WO2023218794A1 - Power-generating system - Google Patents

Power-generating system Download PDF

Info

Publication number
WO2023218794A1
WO2023218794A1 PCT/JP2023/013648 JP2023013648W WO2023218794A1 WO 2023218794 A1 WO2023218794 A1 WO 2023218794A1 JP 2023013648 W JP2023013648 W JP 2023013648W WO 2023218794 A1 WO2023218794 A1 WO 2023218794A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction tower
gas
raw material
reaction
heat medium
Prior art date
Application number
PCT/JP2023/013648
Other languages
French (fr)
Japanese (ja)
Inventor
裕之 ▲高▼野
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Publication of WO2023218794A1 publication Critical patent/WO2023218794A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/32Feed-water heaters, i.e. economisers or like preheaters arranged to be heated by steam, e.g. bled from turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/36Water and air preheating systems

Definitions

  • the present invention relates to a power generation system.
  • Patent Document 1 discloses a technology related to a generation device and a generation method for generating a product gas by an exothermic reaction of gaseous reactants.
  • a raw material gas is supplied into a reactor filled with a catalyst, and a product gas is generated from the raw material gas by an exothermic reaction of the raw material gas.
  • a heating medium is passed through the reactor, and the reaction heat generated during the exothermic reaction of the raw material gas is recovered by the heating medium.
  • the heat carrier after passing through the reactor is cooled using cooling water, and the heat recovered by the heat carrier is not utilized.
  • An object of the present invention is to provide a technology that can utilize heat recovered by a heat medium.
  • the present invention includes a reaction tower that generates a product gas by an exothermic reaction of raw material gas in a catalyst, and a heat medium that passes through the reaction tower and maintains the inside of the reaction tower at an operating temperature within a predetermined range.
  • This is a power generation system including: a steam generation section that generates steam from a liquid using a liquid as a heating source; and a power generation section that is driven by the steam generated by the steam generation section.
  • the heat carrier By passing the heat carrier through the reaction tower, the heat carrier recovers the reaction heat of the raw material gas in the reaction tower.
  • the heat medium passing through the reaction tower is heated by the heat of reaction of the raw material gas within the reaction tower.
  • the temperature of the heat medium passing through the reaction tower increases.
  • the power generation system may further include a preheating section that preheats the liquid supplied to the steam generation section using the product gas sent from the reaction tower.
  • a preheating section that preheats the liquid supplied to the steam generation section using the product gas sent from the reaction tower.
  • heat exchange is performed between the liquid supplied to the steam generation section and the product gas sent out from the reaction tower.
  • the product gas sent out from the reaction tower is warmed by the temperature rise of the reaction tower due to the exothermic reaction of the raw material gas within the reaction tower. Therefore, it is possible to preheat the liquid supplied to the steam generation section by the product gas delivered from the reaction column.
  • the power generation system may further include a gas preheating section that preheats the raw material gas supplied to the reaction tower with the product gas sent from the reaction tower. Heat exchange is performed between the raw material gas supplied to the reaction tower and the product gas sent out from the reaction tower. The product gas sent out from the reaction tower is warmed by the temperature rise of the reaction tower due to the exothermic reaction of the raw material gas within the reaction tower. Therefore, it is possible to preheat the raw material gas supplied to the reaction tower by the product gas sent out from the reaction tower. By preheating the raw material gas to be supplied to the reaction tower with the product gas sent out from the reaction tower, the preheated raw material gas can be supplied into the reaction tower.
  • a gas preheating section that preheats the raw material gas supplied to the reaction tower with the product gas sent from the reaction tower.
  • the power generation system may further include a gas preheating section that preheats the raw material gas supplied to the reaction tower with the heat medium that has passed through the reaction tower.
  • Heat exchange is performed between the raw material gas supplied to the reaction tower and the heat medium that has passed through the reaction tower.
  • the heat medium passing through the reaction tower is heated by the heat of reaction of the raw material gas within the reaction tower. Therefore, it is possible to preheat the raw material gas supplied to the reaction tower by the heat medium passing through the reaction tower.
  • the preheated raw material gas can be supplied into the reaction tower.
  • the power generation system further includes a plurality of reaction towers including a first reaction tower and a second reaction tower, and a raw material gas supply section that supplies the raw material gas to the first reaction tower, and After passing through the second reaction column, the medium passes through the first reaction column and is used as the heating source in the steam generation section, and the product gas and the unreacted gas are removed from the first reaction column.
  • a raw material gas may be supplied to the second reaction tower.
  • the heat carrier passing through the second reaction tower is heated by the reaction heat of the raw material gas in the second reaction tower, and the heat carrier passing through the first reaction tower is heated by the reaction heat of the raw material gas in the first reaction tower. further heated by. It is possible to use the heat recovered by the heat medium by generating steam from the liquid using the heat medium that has passed through the first and second reaction towers as a heating source, and driving the power generation section with the generated steam. becomes.
  • the power generation system includes a first preheating section that preheats the liquid supplied to the steam generation section using the product gas sent from the first reaction tower and the unreacted raw material gas; and the steam generation section.
  • the reactor may further include a second preheating section that preheats the liquid supplied to the reactor by the product gas sent from the second reaction tower.
  • the product gas and raw material gas sent out from the first reaction tower are warmed by the temperature rise of the first reaction tower due to the exothermic reaction of the raw material gas within the first reaction tower. Therefore, it is possible to preheat the liquid supplied to the steam generation section by the product gas and raw material gas sent from the first reaction tower.
  • the preheated liquid By preheating the liquid to be supplied to the steam generation section using the product gas sent from the first reaction tower and the unreacted raw material gas, the preheated liquid can be supplied into the steam generation section.
  • the product gas sent out from the second reaction tower is warmed by the temperature rise of the second reaction tower due to the exothermic reaction of the raw material gas within the second reaction tower. Therefore, it is possible to preheat the liquid supplied to the steam generation section by the product gas delivered from the second reaction column.
  • the preheated liquid can be supplied into the steam generation section.
  • the power generation system includes a first gas preheating section that preheats the raw material gas supplied to the first reaction tower using the product gas sent from the first reaction tower and the unreacted raw material gas;
  • the method may further include a second gas preheating section that preheats the product gas supplied to the second reaction tower and the unreacted raw material gas by the product gas sent from the second reaction tower. good.
  • the product gas and unreacted raw material gas sent out from the first reaction tower are warmed by the temperature rise of the first reaction tower due to the exothermic reaction of the raw material gas in the first reaction tower. Therefore, it is possible to preheat the raw material gas supplied to the first reaction tower by the product gas sent from the first reaction tower and the unreacted raw material gas.
  • the preheated raw material gas can be supplied into the first reaction tower.
  • the product gas sent out from the second reaction tower is warmed by the temperature rise of the second reaction tower due to the exothermic reaction of the raw material gas within the second reaction tower. Therefore, it is possible to preheat the raw material gas supplied to the second reaction tower by the product gas sent from the second reaction tower.
  • the preheated raw material gas can be supplied into the second reaction tower.
  • the power generation system includes a first gas preheating section that preheats the raw material gas supplied to the first reaction tower with the heat medium that has passed through the first reaction tower, and supplies the raw material gas to the second reaction tower.
  • the reactor may further include a second gas preheating section that preheats the product gas and the unreacted raw material gas using the heat medium that has passed through the second reaction tower.
  • the heat medium passing through the first reaction tower is heated by the heat of reaction of the raw material gas within the first reaction tower. Therefore, it is possible to preheat the raw material gas supplied to the first reaction tower by the heating medium that has passed through the first reaction tower.
  • the preheated raw material gas By preheating the raw material gas to be supplied to the first reaction tower with a heating medium that has passed through the first reaction tower, the preheated raw material gas can be supplied into the first reaction tower.
  • the heat medium passing through the second reaction tower is heated by the heat of reaction of the raw material gas in the second reaction tower. Therefore, it is possible to preheat the raw material gas supplied to the second reaction tower by the heat medium passing through the second reaction tower.
  • the preheated raw material gas can be supplied into the second reaction tower.
  • FIG. 1 is a schematic configuration diagram of a power generation system according to an embodiment.
  • FIG. 2 is a configuration diagram of the separation section.
  • FIG. 3 is a detailed configuration diagram of the power generation system according to the embodiment.
  • FIG. 4 is a configuration diagram of the power generation system according to the embodiment.
  • FIG. 1 is a schematic configuration diagram of a power generation system according to an embodiment of the present invention.
  • the power generation system 100 shown in FIG. 1 generates power using steam generated from a liquid using a heating medium passing through a reaction tower that generates a product gas through an exothermic reaction of raw material gas as a heating source.
  • methane gas which is a product gas
  • water are generated by an exothermic reaction between gaseous hydrogen, which is a raw material gas (reactant gas), and carbon dioxide.
  • the above chemical reaction is also a reversible reaction.
  • the above exothermic reaction is expressed as a chemical reaction formula as follows. 4H 2 +CO 2 ⁇ CH 4 +2H 2 O (1)
  • the power generation system 100 includes a first stage reaction tower 1, a first stage gas cooling heat exchanger 2, a second stage reaction tower 3, a second stage gas cooling heat exchanger 4, and a heat medium heater. 5, a boiler 6, gas-liquid separators 7 and 8, a raw material gas supply section 9, and a saturated steam generator 10.
  • the reaction tower 1 generates product gas through an exothermic reaction of raw material gas in a catalyst.
  • the reaction tower 1 is a heat exchange type reaction vessel.
  • the source gas contains, for example, hydrocarbons such as hydrogen (H 2 ) and carbon dioxide (CO 2 ).
  • the product gas is, for example, methane gas.
  • the reaction tower 1 and the raw material gas supply part 9 are connected by piping, and the raw material gas is supplied into the reaction tower 1 from the raw material gas supply part 9. Further, the reaction tower 1 generates water through an exothermic reaction of the raw material gas in the catalyst.
  • a reaction tower 1 and a gas cooling heat exchanger 2 are connected by piping. The piping connecting the reaction tower 1 and the gas cooling heat exchanger 2 is provided with valves and the like.
  • the gas cooling heat exchanger 2 condenses the water (steam) produced in the reaction tower 1.
  • the gas cooling heat exchanger 2 and the gas-liquid separator 7 are connected by piping.
  • the piping connecting the gas cooling heat exchanger 2 and the gas-liquid separator 7 is provided with valves and the like.
  • the gas-liquid separator 7 separates produced water (liquid) from the product gas and unreacted source gas.
  • the power generation system 100 includes a separation section 11 to which generated water is sent from the gas-liquid separator 7. Details of the separation section 11 will be described later.
  • the reaction tower 3 and the gas-liquid separator 7 are connected by piping.
  • the piping connecting the reaction tower 3 and the gas-liquid separator 7 is provided with a valve and the like.
  • the product gas and unreacted raw material gas generated in the reaction tower 1 are sent to the reaction tower 3 via the gas cooling heat exchanger 2 and the gas-liquid separator 7.
  • the reaction tower 3 generates product gas by an exothermic reaction of the raw material gas in the catalyst.
  • the reaction tower 3 is a heat exchange type reaction vessel. By generating a product gas from unreacted raw material gas in the reaction tower 3, it becomes possible to generate a highly concentrated product gas.
  • the reaction tower 3 and the gas cooling heat exchanger 4 are connected by piping.
  • the piping connecting the reaction tower 3 and the gas cooling heat exchanger 4 is provided with valves and the like.
  • the gas cooling heat exchanger 4 condenses the water (steam) produced in the reaction tower 3.
  • a gas cooling heat exchanger 4 and a gas-liquid separator 8 are connected by piping.
  • the piping connecting the gas cooling heat exchanger 4 and the gas-liquid separator 8 is provided with valves and the like.
  • the gas-liquid separator 8 separates produced water (liquid) from the product gas and unreacted raw material gas.
  • the power generation system 100 includes a storage tank 12. Produced water is sent from the gas-liquid separator 8 to the separation unit 11, and product gas is sent from the gas-liquid separator 8 to the storage tank 12.
  • the storage tank 12 stores product gas.
  • the gas-liquid separators 7 and 8 are provided with drain valves for discharging produced water.
  • the drain valve may be one that opens and closes the valve using the buoyancy of a floating device such as a drain trap, or one that opens and closes a solenoid valve by electrically detecting the water level.
  • Reaction towers 1 and 3 are filled with catalyst in advance.
  • the catalyst may be any catalyst as long as it promotes reaction formula (1); for example, a stabilized zirconia support in which a stabilizing element is dissolved in solid solution and has a tetragonal and/or cubic crystal structure; Ni supported on a stabilized zirconia support, and the stabilizing element is at least one transition element selected from the group consisting of Mn, Fe, and Co.
  • the reaction towers 1 and 3 have a jacket structure, and a heat medium that exchanges heat with the exothermic part in the reaction tower where an exothermic reaction occurs can flow in and out of the jacket part (shell).
  • a heat medium that exchanges heat with the exothermic part in the reaction tower where an exothermic reaction occurs can flow in and out of the jacket part (shell).
  • heat medium oil or water is used as the heat medium.
  • the heat medium heater 5 and the jacket portion of the reaction tower 3 are connected by a pipe through which the heat medium flows.
  • the jacket portion of the reaction tower 1 and the jacket portion of the reaction tower 3 are connected by a pipe through which a heat medium flows.
  • the piping through which the heat medium flows is provided with valves and the like.
  • the heat medium heater 5 is a heater that heats a heat medium.
  • the jacket part of the reaction tower 1 and the boiler 6 are connected by a pipe through which a heat medium flows.
  • the boiler 6 is a steam generation section that generates steam (saturated steam) from liquid.
  • the boiler 6 has an internal pipe 51 into which a heat medium can flow, and a liquid tank 52 in which a liquid such as water is stored.
  • a heating tube that is part of the internal piping 51 circulates within the boiler 6. Further, a heating tube in the internal piping 51 is arranged within the liquid tank 52.
  • the liquid stored in the liquid tank 52 is heated using the heat medium flowing into the internal pipe 51 as a heat source. As a result, steam is generated from the liquid stored in the liquid tank 52.
  • the heat medium heater 5 and the internal pipe 51 of the boiler 6 are connected by a pipe through which the heat medium flows.
  • the heat medium heated by the heat medium heater 5 passes through the reaction tower 3 , passes through the reaction tower 1 , and flows into the internal pipe 51 of the boiler 6 .
  • a heat medium circulation pump 14 for circulating the heat medium between the reaction towers 1 and 3, the heat medium heater 5, and the boiler 6 is provided in the pipe connecting the heat medium heater 5 and the internal pipe 51 of the boiler 6. ing.
  • regulating valves 15 and 16 are provided in the piping through which the heat medium flows.
  • the power generation system 100 includes chillers 17A and 17B.
  • the chiller 17A cools cooling water (refrigerant) for condensing generated water in the gas cooling heat exchanger 2.
  • the gas cooling heat exchanger 2 and the chiller 17A are connected to each other by piping through which cooling water flows.
  • the chiller 17B cools cooling water (refrigerant) for condensing generated water in the gas cooling heat exchanger 4.
  • the gas cooling heat exchanger 4 and the chiller 17B are connected to each other by piping through which cooling water flows.
  • the power generation system 100 includes chillers 17A and 17B, but one chiller may cool cooling water for condensing generated water in the gas cooling heat exchangers 2 and 4. good.
  • the power generation system 100 includes a control unit 21, a measurement sensor 22 that measures the temperature inside the reaction tower 1, and a measurement sensor 23 that measures the temperature inside the reaction tower 3.
  • the measurement data measured by the measurement sensor 22 and the measurement data measured by the measurement sensor 23 are sent to the control unit 21 .
  • the control unit 21 acquires the temperature inside the reaction tower 1 and the temperature inside the reaction tower 3.
  • the control unit 21 sends the measurement data measured by the measurement sensor 22 and the measurement data measured by the measurement sensor 23 to the raw material gas supply unit 9.
  • the raw material gas supply unit 9 acquires the temperature inside the reaction tower 1 and the temperature inside the reaction tower 3.
  • the control unit 21 is a controller that controls the entire operation of the power generation system 100.
  • the control unit 21 may be configured by a dedicated device or may be configured by a general-purpose computer.
  • the control unit 21 includes hardware resources such as a processor (CPU), memory, storage, and communication I/F.
  • the memory may be RAM.
  • the storage may be a nonvolatile storage device (eg, ROM, flash memory, etc.).
  • the functions of the control unit 21 are realized by loading a program stored in a storage into a memory and executing it by a processor. Note that the configuration of the control unit 21 is not limited to these. For example, all or part of the function may be configured with a circuit such as an ASIC or FPGA, or all or part of the function may be executed by a cloud server or other device.
  • the control unit 21 controls the heat medium heater 5. By controlling the operation of the heat medium heater 5, the heat medium heater 5 heats the heat medium or stops heating the heat medium. In this way, the heat medium heater 5 is used to heat the heat medium and to stop heating the heat medium.
  • the control unit 21 controls the heat medium heater 5 so that the temperature of the heat medium reaches a predetermined temperature.
  • the predetermined temperature is, for example, 250°C or more and 500°C or less. Further, the control unit 21 controls the regulating valves 15 and 16.
  • the control unit 21 maintains the operating temperature within the reaction tower 1 within a predetermined range by adjusting the temperature of the heat medium. That is, by passing the temperature-adjusted heat medium through the reaction tower 1, the inside of the reaction tower 1 is maintained at an operating temperature within a predetermined range.
  • the control unit 21 may adjust the temperature of the heat medium so as to maintain the temperature inside the reaction tower 1 at, for example, 250° C. or more and 300° C. or less.
  • the control unit 21 adjusts the temperature of the heat medium so that the temperature inside the reaction tower 1 is preferably maintained at 280° C. or higher.
  • the operating temperature is not limited to 250°C or higher and 300°C or lower.
  • the operating temperature may be 250°C or higher and 500°C or lower.
  • the operating temperature may be a rated temperature that is a temperature at which the exothermic reaction of the raw material gas proceeds satisfactorily.
  • the rated temperature may be a temperature at which a high concentration of product gas is produced.
  • the control unit 21 maintains the operating temperature within the reaction tower 3 within a predetermined range by adjusting the temperature of the heat medium. That is, by passing the temperature-adjusted heat medium through the reaction tower 3, the inside of the reaction tower 3 is maintained at an operating temperature within a predetermined range.
  • the control unit 21 may adjust the temperature of the heat medium so as to maintain the temperature inside the reaction tower 3 at, for example, 250° C. or higher and 300° C. or lower.
  • the control unit 21 adjusts the temperature of the heat medium so that the temperature inside the reaction tower 3 is preferably maintained at 280° C. or higher.
  • the operating temperature is not limited to 250°C or higher and 300°C or lower.
  • the operating temperature may be 250°C or higher and 500°C or lower.
  • the operating temperature may be a rated temperature that is a temperature at which the exothermic reaction of the raw material gas proceeds satisfactorily.
  • the rated temperature may be a temperature at which a high concentration of product gas is produced.
  • the boiler 6 heats the liquid stored in the liquid tank 52 by using the heat medium that has flowed into the internal pipe 51 through the reaction towers 1 and 3 as a heating source, thereby heating the liquid stored in the liquid tank 52. to generate steam.
  • Boiler 6 and saturated steam generator 10 are connected by piping.
  • a pressure regulating valve 18 is provided in a pipe connecting the boiler 6 and the saturated steam generator 10 to adjust the pressure inside the boiler 6 to a predetermined steam pressure.
  • the predetermined steam pressure which is the control target value of the pressure regulating valve 18, is a rated steam pressure that allows the saturated steam generator 10 to operate. Steam generated by boiler 6 is sent to saturated steam generator 10.
  • the control unit 21 may control the opening degree of the pressure regulating valve 18 and the like.
  • the saturated steam generator 10 is a power generation unit that is driven by steam generated by the boiler 6.
  • the saturated steam generator 10 may be a turbine generator or a screw generator.
  • the saturated steam generator 10 generates electricity using steam supplied from the boiler 6.
  • the electricity generated by the saturated steam generator 10 can be used for powering a control unit for operating a process, heating equipment, a compressor, and the like within the process.
  • the electricity generated by the saturated steam generator 10 may be used for power in the process, and the surplus power may be supplied to any power.
  • a power storage facility may be provided and the electricity generated by the saturated steam generator 10 may be stored in the power storage facility.
  • the heat medium recovers the reaction heat of the raw material gas in the reaction tower 3. Further, by passing the heat medium through the reaction tower 1, the heat medium recovers the reaction heat of the raw material gas in the reaction tower 1. Therefore, the heat medium passing through the reaction towers 1 and 3 is heated by the reaction heat of the raw material gas in the reaction tower 1 and the reaction heat of the raw material gas in the reaction tower 3.
  • the temperature of the heat medium passing through the reaction tower 1 becomes high
  • the temperature of the heat medium passing through the reaction tower 3 becomes high.
  • steam is generated from the liquid stored in the liquid tank 52 using the heat medium that has passed through the reaction towers 1 and 3 as a heat source, and the saturated steam generator 10 is driven with the generated steam. , it becomes possible to utilize the heat recovered by the heat medium. In this way, by creating steam based on the recovered reaction heat and further generating electricity from the steam, the recovered reaction heat is made into a form that is general and easy to use. Thereby, the energy efficiency of the entire process or a part of the process (for example, the methanation reaction process) can be improved.
  • FIG. 2 is a configuration diagram of the separation section 11.
  • the separation unit 11 separates dissolved gas dissolved in the product water from the product water produced in the reaction tower 1 when the product gas is produced in the reaction tower 1 . Furthermore, the separation unit 11 separates dissolved gas dissolved in the product water from the product water produced in the reaction tower 3 when the product gas is produced in the reaction tower 3 .
  • the separation unit 11 includes a pump 61, a separation membrane module 62, a vacuum pump 63, a buffer tank 64, and a compressor 65.
  • the power generation system 100 includes a product gas path 13 through which the product gas sent out from the reaction tower 3 flows. Product gas path 13 may be connected to storage tank 12 .
  • the produced water sent from the gas-liquid separators 7 and 8 to the separation unit 11 is sent to the separation membrane module 62 by the pump 61.
  • the separation membrane module 62 has a separation membrane 66.
  • the separation membrane 66 is, for example, a hollow fiber membrane.
  • a vacuum pump 63 is connected to the separation membrane module 62. Dissolved gas is separated from the produced water by the separation membrane 66.
  • the inside of the separation membrane module 62 is evacuated by the vacuum pump 63 and the product gas is sent to the buffer tank 64 .
  • Buffer tank 64 temporarily stores product gas.
  • the product gas stored in the buffer tank 64 is sent to the product gas path 13 by a compressor 65. As a result, the product gas separated from the generated water joins the product gas flowing through the product gas path 13.
  • the product gas dissolved in the produced water is diffused into the atmosphere, or a degasser (deaerator) is used to blow air or other gas into the tank where the produced water is stored, to forcibly remove the product from the produced water.
  • a method was used to expel the gas.
  • Such a method requires a large-capacity tank for storing the product gas and equipment for blowing gas into the tank.
  • the volume of the buffer tank 64 that temporarily stores the product gas is small, so space saving can be achieved.
  • no equipment for blowing gas into the tank is required. Since the product gas separated from the generated water is combined with the product gas flowing through the product gas path 13, diffusion of the product gas into the atmosphere can be suppressed.
  • the separation unit 11 also includes a separation membrane module 62 for separating product gas dissolved in the produced water from the produced water, and a separation membrane module 62 for separating unreacted raw material gas dissolved in the produced water from the produced water. and may also be provided. Further, the separation unit 11 may include a buffer tank 64 for product gas and a buffer tank 64 for unreacted raw material gas.
  • the inside of the separation membrane module 62 is evacuated by the vacuum pump 63, and the unreacted raw material gas is sent to the buffer tank 64.
  • the unreacted raw material gas stored in the buffer tank 64 is sent to the raw material gas supply section 9 by the compressor 65.
  • unreacted raw material gas is returned to the raw material gas supply section 9.
  • the volume of the buffer tank 64 that temporarily stores unreacted raw material gas is small, so space saving can be achieved. Further, according to the present embodiment, no equipment for blowing gas into the tank is required. Since the unreacted source gas is returned to the source gas supply section 9, diffusion of the unreacted source gas into the atmosphere can be suppressed.
  • the product gas and unreacted raw material gas sent from the gas-liquid separator 8 are passed through a container or porous membrane filled with a catalyst or silica gel, Moisture in the gas may be removed.
  • a porous membrane is used, suction by a vacuum pump or dry hydrogen of the raw material gas may be used.
  • the dry gas (dried product gas) obtained through the above drying process is concentrated using membrane separation equipment using an organic membrane in order to increase the purity of hydrocarbons such as methane or ethane in the dry gas. It may also be a hydrocarbon-rich gas. Off-gas generated separately for concentration during membrane separation may be exhausted to the outside of the system or may be reused as a raw material for reaction.
  • the raw material gas is a mixture of a gas containing at least one of the following (1A) to (1D) and the following gas (2), adjusted by flow rate control to have a ratio of 1:2 to 8. It may be gas.
  • FIG. 3 is a detailed configuration diagram of the power generation system according to the embodiment of the present invention.
  • the power generation system 100 includes a gas mixer 31, an economizer 32, and a gas heater 33.
  • the raw material gas sent out from the raw material gas supply section 9 is supplied into the reaction tower 1 via a gas mixer 31, an economizer 32, and a gas heater 33.
  • the power generation system 100 includes a water heating heat exchanger 34, an economizer 35, a gas heater 36, and a water heating heat exchanger 37.
  • the product gas and unreacted raw material gas sent out from the reaction tower 1 are transferred to a water heating heat exchanger 34, an economizer 32, a gas cooling heat exchanger 2, a gas-liquid separator 7, an economizer 35, and a gas heater. 36 into the reaction tower 3.
  • the product gas sent out from the reaction tower 3 is sent to the storage tank 12 via the water heating heat exchanger 37, the economizer 35, the gas cooling heat exchanger 4, and the gas-liquid separat
  • the gas mixer 31 uniformly mixes the raw material gas delivered from the raw material gas supply section 9.
  • heat exchange is performed between the raw material gas supplied to the reaction tower 1 and the gas sent out from the reaction tower 1.
  • the gas sent out from the reaction tower 1 is a product gas, an unreacted raw material gas, or a mixed gas of a product gas and an unreacted raw material gas. Due to the temperature rise of the reaction tower 1 when the heated heat transfer medium passes through the reaction tower 1 and the temperature rise of the reaction tower 1 due to the exothermic reaction of the raw material gas within the reaction tower 1, the gas sent out from the reaction tower 1 is It's warmed up.
  • the economizer 32 functions as a gas preheating section that preheats the raw material gas supplied to the reaction tower 1 with the gas sent out from the reaction tower 1.
  • the economizer 32 has a flow path 71 through which the raw material gas supplied to the reaction tower 1 flows, and a flow path 72 through which the gas sent out from the reaction tower 1 flows.
  • the source gas flowing through the flow path 71 does not flow into the flow path 72, and the gas flowing through the flow path 72 does not flow into the flow path 71.
  • the gas heater 33 heat exchange is performed between the raw material gas supplied to the reaction tower 1 and the heat medium that has passed through the reaction tower 1.
  • the heat medium is heated by a heat medium heater 5.
  • the heat medium passing through the reaction towers 1 and 3 is heated by the reaction heat of the raw material gas in the reaction tower 1 and the reaction heat of the raw material gas in the reaction tower 3. Therefore, the gas heater 33 functions as a gas preheating section that preheats the raw material gas supplied to the reaction tower 1 with the heat medium that has passed through the reaction towers 1 and 3. By preheating the raw material gas supplied to the reaction tower 1 with the heating medium that has passed through the reaction towers 1 and 3, the preheated raw material gas can be supplied into the reaction tower 1.
  • the heat medium passing through the reaction tower 3 is heated by the reaction heat of the raw material gas in the reaction tower 3, and the heat medium passing through the reaction tower 1 is further heated by the reaction heat of the raw material gas in the reaction tower 1.
  • the gas heater 33 has a flow path 73 through which a raw material gas to be supplied to the reaction tower 1 flows, and a flow path 74 through which a heat medium flows.
  • the source gas flowing through the flow path 73 does not flow into the flow path 74, and the heat medium flowing through the flow path 74 does not flow into the flow path 73.
  • the water heating heat exchanger 34 heat exchange is performed between the liquid supplied to the boiler 6 and the gas sent out from the reaction tower 1. Due to the temperature rise of the reaction tower 1 when the heated heat transfer medium passes through the reaction tower 1 and the temperature rise of the reaction tower 1 due to the exothermic reaction of the raw material gas within the reaction tower 1, the gas sent out from the reaction tower 1 is It's warmed up. Therefore, the water heating heat exchanger 34 functions as a preheating section that preheats the liquid supplied to the boiler 6 with the gas sent out from the reaction tower 1. By preheating the liquid supplied to the boiler 6 with the gas sent out from the reaction tower 1, the preheated liquid can be supplied into the boiler 6.
  • the water heating heat exchanger 34 has a flow path 75 through which the liquid to be supplied to the boiler 6 flows, and a flow path 76 through which the gas sent out from the reaction tower 1 flows.
  • the liquid flowing through the channel 75 does not flow into the channel 76, and the gas flowing through the channel 76 does not flow into the channel 75.
  • the power generation system 100 includes a pump 38, a dealerator 39, a low pressure saturated steam supply section 40, a separator 41, and a discharge valve 42.
  • the pump 38 By driving the pump 38, the liquid held in the dealator 39 is supplied into the boiler 6 via the water heating heat exchanger 34.
  • the dealerator 39 removes liquid gas such as oxygen and carbon dioxide supplied into the boiler 6.
  • the low-pressure saturated steam supply section 40 delivers a gas-liquid mixed fluid containing low-pressure saturated steam.
  • the separator 41 removes liquid from the gas-liquid mixed fluid sent from the low-pressure saturated steam supply section 40 and supplies low-pressure saturated steam into the boiler 6 .
  • the separator 41 retains the liquid removed from the gas-liquid mixed fluid. Further, the gas-liquid mixed fluid sent from the low-pressure saturated steam supply section 40 is sent to the dealerator 39. By opening the discharge valve 42, the liquid held within the separator 41 is discharged.
  • the gas heater 36 heat exchange is performed between the gas supplied to the reaction tower 3 and the heat medium that has passed through the reaction tower 3.
  • the gas supplied to the reaction tower 3 is a product gas, an unreacted raw material gas, or a mixed gas of a product gas and an unreacted raw material gas.
  • the heat medium is heated by a heat medium heater 5. Further, the heat medium passing through the reaction tower 3 is heated by the reaction heat of the raw material gas within the reaction tower 3. Therefore, the gas heater 36 functions as a gas preheating section that preheats the gas supplied to the reaction tower 3 with the heat medium that has passed through the reaction tower 3.
  • the gas heater 36 has a flow path 77 through which gas to be supplied to the reaction tower 3 flows, and a flow path 78 through which a heat medium flows.
  • the gas flowing through the flow path 77 does not flow into the flow path 78, and the heat medium flowing through the flow path 78 does not flow into the flow path 77.
  • the power generation system 100 includes a liquid supply section 43.
  • the liquid supply section 43 sends out liquid such as water.
  • the liquid sent out from the liquid supply section 43 is supplied into the boiler 6 via the water heating heat exchanger 37, the dealator 39, and the water heating heat exchanger 34.
  • the water heating heat exchanger 37 heat exchange is performed between the liquid supplied to the boiler 6 and the gas sent out from the reaction tower 3.
  • the gas sent out from the reaction tower 3 is a product gas, an unreacted raw material gas, or a mixed gas of a product gas and an unreacted raw material gas. Due to the temperature rise of the reaction tower 3 when the heated heat transfer medium passes through the reaction tower 3 and the temperature rise of the reaction tower 3 due to the exothermic reaction of the raw material gas within the reaction tower 3, the gas sent out from the reaction tower 3 is It's warmed up. Therefore, the water heating heat exchanger 37 functions as a preheating section that preheats the liquid supplied to the boiler 6 with the gas sent out from the reaction tower 3.
  • the water heating heat exchanger 37 has a flow path 79 through which the liquid to be supplied to the boiler 6 flows, and a flow path 80 through which the gas sent out from the reaction tower 3 flows.
  • the liquid flowing through the channel 79 does not flow into the channel 80, and the gas flowing through the channel 80 does not flow into the channel 79.
  • the economizer 35 heat exchange is performed between the gas supplied to the reaction tower 3 and the gas sent out from the reaction tower 1.
  • the gas sent out from the reaction tower 3 is warmed by the temperature rise of the reaction tower 3 when the heated heat transfer medium passes through the reaction tower 3. Therefore, the economizer 35 functions as a gas preheating section that preheats the gas supplied to the reaction tower 3 with the gas sent out from the reaction tower 3.
  • the economizer 35 has a flow path 81 through which gas supplied to the reaction tower 3 flows, and a flow path 82 through which gas sent from the reaction tower 3 flows. The gas flowing through the flow path 81 does not flow into the flow path 82, and the gas flowing through the flow path 82 does not flow into the flow path 81.
  • the liquid supplied to the boiler 6 is preheated by the gas sent out from the reaction tower 1, and the preheated liquid is supplied into the boiler 6. Furthermore, in the power generation system 100, the liquid supplied to the boiler 6 is preheated by the gas sent out from the reaction tower 3, and the preheated liquid is supplied into the boiler 6. Thereby, the boiler 6 can generate saturated steam by heating the preheated liquid.
  • the pressure regulating valve 18 regulates the pressure so that the temperature of the saturated steam generated within the boiler 6 becomes 250° C. or higher. Therefore, in the boiler 6, it is possible to generate high temperature saturated steam from high temperature liquid. Furthermore, since the boiler 6 generates saturated steam from high-temperature liquid, the time required to generate saturated steam is shortened.
  • the power generation system 100 includes heat medium tanks 44 and 45.
  • the heat medium tanks 44 and 45 are provided in piping through which the heat medium flows.
  • the heat medium that has flowed into the jacket portion of the reaction tower 1 and the jacket portion of the reaction tower 3 is temporarily stored in the heat medium tanks 44 and 45.
  • an expansion tank or cushion tank is used to accommodate the volume that expands when the heat transfer medium reaches a high temperature.
  • an expansion tank or a cushion tank may be used.
  • a brackish water drum is used instead of a cushion tank.
  • a brackish water drum may be used instead of the heat medium tanks 44 and 45.
  • the water level adjustment inside the boiler 6 during steady state will be explained.
  • a case where water is stored in the boiler 6 will be described.
  • the saturated steam generated in the boiler 6 is supplied to the saturated steam generator 10 when the inside of the boiler 6 reaches a predetermined steam pressure and the pressure regulating valve 18 is opened.
  • the water level in the boiler 6 decreases according to the amount of saturated steam consumed by the saturated steam generator 10. If the water level inside the boiler 6 falls, the heating tubes in the internal piping 51 will be exposed, which is not desirable from a safety standpoint, so it is necessary to control the water level inside the boiler 6.
  • the method of controlling the water level in the boiler 6 is to provide the boiler 6 with a level transmitter and then supply steam to the saturated steam generator 10.
  • the pump 38 is driven and the raw water sent out from the liquid supply section 43 is transferred to the water heating heat exchanger 37, the dealator 39, and the water heating heat exchanger 34.
  • the water is supplied into the boiler 6 via. Since raw water equivalent to the amount of steam consumed in the saturated steam generator 10 is supplied into the boiler 6, the water level within the boiler 6 is stabilized within a certain range.
  • the pressure regulating valve 18 is in a closed state because the predetermined steam pressure within the boiler 6 has not been reached. Then, when the inside of the boiler 6 reaches a predetermined steam pressure, the pressure regulating valve 18 begins to open, and the saturated steam generator 10 becomes ready for operation. On the other hand, since the boiler 6 needs to be temporarily blown due to corrosion and the like during the process, the water level in the boiler 6 may drop even during steady operation. In addition, the water level in the boiler 6 may drop due to fine adjustment of the process or the like. Water level control in this case is performed by method 1 or method 2 below.
  • Method 1 The amount of water supplied to the boiler 6 when the pump 38 is driven is constant, and the amount of heating of the water in the boiler 6 is suppressed by adjusting the opening degrees of the regulating valves 15 and 16. In this way, the amount of steam produced by the boiler 6 is temporarily lowered so that the water level within the boiler 6 can rise.
  • Method 2 The amount of water supplied to the boiler 6 when the pump 38 is driven is temporarily increased to raise the water level in the boiler 6. At this time, the opening degrees of regulating valves 15 and 16 are not adjusted.
  • Method 1 or Method 2 may be performed after performing an operation to lower the water level in the boiler 6.
  • an operation may be performed to lower the water level in the boiler 6.
  • reaction towers 1 and 3 described above have a jacket structure, but are not limited to this.
  • Reaction towers 1 and 3 have one or more tubes filled with a catalyst for chemically reacting hydrocarbons and hydrogen, and the tube filled with the catalyst is placed in a shell tube with a larger diameter. It may be a single-tube or multi-tube shell-and-tube structure.
  • reaction towers 1 and 3 each have one or more chambers filled with a catalyst in a space surrounded by an embossed plate and a side bar, and the catalyst is packed in a large-diameter shell tube. It may also be a parallel plate structure in which the chambers are arranged and the heating medium can be circulated through the embossed plates.
  • FIG. 4 is a configuration diagram of a power generation system 100 according to an embodiment of the present invention.
  • the power generation system 100 includes a first reaction process group 101 and a second reaction process group 102.
  • the first reaction process group 101 includes a reaction tower 1, a gas cooling heat exchanger 2, a gas-liquid separator 7, an economizer 32, and a water heating heat exchanger 34.
  • the second reaction process group 102 includes a reaction tower 3, a gas cooling heat exchanger 4, a gas-liquid separator 8, an economizer 35, and a water heating heat exchanger 37.
  • the configuration of the power generation system 100 is not limited to that shown in FIG. It may also have.
  • the configurations of the third and fourth reaction process groups may be similar to the configuration of the second reaction process group 102.
  • one of a jacket structure, a shell and tube structure, and a parallel plate structure may be selected.
  • the structure of the reaction column 3 in the second reaction process group 102 one of a jacket structure, a shell and tube structure, and a parallel plate structure may be selected.
  • the structure of the reaction towers of the third and fourth reaction process groups one of a jacket structure, a shell and tube structure, and a parallel plate structure may be selected.
  • heat exchange type reaction vessels are used as the reaction towers 1 and 3.
  • a heat exchange type reaction vessel can generate a product gas with a higher concentration than an adiabatic type reaction vessel.
  • adiabatic type a large amount of catalyst is packed into a simple reaction vessel and the reaction proceeds along the upper limit of chemical equilibrium, but in order to produce a highly concentrated product gas, many reaction vessels are required.
  • a highly concentrated product gas can be generated in one reaction vessel.
  • the heat medium heated by the heat medium heater 5 passes through the reaction tower 3, passes through the reaction tower 1, and flows into the internal piping 51 of the boiler 6, but is not limited thereto.
  • the heat medium heated by the heat medium heater 5 may pass through the reaction tower 1 , then the reaction tower 3 , and may flow into the internal pipe 51 of the boiler 6 .
  • the heat medium heated by the heat medium heater 5 passes through each reaction tower in the order of the reaction tower in the fourth reaction process group, the reaction tower in the third reaction process group, reaction tower 3, and reaction tower 1, and then It may also flow into the internal piping 51 of the boiler 6.
  • the heat medium heated by the heat medium heater 5 passes through each reaction tower in the order of reaction tower 1, reaction tower 3, reaction tower in the third reaction process group, and reaction tower in the fourth reaction process group, and then It may also flow into the internal piping 51 of the boiler 6.
  • reaction towers In the embodiment, two reaction towers are provided, but the number of reaction towers may be one, three, four, or any number of stages.
  • heat medium oil or water is used as the heat medium, but the heat medium may be a material suitable for the use conditions, such as molten salt or high-pressure water, taking into consideration the use conditions such as the use temperature and the equipment used. may also be used.
  • the water supplied into the boiler 6 may be, for example, boiler water, and chemicals necessary for operation may be added to the water supplied into the boiler 6.
  • the power generation system 100 may be used even when the reaction performed in the reaction tower is an irreversible reaction.
  • each of the processes described above may be regarded as a generation device or an operation device as part of the power generation system. Further, each of the processes described above may be regarded as a power generation method, a generation method, an operation method, or the like. It may be regarded as a generation system or an operation system having at least a part of each process or function described above. Note that each of the above means and processes can be combined to the extent possible to constitute the present invention.

Abstract

Provided is a technology that is capable of using heat recovered by a heat medium. This power-generating system is provided with: a reaction tower for producing a product gas by an exothermic reaction of starting gases at a catalyst; a steam-producing unit for producing steam from a liquid in which the heat source is a heat medium that passes through the reaction tower and maintains the inside of the reaction tower at an operating temperature within a specific range; and a power-generating unit that is driven by the steam produced by the steam-producing unit.

Description

発電システムpower generation system
 本発明は、発電システムに関する。 The present invention relates to a power generation system.
 例えば、特許文献1には、気体状態の反応物の発熱反応によって、製品ガスを生成させる生成装置及び生成方法に関する技術が開示されている。 For example, Patent Document 1 discloses a technology related to a generation device and a generation method for generating a product gas by an exothermic reaction of gaseous reactants.
特許第6984098号公報Patent No. 6984098
 触媒が充填された反応器内に原料ガスを供給し、原料ガスの発熱反応によって原料ガスから製品ガスが生成される。反応器に熱媒体を通し、原料ガスの発熱反応時に発生する反応熱を熱媒体によって回収している。反応器を通った後の熱媒体は、冷却水を使って冷却されており、熱媒体によって回収された熱は利用されていない。 A raw material gas is supplied into a reactor filled with a catalyst, and a product gas is generated from the raw material gas by an exothermic reaction of the raw material gas. A heating medium is passed through the reactor, and the reaction heat generated during the exothermic reaction of the raw material gas is recovered by the heating medium. The heat carrier after passing through the reactor is cooled using cooling water, and the heat recovered by the heat carrier is not utilized.
 本発明の目的は、熱媒体によって回収された熱を利用可能な技術を提供することである。 An object of the present invention is to provide a technology that can utilize heat recovered by a heat medium.
 上記の課題を解決するための本発明は、触媒における原料ガスの発熱反応によって製品ガスを生成する反応塔と、前記反応塔を通って前記反応塔内を所定範囲の運転温度に維持する熱媒体を加熱源として液体から蒸気を生成する蒸気生成部と、前記蒸気生成部によって生成された前記蒸気で駆動する発電部と、を備える、発電システムである。 In order to solve the above problems, the present invention includes a reaction tower that generates a product gas by an exothermic reaction of raw material gas in a catalyst, and a heat medium that passes through the reaction tower and maintains the inside of the reaction tower at an operating temperature within a predetermined range. This is a power generation system including: a steam generation section that generates steam from a liquid using a liquid as a heating source; and a power generation section that is driven by the steam generated by the steam generation section.
 熱媒体が反応塔を通ることにより、熱媒体が反応塔内における原料ガスの反応熱を回収する。反応塔を通った熱媒体は、反応塔内における原料ガスの反応熱によって加熱されている。反応塔における運転温度が高くなると、反応塔を通った熱媒体の温度が高くなる。反応塔を通った熱媒体を加熱源として液体から蒸気を生成し、生成された蒸気で発電部を駆動することにより、熱媒体によって回収された熱を利用することが可能となる。これにより、プロセス全体又はプロセスの一部におけるエネルギー効率を向上することができる。 By passing the heat carrier through the reaction tower, the heat carrier recovers the reaction heat of the raw material gas in the reaction tower. The heat medium passing through the reaction tower is heated by the heat of reaction of the raw material gas within the reaction tower. As the operating temperature in the reaction tower increases, the temperature of the heat medium passing through the reaction tower increases. By generating steam from a liquid using the heat medium that has passed through the reaction tower as a heating source and driving the power generation section with the generated steam, it becomes possible to utilize the heat recovered by the heat medium. This can improve energy efficiency in the entire process or a part of the process.
 上記発電システムは、前記蒸気生成部へ供給する前記液体を、前記反応塔から送出される前記製品ガスによって予熱する予熱部を更に備えてもよい。予熱部において、蒸気生成部へ供給する液体と、反応塔から送出される製品ガスとの間で熱交換が行われる。反応塔内における原料ガスの発熱反応による反応塔の昇温により、反応塔から送出される製品ガスは温められている。したがって、蒸気生成部へ供給する液体を、反応塔から送出される製品ガスによって予熱することが可能である。蒸気生成部へ供給する液体を、反応塔から送出される製品ガスによって予熱することで、予熱された液体を蒸気生成部内に供給することができる。 The power generation system may further include a preheating section that preheats the liquid supplied to the steam generation section using the product gas sent from the reaction tower. In the preheating section, heat exchange is performed between the liquid supplied to the steam generation section and the product gas sent out from the reaction tower. The product gas sent out from the reaction tower is warmed by the temperature rise of the reaction tower due to the exothermic reaction of the raw material gas within the reaction tower. Therefore, it is possible to preheat the liquid supplied to the steam generation section by the product gas delivered from the reaction column. By preheating the liquid to be supplied to the steam generation section with the product gas sent out from the reaction tower, the preheated liquid can be supplied into the steam generation section.
 上記発電システムは、前記反応塔へ供給する前記原料ガスを、前記反応塔から送出される前記製品ガスによって予熱するガス予熱部を更に備えてもよい。反応塔へ供給する原料ガスと、反応塔から送出される製品ガスとの間で熱交換が行われる。反応塔内における原料ガスの発熱反応による反応塔の昇温により、反応塔から送出される製品ガスは温められている。したがって、反応塔へ供給する原料ガスを、反応塔から送出される製品ガスによって予熱することが可能である。反応塔へ供給する原料ガスを、反応塔から送出される製品ガスによって予熱することで、予熱された原料ガスを反応塔内に供給することができる。 The power generation system may further include a gas preheating section that preheats the raw material gas supplied to the reaction tower with the product gas sent from the reaction tower. Heat exchange is performed between the raw material gas supplied to the reaction tower and the product gas sent out from the reaction tower. The product gas sent out from the reaction tower is warmed by the temperature rise of the reaction tower due to the exothermic reaction of the raw material gas within the reaction tower. Therefore, it is possible to preheat the raw material gas supplied to the reaction tower by the product gas sent out from the reaction tower. By preheating the raw material gas to be supplied to the reaction tower with the product gas sent out from the reaction tower, the preheated raw material gas can be supplied into the reaction tower.
 上記発電システムは、前記反応塔へ供給する前記原料ガスを、前記反応塔を通った前記熱媒体で予熱するガス予熱部を更に備えてもよい。反応塔へ供給する原料ガスと、反応塔を通った熱媒体との間で熱交換が行われる。反応塔を通った熱媒体は、反応塔内における原料ガスの反応熱によって加熱されている。したがって、反応塔へ供給する原料ガスを、反応塔を通った熱媒体によって予熱することが可能である。反応塔へ供給する原料ガスを、反応塔を通った熱媒体で予熱することで、予熱された原料ガスを反応塔内に供給することができる。 The power generation system may further include a gas preheating section that preheats the raw material gas supplied to the reaction tower with the heat medium that has passed through the reaction tower. Heat exchange is performed between the raw material gas supplied to the reaction tower and the heat medium that has passed through the reaction tower. The heat medium passing through the reaction tower is heated by the heat of reaction of the raw material gas within the reaction tower. Therefore, it is possible to preheat the raw material gas supplied to the reaction tower by the heat medium passing through the reaction tower. By preheating the raw material gas to be supplied to the reaction tower with a heat medium that has passed through the reaction tower, the preheated raw material gas can be supplied into the reaction tower.
 上記発電システムは、第1の反応塔および第2の反応塔を含む複数の前記反応塔と、前記第1の反応塔に前記原料ガスを供給する原料ガス供給部と、を更に備え、前記熱媒体は、前記第2の反応塔を通った後、前記第1の反応塔を通って前記蒸気生成部において前記加熱源として用いられ、前記第1の反応塔から前記製品ガスおよび未反応の前記原料ガスが前記第2の反応塔に供給されてもよい。第2の反応塔を通った熱媒体は、第2の反応塔における原料ガスの反応熱によって加熱され、第1の反応塔を通った熱媒体は、第1の反応塔における原料ガスの反応熱によって更に加熱されている。第1および第2の反応塔を通った熱媒体を加熱源として液体から蒸気を生成し、生成された蒸気で発電部を駆動することにより、熱媒体によって回収された熱を利用することが可能となる。 The power generation system further includes a plurality of reaction towers including a first reaction tower and a second reaction tower, and a raw material gas supply section that supplies the raw material gas to the first reaction tower, and After passing through the second reaction column, the medium passes through the first reaction column and is used as the heating source in the steam generation section, and the product gas and the unreacted gas are removed from the first reaction column. A raw material gas may be supplied to the second reaction tower. The heat carrier passing through the second reaction tower is heated by the reaction heat of the raw material gas in the second reaction tower, and the heat carrier passing through the first reaction tower is heated by the reaction heat of the raw material gas in the first reaction tower. further heated by. It is possible to use the heat recovered by the heat medium by generating steam from the liquid using the heat medium that has passed through the first and second reaction towers as a heating source, and driving the power generation section with the generated steam. becomes.
 上記発電システムは、前記蒸気生成部へ供給する前記液体を、前記第1の反応塔から送出される前記製品ガスおよび未反応の前記原料ガスによって予熱する第1の予熱部と、前記蒸気生成部へ供給する前記液体を、前記第2の反応塔から送出される前記製品ガスによって予熱する第2の予熱部と、を更に備えてもよい。第1の反応塔内における原料ガスの発熱反応による第1の反応塔の昇温により、第1の反応塔から送出される製品ガス及び原料ガスは温められている。したがって、蒸気生成部へ供給する液体を、第1の反応塔から送出される製品ガス及び原料ガスによって予熱することが可能である。蒸気生成部へ供給する液体を、第1の反応塔から送出される製品ガス及び未反応の原料ガスによって予熱することで、予熱された液体を蒸気生成部内に供給することができる。第2の反応塔内における原料ガスの発熱反応による第2の反応塔の昇温により、第2の反応塔から送出される製品ガスは温められている。したがって、蒸気生成部へ供給する液体を、第2の反応塔から送出される製品ガスによって予熱することが可能である。蒸気生成部へ供給する液体を、第2の反応塔から送出される製品ガスによって予熱することで、予熱された液体を蒸気生成部内に供給することができる。 The power generation system includes a first preheating section that preheats the liquid supplied to the steam generation section using the product gas sent from the first reaction tower and the unreacted raw material gas; and the steam generation section. The reactor may further include a second preheating section that preheats the liquid supplied to the reactor by the product gas sent from the second reaction tower. The product gas and raw material gas sent out from the first reaction tower are warmed by the temperature rise of the first reaction tower due to the exothermic reaction of the raw material gas within the first reaction tower. Therefore, it is possible to preheat the liquid supplied to the steam generation section by the product gas and raw material gas sent from the first reaction tower. By preheating the liquid to be supplied to the steam generation section using the product gas sent from the first reaction tower and the unreacted raw material gas, the preheated liquid can be supplied into the steam generation section. The product gas sent out from the second reaction tower is warmed by the temperature rise of the second reaction tower due to the exothermic reaction of the raw material gas within the second reaction tower. Therefore, it is possible to preheat the liquid supplied to the steam generation section by the product gas delivered from the second reaction column. By preheating the liquid to be supplied to the steam generation section with the product gas sent from the second reaction tower, the preheated liquid can be supplied into the steam generation section.
 上記発電システムは、前記第1の反応塔へ供給する前記原料ガスを、前記第1の反応塔から送出される前記製品ガスおよび未反応の前記原料ガスによって予熱する第1のガス予熱部と、前記第2の反応塔へ供給する前記製品ガスおよび未反応の前記原料ガスを、前記第2の反応塔から送出される前記製品ガスによって予熱する第2のガス予熱部と、を更に備えてもよい。第1の反応塔内における原料ガスの発熱反応による第1の反応塔の昇温により、第1の反応塔から送出される製品ガス及び未反応の原料ガスは温められている。したがって、第1の反応塔へ供給する原料ガスを、第1の反応塔から送出される製品ガス及び未反応の原料ガスによって予熱することが可能である。第1の反応塔へ供給する原料ガスを、第1の反応塔から送出される製品ガスによって予熱することで、予熱された原料ガスを第1の反応塔内に供給することができる。第2の反応塔内における原料ガスの発熱反応による第2の反応塔の昇温により、第2の反応塔から送出される製品ガスは温められている。したがって、第2の反応塔へ供給する原料ガスを、第2の反応塔から送出される製品ガスによって予熱することが可能である。第2の反応塔へ供給する原料ガスを、第2の反応塔から送出される製品ガスによって予熱することで、予熱された原料ガスを第2の反応塔内に供給することができる。 The power generation system includes a first gas preheating section that preheats the raw material gas supplied to the first reaction tower using the product gas sent from the first reaction tower and the unreacted raw material gas; The method may further include a second gas preheating section that preheats the product gas supplied to the second reaction tower and the unreacted raw material gas by the product gas sent from the second reaction tower. good. The product gas and unreacted raw material gas sent out from the first reaction tower are warmed by the temperature rise of the first reaction tower due to the exothermic reaction of the raw material gas in the first reaction tower. Therefore, it is possible to preheat the raw material gas supplied to the first reaction tower by the product gas sent from the first reaction tower and the unreacted raw material gas. By preheating the raw material gas supplied to the first reaction tower with the product gas sent from the first reaction tower, the preheated raw material gas can be supplied into the first reaction tower. The product gas sent out from the second reaction tower is warmed by the temperature rise of the second reaction tower due to the exothermic reaction of the raw material gas within the second reaction tower. Therefore, it is possible to preheat the raw material gas supplied to the second reaction tower by the product gas sent from the second reaction tower. By preheating the raw material gas supplied to the second reaction tower with the product gas sent from the second reaction tower, the preheated raw material gas can be supplied into the second reaction tower.
 上記発電システムは、前記第1の反応塔へ供給する前記原料ガスを、前記第1の反応塔を通った前記熱媒体で予熱する第1のガス予熱部と、前記第2の反応塔へ供給する前記製品ガスおよび未反応の前記原料ガスを、前記第2の反応塔を通った前記熱媒体で予熱する第2のガス予熱部と、を更に備えてもよい。第1の反応塔を通った熱媒体は、第1の反応塔内における原料ガスの反応熱によって加熱されている。したがって、第1の反応塔へ供給する原料ガスを、第1の反応塔を通った熱媒体によって予熱することが可能である。第1の反応塔へ供給する原料ガスを、第1の反応塔を通った熱媒体で予熱することで、予熱された原料ガスを第1の反応塔内に供給することができる。第2の反応塔を通った熱媒体は、第2の反応塔内における原料ガスの反応熱によって加熱されている。したがって、第2の反応塔へ供給する原料ガスを、第2の反応塔を通った熱媒体によって予熱することが可能である。第2の反応塔へ供給する原料ガスを、第2の反応塔を通った熱媒体で予熱することで、予熱された原料ガスを第2の反応塔内に供給することができる。 The power generation system includes a first gas preheating section that preheats the raw material gas supplied to the first reaction tower with the heat medium that has passed through the first reaction tower, and supplies the raw material gas to the second reaction tower. The reactor may further include a second gas preheating section that preheats the product gas and the unreacted raw material gas using the heat medium that has passed through the second reaction tower. The heat medium passing through the first reaction tower is heated by the heat of reaction of the raw material gas within the first reaction tower. Therefore, it is possible to preheat the raw material gas supplied to the first reaction tower by the heating medium that has passed through the first reaction tower. By preheating the raw material gas to be supplied to the first reaction tower with a heating medium that has passed through the first reaction tower, the preheated raw material gas can be supplied into the first reaction tower. The heat medium passing through the second reaction tower is heated by the heat of reaction of the raw material gas in the second reaction tower. Therefore, it is possible to preheat the raw material gas supplied to the second reaction tower by the heat medium passing through the second reaction tower. By preheating the raw material gas to be supplied to the second reaction tower with a heating medium that has passed through the second reaction tower, the preheated raw material gas can be supplied into the second reaction tower.
 熱媒体によって回収された熱を利用可能な技術を提供することができる。 It is possible to provide a technology that can utilize heat recovered by a heat medium.
図1は、実施形態に係る発電システムの概略構成図である。FIG. 1 is a schematic configuration diagram of a power generation system according to an embodiment. 図2は、分離部の構成図である。FIG. 2 is a configuration diagram of the separation section. 図3は、実施形態に係る発電システムの詳細構成図である。FIG. 3 is a detailed configuration diagram of the power generation system according to the embodiment. 図4は、実施形態に係る発電システムの構成図である。FIG. 4 is a configuration diagram of the power generation system according to the embodiment.
 以下、本発明の実施形態について説明する。以下に示す実施形態は、本発明の実施形態の一例であり、本発明の技術的範囲を以下の態様に限定するものではない。 Hereinafter, embodiments of the present invention will be described. The embodiment shown below is an example of the embodiment of the present invention, and the technical scope of the present invention is not limited to the following aspects.
 図1は、本発明の実施形態に係る発電システムの概略構成図である。図1に示す発電システム100は、原料ガスの発熱反応によって製品ガスを生成する反応塔を通る熱媒体を加熱源として液体から生成した蒸気により発電を行う。例えば、原料ガス(反応ガス)である気体状態の水素と二酸化炭素の発熱反応によって、製品ガスであるメタンガスと、水とを生成させる。また、上記の化学反応は可逆反応でもある。上記の発熱反応を化学反応式で表すと下記の通りである。
 4H+CO⇔CH+2HO             (1)
FIG. 1 is a schematic configuration diagram of a power generation system according to an embodiment of the present invention. The power generation system 100 shown in FIG. 1 generates power using steam generated from a liquid using a heating medium passing through a reaction tower that generates a product gas through an exothermic reaction of raw material gas as a heating source. For example, methane gas, which is a product gas, and water are generated by an exothermic reaction between gaseous hydrogen, which is a raw material gas (reactant gas), and carbon dioxide. Moreover, the above chemical reaction is also a reversible reaction. The above exothermic reaction is expressed as a chemical reaction formula as follows.
4H 2 +CO 2 ⇔CH 4 +2H 2 O (1)
 発電システム100は、一段目の反応塔1と、一段目のガス冷却用熱交換器2と、二段目の反応塔3と、二段目のガス冷却用熱交換器4と、熱媒体ヒーター5と、ボイラー6と、気液分離器7、8と、原料ガス供給部9と、飽和蒸気発電機10と、を備える。 The power generation system 100 includes a first stage reaction tower 1, a first stage gas cooling heat exchanger 2, a second stage reaction tower 3, a second stage gas cooling heat exchanger 4, and a heat medium heater. 5, a boiler 6, gas- liquid separators 7 and 8, a raw material gas supply section 9, and a saturated steam generator 10.
 反応塔1は、触媒における原料ガスの発熱反応によって製品ガスを生成する。反応塔1は、熱交換型の反応容器である。原料ガスは、例えば、水素(H)及び二酸化炭素(CO)などの炭化水素を含む。製品ガスは、例えば、メタンガスである。反応塔1と原料ガス供給部9とが配管によって接続され、原料ガスが原料ガス供給部9から反応塔1内に供給される。また、反応塔1は、触媒における原料ガスの発熱反応によって生成水を生成する。反応塔1とガス冷却用熱交換器2とが配管によって接続されている。反応塔1とガス冷却用熱交換器2とを接続する配管にはバルブなどが設けられている。 The reaction tower 1 generates product gas through an exothermic reaction of raw material gas in a catalyst. The reaction tower 1 is a heat exchange type reaction vessel. The source gas contains, for example, hydrocarbons such as hydrogen (H 2 ) and carbon dioxide (CO 2 ). The product gas is, for example, methane gas. The reaction tower 1 and the raw material gas supply part 9 are connected by piping, and the raw material gas is supplied into the reaction tower 1 from the raw material gas supply part 9. Further, the reaction tower 1 generates water through an exothermic reaction of the raw material gas in the catalyst. A reaction tower 1 and a gas cooling heat exchanger 2 are connected by piping. The piping connecting the reaction tower 1 and the gas cooling heat exchanger 2 is provided with valves and the like.
 ガス冷却用熱交換器2は、反応塔1において生成された生成水(水蒸気)を凝縮する。ガス冷却用熱交換器2と気液分離器7とが配管によって接続されている。ガス冷却用熱交換器2と気液分離器7とを接続する配管にはバルブなどが設けられている。気液分離器7は、製品ガス及び未反応の原料ガスから生成水(液体)を分離する。発電システム100は、分離部11を備え、気液分離器7から分離部11に生成水が送られる。分離部11の詳細については後述する。 The gas cooling heat exchanger 2 condenses the water (steam) produced in the reaction tower 1. The gas cooling heat exchanger 2 and the gas-liquid separator 7 are connected by piping. The piping connecting the gas cooling heat exchanger 2 and the gas-liquid separator 7 is provided with valves and the like. The gas-liquid separator 7 separates produced water (liquid) from the product gas and unreacted source gas. The power generation system 100 includes a separation section 11 to which generated water is sent from the gas-liquid separator 7. Details of the separation section 11 will be described later.
 反応塔3と気液分離器7とが配管によって接続されている。反応塔3と気液分離器7とを接続する配管にはバルブなどが設けられている。反応塔1で生成された製品ガス及び未反応の原料ガスは、ガス冷却用熱交換器2及び気液分離器7を経由して反応塔3へ送られる。反応塔3は、触媒における原料ガスの発熱反応によって製品ガスを生成する。反応塔3は、熱交換型の反応容器である。反応塔3において未反応の原料ガスから製品ガスが生成されることで、高濃度の製品ガスを生成することが可能となる。 The reaction tower 3 and the gas-liquid separator 7 are connected by piping. The piping connecting the reaction tower 3 and the gas-liquid separator 7 is provided with a valve and the like. The product gas and unreacted raw material gas generated in the reaction tower 1 are sent to the reaction tower 3 via the gas cooling heat exchanger 2 and the gas-liquid separator 7. The reaction tower 3 generates product gas by an exothermic reaction of the raw material gas in the catalyst. The reaction tower 3 is a heat exchange type reaction vessel. By generating a product gas from unreacted raw material gas in the reaction tower 3, it becomes possible to generate a highly concentrated product gas.
 反応塔3とガス冷却用熱交換器4とが配管によって接続されている。反応塔3とガス冷却用熱交換器4とを接続する配管にはバルブなどが設けられている。ガス冷却用熱交換器4は、反応塔3において生成された生成水(水蒸気)を凝縮する。ガス冷却用熱交換器4と気液分離器8とが配管によって接続されている。ガス冷却用熱交換器4と気液分離器8とを接続する配管にはバルブなどが設けられている。気液分離器8は、製品ガス及び未反応の原料ガスから生成水(液体)を分離する。 The reaction tower 3 and the gas cooling heat exchanger 4 are connected by piping. The piping connecting the reaction tower 3 and the gas cooling heat exchanger 4 is provided with valves and the like. The gas cooling heat exchanger 4 condenses the water (steam) produced in the reaction tower 3. A gas cooling heat exchanger 4 and a gas-liquid separator 8 are connected by piping. The piping connecting the gas cooling heat exchanger 4 and the gas-liquid separator 8 is provided with valves and the like. The gas-liquid separator 8 separates produced water (liquid) from the product gas and unreacted raw material gas.
 発電システム100は貯留タンク12を備える。気液分離器8から分離部11に生成水が送られ、気液分離器8から貯留タンク12に製品ガスが送られる。貯留タンク12は、製品ガスを貯留する。気液分離器7及び8には、生成水を排出するための水抜き弁が設けられている。水抜き弁は、ドレントラップのような浮き具の浮力を用いて弁を開閉させるものでもよいし、あるいは電気的に水位を探知して電磁弁を開閉するものでもよい。 The power generation system 100 includes a storage tank 12. Produced water is sent from the gas-liquid separator 8 to the separation unit 11, and product gas is sent from the gas-liquid separator 8 to the storage tank 12. The storage tank 12 stores product gas. The gas- liquid separators 7 and 8 are provided with drain valves for discharging produced water. The drain valve may be one that opens and closes the valve using the buoyancy of a floating device such as a drain trap, or one that opens and closes a solenoid valve by electrically detecting the water level.
 反応塔1及び3には、予め触媒が充填されている。触媒は、反応式(1)を促進する触媒ではあれば何でもよく、例えば、安定化元素が固溶し、正方晶系、及び、又は、立方晶系の結晶構造を有する安定化ジルコニア担体と、安定化ジルコニア担体に担持されるNiと、を備え、安定化元素は、Mn、FeおよびCoからなる群から選択される少なくとも1種の遷移元素からなる触媒が挙げられる。 Reaction towers 1 and 3 are filled with catalyst in advance. The catalyst may be any catalyst as long as it promotes reaction formula (1); for example, a stabilized zirconia support in which a stabilizing element is dissolved in solid solution and has a tetragonal and/or cubic crystal structure; Ni supported on a stabilized zirconia support, and the stabilizing element is at least one transition element selected from the group consisting of Mn, Fe, and Co.
 また、反応塔1及び3はジャケット構造になっており、ジャケット部分(シェル)には発熱反応が生じる反応塔内の発熱部分と熱交換する熱媒体が流出入可能となっている。熱媒体には、例えば熱媒油又は水を用いる。熱媒体ヒーター5と反応塔3のジャケット部分とが、熱媒体が流れる配管によって接続されている。また、反応塔1のジャケット部分と反応塔3のジャケット部分とが、熱媒体が流れる配管によって接続されている。熱媒体が流れる配管には、バルブなどが設けられている。熱媒体ヒーター5は、熱媒体を加熱する加熱器である。 Furthermore, the reaction towers 1 and 3 have a jacket structure, and a heat medium that exchanges heat with the exothermic part in the reaction tower where an exothermic reaction occurs can flow in and out of the jacket part (shell). For example, heat medium oil or water is used as the heat medium. The heat medium heater 5 and the jacket portion of the reaction tower 3 are connected by a pipe through which the heat medium flows. Further, the jacket portion of the reaction tower 1 and the jacket portion of the reaction tower 3 are connected by a pipe through which a heat medium flows. The piping through which the heat medium flows is provided with valves and the like. The heat medium heater 5 is a heater that heats a heat medium.
 反応塔1のジャケット部分とボイラー6とが、熱媒体が流れる配管によって接続されている。ボイラー6は、液体から蒸気(飽和蒸気)を生成する蒸気生成部である。ボイラー6は、熱媒体が流入可能な内部配管51と、水などの液体が貯留された液体タンク52とを有する。内部配管51の一部である加熱管が、ボイラー6内を循環している。また、内部配管51における加熱管が、液体タンク52内に配置されている。液体タンク52内に貯留された液体は、内部配管51内に流入した熱媒体を熱源として加熱される。これにより、液体タンク52内に貯留された液体から蒸気が生成される。熱媒体ヒーター5とボイラー6の内部配管51とが、熱媒体が流れる配管によって接続されている。熱媒体ヒーター5によって加熱された熱媒体は、反応塔3を通った後、反応塔1を通り、ボイラー6の内部配管51内に流入する。熱媒体ヒーター5とボイラー6の内部配管51とを接続する配管には、反応塔1、3、熱媒体ヒーター5及びボイラー6の間で熱媒体を循環させるための熱媒体循環ポンプ14が設けられている。また、熱媒体が流れる配管には調整弁15及び16が設けられている。調整弁15及び16を開閉することにより、反応塔1及び3を通った熱媒体を、ボイラー6を経由して熱媒体ヒーター5に送ったり、ボイラー6を経由せずに熱媒体ヒーター5に送ったりすることができる。 The jacket part of the reaction tower 1 and the boiler 6 are connected by a pipe through which a heat medium flows. The boiler 6 is a steam generation section that generates steam (saturated steam) from liquid. The boiler 6 has an internal pipe 51 into which a heat medium can flow, and a liquid tank 52 in which a liquid such as water is stored. A heating tube that is part of the internal piping 51 circulates within the boiler 6. Further, a heating tube in the internal piping 51 is arranged within the liquid tank 52. The liquid stored in the liquid tank 52 is heated using the heat medium flowing into the internal pipe 51 as a heat source. As a result, steam is generated from the liquid stored in the liquid tank 52. The heat medium heater 5 and the internal pipe 51 of the boiler 6 are connected by a pipe through which the heat medium flows. The heat medium heated by the heat medium heater 5 passes through the reaction tower 3 , passes through the reaction tower 1 , and flows into the internal pipe 51 of the boiler 6 . A heat medium circulation pump 14 for circulating the heat medium between the reaction towers 1 and 3, the heat medium heater 5, and the boiler 6 is provided in the pipe connecting the heat medium heater 5 and the internal pipe 51 of the boiler 6. ing. Further, regulating valves 15 and 16 are provided in the piping through which the heat medium flows. By opening and closing the regulating valves 15 and 16, the heat medium that has passed through the reaction towers 1 and 3 can be sent to the heat medium heater 5 via the boiler 6, or sent to the heat medium heater 5 without passing through the boiler 6. You can
 発電システム100は、チラー17A及び17Bを備える。チラー17Aは、ガス冷却用熱交換器2において生成水を凝縮させるための冷却水(冷媒)を冷却する。ガス冷却用熱交換器2及びチラー17Aは、冷却水が流れる配管によって相互に接続されている。チラー17Bは、ガス冷却用熱交換器4において生成水を凝縮させるための冷却水(冷媒)を冷却する。ガス冷却用熱交換器4及びチラー17Bは、冷却水が流れる配管によって相互に接続されている。ここでは、発電システム100が、チラー17A及び17Bを備える例を示しているが、一つのチラーが、ガス冷却用熱交換器2及び4において生成水を凝縮させるための冷却水を冷却してもよい。 The power generation system 100 includes chillers 17A and 17B. The chiller 17A cools cooling water (refrigerant) for condensing generated water in the gas cooling heat exchanger 2. The gas cooling heat exchanger 2 and the chiller 17A are connected to each other by piping through which cooling water flows. The chiller 17B cools cooling water (refrigerant) for condensing generated water in the gas cooling heat exchanger 4. The gas cooling heat exchanger 4 and the chiller 17B are connected to each other by piping through which cooling water flows. Here, an example is shown in which the power generation system 100 includes chillers 17A and 17B, but one chiller may cool cooling water for condensing generated water in the gas cooling heat exchangers 2 and 4. good.
 発電システム100は、制御部21と、反応塔1内の温度を測定する測定センサ22と、反応塔3内の温度を測定する測定センサ23とを備える。測定センサ22によって測定された測定データ及び測定センサ23によって測定された測定データは、制御部21に送られる。これにより、制御部21は、反応塔1内の温度及び反応塔3内の温度を取得する。制御部21は、測定センサ22によって測定された測定データ及び測定センサ23によって測定された測定データを原料ガス供給部9に送る。これにより、原料ガス供給部9は、反応塔1内の温度及び反応塔3内の温度を取得する。 The power generation system 100 includes a control unit 21, a measurement sensor 22 that measures the temperature inside the reaction tower 1, and a measurement sensor 23 that measures the temperature inside the reaction tower 3. The measurement data measured by the measurement sensor 22 and the measurement data measured by the measurement sensor 23 are sent to the control unit 21 . Thereby, the control unit 21 acquires the temperature inside the reaction tower 1 and the temperature inside the reaction tower 3. The control unit 21 sends the measurement data measured by the measurement sensor 22 and the measurement data measured by the measurement sensor 23 to the raw material gas supply unit 9. Thereby, the raw material gas supply unit 9 acquires the temperature inside the reaction tower 1 and the temperature inside the reaction tower 3.
 制御部21は、発電システム100の動作全体を制御するコントローラである。制御部21は、専用の機器により構成してもよいし、汎用のコンピュータにより構成してもよい。制御部21は、プロセッサ(CPU)、メモリ、ストレージ、通信I/Fなどのハードウェア資源を備えている。メモリは、RAMであってもよい。ストレージは、不揮発性の記憶装置(例えばROM、フラッシュメモリなど)であってもよい。制御部21の機能は、ストレージに格納されたプログラムをメモリに展開しプロセッサによって実行することにより実現される。なお、制御部21の構成はこれらに限られない。例えば、機能の全部又は一部をASICやFPGAなどの回路で構成してもよいし、あるいは、機能の全部又は一部をクラウドサーバや他の装置で実行してもよい。 The control unit 21 is a controller that controls the entire operation of the power generation system 100. The control unit 21 may be configured by a dedicated device or may be configured by a general-purpose computer. The control unit 21 includes hardware resources such as a processor (CPU), memory, storage, and communication I/F. The memory may be RAM. The storage may be a nonvolatile storage device (eg, ROM, flash memory, etc.). The functions of the control unit 21 are realized by loading a program stored in a storage into a memory and executing it by a processor. Note that the configuration of the control unit 21 is not limited to these. For example, all or part of the function may be configured with a circuit such as an ASIC or FPGA, or all or part of the function may be executed by a cloud server or other device.
 制御部21は、熱媒体ヒーター5を制御する。熱媒体ヒーター5の動作が制御されることで、熱媒体ヒーター5は、熱媒体に対する加熱を行い、又は、熱媒体に対する加熱を停止する。このように、熱媒体ヒーター5を用いて熱媒体に対する加熱や加熱の停止が行われる。熱媒体の温度が所定温度になるように、制御部21は、熱媒体ヒーター5を制御する。所定温度は、例えば、250℃以上500℃以下である。また、制御部21は、調整弁15及び16を制御する。 The control unit 21 controls the heat medium heater 5. By controlling the operation of the heat medium heater 5, the heat medium heater 5 heats the heat medium or stops heating the heat medium. In this way, the heat medium heater 5 is used to heat the heat medium and to stop heating the heat medium. The control unit 21 controls the heat medium heater 5 so that the temperature of the heat medium reaches a predetermined temperature. The predetermined temperature is, for example, 250°C or more and 500°C or less. Further, the control unit 21 controls the regulating valves 15 and 16.
 制御部21は、熱媒体の温度調整により、反応塔1内を所定範囲の運転温度に維持する。すなわち、温度調整された熱媒体が反応塔1を通ることで、反応塔1内が所定範囲の運転温度に維持される。制御部21は、反応塔1内の温度を、例えば、250℃以上300℃以下に維持するように、熱媒体の温度を調整してもよい。制御部21は、反応塔1内の温度を、好ましくは、280℃以上に維持するように、熱媒体の温度を調整する。運転温度は、250℃以上300℃以下に限られない。運転温度は、250℃以上500℃以下であってもよい。運転温度は、原料ガスの発熱反応が良好に進行する温度である定格温度であってもよい。定格温度は、高濃度の製品ガスが生成される温度であってもよい。 The control unit 21 maintains the operating temperature within the reaction tower 1 within a predetermined range by adjusting the temperature of the heat medium. That is, by passing the temperature-adjusted heat medium through the reaction tower 1, the inside of the reaction tower 1 is maintained at an operating temperature within a predetermined range. The control unit 21 may adjust the temperature of the heat medium so as to maintain the temperature inside the reaction tower 1 at, for example, 250° C. or more and 300° C. or less. The control unit 21 adjusts the temperature of the heat medium so that the temperature inside the reaction tower 1 is preferably maintained at 280° C. or higher. The operating temperature is not limited to 250°C or higher and 300°C or lower. The operating temperature may be 250°C or higher and 500°C or lower. The operating temperature may be a rated temperature that is a temperature at which the exothermic reaction of the raw material gas proceeds satisfactorily. The rated temperature may be a temperature at which a high concentration of product gas is produced.
 制御部21は、熱媒体の温度調整により、反応塔3内を所定範囲の運転温度に維持する。すなわち、温度調整された熱媒体が反応塔3を通ることで、反応塔3内が所定範囲の運転温度に維持される。制御部21は、反応塔3内の温度を、例えば、250℃以上300℃以下に維持するように、熱媒体の温度を調整してもよい。制御部21は、反応塔3内の温度を、好ましくは、280℃以上に維持するように、熱媒体の温度を調整する。運転温度は、250℃以上300℃以下に限られない。運転温度は、250℃以上500℃以下であってもよい。運転温度は、原料ガスの発熱反応が良好に進行する温度である定格温度であってもよい。定格温度は、高濃度の製品ガスが生成される温度であってもよい。 The control unit 21 maintains the operating temperature within the reaction tower 3 within a predetermined range by adjusting the temperature of the heat medium. That is, by passing the temperature-adjusted heat medium through the reaction tower 3, the inside of the reaction tower 3 is maintained at an operating temperature within a predetermined range. The control unit 21 may adjust the temperature of the heat medium so as to maintain the temperature inside the reaction tower 3 at, for example, 250° C. or higher and 300° C. or lower. The control unit 21 adjusts the temperature of the heat medium so that the temperature inside the reaction tower 3 is preferably maintained at 280° C. or higher. The operating temperature is not limited to 250°C or higher and 300°C or lower. The operating temperature may be 250°C or higher and 500°C or lower. The operating temperature may be a rated temperature that is a temperature at which the exothermic reaction of the raw material gas proceeds satisfactorily. The rated temperature may be a temperature at which a high concentration of product gas is produced.
 ボイラー6は、反応塔1及び3を通って内部配管51内に流入した熱媒体を加熱源として、液体タンク52内に貯留された液体を加熱することにより、液体タンク52内に貯留された液体から蒸気を生成する。ボイラー6と飽和蒸気発電機10とが配管によって接続されている。ボイラー6と飽和蒸気発電機10とを接続する配管にはボイラー6内を所定蒸気圧に調整する圧力調整弁18が設けられている。圧力調整弁18の制御目標値である当該所定蒸気圧は、飽和蒸気発電機10を作動させることが可能な定格の蒸気圧である。ボイラー6によって生成された蒸気は、飽和蒸気発電機10に送られる。ボイラー6内が所定蒸気圧になるように圧力調整弁18の開度が制御されることにより、飽和蒸気発電機10に送られる蒸気の量や圧力が制御される。制御部21が、圧力調整弁18の開度などを制御してもよい。 The boiler 6 heats the liquid stored in the liquid tank 52 by using the heat medium that has flowed into the internal pipe 51 through the reaction towers 1 and 3 as a heating source, thereby heating the liquid stored in the liquid tank 52. to generate steam. Boiler 6 and saturated steam generator 10 are connected by piping. A pressure regulating valve 18 is provided in a pipe connecting the boiler 6 and the saturated steam generator 10 to adjust the pressure inside the boiler 6 to a predetermined steam pressure. The predetermined steam pressure, which is the control target value of the pressure regulating valve 18, is a rated steam pressure that allows the saturated steam generator 10 to operate. Steam generated by boiler 6 is sent to saturated steam generator 10. By controlling the opening degree of the pressure regulating valve 18 so that the inside of the boiler 6 reaches a predetermined steam pressure, the amount and pressure of steam sent to the saturated steam generator 10 are controlled. The control unit 21 may control the opening degree of the pressure regulating valve 18 and the like.
 飽和蒸気発電機10は、ボイラー6によって生成された蒸気で駆動する発電部である。飽和蒸気発電機10は、タービン式発電機であってもよいし、スクリュー式発電機であってもよい。飽和蒸気発電機10は、ボイラー6から供給された蒸気により発電を行う。飽和蒸気発電機10によって発電された電気を、プロセスを運用するための制御ユニット、加熱設備、コンプレッサなどのプロセス内動力等に使うことができる。また、飽和蒸気発電機10によって発電された電気をプロセス内動力に使うと共に、余剰分の電力を任意の動力等に供給してもよい。また、蓄電設備を配置し、飽和蒸気発電機10によって発電された電気を蓄電設備に貯蔵してもよい。 The saturated steam generator 10 is a power generation unit that is driven by steam generated by the boiler 6. The saturated steam generator 10 may be a turbine generator or a screw generator. The saturated steam generator 10 generates electricity using steam supplied from the boiler 6. The electricity generated by the saturated steam generator 10 can be used for powering a control unit for operating a process, heating equipment, a compressor, and the like within the process. In addition, the electricity generated by the saturated steam generator 10 may be used for power in the process, and the surplus power may be supplied to any power. Alternatively, a power storage facility may be provided and the electricity generated by the saturated steam generator 10 may be stored in the power storage facility.
 熱媒体が反応塔3を通ることにより、熱媒体が反応塔3内における原料ガスの反応熱を回収する。また、熱媒体が反応塔1を通ることにより、熱媒体が反応塔1内における原料ガスの反応熱を回収する。したがって、反応塔1及び3を通った熱媒体は、反応塔1内における原料ガスの反応熱と、反応塔3内における原料ガスの反応熱とによって加熱されている。反応塔1における運転温度が高くなると、反応塔1を通った熱媒体の温度が高くなり、反応塔3における運転温度が高くなると、反応塔3を通った熱媒体の温度が高くなる。本実施形態では、反応塔1及び3を通った熱媒体を加熱源として、液体タンク52内に貯留された液体から蒸気を生成し、生成された蒸気で飽和蒸気発電機10を駆動することにより、熱媒体によって回収された熱を利用することが可能となる。このように、回収した反応熱に基づいて蒸気を作り、更に蒸気から電気を生成することによって、回収した反応熱を一般的かつ広く使い易い形態とする。これにより、プロセス全体又はプロセスの一部(例えば、メタン化反応プロセス)におけるエネルギー効率を向上することができる。 By passing the heat medium through the reaction tower 3, the heat medium recovers the reaction heat of the raw material gas in the reaction tower 3. Further, by passing the heat medium through the reaction tower 1, the heat medium recovers the reaction heat of the raw material gas in the reaction tower 1. Therefore, the heat medium passing through the reaction towers 1 and 3 is heated by the reaction heat of the raw material gas in the reaction tower 1 and the reaction heat of the raw material gas in the reaction tower 3. When the operating temperature in the reaction tower 1 becomes high, the temperature of the heat medium passing through the reaction tower 1 becomes high, and when the operating temperature in the reaction tower 3 becomes high, the temperature of the heat medium passing through the reaction tower 3 becomes high. In this embodiment, steam is generated from the liquid stored in the liquid tank 52 using the heat medium that has passed through the reaction towers 1 and 3 as a heat source, and the saturated steam generator 10 is driven with the generated steam. , it becomes possible to utilize the heat recovered by the heat medium. In this way, by creating steam based on the recovered reaction heat and further generating electricity from the steam, the recovered reaction heat is made into a form that is general and easy to use. Thereby, the energy efficiency of the entire process or a part of the process (for example, the methanation reaction process) can be improved.
 次いで、分離部11について説明する。図2は、分離部11の構成図である。分離部11は、反応塔1において製品ガスが生成される際に反応塔1で生成された生成水から生成水に溶存する溶存ガスを分離する。また、分離部11は、反応塔3において製品ガスが生成される際に反応塔3で生成された生成水から生成水に溶存する溶存ガスを分離する。分離部11は、ポンプ61と、分離膜モジュール62と、真空ポンプ63と、バッファタンク64と、コンプレッサ65とを備える。発電システム100は、反応塔3から送出される製品ガスが流れる製品ガス経路13を備える。製品ガス経路13は、貯留タンク12に接続されていてもよい。 Next, the separation section 11 will be explained. FIG. 2 is a configuration diagram of the separation section 11. The separation unit 11 separates dissolved gas dissolved in the product water from the product water produced in the reaction tower 1 when the product gas is produced in the reaction tower 1 . Furthermore, the separation unit 11 separates dissolved gas dissolved in the product water from the product water produced in the reaction tower 3 when the product gas is produced in the reaction tower 3 . The separation unit 11 includes a pump 61, a separation membrane module 62, a vacuum pump 63, a buffer tank 64, and a compressor 65. The power generation system 100 includes a product gas path 13 through which the product gas sent out from the reaction tower 3 flows. Product gas path 13 may be connected to storage tank 12 .
 気液分離器7及び8から分離部11に送られた生成水は、ポンプ61により分離膜モジュール62に送られる。分離膜モジュール62は、分離膜66を有する。分離膜66は、例えば、中空糸膜である。分離膜モジュール62に真空ポンプ63が接続されている。分離膜66により生成水から溶存ガスが分離される。溶存ガスが製品ガスである場合、真空ポンプ63により分離膜モジュール62内が真空引きされ、バッファタンク64に製品ガスが送られる。バッファタンク64は、製品ガスを一時的に貯留する。バッファタンク64に貯留された製品ガスは、コンプレッサ65により製品ガス経路13に送られる。これにより、製品ガス経路13を流れる製品ガスに対して生成水から分離された製品ガスが合流する。 The produced water sent from the gas- liquid separators 7 and 8 to the separation unit 11 is sent to the separation membrane module 62 by the pump 61. The separation membrane module 62 has a separation membrane 66. The separation membrane 66 is, for example, a hollow fiber membrane. A vacuum pump 63 is connected to the separation membrane module 62. Dissolved gas is separated from the produced water by the separation membrane 66. When the dissolved gas is a product gas, the inside of the separation membrane module 62 is evacuated by the vacuum pump 63 and the product gas is sent to the buffer tank 64 . Buffer tank 64 temporarily stores product gas. The product gas stored in the buffer tank 64 is sent to the product gas path 13 by a compressor 65. As a result, the product gas separated from the generated water joins the product gas flowing through the product gas path 13.
 従来、生成水に溶存する製品ガスを大気中に拡散する方法や、デガッサー(脱気装置)を用いて、生成水を貯留したタンク内に空気などの気体を吹き込み、強制的に生成水から製品ガスを追い出す方法が用いられていた。このような方法では、製品ガスを貯留するための容積の大きいタンクや、タンク内に気体を吹き込むための機器が必要となる。本実施形態によれば、バッファタンク64は、製品ガスを一時的に貯留するバッファタンク64の容積は小さいため、省スペース化を実現できる。また、本実施形態によれば、タンク内に気体を吹き込むための機器は不要である。製品ガス経路13を流れる製品ガスに対して生成水から分離された製品ガスを合流させるため、大気中への製品ガスの拡散を抑止することができる。 Conventionally, the product gas dissolved in the produced water is diffused into the atmosphere, or a degasser (deaerator) is used to blow air or other gas into the tank where the produced water is stored, to forcibly remove the product from the produced water. A method was used to expel the gas. Such a method requires a large-capacity tank for storing the product gas and equipment for blowing gas into the tank. According to this embodiment, the volume of the buffer tank 64 that temporarily stores the product gas is small, so space saving can be achieved. Further, according to the present embodiment, no equipment for blowing gas into the tank is required. Since the product gas separated from the generated water is combined with the product gas flowing through the product gas path 13, diffusion of the product gas into the atmosphere can be suppressed.
 上記では、溶存ガスが製品ガスである場合について説明しているが、溶存ガスは未反応の原料ガスであってもよい。分離膜モジュール62の分離膜66の種類を変更することにより生成水に溶存する製品ガスを生成水から分離したり、生成水に溶存する未反応の原料ガスを生成水から分離したりすることができる。また、分離部11は、生成水に溶存する製品ガスを生成水から分離するための分離膜モジュール62と、生成水に溶存する未反応の原料ガスを生成水から分離するための分離膜モジュール62と、を備えてもよい。また、分離部11は、製品ガス用のバッファタンク64と、未反応の原料ガス用のバッファタンク64と、を備えてもよい。 Although the above describes the case where the dissolved gas is a product gas, the dissolved gas may be an unreacted raw material gas. By changing the type of separation membrane 66 of the separation membrane module 62, it is possible to separate the product gas dissolved in the produced water from the produced water, or to separate the unreacted raw material gas dissolved in the produced water from the produced water. can. The separation unit 11 also includes a separation membrane module 62 for separating product gas dissolved in the produced water from the produced water, and a separation membrane module 62 for separating unreacted raw material gas dissolved in the produced water from the produced water. and may also be provided. Further, the separation unit 11 may include a buffer tank 64 for product gas and a buffer tank 64 for unreacted raw material gas.
 溶存ガスが未反応の原料ガスである場合、真空ポンプ63により分離膜モジュール62内が真空引きされ、バッファタンク64に未反応の原料ガスが送られる。バッファタンク64に貯留された未反応の原料ガスは、コンプレッサ65により原料ガス供給部9に送られる。これにより、未反応の原料ガスが原料ガス供給部9に戻される。本実施形態によれば、バッファタンク64は、未反応の原料ガスを一時的に貯留するバッファタンク64の容積は小さいため、省スペース化を実現できる。また、本実施形態によれば、タンク内に気体を吹き込むための機器は不要である。未反応の原料ガスを原料ガス供給部9に戻すため、大気中への未反応の原料ガスの拡散を抑止することができる。 When the dissolved gas is unreacted raw material gas, the inside of the separation membrane module 62 is evacuated by the vacuum pump 63, and the unreacted raw material gas is sent to the buffer tank 64. The unreacted raw material gas stored in the buffer tank 64 is sent to the raw material gas supply section 9 by the compressor 65. As a result, unreacted raw material gas is returned to the raw material gas supply section 9. According to this embodiment, the volume of the buffer tank 64 that temporarily stores unreacted raw material gas is small, so space saving can be achieved. Further, according to the present embodiment, no equipment for blowing gas into the tank is required. Since the unreacted source gas is returned to the source gas supply section 9, diffusion of the unreacted source gas into the atmosphere can be suppressed.
 また、気液分離器8から送出される製品ガス及び未反応の原料ガスを乾燥させるために、触媒やシリカゲルを充填した容器又は多孔質膜などに製品ガス及び未反応の原料ガスを通過させ、ガス中の水分を除去してもよい。多孔質膜を使う場合、真空ポンプによる吸引又は原料ガスのうちの乾燥水素を使ってもよい。更に、上記乾燥プロセスを通して得られた乾燥ガス(乾燥した製品ガス)は、乾燥ガス中のメタン又はエタンなどの炭化水素の純度を上げるために、有機膜を使った膜分離設備を用いて、濃縮させた炭化水素リッチのガスにしてもよい。膜分離の濃縮のために別途発生するオフガスは、系外に排気してもよく、反応用原料として再利用してもよい。 In addition, in order to dry the product gas and unreacted raw material gas sent from the gas-liquid separator 8, the product gas and unreacted raw material gas are passed through a container or porous membrane filled with a catalyst or silica gel, Moisture in the gas may be removed. When a porous membrane is used, suction by a vacuum pump or dry hydrogen of the raw material gas may be used. Furthermore, the dry gas (dried product gas) obtained through the above drying process is concentrated using membrane separation equipment using an organic membrane in order to increase the purity of hydrocarbons such as methane or ethane in the dry gas. It may also be a hydrocarbon-rich gas. Off-gas generated separately for concentration during membrane separation may be exhausted to the outside of the system or may be reused as a raw material for reaction.
 原料ガスは、下記の(1A)~(1D)の少なくとも一つを含むガスと、下記の(2)のガスとを、1:2~8の比率となるように流量制御によって調整された混合ガスであってもよい。
(1A)二酸化炭素、若しくは、二酸化炭素とメタンを主成分とするバイオガス
(1B)水素、一酸化炭素、二酸化炭素、水、炭化水素を主成分とする木質バイオマス
(1C)石炭由来のガス化ガス
(1D)高炉等製鉄プロセスからの排ガス及びセメント製造プロセスからの排ガスなどの二酸化炭素が0.02%以上入っている混合ガス
(2)電気分解によって製造された水素、若しくは化学品製造工程より排出される水素、を含む混合ガス
The raw material gas is a mixture of a gas containing at least one of the following (1A) to (1D) and the following gas (2), adjusted by flow rate control to have a ratio of 1:2 to 8. It may be gas.
(1A) Biogas whose main components are carbon dioxide or carbon dioxide and methane (1B) Woody biomass whose main components are hydrogen, carbon monoxide, carbon dioxide, water, and hydrocarbons (1C) Gasification from coal Gas (1D) Mixed gas containing 0.02% or more of carbon dioxide, such as exhaust gas from iron manufacturing processes such as blast furnaces and exhaust gas from cement manufacturing processes (2) Hydrogen produced by electrolysis or from chemical manufacturing processes Mixed gas containing emitted hydrogen
 図3は、本発明の実施形態に係る発電システムの詳細構成図である。発電システム100は、ガスミキサー31と、エコノマイザー32と、ガス加熱器33と、を備える。原料ガス供給部9から送出される原料ガスは、ガスミキサー31、エコノマイザー32及びガス加熱器33を経由して反応塔1内に供給される。発電システム100は、水加熱用熱交換器34と、エコノマイザー35と、ガス加熱器36と、水加熱用熱交換器37と、を備える。反応塔1から送出される製品ガス及び未反応の原料ガスは、水加熱用熱交換器34、エコノマイザー32、ガス冷却用熱交換器2、気液分離器7、エコノマイザー35及びガス加熱器36を経由して反応塔3内に供給される。反応塔3から送出される製品ガスは、水加熱用熱交換器37、エコノマイザー35、ガス冷却用熱交換器4及び気液分離器8を経由して、貯留タンク12に送られる。 FIG. 3 is a detailed configuration diagram of the power generation system according to the embodiment of the present invention. The power generation system 100 includes a gas mixer 31, an economizer 32, and a gas heater 33. The raw material gas sent out from the raw material gas supply section 9 is supplied into the reaction tower 1 via a gas mixer 31, an economizer 32, and a gas heater 33. The power generation system 100 includes a water heating heat exchanger 34, an economizer 35, a gas heater 36, and a water heating heat exchanger 37. The product gas and unreacted raw material gas sent out from the reaction tower 1 are transferred to a water heating heat exchanger 34, an economizer 32, a gas cooling heat exchanger 2, a gas-liquid separator 7, an economizer 35, and a gas heater. 36 into the reaction tower 3. The product gas sent out from the reaction tower 3 is sent to the storage tank 12 via the water heating heat exchanger 37, the economizer 35, the gas cooling heat exchanger 4, and the gas-liquid separator 8.
 ガスミキサー31は、原料ガス供給部9から送出される原料ガスを均一に混ぜる。エコノマイザー32において、反応塔1へ供給する原料ガスと、反応塔1から送出されるガスとの間で熱交換が行われる。反応塔1から送出されるガスは、製品ガス、未反応の原料ガス、又は、製品ガスと未反応の原料ガスとの混合ガスである。加熱された熱媒体が反応塔1を通る際の反応塔1の昇温と、反応塔1内における原料ガスの発熱反応による反応塔1の昇温とにより、反応塔1から送出されるガスは温められている。したがって、エコノマイザー32は、反応塔1へ供給する原料ガスを、反応塔1から送出されるガスによって予熱するガス予熱部として機能する。反応塔1へ供給する原料ガスを、反応塔1から送出されるガスによって予熱することで、予熱された原料ガスを反応塔1内に供給することができる。エコノマイザー32は、反応塔1へ供給する原料ガスが流れる流路71と、反応塔1から送出されるガスが流れる流路72とを有する。流路71を流れる原料ガスは、流路72に流入せず、流路72を流れるガスは、流路71に流入しない。 The gas mixer 31 uniformly mixes the raw material gas delivered from the raw material gas supply section 9. In the economizer 32, heat exchange is performed between the raw material gas supplied to the reaction tower 1 and the gas sent out from the reaction tower 1. The gas sent out from the reaction tower 1 is a product gas, an unreacted raw material gas, or a mixed gas of a product gas and an unreacted raw material gas. Due to the temperature rise of the reaction tower 1 when the heated heat transfer medium passes through the reaction tower 1 and the temperature rise of the reaction tower 1 due to the exothermic reaction of the raw material gas within the reaction tower 1, the gas sent out from the reaction tower 1 is It's warmed up. Therefore, the economizer 32 functions as a gas preheating section that preheats the raw material gas supplied to the reaction tower 1 with the gas sent out from the reaction tower 1. By preheating the raw material gas to be supplied to the reaction tower 1 with the gas sent out from the reaction tower 1, the preheated raw material gas can be supplied into the reaction tower 1. The economizer 32 has a flow path 71 through which the raw material gas supplied to the reaction tower 1 flows, and a flow path 72 through which the gas sent out from the reaction tower 1 flows. The source gas flowing through the flow path 71 does not flow into the flow path 72, and the gas flowing through the flow path 72 does not flow into the flow path 71.
 ガス加熱器33において、反応塔1へ供給する原料ガスと、反応塔1を通った熱媒体との間で熱交換が行われる。熱媒体は、熱媒体ヒーター5によって加熱されている。また、反応塔1及び3を通った熱媒体は、反応塔1内における原料ガスの反応熱と、反応塔3内における原料ガスの反応熱とによって加熱されている。したがって、ガス加熱器33は、反応塔1へ供給する原料ガスを、反応塔1及び3を通った熱媒体で予熱するガス予熱部として機能する。反応塔1へ供給する原料ガスを、反応塔1及び3を通った熱媒体で予熱することで、予熱された原料ガスを反応塔1内に供給することができる。反応塔3を通った熱媒体は、反応塔3における原料ガスの反応熱によって加熱され、反応塔1を通った熱媒体は、反応塔1における原料ガスの反応熱によって更に加熱されている。ガス加熱器33は、反応塔1へ供給する原料ガスが流れる流路73と、熱媒体が流れる流路74とを有する。流路73を流れる原料ガスは、流路74に流入せず、流路74を流れる熱媒体は、流路73に流入しない。 In the gas heater 33, heat exchange is performed between the raw material gas supplied to the reaction tower 1 and the heat medium that has passed through the reaction tower 1. The heat medium is heated by a heat medium heater 5. Further, the heat medium passing through the reaction towers 1 and 3 is heated by the reaction heat of the raw material gas in the reaction tower 1 and the reaction heat of the raw material gas in the reaction tower 3. Therefore, the gas heater 33 functions as a gas preheating section that preheats the raw material gas supplied to the reaction tower 1 with the heat medium that has passed through the reaction towers 1 and 3. By preheating the raw material gas supplied to the reaction tower 1 with the heating medium that has passed through the reaction towers 1 and 3, the preheated raw material gas can be supplied into the reaction tower 1. The heat medium passing through the reaction tower 3 is heated by the reaction heat of the raw material gas in the reaction tower 3, and the heat medium passing through the reaction tower 1 is further heated by the reaction heat of the raw material gas in the reaction tower 1. The gas heater 33 has a flow path 73 through which a raw material gas to be supplied to the reaction tower 1 flows, and a flow path 74 through which a heat medium flows. The source gas flowing through the flow path 73 does not flow into the flow path 74, and the heat medium flowing through the flow path 74 does not flow into the flow path 73.
 水加熱用熱交換器34において、ボイラー6へ供給する液体と、反応塔1から送出されるガスとの間で熱交換が行われる。加熱された熱媒体が反応塔1を通る際の反応塔1の昇温と、反応塔1内における原料ガスの発熱反応による反応塔1の昇温とにより、反応塔1から送出されるガスは温められている。したがって、水加熱用熱交換器34は、ボイラー6へ供給する液体を、反応塔1から送出されるガスによって予熱する予熱部として機能する。ボイラー6へ供給する液体を、反応塔1から送出されるガスによって予熱することで、予熱された液体をボイラー6内に供給することができる。水加熱用熱交換器34は、ボイラー6へ供給する液体が流れる流路75と、反応塔1から送出されるガスが流れる流路76とを有する。流路75を流れる液体は、流路76に流入せず、流路76を流れるガスは、流路75に流入しない。 In the water heating heat exchanger 34, heat exchange is performed between the liquid supplied to the boiler 6 and the gas sent out from the reaction tower 1. Due to the temperature rise of the reaction tower 1 when the heated heat transfer medium passes through the reaction tower 1 and the temperature rise of the reaction tower 1 due to the exothermic reaction of the raw material gas within the reaction tower 1, the gas sent out from the reaction tower 1 is It's warmed up. Therefore, the water heating heat exchanger 34 functions as a preheating section that preheats the liquid supplied to the boiler 6 with the gas sent out from the reaction tower 1. By preheating the liquid supplied to the boiler 6 with the gas sent out from the reaction tower 1, the preheated liquid can be supplied into the boiler 6. The water heating heat exchanger 34 has a flow path 75 through which the liquid to be supplied to the boiler 6 flows, and a flow path 76 through which the gas sent out from the reaction tower 1 flows. The liquid flowing through the channel 75 does not flow into the channel 76, and the gas flowing through the channel 76 does not flow into the channel 75.
 発電システム100は、ポンプ38と、デアレーター39と、低圧飽和蒸気供給部40と、セパレータ41と、排出弁42と、を備える。ポンプ38が駆動することにより、デアレーター39内に保持された液体が、水加熱用熱交換器34を経由してボイラー6内に供給される。デアレーター39は、ボイラー6内に供給される液体の酸素や二酸化炭素などの気体を除去する。低圧飽和蒸気供給部40は、低圧飽和蒸気を含む気液混合流体を送出する。セパレータ41は、低圧飽和蒸気供給部40から送出された気液混合流体から液体を除去して、低圧飽和蒸気をボイラー6内に供給する。セパレータ41は、気液混合流体から除去した液体を保持する。また、低圧飽和蒸気供給部40から送出された気液混合流体は、デアレーター39に送られる。排出弁42が開かれることにより、セパレータ41内に保持された液体が排出される。 The power generation system 100 includes a pump 38, a dealerator 39, a low pressure saturated steam supply section 40, a separator 41, and a discharge valve 42. By driving the pump 38, the liquid held in the dealator 39 is supplied into the boiler 6 via the water heating heat exchanger 34. The dealerator 39 removes liquid gas such as oxygen and carbon dioxide supplied into the boiler 6. The low-pressure saturated steam supply section 40 delivers a gas-liquid mixed fluid containing low-pressure saturated steam. The separator 41 removes liquid from the gas-liquid mixed fluid sent from the low-pressure saturated steam supply section 40 and supplies low-pressure saturated steam into the boiler 6 . The separator 41 retains the liquid removed from the gas-liquid mixed fluid. Further, the gas-liquid mixed fluid sent from the low-pressure saturated steam supply section 40 is sent to the dealerator 39. By opening the discharge valve 42, the liquid held within the separator 41 is discharged.
 ガス加熱器36において、反応塔3へ供給するガスと、反応塔3を通った熱媒体との間で熱交換が行われる。反応塔3へ供給するガスは、製品ガス、未反応の原料ガス、又は、製品ガスと未反応の原料ガスとの混合ガスである。熱媒体は、熱媒体ヒーター5によって加熱されている。また、反応塔3を通った熱媒体は、反応塔3内における原料ガスの反応熱によって加熱されている。したがって、ガス加熱器36は、反応塔3へ供給するガスを、反応塔3を通った熱媒体で予熱するガス予熱部として機能する。反応塔3へ供給する原料ガスを、反応塔3を通った熱媒体で予熱することで、予熱されたガスを反応塔3内に供給することができる。ガス加熱器36は、反応塔3へ供給するガスが流れる流路77と、熱媒体が流れる流路78とを有する。流路77を流れるガスは、流路78に流入せず、流路78を流れる熱媒体は、流路77に流入しない。 In the gas heater 36, heat exchange is performed between the gas supplied to the reaction tower 3 and the heat medium that has passed through the reaction tower 3. The gas supplied to the reaction tower 3 is a product gas, an unreacted raw material gas, or a mixed gas of a product gas and an unreacted raw material gas. The heat medium is heated by a heat medium heater 5. Further, the heat medium passing through the reaction tower 3 is heated by the reaction heat of the raw material gas within the reaction tower 3. Therefore, the gas heater 36 functions as a gas preheating section that preheats the gas supplied to the reaction tower 3 with the heat medium that has passed through the reaction tower 3. By preheating the raw material gas to be supplied to the reaction tower 3 with a heating medium that has passed through the reaction tower 3, the preheated gas can be supplied into the reaction tower 3. The gas heater 36 has a flow path 77 through which gas to be supplied to the reaction tower 3 flows, and a flow path 78 through which a heat medium flows. The gas flowing through the flow path 77 does not flow into the flow path 78, and the heat medium flowing through the flow path 78 does not flow into the flow path 77.
 発電システム100は、液体供給部43を備える。液体供給部43は、水などの液体を送出する。液体供給部43から送出された液体は、水加熱用熱交換器37、デアレーター39及び水加熱用熱交換器34を経由して、ボイラー6内に供給される。 The power generation system 100 includes a liquid supply section 43. The liquid supply section 43 sends out liquid such as water. The liquid sent out from the liquid supply section 43 is supplied into the boiler 6 via the water heating heat exchanger 37, the dealator 39, and the water heating heat exchanger 34.
 水加熱用熱交換器37において、ボイラー6へ供給する液体と、反応塔3から送出されるガスとの間で熱交換が行われる。反応塔3から送出されるガスは、製品ガス、未反応の原料ガス、又は、製品ガスと未反応の原料ガスとの混合ガスである。加熱された熱媒体が反応塔3を通る際の反応塔3の昇温と、反応塔3内における原料ガスの発熱反応による反応塔3の昇温とにより、反応塔3から送出されるガスは温められている。したがって、水加熱用熱交換器37は、ボイラー6へ供給する液体を、反応塔3から送出されるガスによって予熱する予熱部として機能する。ボイラー6へ供給する液体を、反応塔3から送出されるガスによって予熱することで、予熱された液体をボイラー6内に供給することができる。水加熱用熱交換器37は、ボイラー6へ供給する液体が流れる流路79と、反応塔3から送出されるガスが流れる流路80とを有する。流路79を流れる液体は、流路80に流入せず、流路80を流れるガスは、流路79に流入しない。 In the water heating heat exchanger 37, heat exchange is performed between the liquid supplied to the boiler 6 and the gas sent out from the reaction tower 3. The gas sent out from the reaction tower 3 is a product gas, an unreacted raw material gas, or a mixed gas of a product gas and an unreacted raw material gas. Due to the temperature rise of the reaction tower 3 when the heated heat transfer medium passes through the reaction tower 3 and the temperature rise of the reaction tower 3 due to the exothermic reaction of the raw material gas within the reaction tower 3, the gas sent out from the reaction tower 3 is It's warmed up. Therefore, the water heating heat exchanger 37 functions as a preheating section that preheats the liquid supplied to the boiler 6 with the gas sent out from the reaction tower 3. By preheating the liquid supplied to the boiler 6 with the gas sent out from the reaction tower 3, the preheated liquid can be supplied into the boiler 6. The water heating heat exchanger 37 has a flow path 79 through which the liquid to be supplied to the boiler 6 flows, and a flow path 80 through which the gas sent out from the reaction tower 3 flows. The liquid flowing through the channel 79 does not flow into the channel 80, and the gas flowing through the channel 80 does not flow into the channel 79.
 エコノマイザー35において、反応塔3へ供給するガスと、反応塔1から送出されるガスとの間で熱交換が行われる。加熱された熱媒体が反応塔3を通る際の反応塔3の昇温により、反応塔3から送出されるガスは温められている。したがって、エコノマイザー35は、反応塔3へ供給するガスを、反応塔3から送出されるガスによって予熱するガス予熱部として機能する。反応塔3へ供給するガスを、反応塔3から送出されるガスによって予熱することで、予熱されたガスを反応塔3内に供給することができる。エコノマイザー35は、反応塔3へ供給するガスが流れる流路81と、反応塔3から送出されるガスが流れる流路82とを有する。流路81を流れるガスは、流路82に流入せず、流路82を流れるガスは、流路81に流入しない。 In the economizer 35, heat exchange is performed between the gas supplied to the reaction tower 3 and the gas sent out from the reaction tower 1. The gas sent out from the reaction tower 3 is warmed by the temperature rise of the reaction tower 3 when the heated heat transfer medium passes through the reaction tower 3. Therefore, the economizer 35 functions as a gas preheating section that preheats the gas supplied to the reaction tower 3 with the gas sent out from the reaction tower 3. By preheating the gas supplied to the reaction tower 3 with the gas sent out from the reaction tower 3, the preheated gas can be supplied into the reaction tower 3. The economizer 35 has a flow path 81 through which gas supplied to the reaction tower 3 flows, and a flow path 82 through which gas sent from the reaction tower 3 flows. The gas flowing through the flow path 81 does not flow into the flow path 82, and the gas flowing through the flow path 82 does not flow into the flow path 81.
 発電システム100では、ボイラー6へ供給する液体を、反応塔1から送出されるガスによって予熱し、予熱された液体をボイラー6内に供給する。また、発電システム100では、ボイラー6へ供給する液体を、反応塔3から送出されるガスによって予熱し、予熱された液体をボイラー6内に供給する。これにより、ボイラー6では、予熱された液体を加熱することで、飽和蒸気を生成することが可能である。圧力調整弁18は、ボイラー6内で生成される飽和蒸気の温度が250℃以上になるような圧力調整を行う。したがって、ボイラー6では、高温の液体から高温の飽和蒸気を生成することが可能である。また、ボイラー6では、高温の液体から飽和蒸気を生成するため、飽和蒸気の生成に要する時間が短縮される。 In the power generation system 100, the liquid supplied to the boiler 6 is preheated by the gas sent out from the reaction tower 1, and the preheated liquid is supplied into the boiler 6. Furthermore, in the power generation system 100, the liquid supplied to the boiler 6 is preheated by the gas sent out from the reaction tower 3, and the preheated liquid is supplied into the boiler 6. Thereby, the boiler 6 can generate saturated steam by heating the preheated liquid. The pressure regulating valve 18 regulates the pressure so that the temperature of the saturated steam generated within the boiler 6 becomes 250° C. or higher. Therefore, in the boiler 6, it is possible to generate high temperature saturated steam from high temperature liquid. Furthermore, since the boiler 6 generates saturated steam from high-temperature liquid, the time required to generate saturated steam is shortened.
 発電システム100は、熱媒体タンク44及び45を有する。熱媒体タンク44及び45は、熱媒体が流れる配管に設けられている。反応塔1及び3のメンテナンスを行う場合、反応塔1のジャケット部分及び反応塔3のジャケット部分に流入した熱媒体を、熱媒体タンク44及び45内に一時的に貯留する。 The power generation system 100 includes heat medium tanks 44 and 45. The heat medium tanks 44 and 45 are provided in piping through which the heat medium flows. When performing maintenance on the reaction towers 1 and 3, the heat medium that has flowed into the jacket portion of the reaction tower 1 and the jacket portion of the reaction tower 3 is temporarily stored in the heat medium tanks 44 and 45.
 熱媒体系統では、熱媒体として熱媒油を用いる場合、熱媒体が高温時になったときに膨張する容積を受け入れるための膨張タンク又はクッションタンクが用いられる。熱媒体タンク44及び45に替えて、膨張タンク又はクッションタンクを用いてもよい。熱媒体としてボイラー水などの高圧化で液体状態の水を用いる場合、クッションタンクの代わりに汽水ドラムが用いられる。熱媒体タンク44及び45に替えて、汽水ドラムを用いてもよい。 In the heat transfer system, when heat transfer oil is used as the heat transfer medium, an expansion tank or cushion tank is used to accommodate the volume that expands when the heat transfer medium reaches a high temperature. In place of the heat medium tanks 44 and 45, an expansion tank or a cushion tank may be used. When high-pressure liquid water, such as boiler water, is used as a heat medium, a brackish water drum is used instead of a cushion tank. Instead of the heat medium tanks 44 and 45, a brackish water drum may be used.
 定常時のボイラー6内の水位調整について説明する。ここでは、ボイラー6内に水が貯留されている場合について説明する。定常時、ボイラー6で生成された飽和蒸気は、ボイラー6内が所定蒸気圧に達して圧力調整弁18が開くことにより飽和蒸気発電機10に供給される。このとき、飽和蒸気発電機10で消費される飽和蒸気量に応じて、ボイラー6内の水位は原理上下がる。ボイラー6内の水位が下がると、内部配管51における加熱管がむき出しとなり、安全上好ましくないため、ボイラー6内の水位をコントロールする必要がある。 The water level adjustment inside the boiler 6 during steady state will be explained. Here, a case where water is stored in the boiler 6 will be described. During steady state, the saturated steam generated in the boiler 6 is supplied to the saturated steam generator 10 when the inside of the boiler 6 reaches a predetermined steam pressure and the pressure regulating valve 18 is opened. At this time, in principle, the water level in the boiler 6 decreases according to the amount of saturated steam consumed by the saturated steam generator 10. If the water level inside the boiler 6 falls, the heating tubes in the internal piping 51 will be exposed, which is not desirable from a safety standpoint, so it is necessary to control the water level inside the boiler 6.
 ボイラー6内の水位のコントロール方法は、原則として、ボイラー6にレベルトランスミッターを設けた上で、飽和蒸気発電機10に蒸気を供給する。飽和蒸気発電機10において蒸気が消費された場合、ポンプ38を駆動して、液体供給部43から送出された原料水が、水加熱用熱交換器37、デアレーター39及び水加熱用熱交換器34を経由して、ボイラー6内に供給される。飽和蒸気発電機10において消費された蒸気量相当分の原料水がボイラー6内に供給されるため、ボイラー6内の水位は一定の範囲内で安定する。 In principle, the method of controlling the water level in the boiler 6 is to provide the boiler 6 with a level transmitter and then supply steam to the saturated steam generator 10. When steam is consumed in the saturated steam generator 10, the pump 38 is driven and the raw water sent out from the liquid supply section 43 is transferred to the water heating heat exchanger 37, the dealator 39, and the water heating heat exchanger 34. The water is supplied into the boiler 6 via. Since raw water equivalent to the amount of steam consumed in the saturated steam generator 10 is supplied into the boiler 6, the water level within the boiler 6 is stabilized within a certain range.
 スタートアップ時にはボイラー6内が所定蒸気圧に達していないため、圧力調整弁18が閉状態となっている。そして、ボイラー6内が所定蒸気圧に到達すると圧力調整弁18が開き始め、飽和蒸気発電機10が運転可能な状態となる。一方、ボイラー6は、プロセス上、腐食等の関係から一時的にブローする必要があるので、定常運転時でもボイラー6内の水位が低下する場合がある。また、それ以外でもプロセスの微調整等によりボイラー6内の水位が下がることがある。この場合の水位コントロールは、以下の手法1又は手法2により行う。 At startup, the pressure regulating valve 18 is in a closed state because the predetermined steam pressure within the boiler 6 has not been reached. Then, when the inside of the boiler 6 reaches a predetermined steam pressure, the pressure regulating valve 18 begins to open, and the saturated steam generator 10 becomes ready for operation. On the other hand, since the boiler 6 needs to be temporarily blown due to corrosion and the like during the process, the water level in the boiler 6 may drop even during steady operation. In addition, the water level in the boiler 6 may drop due to fine adjustment of the process or the like. Water level control in this case is performed by method 1 or method 2 below.
 (手法1)
 ポンプ38を駆動した場合のボイラー6への水の供給量は一定とし、調整弁15及び16の開度を調整してボイラー6内の水に対する加熱量を抑える。このように、ボイラー6内の水位が上昇できるように、ボイラー6の蒸気製造量を一時的に下げる。
 (手法2)
 ポンプ38を駆動した場合のボイラー6への水の供給量を一時的に増加させ、ボイラー6内の水位を上げる。このとき、調整弁15及び16の開度の調整を行わない
(Method 1)
The amount of water supplied to the boiler 6 when the pump 38 is driven is constant, and the amount of heating of the water in the boiler 6 is suppressed by adjusting the opening degrees of the regulating valves 15 and 16. In this way, the amount of steam produced by the boiler 6 is temporarily lowered so that the water level within the boiler 6 can rise.
(Method 2)
The amount of water supplied to the boiler 6 when the pump 38 is driven is temporarily increased to raise the water level in the boiler 6. At this time, the opening degrees of regulating valves 15 and 16 are not adjusted.
 ボイラー6内の水位が下がるような操作を行った後に、手法1又は手法2を行ってもよい。また、手法1又は手法2を行うことによりボイラー6内の水位をある程度上げた後、ボイラー6内の水位が下がるような操作を行ってもよい。 Method 1 or Method 2 may be performed after performing an operation to lower the water level in the boiler 6. Alternatively, after raising the water level in the boiler 6 to a certain extent by performing method 1 or method 2, an operation may be performed to lower the water level in the boiler 6.
 上記の反応塔1及び3は、ジャケット構造を有しているが、これに限定されない。反応塔1及び3は、炭化水素と水素を化学的に反応させるための触媒が充填された管を1本以上有し、触媒が充填された管がそれよりも大きな口径のシェル管の中に配置された、単管式又は多管式のシェルアンドチューブ構造であってもよい。また、反応塔1及び3は、エンボス加工されたプレートと、サイドバーで囲われた空間に触媒が充填されたチャンバーを1つ以上有し、大きな口径のシェル管の中に触媒が充填されたチャンバーが配置され、エンボス加工されたプレートの中を熱媒体が循環できる並行平板構造であってもよい。 The reaction towers 1 and 3 described above have a jacket structure, but are not limited to this. Reaction towers 1 and 3 have one or more tubes filled with a catalyst for chemically reacting hydrocarbons and hydrogen, and the tube filled with the catalyst is placed in a shell tube with a larger diameter. It may be a single-tube or multi-tube shell-and-tube structure. In addition, reaction towers 1 and 3 each have one or more chambers filled with a catalyst in a space surrounded by an embossed plate and a side bar, and the catalyst is packed in a large-diameter shell tube. It may also be a parallel plate structure in which the chambers are arranged and the heating medium can be circulated through the embossed plates.
 図4は、本発明の実施形態に係る発電システム100の構成図である。発電システム100は、第1反応プロセス群101と、第2反応プロセス群102とを有する。第1反応プロセス群101は、反応塔1と、ガス冷却用熱交換器2と、気液分離器7と、エコノマイザー32と、水加熱用熱交換器34とを有する。第2反応プロセス群102は、反応塔3と、ガス冷却用熱交換器4と、気液分離器8と、エコノマイザー35と、水加熱用熱交換器37とを有する。図4に示す発電システム100の構成に限定されず、発電システム100は、第1反応プロセス群101と、第2反応プロセス群102とに加えて、第3反応プロセス群と、第4反応プロセス群とを有してもよい。第3及び第4反応プロセス群の構成は、第2反応プロセス群102の構成と同様であってもよい。 FIG. 4 is a configuration diagram of a power generation system 100 according to an embodiment of the present invention. The power generation system 100 includes a first reaction process group 101 and a second reaction process group 102. The first reaction process group 101 includes a reaction tower 1, a gas cooling heat exchanger 2, a gas-liquid separator 7, an economizer 32, and a water heating heat exchanger 34. The second reaction process group 102 includes a reaction tower 3, a gas cooling heat exchanger 4, a gas-liquid separator 8, an economizer 35, and a water heating heat exchanger 37. The configuration of the power generation system 100 is not limited to that shown in FIG. It may also have. The configurations of the third and fourth reaction process groups may be similar to the configuration of the second reaction process group 102.
 第1反応プロセス群101における反応塔1の構造として、ジャケット構造、シェルアンドチューブ構造及び並行平板構造のうちの一つを選択してもよい。第2反応プロセス群102における反応塔3の構造として、ジャケット構造、シェルアンドチューブ構造及び並行平板構造のうちの一つを選択してもよい。第3及び第4反応プロセス群の反応塔の構造として、ジャケット構造、シェルアンドチューブ構造及び並行平板構造のうちの一つを選択してもよい。 As the structure of the reaction column 1 in the first reaction process group 101, one of a jacket structure, a shell and tube structure, and a parallel plate structure may be selected. As the structure of the reaction column 3 in the second reaction process group 102, one of a jacket structure, a shell and tube structure, and a parallel plate structure may be selected. As the structure of the reaction towers of the third and fourth reaction process groups, one of a jacket structure, a shell and tube structure, and a parallel plate structure may be selected.
 本実施形態では、熱交換型の反応容器が反応塔1、3として用いられている。熱交換型の反応容器は、断熱型の反応容器と比較して、高濃度の製品ガスを生成することができる。断熱型では、単純な反応容器に触媒を大量に詰めて、化学平衡の上限に沿って反応を進行させるが、高濃度の製品ガスを生成するためには、多くの反応容器を必要とする。これに対して、熱交換型の反応容器では、一つの反応容器で高濃度の製品ガスを生成することができる。 In this embodiment, heat exchange type reaction vessels are used as the reaction towers 1 and 3. A heat exchange type reaction vessel can generate a product gas with a higher concentration than an adiabatic type reaction vessel. In the adiabatic type, a large amount of catalyst is packed into a simple reaction vessel and the reaction proceeds along the upper limit of chemical equilibrium, but in order to produce a highly concentrated product gas, many reaction vessels are required. On the other hand, in a heat exchange type reaction vessel, a highly concentrated product gas can be generated in one reaction vessel.
 実施形態では、熱媒体ヒーター5によって加熱された熱媒体は、反応塔3を通った後、反応塔1を通り、ボイラー6の内部配管51内に流入するが、これに限定されない。熱媒体ヒーター5によって加熱された熱媒体は、反応塔1を通った後、反応塔3を通り、ボイラー6の内部配管51内に流入してもよい。また、熱媒体ヒーター5によって加熱された熱媒体は、第4反応プロセス群における反応塔、第3反応プロセス群における反応塔、反応塔3、反応塔1の順序で各反応塔を通った後、ボイラー6の内部配管51内に流入してもよい。また、熱媒体ヒーター5によって加熱された熱媒体は、反応塔1、反応塔3、第3反応プロセス群における反応塔、第4反応プロセス群における反応塔の順序で各反応塔を通った後、ボイラー6の内部配管51内に流入してもよい。 In the embodiment, the heat medium heated by the heat medium heater 5 passes through the reaction tower 3, passes through the reaction tower 1, and flows into the internal piping 51 of the boiler 6, but is not limited thereto. The heat medium heated by the heat medium heater 5 may pass through the reaction tower 1 , then the reaction tower 3 , and may flow into the internal pipe 51 of the boiler 6 . Further, the heat medium heated by the heat medium heater 5 passes through each reaction tower in the order of the reaction tower in the fourth reaction process group, the reaction tower in the third reaction process group, reaction tower 3, and reaction tower 1, and then It may also flow into the internal piping 51 of the boiler 6. Further, the heat medium heated by the heat medium heater 5 passes through each reaction tower in the order of reaction tower 1, reaction tower 3, reaction tower in the third reaction process group, and reaction tower in the fourth reaction process group, and then It may also flow into the internal piping 51 of the boiler 6.
 実施形態では、反応塔を2つ備えているが、反応塔の数は、1段でも3段でも4段でも何段でもよい。また、実施形態では、熱媒体に熱媒油又は水を用いたが、熱媒体は、使用温度、使用設備などの使用条件を考慮して溶融塩や高圧水などといった、使用条件に適した物質を用いてもよい。また、ボイラー6内に供給される水は、例えばボイラー水であってもよく、ボイラー6内に供給される水に運用上必要な薬剤を投入してもよい。また、反応塔で行われる反応が不可逆反応である場合にも発電システム100は用いられてもよい。 In the embodiment, two reaction towers are provided, but the number of reaction towers may be one, three, four, or any number of stages. In addition, in the embodiment, heat medium oil or water is used as the heat medium, but the heat medium may be a material suitable for the use conditions, such as molten salt or high-pressure water, taking into consideration the use conditions such as the use temperature and the equipment used. may also be used. Further, the water supplied into the boiler 6 may be, for example, boiler water, and chemicals necessary for operation may be added to the water supplied into the boiler 6. Furthermore, the power generation system 100 may be used even when the reaction performed in the reaction tower is an irreversible reaction.
 また、上記で説明した各処理は、発電システムの一部としての生成装置又は運転装置などとして捉えてもよい。また、上記で説明した各処理は、発電方法、生成方法又は運転方法などとして捉えてもよい。上記で説明した各処理ないし機能の少なくとも一部を有する生成システムや運転システムとして捉えてもよい。なお、上記手段および処理の各々は可能な限り互いに組み合わせて本発明を構成することができる。 Furthermore, each of the processes described above may be regarded as a generation device or an operation device as part of the power generation system. Further, each of the processes described above may be regarded as a power generation method, a generation method, an operation method, or the like. It may be regarded as a generation system or an operation system having at least a part of each process or function described above. Note that each of the above means and processes can be combined to the extent possible to constitute the present invention.
1,3・・反応塔;2,4・・ガス冷却用熱交換器;5・・熱媒体ヒーター;6・・ボイラー;7,8・・気液分離器;9・・原料ガス供給部;10・・飽和蒸気発電機;11・・分離部;12・・貯留タンク;13・・製品ガス経路;14・・熱媒体循環ポンプ;15,16・・調整弁;17A,17B・・チラー;18・・圧力調整弁;21・・制御部;22,23・・測定センサ;31・・ガスミキサー;32,35・・エコノマイザー;33,36・・ガス加熱器;34,37・・水加熱用熱交換器;38・・ポンプ;39・・デアレーター;40・・低圧飽和蒸気供給部;41・・セパレータ;42・・排出弁;43・・液体供給部;44,45・・熱媒体タンク;51・・内部配管;52・・液体タンク;61・・ポンプ;62・・分離膜モジュール;63・・真空ポンプ;64・・バッファタンク;65・・コンプレッサ;66・・分離膜;100・・発電システム 1, 3... Reaction tower; 2, 4... Heat exchanger for gas cooling; 5... Heat medium heater; 6... Boiler; 7, 8... Gas-liquid separator; 9... Raw material gas supply section; 10... Saturated steam generator; 11... Separation section; 12... Storage tank; 13... Product gas path; 14... Heat medium circulation pump; 15, 16... Regulating valve; 17A, 17B... Chiller; 18... Pressure adjustment valve; 21... Control unit; 22, 23... Measurement sensor; 31... Gas mixer; 32, 35... Economizer; 33, 36... Gas heater; 34, 37... Water Heating heat exchanger; 38...pump; 39...dealator; 40...low pressure saturated steam supply section; 41...separator; 42...discharge valve; 43...liquid supply section; 44, 45...heat medium Tank; 51... Internal piping; 52... Liquid tank; 61... Pump; 62... Separation membrane module; 63... Vacuum pump; 64... Buffer tank; 65... Compressor; 66... Separation membrane; 100・・Power generation system

Claims (8)

  1.  触媒における原料ガスの発熱反応によって製品ガスを生成する反応塔と、
     前記反応塔を通って前記反応塔内を所定範囲の運転温度に維持する熱媒体を加熱源として液体から蒸気を生成する蒸気生成部と、
     前記蒸気生成部によって生成された前記蒸気で駆動する発電部と、を備える、
     発電システム。
    a reaction tower that generates a product gas through an exothermic reaction of a raw material gas in a catalyst;
    a steam generation unit that generates steam from a liquid using a heat medium that passes through the reaction tower and maintains the inside of the reaction tower at an operating temperature within a predetermined range as a heating source;
    a power generation unit driven by the steam generated by the steam generation unit;
    power generation system.
  2.  前記蒸気生成部へ供給する前記液体を、前記反応塔から送出される前記製品ガスによって予熱する予熱部を更に備える、
     請求項1に記載の発電システム。
    further comprising a preheating section that preheats the liquid supplied to the steam generation section with the product gas sent from the reaction tower;
    The power generation system according to claim 1.
  3.  前記反応塔へ供給する前記原料ガスを、前記反応塔から送出される前記製品ガスによって予熱するガス予熱部を更に備える、
     請求項1または2に記載の発電システム。
    further comprising a gas preheating section that preheats the raw material gas supplied to the reaction tower with the product gas sent from the reaction tower;
    The power generation system according to claim 1 or 2.
  4.  前記反応塔へ供給する前記原料ガスを、前記反応塔を通った前記熱媒体で予熱するガス予熱部を更に備える、
     請求項1または2に記載の発電システム。
    further comprising a gas preheating section that preheats the raw material gas supplied to the reaction tower with the heat medium that has passed through the reaction tower;
    The power generation system according to claim 1 or 2.
  5.  第1の反応塔および第2の反応塔を含む複数の前記反応塔と、
     前記第1の反応塔に前記原料ガスを供給する原料ガス供給部と、を更に備え、
     前記熱媒体は、前記第2の反応塔を通った後、前記第1の反応塔を通って前記蒸気生成部において前記加熱源として用いられ、
     前記第1の反応塔から前記製品ガスおよび未反応の前記原料ガスが前記第2の反応塔に供給される、
     請求項1に記載の発電システム。
    a plurality of reaction towers including a first reaction tower and a second reaction tower;
    further comprising a raw material gas supply section that supplies the raw material gas to the first reaction tower,
    After passing through the second reaction tower, the heat medium passes through the first reaction tower and is used as the heating source in the steam generation section,
    The product gas and the unreacted raw material gas are supplied from the first reaction tower to the second reaction tower,
    The power generation system according to claim 1.
  6.  前記蒸気生成部へ供給する前記液体を、前記第1の反応塔から送出される前記製品ガスおよび未反応の前記原料ガスによって予熱する第1の予熱部と、
     前記蒸気生成部へ供給する前記液体を、前記第2の反応塔から送出される前記製品ガスによって予熱する第2の予熱部と、を更に備える、
     請求項5に記載の発電システム。
    a first preheating section that preheats the liquid supplied to the steam generation section using the product gas sent from the first reaction tower and the unreacted raw material gas;
    further comprising a second preheating section that preheats the liquid supplied to the steam generation section with the product gas sent from the second reaction tower;
    The power generation system according to claim 5.
  7.  前記第1の反応塔へ供給する前記原料ガスを、前記第1の反応塔から送出される前記製品ガスおよび未反応の前記原料ガスによって予熱する第1のガス予熱部と、
     前記第2の反応塔へ供給する前記製品ガスおよび未反応の前記原料ガスを、前記第2の反応塔から送出される前記製品ガスによって予熱する第2のガス予熱部と、を更に備える、
     請求項5または6に記載の発電システム。
    a first gas preheating section that preheats the raw material gas supplied to the first reaction tower by the product gas sent from the first reaction tower and the unreacted raw material gas;
    Further comprising a second gas preheating section that preheats the product gas and the unreacted source gas supplied to the second reaction tower with the product gas sent from the second reaction tower.
    The power generation system according to claim 5 or 6.
  8.  前記第1の反応塔へ供給する前記原料ガスを、前記第1の反応塔を通った前記熱媒体で予熱する第1のガス予熱部と、
     前記第2の反応塔へ供給する前記製品ガスおよび未反応の前記原料ガスを、前記第2の反応塔を通った前記熱媒体で予熱する第2のガス予熱部と、を更に備える、
     請求項5または6に記載の発電システム。
    a first gas preheating section that preheats the raw material gas supplied to the first reaction tower with the heat medium that has passed through the first reaction tower;
    further comprising a second gas preheating section that preheats the product gas and the unreacted raw material gas supplied to the second reaction tower with the heat medium that has passed through the second reaction tower;
    The power generation system according to claim 5 or 6.
PCT/JP2023/013648 2022-05-10 2023-03-31 Power-generating system WO2023218794A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-077755 2022-05-10
JP2022077755A JP2023166900A (en) 2022-05-10 2022-05-10 Power-generating system

Publications (1)

Publication Number Publication Date
WO2023218794A1 true WO2023218794A1 (en) 2023-11-16

Family

ID=88730063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013648 WO2023218794A1 (en) 2022-05-10 2023-03-31 Power-generating system

Country Status (3)

Country Link
JP (1) JP2023166900A (en)
TW (1) TW202344751A (en)
WO (1) WO2023218794A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060270882A1 (en) * 2005-05-31 2006-11-30 Brown Stephen H Reactor temperature control
JP2019142808A (en) * 2018-02-20 2019-08-29 株式会社豊田中央研究所 Methane production apparatus and methane production method
JP2021080202A (en) * 2019-11-19 2021-05-27 三菱パワー株式会社 Methanation reaction apparatus
WO2021220455A1 (en) * 2020-04-30 2021-11-04 株式会社 ユーリカ エンジニアリング System for producing hydrocarbon using vaporization

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060270882A1 (en) * 2005-05-31 2006-11-30 Brown Stephen H Reactor temperature control
JP2019142808A (en) * 2018-02-20 2019-08-29 株式会社豊田中央研究所 Methane production apparatus and methane production method
JP2021080202A (en) * 2019-11-19 2021-05-27 三菱パワー株式会社 Methanation reaction apparatus
WO2021220455A1 (en) * 2020-04-30 2021-11-04 株式会社 ユーリカ エンジニアリング System for producing hydrocarbon using vaporization
JP6964920B1 (en) * 2020-04-30 2021-11-10 株式会社 ユーリカ エンジニアリング Hydrocarbon production system using vaporization with power generation equipment

Also Published As

Publication number Publication date
TW202344751A (en) 2023-11-16
JP2023166900A (en) 2023-11-22

Similar Documents

Publication Publication Date Title
JP5292667B2 (en) Evaporative gas generator and fuel cell using the same
KR20120014151A (en) Device for producing electricity for a submarine comprising a fuel cell
KR20210103677A (en) Hydrogen Reforming System
KR101755379B1 (en) Fuel reforming system for submarine
KR20050053770A (en) Autooxidation internal heating type steam reforming system
US8394544B2 (en) Solid oxide fuel cell steam reforming power system
RU2443040C2 (en) Fuel elements system
WO2023218794A1 (en) Power-generating system
KR101095665B1 (en) Fuel cull power generation system
WO2019082538A1 (en) Gas generation device and gas generation method
JP6974402B2 (en) Plants that consume reformed gas and methods for reforming raw material gas
JP5646370B2 (en) Fuel processing apparatus, fuel cell power generation system and operation method thereof
JPH02188405A (en) Water cooled carbon monoxide conversion reactor of fuel cell
JP2005336003A (en) High purity hydrogen producing device
WO2023218791A1 (en) Generation device and generation method
US20080044699A1 (en) Fuel processor having carbon monoxide removing unit and method of operating the same
US20080311446A1 (en) Fuel processor having temperature control function for co shift reactor and method of operating the fuel processor
JP2021131948A (en) Fuel battery power generation system
JP2021155242A (en) Reformer and reformation treatment apparatus
JP3978016B2 (en) Hydrogen production equipment
JP4872760B2 (en) Operation control method and apparatus for fuel processor
WO2024075400A1 (en) Generation device and generation method
KR102334163B1 (en) Methane procuding apparatus and controlling method thereof
JP2000182646A (en) Fuel cell power-generating facility
WO2020054187A1 (en) Methane gas generation device and methane gas generation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803277

Country of ref document: EP

Kind code of ref document: A1