Patent No. 10-2019-0140741 Anthraquinone compounds described in the publication, anthraquinone compounds described in Korean Patent Publication No. 10-2019-0140744, perylene compounds described in JP 2020-079396, etc. can also be used. Further, as a red pigment, a compound having a structure in which an aromatic ring group into which a group to which an oxygen atom, sulfur atom, or nitrogen atom is bonded is bonded to a diketopyrrolopyrrole skeleton may also be used. can.
 各種顔料が有していることが好ましい回折角については、特許第6561862号公報、特許第6413872号公報、特許第6281345号公報、特開2020-026503号公報の記載を参酌でき、これらの内容は本明細書に組み込まれる。また、ピロロピロール系顔料としては、結晶格子面のうち(±1±1±1)の8個の面の中でX線回折パターンにおける最大ピークに対応する面方向の結晶子サイズが140Å以下であるものを用いることも好ましい。また、ピロロピロール系顔料の物性については、特開2020-097744号公報の段落番号0028~0073に記載の通り設定することも好ましい。 Regarding the diffraction angles that various pigments preferably have, the descriptions in Japanese Patent No. 6561862, Japanese Patent No. 6413872, Japanese Patent No. 6281345, and Japanese Patent Application Laid-open No. 2020-026503 can be referred to. Incorporated herein. In addition, as a pyrrolopyrrole pigment, the crystallite size in the plane direction corresponding to the maximum peak in the X-ray diffraction pattern among the eight planes (±1±1±1) of the crystal lattice planes is 140 Å or less. It is also preferable to use one. Furthermore, it is also preferable to set the physical properties of the pyrrolopyrrole pigment as described in paragraphs 0028 to 0073 of JP-A-2020-097744.
 有彩色着色剤には染料を用いることもできる。染料としては特に制限はなく、公知の染料を使用できる。例えば、ピラゾールアゾ系染料、アニリノアゾ系染料、トリアリールメタン系染料、アントラキノン系染料、アントラピリドン系染料、ベンジリデン系染料、オキソノール系染料、ピラゾロトリアゾールアゾ系染料、ピリドンアゾ系染料、シアニン系染料、フェノチアジン系染料、ピロロピラゾールアゾメチン系染料、キサンテン系染料、フタロシアニン系染料、ベンゾピラン系染料、インジゴ系染料、ピロメテン系染料等が挙げられる。 Dyes can also be used as chromatic colorants. There are no particular restrictions on the dye, and any known dye can be used. For example, pyrazole azo dyes, anilinoazo dyes, triarylmethane dyes, anthraquinone dyes, anthrapyridone dyes, benzylidene dyes, oxonol dyes, pyrazolotriazole azo dyes, pyridone azo dyes, cyanine dyes, and phenothiazines. Examples include pyrrolopyrazole azomethine dyes, xanthene dyes, phthalocyanine dyes, benzopyran dyes, indigo dyes, pyrromethene dyes, and the like.
 有彩色着色剤には色素多量体を用いることもできる。色素多量体は、溶剤に溶解して用いられる染料であることが好ましい。また、色素多量体は、粒子を形成していてもよい。色素多量体が粒子である場合は通常溶剤に分散した状態で用いられる。粒子状態の色素多量体は、例えば乳化重合によって得ることができ、特開2015-214682号公報に記載されている化合物および製造方法が具体例として挙げられる。色素多量体は、一分子中に、色素構造を2以上有するものであり、色素構造を3以上有することが好ましい。上限は、特に限定はないが、100以下とすることもできる。一分子中に有する複数の色素構造は、同一の色素構造であってもよく、異なる色素構造であってもよい。色素多量体の重量平均分子量(Mw)は、2000~50000が好ましい。下限は、3000以上がより好ましく、6000以上がさらに好ましい。上限は、30000以下がより好ましく、20000以下がさらに好ましい。色素多量体は、特開2011-213925号公報、特開2013-041097号公報、特開2015-028144号公報、特開2015-030742号公報、国際公開第2016/031442号等に記載されている化合物を用いることもできる。 Pigment multimers can also be used as chromatic colorants. The dye multimer is preferably a dye that is dissolved in a solvent. Further, the dye multimer may form particles. When the dye multimer is in the form of particles, it is usually used in a state of being dispersed in a solvent. The dye multimer in a particle state can be obtained, for example, by emulsion polymerization, and specific examples include the compound and manufacturing method described in JP-A No. 2015-214682. The dye multimer has two or more dye structures in one molecule, and preferably has three or more dye structures. The upper limit is not particularly limited, but may be 100 or less. The plurality of dye structures contained in one molecule may be the same dye structure or may be different dye structures. The weight average molecular weight (Mw) of the dye multimer is preferably 2,000 to 50,000. The lower limit is more preferably 3,000 or more, and even more preferably 6,000 or more. The upper limit is more preferably 30,000 or less, and even more preferably 20,000 or less. Dye multimers are described in JP 2011-213925, JP 2013-041097, JP 2015-028144, JP 2015-030742, WO 2016/031442, etc. Compounds can also be used.
 有彩色着色剤には、韓国公開特許第10-2020-0028160号公報に記載されたトリアリールメタン染料ポリマー、特開2020-117638号公報に記載のキサンテン化合物、国際公開第2020/174991号に記載のフタロシアニン化合物、特開2020-160279号公報に記載のイソインドリン化合物又はそれらの塩、韓国公開特許第10-2020-0069442号公報に記載の式1で表される化合物、韓国公開特許第10-2020-0069730号公報に記載の式1で表される化合物、韓国公開特許第10-2020-0069070号公報に記載の式1で表される化合物、韓国公開特許第10-2020-0069067号公報に記載の式1で表される化合物、韓国公開特許第10-2020-0069062号公報に記載の式1で表される化合物、特許第6809649号に記載のハロゲン化亜鉛フタロシアニン顔料、特開2020-180176号公報に記載のイソインドリン化合物、特開2021-187913号公報に記載のフェノチアジン系化合物、国際公開第2022/004261号に記載のハロゲン化亜鉛フタロシアニン、国際公開第2021/250883号に記載のハロゲン化亜鉛フタロシアニンを用いることができる。他の着色剤は、ロタキサンであってもよく、色素骨格はロタキサンの環状構造に使用されていてもよく、棒状構造に使用されていてもよく、両方の構造に使用されていてもよい。 Chromatic colorants include triarylmethane dye polymers described in Korean Patent Publication No. 10-2020-0028160, xanthene compounds described in JP 2020-117638, and International Publication No. 2020/174991. phthalocyanine compounds, isoindoline compounds or their salts described in JP-A No. 2020-160279, compounds represented by formula 1 described in Korean Published Patent No. 10-2020-0069442, Korean Published Patent No. 10- Compounds represented by formula 1 described in Korean Publication No. 2020-0069730, compounds represented by formula 1 described in Korean Publication Patent No. 10-2020-0069070, and compounds represented by formula 1 described in Korean Publication Patent No. 10-2020-0069067. Compound represented by formula 1 described in Korean Patent Publication No. 10-2020-0069062, halogenated zinc phthalocyanine pigment described in Patent No. 6809649, JP 2020-180176 Isoindoline compounds described in JP-A No. 2021-187913, phenothiazine compounds described in JP-A No. 2021-187913, halogenated zinc phthalocyanine described in International Publication No. 2022/004261, and halogenated compounds described in International Publication No. 2021/250883. Zinc phthalocyanine can be used. The other colorant may be a rotaxane, and the dye skeleton may be used in the cyclic structure of the rotaxane, in the rod-like structure, or in both structures.
 本発明の樹脂組成物が、有彩色着色剤を含有する場合、有彩色着色剤の含有量は、本発明の樹脂組成物の全固形分中1~50質量%が好ましい。本発明の樹脂組成物が、有彩色着色剤を2種以上含む場合、それらの合計量が上記範囲内であることが好ましい。 When the resin composition of the present invention contains a chromatic colorant, the content of the chromatic colorant is preferably 1 to 50% by mass based on the total solid content of the resin composition of the present invention. When the resin composition of the present invention contains two or more chromatic colorants, the total amount thereof is preferably within the above range.
 本発明の樹脂組成物を赤外線カットフィルタ用として用いる場合には、本発明の樹脂組成物は有彩色着色剤を実質的に含有しないことが好ましい。なお、本発明の樹脂組成物が有彩色着色剤を実質的に含有しない場合とは、本発明の樹脂組成物の全固形分中における有彩色着色剤の含有量が、0.5質量%以下であることを意味し、0.1質量%以下であることが好ましく、有彩色着色剤を含有しないことがより好ましい。 When the resin composition of the present invention is used for an infrared cut filter, it is preferable that the resin composition of the present invention does not substantially contain a chromatic colorant. In addition, the case where the resin composition of the present invention does not substantially contain a chromatic colorant means that the content of the chromatic colorant in the total solid content of the resin composition of the present invention is 0.5% by mass or less. It is preferably 0.1% by mass or less, and more preferably does not contain a chromatic colorant.
<<赤外線を透過させて可視光を遮光する色材>>
 本発明の樹脂組成物は、赤外線を透過させて可視光を遮光する色材(以下、可視光を遮光する色材ともいう)を含有することもできる。可視光を遮光する色材を含む樹脂組成物は、赤外線透過フィルタ形成用の樹脂組成物として好ましく用いられる。
<<Color material that transmits infrared rays and blocks visible light>>
The resin composition of the present invention can also contain a coloring material that transmits infrared rays and blocks visible light (hereinafter also referred to as a coloring material that blocks visible light). A resin composition containing a coloring material that blocks visible light is preferably used as a resin composition for forming an infrared transmission filter.
 可視光を遮光する色材は、紫色から赤色の波長領域の光を吸収する色材であることが好ましい。また、可視光を遮光する色材は、波長450~650nmの波長領域の光を遮光する色材であることが好ましい。また、可視光を遮光する色材は、波長900~1500nmの光を透過させる色材であることが好ましい。可視光を遮光する色材は、以下の(A)および(B)の少なくとも一方の要件を満たすことが好ましい。
(A):2種類以上の有彩色着色剤を含み、2種以上の有彩色着色剤の組み合わせで黒色を形成している。
(B):有機系黒色着色剤を含む。
The coloring material that blocks visible light is preferably a coloring material that absorbs light in the wavelength range from violet to red. Further, the coloring material that blocks visible light is preferably a coloring material that blocks light in a wavelength range of 450 to 650 nm. Further, the coloring material that blocks visible light is preferably a coloring material that transmits light with a wavelength of 900 to 1500 nm. The coloring material that blocks visible light preferably satisfies at least one of the following requirements (A) and (B).
(A): Contains two or more types of chromatic colorants, and black color is formed by a combination of two or more types of chromatic colorants.
(B): Contains an organic black colorant.
 有彩色着色剤としては、上述したものが挙げられる。有機系黒色着色剤としては、例えば、ビスベンゾフラノン化合物、アゾメチン化合物、ペリレン化合物、アゾ化合物などが挙げられ、ビスベンゾフラノン化合物、ペリレン化合物が好ましい。ビスベンゾフラノン化合物としては、特表2010-534726号公報、特表2012-515233号公報、特表2012-515234号公報などに記載の化合物が挙げられ、例えば、BASF社製の「Irgaphor Black」として入手可能である。ペリレン化合物としては、特開2017-226821号公報の段落番号0016~0020に記載の化合物、C.I.Pigment Black 31、32などが挙げられる。アゾメチン化合物としては、特開平01-170601号公報、特開平02-034664号公報などに記載の化合物が挙げられ、例えば、大日精化社製の「クロモファインブラックA1103」として入手できる。 Examples of the chromatic colorant include those mentioned above. Examples of the organic black colorant include bisbenzofuranone compounds, azomethine compounds, perylene compounds, and azo compounds, with bisbenzofuranone compounds and perylene compounds being preferred. Examples of bisbenzofuranone compounds include compounds described in Japanese Patent Application Publication No. 2010-534726, Japanese Patent Application Publication No. 2012-515233, and Japanese Patent Application Publication No. 2012-515234, and for example, as "Irgaphor Black" manufactured by BASF. available. Examples of perylene compounds include compounds described in paragraph numbers 0016 to 0020 of JP-A No. 2017-226821, C.I. I. Pigment Black 31, 32, etc. Examples of the azomethine compound include compounds described in JP-A-01-170601 and JP-A-02-034664, and are available as "Chromofine Black A1103" manufactured by Dainichiseika Kaisha, Ltd., for example.
 2種以上の有彩色着色剤の組み合わせで黒色を形成する場合の、有彩色着色剤の組み合わせとしては、例えば以下の(1)~(8)の態様が挙げられる。
(1)黄色着色剤、青色着色剤、紫色着色剤および赤色着色剤を含有する態様。
(2)黄色着色剤、青色着色剤および赤色着色剤を含有する態様。
(3)黄色着色剤、紫色着色剤および赤色着色剤を含有する態様。
(4)黄色着色剤および紫色着色剤を含有する態様。
(5)緑色着色剤、青色着色剤、紫色着色剤および赤色着色剤を含有する態様。
(6)紫色着色剤およびオレンジ色着色剤を含有する態様。
(7)緑色着色剤、紫色着色剤および赤色着色剤を含有する態様。
(8)緑色着色剤および赤色着色剤を含有する態様。
When a black color is formed by a combination of two or more chromatic colorants, examples of the combination of chromatic colorants include the following embodiments (1) to (8).
(1) Embodiment containing a yellow colorant, a blue colorant, a purple colorant, and a red colorant.
(2) Embodiment containing a yellow colorant, a blue colorant, and a red colorant.
(3) Embodiment containing a yellow colorant, a purple colorant, and a red colorant.
(4) Embodiment containing a yellow colorant and a purple colorant.
(5) An embodiment containing a green colorant, a blue colorant, a purple colorant, and a red colorant.
(6) Embodiment containing a purple colorant and an orange colorant.
(7) Embodiment containing a green colorant, a purple colorant, and a red colorant.
(8) Embodiment containing a green colorant and a red colorant.
 本発明の樹脂組成物が可視光を遮光する色材を含有する場合、可視光を遮光する色材の含有量は、樹脂組成物の全固形分中1~50質量%が好ましい。下限は5質量%以上であることが好ましく、10質量%以上であることがより好ましく、20質量%以上であることが更に好ましく、30質量%以上であることが特に好ましい。 When the resin composition of the present invention contains a coloring material that blocks visible light, the content of the coloring material that blocks visible light is preferably 1 to 50% by mass based on the total solid content of the resin composition. The lower limit is preferably 5% by mass or more, more preferably 10% by mass or more, even more preferably 20% by mass or more, and particularly preferably 30% by mass or more.
 本発明の樹脂組成物を赤外線カットフィルタ用として用いる場合には、本発明の樹脂組成物は可視光を遮光する色材を実質的に含有しないことが好ましい。なお、本発明の樹脂組成物が可視光を遮光する色材を実質的に含有しない場合とは、本発明の樹脂組成物の全固形分中における可視光を遮光する色材の含有量が、0.5質量%以下であることを意味し、0.1質量%以下であることが好ましく、可視光を遮光する色材を含有しないことがより好ましい。 When the resin composition of the present invention is used for an infrared cut filter, it is preferable that the resin composition of the present invention does not substantially contain a coloring material that blocks visible light. Note that the case where the resin composition of the present invention does not substantially contain a colorant that blocks visible light means that the content of the colorant that blocks visible light in the total solid content of the resin composition of the present invention is This means 0.5% by mass or less, preferably 0.1% by mass or less, and more preferably no coloring material that blocks visible light.
<<界面活性剤>>
 本発明の樹脂組成物は界面活性剤を含有することが好ましい。界面活性剤としては、フッ素系界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、アニオン性界面活性剤、シリコーン系界面活性剤などの各種界面活性剤を使用することができる。界面活性剤はシリコーン系界面活性剤またはフッ素系界面活性剤であることが好ましい。界面活性剤については、国際公開第2015/166779号の段落番号0238~0245に記載された界面活性剤が挙げられ、この内容は本明細書に組み込まれる。
<<Surfactant>>
It is preferable that the resin composition of the present invention contains a surfactant. As the surfactant, various surfactants such as fluorine surfactants, nonionic surfactants, cationic surfactants, anionic surfactants, and silicone surfactants can be used. The surfactant is preferably a silicone surfactant or a fluorine surfactant. Examples of the surfactant include the surfactants described in paragraph numbers 0238 to 0245 of International Publication No. 2015/166779, the contents of which are incorporated herein.
 フッ素系界面活性剤としては、特開2014-041318号公報の段落番号0060~0064(対応する国際公開第2014/017669号の段落番号0060~0064)等に記載の界面活性剤、特開2011-132503号公報の段落番号0117~0132に記載の界面活性剤、特開2020-008634号公報に記載の界面活性剤が挙げられ、これらの内容は本明細書に組み込まれる。フッ素系界面活性剤の市販品としては、例えば、メガファックF-171、F-172、F-173、F-176、F-177、F-141、F-142、F-143、F-144、F-437、F-475、F-477、F-479、F-482、F-554、F-555-A、F-556、F-557、F-558、F-559、F-560、F-561、F-563、F-565、F-568、F-575、F-780、EXP、MFS-330、R-01、R-40、R-40-LM、R-41、R-41-LM、RS-43、TF-1956、RS-90、R-94、RS-72-K、DS-21(以上、DIC(株)製)、フロラードFC430、FC431、FC171(以上、住友スリーエム(株)製)、サーフロンS-382、SC-101、SC-103、SC-104、SC-105、SC-1068、SC-381、SC-383、S-393、KH-40(以上、AGC(株)製)、PolyFox PF636、PF656、PF6320、PF6520、PF7002(以上、OMNOVA社製)、フタージェント208G、215M、245F、601AD、601ADH2、602A、610FM、710FL、710FM、710FS、FTX-218(以上、(株)NEOS製)等が挙げられる。 Examples of fluorine-based surfactants include surfactants described in paragraph numbers 0060 to 0064 of JP 2014-041318 (corresponding paragraph numbers 0060 to 0064 of WO 2014/017669), and the like; Examples include the surfactants described in paragraph numbers 0117 to 0132 of Publication No. 132503 and the surfactants described in JP-A-2020-008634, the contents of which are incorporated herein. Commercially available fluorosurfactants include Megafac F-171, F-172, F-173, F-176, F-177, F-141, F-142, F-143, F-144. , F-437, F-475, F-477, F-479, F-482, F-554, F-555-A, F-556, F-557, F-558, F-559, F-560 , F-561, F-563, F-565, F-568, F-575, F-780, EXP, MFS-330, R-01, R-40, R-40-LM, R-41, R -41-LM, RS-43, TF-1956, RS-90, R-94, RS-72-K, DS-21 (manufactured by DIC Corporation), Florado FC430, FC431, FC171 (manufactured by Sumitomo Corporation) 3M Co., Ltd.), Surflon S-382, SC-101, SC-103, SC-104, SC-105, SC-1068, SC-381, SC-383, S-393, KH-40 (manufactured by 3M Co., Ltd.), AGC Co., Ltd.), PolyFox PF636, PF656, PF6320, PF6520, PF7002 (manufactured by OMNOVA), Ftergent 208G, 215M, 245F, 601AD, 601ADH2, 602A, 610FM, 710FL, 710FM, 71 0FS, FTX-218 (all of which are manufactured by NEOS Co., Ltd.), and the like.
 また、フッ素系界面活性剤として、フッ素原子を含有する官能基を持つ分子構造を有し、熱を加えるとフッ素原子を含有する官能基の部分が切断されてフッ素原子が揮発するアクリル系化合物も好適に使用できる。このようなフッ素系界面活性剤としては、DIC(株)製のメガファックDSシリーズ(化学工業日報(2016年2月22日)、日経産業新聞(2016年2月23日))、例えばメガファックDS-21が挙げられる。 In addition, as fluorine-based surfactants, there are also acrylic compounds that have a molecular structure with a functional group containing a fluorine atom, and when heated, the functional group containing a fluorine atom is cut off and the fluorine atom volatizes. It can be used suitably. Examples of such fluorine-based surfactants include the Megafac DS series manufactured by DIC Corporation (Kagaku Kogyo Nippo (February 22, 2016), Nikkei Sangyo Shimbun (February 23, 2016)), An example is DS-21.
 また、フッ素系界面活性剤として、フッ素化アルキル基またはフッ素化アルキレンエーテル基を有するフッ素原子含有ビニルエーテル化合物と、親水性のビニルエーテル化合物との重合体を用いることも好ましい。このようなフッ素系界面活性剤は、特開2016-216602号公報に記載されたフッ素系界面活性剤が挙げられ、この内容は本明細書に組み込まれる。 It is also preferable to use a polymer of a fluorine atom-containing vinyl ether compound having a fluorinated alkyl group or a fluorinated alkylene ether group and a hydrophilic vinyl ether compound as the fluorinated surfactant. Examples of such fluorine-based surfactants include the fluorine-based surfactants described in JP-A No. 2016-216602, the content of which is incorporated herein.
 フッ素系界面活性剤として、ブロックポリマーを用いることもできる。フッ素系界面活性剤として、フッ素原子を有する(メタ)アクリレート化合物に由来する繰り返し単位と、アルキレンオキシ基(好ましくはエチレンオキシ基、プロピレンオキシ基)を2以上(好ましくは5以上)有する(メタ)アクリレート化合物に由来する繰り返し単位と、を含む含フッ素高分子化合物も好ましく用いることができる。また、特開2010-032698号公報の段落番号0016~0037に記載されたフッ素含有界面活性剤や、下記化合物も本発明で用いられるフッ素系界面活性剤として例示される。
 上記の化合物の重量平均分子量は、好ましくは3000~50000であり、例えば、14000である。上記の化合物中、繰り返し単位の割合を示す%はモル%である。
A block polymer can also be used as the fluorosurfactant. As a fluorine-based surfactant, a (meth) having a repeating unit derived from a (meth)acrylate compound having a fluorine atom and two or more (preferably five or more) alkyleneoxy groups (preferably ethyleneoxy group, propyleneoxy group) A fluorine-containing polymer compound containing a repeating unit derived from an acrylate compound can also be preferably used. Further, the fluorine-containing surfactants described in paragraph numbers 0016 to 0037 of JP-A-2010-032698 and the following compounds are also exemplified as the fluorine-containing surfactant used in the present invention.
The weight average molecular weight of the above compound is preferably 3,000 to 50,000, for example 14,000. In the above compounds, % indicating the proportion of repeating units is mol%.
 また、フッ素系界面活性剤として、エチレン性不飽和結合含有基を側鎖に有する含フッ素重合体を用いることもできる。具体例としては、特開2010-164965号公報の段落番号0050~0090および段落番号0289~0295に記載された化合物、DIC(株)製のメガファックRS-101、RS-102、RS-718K、RS-72-K等が挙げられる。また、フッ素系界面活性剤として、特開2015-117327号公報の段落番号0015~0158に記載の化合物を用いることもできる。 Furthermore, a fluoropolymer having an ethylenically unsaturated bond-containing group in its side chain can also be used as the fluorinated surfactant. Specific examples include compounds described in paragraph numbers 0050 to 0090 and paragraph numbers 0289 to 0295 of JP-A No. 2010-164965, Megafac RS-101, RS-102, RS-718K manufactured by DIC Corporation, Examples include RS-72-K. Further, as the fluorine-based surfactant, compounds described in paragraph numbers 0015 to 0158 of JP-A No. 2015-117327 can also be used.
 また、国際公開第2020/084854号に記載の界面活性剤を、炭素数6以上のパーフルオロアルキル基を有する界面活性剤の代替として用いることも、環境規制の観点から好ましい。 Furthermore, it is also preferable from the viewpoint of environmental regulations to use the surfactant described in International Publication No. 2020/084854 as a substitute for a surfactant having a perfluoroalkyl group having 6 or more carbon atoms.
 また、式(fi-1)で表される含フッ素イミド塩化合物を界面活性剤として用いることも好ましい。
 式(fi-1)中、mは1または2を表し、nは1~4の整数を表し、aは1または2を表し、Xa+はa価の金属イオン、第1級アンモニウムイオン、第2級アンモニウムイオン、第3級アンモニウムイオン、第4級アンモニウムイオンまたはNH を表す。
It is also preferable to use a fluorine-containing imide salt compound represented by formula (fi-1) as a surfactant.
In formula (fi-1), m represents 1 or 2, n represents an integer of 1 to 4, a represents 1 or 2, and X a+ represents an a-valent metal ion, a primary ammonium ion, or Represents a secondary ammonium ion, tertiary ammonium ion, quaternary ammonium ion or NH 4 + .
 ノニオン性界面活性剤としては、グリセロール、トリメチロールプロパン、トリメチロールエタン並びにそれらのエトキシレート及びプロポキシレート(例えば、グリセロールプロポキシレート、グリセロールエトキシレート等)、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート、ソルビタン脂肪酸エステル、プルロニックL10、L31、L61、L62、10R5、17R2、25R2(BASF社製)、テトロニック304、701、704、901、904、150R1(BASF社製)、ソルスパース20000(日本ルーブリゾール(株)製)、NCW-101、NCW-1001、NCW-1002(和光純薬工業(株)製)、パイオニンD-6112、D-6112-W、D-6315(竹本油脂(株)製)、オルフィンE1010、サーフィノール104、400、440(日信化学工業(株)製)などが挙げられる。 Examples of nonionic surfactants include glycerol, trimethylolpropane, trimethylolethane, and their ethoxylates and propoxylates (e.g., glycerol propoxylate, glycerol ethoxylate, etc.), polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, Polyoxyethylene oleyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, sorbitan fatty acid ester, Pluronic L10, L31, L61, L62, 10R5, 17R2, 25R2 (BASF Tetronic 304, 701, 704, 901, 904, 150R1 (manufactured by BASF), Solsperse 20000 (manufactured by Japan Lubrizol Co., Ltd.), NCW-101, NCW-1001, NCW-1002 (manufactured by Wako Pure Chemical Industries, Ltd.) (manufactured by Kogyo Co., Ltd.), Pionin D-6112, D-6112-W, D-6315 (manufactured by Takemoto Yushi Co., Ltd.), Olfin E1010, Surfynol 104, 400, 440 (manufactured by Nissin Chemical Industry Co., Ltd.) Examples include.
 カチオン性界面活性剤としては、テトラアルキルアンモニウム塩、アルキルアミン塩、ベンザルコニウム塩、アルキルピリジウム塩、イミダゾリウム塩等が挙げられる。具体例としては、ジヒドロキシエチルステアリルアミン、2-ヘプタデセニル-ヒドロキシエチルイミダゾリン、ラウリルジメチルベンジルアンモニウムクロライド、セチルピリジニウムクロライド、ステアラミドメチルピリジウムクロライド等が挙げられる。 Examples of the cationic surfactant include tetraalkylammonium salts, alkylamine salts, benzalkonium salts, alkylpyridium salts, imidazolium salts, and the like. Specific examples include dihydroxyethylstearylamine, 2-heptadecenyl-hydroxyethylimidazoline, lauryldimethylbenzylammonium chloride, cetylpyridinium chloride, stearamidemethylpyridium chloride, and the like.
 アニオン性界面活性剤としては、ドデシルベンゼンスルホン酸、ドデシルベンゼンスルホン酸ナトリウム、ラウリル硫酸ナトリウム、アルキルジフェニルエーテルジスルホン酸ナトリウム、アルキルナフタレンスルホン酸ナトリウム、ジアルキルスルホコハク酸ナトリウム、ステアリン酸ナトリウム、オレイン酸カリウム、ナトリウムジオクチルスルホサクシネート、ポリオキシエチレンアルキルエーテル硫酸ナトリウム、ポリオキシエチレンアルキルエーテ硫酸ナトリウム、ポリオキシエチレンアルキルフェニルエーテル硫酸ナトリウム、ジアルキルスルホコハク酸ナトリウム、ステアリン酸ナトリウム、オレイン酸ナトリウム、t-オクチルフェノキシエトキシポリエトキシエチル硫酸ナトリウム塩等が挙げられる。 Anionic surfactants include dodecylbenzenesulfonic acid, sodium dodecylbenzenesulfonate, sodium lauryl sulfate, sodium alkyldiphenyl ether disulfonate, sodium alkylnaphthalenesulfonate, sodium dialkylsulfosuccinate, sodium stearate, potassium oleate, sodium dioctyl Sulfosuccinate, sodium polyoxyethylene alkyl ether sulfate, sodium polyoxyethylene alkyl ether sulfate, sodium polyoxyethylene alkyl phenyl ether sulfate, sodium dialkyl sulfosuccinate, sodium stearate, sodium oleate, t-octylphenoxyethoxypolyethoxyethyl Examples include sodium sulfate salt.
 シリコーン系界面活性剤としては、例えば、SH8400、SH8400 FLUID、FZ-2122、67 Additive、74 Additive、M Additive、SF 8419 OIL(以上、ダウ・東レ(株)製)、TSF-4440、TSF-4300、TSF-4445、TSF-4460、TSF-4452(以上、モメンティブ・パフォーマンス・マテリアルズ社製)、KP-341、KF-6000、KF-6001、KF-6002、KF-6003(以上、信越化学工業(株)製)、BYK-307、BYK-322、BYK-323、BYK-330、BYK-3760、BYK-UV3510(以上、ビックケミー社製)等が挙げられる。 Examples of silicone surfactants include SH8400, SH8400 FLUID, FZ-2122, 67 Additive, 74 Additive, M Additive, SF 8419 OIL (manufactured by Dow Toray Industries, Inc.), TSF-4440, TSF-4300 , TSF-4445, TSF-4460, TSF-4452 (manufactured by Momentive Performance Materials), KP-341, KF-6000, KF-6001, KF-6002, KF-6003 (manufactured by Shin-Etsu Chemical Co., Ltd.) Co., Ltd.), BYK-307, BYK-322, BYK-323, BYK-330, BYK-3760, BYK-UV3510 (manufactured by BYK-Chemie Co., Ltd.), and the like.
 また、シリコーン系界面活性剤には下記構造の化合物を用いることもできる。
Moreover, a compound having the following structure can also be used as the silicone surfactant.
 界面活性剤の含有量は、樹脂組成物の全固形分中0.001~1質量%が好ましく、0.001~0.5質量%がより好ましく、0.001~0.2質量%が更に好ましい。樹脂組成物は界面活性剤を1種のみ含んでいてもよく、2種以上含んでいてもよい。2種以上含む場合は、それらの合計量が上記範囲となることが好ましい。 The content of the surfactant is preferably 0.001 to 1% by mass, more preferably 0.001 to 0.5% by mass, and even more preferably 0.001 to 0.2% by mass based on the total solid content of the resin composition. preferable. The resin composition may contain only one type of surfactant, or may contain two or more types of surfactant. When two or more types are included, it is preferable that their total amount falls within the above range.
<<重合禁止剤>>
 本発明の樹脂組成物は重合禁止剤を含有することができる。重合禁止剤としては、ハイドロキノン、p-メトキシフェノール、ジ-tert-ブチル-p-クレゾール、ピロガロール、tert-ブチルカテコール、ベンゾキノン、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、N-ニトロソフェニルヒドロキシアミン塩(アンモニウム塩、第一セリウム塩等)が挙げられ、p-メトキシフェノールが好ましい。重合禁止剤の含有量は、樹脂組成物の全固形分中、0.0001~5質量%が好ましい。樹脂組成物は重合禁止剤を1種のみ含んでいてもよく、2種以上含んでいてもよい。2種以上含む場合は、それらの合計量が上記範囲となることが好ましい。
<<Polymerization inhibitor>>
The resin composition of the present invention can contain a polymerization inhibitor. Polymerization inhibitors include hydroquinone, p-methoxyphenol, di-tert-butyl-p-cresol, pyrogallol, tert-butylcatechol, benzoquinone, 4,4'-thiobis(3-methyl-6-tert-butylphenol), Examples include 2,2'-methylenebis(4-methyl-6-t-butylphenol) and N-nitrosophenylhydroxyamine salts (ammonium salts, cerous salts, etc.), with p-methoxyphenol being preferred. The content of the polymerization inhibitor is preferably 0.0001 to 5% by mass based on the total solid content of the resin composition. The resin composition may contain only one kind of polymerization inhibitor, or may contain two or more kinds of polymerization inhibitors. When two or more types are included, it is preferable that their total amount falls within the above range.
<<シランカップリング剤>>
 本発明の樹脂組成物はシランカップリング剤を含有することができる。本明細書において、シランカップリング剤は、加水分解性基とそれ以外の官能基とを有するシラン化合物を意味する。また、加水分解性基とは、ケイ素原子に直結し、加水分解反応および縮合反応の少なくともいずれかによってシロキサン結合を生じ得る置換基をいう。加水分解性基としては、例えば、ハロゲン原子、アルコキシ基、アシルオキシ基などが挙げられ、アルコキシ基が好ましい。すなわち、シランカップリング剤は、アルコキシシリル基を有する化合物が好ましい。また、加水分解性基以外の官能基としては、例えば、ビニル基、(メタ)アクリロイル基、メルカプト基、エポキシ基、オキセタニル基、アミノ基、ウレイド基、スルフィド基、イソシアネート基、フェニル基などが挙げられ、(メタ)アクリロイル基およびエポキシ基が好ましい。シランカップリング剤は、特開2009-288703号公報の段落番号0018~0036に記載の化合物、特開2009-242604号公報の段落番号0056~0066に記載の化合物が挙げられ、これらの内容は本明細書に組み込まれる。シランカップリング剤の含有量は、樹脂組成物の全固形分中0.01~15.0質量%が好ましく、0.05~10.0質量%がより好ましい。樹脂組成物はシランカップリング剤を1種のみ含んでいてもよく、2種以上含んでいてもよい。2種以上含む場合は、それらの合計量が上記範囲となることが好ましい。
<<Silane coupling agent>>
The resin composition of the present invention can contain a silane coupling agent. In this specification, a silane coupling agent means a silane compound having a hydrolyzable group and other functional groups. Furthermore, the term "hydrolyzable group" refers to a substituent that is directly bonded to a silicon atom and can form a siloxane bond through at least one of a hydrolysis reaction and a condensation reaction. Examples of the hydrolyzable group include a halogen atom, an alkoxy group, an acyloxy group, and an alkoxy group is preferred. That is, the silane coupling agent is preferably a compound having an alkoxysilyl group. Examples of functional groups other than hydrolyzable groups include vinyl groups, (meth)acryloyl groups, mercapto groups, epoxy groups, oxetanyl groups, amino groups, ureido groups, sulfide groups, isocyanate groups, and phenyl groups. (meth)acryloyl group and epoxy group are preferred. Examples of the silane coupling agent include compounds described in paragraph numbers 0018 to 0036 of JP-A No. 2009-288703, and compounds described in paragraph numbers 0056 to 0066 of JP-A No. 2009-242604, the contents of which are incorporated herein by reference. Incorporated into the specification. The content of the silane coupling agent is preferably 0.01 to 15.0% by mass, more preferably 0.05 to 10.0% by mass based on the total solid content of the resin composition. The resin composition may contain only one type of silane coupling agent, or may contain two or more types. When two or more types are included, it is preferable that their total amount falls within the above range.
<<紫外線吸収剤>>
 本発明の樹脂組成物は、紫外線吸収剤を含有することができる。紫外線吸収剤としては、共役ジエン化合物、アミノジエン化合物、サリシレート化合物、ベンゾフェノン化合物、ベンゾトリアゾール化合物、アクリロニトリル化合物、ヒドロキシフェニルトリアジン化合物、インドール化合物、トリアジン化合物、ジベンゾイル化合物などが挙げられる。このような化合物の具体例としては、特開2009-217221号公報の段落番号0038~0052、特開2012-208374号公報の段落番号0052~0072、特開2013-068814号公報の段落番号0317~0334、特開2016-162946号公報の段落番号0061~0080、国際公開第2021/131355号の段落番号0052、0074、国際公開第2021/132247号の段落番号0022~0024に記載された化合物が挙げられ、これらの内容は本明細書に組み込まれる。紫外線吸収剤の市販品としては、BASF社製のTinuvinシリーズ、Uvinul(ユビナール)シリーズなどが挙げられる。また、ベンゾトリアゾール化合物としては、ミヨシ油脂製のMYUAシリーズ(化学工業日報、2016年2月1日)が挙げられる。紫外線吸収剤は、特許第6268967号公報の段落番号0049~0059に記載された化合物、国際公開第2016/181987号の段落番号0059~0076に記載された化合物、国際公開第2020/137819号に記載されたチオアリール基置換ベンゾトリアゾール型紫外線吸収剤、特開2021-178918号公報に記載の反応性トリアジン紫外線吸収剤を用いることもできる。紫外線吸収剤の含有量は、樹脂組成物の全固形分中0.01~30質量%が好ましく、0.05~25質量%がより好ましい。樹脂組成物は紫外線吸収剤を1種のみ含んでいてもよく、2種以上含んでいてもよい。2種以上含む場合は、それらの合計量が上記範囲となることが好ましい。
<<Ultraviolet absorber>>
The resin composition of the present invention can contain an ultraviolet absorber. Examples of the ultraviolet absorber include conjugated diene compounds, aminodiene compounds, salicylate compounds, benzophenone compounds, benzotriazole compounds, acrylonitrile compounds, hydroxyphenyltriazine compounds, indole compounds, triazine compounds, dibenzoyl compounds, and the like. Specific examples of such compounds include paragraph numbers 0038 to 0052 of JP2009-217221A, paragraphs 0052 to 0072 of JP2012-208374A, and paragraphs 0317 to 0317 of JP2013-068814A. 0334, paragraph numbers 0061 to 0080 of JP 2016-162946, paragraph numbers 0052 and 0074 of International Publication No. 2021/131355, and paragraph numbers 0022 to 0024 of International Publication No. 2021/132247. , the contents of which are incorporated herein. Commercially available UV absorbers include the Tinuvin series and Uvinul series manufactured by BASF. Furthermore, examples of the benzotriazole compound include the MYUA series manufactured by Miyoshi Yushi (Kagaku Kogyo Nippo, February 1, 2016). The ultraviolet absorbers include compounds described in paragraph numbers 0049 to 0059 of Patent No. 6268967, compounds described in paragraph numbers 0059 to 0076 of International Publication No. 2016/181987, and compounds described in International Publication No. 2020/137819. It is also possible to use a thioaryl group-substituted benzotriazole type ultraviolet absorber and a reactive triazine ultraviolet absorber described in JP-A No. 2021-178918. The content of the ultraviolet absorber is preferably 0.01 to 30% by mass, more preferably 0.05 to 25% by mass based on the total solid content of the resin composition. The resin composition may contain only one type of ultraviolet absorber, or may contain two or more types of ultraviolet absorbers. When two or more types are included, it is preferable that their total amount falls within the above range.
<<酸化防止剤>>
 本発明の樹脂組成物は、酸化防止剤を含有することができる。酸化防止剤としては、フェノール系酸化防止剤、アミン系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤などが挙げられる。フェノール系酸化防止剤としては、ヒンダードフェノール化合物が挙げられる。フェノール系酸化防止剤は、フェノール性ヒドロキシ基に隣接する部位(オルト位)に置換基を有する化合物が好ましい。前述の置換基としては炭素数1~22の置換又は無置換のアルキル基が好ましい。酸化防止剤は、同一分子内にフェノール基と亜リン酸エステル基を有する化合物も好ましい。リン系酸化防止剤としては、トリス[2-[[2,4,8,10-テトラキス(1,1-ジメチルエチル)ジベンゾ[d,f][1,3,2]ジオキサホスフェピン-6-イル]オキシ]エチル]アミン、トリス[2-[(4,6,9,11-テトラ-tert-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン-2-イル)オキシ]エチル]アミン、亜リン酸エチルビス(2,4-ジ-tert-ブチル-6-メチルフェニル)、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイトなどが挙げられる。酸化防止剤の市販品としては、例えば、アデカスタブAO-20、アデカスタブAO-30、アデカスタブAO-40、アデカスタブAO-50、アデカスタブAO-50F、アデカスタブAO-60、アデカスタブAO-60G、アデカスタブAO-80、アデカスタブAO-330、アデカスタブAO-412S、アデカスタブ2112、アデカスタブPEP-36、アデカスタブHP-10(以上、(株)ADEKA製)、JP-650(城北化学工業(株)製)などが挙げられる。酸化防止剤は、特許第6268967号公報の段落番号0023~0048に記載された化合物、国際公開第2017/006600号に記載された化合物、国際公開第2017/164024号に記載された化合物、韓国公開特許第10-2019-0059371号公報に記載された化合物を使用することもできる。酸化防止剤の含有量は、樹脂組成物の全固形分中0.01~20質量%であることが好ましく、0.3~15質量%であることがより好ましい。樹脂組成物は酸化防止剤を1種のみ含んでいてもよく、2種以上含んでいてもよい。2種以上含む場合は、それらの合計量が上記範囲となることが好ましい。
<<Antioxidant>>
The resin composition of the present invention can contain an antioxidant. Examples of the antioxidant include phenolic antioxidants, amine antioxidants, phosphorus antioxidants, sulfur antioxidants, and the like. Examples of phenolic antioxidants include hindered phenol compounds. The phenolic antioxidant is preferably a compound having a substituent at a site adjacent to the phenolic hydroxy group (ortho position). The above-mentioned substituents are preferably substituted or unsubstituted alkyl groups having 1 to 22 carbon atoms. Preferably, the antioxidant is a compound having a phenol group and a phosphite group in the same molecule. As a phosphorus antioxidant, tris[2-[[2,4,8,10-tetrakis(1,1-dimethylethyl)dibenzo[d,f][1,3,2]dioxaphosphepine- 6-yl]oxy]ethyl]amine, tris[2-[(4,6,9,11-tetra-tert-butyldibenzo[d,f][1,3,2]dioxaphosphepine-2- yl)oxy]ethyl]amine, ethylbis(2,4-di-tert-butyl-6-methylphenyl) phosphite, tris(2,4-di-tert-butylphenyl) phosphite, and the like. Commercially available antioxidants include, for example, Adekastab AO-20, Adekastab AO-30, Adekastab AO-40, Adekastab AO-50, Adekastab AO-50F, Adekastab AO-60, Adekastab AO-60G, Adekastab AO-80. , ADEKA STAB AO-330, ADEKA STAB AO-412S, ADEKA STAB 2112, ADEKA STAB PEP-36, ADEKA STAB HP-10 (manufactured by ADEKA Co., Ltd.), and JP-650 (manufactured by Johoku Kagaku Kogyo Co., Ltd.). The antioxidants include compounds described in paragraph numbers 0023 to 0048 of Patent No. 6268967, compounds described in International Publication No. 2017/006600, compounds described in International Publication No. 2017/164024, and Korean Publication No. Compounds described in Patent No. 10-2019-0059371 can also be used. The content of the antioxidant is preferably 0.01 to 20% by mass, more preferably 0.3 to 15% by mass based on the total solid content of the resin composition. The resin composition may contain only one type of antioxidant, or may contain two or more types of antioxidant. When two or more types are included, it is preferable that their total amount falls within the above range.
<<その他成分>>
 本発明の樹脂組成物は、必要に応じて、増感剤、硬化促進剤、フィラー、熱硬化促進剤、可塑剤及びその他の助剤類(例えば、導電性粒子、消泡剤、難燃剤、レベリング剤、剥離促進剤、香料、表面張力調整剤、連鎖移動剤など)を含有してもよい。これらの成分を適宜含有させることにより、膜物性などの性質を調整することができる。これらの成分は、例えば、特開2012-003225号公報の段落番号0183以降(対応する米国特許出願公開第2013/0034812号明細書の段落番号0237)の記載、特開2008-250074号公報の段落番号0101~0104、0107~0109等の記載を参酌でき、これらの内容は本明細書に組み込まれる。また、本発明の樹脂組成物は、必要に応じて、潜在酸化防止剤を含有してもよい。潜在酸化防止剤としては、酸化防止剤として機能する部位が保護基で保護された化合物であって、100~250℃で加熱するか、又は酸/塩基触媒存在下で80~200℃で加熱することにより保護基が脱離して酸化防止剤として機能する化合物が挙げられる。潜在酸化防止剤としては、国際公開第2014/021023号、国際公開第2017/030005号、特開2017-008219号公報に記載された化合物が挙げられる。潜在酸化防止剤の市販品としては、アデカアークルズGPA-5001((株)ADEKA製)等が挙げられる。
<<Other ingredients>>
The resin composition of the present invention may contain sensitizers, curing accelerators, fillers, thermosetting accelerators, plasticizers, and other auxiliary agents (e.g., conductive particles, antifoaming agents, flame retardants, (leveling agents, peeling accelerators, fragrances, surface tension regulators, chain transfer agents, etc.) may also be included. By appropriately containing these components, properties such as film physical properties can be adjusted. These components are described, for example, in paragraphs 0183 and after of JP-A-2012-003225 (corresponding paragraph 0237 of U.S. Patent Application Publication No. 2013/0034812), and in paragraphs of JP-A-2008-250074. The descriptions of numbers 0101 to 0104, 0107 to 0109, etc. can be referred to, and the contents thereof are incorporated into the present specification. Furthermore, the resin composition of the present invention may contain a latent antioxidant, if necessary. A latent antioxidant is a compound whose moiety that functions as an antioxidant is protected with a protecting group, and is heated at 100 to 250°C or heated at 80 to 200°C in the presence of an acid/base catalyst. Examples include compounds that function as antioxidants by removing protective groups. Examples of the latent antioxidant include compounds described in WO 2014/021023, WO 2017/030005, and JP 2017-008219. Commercially available latent antioxidants include Adeka Arcles GPA-5001 (manufactured by ADEKA Co., Ltd.).
<収容容器>
 本発明の樹脂組成物の収容容器としては、特に限定はなく、公知の収容容器を用いることができる。また、収容容器として、原材料や樹脂組成物中への不純物混入を抑制することを目的に、容器内壁を6種6層の樹脂で構成する多層ボトルや6種の樹脂を7層構造にしたボトルを使用することも好ましい。このような容器としては例えば特開2015-123351号公報に記載の容器が挙げられる。また、容器内壁は、容器内壁からの金属溶出を防ぎ、樹脂組成物の経時安定性を高めたり、成分変質を抑制するなど目的で、ガラス製やステンレス製などにすることも好ましい。
<Storage container>
The container for storing the resin composition of the present invention is not particularly limited, and any known container can be used. In addition, for the purpose of suppressing impurities from entering raw materials and resin compositions, we also use multilayer bottles with container inner walls made of 6 types and 6 layers of resin, and bottles with 7 layers of 6 types of resin as storage containers. It is also preferable to use Examples of such a container include the container described in JP-A No. 2015-123351. Further, the inner wall of the container is preferably made of glass, stainless steel, etc. for the purpose of preventing metal elution from the inner wall of the container, increasing stability of the resin composition over time, and suppressing component deterioration.
<樹脂組成物の調製方法>
 本発明の樹脂組成物は、前述の成分を混合して調製できる。樹脂組成物の調製に際しては、全成分を同時に溶剤に溶解または分散して樹脂組成物を調製してもよいし、必要に応じては、各成分を適宜配合した2つ以上の溶液または分散液をあらかじめ調製し、使用時(塗布時)にこれらを混合して樹脂組成物として調製してもよい。
<Method for preparing resin composition>
The resin composition of the present invention can be prepared by mixing the above-mentioned components. When preparing a resin composition, the resin composition may be prepared by dissolving or dispersing all the components in a solvent at the same time, or, if necessary, two or more solutions or dispersions containing each component as appropriate may be prepared. may be prepared in advance and mixed at the time of use (at the time of application) to prepare a resin composition.
 樹脂組成物の調製に際して、顔料を分散させるプロセスを含んでいてもよい。顔料を分散させるプロセスにおいて、顔料の分散に用いる機械力としては、圧縮、圧搾、衝撃、剪断、キャビテーションなどが挙げられる。これらプロセスの具体例としては、ビーズミル、サンドミル、ロールミル、ボールミル、ペイントシェーカー、マイクロフルイダイザー、高速インペラー、サンドグラインダー、フロージェットミキサー、高圧湿式微粒化、超音波分散などが挙げられる。またサンドミル(ビーズミル)における顔料の粉砕においては、径の小さいビーズを使用する、ビーズの充填率を大きくする事等により粉砕効率を高めた条件で処理することが好ましい。また、粉砕処理後にろ過、遠心分離などで粗粒子を除去することが好ましい。また、顔料を分散させるプロセスおよび分散機は、「分散技術大全集、株式会社情報機構発行、2005年7月15日」や「サスペンション(固/液分散系)を中心とした分散技術と工業的応用の実際 総合資料集、経営開発センター出版部発行、1978年10月10日」、特開2015-157893号公報の段落番号0022に記載のプロセス及び分散機を好適に使用出来る。また顔料を分散させるプロセスにおいては、ソルトミリング工程にて顔料の微細化処理を行ってもよい。ソルトミリング工程に用いられる素材、機器、処理条件等は、例えば特開2015-194521号公報、特開2012-046629号公報の記載を参酌できる。分散に使用するビーズの素材としては、ジルコニア、メノウ、石英、チタニア、タングステンカーバイト、窒化ケイ素、アルミナ、ステンレス鋼およびガラスが挙げられる。また、ビーズには、モース硬度が2以上の無機化合物を使用することもできる。樹脂組成物中に上記ビーズが1~10000ppm含まれていてもよい。 The preparation of the resin composition may include a process of dispersing the pigment. In the process of dispersing pigments, mechanical forces used for dispersing pigments include compression, squeezing, impact, shearing, cavitation, and the like. Specific examples of these processes include bead mills, sand mills, roll mills, ball mills, paint shakers, microfluidizers, high speed impellers, sand grinders, flow jet mixers, high pressure wet atomization, ultrasonic dispersion, and the like. In addition, when pulverizing pigments in a sand mill (bead mill), it is preferable to use small-diameter beads or increase the filling rate of the beads, thereby increasing the pulverizing efficiency. Further, it is preferable to remove coarse particles by filtration, centrifugation, etc. after the pulverization treatment. In addition, the process and dispersion machine for dispersing pigments are described in ``Complete Works of Dispersion Technology, Published by Information Technology Corporation, July 15, 2005'' and ``Dispersion technology centered on suspension (solid/liquid dispersion system) and industrial The process and dispersion machine described in Paragraph No. 0022 of JP 2015-157893 A, "Practical Application Comprehensive Data Collection, Published by Management Development Center Publishing Department, October 10, 1978" can be suitably used. Further, in the process of dispersing the pigment, the pigment may be subjected to a finer treatment in a salt milling step. For the materials, equipment, processing conditions, etc. used in the salt milling process, the descriptions in JP-A No. 2015-194521 and JP-A No. 2012-046629 can be referred to, for example. Bead materials used for dispersion include zirconia, agate, quartz, titania, tungsten carbide, silicon nitride, alumina, stainless steel, and glass. Moreover, an inorganic compound having a Mohs hardness of 2 or more can also be used for the beads. The resin composition may contain 1 to 10,000 ppm of the beads.
 樹脂組成物の調製にあたり、異物の除去や欠陥の低減などの目的で、樹脂組成物をフィルタでろ過することが好ましい。フィルタとしては、従来からろ過用途等に用いられているフィルタであれば特に限定されることなく用いることができる。例えば、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂、ナイロン(例えばナイロン-6、ナイロン-6,6)等のポリアミド樹脂、ポリエチレン、ポリプロピレン(PP)等のポリオレフィン樹脂(高密度、超高分子量のポリオレフィン樹脂を含む)等の素材を用いたフィルタが挙げられる。これら素材の中でもポリプロピレン(高密度ポリプロピレンを含む)およびナイロンが好ましい。 In preparing the resin composition, it is preferable to filter the resin composition with a filter for the purpose of removing foreign substances and reducing defects. As the filter, any filter that has been conventionally used for filtration and the like can be used without particular limitation. For example, fluororesins such as polytetrafluoroethylene (PTFE), polyamide resins such as nylon (e.g. nylon-6, nylon-6,6), polyolefin resins (high density, ultra-high molecular weight) such as polyethylene, polypropylene (PP), etc. Examples include filters using materials such as polyolefin resin (including polyolefin resin). Among these materials, polypropylene (including high-density polypropylene) and nylon are preferred.
 フィルタの孔径は、0.01~7.0μmが好ましく、0.01~3.0μmがより好ましく、0.05~0.5μmが更に好ましい。フィルタの孔径が上記範囲であれば、微細な異物をより確実に除去できる。フィルタの孔径値については、フィルタメーカーの公称値を参照することができる。フィルタは、日本ポール株式会社(DFA4201NXEY、DFA4201NAEY、DFA4201J006Pなど)、アドバンテック東洋株式会社、日本インテグリス株式会社(旧日本マイクロリス株式会社)および株式会社キッツマイクロフィルタ等が提供する各種フィルタを用いることができる。 The pore diameter of the filter is preferably 0.01 to 7.0 μm, more preferably 0.01 to 3.0 μm, and even more preferably 0.05 to 0.5 μm. If the pore diameter of the filter is within the above range, fine foreign matter can be removed more reliably. Regarding the pore size value of the filter, reference can be made to the nominal value of the filter manufacturer. As the filter, various filters provided by Nippon Pole Co., Ltd. (DFA4201NXEY, DFA4201NAEY, DFA4201J006P, etc.), Advantech Toyo Co., Ltd., Nippon Entegris Co., Ltd. (formerly Nippon Microlith Co., Ltd.), Kitz Microfilter Co., Ltd., etc. can be used. .
 また、フィルタとしてファイバ状のろ材を用いることも好ましい。ファイバ状のろ材としては、例えばポリプロピレンファイバ、ナイロンファイバ、グラスファイバ等が挙げられる。市販品としては、ロキテクノ社製のSBPタイプシリーズ(SBP008など)、TPRタイプシリーズ(TPR002、TPR005など)、SHPXタイプシリーズ(SHPX003など)が挙げられる。 It is also preferable to use a fiber-like filter medium as the filter. Examples of fibrous filter media include polypropylene fibers, nylon fibers, and glass fibers. Commercially available products include the SBP type series (SBP008, etc.), the TPR type series (TPR002, TPR005, etc.), and the SHPX type series (SHPX003, etc.) manufactured by Loki Techno.
 フィルタを使用する際、異なるフィルタ(例えば、第1のフィルタと第2のフィルタなど)を組み合わせてもよい。その際、各フィルタでのろ過は、1回のみでもよいし、2回以上行ってもよい。また、上述した範囲内で異なる孔径のフィルタを組み合わせてもよい。また、第1のフィルタでのろ過は、分散液のみに対して行い、他の成分を混合した後で、第2のフィルタでろ過を行ってもよい。 When using filters, different filters (for example, a first filter and a second filter, etc.) may be combined. At that time, filtration with each filter may be performed only once, or may be performed two or more times. Further, filters having different pore diameters within the above-mentioned range may be combined. Alternatively, only the dispersion liquid may be filtered with the first filter, and then filtered with the second filter after other components are mixed.
<膜>
 次に、本発明の膜について説明する。本発明の膜は、上述した本発明の樹脂組成物から得られるものである。本発明の膜は、光学フィルタとして好ましく用いることができる。光学フィルタの用途は、特に限定されないが、赤外線カットフィルタ、赤外線透過フィルタなどが挙げられる。赤外線カットフィルタとしては、例えば、固体撮像素子の受光側における赤外線カットフィルタ(例えば、ウエハーレベルレンズに対する赤外線カットフィルタ用など)、固体撮像素子の裏面側(受光側とは反対側)における赤外線カットフィルタ、環境光センサー用の赤外線カットフィルタ(例えば、情報端末装置が置かれた環境の照度や色調を感知してディスプレイの色調を調整する照度センサーや、色調を調整する色補正用センサー)などが挙げられる。特に、固体撮像素子の受光側における赤外線カットフィルタとして好ましく用いることができる。赤外線透過フィルタとしては、可視光を遮光し、特定の波長以上の赤外線を選択的に透過可能なフィルタが挙げられる。
<Membrane>
Next, the membrane of the present invention will be explained. The membrane of the present invention is obtained from the resin composition of the present invention described above. The film of the present invention can be preferably used as an optical filter. Applications of the optical filter are not particularly limited, but include infrared cut filters, infrared transmission filters, and the like. Examples of the infrared cut filter include an infrared cut filter on the light receiving side of the solid-state image sensor (for example, an infrared cut filter for a wafer level lens, etc.), and an infrared cut filter on the back side of the solid-state image sensor (opposite side to the light receiving side). , infrared cut filters for environmental light sensors (for example, illuminance sensors that detect the illuminance and color tone of the environment in which the information terminal device is placed and adjust the color tone of the display, and color correction sensors that adjust the color tone). It will be done. In particular, it can be preferably used as an infrared cut filter on the light receiving side of a solid-state image sensor. Examples of the infrared transmission filter include a filter that can block visible light and selectively transmit infrared rays having a specific wavelength or more.
 本発明の膜は、パターンを有していてもよく、パターンを有さない膜(平坦膜)であってもよい。また、本発明の膜は、支持体上に積層して用いてもよく、本発明の膜を支持体から剥離して用いてもよい。支持体としては、シリコン基板などの半導体基材や、透明基材が挙げられる。 The film of the present invention may have a pattern or may be a film without a pattern (flat film). Further, the membrane of the present invention may be used by being laminated on a support, or the membrane of the present invention may be used by being peeled off from the support. Examples of the support include semiconductor base materials such as silicon substrates and transparent base materials.
 支持体として用いられる半導体基材上には、電荷結合素子(CCD)、相補型金属酸化膜半導体(CMOS)、透明導電膜などが形成されていてもよい。また、半導体基材上には、各画素を隔離する隔壁が形成されていてもよい。隔壁としては金属、金属酸化物、ブラックマトリクスなどが挙げられる。また、半導体基材上には、必要により、上部の層との密着性改良、物質の拡散防止或いは基板表面の平坦化のために下塗り層が設けられていてもよい。 A charge coupled device (CCD), complementary metal oxide semiconductor (CMOS), transparent conductive film, etc. may be formed on the semiconductor substrate used as the support. Further, a partition wall that isolates each pixel may be formed on the semiconductor substrate. Examples of the partition wall include metals, metal oxides, black matrices, and the like. Further, an undercoat layer may be provided on the semiconductor substrate, if necessary, for improving adhesion with the upper layer, preventing substance diffusion, or flattening the substrate surface.
 支持体として用いられる透明基材としては、少なくとも可視光を透過できる材料で構成されたものであれば特に限定されない。例えば、ガラス、樹脂などの材質で構成された基材が挙げられる。樹脂としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂、ポリエチレン、ポリプロピレン、エチレン酢酸ビニル共重合体等のポリオレフィン樹脂、ノルボルネン樹脂、ポリアクリレート、ポリメチルメタクリレート等のアクリル樹脂、ウレタン樹脂、塩化ビニル樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂等が挙げられる。ガラスとしては、ソーダライムガラス、ホウケイ酸ガラス、無アルカリガラス、石英ガラス、銅を含有するガラスなどが挙げられる。銅を含有するガラスとしては、銅を含有する燐酸塩ガラス、銅を含有する弗燐酸塩ガラスなどが挙げられる。銅を含有するガラスは、市販品を用いることもできる。銅を含有するガラスの市販品としては、NF-50(AGCテクノグラス(株)製)等が挙げられる。 The transparent substrate used as the support is not particularly limited as long as it is made of a material that can transmit at least visible light. Examples include base materials made of materials such as glass and resin. Examples of resins include polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyolefin resins such as polyethylene, polypropylene, and ethylene vinyl acetate copolymers, acrylic resins such as norbornene resins, polyacrylates, and polymethyl methacrylates, urethane resins, and vinyl chloride resins. , fluororesin, polycarbonate resin, polyvinyl butyral resin, polyvinyl alcohol resin, and the like. Examples of the glass include soda lime glass, borosilicate glass, alkali-free glass, quartz glass, and glass containing copper. Examples of glass containing copper include phosphate glass containing copper, fluorophosphate glass containing copper, and the like. A commercially available glass containing copper can also be used. Examples of commercially available glass containing copper include NF-50 (manufactured by AGC Techno Glass Co., Ltd.).
 本発明の膜の厚さは、目的に応じて適宜調整できる。膜の厚さは200μm以下とすることができ、150μm以下とすることもでき、120μm以下とすることもでき、20μm以下とすることもでき、10μm以下とすることもでき、5μm以下とすることもできる。膜の厚さの下限は0.1μm以上が好ましく、0.2μm以上がより好ましい。 The thickness of the film of the present invention can be adjusted as appropriate depending on the purpose. The thickness of the film can be 200 μm or less, 150 μm or less, 120 μm or less, 20 μm or less, 10 μm or less, and 5 μm or less. You can also do it. The lower limit of the film thickness is preferably 0.1 μm or more, more preferably 0.2 μm or more.
 本発明の膜を赤外線カットフィルタとして用いる場合、本発明の膜は、波長650~1500nm(好ましくは波長660~1200nm、より好ましくは波長660~1000nm)の範囲に極大吸収波長が存在することが好ましい。また、波長420~550nmの光の平均透過率が50%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることが更に好ましく、85%以上であることが特に好ましい。また、波長420~550nmの全ての範囲での透過率が50%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることが更に好ましい。また、本発明の膜は、波長650~1500nm(好ましくは波長660~1200nm、より好ましくは波長660~1000nm)の範囲の少なくとも1点での透過率が15%以下であることが好ましく、10%以下がより好ましく、5%以下が更に好ましい。また、本発明の膜は、極大吸収波長における吸光度を1とした時、波長420~550nmの範囲における平均吸光度が0.030未満であることが好ましく、0.025未満であることがより好ましい。 When the film of the present invention is used as an infrared cut filter, it is preferable that the film of the present invention has a maximum absorption wavelength in a wavelength range of 650 to 1500 nm (preferably a wavelength of 660 to 1200 nm, more preferably a wavelength of 660 to 1000 nm). . Further, the average transmittance of light with a wavelength of 420 to 550 nm is preferably 50% or more, more preferably 70% or more, even more preferably 80% or more, and especially 85% or more. preferable. Further, the transmittance over the entire wavelength range of 420 to 550 nm is preferably 50% or more, more preferably 70% or more, and even more preferably 80% or more. Further, the film of the present invention preferably has a transmittance of 15% or less at at least one point in the wavelength range of 650 to 1500 nm (preferably wavelength 660 to 1200 nm, more preferably wavelength 660 to 1000 nm), and preferably 10% or less. The content is more preferably 5% or less, and even more preferably 5% or less. Furthermore, the film of the present invention preferably has an average absorbance of less than 0.030, more preferably less than 0.025, in the wavelength range of 420 to 550 nm, when the absorbance at the maximum absorption wavelength is 1.
 本発明の膜を赤外線透過フィルタとして用いる場合、本発明の膜は、例えば、以下の(i1)~(i3)のいずれかの分光特性を有することが好ましい。
 (i1):波長400~850nmの範囲における透過率の最大値が20%以下(好ましくは15%以下、より好ましくは10%以下)であり、波長1000~1500nmの範囲における透過率の最小値が70%以上(好ましくは75%以上、より好ましくは80%以上)であるフィルタ。このような分光特性を有する膜は、波長400~850nmの範囲の光を遮光して、波長950nmを超える光を透過させることができる。
 (i2):波長400~950nmの範囲における透過率の最大値が20%以下(好ましくは15%以下、より好ましくは10%以下)であり、波長1100~1500nmの範囲における透過率の最小値が70%以上(好ましくは75%以上、より好ましくは80%以上)であるフィルタ。このような分光特性を有する膜は、波長400~950nmの範囲の光を遮光して、波長1050nmを超える光を透過させることができる。
 (i3):波長400~1050nmの範囲における透過率の最大値が20%以下(好ましくは15%以下、より好ましくは10%以下)であり、波長1200~1500nmの範囲における透過率の最小値が70%以上(好ましくは75%以上、より好ましくは80%以上)であるフィルタ。このような分光特性を有する膜は、波長400~1050nmの範囲の光を遮光して、波長1150nmを超える光を透過させることができる。
When the film of the present invention is used as an infrared transmission filter, the film of the present invention preferably has, for example, any one of the following spectral properties (i1) to (i3).
(i1): The maximum value of transmittance in the wavelength range of 400 to 850 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the minimum value of transmittance in the wavelength range of 1000 to 1500 nm is 70% or more (preferably 75% or more, more preferably 80% or more). A film having such spectral characteristics can block light in a wavelength range of 400 to 850 nm and transmit light with a wavelength exceeding 950 nm.
(i2): The maximum value of transmittance in the wavelength range of 400 to 950 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the minimum value of transmittance in the wavelength range of 1100 to 1500 nm is 70% or more (preferably 75% or more, more preferably 80% or more). A film having such spectral characteristics can block light in a wavelength range of 400 to 950 nm and transmit light with a wavelength exceeding 1050 nm.
(i3): The maximum value of transmittance in the wavelength range of 400 to 1050 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the minimum value of transmittance in the wavelength range of 1200 to 1500 nm is 70% or more (preferably 75% or more, more preferably 80% or more). A film having such spectral characteristics can block light in the wavelength range of 400 to 1050 nm and transmit light with a wavelength exceeding 1150 nm.
 本発明の膜は、有彩色着色剤を含むカラーフィルタと組み合わせて用いることもできる。カラーフィルタは、有彩色着色剤を含む着色組成物を用いて製造できる。本発明の膜を赤外線カットフィルタとして用い、かつ、本発明の膜とカラーフィルタと組み合わせて用いる場合、本発明の膜の光路上にカラーフィルタが配置されていることが好ましい。例えば、本発明の膜とカラーフィルタとを積層して積層体として用いることが好ましい。積層体においては、本発明の膜とカラーフィルタとは、両者が厚み方向で隣接していてもよく、隣接していなくてもよい。本発明の膜とカラーフィルタとが厚み方向で隣接していない場合は、カラーフィルタが形成された支持体とは別の支持体上に、本発明の膜が形成されていてもよく、本発明の膜とカラーフィルタとの間に、固体撮像素子を構成する他の部材(例えば、マイクロレンズ、平坦化層など)が介在していてもよい。 The film of the present invention can also be used in combination with a color filter containing a chromatic colorant. A color filter can be manufactured using a coloring composition containing a chromatic colorant. When the film of the present invention is used as an infrared cut filter and is used in combination with a color filter, the color filter is preferably disposed on the optical path of the film of the present invention. For example, it is preferable to laminate the film of the present invention and a color filter to form a laminate. In the laminate, the film of the present invention and the color filter may or may not be adjacent to each other in the thickness direction. When the film of the present invention and the color filter are not adjacent in the thickness direction, the film of the present invention may be formed on a support different from the support on which the color filter is formed, and the film of the present invention may be formed on a support different from the support on which the color filter is formed. Other members (for example, microlenses, flattening layers, etc.) constituting the solid-state imaging device may be interposed between the film and the color filter.
 本発明の膜は、CCD(電荷結合素子)やCMOS(相補型金属酸化膜半導体)などの固体撮像素子(撮像部はSiの他に、InGaAsなどの化合物半導体、有機半導体、量子ドットなどを用いることも出来る)や、赤外線センサ、発光素子、光通信素子(送信・受信共に)、画像表示装置などの各種装置に用いることができる。 The film of the present invention is suitable for solid-state imaging devices such as CCDs (charge-coupled devices) and CMOSs (complementary metal oxide semiconductors) (the imaging section uses compound semiconductors such as InGaAs, organic semiconductors, quantum dots, etc. in addition to Si). It can be used in various devices such as infrared sensors, light emitting devices, optical communication devices (both transmitting and receiving), and image display devices.
<膜の製造方法>
 本発明の膜は、本発明の樹脂組成物を塗布する工程を経て製造できる。
<Membrane manufacturing method>
The film of the present invention can be manufactured through a step of applying the resin composition of the present invention.
 支持体としては、上述したものが挙げられる。樹脂組成物の塗布方法としては、公知の方法を用いることができる。例えば、滴下法(ドロップキャスト);スリットコート法;スプレー法;ロールコート法;回転塗布法(スピンコーティング);流延塗布法;スリットアンドスピン法;プリウェット法(たとえば、特開2009-145395号公報に記載されている方法);インクジェット(例えばオンデマンド方式、ピエゾ方式、サーマル方式)、ノズルジェット等の吐出系印刷、フレキソ印刷、スクリーン印刷、グラビア印刷、反転オフセット印刷、メタルマスク印刷などの各種印刷法;金型等を用いた転写法;ナノインプリント法などが挙げられる。インクジェットでの適用方法としては、特に限定されず、例えば「広がる・使えるインクジェット-特許に見る無限の可能性-、2005年2月発行、住ベテクノリサーチ」に示された方法(特に115ページ~133ページ)や、特開2003-262716号公報、特開2003-185831号公報、特開2003-261827号公報、特開2012-126830号公報、特開2006-169325号公報などに記載の方法が挙げられる。 Examples of the support include those mentioned above. As a method for applying the resin composition, a known method can be used. For example, drop casting method; slit coating method; spray method; roll coating method; spin coating method; casting coating method; slit and spin method; Various methods such as inkjet (for example, on-demand method, piezo method, thermal method), ejection printing such as nozzle jet, flexo printing, screen printing, gravure printing, reverse offset printing, metal mask printing, etc. Examples include printing method; transfer method using a mold etc.; nanoimprint method. The application method for inkjet is not particularly limited, and for example, the method shown in "Expanding and Usable Inkjet - Infinite Possibilities Seen in Patents," Published February 2005, Sumibe Techno Research (especially from page 115). 133 pages), and methods described in JP-A No. 2003-262716, JP-A No. 2003-185831, JP-A No. 2003-261827, JP-A No. 2012-126830, JP-A No. 2006-169325, etc. Can be mentioned.
 樹脂組成物を塗布して形成した樹脂組成物層は、乾燥(プリベーク)してもよい。プリベークを行う場合、プリベーク温度は、150℃以下が好ましく、120℃以下がより好ましく、110℃以下が更に好ましい。下限は、例えば、50℃以上とすることができ、80℃以上とすることもできる。プリベーク時間は、10秒~3000秒が好ましく、40~2500秒がより好ましく、80~220秒が更に好ましい。乾燥は、ホットプレート、オーブン等で行うことができる。 The resin composition layer formed by applying the resin composition may be dried (prebaked). When prebaking is performed, the prebaking temperature is preferably 150°C or lower, more preferably 120°C or lower, and even more preferably 110°C or lower. The lower limit can be, for example, 50°C or higher, or 80°C or higher. The prebake time is preferably 10 seconds to 3000 seconds, more preferably 40 to 2500 seconds, and even more preferably 80 to 220 seconds. Drying can be performed using a hot plate, oven, or the like.
 膜の製造方法においては、更にパターンを形成する工程を含んでいてもよい。パターン形成方法としては、フォトリソグラフィ法を用いたパターン形成方法や、ドライエッチング法を用いたパターン形成方法が挙げられ、フォトリソグラフィ法を用いたパターン形成方法が好ましい。なお、本発明の膜を平坦膜として用いる場合には、パターンを形成する工程を行わなくてもよい。以下、パターンを形成する工程について詳細に説明する。 The film manufacturing method may further include a step of forming a pattern. Examples of the pattern forming method include a pattern forming method using a photolithography method and a pattern forming method using a dry etching method, and a pattern forming method using a photolithography method is preferable. Note that when the film of the present invention is used as a flat film, the step of forming a pattern may not be performed. Hereinafter, the process of forming a pattern will be described in detail.
(フォトリソグラフィ法でパターン形成する場合)
 フォトリソグラフィ法でのパターン形成方法は、本発明の樹脂組成物を塗布して形成した樹脂組成物層に対しパターン状に露光する工程(露光工程)と、未露光部の樹脂組成物層を現像除去してパターンを形成する工程(現像工程)と、を含むことが好ましい。必要に応じて、現像されたパターンをベークする工程(ポストベーク工程)を設けてもよい。以下、各工程について説明する。
(When forming a pattern using photolithography)
The pattern forming method using the photolithography method includes a step of exposing a resin composition layer formed by applying the resin composition of the present invention to light in a pattern (exposure step), and developing the unexposed portions of the resin composition layer. It is preferable to include a step of removing and forming a pattern (developing step). If necessary, a step of baking the developed pattern (post-bake step) may be provided. Each step will be explained below.
 露光工程では樹脂組成物層をパターン状に露光する。例えば、樹脂組成物層に対し、ステッパー露光機やスキャナ露光機などを用いて、所定のマスクパターンを有するマスクを介して露光することで、パターン状に露光することができる。これにより、露光部分を硬化することができる。 In the exposure step, the resin composition layer is exposed in a pattern. For example, the resin composition layer can be exposed in a pattern by exposing the resin composition layer to light through a mask having a predetermined mask pattern using a stepper exposure machine, a scanner exposure machine, or the like. This allows the exposed portion to be cured.
 露光に際して用いることができる放射線(光)としては、g線、i線等が挙げられる。また、波長300nm以下の光(好ましくは波長180~300nmの光)を用いることもできる。波長300nm以下の光としては、KrF線(波長248nm)、ArF線(波長193nm)などが挙げられ、KrF線(波長248nm)が好ましい。また、300nm以上の長波な光源も利用できる。 Radiation (light) that can be used during exposure includes g-line, i-line, etc. Furthermore, light with a wavelength of 300 nm or less (preferably light with a wavelength of 180 to 300 nm) can also be used. Examples of light with a wavelength of 300 nm or less include KrF rays (wavelength 248 nm), ArF rays (wavelength 193 nm), and KrF rays (wavelength 248 nm). Furthermore, a long-wave light source of 300 nm or more can also be used.
 また、露光に際して、光を連続的に照射して露光してもよく、パルス的に照射して露光(パルス露光)してもよい。なお、パルス露光とは、短時間(例えば、ミリ秒レベル以下)のサイクルで光の照射と休止を繰り返して露光する方式の露光方法のことである。 Furthermore, during exposure, light may be exposed by continuous irradiation, or exposure may be performed by irradiation in pulses (pulse exposure). Note that pulse exposure is an exposure method in which exposure is performed by repeating light irradiation and pauses in short cycles (for example, on the millisecond level or less).
 照射量(露光量)は、例えば、0.03~2.5J/cmが好ましく、0.05~1.0J/cmがより好ましい。露光時における酸素濃度については適宜選択することができ、大気下で行う他に、例えば酸素濃度が19体積%以下の低酸素雰囲気下(例えば、15体積%、5体積%、または、実質的に無酸素)で露光してもよく、酸素濃度が21体積%を超える高酸素雰囲気下(例えば、22体積%、30体積%、または、50体積%)で露光してもよい。また、露光照度は適宜設定することが可能であり、通常1000W/m~100000W/m(例えば、5000W/m、15000W/m、または、35000W/m)の範囲から選択することができる。酸素濃度と露光照度は適宜条件を組み合わせてよく、例えば、酸素濃度10体積%で照度10000W/m、酸素濃度35体積%で照度20000W/mなどとすることができる。 The irradiation amount (exposure amount) is, for example, preferably 0.03 to 2.5 J/cm 2 , more preferably 0.05 to 1.0 J/cm 2 . The oxygen concentration at the time of exposure can be appropriately selected, and in addition to being carried out in the atmosphere, for example, in a low oxygen atmosphere with an oxygen concentration of 19% by volume or less (for example, 15% by volume, 5% by volume, or substantially The exposure may be performed in an oxygen-free environment (in the absence of oxygen), or in a high oxygen atmosphere with an oxygen concentration of more than 21 volume % (for example, 22 volume %, 30 volume %, or 50 volume %). Further, the exposure illuminance can be set as appropriate, and is usually selected from the range of 1000W/m 2 to 100000W/m 2 (for example, 5000W/m 2 , 15000W/m 2 , or 35000W/m 2 ). I can do it. The oxygen concentration and the exposure illuminance may be appropriately combined. For example, the illumination intensity may be 10,000 W/m 2 at an oxygen concentration of 10% by volume, or 20,000 W/m 2 at an oxygen concentration of 35% by volume.
 次に、露光後の樹脂組成物層における未露光部の樹脂組成物層を現像除去してパターンを形成する。未露光部の樹脂組成物層の現像除去は、現像液を用いて行うことができる。これにより、露光工程における未露光部の樹脂組成物層が現像液に溶出し、光硬化した部分だけが支持体上に残る。現像液の温度は、例えば、20~30℃が好ましい。現像時間は、20~180秒が好ましい。また、残渣除去性を向上するため、現像液を60秒ごとに振り切り、更に新たに現像液を供給する工程を数回繰り返してもよい。 Next, the unexposed portions of the resin composition layer after exposure are removed by development to form a pattern. The unexposed portions of the resin composition layer can be removed by development using a developer. As a result, the unexposed portions of the resin composition layer in the exposure step are eluted into the developer, and only the photocured portions remain on the support. The temperature of the developer is preferably, for example, 20 to 30°C. The development time is preferably 20 to 180 seconds. Furthermore, in order to improve the ability to remove residues, the process of shaking off the developer every 60 seconds and supplying a new developer may be repeated several times.
 現像液は、有機溶剤、アルカリ現像液などが挙げられ、アルカリ現像液が好ましく用いられる。アルカリ現像液としては、アルカリ剤を純水で希釈したアルカリ性水溶液(アルカリ現像液)が好ましい。アルカリ剤としては、例えば、アンモニア、エチルアミン、ジエチルアミン、ジメチルエタノールアミン、ジグリコールアミン、ジエタノールアミン、ヒドロキシアミン、エチレンジアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、エチルトリメチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド、ジメチルビス(2-ヒドロキシエチル)アンモニウムヒドロキシド、コリン、ピロール、ピペリジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセンなどの有機アルカリ性化合物や、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウムなどの無機アルカリ性化合物が挙げられる。アルカリ剤は、分子量が大きい化合物の方が環境面および安全面で好ましい。アルカリ性水溶液のアルカリ剤の濃度は、0.001~10質量%が好ましく、0.01~1質量%がより好ましい。また、現像液は、更に界面活性剤を含有していてもよい。界面活性剤としては、ノニオン性界面活性剤が好ましい。現像液は、移送や保管の便宜などの観点より、一旦濃縮液として製造し、使用時に必要な濃度に希釈してもよい。希釈倍率は特に限定されないが、例えば1.5~100倍の範囲に設定することができる。また、現像後純水で洗浄(リンス)することも好ましい。また、リンスは、現像後の樹脂組成物層が形成された支持体を回転させつつ、現像後の樹脂組成物層へリンス液を供給して行うことが好ましい。また、リンス液を吐出させるノズルを支持体の中心部から支持体の周縁部に移動させて行うことも好ましい。この際、ノズルの支持体中心部から周縁部へ移動させるにあたり、ノズルの移動速度を徐々に低下させながら移動させてもよい。このようにしてリンスを行うことで、リンスの面内ばらつきを抑制できる。また、ノズルを支持体中心部から周縁部へ移動させつつ、支持体の回転速度を徐々に低下させても同様の効果が得られる。 Examples of the developer include organic solvents, alkaline developers, and alkaline developers are preferably used. As the alkaline developer, an alkaline aqueous solution (alkaline developer) prepared by diluting an alkaline agent with pure water is preferable. Examples of alkaline agents include ammonia, ethylamine, diethylamine, dimethylethanolamine, diglycolamine, diethanolamine, hydroxyamine, ethylenediamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide. , ethyltrimethylammonium hydroxide, benzyltrimethylammonium hydroxide, dimethylbis(2-hydroxyethyl)ammonium hydroxide, choline, pyrrole, piperidine, 1,8-diazabicyclo[5.4.0]-7-undecene, etc. Examples include alkaline compounds and inorganic alkaline compounds such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium bicarbonate, sodium silicate, and sodium metasilicate. As for the alkali agent, compounds with a large molecular weight are preferable from the environmental and safety standpoints. The concentration of the alkaline agent in the alkaline aqueous solution is preferably 0.001 to 10% by mass, more preferably 0.01 to 1% by mass. Moreover, the developer may further contain a surfactant. As the surfactant, nonionic surfactants are preferred. For convenience in transportation and storage, the developing solution may be manufactured as a concentrated solution and then diluted to a required concentration before use. The dilution ratio is not particularly limited, but can be set, for example, in the range of 1.5 to 100 times. It is also preferable to wash (rinse) with pure water after development. Further, rinsing is preferably performed by supplying a rinsing liquid to the developed resin composition layer while rotating the support on which the developed resin composition layer is formed. It is also preferable to move the nozzle that discharges the rinsing liquid from the center of the support to the peripheral edge of the support. At this time, when moving the nozzle from the center of the support to the peripheral edge, the nozzle may be moved while gradually decreasing its moving speed. By performing rinsing in this manner, in-plane variations in rinsing can be suppressed. The same effect can also be obtained by gradually reducing the rotational speed of the support while moving the nozzle from the center of the support to the peripheral edge.
 現像後、乾燥を施した後に追加露光処理や加熱処理(ポストベーク)を行うことが好ましい。追加露光処理やポストベークは、硬化を完全なものとするための現像後の硬化処理である。ポストベークにおける加熱温度は、例えば100~240℃が好ましく、200~240℃がより好ましい。ポストベークは、現像後の膜を、上記条件になるようにホットプレートやコンベクションオーブン(熱風循環式乾燥機)、高周波加熱機等の加熱手段を用いて、連続式あるいはバッチ式で行うことができる。追加露光処理を行う場合、露光に用いられる光は、波長400nm以下の光であることが好ましい。また、追加露光処理は、韓国公開特許第10-2017-0122130号公報に記載された方法で行ってもよい。 After development, it is preferable to perform additional exposure treatment or heat treatment (post-bake) after drying. Additional exposure processing and post-bake are post-development curing processing to complete curing. The heating temperature in post-baking is, for example, preferably 100 to 240°C, more preferably 200 to 240°C. Post-baking can be carried out in a continuous or batch manner using a heating means such as a hot plate, convection oven (hot air circulation dryer), or high-frequency heater to maintain the developed film under the above conditions. . When performing additional exposure processing, the light used for exposure is preferably light with a wavelength of 400 nm or less. Further, the additional exposure process may be performed by the method described in Korean Patent Publication No. 10-2017-0122130.
(ドライエッチング法でパターン形成する場合)
 ドライエッチング法でのパターン形成は、上記樹脂組成物を支持体上に塗布して形成した樹脂組成物層を硬化して硬化物層を形成し、次いで、この硬化物層上にパターニングされたフォトレジスト層を形成し、次いで、パターニングされたフォトレジスト層をマスクとして硬化物層に対してエッチングガスを用いてドライエッチングするなどの方法で行うことができる。フォトレジスト層の形成においては、プリベーク処理を施すことが好ましい。ドライエッチング法でのパターン形成については、特開2013-064993号公報の段落番号0010~0067の記載を参酌でき、この内容は本明細書に組み込まれる。
(When forming a pattern using dry etching method)
Pattern formation by the dry etching method involves coating the resin composition on a support and curing the resin composition layer to form a cured material layer, and then forming a patterned photo on this cured material layer. This can be carried out by a method such as forming a resist layer, and then dry etching the cured material layer using an etching gas using the patterned photoresist layer as a mask. In forming the photoresist layer, it is preferable to perform a prebaking process. Regarding pattern formation by the dry etching method, the descriptions in paragraphs 0010 to 0067 of JP-A No. 2013-064993 can be referred to, and the contents thereof are incorporated into the present specification.
<光学フィルタ>
 本発明の光学フィルタは、上述した本発明の膜を有する。光学フィルタの種類としては、赤外線カットフィルタおよび赤外線透過フィルタなどが挙げられる。
<Optical filter>
The optical filter of the present invention has the film of the present invention described above. Types of optical filters include infrared cut filters and infrared transmission filters.
 本発明の光学フィルタは、上述した本発明の膜の他に、更に、銅を含有する層、誘電体多層膜、紫外線吸収層などを有していてもよい。紫外線吸収層としては、例えば、国際公開第2015/099060号の段落番号0040~0070、0119~0145に記載された吸収層が挙げられる。誘電体多層膜としては、特開2014-041318号公報の段落番号0255~0259に記載された誘電体多層膜が挙げられる。銅を含有する層としては、銅を含有するガラスで構成されたガラス基板(銅含有ガラス基板)や、銅錯体を含む層(銅錯体含有層)を用いることもできる。銅含有ガラス基板としては、銅を含有する燐酸塩ガラス、銅を含有する弗燐酸塩ガラスなどが挙げられる。銅含有ガラスの市販品としては、NF-50(AGCテクノグラス(株)製)、BG-60、BG-61(以上、ショット社製)、CD5000(HOYA(株)製)等が挙げられる。好ましい基材としては、ガラス、樹脂などの材質で構成された透明基材が挙げられ、また各種素子上に直接成膜することも好ましい。樹脂としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂、ポリエチレン、ポリプロピレン、エチレン酢酸ビニル共重合体等のポリオレフィン樹脂、ノルボルネン樹脂、ポリアクリレート、ポリメチルメタクリレート等のアクリル樹脂、ウレタン樹脂、塩化ビニル樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂等が挙げられる。ガラスとしては、ソーダライムガラス、ホウケイ酸ガラス、無アルカリガラス、石英ガラス、銅を含有するガラスなどが挙げられる。 In addition to the film of the invention described above, the optical filter of the invention may further include a copper-containing layer, a dielectric multilayer film, an ultraviolet absorbing layer, and the like. Examples of the ultraviolet absorbing layer include the absorbing layers described in paragraph numbers 0040 to 0070 and 0119 to 0145 of International Publication No. 2015/099060. Examples of the dielectric multilayer film include the dielectric multilayer films described in paragraph numbers 0255 to 0259 of JP-A No. 2014-041318. As the layer containing copper, a glass substrate made of glass containing copper (copper-containing glass substrate) or a layer containing a copper complex (copper complex-containing layer) can also be used. Examples of the copper-containing glass substrate include phosphate glass containing copper, fluorophosphate glass containing copper, and the like. Commercially available copper-containing glasses include NF-50 (manufactured by AGC Techno Glass Co., Ltd.), BG-60, BG-61 (all manufactured by Schott Co., Ltd.), and CD5000 (manufactured by HOYA Co., Ltd.). Preferred base materials include transparent base materials made of materials such as glass and resin, and it is also preferred to form a film directly on various elements. Examples of resins include polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyolefin resins such as polyethylene, polypropylene, and ethylene vinyl acetate copolymers, acrylic resins such as norbornene resins, polyacrylates, and polymethyl methacrylates, urethane resins, and vinyl chloride resins. , fluororesin, polycarbonate resin, polyvinyl butyral resin, polyvinyl alcohol resin, and the like. Examples of the glass include soda lime glass, borosilicate glass, alkali-free glass, quartz glass, and glass containing copper.
<固体撮像素子>
 本発明の固体撮像素子は、上述した本発明の膜を含む。固体撮像素子の構成としては、本発明の膜を有する構成であり、固体撮像素子として機能する構成であれば特に限定はない。例えば、以下のような構成が挙げられる。
<Solid-state image sensor>
The solid-state imaging device of the present invention includes the film of the present invention described above. The structure of the solid-state image sensor is not particularly limited as long as it has the film of the present invention and functions as a solid-state image sensor. For example, the following configurations may be mentioned.
 支持体上に、固体撮像素子の受光エリアを構成する複数のフォトダイオードおよびポリシリコン等からなる転送電極を有し、フォトダイオードおよび転送電極上にフォトダイオードの受光部のみ開口したタングステン等からなる遮光膜を有し、遮光膜上に遮光膜全面およびフォトダイオード受光部を覆うように形成された窒化シリコン等からなるデバイス保護膜を有し、デバイス保護膜上に、本発明の膜を有する構成である。更に、デバイス保護膜上であって、本発明の膜の下(支持体に近い側)に集光手段(例えば、マイクロレンズ等。以下同じ)を有する構成や、本発明の膜上に集光手段を有する構成等であってもよい。また、カラーフィルタは、隔壁により例えば格子状に仕切られた空間に、各画素を形成する膜が埋め込まれた構造を有していてもよい。この場合の隔壁は各画素よりも低屈折率であることが好ましい。このような構造を有する撮像装置の例としては、特開2012-227478号公報、特開2014-179577号公報に記載された装置が挙げられる。 On the support, there is a transfer electrode made of polysilicon or the like and a plurality of photodiodes that constitute the light-receiving area of the solid-state image sensor, and a light-shielding material made of tungsten or the like with only the light-receiving part of the photodiode opened above the photodiode and the transfer electrode. The device has a device protective film made of silicon nitride or the like formed to cover the entire surface of the light shielding film and the photodiode light receiving part on the light shielding film, and has the film of the present invention on the device protective film. be. Furthermore, a configuration in which a light focusing means (for example, a microlens, etc., the same applies hereinafter) is provided on the device protective film and below the film of the present invention (on the side closer to the support), or a structure in which light is focused on the film of the present invention A configuration having a means or the like may be used. Further, the color filter may have a structure in which a film forming each pixel is embedded in a space partitioned into, for example, a lattice shape by partition walls. In this case, the partition wall preferably has a lower refractive index than each pixel. Examples of imaging devices having such a structure include devices described in Japanese Patent Application Laid-open Nos. 2012-227478 and 2014-179577.
<画像表示装置>
 本発明の画像表示装置は、本発明の膜を含む。画像表示装置としては、液晶表示装置や有機エレクトロルミネッセンス(有機EL)表示装置などが挙げられる。画像表示装置の定義や詳細については、例えば「電子ディスプレイデバイス(佐々木昭夫著、(株)工業調査会、1990年発行)」、「ディスプレイデバイス(伊吹順章著、産業図書(株)平成元年発行)」などに記載されている。また、液晶表示装置については、例えば「次世代液晶ディスプレイ技術(内田龍男編集、(株)工業調査会、1994年発行)」に記載されている。本発明が適用できる液晶表示装置に特に制限はなく、例えば、上記の「次世代液晶ディスプレイ技術」に記載されている色々な方式の液晶表示装置に適用できる。画像表示装置は、白色有機EL素子を有するものであってもよい。白色有機EL素子としては、タンデム構造であることが好ましい。有機EL素子のタンデム構造については、特開2003-045676号公報、三上明義監修、「有機EL技術開発の最前線-高輝度・高精度・長寿命化・ノウハウ集-」、技術情報協会、326~328ページ、2008年などに記載されている。有機EL素子が発光する白色光のスペクトルは、青色領域(430~485nm)、緑色領域(530~580nm)及び黄色領域(580~620nm)に強い極大発光ピークを有するものが好ましい。これらの発光ピークに加え更に赤色領域(650~700nm)に極大発光ピークを有するものがより好ましい。本発明の膜は、表示装置用保護板の額縁部に形成された赤外線通信用の開口部内に設けられる赤外線透過膜として用いることもできる。
<Image display device>
The image display device of the present invention includes the film of the present invention. Examples of the image display device include a liquid crystal display device and an organic electroluminescence (organic EL) display device. For definitions and details of image display devices, see, for example, "Electronic Display Devices (written by Akio Sasaki, published by Industrial Research Institute Co., Ltd., 1990)" and "Display Devices (written by Junaki Ibuki, published by Sangyo Tosho Co., Ltd., published in 1989). Publication)” etc. Further, liquid crystal display devices are described, for example, in "Next Generation Liquid Crystal Display Technology (edited by Tatsuo Uchida, published by Kogyo Chosenkai Co., Ltd., 1994)". There is no particular restriction on the liquid crystal display device to which the present invention can be applied, and for example, the present invention can be applied to various types of liquid crystal display devices described in the above-mentioned "Next Generation Liquid Crystal Display Technology." The image display device may include a white organic EL element. The white organic EL element preferably has a tandem structure. Regarding the tandem structure of organic EL elements, see Japanese Patent Application Laid-open No. 2003-045676, supervised by Akiyoshi Mikami, "The forefront of organic EL technology development - High brightness, high precision, long life, collection of know-how", Technical Information Association, It is described in pages 326-328, 2008, etc. The spectrum of white light emitted by the organic EL element preferably has strong maximum emission peaks in the blue region (430 to 485 nm), green region (530 to 580 nm), and yellow region (580 to 620 nm). In addition to these emission peaks, it is more preferable to have a maximum emission peak in the red region (650 to 700 nm). The film of the present invention can also be used as an infrared transmitting film provided in an opening for infrared communication formed in a frame portion of a protective plate for a display device.
<赤外線センサ>
 本発明の赤外線センサは、上述した本発明の膜を含む。赤外線センサの構成としては、赤外線センサとして機能する構成であれば特に限定はない。以下、本発明の赤外線センサの一実施形態について、図面を用いて説明する。
<Infrared sensor>
The infrared sensor of the present invention includes the film of the present invention described above. The configuration of the infrared sensor is not particularly limited as long as it functions as an infrared sensor. EMBODIMENT OF THE INVENTION Hereinafter, one embodiment of the infrared sensor of this invention is described using drawings.
 図1において、符号110は、固体撮像素子である。固体撮像素子110の撮像領域上には、赤外線カットフィルタ111と、赤外線透過フィルタ114とが配置されている。また、赤外線カットフィルタ111上には、カラーフィルタ112が配置されている。カラーフィルタ112および赤外線透過フィルタ114の入射光hν側には、マイクロレンズ115が配置されている。マイクロレンズ115を覆うように平坦化層116が形成されている。 In FIG. 1, numeral 110 is a solid-state image sensor. An infrared cut filter 111 and an infrared transmission filter 114 are arranged on the imaging area of the solid-state image sensor 110. Furthermore, a color filter 112 is arranged on the infrared cut filter 111. A microlens 115 is arranged on the incident light hv side of the color filter 112 and the infrared transmission filter 114. A flattening layer 116 is formed to cover the microlens 115.
 赤外線カットフィルタ111は本発明の樹脂組成物を用いて形成することができる。カラーフィルタ112は、可視領域における特定波長の光を透過及び吸収する画素が形成されたカラーフィルタであって、特に限定はなく、従来公知の画素形成用のカラーフィルタを用いることができる。例えば、赤色(R)、緑色(G)、青色(B)の画素が形成されたカラーフィルタなどが用いられる。例えば、特開2014-043556号公報の段落番号0214~0263の記載を参酌することができ、この内容は本明細書に組み込まれる。赤外線透過フィルタ114は、使用する赤外LEDの発光波長に応じてその特性が選択される。赤外線透過フィルタ114は本発明の樹脂組成物を用いて形成することができる。 The infrared cut filter 111 can be formed using the resin composition of the present invention. The color filter 112 is a color filter in which pixels that transmit and absorb light of a specific wavelength in the visible region are formed, and there is no particular limitation, and a conventionally known color filter for forming pixels can be used. For example, a color filter in which red (R), green (G), and blue (B) pixels are formed is used. For example, the descriptions in paragraph numbers 0214 to 0263 of JP-A No. 2014-043556 can be referred to, and the contents thereof are incorporated herein. The characteristics of the infrared transmission filter 114 are selected depending on the emission wavelength of the infrared LED used. The infrared transmission filter 114 can be formed using the resin composition of the present invention.
 図1に示す赤外線センサにおいて、平坦化層116上には、赤外線カットフィルタ111とは別の赤外線カットフィルタ(他の赤外線カットフィルタ)が更に配置されていてもよい。他の赤外線カットフィルタとしては、銅を含有する層および/または誘電体多層膜を有するものなどが挙げられる。これらの詳細については、上述したものが挙げられる。また、他の赤外線カットフィルタとしては、デュアルバンドパスフィルタを用いてもよい。 In the infrared sensor shown in FIG. 1, an infrared cut filter other than the infrared cut filter 111 (another infrared cut filter) may be further disposed on the flattening layer 116. Other infrared cut filters include those having a layer containing copper and/or a dielectric multilayer film. Details of these are mentioned above. Moreover, a dual band pass filter may be used as another infrared cut filter.
<カメラモジュール>
 本発明のカメラモジュールは、固体撮像素子と、上述した本発明の膜を含む。カメラモジュールは、レンズ、及び、固体撮像素子から得られる撮像を処理する回路を更に有することが好ましい。カメラモジュールに用いられる固体撮像素子としては、上記本開示に係る固体撮像素子であってもよいし、公知の固体撮像素子であってもよい。また、カメラモジュールに用いられるレンズ、及び、上記固体撮像素子から得られる撮像を処理する回路としては、公知のものを用いることができる。カメラモジュールの例としては、特開2016-006476号公報、及び、特開2014-197190号公報に記載のカメラモジュールを参酌でき、これらの内容は本明細書に組み込まれる。
<Camera module>
The camera module of the present invention includes a solid-state image sensor and the above-described film of the present invention. Preferably, the camera module further includes a lens and a circuit that processes images obtained from the solid-state image sensor. The solid-state image sensor used in the camera module may be the solid-state image sensor according to the present disclosure described above, or may be a known solid-state image sensor. Further, as the lens used in the camera module and the circuit that processes the image obtained from the solid-state image sensor, known ones can be used. As an example of the camera module, camera modules described in JP-A No. 2016-006476 and JP-A No. 2014-197190 can be referred to, and the contents thereof are incorporated into this specification.
<発光素子>
 本発明の膜は、発光素子に用いることもできる。発光素子の構成としては、発光素子として機能する構成であれば特に限定はなく、発光ダイオード(LED)、有機発光ダイオード(OLED)、量子ドット発光ダイオード(QLED)、垂直共振器型面発光レーザー(VICSEL)などが挙げられる。本発明の膜は発光素子に直接形成されてもよく、また発光の経路上に配置されても良い。
<Light emitting element>
The film of the present invention can also be used in light emitting devices. The structure of the light emitting element is not particularly limited as long as it functions as a light emitting element, and light emitting diodes (LEDs), organic light emitting diodes (OLEDs), quantum dot light emitting diodes (QLEDs), vertical cavity surface emitting lasers ( VICSEL), etc. The film of the present invention may be formed directly on the light emitting element, or may be placed on the light emitting path.
<光通信素子>
 本発明の膜は、光通信素子に用いることもできる。光通信素子の構成としては、光通信素子として機能する構成であれば特に限定はなく、送信素子であっても受信素子であっても良い。光通信素子としては、赤外線リモコンや、赤外線トランシーバー、光インターポーザ―、光インターコネクションなどが挙げられる。本発明の膜は受信素子に直接形成されてもよく、また送信素子に直接形成されてもよく、また送受信経路上に配置されても良い。
<Optical communication device>
The film of the present invention can also be used in optical communication devices. The configuration of the optical communication element is not particularly limited as long as it functions as an optical communication element, and may be either a transmitting element or a receiving element. Examples of the optical communication device include an infrared remote control, an infrared transceiver, an optical interposer, and an optical interconnection. The film of the present invention may be formed directly on the receiving element, directly on the transmitting element, or placed on the transmitting/receiving path.
 以下に実施例を挙げて本発明を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。 The present invention will be explained in more detail with reference to Examples below. The materials, usage amounts, ratios, processing details, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the spirit of the present invention.
<重量平均分子量の測定>
 樹脂の重量平均分子量の測定は、測定装置としてHPC-8220GPC(東ソー(株)製)、ガードカラムとしてTSKguardcolumn SuperHZ-L、カラムとしてTSKgel SuperHZM-M、TSKgel SuperHZ4000、TSKgel SuperHZ3000、TSKgel SuperHZ2000を直結したカラムを用い、カラム温度を40℃にして、試料濃度0.1質量%のテトラヒドロフラン溶液をカラムに10μL注入し、溶出溶剤としてテトラヒドロフランを毎分0.35mLの流量でフローさせ、RI(示差屈折率)検出装置にて試料ピークを検出し、標準ポリスチレンを用いて作製した検量線を用いて計算した。
<Measurement of weight average molecular weight>
The weight average molecular weight of the resin was measured using HPC-8220GPC (manufactured by Tosoh Corporation) as a measuring device, TSKguardcolumn SuperHZ-L as a guard column, and TSKgel SuperHZM-M, TSKgel SuperHZ4000, TSKgel SuperH as a column. Column directly connected to Z3000 and TSKgel SuperHZ2000 , set the column temperature to 40°C, inject 10 μL of a tetrahydrofuran solution with a sample concentration of 0.1% by mass into the column, flow tetrahydrofuran as an elution solvent at a flow rate of 0.35 mL per minute, and perform RI (differential refractive index). A sample peak was detected using a detection device, and calculations were made using a calibration curve prepared using standard polystyrene.
<化合物の合成例>
(合成例1) 化合物033の合成
<Synthesis example of compound>
(Synthesis Example 1) Synthesis of compound 033
-化合物033Kの合成工程-
 ブロモベンゼンの10.0g(63.7mmol)、2,4,6-トリメチルアニリンの8.78g(65.0mmol;1.02eq.)、t-ブトキシナトリウムの9.18g(95.5mmol;1.5eq.)、トルエンの30mLを混合した。次いで、減圧脱気を行ったのち窒素置換を行う操作を3回繰り返した後、酢酸パラジウムの0.286g(1.27mmol;0.02eq.)およびトリt-ブチルホスホニウムテトラフルオロボレートの0.924g(3.18mmol;0.05eq.)を添加した。次いで、減圧脱気を行ったのち窒素置換を行う操作を3回繰り返した後、窒素フロー下にて、120℃で4時間反応させた。放冷後、水を添加し、酢酸エチル(EtOAc)を添加し、分液した。得られた有機層をbrine洗浄した後、MgSOで乾燥し、減圧濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン)で精製して、化合物033Kを12.05g得た。収率は90%であった。
 TLC(Thin-Layer Chromatography) R値=0.26(ヘキサン)
 H NMR (CDCl) d 2.17(s, 3H), 2.18(s, 3H), 2.30(s, 3H), 5.09(s, 1H), 6.47-6.49(m, 2H), 6.72(t, J=7.2Hz, 1H), 6.94(s, 2H), 7.14(t, J=7.2Hz, 2H).
-Synthesis process of compound 033K-
10.0 g (63.7 mmol) of bromobenzene, 8.78 g (65.0 mmol; 1.02 eq.) of 2,4,6-trimethylaniline, 9.18 g (95.5 mmol; 1. 5 eq.) and 30 mL of toluene were mixed. Next, after repeating the operation of degassing under reduced pressure and replacing with nitrogen three times, 0.286 g (1.27 mmol; 0.02 eq.) of palladium acetate and 0.924 g of tri-t-butylphosphonium tetrafluoroborate were added. (3.18 mmol; 0.05 eq.) was added. Next, the operation of degassing under reduced pressure and replacing with nitrogen was repeated three times, followed by reaction at 120° C. for 4 hours under a nitrogen flow. After cooling, water was added, ethyl acetate (EtOAc) was added, and the layers were separated. The obtained organic layer was washed with brine, dried over MgSO 4 , concentrated under reduced pressure, and purified by silica gel column chromatography (developing solvent: hexane) to obtain 12.05 g of compound 033K. The yield was 90%.
TLC (Thin-Layer Chromatography) R f value = 0.26 (hexane)
1 H NMR (CDCl 3 ) d 2.17 (s, 3H), 2.18 (s, 3H), 2.30 (s, 3H), 5.09 (s, 1H), 6.47-6. 49 (m, 2H), 6.72 (t, J=7.2Hz, 1H), 6.94 (s, 2H), 7.14 (t, J=7.2Hz, 2H).
 -化合物033Aの合成工程-
 化合物033Kの4.19g(19.8mmol)を脱水DMF(N,N-ジメチルホルムアミド)の49.6mLに溶解させ、氷冷下、水素化ナトリウムの0.952g(23.8mmol; 1.2eq.)を少しずつ添加し、水浴で30分撹拌した。氷冷下、p-トルエンスルホン酸エチルの4.77g(23.8mmol;1.2eq.)を少しずつ添加し、油浴90℃で2時間、100℃で3時間反応させた。放冷後、水を添加し、酢酸エチルを添加し、分液した。得られた有機層を水で3回洗浄し、brine洗浄し、NaSOで乾燥し、減圧濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン)で精製して、化合物033Aを4.05g得た。収率は85%であった。
 TLC R値= 0.55(ヘキサン)
 H NMR (CDCl) d 1.20(t, J=7.2Hz, 3H), 2.06(s, 6H), 2.31(s, 3H), 3.57(q, J=7.2Hz, 2H), 6.39-6.41(m, 2H), 6.61-6.65(m, 1H), 6.95(s, 2H), 7.14(t, J=7.6Hz, 2H).
13C NMR (CDCl) d 13.23, 18.31, 20.97, 45.30, 111.16, 115.68, 129.16, 129.60, 136.34, 137.85, 140.30, 147.64.
-Synthesis process of compound 033A-
4.19 g (19.8 mmol) of compound 033K was dissolved in 49.6 mL of dehydrated DMF (N,N-dimethylformamide), and 0.952 g (23.8 mmol; 1.2 eq. ) was added little by little and stirred in a water bath for 30 minutes. Under ice cooling, 4.77 g (23.8 mmol; 1.2 eq.) of ethyl p-toluenesulfonate was added little by little, and the mixture was reacted in an oil bath at 90° C. for 2 hours and at 100° C. for 3 hours. After cooling, water was added, ethyl acetate was added, and the layers were separated. The obtained organic layer was washed three times with water, washed with brine, dried over Na 2 SO 4 , concentrated under reduced pressure, and purified by silica gel column chromatography (developing solvent: hexane) to obtain 4.05 g of compound 033A. Ta. The yield was 85%.
TLC R f value = 0.55 (hexane)
1H NMR ( CDCl3 ) d 1.20 (t, J=7.2Hz, 3H), 2.06 (s, 6H), 2.31 (s, 3H), 3.57 (q, J=7 .2Hz, 2H), 6.39-6.41 (m, 2H), 6.61-6.65 (m, 1H), 6.95 (s, 2H), 7.14 (t, J=7 .6Hz, 2H).
13C NMR ( CDCl3 ) d 13.23, 18.31, 20.97, 45.30, 111.16, 115.68, 129.16, 129.60, 136.34, 137.85, 140. 30, 147.64.
 -化合物033Bの合成工程-
 化合物033Aの9.49g(39.6mmol)を脱水DMFの198mLに溶解させ、氷冷下、N-ブロモスクシンイミドの7.06g(39.6mmol;1.0eq.)を脱水DMFの23.8mLに溶かした溶液を40分かけて滴下し、氷浴で30分間、室温で3時間撹拌した。氷冷下、水100mLを添加し、酢酸エチルの200mLと水100mLを加え、分液した。得られた有機層を水で2回洗浄し、brine洗浄し、NaSOで乾燥し、減圧濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン)で精製して、化合物033Bを12.31g得た。収率は98%であった。
 TLC R値= 0.62(ヘキサン)
 H NMR (CDCl) d 1.19(t, J=7.2Hz, 3H), 2.04(s, 6H), 2.31(s, 3H), 3.52(q, J=7.2Hz, 2H), 6.20-6.35(m, 2H), 6.95(s, 2H), 7.19(d, J=8.8Hz, 2H).
 13C NMR (CDCl) d 13.01, 18.20, 20.96, 45.44, 107.52, 112.85, 129.72, 131.82, 136.69, 137.59, 139.75, 146.70.
-Synthesis process of compound 033B-
9.49 g (39.6 mmol) of compound 033A was dissolved in 198 mL of dehydrated DMF, and 7.06 g (39.6 mmol; 1.0 eq.) of N-bromosuccinimide was dissolved in 23.8 mL of dehydrated DMF under ice cooling. The dissolved solution was added dropwise over 40 minutes, and the mixture was stirred in an ice bath for 30 minutes and at room temperature for 3 hours. Under ice cooling, 100 mL of water was added, and 200 mL of ethyl acetate and 100 mL of water were added to separate the layers. The obtained organic layer was washed twice with water, washed with brine, dried over Na 2 SO 4 , concentrated under reduced pressure, and purified by silica gel column chromatography (developing solvent: hexane) to obtain 12.31 g of compound 033B. Ta. The yield was 98%.
TLC R f value = 0.62 (hexane)
1H NMR ( CDCl3 ) d 1.19 (t, J=7.2Hz, 3H), 2.04 (s, 6H), 2.31 (s, 3H), 3.52 (q, J=7 .2Hz, 2H), 6.20-6.35 (m, 2H), 6.95 (s, 2H), 7.19 (d, J=8.8Hz, 2H).
13C NMR ( CDCl3 ) d 13.01, 18.20, 20.96, 45.44, 107.52, 112.85, 129.72, 131.82, 136.69, 137.59, 139. 75, 146.70.
 -化合物033C合成工程
 化合物033Bの5.00g(15.7mmol)を4-メチルテトラヒドロピランの100mLに溶解し、ビス(ピナコラト)ジボロンの4.99g(19.6mmol;1.25eq.)、酢酸カリウムの1.93g(19.6mmol;1.25eq.)を添加した。次いで、減圧脱気を行ったのち窒素置換を行う操作を3回繰り返し、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(dppf)の0.575g(0.79mmol;5mol%)を添加した。次いで、減圧脱気を行ったのち窒素置換を行う操作を3回繰り返し、窒素フロー下で、100℃で45時間反応させた。放冷後、水と酢酸エチルを添加し、分液した。得られた有機層をbrine洗浄し、NaSOで乾燥し、減圧濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン:酢酸エチル=9:1(質量比))で精製して、化合物033Cを2.90g得た。収率は51%であった。
 TLC R値= 0.57(ヘキサン:酢酸エチル=9:1(質量比))
 H NMR (CDCl) d 1.21(t, J=7.2Hz, 3H), 1.30(s, 12H), 2.04(s, 6H), 2.32(s, 3H), 3.52(q, J=7.2Hz, 2H), 6.00-6.90(br, 2H), 6.96(s, 2H), 7.60-7.70(br, 2H).
 13C NMR (CDCl) d 13.05, 18.21, 20.96, 24.83, 45.46, 83.08, 127.71, 129.64, 134.73, 136.32, 136.56, 137.50, 139.82, 150.02.
- Compound 033C synthesis step 5.00 g (15.7 mmol) of compound 033B was dissolved in 100 mL of 4-methyltetrahydropyran, 4.99 g (19.6 mmol; 1.25 eq.) of bis(pinacolato)diboron, and potassium acetate. 1.93g (19.6mmol; 1.25eq.) of Next, the operation of degassing under reduced pressure and replacing with nitrogen was repeated three times to obtain 0.575 g (0.79 mmol; 5 mol%) of [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium (dppf). was added. Next, the operation of degassing under reduced pressure and then replacing with nitrogen was repeated three times, and the reaction was carried out at 100° C. for 45 hours under a nitrogen flow. After cooling, water and ethyl acetate were added to separate the layers. The obtained organic layer was washed with brine, dried with Na 2 SO 4 , concentrated under reduced pressure, and purified by silica gel column chromatography (developing solvent: hexane: ethyl acetate = 9:1 (mass ratio)) to obtain compound 033C. 2.90g was obtained. The yield was 51%.
TLC R f value = 0.57 (hexane: ethyl acetate = 9:1 (mass ratio))
1H NMR ( CDCl3 ) d 1.21 (t, J=7.2Hz, 3H), 1.30 (s, 12H), 2.04 (s, 6H), 2.32 (s, 3H), 3.52 (q, J=7.2Hz, 2H), 6.00-6.90 (br, 2H), 6.96 (s, 2H), 7.60-7.70 (br, 2H).
13C NMR ( CDCl3 ) d 13.05, 18.21, 20.96, 24.83, 45.46, 83.08, 127.71, 129.64, 134.73, 136.32, 136. 56, 137.50, 139.82, 150.02.
 -化合物4Dの合成工程-
 文献(Angew. Chem. Int. Ed., 2013年, 52巻, 8990-8994頁)記載の手法により化合物4Dを合成した。
-Synthesis process of compound 4D-
Compound 4D was synthesized by the method described in the literature (Angew. Chem. Int. Ed., 2013, Vol. 52, pp. 8990-8994).
 -化合物033Eの合成工程-
 化合物4Dの2.0g(5.05mmol)を脱水ジエチルエーテルの105mLおよび脱水THF(テトラヒドロフラン)の34.8mLに溶解させた後、ドライアイス-アセトン浴で冷却し、n-ブチルリチウム(BuLi)(1.6mol/L)の6.82mL(10.9mmol;2.16eq.)を内温-74℃以下で滴下し、そのまま2時間撹拌した。ジクロロジフェニルシラン(PhSiCl)の1.28g(5.05mmol;1.0eq.)を脱水ジエチルエーテルの14mLに溶かした溶液を、内温-75℃以下で1時間かけて滴下し、そのまま1時間撹拌し、冷浴に浸けたまま0℃まで6時間かけてゆっくり昇温しながら撹拌した。水の50mLを加え、酢酸エチルを加えて分液した。得られた有機層をbrine洗浄し、NaSOで乾燥し、減圧濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン:酢酸エチル=19:1(質量比))で精製して、化合物033Eを0.80g得た。収率は38%であった。
 TLC R = 0.24(ヘキサン:酢酸エチル=19:1(質量比))
 H NMR (CDCl) d 4.37(s, 4H), 7.16(d, J=5.2Hz, 2H), 7.32-7.36(m, 4H), 7.37-7.42(m, 4H), 7.58(dd, J=1.2 and 8.0Hz, 4H).
 13C NMR (CDCl) d 66.20, 104.79, 126.36, 128.07, 129.99, 131.42, 133.29, 133.79, 135.60, 155.25.
 29Si NMR (CDCl) d -33.27.
-Synthesis process of compound 033E-
After dissolving 2.0 g (5.05 mmol) of compound 4D in 105 mL of dehydrated diethyl ether and 34.8 mL of dehydrated THF (tetrahydrofuran), it was cooled in a dry ice-acetone bath, and n-butyllithium (BuLi) ( 6.82 mL (10.9 mmol; 2.16 eq.) of 1.6 mol/L) was added dropwise at an internal temperature of −74° C. or below, and the mixture was stirred as it was for 2 hours. A solution of 1.28 g (5.05 mmol; 1.0 eq.) of dichlorodiphenylsilane (Ph 2 SiCl 2 ) dissolved in 14 mL of dehydrated diethyl ether was added dropwise over 1 hour at an internal temperature of -75°C or lower, and then left as is. The mixture was stirred for 1 hour, and the mixture was stirred while being slowly heated to 0° C. over 6 hours while immersed in a cold bath. 50 mL of water was added, and ethyl acetate was added to separate the layers. The obtained organic layer was washed with brine, dried with Na 2 SO 4 , concentrated under reduced pressure, and purified by silica gel column chromatography (developing solvent: hexane: ethyl acetate = 19:1 (mass ratio)) to obtain compound 033E. 0.80g was obtained. The yield was 38%.
TLC R f = 0.24 (hexane: ethyl acetate = 19:1 (mass ratio))
1 H NMR (CDCl 3 ) d 4.37 (s, 4H), 7.16 (d, J=5.2Hz, 2H), 7.32-7.36 (m, 4H), 7.37-7 .42 (m, 4H), 7.58 (dd, J=1.2 and 8.0Hz, 4H).
13C NMR ( CDCl3 ) d 66.20, 104.79, 126.36, 128.07, 129.99, 131.42, 133.29, 133.79, 135.60, 155.25.
29 Si NMR (CDCl 3 ) d -33.27.
 -化合物033Fの合成工程-
 化合物033Eの0.50g(1.2mmol)を脱水THFの12mLに溶解した後、ドライアイス-アセトン浴で冷却し、リチウムジイソプロピルアミド(LDA)のトルエン溶液(1mol/L)の3.6mL(3.6mmol; 3.0eq.)を内温-76℃以下で滴下し、そのまま2時間撹拌した。1,2-ジブロモテトラクロロエタンの0.86g(2.6mmol;2.2eq.)を脱水THFの2mLに溶かした溶液を滴下し、冷浴に浸けたままゆっくり昇温しながら終夜撹拌した。水の10mLを加え、酢酸エチルを加えて分液した。得られた有機層をbrine洗浄し、NaSOで乾燥し、減圧濃縮し、ヘキサンと酢酸エチルを加えて超音波分散し、濾過し、ヘキサンでかけ洗いし、減圧乾燥(60℃)して、化合物033Fを0.56g得た。収率は81%であった。
 H NMR (CDCl) d 4.30(s, 4H), 7.04(s, 2H), 7.36-7.43(m, 4H), 7.44-7.46(m, 2H), 7.54-7.56(m, 4H).
 13C NMR (CDCl) d 66.28, 103.75, 114.31, 128.30, 130.45, 131.90, 133.78, 135.11, 135.55, 155.71.
 29Si NMR (CDCl) d -34.72.
-Synthesis process of compound 033F-
After dissolving 0.50 g (1.2 mmol) of compound 033E in 12 mL of dehydrated THF, it was cooled in a dry ice-acetone bath, and 3.6 mL (3.2 mmol) of a toluene solution (1 mol/L) of lithium diisopropylamide (LDA) was dissolved. .6 mmol; 3.0 eq.) was added dropwise at an internal temperature of -76°C or lower, and the mixture was stirred for 2 hours. A solution of 0.86 g (2.6 mmol; 2.2 eq.) of 1,2-dibromotetrachloroethane dissolved in 2 mL of dehydrated THF was added dropwise, and the mixture was stirred overnight while slowly raising the temperature while immersed in a cold bath. 10 mL of water was added, and ethyl acetate was added to separate the layers. The obtained organic layer was washed with brine, dried with Na 2 SO 4 , concentrated under reduced pressure, added hexane and ethyl acetate and subjected to ultrasonic dispersion, filtered, washed with hexane, and dried under reduced pressure (60 ° C.). , 0.56 g of compound 033F was obtained. The yield was 81%.
1 H NMR (CDCl 3 ) d 4.30 (s, 4H), 7.04 (s, 2H), 7.36-7.43 (m, 4H), 7.44-7.46 (m, 2H) ), 7.54-7.56 (m, 4H).
13C NMR ( CDCl3 ) d 66.28, 103.75, 114.31, 128.30, 130.45, 131.90, 133.78, 135.11, 135.55, 155.71.
29 Si NMR (CDCl 3 ) d -34.72.
 -化合物033Gの合成工程-
 化合物033Fの0.859g(1.49mmol)、化合物033Cの1.20g(3.28mmol;2.2eq.)、炭酸セシウムの1.17g(3.58mmol;2.4eq.)、4-メチルテトラヒドロピランの85.9mL、水の8.59mLを混合した。ついで、減圧脱気を行ったのち窒素置換を行う操作を3回繰り返した後、(2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピル-1,1’-ビフェニル)[2-(2’-アミノ-1,1’-ビフェニル)]パラジウムメタンスルホン酸塩
(XPhos Pd G3)の0.133g(0.149mmol;0.1eq.)を添加した。次いで、減圧脱気を行ったのち窒素置換を行う操作を3回繰り返した後、窒素フロー下で、110℃で8時間反応させた。放冷後、酢酸エチルを添加し、分液した。得られた有機層をbrine洗浄し、NaSOで乾燥し、減圧濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン:酢酸エチル=4:1(質量比))で精製して、化合物033Gを得た。得られた化合物033Gはそのまま次工程で使用した。
 TLC R値= 0.61(ヘキサン:酢酸エチル=4:1(質量比))
 H NMR (CDCl) d 1.20(t, J=7.2Hz, 6H), 2.05(s, 12H), 2.32(s, 6H), 3.58(q, J=7.2Hz, 4H), 4.38(s, 4H), 6.20-6.50(m, 4H), 6.95(s, 4H), 7.09(s, 2H), 7.31-7.39(m, 10H), 7.62-7.64(m, 4H).
 13C NMR (CDCl) d 13.15, 18.27, 20.98, 45.46, 66.15, 77.22, 104.92, 111.34, 121.93, 124.64, 127.44, 128.02, 129.66, 133.62, 134.79, 135.72, 136.58, 137.63, 139.88, 146.62, 147.43, 151.90.
-Synthesis process of compound 033G-
0.859 g (1.49 mmol) of compound 033F, 1.20 g (3.28 mmol; 2.2 eq.) of compound 033C, 1.17 g (3.58 mmol; 2.4 eq.) of cesium carbonate, 4-methyltetrahydro 85.9 mL of pyran and 8.59 mL of water were mixed. Next, after repeating the operation of degassing under reduced pressure and replacing with nitrogen three times, (2-dicyclohexylphosphino-2',4',6'-triisopropyl-1,1'-biphenyl)[2- 0.133 g (0.149 mmol; 0.1 eq.) of (2'-amino-1,1'-biphenyl)] palladium methanesulfonate (XPhos Pd G3) was added. Next, the operation of degassing under reduced pressure and then replacing with nitrogen was repeated three times, followed by a reaction at 110° C. for 8 hours under a nitrogen flow. After cooling, ethyl acetate was added and the mixture was separated. The obtained organic layer was washed with brine, dried with Na 2 SO 4 , concentrated under reduced pressure, and purified by silica gel column chromatography (developing solvent: hexane: ethyl acetate = 4:1 (mass ratio)) to obtain compound 033G. Obtained. The obtained compound 033G was used as it was in the next step.
TLC R f value = 0.61 (hexane: ethyl acetate = 4:1 (mass ratio))
1H NMR ( CDCl3 ) d 1.20 (t, J=7.2Hz, 6H), 2.05 (s, 12H), 2.32 (s, 6H), 3.58 (q, J=7 .2Hz, 4H), 4.38 (s, 4H), 6.20-6.50 (m, 4H), 6.95 (s, 4H), 7.09 (s, 2H), 7.31- 7.39 (m, 10H), 7.62-7.64 (m, 4H).
13C NMR ( CDCl3 ) d 13.15, 18.27, 20.98, 45.46, 66.15, 77.22, 104.92, 111.34, 121.93, 124.64, 127. 44, 128.02, 129.66, 133.62, 134.79, 135.72, 136.58, 137.63, 139.88, 146.62, 147.43, 151.90.
-化合物033Hの合成工程-
 化合物033Gを塩化メチレン40mLに溶解させ、塩化水素(4mol/L 1,4-ジオキサン溶液)の2.56mL(10.2mmol 6.9eq.)を添加して、室温で一晩撹拌した。飽和重曹水で中和し、分液した。得られた水層をCHClで抽出し、有機層をNaSOで乾燥し、減圧濃縮し、CHCl-メタノールで濃縮再結晶し、濾過し、メタノールでかけ洗いして、化合物033Hを0.98g得た。収率は77%であった(化合物033Fからの収率)。
 TLC R値= 0.54(ヘキサン:酢酸エチル=4:1(質量比))
 H NMR (CDCl) d 1.22(t, J=7.2Hz, 6H), 2.06(s, 12H), 2.32(s, 6H), 3.61(q, J=7.2Hz, 4H), 6.20-6.50(m, 4H), 6.96(s, 4H), 7.35-7.44(m, 12H), 7.62-7.64(m, 4H).
 13C NMR (CDCl) d 13.06, 18.22, 20.98, 45.57, 77.22, 104.92, 111.41, 121.10, 126.17, 127.88, 128.32, 129.74, 132.14, 135.61, 136.83, 137.40, 139.53, 143.58, 148.44, 154.71, 175.72.
 29Si NMR (CDCl) d -34.78.
-Synthesis process of compound 033H-
Compound 033G was dissolved in 40 mL of methylene chloride, 2.56 mL (10.2 mmol 6.9 eq.) of hydrogen chloride (4 mol/L 1,4-dioxane solution) was added, and the mixture was stirred at room temperature overnight. The mixture was neutralized with saturated sodium bicarbonate solution and separated. The resulting aqueous layer was extracted with CH 2 Cl 2 , the organic layer was dried over Na 2 SO 4 , concentrated under reduced pressure, concentrated and recrystallized from CH 2 Cl 2 -methanol, filtered, washed with methanol, 0.98 g of compound 033H was obtained. The yield was 77% (from compound 033F).
TLC R f value = 0.54 (hexane: ethyl acetate = 4:1 (mass ratio))
1H NMR ( CDCl3 ) d 1.22 (t, J=7.2Hz, 6H), 2.06 (s, 12H), 2.32 (s, 6H), 3.61 (q, J=7 .2Hz, 4H), 6.20-6.50(m, 4H), 6.96(s, 4H), 7.35-7.44(m, 12H), 7.62-7.64(m , 4H).
13C NMR ( CDCl3 ) d 13.06, 18.22, 20.98, 45.57, 77.22, 104.92, 111.41, 121.10, 126.17, 127.88, 128. 32, 129.74, 132.14, 135.61, 136.83, 137.40, 139.53, 143.58, 148.44, 154.71, 175.72.
29 Si NMR (CDCl 3 ) d -34.78.
-化合物033Iの合成工程-
 マグネシウムの0.052g(2.1mmol;12eq.)、脱水THFの1.5mLにヨウ素の3mgを添加し、約40℃に加温した後、2-ブロモ-1,3-ジメトキシベンゼンの0.38g(1.8mmol;10eq.)を脱水THFの1.5mLに溶解した溶液を内温40℃以上でゆっくり滴下し、油浴60℃で4時間撹拌した後室温まで冷却して、グリニヤール試薬溶液を調製した。化合物033Hの0.15g(0.18mmol)を脱水THFの1.5mLに溶解し、氷浴下、調製したグリニヤール試薬溶液を内温4℃以下で滴下し、油浴50℃で5時間撹拌した。放冷後、反応液を減圧濃縮し、飽和塩化アンモニウム水溶液とCHClを加え、分液した。得られた有機層をbrine洗浄し、NaSOで乾燥し、減圧濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン:酢酸エチル=4:1(質量比))で精製して、化合物033Iを0.096g得た。収率は55%であった。
 TLC R値= 0.32(ヘキサン:酢酸エチル=4:1(質量比))
 H NMR (CDCl) d 1.21(t, J=7.2Hz, 6H), 1.29-1.34(br, 1H), 2.06(s, 12H), 2.33(s, 6H), 3.59(q, J=7.2Hz, 4H), 3.60(s, 6H), 6.20-6.60(br, 4H), 6.69-6.71(m, 2H), 6.99(s, 4H), 7.15(s, 2H), 7.32-7.37(m, 5H), 7.38-7.45(m, 6H), 7.71-7.80(m, 4H).
 13C NMR (CDCl) d 13.26, 18.36, 21.06, 45.76, 56.97, 75.97, 107.02, 111.63, 122.40, 123.48, 127.40, 128.34, 128.41, 129.91, 129.94, 130.04, 130.50, 135.94, 136.04, 136.97, 137.95, 140.18, 144.79, 147.70, 158.53, 159.98.
-Synthesis process of compound 033I-
After adding 3 mg of iodine to 0.052 g (2.1 mmol; 12 eq.) of magnesium and 1.5 mL of dehydrated THF and heating to about 40°C, 0.05 g (2.1 mmol; 12 eq.) of 2-bromo-1,3-dimethoxybenzene was added. A solution of 38 g (1.8 mmol; 10 eq.) dissolved in 1.5 mL of dehydrated THF was slowly added dropwise at an internal temperature of 40°C or higher, stirred in an oil bath at 60°C for 4 hours, and then cooled to room temperature to form a Grignard reagent solution. was prepared. 0.15 g (0.18 mmol) of compound 033H was dissolved in 1.5 mL of dehydrated THF, and the prepared Grignard reagent solution was added dropwise in an ice bath at an internal temperature of 4° C. or lower, followed by stirring in an oil bath at 50° C. for 5 hours. . After cooling, the reaction solution was concentrated under reduced pressure, and a saturated aqueous ammonium chloride solution and CH 2 Cl 2 were added to separate the layers. The obtained organic layer was washed with brine, dried with Na 2 SO 4 , concentrated under reduced pressure, and purified by silica gel column chromatography (developing solvent: hexane: ethyl acetate = 4:1 (mass ratio)) to obtain compound 033I. 0.096g was obtained. The yield was 55%.
TLC R f value = 0.32 (hexane: ethyl acetate = 4:1 (mass ratio))
1 H NMR (CD 2 Cl 2 ) d 1.21 (t, J=7.2Hz, 6H), 1.29-1.34 (br, 1H), 2.06 (s, 12H), 2.33 (s, 6H), 3.59 (q, J=7.2Hz, 4H), 3.60 (s, 6H), 6.20-6.60 (br, 4H), 6.69-6.71 (m, 2H), 6.99 (s, 4H), 7.15 (s, 2H), 7.32-7.37 (m, 5H), 7.38-7.45 (m, 6H), 7.71-7.80 (m, 4H).
13C NMR (CD 2 Cl 2 ) d 13.26, 18.36, 21.06, 45.76, 56.97, 75.97, 107.02, 111.63, 122.40, 123.48, 127.40, 128.34, 128.41, 129.91, 129.94, 130.04, 130.50, 135.94, 136.04, 136.97, 137.95, 140.18, 144. 79, 147.70, 158.53, 159.98.
-化合物033Jの合成工程-
 化合物033Iの0.096g(0.097mmol)を塩化メチレンの5mLに溶解させ、塩化水素(4mol/L 1,4-ジオキサン溶液)の0.19mL(0.78mmol;8eq.)を添加して、室温で30分間撹拌した。希塩酸(6mol/L)の5mLとCHClを加えて撹拌し、分液した。得られた有機層を、水層がpH7になるまで水洗し、NaSOで乾燥し、減圧濃縮して、化合物033Jを0.10g得た。得られた化合物033Jはそのまま次工程に使用した。
 TLC R値= 0.00(ヘキサン:酢酸エチル=4:1(質量比))
MS(LDI): m/z 969.38 ([M-Cl]).
-Synthesis process of compound 033J-
0.096 g (0.097 mmol) of compound 033I was dissolved in 5 mL of methylene chloride, and 0.19 mL (0.78 mmol; 8 eq.) of hydrogen chloride (4 mol/L 1,4-dioxane solution) was added. Stirred at room temperature for 30 minutes. 5 mL of dilute hydrochloric acid (6 mol/L) and CH 2 Cl 2 were added and stirred to separate the layers. The obtained organic layer was washed with water until the pH of the aqueous layer became 7, dried over Na 2 SO 4 and concentrated under reduced pressure to obtain 0.10 g of Compound 033J. The obtained compound 033J was used as it was in the next step.
TLC R f value = 0.00 (hexane: ethyl acetate = 4:1 (mass ratio))
MS (LDI): m/z 969.38 ([M-Cl] + ).
 -化合物033の合成工程-
 化合物033Jを塩化メチレンの10mLに添加して懸濁させたのち、ビス(トリフルオロメタンスルホニル)イミドカリウム(Tf)の0.0310g(0.097mmol;1.0eq.)を水の1mLに溶かして添加し、室温で50分間攪拌し、分液した。得られた有機層を減圧濃縮し、シリカゲルカラムクロマトグラフィー(初期の展開液はヘキサン:酢酸エチル=4:1(質量比)を用いて、その後展開液をCHCl:酢酸エチル=4:1(質量比)に変更した)で精製して、化合物033を0.092g得た。収率は76%であった(化合物033Iからの収率)。
 TLC R値= 0.73(CHCl:酢酸エチル=4:1(質量比))
 H NMR (CDCl) d 1.23(t, J=7.2Hz, 6H), 2.02(s, 12H), 2.32(s, 6H), 3.69(q, J=7.2Hz, 4H), 3.77(s, 6H), 5.80-6.20(br, 4H), 6.69(q, J=8.8Hz, 2H), 6.97(s, 4H), 7.30-7.43(br, 2H), 7.45-7.63(m, 8H), 7.66-7.76(m, 5H), 7.82(s, 2H).
 13C NMR (CDCl) d 12.75, 18.04, 20.98, 46.39, 56.31, 77.23, 104.16, 111.41, 114.65, 120.03(q, J=321.8Hz), 120.53, 129.00, 129.71, 129.98, 131.48, 133.10, 134.62, 135.52, 136.23, 137.90, 138.13, 147.20, 148.23, 151.21, 152.18, 157.86, 167.74.
 29Si NMR (CDCl) d -32.71.
 19F NMR (CDCl) d -78.62.
 MS(LDI): m/z 969.37 ([M-TfN]), 279.93 (Tf).
 極大吸収波長=995nm(CHCl) e 1.35×10 L/mol・cm
-Synthesis process of compound 033-
Compound 033J was added to 10 mL of methylene chloride and suspended, and then 0.0310 g (0.097 mmol; 1.0 eq.) of potassium bis(trifluoromethanesulfonyl)imide (Tf 2 N K + ) was added to water. The mixture was dissolved in 1 mL and added, stirred at room temperature for 50 minutes, and separated. The obtained organic layer was concentrated under reduced pressure and subjected to silica gel column chromatography (initial developing solution was hexane:ethyl acetate = 4:1 (mass ratio), and then the developing solution was CH 2 Cl 2 :ethyl acetate = 4: 1 (mass ratio)) to obtain 0.092 g of Compound 033. The yield was 76% (from compound 033I).
TLC R f value = 0.73 (CH 2 Cl 2 : ethyl acetate = 4:1 (mass ratio))
1H NMR ( CDCl3 ) d 1.23 (t, J=7.2Hz, 6H), 2.02 (s, 12H), 2.32 (s, 6H), 3.69 (q, J=7 .2Hz, 4H), 3.77(s, 6H), 5.80-6.20(br, 4H), 6.69(q, J=8.8Hz, 2H), 6.97(s, 4H) ), 7.30-7.43 (br, 2H), 7.45-7.63 (m, 8H), 7.66-7.76 (m, 5H), 7.82 (s, 2H).
13C NMR ( CDCl3 ) d 12.75, 18.04, 20.98, 46.39, 56.31, 77.23, 104.16, 111.41, 114.65, 120.03 (q, J=321.8Hz), 120.53, 129.00, 129.71, 129.98, 131.48, 133.10, 134.62, 135.52, 136.23, 137.90, 138.13 , 147.20, 148.23, 151.21, 152.18, 157.86, 167.74.
29 Si NMR (CDCl 3 ) d -32.71.
19 F NMR (CDCl 3 ) d -78.62.
MS (LDI): m/z 969.37 ([M-Tf 2 N] + ), 279.93 (Tf 2 N - ).
Maximum absorption wavelength = 995 nm (CH 2 Cl 2 ) e 1.35×10 5 L/mol・cm
(合成例2) 化合物034の合成
 化合物033Eの合成工程において、ジクロロジフェニルシランを等モル量のジクロロジメチルシランに変えた以外は合成例1と同様の操作を行い化合物034を合成した。
 MS(LDI): m/z 845.37 ([M-TfN]), 279.92 (Tf).
 極大吸収波長=928nm(CHCl
(Synthesis Example 2) Synthesis of Compound 034 Compound 034 was synthesized in the same manner as in Synthesis Example 1, except that in the synthesis step of Compound 033E, dichlorodiphenylsilane was changed to an equimolar amount of dichlorodimethylsilane.
MS (LDI): m/z 845.37 ([M−Tf 2 N] + ), 279.92 (Tf 2 N ).
Maximum absorption wavelength = 928 nm (CH 2 Cl 2 )
(合成例3) 化合物035の合成
 化合物033Eの合成工程において、ジクロロジフェニルシランを等モル量のジクロロジエチルシランに変えた以外は合成例1と同様の操作を行い化合物035を合成した。
 MS(LDI): m/z 873.39 ([M-TfN]), 279.91 (Tf).
 極大吸収波長=909nm(CHCl
(Synthesis Example 3) Synthesis of Compound 035 Compound 035 was synthesized in the same manner as in Synthesis Example 1, except that in the synthesis step of Compound 033E, dichlorodiphenylsilane was replaced with an equimolar amount of dichlorodiethylsilane.
MS (LDI): m/z 873.39 ([M−Tf 2 N] + ), 279.91 (Tf 2 N ).
Maximum absorption wavelength = 909 nm (CH 2 Cl 2 )
(合成例4) 化合物036の合成
 化合物033Bの合成工程において、化合物033Aを等モル量のジエチルアニリンに変えた以外は合成例1と同様の操作を行い化合物036を合成した。
 MS(LDI): m/z 789.30 ([M-TfN]), 279.92 (Tf).
 極大吸収波長=915nm(CHCl
(Synthesis Example 4) Synthesis of Compound 036 Compound 036 was synthesized in the same manner as in Synthesis Example 1, except that in the synthesis step of Compound 033B, Compound 033A was changed to an equimolar amount of diethylaniline.
MS (LDI): m/z 789.30 ([M-Tf 2 N] + ), 279.92 (Tf 2 N - ).
Maximum absorption wavelength = 915 nm (CH 2 Cl 2 )
(合成例5) 化合物037の合成
 化合物033Iの合成工程において、2-ブロモ-1,3-ジメトキシベンゼンを等モル量の2-ブロモメシチレンに変えた以外は合成例1と同様の操作を行い化合物037を合成した。
 MS(LDI): m/z 951.43 ([M-TfN]), 279.93 (Tf).
 極大吸収波長=1037nm(CHCl
(Synthesis Example 5) Synthesis of Compound 037 In the synthesis step of Compound 033I, the same procedure as in Synthesis Example 1 was performed except that 2-bromo-1,3-dimethoxybenzene was changed to an equimolar amount of 2-bromomesitylene. 037 was synthesized.
MS (LDI): m/z 951.43 ([M−Tf 2 N] + ), 279.93 (Tf 2 N ).
Maximum absorption wavelength = 1037 nm (CH 2 Cl 2 )
(合成例6) 化合物038の合成
 化合物033Iの合成工程において、2-ブロモ-1,3-ジメトキシベンゼンを等モル量のブロモベンゼンに変えた以外は合成例1と同様の操作を行い化合物038を合成した。
 MS(LDI): m/z 909.35 ([M-TfN]), 279.93 (Tf).
 極大吸収波長=1021nm(CHCl
(Synthesis Example 6) Synthesis of Compound 038 Compound 038 was produced by performing the same operation as in Synthesis Example 1, except that in the synthesis step of Compound 033I, 2-bromo-1,3-dimethoxybenzene was changed to an equimolar amount of bromobenzene. Synthesized.
MS (LDI): m/z 909.35 ([M−Tf 2 N] + ), 279.93 (Tf 2 N ).
Maximum absorption wavelength = 1021 nm (CH 2 Cl 2 )
(合成例7) 化合物039の合成
 化合物033の合成工程において、ビス(トリフルオロメタンスルホニル)イミドカリウムを等モル量のトリフルオロ酢酸カリウムに変えた以外は合成例1と同様の操作を行い化合物039を合成した。
 MS(LDI): m/z 845.37 ([M- CFCO), 113.00 (CFCO ).
 極大吸収波長=996nm(CHCl
(Synthesis Example 7) Synthesis of Compound 039 In the synthesis step of Compound 033, Compound 039 was produced by performing the same operation as in Synthesis Example 1 except that potassium bis(trifluoromethanesulfonyl)imide was replaced with an equimolar amount of potassium trifluoroacetate. Synthesized.
MS (LDI): m/z 845.37 ([M- CF 3 CO 2 ] + ), 113.00 (CF 3 CO 2 - ).
Maximum absorption wavelength = 996 nm (CH 2 Cl 2 )
(合成例8) 化合物040の合成
 化合物033の合成工程において、ビス(トリフルオロメタンスルホニル)イミドカリウムを等モル量のトリフルオロメタンスルホン酸ナトリウムに変えた以外は合成例1と同様の操作を行い化合物040を合成した。
 MS(LDI): m/z 845.37 ([M- CFSO), 148.95 (CFSO ).
 極大吸収波長=995nm(CHCl
(Synthesis Example 8) Synthesis of Compound 040 Compound 040 was obtained by performing the same operation as in Synthesis Example 1, except that in the synthesis step of Compound 033, potassium bis(trifluoromethanesulfonyl)imide was replaced with an equimolar amount of sodium trifluoromethanesulfonate. was synthesized.
MS (LDI): m/z 845.37 ([M- CF 3 SO 3 ] + ), 148.95 (CF 3 SO 3 - ).
Maximum absorption wavelength = 995 nm (CH 2 Cl 2 )
(合成例9) 化合物041の合成
 化合物033の合成工程において、ビス(トリフルオロメタンスルホニル)イミドカリウムを等モル量のヘキサフルオロリン酸カリウムに変えた以外は合成例1と同様の操作を行い化合物041を合成した。
 MS(LDI): m/z 845.37 ([M- PF), 144.97 (PF ).
 極大吸収波長=994nm(CHCl
(Synthesis Example 9) Synthesis of Compound 041 Compound 041 was obtained by performing the same operation as in Synthesis Example 1, except that in the synthesis step of Compound 033, potassium bis(trifluoromethanesulfonyl)imide was replaced with an equimolar amount of potassium hexafluorophosphate. was synthesized.
MS (LDI): m/z 845.37 ([M- PF 6 ] + ), 144.97 (PF 6 - ).
Maximum absorption wavelength = 994 nm (CH 2 Cl 2 )
(合成例10) 化合物042の合成
 化合物033の合成工程において、ビス(トリフルオロメタンスルホニル)イミドカリウムを等モル量のリチウムテトラキス(ペンタフルオロフェニル)ボラート エチルエーテラートに変えた以外は合成例1と同様の操作を行い化合物042を合成した。
 MS(LDI): m/z 845.37 ([M- B(C), 678.97 (B(C ).
 極大吸収波長=995nm(CHCl
(Synthesis Example 10) Synthesis of Compound 042 Same as Synthesis Example 1 except that in the synthesis step of Compound 033, potassium bis(trifluoromethanesulfonyl)imide was replaced with an equimolar amount of lithium tetrakis(pentafluorophenyl)borate ethyl etherate. Compound 042 was synthesized by performing the following operations.
MS (LDI): m/z 845.37 ([MB(C 6 F 5 ) 4 ] + ), 678.97 (B(C 6 F 5 ) 4 ).
Maximum absorption wavelength = 995 nm (CH 2 Cl 2 )
(合成例11) 化合物043の合成
 化合物033の合成工程において、ビス(トリフルオロメタンスルホニル)イミドカリウムを等モル量のカリウムトリス(トリフルオロメタンスルホニル)メタニドに変えた以外は合成例1と同様の操作を行い化合物043を合成した。
 MS(LDI): m/z 845.37 ([M- C(SOCF), 410.88 (C(SOCF ).
 極大吸収波長=997nm(CHCl
(Synthesis Example 11) Synthesis of Compound 043 In the synthesis step of Compound 033, the same procedure as Synthesis Example 1 was performed except that potassium bis(trifluoromethanesulfonyl)imide was replaced with an equimolar amount of potassium tris(trifluoromethanesulfonyl)methanide. Compound 043 was synthesized.
MS (LDI): m/z 845.37 ([MC(SO 2 CF 3 ) 3 ] + ), 410.88 (C(SO 2 CF 3 ) 3 ).
Maximum absorption wavelength = 997 nm (CH 2 Cl 2 )
(合成例12) 化合物044の合成
 化合物033の合成工程において、ビス(トリフルオロメタンスルホニル)イミドカリウムを化合物033Jに対して0.5当量の1,1,2,2,3,3-ヘキサフルオロプロパン-1,3-ジスルホン酸カリウムに変えた以外は合成例1と同様の操作を行い化合物044を合成した。
 MS(LDI): m/z 845.37 ([カチオン部]), 154.96 ([アニオン部]/2).
 極大吸収波長=995nm(CHCl
(Synthesis Example 12) Synthesis of Compound 044 In the synthesis step of Compound 033, potassium bis(trifluoromethanesulfonyl)imide was added to 0.5 equivalent of 1,1,2,2,3,3-hexafluoropropane based on Compound 033J. Compound 044 was synthesized in the same manner as in Synthesis Example 1 except that potassium -1,3-disulfonate was used.
MS (LDI): m/z 845.37 ([cation part]), 154.96 ([anion part]/2).
Maximum absorption wavelength = 995 nm (CH 2 Cl 2 )
(合成例13) 化合物045の合成
 合成例1において、ジクロロジフェニルシランを等モル量の塩化チオニルに変えた以外は合成例1と同様の操作を行い化合物045を合成した。
 MS(LDI): m/z 835.32 ([M-TfN]), 279.92 (Tf).
 極大吸収波長=1037nm(CHCl
(Synthesis Example 13) Synthesis of Compound 045 Compound 045 was synthesized in the same manner as in Synthesis Example 1 except that dichlorodiphenylsilane was changed to an equimolar amount of thionyl chloride.
MS (LDI): m/z 835.32 ([M−Tf 2 N] + ), 279.92 (Tf 2 N ).
Maximum absorption wavelength = 1037 nm (CH 2 Cl 2 )
(合成例14) 化合物046の合成
 合成例4において、ジクロロジフェニルシランを等モル量の塩化チオニルに変えた以外は合成例4と同様の操作を行い化合物046を合成した。
 MS(LDI): m/z 655.20 ([M-TfN]), 279.91 (Tf).
 極大吸収波長=932nm(CHCl
(Synthesis Example 14) Synthesis of Compound 046 Compound 046 was synthesized in the same manner as in Synthesis Example 4 except that dichlorodiphenylsilane was changed to an equimolar amount of thionyl chloride.
MS (LDI): m/z 655.20 ([M-Tf 2 N] + ), 279.91 (Tf 2 N - ).
Maximum absorption wavelength = 932 nm (CH 2 Cl 2 )
(合成例15) 化合物047の合成
 合成例5において、ジクロロジフェニルシランを等モル量の塩化チオニルに変えた以外は合成例5と同様の操作を行い化合物045を合成した。
 MS(LDI): m/z 817.35 ([M-TfN]), 279.91 (Tf).
 極大吸収波長=973nm(CHCl
(Synthesis Example 15) Synthesis of Compound 047 Compound 045 was synthesized in the same manner as in Synthesis Example 5 except that dichlorodiphenylsilane was changed to an equimolar amount of thionyl chloride.
MS (LDI): m/z 817.35 ([M-Tf 2 N] + ), 279.91 (Tf 2 N - ).
Maximum absorption wavelength = 973 nm (CH 2 Cl 2 )
(合成例16) 化合物048の合成
 合成例6において、ジクロロジフェニルシランを等モル量の塩化チオニルに変えた以外は合成例6と同様の操作を行い化合物045を合成した。
 MS(LDI): m/z 775.27 ([M-TfN]), 279.92 (Tf).
 極大吸収波長=1067nm(CHCl
(Synthesis Example 16) Synthesis of Compound 048 Compound 045 was synthesized in the same manner as in Synthesis Example 6 except that dichlorodiphenylsilane was changed to an equimolar amount of thionyl chloride.
MS (LDI): m/z 775.27 ([M−Tf 2 N] + ), 279.92 (Tf 2 N ).
Maximum absorption wavelength = 1067 nm (CH 2 Cl 2 )
(合成例17) 化合物049の合成
 合成例13において、ビス(トリフルオロメタンスルホニル)イミドカリウムを等モル量のヘキサフルオロリン酸カリウムに変えた以外は合成例13と同様の操作を行い化合物049を合成した。
 MS(LDI): m/z 835.32 ([M- CFCO), 113.00 (CFCO ).
 極大吸収波長=1038nm(CHCl
(Synthesis Example 17) Synthesis of Compound 049 Compound 049 was synthesized in the same manner as in Synthesis Example 13, except that potassium bis(trifluoromethanesulfonyl)imide was replaced with an equimolar amount of potassium hexafluorophosphate. did.
MS (LDI): m/z 835.32 ([M- CF 3 CO 2 ] + ), 113.00 (CF 3 CO 2 - ).
Maximum absorption wavelength = 1038 nm (CH 2 Cl 2 )
(合成例18) 化合物050の合成
 合成例13において、ビス(トリフルオロメタンスルホニル)イミドカリウムを等モル量のトリフルオロメタンスルホン酸ナトリウムに変えた以外は合成例13と同様の操作を行い化合物050を合成した。
 MS(LDI): m/z 835.32 ([M- CFSO), 148.95 (CFSO ).
 極大吸収波長=1036nm(CHCl
(Synthesis Example 18) Synthesis of Compound 050 Synthesis of Compound 050 was performed in the same manner as in Synthesis Example 13, except that potassium bis(trifluoromethanesulfonyl)imide was replaced with an equimolar amount of sodium trifluoromethanesulfonate. did.
MS (LDI): m/z 835.32 ([M- CF 3 SO 3 ] + ), 148.95 (CF 3 SO 3 - ).
Maximum absorption wavelength = 1036 nm (CH 2 Cl 2 )
(合成例19) 化合物051の合成
 合成例13において、ビス(トリフルオロメタンスルホニル)イミドカリウムを等モル量のトリフルオロメタンスルホン酸ナトリウムに変えた以外は合成例13と同様の操作を行い化合物051を合成した。
 MS(LDI): m/z 835.32 ([M- PF), 144.97 (PF ).
 極大吸収波長=1037nm(CHCl
(Synthesis Example 19) Synthesis of Compound 051 Compound 051 was synthesized in the same manner as in Synthesis Example 13, except that potassium bis(trifluoromethanesulfonyl)imide was replaced with an equimolar amount of sodium trifluoromethanesulfonate. did.
MS (LDI): m/z 835.32 ([M- PF 6 ] + ), 144.97 (PF 6 - ).
Maximum absorption wavelength = 1037 nm (CH 2 Cl 2 )
(合成例20) 化合物052の合成
 合成例13において、ビス(トリフルオロメタンスルホニル)イミドカリウムを等モル量のリチウムテトラキス(ペンタフルオロフェニル)ボラート エチルエーテラートに変えた以外は合成例13と同様の操作を行い化合物052を合成した。
 MS(LDI): m/z 835.32 ([M- B(C), 678.97 (B(C ).
 極大吸収波長=1038nm(CHCl
(Synthesis Example 20) Synthesis of Compound 052 The same procedure as in Synthesis Example 13 except that potassium bis(trifluoromethanesulfonyl)imide was replaced with an equimolar amount of lithium tetrakis(pentafluorophenyl)borate ethyl etherate. Compound 052 was synthesized.
MS (LDI): m/z 835.32 ([MB(C 6 F 5 ) 4 ] + ), 678.97 (B(C 6 F 5 ) 4 ).
Maximum absorption wavelength = 1038 nm (CH 2 Cl 2 )
(合成例21) 化合物053の合成
 合成例13において、ビス(トリフルオロメタンスルホニル)イミドカリウムを等モル量のカリウムトリス(トリフルオロメタンスルホニル)メタニドに変えた以外は合成例13と同様の操作を行い化合物053を合成した。
 MS(LDI): m/z 835.31 ([M- C(SOCF), 410.88 (C(SOCF ).
 極大吸収波長=1036nm(CHCl
(Synthesis Example 21) Synthesis of Compound 053 The same procedure as in Synthesis Example 13 was performed except that potassium bis(trifluoromethanesulfonyl)imide was replaced with an equimolar amount of potassium tris(trifluoromethanesulfonyl)methanide. 053 was synthesized.
MS (LDI): m/z 835.31 ([MC(SO 2 CF 3 ) 3 ] + ), 410.88 (C(SO 2 CF 3 ) 3 ).
Maximum absorption wavelength = 1036 nm (CH 2 Cl 2 )
(合成例22) 化合物054の合成
 合成例12において、ジクロロジフェニルシランを等モル量の塩化チオニルに変えた以外は合成例12と同様の操作を行い化合物054を合成した。
 MS(LDI): m/z 835.32 ([カチオン部]), 154.96 ([アニオン部]/2).
 極大吸収波長=1038nm(CHCl
(Synthesis Example 22) Synthesis of Compound 054 Compound 054 was synthesized in the same manner as in Synthesis Example 12, except that dichlorodiphenylsilane was changed to an equimolar amount of thionyl chloride.
MS (LDI): m/z 835.32 ([cation part]), 154.96 ([anion part]/2).
Maximum absorption wavelength = 1038 nm (CH 2 Cl 2 )
<顔料分散液の製造>
 下記表に示す素材を下記表に示す割合で配合し、総量10gの混合物得た。この混合物を0.3mm径のジルコニアビーズを使用して、ビーズミル(減圧機構付き高圧分散機NANO-3000-10(日本ビーイーイー(株)製))で、3時間、混合および分散して、各顔料分散液を調製した。顔料分散液の固形分濃度は溶剤の配合量で調整した。
<Production of pigment dispersion>
The materials shown in the table below were blended in the proportions shown in the table below to obtain a mixture with a total amount of 10 g. This mixture was mixed and dispersed for 3 hours using zirconia beads with a diameter of 0.3 mm in a bead mill (high pressure dispersion machine with vacuum mechanism NANO-3000-10 (manufactured by Nippon BEE Co., Ltd.)), and each pigment was mixed and dispersed. A dispersion was prepared. The solid content concentration of the pigment dispersion was adjusted by adjusting the amount of solvent added.
 表に記載の素材の詳細は以下の通りである。 Details of the materials listed in the table are as follows.
(顔料)
 017、018:上述した特定赤外線吸収色素の具体例で示した化合物017、018(赤外線吸収色素)
 IR101~IR103:下記構造の化合物(赤外線吸収色素)
 PB15:6 : C.I.ピグメントブルー15:6(青色着色剤)
 PR254 : C.I.ピグメントレッド254(赤色着色剤)
(pigment)
017, 018: Compounds 017, 018 (infrared absorbing pigments) shown in the specific examples of the specific infrared absorbing pigments mentioned above
IR101 to IR103: Compounds with the following structure (infrared absorbing dyes)
PB15:6: C. I. Pigment Blue 15:6 (blue colorant)
PR254: C. I. Pigment Red 254 (red colorant)
(顔料誘導体)
 Syn-001、Syn-002:下記構造の化合物
(pigment derivative)
Syn-001, Syn-002: Compounds with the following structure
(分散剤)
 Dis-001:下記構造の樹脂(主鎖に付記した数値はモル比であり、側鎖に付記した数値は繰り返し単位の数である。重量平均分子量25000)
 Dis-002:下記構造の樹脂(主鎖に付記した数値はモル比であり、側鎖に付記した数値は繰り返し単位の数である。重量平均分子量9800)
(dispersant)
Dis-001: Resin with the following structure (the numerical value appended to the main chain is the molar ratio, and the numerical value appended to the side chain is the number of repeating units. Weight average molecular weight 25,000)
Dis-002: Resin with the following structure (the numerical value appended to the main chain is the molar ratio, and the numerical value appended to the side chain is the number of repeating units. Weight average molecular weight 9800)
(溶剤)
 S-001:プロピレングリコールモノメチルエーテルアセテート
(solvent)
S-001: Propylene glycol monomethyl ether acetate
<樹脂組成物の製造>
 下記表に示す溶剤以外の素材を下記表に示す割合で混合し、下記表に示す溶剤を加えて固形分濃度が20質量%となるように調整した後、撹拌し、孔径0.45μmのナイロン製フィルタ(日本ポール(株)製)でろ過して、樹脂組成物を製造した。表中の配合量欄の数値は固形分換算値での質量部の値である。
<Manufacture of resin composition>
Materials other than the solvents shown in the table below are mixed in the proportions shown in the table below, the solvents shown in the table below are added to adjust the solid content concentration to 20% by mass, and the mixture is stirred to form nylon with a pore size of 0.45 μm. filter (manufactured by Nippon Pall Co., Ltd.) to produce a resin composition. The numerical values in the blending amount column in the table are values in parts by mass in terms of solid content.
 上記表に記載の素材の詳細は以下の通りである。 Details of the materials listed in the table above are as follows.
(顔料分散液)
 D001、D002、D101~D105:上述した顔料分散液D001、D002、D101~D105
(Pigment dispersion)
D001, D002, D101-D105: Pigment dispersion liquid D001, D002, D101-D105 described above
(色材)
 001、002、008、009、016、021、022、023、025~054:上述した特定赤外線吸収色素の具体例で示した化合物001、002、008、009、016、021、022、023、025~054
 IR001~IR007:下記構造の化合物(赤外線吸収色素)
(color material)
001, 002, 008, 009, 016, 021, 022, 023, 025 to 054: Compounds 001, 002, 008, 009, 016, 021, 022, 023, 025 shown in the specific examples of the specific infrared absorbing dye mentioned above ~054
IR001 to IR007: Compounds with the following structure (infrared absorbing dyes)
(樹脂)
 B001:ポリメタクリル酸メチル(重量平均分子量24000、分散度1.8)
 B002:ベンジルメタクリレートとメタクリル酸のランダム共重合体(ベンジルメタクリレート:メタクリル酸=60:40(モル比)、重量平均分子量20000、分散度1.9)
 B003:下記構造の樹脂(主鎖に付記した数値は繰り返し単位のモル比である、重量平均分子量15000、分散度2.1)
 B004:下記構造の樹脂(重量平均分子量25000、分散度2.2、ガラス転移温度310℃)
(resin)
B001: Polymethyl methacrylate (weight average molecular weight 24,000, dispersity 1.8)
B002: Random copolymer of benzyl methacrylate and methacrylic acid (benzyl methacrylate: methacrylic acid = 60:40 (mole ratio), weight average molecular weight 20000, dispersity 1.9)
B003: Resin with the following structure (the numbers added to the main chain are the molar ratio of repeating units, weight average molecular weight 15000, dispersity 2.1)
B004: Resin with the following structure (weight average molecular weight 25,000, degree of dispersion 2.2, glass transition temperature 310°C)
(重合性化合物)
 M-1:アロニックスM-305(東亞合成(株)製、ペンタエリスリトールトリアクリレートとペンタエリスリトールテトラアクリレートとの混合物。ペンタエリスリトールトリアクリレートの含有量が55質量%~63質量%である。)
 M-2:KAYARAD RP-1040(日本化薬(株)製、エチレンオキサイド変性ペンタエリスリトールテトラアクリレート)
 M-3:アロニックスM-510(東亞合成(株)製、多塩基酸変性アクリルオリゴマー)
 M-4:EPICLON N-695(DIC(株)製、o-クレゾールノボラック型エポキシ化合物)
(Polymerizable compound)
M-1: Aronix M-305 (manufactured by Toagosei Co., Ltd., a mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate. The content of pentaerythritol triacrylate is 55% by mass to 63% by mass.)
M-2: KAYARAD RP-1040 (manufactured by Nippon Kayaku Co., Ltd., ethylene oxide modified pentaerythritol tetraacrylate)
M-3: Aronix M-510 (manufactured by Toagosei Co., Ltd., polybasic acid-modified acrylic oligomer)
M-4: EPICLON N-695 (manufactured by DIC Corporation, o-cresol novolac type epoxy compound)
(光重合開始剤)
 C-1:Irgacure OXE01(BASF社製、オキシムエステル化合物)
 C-2:Irgacure OXE02(BASF社製、オキシムエステル化合物)
(Photopolymerization initiator)
C-1: Irgacure OXE01 (manufactured by BASF, oxime ester compound)
C-2: Irgacure OXE02 (manufactured by BASF, oxime ester compound)
(界面活性剤)
 F-1:メガファックRS-72-K(DIC(株)製、フッ素系界面活性剤)
 F-2:下記構造の化合物(重量平均分子量14000、繰り返し単位の割合を示す%の数値はモル%である)
 F-3:KF-6001(信越化学工業(株)製、両末端カルビノール変性ポリジメチルシロキサン、水酸基価62mgKOH/g、シリコーン系界面活性剤)
(surfactant)
F-1: Megafac RS-72-K (manufactured by DIC Corporation, fluorine-based surfactant)
F-2: Compound with the following structure (weight average molecular weight 14,000, the numerical value of % indicating the proportion of repeating units is mol%)
F-3: KF-6001 (manufactured by Shin-Etsu Chemical Co., Ltd., polydimethylsiloxane modified with carbinol at both ends, hydroxyl value 62 mgKOH/g, silicone surfactant)
(重合禁止剤)
 G-1:p-メトキシフェノール
(Polymerization inhibitor)
G-1: p-methoxyphenol
(紫外線吸収剤)
 U-1:Uvinul3050(BASF製)
(Ultraviolet absorber)
U-1: Uvinul3050 (manufactured by BASF)
(溶剤)
 S-001:プロピレングリコールモノメチルエーテルアセテート
 S-002:プロピレングリコールモノメチルエーテル
(solvent)
S-001: Propylene glycol monomethyl ether acetate S-002: Propylene glycol monomethyl ether
<膜の製造>
(製造例1) 実施例1、2、比較例1、2の樹脂組成物を用いた膜の製造方法
 樹脂組成物をガラス基材または8インチ(1インチ=2.54cm)シリコンウエハ上に、製膜後の膜厚が1.5μmとなるようにスピンコート塗布した。次いで、ホットプレートを用いて、100℃で1分間加熱し、膜を製造した。
<Membrane production>
(Production Example 1) Method for producing a film using the resin compositions of Examples 1 and 2 and Comparative Examples 1 and 2 The resin composition was placed on a glass substrate or an 8 inch (1 inch = 2.54 cm) silicon wafer, Spin coating was applied so that the film thickness after film formation was 1.5 μm. Next, using a hot plate, the mixture was heated at 100° C. for 1 minute to produce a membrane.
(製造例2) 実施例3の樹脂組成物を用いた膜の製造方法
 樹脂組成物をガラス基材または8インチ(1インチ=2.54cm)シリコンウエハ上に、製膜後の膜厚が1.5μmとなるようにスピンコート塗布した。次いで、ホットプレートを用いて、200℃で10分間加熱し、膜を製造した。
(Production Example 2) Method for producing a film using the resin composition of Example 3 The resin composition was deposited on a glass substrate or an 8-inch (1 inch = 2.54 cm) silicon wafer so that the film thickness after film formation was 1. The coating was applied by spin coating to a thickness of .5 μm. Then, using a hot plate, the mixture was heated at 200° C. for 10 minutes to produce a membrane.
(製造例3) 実施例4~53の樹脂組成物を用いた膜の製造方法
 樹脂組成物をガラス基材または8インチ(1インチ=2.54cm)シリコンウエハ上に、製膜後の膜厚が1.5μmとなるようにスピンコート塗布し、i線ステッパー露光装置FPA-3000i5+(Canon(株)製)を用い、1000mJ/cmの露光量で全面露光した。次いで、ホットプレートを用いて、200℃で2分間加熱し、膜を製造した。
(Production Example 3) Method for producing a film using the resin compositions of Examples 4 to 53 The resin composition was deposited on a glass substrate or an 8 inch (1 inch = 2.54 cm) silicon wafer, and the film thickness after film formation was determined. The film was spin-coated to a thickness of 1.5 μm, and the entire surface was exposed using an i-line stepper exposure device FPA-3000i5+ (manufactured by Canon Inc.) at an exposure dose of 1000 mJ/cm 2 . Next, using a hot plate, the mixture was heated at 200° C. for 2 minutes to produce a membrane.
<分光特性の評価>
(近赤外線遮蔽性の評価)
 上記の膜を製膜したガラス基材について、紫外可視近赤外分光光度計U-4100((株)日立ハイテク製)を用いて、波長400~2000nmの範囲の透過率を測定して、波長1000~1400nmの範囲の透過率の平均値(T)を求めた。以下の基準で、近赤外線遮蔽性を評価した。
 A:T<5%
 B:5%≦T<10%
 C:10%≦T
<Evaluation of spectral characteristics>
(Evaluation of near-infrared shielding properties)
For the glass substrate on which the above film was formed, the transmittance in the wavelength range of 400 to 2000 nm was measured using an ultraviolet-visible near-infrared spectrophotometer U-4100 (manufactured by Hitachi High-Tech Corporation). The average value (T) of transmittance in the range of 1000 to 1400 nm was determined. Near-infrared shielding properties were evaluated based on the following criteria.
A:T<5%
B: 5%≦T<10%
C: 10%≦T
(近赤外領域の遮光域の矩形性の評価)
 上記の膜を製膜したガラス基材について、紫外可視近赤外分光光度計U-4100((株)日立ハイテク製)を用いて、波長400~2000nmの範囲の透過率を測定した。
 波長700~1800nmの範囲において、最大吸収波長よりも長波長側であって、透過率が20%を示す波長(λL20)および透過率が90%を示す波長(λL90)、ならびに、最大吸収波長よりも短波長側であって、透過率が20%を示す波長(λS20)および透過率が90%を示す波長(λS90)をそれぞれ求め、以下の基準で、各遮光域の矩形性を評価した。
(Evaluation of rectangularity of light shielding area in near-infrared region)
The transmittance of the glass substrate on which the above film was formed was measured in the wavelength range of 400 to 2000 nm using an ultraviolet-visible near-infrared spectrophotometer U-4100 (manufactured by Hitachi High-Tech Corporation).
In the wavelength range of 700 to 1800 nm, the wavelength at which the transmittance is 20% (λ L20 ) and the wavelength at which the transmittance is 90% (λ L90 ), which is on the longer wavelength side than the maximum absorption wavelength, and the maximum absorption The wavelength at which the transmittance is 20% (λ S20 ) and the wavelength at which the transmittance is 90% (λ S90 ), which are shorter than the wavelength, are determined, and the rectangularity of each light-shielding area is determined using the following criteria. was evaluated.
 -短波長側の遮光域の矩形性(短波長側矩形性)の評価基準-
 A:λS90-λS20<150nm
 B:150nm≦λS90-λS20<200nm
 C:200nm≦λS90-λS20
-Evaluation criteria for the rectangularity of the light blocking area on the short wavelength side (rectangularity on the short wavelength side)-
A: λ S90 - λ S20 <150nm
B: 150nm≦λ S90S20 <200nm
C: 200nm≦λ S90S20
 -長波長側の遮光域の矩形性(長波長側矩形性)の評価基準-
 A:λL20-λL90<150nm
 B:150nm≦λL20-λL90<200nm
 C:200nm≦λL20-λL90
-Evaluation criteria for the rectangularity of the light shielding area on the long wavelength side (rectangularity on the long wavelength side)-
A: λ L20 - λ L90 <150nm
B: 150nm≦λ L20L90 <200nm
C: 200nm≦λ L20L90
<耐光性の評価>
 上記の膜を製膜したガラス基材について、紫外可視近赤外分光光度計U-4100((株)日立ハイテク製)を用いて、波長400~2000nmの範囲の透過率を測定した。
 次に、上記の膜を製膜したガラス基材を、キセノンランプを用い10万luxで20時間照射(200万lux・h相当)し、キセノンランプ照射後の膜の透過率を測定した。
 キセノンランプ照射前後での波長800~2000nmの範囲における各波長での透過率の変化量(ΔT)を求め、測定波長域全体でのΔTの最も大きい値に基づき、以下の基準で耐光性を評価した。ΔTの値が小さいほうが耐光性が良好である。
 透過率の変化量(ΔT)=|キセノンランプ照射前の膜の透過率-キセノンランプ照射後の膜の透過率|
 A:ΔT<3%
 B:3≦ΔT<5%
 C:5≦ΔT%
<Evaluation of light resistance>
The transmittance of the glass substrate on which the above film was formed was measured in the wavelength range of 400 to 2000 nm using an ultraviolet-visible near-infrared spectrophotometer U-4100 (manufactured by Hitachi High-Tech Corporation).
Next, the glass substrate on which the above film was formed was irradiated with a xenon lamp at 100,000 lux for 20 hours (equivalent to 2 million lux·h), and the transmittance of the film after irradiation with the xenon lamp was measured.
The amount of change in transmittance (ΔT) at each wavelength in the wavelength range of 800 to 2000 nm before and after irradiation with a xenon lamp is determined, and the light resistance is evaluated using the following criteria based on the largest value of ΔT in the entire measurement wavelength range. did. The smaller the value of ΔT, the better the light resistance.
Amount of change in transmittance (ΔT) = |Transmittance of the film before irradiation with the xenon lamp - Transmittance of the film after irradiation with the xenon lamp |
A:ΔT<3%
B: 3≦ΔT<5%
C: 5≦ΔT%
<耐熱性の評価>
 上記の膜を製膜したガラス基材について、紫外可視近赤外分光光度計U-4100((株)日立ハイテク製)を用いて、波長400~2000nmの範囲で透過率を測定した。
 次に、上記の膜を製膜したガラス基材を、ホットプレートを用いて200℃で10分間加熱した。
 加熱前後での波長800~2000nmの範囲における各波長での透過率の変化量(ΔT)を求め、測定波長域全体でのΔTの最も大きい値に基づき、以下の基準で耐熱性を評価した。ΔTの値が小さいほうが耐熱性が良好である。
 透過率の変化量(ΔT)=|加熱前の膜の透過率-加熱後の膜の透過率|
 A:ΔT<5%
 B:5≦ΔT<10%
 C:10≦ΔT%
<Evaluation of heat resistance>
The transmittance of the glass substrate on which the above film was formed was measured in the wavelength range of 400 to 2000 nm using an ultraviolet-visible near-infrared spectrophotometer U-4100 (manufactured by Hitachi High-Tech Corporation).
Next, the glass substrate on which the above film was formed was heated at 200° C. for 10 minutes using a hot plate.
The amount of change in transmittance (ΔT) at each wavelength in the wavelength range of 800 to 2000 nm before and after heating was determined, and the heat resistance was evaluated using the following criteria based on the largest value of ΔT in the entire measurement wavelength range. The smaller the value of ΔT, the better the heat resistance.
Amount of change in transmittance (ΔT) = | Transmittance of membrane before heating - Transmittance of membrane after heating |
A:ΔT<5%
B: 5≦ΔT<10%
C: 10≦ΔT%
 上記表に示すように、実施例は、耐光性及び耐熱性の評価に優れていた。更には、実施例は、長波長側矩形性の評価も優れており、極大吸収波長よりも長波長側における透過率の傾斜が急峻で、透過性と遮光性のコントラストに優れていた。
 また、実施例28、53の樹脂組成物を用いて得られた膜については、波長400~1000nmの範囲における平均透過率は5%未満であった。
As shown in the table above, the examples were excellent in evaluation of light resistance and heat resistance. Furthermore, the examples had excellent evaluation of rectangularity on the long wavelength side, had a steep slope of transmittance on the long wavelength side with respect to the maximum absorption wavelength, and had excellent contrast between transmittance and light shielding properties.
Further, for the films obtained using the resin compositions of Examples 28 and 53, the average transmittance in the wavelength range of 400 to 1000 nm was less than 5%.
 実施例4~53の樹脂組成物をガラス基材または8インチ(1インチ=2.54cm)シリコンウエハ上に、製膜後の膜厚が1.5μmとなるようにスピンコート塗布し、その後ホットプレートで、100℃で2分間加熱した。次いで、i線ステッパー露光装置FPA-3000i5+(Canon(株)製)を用い、1000mJ/cmの露光量で2μmのベイヤーパターンをマスクを介して露光した。次いで、水酸化テトラメチルアンモニウム(TMAH)0.3質量%水溶液を用い、23℃で60秒間パドル現像を行った。その後、スピンシャワーにてリンスを行い、さらに純水にて水洗した後に、ホットプレートで、200℃で5分間加熱してパターンを形成した。得られたパターンを顕微鏡で観察したところ、ベイヤーパターンが形成されていた。 The resin compositions of Examples 4 to 53 were spin-coated onto a glass substrate or an 8-inch (1 inch = 2.54 cm) silicon wafer so that the film thickness after film formation was 1.5 μm, and then hot-coated. The plate was heated at 100° C. for 2 minutes. Next, using an i-line stepper exposure device FPA-3000i5+ (manufactured by Canon Inc.), a 2 μm Bayer pattern was exposed through a mask at an exposure dose of 1000 mJ/cm 2 . Next, paddle development was performed at 23° C. for 60 seconds using a 0.3% by mass aqueous solution of tetramethylammonium hydroxide (TMAH). Thereafter, after rinsing with a spin shower and further rinsing with pure water, a pattern was formed by heating on a hot plate at 200° C. for 5 minutes. When the obtained pattern was observed under a microscope, it was found that a Bayer pattern was formed.
 110:固体撮像素子、111:赤外線カットフィルタ、112:カラーフィルタ、114:赤外線透過フィルタ、115:マイクロレンズ、116:平坦化層 110: solid-state image sensor, 111: infrared cut filter, 112: color filter, 114: infrared transmission filter, 115: microlens, 116: flattening layer

Claims (17)

  1.  式(1)で表される色素A1および前記色素A1由来の色素構造を1分子中に2以上含む色素多量体A2から選ばれる少なくとも1種の赤外線吸収色素Aと、
     樹脂と、を含む、樹脂組成物;
     式(1)中、L101は、-P(=O)(RL101)-、-P(=S)(RL102)-、-Si(RL103)(RL104)-、-B(RL105)-、-S(=O)-または-S(=O)-を表し、RL101~RL105は、それぞれ独立して水素原子または置換基を表し、RL103とRL104は結合して環を形成していてもよく、
     X101~X103は、それぞれ独立して、窒素原子または-CRX101-を表し、RX101は、水素原子または置換基を表し、
     L102およびL103は、それぞれ独立して、硫黄原子または-X104=X105-を表し、X104およびX105は、それぞれ独立して、窒素原子または-CRX102-を表し、RX102は、水素原子または置換基を表し、
     Ar101およびAr102は、それぞれ独立して、-(CRAr101=CRAr102n101-、アリーレン基、複素環基またはこれらの基を2以上組み合わせた基を表し、RAr101およびRAr102は、それぞれ独立して水素原子または置換基を表し、n101は1~3の整数を表し、
     Y101およびY102は、それぞれ独立して、-ORY101、-NRY102Y103または-SRY104を表し、RY101~RY104は、それぞれ独立して、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基を表し、RY102とRY103は単結合または2価の連結基を介して結合して環を形成していてもよく、
     Ar101とX101は、単結合または2価の連結基を介して結合して5員環または6員環を形成していてもよく、
     Ar101とY101は、単結合または2価の連結基を介して結合して5員環または6員環を形成していてもよく、
     Ar102とX102は、単結合または2価の連結基を介して結合して5員環または6員環を形成していてもよく、
     Ar102とY102は、単結合または2価の連結基を介して結合して5員環または6員環を形成していてもよく、
     Zは対イオンを表し、
     p1は0~5の整数を表し、
     q1は、1~5の整数を表す。
    at least one infrared absorbing dye A selected from a dye A1 represented by formula (1) and a dye multimer A2 containing two or more dye structures derived from the dye A1 in one molecule;
    A resin composition comprising a resin;
    In formula (1), L 101 is -P(=O)(R L101 )-, -P(=S)(R L102 )-, -Si(R L103 )(R L104 )-, -B(R L105 )-, -S(=O) 2 - or -S(=O)-, R L101 to R L105 each independently represent a hydrogen atom or a substituent, and R L103 and R L104 are bonded. may form a ring,
    X 101 to X 103 each independently represent a nitrogen atom or -CR X101 -, R X101 represents a hydrogen atom or a substituent,
    L 102 and L 103 each independently represent a sulfur atom or -X 104 =X 105 -, X 104 and X 105 each independently represent a nitrogen atom or -CR X102 -, and R , represents a hydrogen atom or a substituent,
    Ar 101 and Ar 102 each independently represent -(CR Ar101 = CR Ar102 ) n101 -, an arylene group, a heterocyclic group, or a group combining two or more of these groups, and R Ar101 and R Ar102 each represent independently represents a hydrogen atom or a substituent, n101 represents an integer of 1 to 3,
    Y 101 and Y 102 each independently represent -OR Y101 , -NR Y102 RY103 or -SR Y104, and R Y101 to R Y104 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl represents a group, an aryl group or a heteroaryl group, and R Y102 and R Y103 may be bonded via a single bond or a divalent linking group to form a ring,
    Ar 101 and X 101 may be bonded via a single bond or a divalent linking group to form a 5-membered ring or a 6-membered ring,
    Ar 101 and Y 101 may be bonded via a single bond or a divalent linking group to form a 5-membered ring or a 6-membered ring,
    Ar 102 and X 102 may be bonded via a single bond or a divalent linking group to form a 5-membered ring or a 6-membered ring,
    Ar 102 and Y 102 may be bonded via a single bond or a divalent linking group to form a 5-membered ring or a 6-membered ring,
    Z 1 represents a counter ion,
    p1 represents an integer from 0 to 5,
    q1 represents an integer from 1 to 5.
  2.  前記式(1)のX103は-CRX101-であり、RX101は水素原子または置換基であり、
     L102およびL103は、それぞれ硫黄原子である、請求項1に記載の樹脂組成物。
    In the formula (1), X 103 is -CR X101 -, R X101 is a hydrogen atom or a substituent,
    The resin composition according to claim 1, wherein L 102 and L 103 are each a sulfur atom.
  3.  前記式(1)のX103は-CRX101-であり、RX101は水素原子または置換基であり、
     L102およびL103は、それぞれ硫黄原子であり、
     L101は、-P(=O)(RL101)-であり、RL101は、水素原子または置換基である、請求項1に記載の樹脂組成物。
    In the formula (1), X 103 is -CR X101 -, R X101 is a hydrogen atom or a substituent,
    L 102 and L 103 are each a sulfur atom,
    The resin composition according to claim 1, wherein L 101 is -P(=O)(R L101 )-, and R L101 is a hydrogen atom or a substituent.
  4.  前記式(1)のX103は-CRX101-であり、RX101は水素原子または置換基であり、
     L102およびL103は、それぞれ硫黄原子であり、
     L101は、-P(=O)(RL101)-であり、RL101は、水素原子または置換基であり、
     Y101およびY102は、それぞれ独立して、-NRY102Y103であり、RY102およびRY103は、それぞれ独立して、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基であり、RY102とRY103は単結合または2価の連結基を介して結合して環を形成していてもよい、請求項1に記載の樹脂組成物。
    In the formula (1), X 103 is -CR X101 -, R X101 is a hydrogen atom or a substituent,
    L 102 and L 103 are each a sulfur atom,
    L 101 is -P(=O)(R L101 )-, R L101 is a hydrogen atom or a substituent,
    Y 101 and Y 102 are each independently -NR Y102 R Y103 , and R Y102 and R Y103 are each independently a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a heteroaryl group. The resin composition according to claim 1, wherein R Y102 and R Y103 may be bonded via a single bond or a divalent linking group to form a ring.
  5.  前記式(1)のX103は-CRX101-であり、RX101は水素原子または置換基であり、
     L102およびL103は、それぞれ硫黄原子であり、
     L101は、-Si(RL103)(RL104)-または-S(=O)-であり、RL103およびRL104は、それぞれ独立して、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基であり、
     Y101およびY102は、それぞれ独立して、-NRY102Y103であり、RY102およびRY103は、それぞれ独立して、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基であり、RY102とRY103は単結合または2価の連結基を介して結合して環を形成していてもよい、請求項1に記載の樹脂組成物。
    In the formula (1), X 103 is -CR X101 -, R X101 is a hydrogen atom or a substituent,
    L 102 and L 103 are each a sulfur atom,
    L 101 is -Si(R L103 )(R L104 )- or -S(=O)-, and R L103 and R L104 are each independently a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, is an aryl group or a heteroaryl group,
    Y 101 and Y 102 are each independently -NR Y102 R Y103 , and R Y102 and R Y103 are each independently a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a heteroaryl group. The resin composition according to claim 1, wherein R Y102 and R Y103 may be bonded via a single bond or a divalent linking group to form a ring.
  6.  更に、前記赤外線吸収色素A以外の赤外線吸収剤を含む、請求項1~5のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 5, further comprising an infrared absorbing agent other than the infrared absorbing dye A.
  7.  前記赤外線吸収色素A以外の赤外線吸収剤の極大吸収波長が、赤外線吸収色素Aの極大吸収波長よりも短波長側に存在する、請求項6に記載の樹脂組成物。 The resin composition according to claim 6, wherein the maximum absorption wavelength of the infrared absorbing agent other than the infrared absorbing dye A is on the shorter wavelength side than the maximum absorption wavelength of the infrared absorbing dye A.
  8.  前記赤外線吸収色素Aの極大吸収波長が、波長700~1800nmの範囲に存在する、請求項1~5のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 5, wherein the maximum absorption wavelength of the infrared absorbing dye A is in a wavelength range of 700 to 1800 nm.
  9.  更に重合性化合物と、光重合開始剤とを含む、請求項1~5のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 5, further comprising a polymerizable compound and a photopolymerization initiator.
  10.  請求項1~5のいずれか1項に記載の樹脂組成物を用いて得られた膜。 A film obtained using the resin composition according to any one of claims 1 to 5.
  11.  請求項10に記載の膜を含む光学フィルタ。 An optical filter comprising the film according to claim 10.
  12.  請求項10に記載の膜を含む固体撮像素子。 A solid-state imaging device comprising the film according to claim 10.
  13.  請求項10に記載の膜を含む画像表示装置。 An image display device comprising the film according to claim 10.
  14.  請求項10に記載の膜を含む赤外線センサ。 An infrared sensor comprising the film according to claim 10.
  15.  請求項10に記載の膜を含むカメラモジュール。 A camera module comprising the membrane according to claim 10.
  16.  式(4)で表される化合物;
     式中、Ar401はアリール基またはヘテロアリール基を表し、
     R401~R404は、それぞれ独立して水素原子、アルキル基、アリール基またはヘテロアリール基を表し、
     R405およびR406は、それぞれ独立してアルキル基、アリール基、ヘテロアリール基、アリールオキシ基、ヘテロアリールオキシ基、アルコキシ基またはシアノ基を表し、
     R407およびR408は、それぞれ独立してアルキル基またはアリール基を表し、
     n401およびn402はそれぞれ独立して0~4の整数を表し、
     q4は1または2を表し、
     Zはq4価の対アニオンを表す。
    A compound represented by formula (4);
    In the formula, Ar 401 represents an aryl group or a heteroaryl group,
    R 401 to R 404 each independently represent a hydrogen atom, an alkyl group, an aryl group or a heteroaryl group,
    R 405 and R 406 each independently represent an alkyl group, an aryl group, a heteroaryl group, an aryloxy group, a heteroaryloxy group, an alkoxy group or a cyano group,
    R 407 and R 408 each independently represent an alkyl group or an aryl group,
    n401 and n402 each independently represent an integer from 0 to 4,
    q4 represents 1 or 2,
    Z 4 represents a q4-valent counteranion.
  17.  式(5)で表される化合物;
     式中、Ar501は、アリール基またはヘテロアリール基を表し、
    501~R504は、それぞれ独立して水素原子、アルキル基、アリール基またはヘテロアリール基を表し、
     R505およびR506は、それぞれ独立してアルキル基、アリール基、ヘテロアリール基、アリールオキシ基、ヘテロアリールオキシ基、アルコキシ基またはシアノ基を表し、
     n501およびn502は、それぞれ独立して0~4の整数を表し、
     q5は1または2を表し、
     Zはq5価の対アニオンを表す。
    A compound represented by formula (5);
    In the formula, Ar 501 represents an aryl group or a heteroaryl group,
    R 501 to R 504 each independently represent a hydrogen atom, an alkyl group, an aryl group or a heteroaryl group,
    R 505 and R 506 each independently represent an alkyl group, an aryl group, a heteroaryl group, an aryloxy group, a heteroaryloxy group, an alkoxy group or a cyano group,
    n 501 and n 502 each independently represent an integer from 0 to 4,
    q5 represents 1 or 2,
    Z 5 represents a q5-valent counteranion.
PCT/JP2023/016844 2022-05-13 2023-04-28 Resin composition, film, optical filter, solid-state imaging element, image display device, infrared sensor, camera module, and compound WO2023219010A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-079118 2022-05-13
JP2022079118 2022-05-13
JP2023-025232 2023-02-21
JP2023025232 2023-02-21

Publications (1)

Publication Number Publication Date
WO2023219010A1 true WO2023219010A1 (en) 2023-11-16

Family

ID=88730490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016844 WO2023219010A1 (en) 2022-05-13 2023-04-28 Resin composition, film, optical filter, solid-state imaging element, image display device, infrared sensor, camera module, and compound

Country Status (2)

Country Link
TW (1) TW202346385A (en)
WO (1) WO2023219010A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007233368A (en) * 2006-02-01 2007-09-13 Toyobo Co Ltd Near-infrared absorbing film
WO2017155042A1 (en) * 2016-03-09 2017-09-14 国立大学法人名古屋大学 Dithienophosphorine compound and fluorescent dye produced using same
JP2019040109A (en) * 2017-08-28 2019-03-14 東洋インキScホールディングス株式会社 Coloring composition for color filter and color filter
WO2021176755A1 (en) * 2020-03-04 2021-09-10 国立大学法人京都大学 Dithienophosphorine compound, and colorless near-infrared absorbing material and electrochromic material each using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007233368A (en) * 2006-02-01 2007-09-13 Toyobo Co Ltd Near-infrared absorbing film
WO2017155042A1 (en) * 2016-03-09 2017-09-14 国立大学法人名古屋大学 Dithienophosphorine compound and fluorescent dye produced using same
JP2019040109A (en) * 2017-08-28 2019-03-14 東洋インキScホールディングス株式会社 Coloring composition for color filter and color filter
WO2021176755A1 (en) * 2020-03-04 2021-09-10 国立大学法人京都大学 Dithienophosphorine compound, and colorless near-infrared absorbing material and electrochromic material each using same

Also Published As

Publication number Publication date
TW202346385A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
JPWO2020009015A1 (en) Curable composition, film, near infrared cut filter, solid-state image sensor, image display device, infrared sensor and camera module
JP7525626B2 (en) Composition, film, optical filter, solid-state imaging device, image display device, infrared sensor, camera module, compound and infrared absorber
JP2024025792A (en) Infrared-absorbing composition, film, optical filter, solid-state imaging element, image display device, and infrared sensor
WO2023243414A1 (en) Resin composition, film, optical filter, solid-state imaging element, and image display device
JP7530433B2 (en) Composition, film, optical filter, solid-state imaging device, image display device, infrared sensor, camera module, compound and infrared absorber
JP7436647B2 (en) Colored compositions, films, optical filters, solid-state imaging devices, and image display devices
WO2023219010A1 (en) Resin composition, film, optical filter, solid-state imaging element, image display device, infrared sensor, camera module, and compound
WO2024024508A1 (en) Composition, film, optical filter, solid state imaging device, image display device, infrared radiation sensor, and method for producing camera module
WO2023182018A1 (en) Composition, film, optical filter, solid-state imaging element, image display device, infrared sensor, camera module, and compound
WO2023176609A1 (en) Composition, film, optical filter, solid-state imaging element, image display device, infrared sensor, camera module, and compound
WO2023286582A1 (en) Composition, film, optical filter, solid-state imaging element, image display device, infrared sensor, camera module, and compound
WO2024057998A1 (en) Composition, film, optical filter, solid-state imaging element, image display device, infrared sensor, camera module, compound, and infrared absorbing agent
WO2024142976A1 (en) Composition, film, optical filter, solid-state imaging element, image display device, infrared sensor, camera module, and compound
WO2023162574A1 (en) Composition, film, optical filter, solid-state imaging element, image display device, infrared sensor, camera module, and compound
WO2024185545A1 (en) Composition, film, optical filter, solid-state imaging element, image display device, infrared sensor, camera module, and compound
WO2024058000A1 (en) Photosensitive composition, cured film, optical filter, solid-state imaging element, infrared sensor, camera module, optical filter production method, and compound
WO2024176883A1 (en) Composition, film, optical filter, solid-state imaging element, image display device, infrared sensor, camera module, and compound
WO2022191044A1 (en) Composition, film, optical filter, solid-state imaging element, image display device, infrared sensor, camera module, compound, and infrared absorbing agent
WO2022131191A1 (en) Composition, membrane, optical filter, solid image pickup element, image display apparatus, and infrared ray sensor
WO2024070694A1 (en) Composition, film, optical filter, solid-state imaging element, image display device, infrared sensor, camera module, and compound
WO2023176470A1 (en) Composition, film, optical filter, solid-state imaging element, image display device, infrared sensor, and camera module
WO2022130773A1 (en) Composition, film, optical filter, solid-state imaging element, image display device, and infrared sensor
WO2024171827A1 (en) Curable composition, film, optical filter, solid-state imaging element, image display device, infrared sensor, and camera module
WO2023042605A1 (en) Composition, film, optical filter, solid-state imaging element, image display device, and infrared sensor
WO2023145699A1 (en) Infrared absorbing composition, film, optical filter, solid-state imaging element, image display device, infrared sensor, and camera module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803488

Country of ref document: EP

Kind code of ref document: A1