WO2023218791A1 - Generation device and generation method - Google Patents

Generation device and generation method Download PDF

Info

Publication number
WO2023218791A1
WO2023218791A1 PCT/JP2023/013316 JP2023013316W WO2023218791A1 WO 2023218791 A1 WO2023218791 A1 WO 2023218791A1 JP 2023013316 W JP2023013316 W JP 2023013316W WO 2023218791 A1 WO2023218791 A1 WO 2023218791A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction tower
raw material
material gas
temperature
boosting
Prior art date
Application number
PCT/JP2023/013316
Other languages
French (fr)
Japanese (ja)
Inventor
裕之 ▲高▼野
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Publication of WO2023218791A1 publication Critical patent/WO2023218791A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/02Aliphatic saturated hydrocarbons with one to four carbon atoms
    • C07C9/04Methane

Definitions

  • the present invention relates to a generation device and a generation method.
  • Patent Document 1 discloses a technology related to a generation device and a generation method for generating a product gas by an exothermic reaction of gaseous reactants.
  • the temperature inside the reactor is raised to the temperature required to start producing product gas.
  • the raw material gas is supplied to the reactor when the temperature of the heating medium is higher than the temperature required to start producing product gas. No gas generation takes place. Therefore, the time required to generate product gas increases in proportion to the time required to raise the temperature of the heat medium.
  • the present invention has been made in view of the above circumstances, and its purpose is to provide a technology that can shorten the time required to generate product gas.
  • the present invention includes a reaction tower that generates a product gas by an exothermic reaction of raw material gas in a catalyst, a raw material gas supply section that supplies the raw material gas to the reaction tower, and a raw material gas supply section that supplies the raw material gas to the reaction tower.
  • a temperature adjustment unit that maintains the inside of the reaction tower at an operating temperature within a predetermined range by adjusting the temperature of a heat medium, and the temperature adjustment unit controls supply of the raw material gas to the reaction tower by the raw material gas supply unit.
  • supply of the raw material gas to the reaction tower is started when the temperature inside the reaction tower is lower than the operating temperature.
  • the exothermic reaction of the raw material gas within the reaction tower is started early. Therefore, according to the above generation device, the time required to generate product gas can be shortened.
  • the temperature adjustment section may stop raising the temperature of the reaction tower by heating the heat medium when the raw material gas supply section starts supplying the raw material gas while the temperature of the reaction tower is rising. good. Inside the reaction tower, the temperature of the reaction tower is raised due to the exothermic reaction of the raw material gas, so even if the temperature rise of the reaction tower due to heating of the heating medium has stopped, the temperature inside the reaction tower may reach the operating temperature. This makes it possible to maintain the inside of the reaction tower at the operating temperature.
  • the temperature adjustment unit may adjust the temperature of the heat medium by performing at least one of heating, cooling, stopping heating, and stopping cooling the heat medium.
  • a heater that heats the heat medium heats the heat medium or stops heating the heat medium.
  • a cooler that cools the heat medium cools the heat medium or stops cooling the heat medium.
  • the raw material gas supply unit may determine the supply amount of the raw material gas based on the temperature within the reaction tower. There is a correlation between the temperature within the reaction tower and the concentration of product gas produced from the raw material gas within the reaction tower. By determining the amount of raw material gas supplied into the reaction tower based on such a correlation, the concentration of the product gas produced by the reaction tower can be controlled.
  • the generation device may include a separation unit that separates a dissolved gas dissolved in the generated water from the generated water generated in the reaction tower when the product gas is generated. By separating the dissolved gas dissolved in the produced water from the produced water produced in the reaction tower, it is possible to prevent the dissolved gas dissolved in the produced water from diffusing into the atmosphere.
  • the generation device may include a product gas path through which the product gas sent from the reaction tower flows, and when the dissolved gas is the product gas, the separation unit may be configured to control the product gas flowing through the product gas path.
  • the product gas separated from the produced water may be combined with the gas, and if the dissolved gas is the unreacted raw material gas, the unreacted raw material gas may be returned to the raw material gas supply section.
  • the product gas dissolved in the product water is separated from the product water produced in the reaction tower, and the product gas separated from the product water is combined with the product gas flowing through the product gas path to separate the products dissolved in the product water. Diffusion of gas into the atmosphere can be suppressed.
  • the atmosphere of the unreacted raw material gas dissolved in the produced water is removed. It can prevent the spread inside.
  • the above generation device includes a boost reaction tower that generates the product gas by an exothermic reaction of the raw material gas in a catalyst, and a supply destination of the raw material gas by the raw material gas supply section between the reaction tower and the boost reaction tower. and a switching unit for switching between the boost reaction tower and the reaction tower, and the temperature adjustment unit adjusts the temperature of the boost reaction tower and the heating medium passed through the reaction tower, thereby controlling the inside of the boost reaction tower and the reaction tower.
  • the heat is The heating of the boosting reaction tower and the reaction tower is started by heating the medium, and the raw material gas supply section is configured to control the boosting reaction tower when the temperature inside the boosting reaction tower during heating reaches the supply start temperature.
  • the product gas and the unreacted raw material gas are supplied from the boosting reaction tower to the reaction tower, and the capacity of the boosting reaction tower is equal to or less than that of the reaction tower. It may be smaller than the capacity of .
  • the product gas and unreacted raw material gas can be supplied into the reaction tower while the product gas and unreacted raw material gas are heated by the boosting reaction tower. Since the capacity inside the boost reaction tower is smaller than the capacity inside the reaction tower, the time required for the temperature inside the boost reaction tower to reach the operating temperature is short. Therefore, high-temperature product gas and unreacted raw material gas can be supplied into the reaction tower at an early stage after heating of the heat medium is started. This shortens the time required for the temperature inside the reaction tower to reach the operating temperature.
  • the present invention also provides a reaction tower that generates a product gas through an exothermic reaction of a raw material gas in a catalyst, a boost reaction tower that generates the product gas through an exothermic reaction of the raw material gas in a catalyst, and a boost reaction tower that generates a product gas through an exothermic reaction of the raw material gas in a catalyst. Maintaining the inside of the reaction tower and the inside of the boosting reaction tower at a predetermined operating temperature by adjusting the temperature of the raw material gas supply section that supplies the raw material gas, and the heat medium passed through the reaction tower and the boosting reaction tower.
  • the temperature adjustment unit performs an operation start operation of the boost reaction tower which is in a cold shutdown state where the supply of the raw material gas to the boost reaction tower by the raw material gas supply unit is stopped.
  • heating of the reaction tower and the boosting reaction tower is started by heating the heating medium, and the raw material gas supply section is configured to ensure that the temperature inside the boosting reaction tower during the temperature rise reaches the operating temperature.
  • the supply of the raw material gas to the boost reaction tower is started at a lower predetermined supply start temperature, the product gas and the unreacted raw material gas are supplied from the boost reaction tower into the reaction tower, and the
  • the capacity of the boosting reaction column may be a generator that is smaller than the capacity of the reaction column.
  • supply of the raw material gas to the boosting reaction tower is started when the temperature inside the boosting reaction tower is lower than the operating temperature.
  • the exothermic reaction of the raw material gas in the boost reaction tower starts early. be done.
  • the product gas and unreacted raw material gas are supplied into the reaction tower in a state where the product gas and unreacted raw material gas are heated by the boosting reaction tower. Since the capacity inside the boost reaction tower is smaller than the capacity inside the reaction tower, the time required for the temperature inside the boost reaction tower to reach the operating temperature is short.
  • the present invention can also be viewed from the aspect of a method. That is, the present invention provides a reaction tower that generates a product gas by an exothermic reaction of a raw material gas in a catalyst, a raw material gas supply section that supplies the raw material gas to the reaction tower, and a temperature adjustment of a heat medium passed through the reaction tower. , a temperature adjustment unit that maintains the inside of the reaction tower at an operating temperature within a predetermined range; When the operation of the reaction tower in a cold shutdown state is started, a step of starting to raise the temperature of the reaction tower by heating the heat medium, and a step of raising the temperature inside the reaction tower during the temperature rise from the operating temperature.
  • the production method of the production device may include a step of starting supply of the raw material gas at a low predetermined supply start temperature.
  • supply of the raw material gas to the reaction tower is started when the temperature inside the reaction tower is lower than the operating temperature.
  • the exothermic reaction of the raw material gas within the reaction tower is started early. Therefore, according to the generation method of the above generation device, the time required to generate the product gas can be shortened.
  • the present invention also provides a reaction tower that generates a product gas through an exothermic reaction of a raw material gas in a catalyst, a boost reaction tower that generates the product gas through an exothermic reaction of the raw material gas in a catalyst, and a boost reaction tower that generates a product gas through an exothermic reaction of the raw material gas in a catalyst. Maintaining the inside of the reaction tower and the inside of the boosting reaction tower at a predetermined operating temperature by adjusting the temperature of the raw material gas supply section that supplies the raw material gas, and the heat medium passed through the reaction tower and the boosting reaction tower.
  • a method for producing a generation device comprising: a temperature adjustment section; the step of operating the boosting reaction tower in a cold shutdown state in which supply of the raw material gas to the boosting reaction tower by the raw material gas supply section is stopped; When the starting operation is performed, a step of starting to raise the temperature of the reaction tower and the boosting reaction tower by heating the heating medium, and a step of starting to raise the temperature of the reaction tower and the boosting reaction tower while the temperature is being raised is a predetermined temperature lower than the operating temperature.
  • the supply of raw material gas to the boost reaction tower is started when the temperature inside the boost reaction tower is lower than the operating temperature.
  • the exothermic reaction of the raw material gas in the boost reaction tower starts early. be done.
  • the product gas and unreacted raw material gas are supplied into the reaction tower in a state where the product gas and unreacted raw material gas are heated by the boosting reaction tower. Since the capacity inside the boost reaction tower is smaller than the capacity inside the reaction tower, the time required for the temperature inside the boost reaction tower to reach the operating temperature is short.
  • FIG. 1 is a configuration diagram of a generation device according to a first embodiment.
  • FIG. 2 is a flowchart showing the flow of the operating procedure of the generation device according to the first embodiment.
  • FIG. 3 is a diagram showing the relationship between the temperature change of the heat medium passing through the reaction tower in the first embodiment and the temperature change of the heat medium passing through the reaction tower in the comparative example.
  • FIG. 4 is a diagram showing the relationship between the operating load amount according to the first embodiment and the operating load amount according to the comparative example.
  • FIG. 5 is a configuration diagram of the separating section.
  • FIG. 6 is a configuration diagram of a generation device according to the second embodiment.
  • FIG. 7 is a flowchart showing the flow of the operating procedure of the generator according to the second embodiment.
  • FIG. 1 is a configuration diagram of a generation device according to a first embodiment of the present invention.
  • the generation device 100 shown in FIG. 1 generates methane gas, which is a product gas, and water, for example, by an exothermic reaction between gaseous hydrogen, which is a raw material gas (reactant gas), and carbon dioxide.
  • gaseous hydrogen which is a raw material gas (reactant gas)
  • carbon dioxide a raw material gas
  • the above chemical reaction is also a reversible reaction.
  • the above exothermic reaction is expressed as a chemical reaction formula as follows. 4H 2 +CO 2 ⁇ CH 4 +2H 2 O (1)
  • the generation device 100 includes a first-stage reaction tower 1, a first-stage gas cooling heat exchanger 2, a second-stage reaction tower 3, a second-stage gas cooling heat exchanger 4, and a heat medium heater. 5, a heat exchanger 6 for heat medium, gas-liquid separators 7 and 8, and a raw material gas supply section 9.
  • the reaction tower 1 generates product gas through an exothermic reaction of raw material gas in a catalyst.
  • the raw material gas includes, for example, hydrogen (H 2 ) and carbon dioxide (CO 2 ).
  • the product gas is, for example, methane gas.
  • the reaction tower 1 and the raw material gas supply part 9 are connected by piping, and the raw material gas is supplied into the reaction tower 1 from the raw material gas supply part 9. Further, the reaction tower 1 generates water through an exothermic reaction of the raw material gas in the catalyst.
  • a reaction tower 1 and a gas cooling heat exchanger 2 are connected by piping. The piping connecting the reaction tower 1 and the gas cooling heat exchanger 2 is provided with valves and the like.
  • the gas cooling heat exchanger 2 condenses the water (steam) produced in the reaction tower 1.
  • the gas cooling heat exchanger 2 and the gas-liquid separator 7 are connected by piping.
  • the piping connecting the gas cooling heat exchanger 2 and the gas-liquid separator 7 is provided with valves and the like.
  • the gas-liquid separator 7 separates produced water (liquid) from the product gas and unreacted source gas.
  • the generation device 100 includes a separation section 10 to which generated water is sent from the gas-liquid separator 7. Details of the separation unit 10 will be described later.
  • the reaction tower 3 and the gas-liquid separator 7 are connected by piping.
  • the piping connecting the reaction tower 3 and the gas-liquid separator 7 is provided with a valve and the like.
  • the product gas and unreacted raw material gas generated in the reaction tower 1 are sent to the reaction tower 3 via the gas cooling heat exchanger 2 and the gas-liquid separator 7.
  • the reaction tower 3 generates product gas by an exothermic reaction of the raw material gas in the catalyst. By generating a product gas from unreacted raw material gas in the reaction tower 3, the generation device 100 can generate a highly concentrated product gas.
  • the reaction tower 3 and the gas cooling heat exchanger 4 are connected by piping.
  • the piping connecting the reaction tower 3 and the gas cooling heat exchanger 4 is provided with valves and the like.
  • the gas cooling heat exchanger 4 condenses the water (steam) produced in the reaction tower 3.
  • a gas cooling heat exchanger 4 and a gas-liquid separator 8 are connected by piping.
  • the piping connecting the gas cooling heat exchanger 4 and the gas-liquid separator 8 is provided with valves and the like.
  • the gas-liquid separator 8 separates produced water (liquid) from the product gas and unreacted raw material gas.
  • the generation device 100 includes a storage tank 11. Produced water is sent from the gas-liquid separator 8 to a separation unit 10, and product gas is sent from the gas-liquid separator 8 to a storage tank 11.
  • the storage tank 11 stores product gas.
  • the gas-liquid separators 7 and 8 are provided with drain valves for discharging generated water.
  • the drain valve may be one that opens and closes the valve using the buoyancy of a floating device such as a drain trap, or one that opens and closes a solenoid valve by electrically detecting the water level.
  • Reaction towers 1 and 3 are filled with catalyst in advance.
  • the catalyst may be any catalyst as long as it promotes reaction formula (1); for example, a stabilized zirconia support in which a stabilizing element is dissolved in solid solution and has a tetragonal and/or cubic crystal structure; Ni supported on a stabilized zirconia support, and the stabilizing element is at least one transition element selected from the group consisting of Mn, Fe, and Co.
  • the reaction towers 1 and 3 have a jacket structure, and a heat medium that exchanges heat with the exothermic part in the reaction tower where an exothermic reaction occurs can flow in and out of the jacket part (shell).
  • heat medium oil is used as the heat medium.
  • the heat medium heater 5 and the jacket portion of the reaction tower 1 are connected by a pipe through which the heat medium flows.
  • the jacket portion of the reaction tower 1 and the jacket portion of the reaction tower 3 are connected by a pipe through which a heat medium flows.
  • the piping through which the heat medium flows is provided with valves and the like.
  • the heat medium heater 5 is a heater that heats a heat medium. The heat medium heated by the heat medium heater 5 passes through the reaction tower 1 and then the reaction tower 3.
  • the jacket portion of the reaction tower 3 and the heat exchanger 6 for heat medium are connected by a pipe through which the heat medium flows.
  • the heat exchanger 6 for heat medium cools the heat medium that has passed through the reaction towers 1 and 3.
  • the heat medium heater 5 and the heat exchanger 6 for heat medium are connected by piping through which the heat medium flows.
  • a heat medium circulation pump 12 that sends the heat medium cooled by the heat medium heat exchanger 6 to the heat medium heater 5 is provided in the piping connecting the heat medium heater 5 and the heat exchanger 6 for heat medium. .
  • regulating valves 13 and 14 are provided in the piping through which the heat medium flows.
  • the heat medium that has passed through the reaction towers 1 and 3 can be sent to the heat medium heater 5 via the heat exchanger 6 for heat medium, or the heat exchanger 6 for heat medium can be sent to the heat medium heater 5. It is also possible to send the heat medium to the heat medium heater 5 without passing through the heat medium heater 5.
  • the generation device 100 includes a chiller 15.
  • the chiller 15 cools cooling water (refrigerant) for condensing water produced in the gas cooling heat exchangers 2 and 4.
  • the gas cooling heat exchangers 2 and 4 and the chiller 15 are interconnected by piping through which cooling water flows.
  • the cooling water cooled by the chiller 15 returns to the chiller 15 via the gas cooling heat exchangers 2 and 4.
  • the generation device 100 includes a cooling tower 16 and a cooling water circulation pump 17.
  • the cooling tower 16 cools the cooling water that exchanges heat with the heat medium in the heat exchanger 6 for heat medium.
  • tap water supplied to the cooling tower 16 from outside the system may be used as the cooling water.
  • the cooling water circulation pump 17 circulates the cooling water supplied into the cooling tower 16 between the heat medium heat exchanger 6 and the cooling tower 16 .
  • the generation device 100 includes a control unit 21, a measurement sensor 22 that measures the temperature inside the reaction tower 1, and a measurement sensor 23 that measures the temperature inside the reaction tower 3.
  • the measurement data measured by the measurement sensor 22 and the measurement data measured by the measurement sensor 23 are sent to the control unit 21 .
  • the control unit 21 acquires the temperature inside the reaction tower 1 and the temperature inside the reaction tower 3.
  • the control unit 21 sends the measurement data measured by the measurement sensor 22 and the measurement data measured by the measurement sensor 23 to the raw material gas supply unit 9.
  • the raw material gas supply unit 9 acquires the temperature inside the reaction tower 1 and the temperature inside the reaction tower 3.
  • the control unit 21 is a controller that controls the entire operation of the generation device 100.
  • the control unit 21 may be configured by a dedicated device or may be configured by a general-purpose computer.
  • the control unit 21 includes hardware resources such as a processor (CPU), memory, storage, and communication I/F.
  • the memory may be RAM.
  • the storage may be a nonvolatile storage device (eg, ROM, flash memory, etc.).
  • the functions of the control unit 21 are realized by loading a program stored in a storage into a memory and executing it by a processor. Note that the configuration of the control unit 21 is not limited to these. For example, all or part of the function may be configured with a circuit such as an ASIC or FPGA, or all or part of the function may be executed by a cloud server or other device.
  • the control unit 21 controls the heat medium heater 5. By controlling the operation of the heat medium heater 5, the heat medium heater 5 heats the heat medium or stops heating the heat medium. In this way, the heat medium heater 5 is used to heat the heat medium and to stop heating the heat medium. Further, the control unit 21 controls the regulating valves 13 and 14. The opening and closing of the regulating valves 13 and 14 are controlled, and the heat medium is sent to the heat medium heater 5 via the heat exchanger 6 for heat medium, thereby cooling the heat medium. The opening and closing of the regulating valves 13 and 14 are controlled, and the heat medium is sent to the heat medium heater 5 without passing through the heat exchanger 6 for heat medium, thereby stopping cooling of the heat medium.
  • the heat medium heat exchanger 6 as a cooler is used to cool the heat medium or stop the cooling.
  • the temperature of the heat medium is adjusted by performing at least one of heating, cooling, stopping heating, and stopping cooling of the heat medium.
  • the control unit 21 is an example of a temperature adjustment unit.
  • the control unit 21 maintains the operating temperature within the reaction tower 1 within a predetermined range by adjusting the temperature of the heat medium.
  • the control unit 21 may adjust the temperature of the heat medium so as to maintain the temperature inside the reaction tower 1 at, for example, 200° C. or more and 220° C. or less.
  • the operating temperature is not limited to 200°C or higher and 220°C or lower.
  • the operating temperature may be a rated temperature that is a temperature at which the exothermic reaction of the raw material gas proceeds satisfactorily.
  • the rated temperature may be a temperature at which a high concentration of product gas is produced. Further, the operating temperature and the rated temperature are temperatures higher than the temperature at which the catalytic reaction within the reaction tower 1 starts, for example, temperatures at which the catalytic reaction within the reaction tower 1 proceeds efficiently.
  • the control unit 21 maintains the operating temperature within the reaction tower 3 within a predetermined range by adjusting the temperature of the heat medium.
  • the control unit 21 may adjust the temperature of the heat medium so as to maintain the temperature inside the reaction tower 3 at, for example, 200°C or more and 220°C or less.
  • the operating temperature is not limited to 200°C or higher and 220°C or lower.
  • the operating temperature may be a rated temperature that is a temperature at which the exothermic reaction of the raw material gas proceeds satisfactorily.
  • the rated temperature may be a temperature at which a high concentration of product gas is produced. Further, the operating temperature and the rated temperature are temperatures higher than the temperature at which the catalytic reaction within the reaction tower 3 starts, for example, temperatures at which the catalytic reaction within the reaction tower 3 proceeds efficiently.
  • FIG. 2 is a flow diagram showing the flow of the operating procedure of the generation device 100 according to the first embodiment.
  • the heat medium circulation pump 12 is started (S101).
  • a heat transfer medium is sent to the jacket part of the reaction column 1 and passes through the reaction column 1.
  • the heat medium that has passed through the reaction tower 1 is sent to the jacket part of the reaction tower 3 and passes through the reaction tower 3. In this way, the operation of the reaction tower 1 is started, and the operation of the reaction tower 3 is started.
  • the control unit 21 controls the operation of the reaction tower 1 by heating the heat medium.
  • the temperature increase of the reaction tower 1 is started (S102). Specifically, the control unit 21 turns on the power to the heat medium heater 5 and controls the heat medium heater 5 to heat the heat medium.
  • the heated heat medium is sent to the jacket part of the reaction tower 1 and passes through the reaction tower 1.
  • the temperature of the reaction tower 1 increases as the heated heat medium passes through the reaction tower 1.
  • the temperature inside the reaction tower 1 increases.
  • the heat medium that has passed through the reaction tower 1 is then sent to the jacket portion of the reaction tower 3 and passes through the reaction tower 3.
  • the temperature of the reaction tower 3 increases as the heated heat medium passes through the reaction tower 3.
  • the temperature inside the reaction tower 3 increases.
  • the raw material gas supply section 9 starts supplying the raw material gas to the reaction tower 1 at a predetermined supply start temperature at which the temperature inside the reaction tower 1, which is being heated up, is lower than the operating temperature (S103).
  • the predetermined supply start temperature is, for example, 180°C.
  • the predetermined supply start temperature is not limited to 180°C, and may be other temperatures.
  • a product gas is generated by supplying the raw material gas into the reaction tower 1 .
  • the temperature of the reaction tower 1 rises due to the exothermic reaction of the raw material gas.
  • the temperature inside the reaction tower 1 increases due to the temperature rise of the reaction tower 1 when the heated heat transfer medium passes through the reaction tower 1 and the temperature rise of the reaction tower 1 due to the exothermic reaction of the raw material gas within the reaction tower 1. , reach operating temperature.
  • a comparative example will be explained.
  • the heat medium is heated by a heater, and the raw material gas is supplied to the reaction tower at the timing when the temperature of the heat medium reaches the operating temperature. That is, in the method according to the comparative example, the raw material gas is supplied to the reaction tower after the temperature of the heat medium reaches the operating temperature, so the heat medium is not heated by the heater until the temperature of the heat medium reaches the operating temperature. It will be done. Therefore, in the method according to the comparative example, it takes time for the temperature inside the reaction tower to reach the operating temperature. Furthermore, in the method according to the comparative example, the heating medium is heated by the heater until the temperature of the heating medium reaches the operating temperature, so the power consumption of the heater is large.
  • the reaction occurs due to the temperature rise of the reaction tower 1 when the heated heat medium passes through the reaction tower 1 and the temperature rise of the reaction tower 1 due to the exothermic reaction of the raw material gas in the reaction tower 1.
  • the temperature inside column 1 rises. Therefore, in the first embodiment, the time required for the temperature inside the reaction tower 1 to reach the operating temperature after the heat medium heater 5 starts heating the heat medium is shortened. As a result, power consumption of the heat medium heater 5 can be suppressed.
  • the supply of raw material gas to the reaction tower 1 is started when the temperature inside the reaction tower 1 is lower than the operating temperature.
  • the temperature inside the reaction tower 1 is lower than that in the comparative example.
  • the exothermic reaction of the raw material gas starts early. Therefore, the generation device 100 can shorten the time required to generate product gas, and can also generate highly concentrated product gas in a short time. As a result, in the first embodiment, the time required to generate highly concentrated product gas can be shortened compared to the comparative example.
  • FIG. 3 is a diagram showing the relationship between the temperature change of the heat medium passing through the reaction tower 1 in the first embodiment and the temperature change of the heat medium passing through the reaction tower in the comparative example.
  • the horizontal axis in FIG. 3 indicates time from the start of heating the heat medium.
  • the vertical axis in FIG. 3 indicates the temperature (° C.) of the heat medium at each time.
  • the time required for the temperature of the heat medium passing through the reaction tower 1 to reach 230°C is about 6 hours.
  • the time required for the temperature of the heat medium passing through the reaction tower to reach 230° C. is about 7 hours.
  • the time required for the temperature of the heat medium passing through the reaction tower 1 to reach 230° C. in the first embodiment is about one hour shorter.
  • the control unit 21 maintains the operating temperature within the reaction tower 1 within a predetermined range by adjusting the temperature of the heat medium (S104). For example, when the raw material gas supply unit 9 starts supplying the raw material gas while the temperature of the reaction tower 1 is being raised, the control unit 21 may stop raising the temperature of the reaction tower 1 by heating the heat medium. By stopping the heating of the heat medium by the heat medium heater 5, the temperature increase in the reaction tower 1 due to heating of the heat medium is stopped. Inside the reaction tower 1, the temperature of the reaction tower 1 is raised due to the exothermic reaction of the raw material gas, so even if the temperature rise of the reaction tower 1 due to heating of the heating medium stops, the temperature inside the reaction tower 1 remains unchanged during operation. Reach temperature. Therefore, it becomes possible to maintain the inside of the reaction tower 1 at the operating temperature. After stopping the temperature increase of the reaction tower 1 by heating the heat medium, the control unit 21 may restart the temperature increase of the reaction tower 1 by heating the heat medium.
  • the raw material gas supply unit 9 may determine the amount of raw material gas to be supplied to the reaction tower 1 based on the temperature inside the reaction tower 1. There is a correlation between the temperature inside the reaction tower 1 and the concentration of the product gas generated from the raw material gas inside the reaction tower 1.
  • the raw material gas supply unit 9 may determine the amount of raw material gas to be supplied to the reaction tower 1 based on a map or a relational expression showing the correlation between the temperature inside the reaction tower 1 and the concentration of the product gas.
  • the map or relational expression may be obtained by design, experiment, or simulation.
  • the map and the relational expression may be stored in a storage section included in the raw material gas supply section 9.
  • the map and the relational expression may be stored in a storage unit such as a memory included in the control unit 21.
  • the raw material gas supply unit 9 may obtain the amount of raw material gas supplied to the reaction tower 1 from the control unit 21 . By determining the amount of raw material gas supplied into the reaction tower 1 based on the correlation between the temperature inside the reaction tower 1 and the concentration of product gas generated from the raw material gas in the reaction tower 1, 1 allows the concentration of the product gas produced to be controlled.
  • FIG. 4 is a diagram showing the relationship between the operating load amount (%) according to the first embodiment and the operating load amount (%) according to the comparative example.
  • the horizontal axis in FIG. 4 indicates time from the start of heating the heat medium.
  • the vertical axis in FIG. 4 indicates the operating load amount (the ratio of the amount of raw material gas supplied at each time to the amount of raw material gas supplied at the operating temperature).
  • the supply of raw material gas to the reaction tower 1 is started at a predetermined supply start temperature where the temperature inside the reaction tower 1 is lower than the operating temperature, and the operating load is set to 25%, 50%, 75%, Increase step by step in order of 100%.
  • the comparative example supply of raw material gas to the reaction tower is started after the temperature inside the reaction tower reaches the operating temperature, and the operating load amount is increased.
  • the first embodiment and the comparative example differ in the raw material gas supply start time and in the method of increasing the operating load amount.
  • FIG. 5 is a configuration diagram of the separation section 10.
  • the separation unit 10 separates dissolved gas dissolved in the product water from the product water produced in the reaction tower 1 when the product gas is produced in the reaction tower 1 . Further, the separation unit 10 separates dissolved gas dissolved in the product water from the product water produced in the reaction tower 3 when the product gas is produced in the reaction tower 3 .
  • the separation unit 10 includes a pump 31, a separation membrane module 32, a vacuum pump 33, a buffer tank 34, and a compressor 35.
  • the generation device 100 includes a product gas path 41 through which the product gas sent out from the reaction tower 3 flows.
  • the produced water sent from the gas-liquid separators 7 and 8 to the separation unit 10 is sent to the separation membrane module 32 by the pump 31.
  • the separation membrane module 32 has a separation membrane 36.
  • the separation membrane 36 is, for example, a hollow fiber membrane.
  • a vacuum pump 33 is connected to the separation membrane module 32. Dissolved gas is separated from the produced water by the separation membrane 36.
  • the dissolved gas is a product gas
  • the inside of the separation membrane module 32 is evacuated by the vacuum pump 33 and the product gas is sent to the buffer tank 34 .
  • the buffer tank 34 temporarily stores the product gas.
  • the product gas stored in the buffer tank 34 is sent to the product gas path 41 by the compressor 35. As a result, the product gas separated from the generated water joins the product gas flowing through the product gas path 41.
  • the product gas dissolved in the produced water is diffused into the atmosphere, or a degasser (deaerator) is used to blow air or other gas into the tank where the produced water is stored, to forcibly remove the product from the produced water.
  • a method was used to expel the gas.
  • Such a method requires a large-capacity tank for storing the product gas and equipment for blowing gas into the tank.
  • the volume of the buffer tank 34 that temporarily stores the product gas is small, so space saving can be achieved.
  • the dissolved gas may be an unreacted raw material gas.
  • the separation unit 10 also includes a separation membrane module 32 for separating product gas dissolved in the produced water from the produced water, and a separation membrane module 32 for separating unreacted raw material gas dissolved in the produced water from the produced water. and may also be provided. Further, the separation unit 10 may include a buffer tank 34 for product gas and a buffer tank 34 for unreacted raw material gas.
  • the inside of the separation membrane module 32 is evacuated by the vacuum pump 33 and the unreacted raw material gas is sent to the buffer tank 34.
  • the unreacted raw material gas stored in the buffer tank 34 is sent to the raw material gas supply section 9 by the compressor 35.
  • unreacted raw material gas is returned to the raw material gas supply section 9.
  • the volume of the buffer tank 34 that temporarily stores unreacted raw material gas is small, so space saving can be realized. Further, according to the first embodiment, there is no need for a device for blowing gas into the tank. Since the unreacted source gas is returned to the source gas supply section 9, diffusion of the unreacted source gas into the atmosphere can be suppressed.
  • FIG. 6 is a configuration diagram of a generation device 100 according to a second embodiment of the present invention.
  • the generation device 100 according to the second embodiment includes a boost reaction tower 51, a switching section 52, a gas cooling heat exchanger 53, and a gas-liquid separator. 54 and a measurement sensor 55.
  • the boosting reaction tower 51 generates product gas by exothermic reaction of the raw material gas in the catalyst.
  • the raw material gas supply section 9 and the boost reaction tower 51 are connected by piping, and a switching section 52 is provided in the middle of the piping that connects the raw material gas supply section 9 and the boost reaction tower 51.
  • the switching unit 52 is, for example, a three-way valve.
  • the switching unit 52 switches the destination of the raw material gas supplied by the raw material gas supply unit 9 between the reaction tower 1 and the boosting reaction tower 51.
  • the control unit 21 may perform switching control of the switching unit 52.
  • the raw material gas is supplied from the raw material gas supplying unit 9 into the boosting reaction tower 51.
  • the boosting reaction tower 51 generates water through an exothermic reaction of raw material gas in a catalyst. Further, when the destination of the source gas supplied by the source gas supply unit 9 is switched from the boosting reaction tower 51 to the reaction tower 1, the source gas is supplied from the source gas supply unit 9 into the reaction tower 1.
  • the boost reaction tower 51 is filled with a catalyst in advance.
  • the configuration of the boost reaction tower 51 is similar to that of the reaction tower 1, but the capacity inside the boost reaction tower 51 is smaller than the capacity inside the reaction tower 1.
  • a boost reaction tower 51 and a gas cooling heat exchanger 53 are connected by piping.
  • the piping connecting the boosting reaction tower 51 and the gas cooling heat exchanger 53 is provided with a valve and the like.
  • the reaction tower 1 and the gas-liquid separator 54 are connected by piping.
  • the piping connecting the reaction tower 1 and the gas-liquid separator 54 is provided with a valve and the like.
  • the gas cooling heat exchanger 53 has the same configuration as the gas cooling heat exchanger 2, and condenses the water (steam) generated in the boosting reaction tower 51.
  • the gas-liquid separator 54 has the same configuration as the gas-liquid separator 7, and separates produced water (liquid) from the product gas and unreacted raw material gas.
  • the measurement sensor 55 has the same configuration as the measurement sensor 22, and measures the temperature inside the boost reaction tower 51. The heat medium heated by the heat medium heater 5 passes through the boosting reaction tower 51, the reaction tower 1, and the reaction tower 3 in this order.
  • the control unit 21 maintains the inside of the boost reaction tower 51 at an operating temperature within a predetermined range by adjusting the temperature of the heat medium.
  • the control unit 21 may adjust the temperature of the heat medium so as to maintain the temperature inside the boosting reaction tower 51 at, for example, 200°C or more and 220°C or less.
  • the operating temperature is not limited to 200°C or higher and 220°C or lower.
  • the operating temperature may be a rated temperature that is a temperature at which the exothermic reaction of the raw material gas proceeds satisfactorily.
  • the rated temperature may be a temperature at which a high concentration of product gas is produced.
  • FIG. 7 is a flowchart showing the flow of the operating procedure of the generation device 100 according to the second embodiment.
  • the heat medium circulation pump 12 is started (S201).
  • the heat medium is sent to the jacket portion of the boosting reaction tower 51 and passes through the boosting reaction tower 51.
  • the heat medium that has passed through the boost reaction tower 51 is sent to the jacket portion of the reaction tower 1 and passes through the reaction tower 1.
  • the heat medium that has passed through the reaction tower 1 is sent to the jacket part of the reaction tower 3 and passes through the reaction tower 3. In this way, the operation start operation of the reaction tower 1, the operation start operation of the reaction tower 3, and the operation start operation of the boost reaction tower 51 are performed.
  • the control unit 21 controls the The heating of the boosting reaction tower 51 is started by heating the medium (S202). Specifically, the control unit 21 turns on the power to the heat medium heater 5 and controls the heat medium heater 5 to heat the heat medium.
  • the heated heat medium is sent to the jacket part of the boosting reaction tower 51 and passes through the boosting reaction tower 51. As a result, the temperature inside the boosting reaction tower 51 increases.
  • the heat medium that has passed through the boost reaction tower 51 is sent to the jacket portion of the reaction tower 1 and passes through the reaction tower 1.
  • the temperature of the reaction tower 1 increases as the heated heat medium passes through the reaction tower 1. As a result, the temperature inside the reaction tower 1 increases. Furthermore, the heat medium that has passed through the reaction tower 1 is sent to the jacket part of the reaction tower 3 and passes through the reaction tower 3. The temperature of the reaction tower 3 increases as the heated heat medium passes through the reaction tower 3. As a result, the temperature inside the reaction tower 3 increases.
  • the raw material gas supply unit 9 starts supplying the raw material gas to the boosting reaction tower 51 at a predetermined supply start temperature at which the temperature inside the boosting reaction tower 51 is lower than the operating temperature (S203).
  • the destination of the raw material gas supplied by the raw material gas supply unit 9 has been switched from the reaction tower 1 to the boosting reaction tower 51. Therefore, the raw material gas is supplied to the boost reaction tower 51, and the raw material gas is also supplied to the reaction tower 1 via the boost reaction tower 51.
  • the predetermined supply start temperature is, for example, 180°C.
  • the predetermined supply start temperature is not limited to 180°C, and may be other temperatures.
  • a product gas is generated by supplying the raw material gas into the boosting reaction tower 51.
  • Boosting is achieved by increasing the temperature of the boosting reaction tower 51 when the heated heat transfer medium passes through the boosting reaction tower 51 and by raising the temperature of the boosting reaction tower 51 due to the exothermic reaction of the raw material gas in the boosting reaction tower 51.
  • the temperature inside the reaction tower 51 rises and reaches the operating temperature.
  • the temperature of the boosting reaction tower 51 is increased when the heated heat medium passes through the boosting reaction tower 51, and the boosting reaction tower is caused by an exothermic reaction of the raw material gas in the boosting reaction tower 51. 51, the temperature inside the boosting reaction tower 51 increases. Therefore, in the second embodiment, after the heat medium heater 5 starts heating the heat medium, the time required for the temperature inside the boosting reaction tower 51 to reach the operating temperature is shortened. As a result, power consumption of the heat medium heater 5 can be suppressed.
  • the supply of raw material gas to the boosting reaction tower 51 is started when the temperature inside the boosting reaction tower 51 is lower than the operating temperature.
  • the exothermic reaction of the raw material gas within the boost reaction tower 51 is started early. Therefore, the generation device 100 can shorten the time required to generate product gas, and can also generate highly concentrated product gas in a short time. As a result, in the second embodiment, compared to the comparative example, the time required to generate a highly concentrated product gas can be shortened.
  • the heat medium passing through the boosting reaction tower 51 is heated by the exothermic reaction of the raw material gas within the boosting reaction tower 51. That is, the heat medium passing through the reaction tower 1 is warmed in advance by the exothermic reaction of the raw material gas within the boosting reaction tower 51. Therefore, in the second embodiment, the time required for the temperature inside the reaction tower 1 to reach the operating temperature after the heat medium heater 5 starts heating the heat medium is shortened. As a result, power consumption of the heat medium heater 5 can be suppressed.
  • the product gas and unreacted raw material gas can be supplied into the reaction tower 1 in a state where the product gas and unreacted raw material gas are heated by the boosting reaction tower 51.
  • the capacity inside the boost reaction tower 51 is smaller than the capacity inside the reaction tower 1. Therefore, the time required for the temperature inside the boosting reaction tower 51 to reach the operating temperature is shorter than the time required for the temperature inside the reaction tower 1 to reach the operating temperature in the first embodiment. Therefore, the high-temperature product gas and unreacted raw material gas can be supplied into the reaction tower 1 at an early stage after the heat medium heater 5 starts heating the heat medium. This shortens the time required for the temperature inside the reaction tower 1 to reach the operating temperature.
  • the control unit 21 maintains the operating temperature within the boost reaction tower 51 within a predetermined range by adjusting the temperature of the heat medium (S204). For example, when the raw material gas supply unit 9 starts supplying the raw material gas while the temperature of the boosting reaction tower 51 is rising, the control unit 21 stops raising the temperature of the boosting reaction tower 51 by heating the heat medium. Good too. By stopping the heating of the heat medium by the heat medium heater 5, the temperature increase of the boosting reaction tower 51 due to heating of the heat medium is stopped. In the boost reaction tower 51, the temperature of the boost reaction tower 51 is raised due to the exothermic reaction of the raw material gas, so even if the temperature rise of the boost reaction tower 51 due to heating of the heating medium is stopped, the boost reaction tower 51 is heated.
  • the temperature inside the reaction tower 51 reaches the operating temperature.
  • the product gas and unreacted raw material gas in a high temperature state are supplied into the reaction tower 1 from the boosting reaction tower 51, and the heating medium heated by the exothermic reaction of the raw material gas in the boosting reaction tower 51 reacts. Pass through tower 1. Therefore, even if the temperature increase in the boosting reaction tower 51 due to heating of the heat medium stops, the temperature inside the reaction tower 1 reaches the operating temperature.
  • the control unit 21 may restart the temperature increase of the boost reaction tower 51 by heating the heat medium.
  • the raw material gas supply unit 9 may determine the amount of raw material gas to be supplied to the boosting reaction tower 51 based on the temperature inside the boosting reaction tower 51. Further, the raw material gas supply unit 9 may determine the amount of raw material gas to be supplied to the boosting reaction tower 51 based on the temperature inside the reaction tower 1. The raw material gas supply unit 9 determines the amount of raw material gas to be supplied to the boosting reaction tower 51 based on a map and a relational expression showing the correlation between the temperature inside the boosting reaction tower 51 and the concentration of the product gas. It's okay. The raw material gas supply unit 9 determines the amount of raw material gas supplied to the boosting reaction tower 51 based on a map or relational expression showing the correlation between the temperature inside the reaction tower 1 and the concentration of the product gas. good.
  • the map or relational expression may be obtained by design, experiment, or simulation.
  • the map and the relational expression may be stored in a storage section included in the raw material gas supply section 9.
  • the map and the relational expression may be stored in a storage unit such as a memory included in the control unit 21.
  • the raw material gas supply unit 9 may obtain the amount of raw material gas supplied to the boosting reaction tower 51 from the control unit 21 .
  • the measurement sensor 22 measures the temperature inside the reaction tower 1, and the measurement sensor 23 measures the temperature inside the reaction tower 3.
  • the measurement sensor 22 may measure the temperature of the heat medium passing through the reaction tower 1, and the measurement sensor 23 may measure the temperature of the heat medium passing through the reaction tower 3.
  • the control unit 21 may perform various controls based on at least one of the temperature of the heat medium passing through the reaction tower 1 and the temperature of the heat medium passing through the reaction tower 3.
  • the raw material gas supply unit 9 may control the supply of the raw material gas based on at least one of the temperature of the heat medium passing through the reaction tower 1 and the temperature of the heat medium passing through the reaction tower 3.
  • the measurement sensor 55 measures the temperature inside the boost reaction tower 51.
  • the measurement sensor 55 is not limited to this, and may measure the temperature of the heat medium passing through the boosting reaction tower 51.
  • the control unit 21 performs various controls based on at least one of the temperature of the heat medium passing through the reaction tower 1, the temperature of the heat medium passing through the reaction tower 3, and the temperature of the heat medium passing through the boosting reaction tower 51. Good too.
  • the raw material gas supply unit 9 supplies the raw material gas based on at least one of the temperature of the heat medium passing through the reaction tower 1, the temperature of the heat medium passing through the reaction tower 3, and the temperature of the heat medium passing through the boosting reaction tower 51. The supply may be controlled.
  • reaction towers In the first and second embodiments, two reaction towers are provided, but the number of reaction towers may be one, three, four, or any number of stages.
  • heat medium oil was used as the heat medium, but the heat medium may be molten salt, high-pressure water, etc. Any suitable substance may be used. Further, a part of the heat medium that has exchanged heat with the reaction tower 1 may be sent to the heat exchanger 6 for heat medium without passing through the reaction tower 3. Further, the generation device 100 may be used even when the reaction performed in the reaction tower is an irreversible reaction.
  • each of the processes described above may be regarded as a generation method, an operation method, etc. of the generation device 100. It may be regarded as a generation system or an operation system having at least a part of each process or function described above. Note that each of the above means and processes can be combined to the extent possible to constitute the present invention.

Abstract

Provided is a technique with which it is possible to shorten the time necessary for generating a product gas. The generation device comprises a reactor for generating a product gas by an exothermic reaction of a raw material gas in a catalyst, a raw material gas supply unit for supplying the raw material gas to the reactor, and a temperature adjustment unit for maintaining the operating temperature within the reactor within a predetermined range by adjusting the temperature of the heating medium passing through the reactor. When a procedure for starting operation of the reactor which is in a cold shutdown state in which supply of raw material gas to the reactor has been stopped by the raw material gas supply unit is carried out, the temperature adjustment unit starts raising the temperature of the reactor by heating the heating medium, and the raw material gas supply unit starts supplying raw material gas at a predetermined supply start temperature at which the temperature within the reactor during heating is lower than the operating temperature.

Description

生成装置及び生成方法Generation device and generation method
 本発明は、生成装置及び生成方法に関する。 The present invention relates to a generation device and a generation method.
 例えば、特許文献1には、気体状態の反応物の発熱反応によって、製品ガスを生成させる生成装置及び生成方法に関する技術が開示されている。 For example, Patent Document 1 discloses a technology related to a generation device and a generation method for generating a product gas by an exothermic reaction of gaseous reactants.
特許第6984098号公報Patent No. 6984098
 反応器に熱媒体を通し、ヒーター等で熱媒体を加熱することで、反応器内の温度を製品ガスの生成開始に必要な温度に昇温している。熱媒体の温度が製品ガスの生成開始に必要な温度以上である場合に、反応器に原料ガスを供給するため、熱媒体の温度が製品ガスの生成開始に必要な温度以上になるまで、製品ガスの生成は行われない。したがって、熱媒体の昇温に要する時間に比例して、製品ガスの生成に要する時間が増加する。 By passing a heat medium through the reactor and heating the heat medium with a heater, etc., the temperature inside the reactor is raised to the temperature required to start producing product gas. The raw material gas is supplied to the reactor when the temperature of the heating medium is higher than the temperature required to start producing product gas. No gas generation takes place. Therefore, the time required to generate product gas increases in proportion to the time required to raise the temperature of the heat medium.
 本発明は上記実情に鑑みてなされたものであって、その目的とするところは、製品ガスの生成に要する時間を短縮することが可能な技術を提供することにある。 The present invention has been made in view of the above circumstances, and its purpose is to provide a technology that can shorten the time required to generate product gas.
 上記の課題を解決するための本発明は、触媒における原料ガスの発熱反応によって製品ガスを生成する反応塔と、前記反応塔へ前記原料ガスを供給する原料ガス供給部と、前記反応塔に通す熱媒体の温度調整により、前記反応塔内を所定範囲の運転温度に維持する温度調整部と、を備え、前記温度調整部は、前記原料ガス供給部による前記反応塔への前記原料ガスの供給が停止された冷温停止状態にある前記反応塔の運転開始操作が行われると、前記熱媒体の加熱により前記反応塔の昇温を開始し、前記原料ガス供給部は、昇温中の前記反応塔内の温度が前記運転温度より低い所定の供給開始温度において前記原料ガスの供給を開始する、生成装置である。 In order to solve the above problems, the present invention includes a reaction tower that generates a product gas by an exothermic reaction of raw material gas in a catalyst, a raw material gas supply section that supplies the raw material gas to the reaction tower, and a raw material gas supply section that supplies the raw material gas to the reaction tower. a temperature adjustment unit that maintains the inside of the reaction tower at an operating temperature within a predetermined range by adjusting the temperature of a heat medium, and the temperature adjustment unit controls supply of the raw material gas to the reaction tower by the raw material gas supply unit. When the operation of the reaction tower which is in a cold stop state is started, the temperature of the reaction tower starts to increase by heating the heating medium, and the raw material gas supply section starts the operation of the reaction tower which is in a cold stop state. This is a generation device that starts supplying the raw material gas at a predetermined supply start temperature where the temperature inside the column is lower than the operating temperature.
 上記生成装置によれば、反応塔内の温度が運転温度よりも低い温度において、反応塔への原料ガスの供給が開始される。反応塔内の温度が運転温度よりも低い温度の段階で、反応塔内で原料ガスの発熱反応が開始されることにより、反応塔内における原料ガスの発熱反応が早期に開始される。そのため、上記生成装置によれば、製品ガスの生成に要する時間を短縮することができる。 According to the above generation device, supply of the raw material gas to the reaction tower is started when the temperature inside the reaction tower is lower than the operating temperature. By starting the exothermic reaction of the raw material gas within the reaction tower when the temperature inside the reaction tower is lower than the operating temperature, the exothermic reaction of the raw material gas within the reaction tower is started early. Therefore, according to the above generation device, the time required to generate product gas can be shortened.
 また、前記温度調整部は、前記反応塔の昇温中に前記原料ガス供給部で前記原料ガスの供給が開始されると、前記熱媒体の加熱による前記反応塔の昇温を停止してもよい。反応塔内では、原料ガスの発熱反応による反応塔の昇温が行われているため、熱媒体の加熱による反応塔の昇温が停止しても、反応塔内の温度が運転温度に達することが可能となり、反応塔内を運転温度に維持することができる。 Further, the temperature adjustment section may stop raising the temperature of the reaction tower by heating the heat medium when the raw material gas supply section starts supplying the raw material gas while the temperature of the reaction tower is rising. good. Inside the reaction tower, the temperature of the reaction tower is raised due to the exothermic reaction of the raw material gas, so even if the temperature rise of the reaction tower due to heating of the heating medium has stopped, the temperature inside the reaction tower may reach the operating temperature. This makes it possible to maintain the inside of the reaction tower at the operating temperature.
 前記温度調整部は、前記熱媒体に対して加熱、冷却、加熱の停止、及び、冷却の停止の少なくとも一つを行うことにより前記熱媒体の温度調整を行ってもよい。例えば、熱媒体を加熱する加熱器により熱媒体に対して加熱や加熱の停止が行われる。例えば、熱媒体を冷却する冷却器により熱媒体に対して冷却や冷却の停止が行われる。 The temperature adjustment unit may adjust the temperature of the heat medium by performing at least one of heating, cooling, stopping heating, and stopping cooling the heat medium. For example, a heater that heats the heat medium heats the heat medium or stops heating the heat medium. For example, a cooler that cools the heat medium cools the heat medium or stops cooling the heat medium.
 前記原料ガス供給部は、前記反応塔内の温度に基づいて、前記原料ガスの供給量を決定してもよい。反応塔内の温度と、反応塔内において原料ガスから生成される製品ガスの濃度とは相関関係がある。このような相関関係に基づいて、反応塔内への原料ガスの供給量を決定することで、反応塔によって生成される製品ガスの濃度をコントロールすることができる。 The raw material gas supply unit may determine the supply amount of the raw material gas based on the temperature within the reaction tower. There is a correlation between the temperature within the reaction tower and the concentration of product gas produced from the raw material gas within the reaction tower. By determining the amount of raw material gas supplied into the reaction tower based on such a correlation, the concentration of the product gas produced by the reaction tower can be controlled.
 上記生成装置は、前記製品ガスが生成される際に前記反応塔で生成された生成水から前記生成水に溶存する溶存ガスを分離する分離部を備えてもよい。反応塔で生成された生成水から生成水に溶存する溶存ガスを分離することで、生成水に溶存する溶存ガスの大気中への拡散を抑止することができる。 The generation device may include a separation unit that separates a dissolved gas dissolved in the generated water from the generated water generated in the reaction tower when the product gas is generated. By separating the dissolved gas dissolved in the produced water from the produced water produced in the reaction tower, it is possible to prevent the dissolved gas dissolved in the produced water from diffusing into the atmosphere.
 上記生成装置は、前記反応塔から送出される前記製品ガスが流れる製品ガス経路を備えてもよく、前記分離部は、前記溶存ガスが前記製品ガスである場合、前記製品ガス経路を流れる前記製品ガスに対して前記生成水から分離された前記製品ガスを合流させ、前記溶存ガスが未反応の前記原料ガスである場合、未反応の前記原料ガスを前記原料ガス供給部に戻してもよい。反応塔で生成された生成水から生成水に溶存する製品ガスを分離し、製品ガス経路を流れる製品ガスに対して生成水から分離された製品ガスを合流させることで、生成水に溶存する製品ガスの大気中への拡散を抑止することができる。反応塔で生成された生成水から生成水に溶存する未反応の原料ガスを分離し、未反応の原料ガスを原料ガス供給部に戻すことで、生成水に溶存する未反応の原料ガスの大気中への拡散を抑止することができる。 The generation device may include a product gas path through which the product gas sent from the reaction tower flows, and when the dissolved gas is the product gas, the separation unit may be configured to control the product gas flowing through the product gas path. The product gas separated from the produced water may be combined with the gas, and if the dissolved gas is the unreacted raw material gas, the unreacted raw material gas may be returned to the raw material gas supply section. The product gas dissolved in the product water is separated from the product water produced in the reaction tower, and the product gas separated from the product water is combined with the product gas flowing through the product gas path to separate the products dissolved in the product water. Diffusion of gas into the atmosphere can be suppressed. By separating the unreacted raw material gas dissolved in the produced water from the product water produced in the reaction tower and returning the unreacted raw material gas to the raw material gas supply section, the atmosphere of the unreacted raw material gas dissolved in the produced water is removed. It can prevent the spread inside.
 上記生成装置は、触媒における前記原料ガスの発熱反応によって前記製品ガスを生成するブースト用反応塔と、前記原料ガス供給部による前記原料ガスの供給先を前記反応塔と前記ブースト用反応塔との間で切り替える切り替え部と、を備えてもよく、前記温度調整部は、前記ブースト用反応塔および前記反応塔に通す前記熱媒体の温度調整により、前記ブースト用反応塔内および前記反応塔内を前記運転温度に維持し、前記原料ガス供給部による前記ブースト用反応塔への前記原料ガスの供給が停止された冷温停止状態にある前記ブースト用反応塔の運転開始操作が行われると、前記熱媒体の加熱により前記ブースト用反応塔および前記反応塔の昇温を開始し、前記原料ガス供給部は、昇温中の前記ブースト用反応塔内の温度が前記供給開始温度において前記ブースト用反応塔への前記原料ガスの供給を開始し、前記ブースト用反応塔から前記製品ガスおよび未反応の前記原料ガスが前記反応塔内に供給され、前記ブースト用反応塔内の容量は、前記反応塔内の容量よりも小さくてもよい。 The above generation device includes a boost reaction tower that generates the product gas by an exothermic reaction of the raw material gas in a catalyst, and a supply destination of the raw material gas by the raw material gas supply section between the reaction tower and the boost reaction tower. and a switching unit for switching between the boost reaction tower and the reaction tower, and the temperature adjustment unit adjusts the temperature of the boost reaction tower and the heating medium passed through the reaction tower, thereby controlling the inside of the boost reaction tower and the reaction tower. When the operating temperature is maintained at the boosting reaction tower and the operation of the boosting reaction tower is started, which is in a cold stop state where the supply of the raw material gas to the boosting reaction tower by the raw material gas supply unit is stopped, the heat is The heating of the boosting reaction tower and the reaction tower is started by heating the medium, and the raw material gas supply section is configured to control the boosting reaction tower when the temperature inside the boosting reaction tower during heating reaches the supply start temperature. The product gas and the unreacted raw material gas are supplied from the boosting reaction tower to the reaction tower, and the capacity of the boosting reaction tower is equal to or less than that of the reaction tower. It may be smaller than the capacity of .
 製品ガス及び未反応の原料ガスをブースト用反応塔によって加熱した状態で、反応塔内に製品ガス及び未反応の原料ガスを供給することができる。ブースト用反応塔内の容量は、反応塔内の容量よりも小さいため、ブースト用反応塔内の温度が運転温度に達するまでに要する時間が短い。したがって、熱媒体の加熱が開始された後の早い段階で、高温状態の製品ガス及び未反応の原料ガスを反応塔内に供給することができる。これにより、反応塔内の温度が運転温度に達するまでに要する時間が短縮される。 The product gas and unreacted raw material gas can be supplied into the reaction tower while the product gas and unreacted raw material gas are heated by the boosting reaction tower. Since the capacity inside the boost reaction tower is smaller than the capacity inside the reaction tower, the time required for the temperature inside the boost reaction tower to reach the operating temperature is short. Therefore, high-temperature product gas and unreacted raw material gas can be supplied into the reaction tower at an early stage after heating of the heat medium is started. This shortens the time required for the temperature inside the reaction tower to reach the operating temperature.
 また、本発明は、触媒における原料ガスの発熱反応によって製品ガスを生成する反応塔と、触媒における前記原料ガスの発熱反応によって前記製品ガスを生成するブースト用反応塔と、前記ブースト用反応塔へ前記原料ガスを供給する原料ガス供給部と、前記反応塔および前記ブースト用反応塔に通す熱媒体の温度調整により、前記反応塔内および前記ブースト用反応塔内を所定範囲の運転温度に維持する温度調整部と、を備え、前記温度調整部は、前記原料ガス供給部による前記ブースト用反応塔への前記原料ガスの供給が停止された冷温停止状態にある前記ブースト用反応塔の運転開始操作が行われると、前記熱媒体の加熱により前記反応塔および前記ブースト用反応塔の昇温を開始し、前記原料ガス供給部は、昇温中の前記ブースト用反応塔内の温度が前記運転温度より低い所定の供給開始温度において前記ブースト用反応塔への前記原料ガスの供給を開始し、前記ブースト用反応塔から前記製品ガスおよび未反応の前記原料ガスが前記反応塔内に供給され、前記ブースト用反応塔内の容量は、前記反応塔内の容量よりも小さい、生成装置であってもよい。 The present invention also provides a reaction tower that generates a product gas through an exothermic reaction of a raw material gas in a catalyst, a boost reaction tower that generates the product gas through an exothermic reaction of the raw material gas in a catalyst, and a boost reaction tower that generates a product gas through an exothermic reaction of the raw material gas in a catalyst. Maintaining the inside of the reaction tower and the inside of the boosting reaction tower at a predetermined operating temperature by adjusting the temperature of the raw material gas supply section that supplies the raw material gas, and the heat medium passed through the reaction tower and the boosting reaction tower. a temperature adjustment unit, the temperature adjustment unit performs an operation start operation of the boost reaction tower which is in a cold shutdown state where the supply of the raw material gas to the boost reaction tower by the raw material gas supply unit is stopped. When this is performed, heating of the reaction tower and the boosting reaction tower is started by heating the heating medium, and the raw material gas supply section is configured to ensure that the temperature inside the boosting reaction tower during the temperature rise reaches the operating temperature. The supply of the raw material gas to the boost reaction tower is started at a lower predetermined supply start temperature, the product gas and the unreacted raw material gas are supplied from the boost reaction tower into the reaction tower, and the The capacity of the boosting reaction column may be a generator that is smaller than the capacity of the reaction column.
 上記生成装置によれば、ブースト用反応塔内の温度が運転温度よりも低い温度において、ブースト用反応塔への原料ガスの供給が開始される。ブースト用反応塔内の温度が運転温度よりも低い温度の段階で、ブースト反応塔内で原料ガスの発熱反応が開始されることにより、ブースト用反応塔内における原料ガスの発熱反応が早期に開始される。製品ガス及び未反応の原料ガスをブースト用反応塔によって加熱した状態で、反応塔内に製品ガス及び未反応の原料ガスが供給される。ブースト用反応塔内の容量は、反応塔内の容量よりも小さいため、ブースト用反応塔内の温度が運転温度に達するまでに要する時間が短い。したがって、熱媒体の加熱が開始された後の早い段階で、高温状態の製品ガス及び未反応の原料ガスを反応塔内に供給することができる。これにより、反応塔内の温度が運転温度に達するまでに要する時間が短縮され、製品ガスの生成に要する時間を短縮することができる。 According to the above generation device, supply of the raw material gas to the boosting reaction tower is started when the temperature inside the boosting reaction tower is lower than the operating temperature. By starting the exothermic reaction of the raw material gas in the boost reaction tower when the temperature inside the boost reaction tower is lower than the operating temperature, the exothermic reaction of the raw material gas in the boost reaction tower starts early. be done. The product gas and unreacted raw material gas are supplied into the reaction tower in a state where the product gas and unreacted raw material gas are heated by the boosting reaction tower. Since the capacity inside the boost reaction tower is smaller than the capacity inside the reaction tower, the time required for the temperature inside the boost reaction tower to reach the operating temperature is short. Therefore, high-temperature product gas and unreacted raw material gas can be supplied into the reaction tower at an early stage after heating of the heat medium is started. As a result, the time required for the temperature inside the reaction tower to reach the operating temperature can be shortened, and the time required to generate product gas can be shortened.
 また、本発明は、方法の側面から捉えることもできる。すなわち、本発明は、触媒における原料ガスの発熱反応によって製品ガスを生成する反応塔と、前記反応塔へ前記原料ガスを供給する原料ガス供給部と、前記反応塔に通す熱媒体の温度調整により、前記反応塔内を所定範囲の運転温度に維持する温度調整部と、を備える生成装置の生成方法であって、前記原料ガス供給部による前記反応塔への前記原料ガスの供給が停止された冷温停止状態にある前記反応塔の運転開始操作が行われると、前記熱媒体の加熱により前記反応塔の昇温を開始する工程と、昇温中の前記反応塔内の温度が前記運転温度より低い所定の供給開始温度において前記原料ガスの供給を開始する工程と、を含む、生成装置の生成方法であってもよい。 Furthermore, the present invention can also be viewed from the aspect of a method. That is, the present invention provides a reaction tower that generates a product gas by an exothermic reaction of a raw material gas in a catalyst, a raw material gas supply section that supplies the raw material gas to the reaction tower, and a temperature adjustment of a heat medium passed through the reaction tower. , a temperature adjustment unit that maintains the inside of the reaction tower at an operating temperature within a predetermined range; When the operation of the reaction tower in a cold shutdown state is started, a step of starting to raise the temperature of the reaction tower by heating the heat medium, and a step of raising the temperature inside the reaction tower during the temperature rise from the operating temperature. The production method of the production device may include a step of starting supply of the raw material gas at a low predetermined supply start temperature.
 上記生成装置の生成方法によれば、反応塔内の温度が運転温度よりも低い温度において、反応塔への原料ガスの供給が開始される。反応塔内の温度が運転温度よりも低い温度の段階で、反応塔内で原料ガスの発熱反応が開始されることにより、反応塔内における原料ガスの発熱反応が早期に開始される。そのため、上記生成装置の生成方法によれば、製品ガスの生成に要する時間を短縮することができる。 According to the production method of the above-mentioned production device, supply of the raw material gas to the reaction tower is started when the temperature inside the reaction tower is lower than the operating temperature. By starting the exothermic reaction of the raw material gas within the reaction tower when the temperature inside the reaction tower is lower than the operating temperature, the exothermic reaction of the raw material gas within the reaction tower is started early. Therefore, according to the generation method of the above generation device, the time required to generate the product gas can be shortened.
 また、本発明は、触媒における原料ガスの発熱反応によって製品ガスを生成する反応塔と、触媒における前記原料ガスの発熱反応によって前記製品ガスを生成するブースト用反応塔と、前記ブースト用反応塔へ前記原料ガスを供給する原料ガス供給部と、前記反応塔および前記ブースト用反応塔に通す熱媒体の温度調整により、前記反応塔内および前記ブースト用反応塔内を所定範囲の運転温度に維持する温度調整部と、を備える生成装置の生成方法であって、前記原料ガス供給部による前記ブースト用反応塔への前記原料ガスの供給が停止された冷温停止状態にある前記ブースト用反応塔の運転開始操作が行われると、前記熱媒体の加熱により前記反応塔および前記ブースト用反応塔の昇温を開始する工程と、昇温中の前記ブースト用反応塔内の温度が前記運転温度より低い所定の供給開始温度において前記ブースト用反応塔への前記原料ガスの供給を開始する工程と、を含み、前記ブースト用反応塔から前記製品ガスおよび未反応の前記原料ガスが前記反応塔内に供給され、前記ブースト用反応塔内の容量は、前記反応塔内の容量よりも小さい、生成装置の生成方法であってもよい。 The present invention also provides a reaction tower that generates a product gas through an exothermic reaction of a raw material gas in a catalyst, a boost reaction tower that generates the product gas through an exothermic reaction of the raw material gas in a catalyst, and a boost reaction tower that generates a product gas through an exothermic reaction of the raw material gas in a catalyst. Maintaining the inside of the reaction tower and the inside of the boosting reaction tower at a predetermined operating temperature by adjusting the temperature of the raw material gas supply section that supplies the raw material gas, and the heat medium passed through the reaction tower and the boosting reaction tower. A method for producing a generation device comprising: a temperature adjustment section; the step of operating the boosting reaction tower in a cold shutdown state in which supply of the raw material gas to the boosting reaction tower by the raw material gas supply section is stopped; When the starting operation is performed, a step of starting to raise the temperature of the reaction tower and the boosting reaction tower by heating the heating medium, and a step of starting to raise the temperature of the reaction tower and the boosting reaction tower while the temperature is being raised is a predetermined temperature lower than the operating temperature. starting the supply of the raw material gas to the boost reaction tower at a supply start temperature of , the product gas and the unreacted raw material gas are supplied from the boost reaction tower into the reaction tower , the capacity of the boosting reaction column may be smaller than the capacity of the reaction column.
 上記生成装置の生成方法によれば、ブースト用反応塔内の温度が運転温度よりも低い温度において、ブースト用反応塔への原料ガスの供給が開始される。ブースト用反応塔内の温度が運転温度よりも低い温度の段階で、ブースト反応塔内で原料ガスの発熱反応が開始されることにより、ブースト用反応塔内における原料ガスの発熱反応が早期に開始される。製品ガス及び未反応の原料ガスをブースト用反応塔によって加熱した状態で、反応塔内に製品ガス及び未反応の原料ガスが供給される。ブースト用反応塔内の容量は、反応塔内の容量よりも小さいため、ブースト用反応塔内の温度が運転温度に達するまでに要する時間が短い。したがって、熱媒体の加熱が開始された後の早い段階で、高温状態の製品ガス及び未反応の原料ガスを反応塔内に供給することができる。これにより、反応塔内の温度が運転温度に達するまでに要する時間が短縮され、製品ガスの生成に要する時間を短縮することができる。 According to the production method of the above-mentioned production device, the supply of raw material gas to the boost reaction tower is started when the temperature inside the boost reaction tower is lower than the operating temperature. By starting the exothermic reaction of the raw material gas in the boost reaction tower when the temperature inside the boost reaction tower is lower than the operating temperature, the exothermic reaction of the raw material gas in the boost reaction tower starts early. be done. The product gas and unreacted raw material gas are supplied into the reaction tower in a state where the product gas and unreacted raw material gas are heated by the boosting reaction tower. Since the capacity inside the boost reaction tower is smaller than the capacity inside the reaction tower, the time required for the temperature inside the boost reaction tower to reach the operating temperature is short. Therefore, high-temperature product gas and unreacted raw material gas can be supplied into the reaction tower at an early stage after heating of the heat medium is started. As a result, the time required for the temperature inside the reaction tower to reach the operating temperature can be shortened, and the time required to generate product gas can be shortened.
 製品ガスの生成に要する時間を短縮することが可能な技術を提供することができる。 It is possible to provide a technology that can shorten the time required to generate product gas.
図1は、第1実施形態に係る生成装置の構成図である。FIG. 1 is a configuration diagram of a generation device according to a first embodiment. 図2は、第1実施形態に係る生成装置の運転手順の流れを示すフロー図である。FIG. 2 is a flowchart showing the flow of the operating procedure of the generation device according to the first embodiment. 図3は、第1実施形態における反応塔を通る熱媒体の温度変化と、比較例における反応塔を通る熱媒体の温度変化との関係を示す図である。FIG. 3 is a diagram showing the relationship between the temperature change of the heat medium passing through the reaction tower in the first embodiment and the temperature change of the heat medium passing through the reaction tower in the comparative example. 図4は、第1実施形態に係る運転負荷量と、比較例に係る運転負荷量との関係を示す図である。FIG. 4 is a diagram showing the relationship between the operating load amount according to the first embodiment and the operating load amount according to the comparative example. 図5は、分離部の構成図である。FIG. 5 is a configuration diagram of the separating section. 図6は、第2実施形態に係る生成装置の構成図である。FIG. 6 is a configuration diagram of a generation device according to the second embodiment. 図7は、第2実施形態に係る生成装置の運転手順の流れを示すフロー図である。FIG. 7 is a flowchart showing the flow of the operating procedure of the generator according to the second embodiment.
 以下、本発明の実施形態について説明する。以下に示す実施形態は、本発明の実施形態の一例であり、本発明の技術的範囲を以下の態様に限定するものではない。 Hereinafter, embodiments of the present invention will be described. The embodiment shown below is an example of the embodiment of the present invention, and the technical scope of the present invention is not limited to the following aspects.
 〈第1実施形態〉
 図1は、本発明の第1実施形態に係る生成装置の構成図である。図1に示す生成装置100は、例えば、原料ガス(反応ガス)である気体状態の水素と二酸化炭素の発熱反応によって、製品ガスであるメタンガスと、水とを生成させる。また、上記の化学反応は可逆反応でもある。上記の発熱反応を化学反応式で表すと下記の通りである。
 4H+CO⇔CH+2HO              (1)
<First embodiment>
FIG. 1 is a configuration diagram of a generation device according to a first embodiment of the present invention. The generation device 100 shown in FIG. 1 generates methane gas, which is a product gas, and water, for example, by an exothermic reaction between gaseous hydrogen, which is a raw material gas (reactant gas), and carbon dioxide. Moreover, the above chemical reaction is also a reversible reaction. The above exothermic reaction is expressed as a chemical reaction formula as follows.
4H 2 +CO 2 ⇔CH 4 +2H 2 O (1)
 生成装置100は、一段目の反応塔1と、一段目のガス冷却用熱交換器2と、二段目の反応塔3と、二段目のガス冷却用熱交換器4と、熱媒体ヒーター5と、熱媒体用熱交換器6と、気液分離器7、8と、原料ガス供給部9とを備える。 The generation device 100 includes a first-stage reaction tower 1, a first-stage gas cooling heat exchanger 2, a second-stage reaction tower 3, a second-stage gas cooling heat exchanger 4, and a heat medium heater. 5, a heat exchanger 6 for heat medium, gas-liquid separators 7 and 8, and a raw material gas supply section 9.
 反応塔1は、触媒における原料ガスの発熱反応によって製品ガスを生成する。原料ガスは、例えば、水素(H)及び二酸化炭素(CO)を含む。製品ガスは、例えば、メタンガスである。反応塔1と原料ガス供給部9とが配管によって接続され、原料ガスが原料ガス供給部9から反応塔1内に供給される。また、反応塔1は、触媒における原料ガスの発熱反応によって生成水を生成する。反応塔1とガス冷却用熱交換器2とが配管によって接続されている。反応塔1とガス冷却用熱交換器2とを接続する配管にはバルブなどが設けられている。 The reaction tower 1 generates product gas through an exothermic reaction of raw material gas in a catalyst. The raw material gas includes, for example, hydrogen (H 2 ) and carbon dioxide (CO 2 ). The product gas is, for example, methane gas. The reaction tower 1 and the raw material gas supply part 9 are connected by piping, and the raw material gas is supplied into the reaction tower 1 from the raw material gas supply part 9. Further, the reaction tower 1 generates water through an exothermic reaction of the raw material gas in the catalyst. A reaction tower 1 and a gas cooling heat exchanger 2 are connected by piping. The piping connecting the reaction tower 1 and the gas cooling heat exchanger 2 is provided with valves and the like.
 ガス冷却用熱交換器2は、反応塔1において生成された生成水(水蒸気)を凝縮する。ガス冷却用熱交換器2と気液分離器7とが配管によって接続されている。ガス冷却用熱交換器2と気液分離器7とを接続する配管にはバルブなどが設けられている。気液分離器7は、製品ガス及び未反応の原料ガスから生成水(液体)を分離する。生成装置100は分離部10を備え、気液分離器7から分離部10に生成水が送られる。分離部10の詳細については後述する。 The gas cooling heat exchanger 2 condenses the water (steam) produced in the reaction tower 1. The gas cooling heat exchanger 2 and the gas-liquid separator 7 are connected by piping. The piping connecting the gas cooling heat exchanger 2 and the gas-liquid separator 7 is provided with valves and the like. The gas-liquid separator 7 separates produced water (liquid) from the product gas and unreacted source gas. The generation device 100 includes a separation section 10 to which generated water is sent from the gas-liquid separator 7. Details of the separation unit 10 will be described later.
 反応塔3と気液分離器7とが配管によって接続されている。反応塔3と気液分離器7とを接続する配管にはバルブなどが設けられている。反応塔1で生成された製品ガス及び未反応の原料ガスは、ガス冷却用熱交換器2及び気液分離器7を経由して反応塔3へ送られる。反応塔3は、触媒における原料ガスの発熱反応によって製品ガスを生成する。反応塔3において未反応の原料ガスから製品ガスが生成されることで、生成装置100は、高濃度の製品ガスを生成することが可能となる。 The reaction tower 3 and the gas-liquid separator 7 are connected by piping. The piping connecting the reaction tower 3 and the gas-liquid separator 7 is provided with a valve and the like. The product gas and unreacted raw material gas generated in the reaction tower 1 are sent to the reaction tower 3 via the gas cooling heat exchanger 2 and the gas-liquid separator 7. The reaction tower 3 generates product gas by an exothermic reaction of the raw material gas in the catalyst. By generating a product gas from unreacted raw material gas in the reaction tower 3, the generation device 100 can generate a highly concentrated product gas.
 反応塔3とガス冷却用熱交換器4とが配管によって接続されている。反応塔3とガス冷却用熱交換器4とを接続する配管にはバルブなどが設けられている。ガス冷却用熱交換器4は、反応塔3において生成された生成水(水蒸気)を凝縮する。ガス冷却用熱交換器4と気液分離器8とが配管によって接続されている。ガス冷却用熱交換器4と気液分離器8とを接続する配管にはバルブなどが設けられている。気液分離器8は、製品ガス及び未反応の原料ガスから生成水(液体)を分離する。 The reaction tower 3 and the gas cooling heat exchanger 4 are connected by piping. The piping connecting the reaction tower 3 and the gas cooling heat exchanger 4 is provided with valves and the like. The gas cooling heat exchanger 4 condenses the water (steam) produced in the reaction tower 3. A gas cooling heat exchanger 4 and a gas-liquid separator 8 are connected by piping. The piping connecting the gas cooling heat exchanger 4 and the gas-liquid separator 8 is provided with valves and the like. The gas-liquid separator 8 separates produced water (liquid) from the product gas and unreacted raw material gas.
 生成装置100は貯留タンク11を備える。気液分離器8から分離部10に生成水が送られ、気液分離器8から貯留タンク11に製品ガスが送られる。貯留タンク11は、製品ガスを貯留する。気液分離器7及び8には、生成水を排出するための水抜き弁が設けられている。水抜き弁は、ドレントラップのような浮き具の浮力を用いて弁を開閉させるものでもよいし、あるいは電気的に水位を探知して電磁弁を開閉するものでもよい。 The generation device 100 includes a storage tank 11. Produced water is sent from the gas-liquid separator 8 to a separation unit 10, and product gas is sent from the gas-liquid separator 8 to a storage tank 11. The storage tank 11 stores product gas. The gas-liquid separators 7 and 8 are provided with drain valves for discharging generated water. The drain valve may be one that opens and closes the valve using the buoyancy of a floating device such as a drain trap, or one that opens and closes a solenoid valve by electrically detecting the water level.
 反応塔1及び3には、予め触媒が充填されている。触媒は、反応式(1)を促進する触媒ではあれば何でもよく、例えば、安定化元素が固溶し、正方晶系、及び、又は、立方晶系の結晶構造を有する安定化ジルコニア担体と、安定化ジルコニア担体に担持されるNiと、を備え、安定化元素は、Mn、FeおよびCoからなる群から選択される少なくとも1種の遷移元素からなる触媒が挙げられる。 Reaction towers 1 and 3 are filled with catalyst in advance. The catalyst may be any catalyst as long as it promotes reaction formula (1); for example, a stabilized zirconia support in which a stabilizing element is dissolved in solid solution and has a tetragonal and/or cubic crystal structure; Ni supported on a stabilized zirconia support, and the stabilizing element is at least one transition element selected from the group consisting of Mn, Fe, and Co.
 また、反応塔1及び3はジャケット構造になっており、ジャケット部分(シェル)には発熱反応が生じる反応塔内の発熱部分と熱交換する熱媒体が流出入可能となっている。熱媒体には、例えば熱媒油を用いる。熱媒体ヒーター5と反応塔1のジャケット部分とが、熱媒体が流れる配管によって接続されている。また、反応塔1のジャケット部分と反応塔3のジャケット部分とが、熱媒体が流れる配管によって接続されている。熱媒体が流れる配管には、バルブなどが設けられている。熱媒体ヒーター5は、熱媒体を加熱する加熱器である。熱媒体ヒーター5によって加熱された熱媒体は、反応塔1を通った後、反応塔3を通る。 Furthermore, the reaction towers 1 and 3 have a jacket structure, and a heat medium that exchanges heat with the exothermic part in the reaction tower where an exothermic reaction occurs can flow in and out of the jacket part (shell). For example, heat medium oil is used as the heat medium. The heat medium heater 5 and the jacket portion of the reaction tower 1 are connected by a pipe through which the heat medium flows. Further, the jacket portion of the reaction tower 1 and the jacket portion of the reaction tower 3 are connected by a pipe through which a heat medium flows. The piping through which the heat medium flows is provided with valves and the like. The heat medium heater 5 is a heater that heats a heat medium. The heat medium heated by the heat medium heater 5 passes through the reaction tower 1 and then the reaction tower 3.
 反応塔3のジャケット部分と熱媒体用熱交換器6とが、熱媒体が流れる配管によって接続されている。熱媒体用熱交換器6は、反応塔1及び3を通った熱媒体を冷却する。熱媒体ヒーター5と熱媒体用熱交換器6とが、熱媒体が流れる配管によって接続されている。熱媒体ヒーター5と熱媒体用熱交換器6とを接続する配管には、熱媒体用熱交換器6によって冷却された熱媒体を熱媒体ヒーター5へ送る熱媒体循環ポンプ12が設けられている。また、熱媒体が流れる配管には調整弁13及び14が設けられている。調整弁13及び14を開閉することにより、反応塔1及び3を通った熱媒体を、熱媒体用熱交換器6を経由して熱媒体ヒーター5に送ったり、熱媒体用熱交換器6を経由せずに熱媒体ヒーター5に送ったりすることができる。 The jacket portion of the reaction tower 3 and the heat exchanger 6 for heat medium are connected by a pipe through which the heat medium flows. The heat exchanger 6 for heat medium cools the heat medium that has passed through the reaction towers 1 and 3. The heat medium heater 5 and the heat exchanger 6 for heat medium are connected by piping through which the heat medium flows. A heat medium circulation pump 12 that sends the heat medium cooled by the heat medium heat exchanger 6 to the heat medium heater 5 is provided in the piping connecting the heat medium heater 5 and the heat exchanger 6 for heat medium. . Further, regulating valves 13 and 14 are provided in the piping through which the heat medium flows. By opening and closing the regulating valves 13 and 14, the heat medium that has passed through the reaction towers 1 and 3 can be sent to the heat medium heater 5 via the heat exchanger 6 for heat medium, or the heat exchanger 6 for heat medium can be sent to the heat medium heater 5. It is also possible to send the heat medium to the heat medium heater 5 without passing through the heat medium heater 5.
 生成装置100は、チラー15を備える。チラー15は、ガス冷却用熱交換器2及び4において生成水を凝縮させるための冷却水(冷媒)を冷却する。ガス冷却用熱交換器2、4及びチラー15は、冷却水が流れる配管によって相互に接続されている。チラー15によって冷却された冷却水は、ガス冷却用熱交換器2及び4を経由してチラー15に戻る。 The generation device 100 includes a chiller 15. The chiller 15 cools cooling water (refrigerant) for condensing water produced in the gas cooling heat exchangers 2 and 4. The gas cooling heat exchangers 2 and 4 and the chiller 15 are interconnected by piping through which cooling water flows. The cooling water cooled by the chiller 15 returns to the chiller 15 via the gas cooling heat exchangers 2 and 4.
 生成装置100は、冷却塔16及び冷却水循環ポンプ17を備える。冷却塔16は、熱媒体用熱交換器6において熱媒体と熱交換する冷却水を冷却する。例えば、系外から冷却塔16に供給される水道水を冷却水として用いてもよい。冷却水循環ポンプ17は、冷却塔16内に供給された冷却水を、熱媒体用熱交換器6と冷却塔16との間で循環させる。 The generation device 100 includes a cooling tower 16 and a cooling water circulation pump 17. The cooling tower 16 cools the cooling water that exchanges heat with the heat medium in the heat exchanger 6 for heat medium. For example, tap water supplied to the cooling tower 16 from outside the system may be used as the cooling water. The cooling water circulation pump 17 circulates the cooling water supplied into the cooling tower 16 between the heat medium heat exchanger 6 and the cooling tower 16 .
 生成装置100は、制御部21と、反応塔1内の温度を測定する測定センサ22と、反応塔3内の温度を測定する測定センサ23とを備える。測定センサ22によって測定された測定データ及び測定センサ23によって測定された測定データは、制御部21に送られる。これにより、制御部21は、反応塔1内の温度及び反応塔3内の温度を取得する。制御部21は、測定センサ22によって測定された測定データ及び測定センサ23によって測定された測定データを原料ガス供給部9に送る。これにより、原料ガス供給部9は、反応塔1内の温度及び反応塔3内の温度を取得する。 The generation device 100 includes a control unit 21, a measurement sensor 22 that measures the temperature inside the reaction tower 1, and a measurement sensor 23 that measures the temperature inside the reaction tower 3. The measurement data measured by the measurement sensor 22 and the measurement data measured by the measurement sensor 23 are sent to the control unit 21 . Thereby, the control unit 21 acquires the temperature inside the reaction tower 1 and the temperature inside the reaction tower 3. The control unit 21 sends the measurement data measured by the measurement sensor 22 and the measurement data measured by the measurement sensor 23 to the raw material gas supply unit 9. Thereby, the raw material gas supply unit 9 acquires the temperature inside the reaction tower 1 and the temperature inside the reaction tower 3.
 制御部21は、生成装置100の動作全体を制御するコントローラである。制御部21は、専用の機器により構成してもよいし、汎用のコンピュータにより構成してもよい。制御部21は、プロセッサ(CPU)、メモリ、ストレージ、通信I/Fなどのハードウェア資源を備えている。メモリは、RAMであってもよい。ストレージは、不揮発性の記憶装置(例えばROM、フラッシュメモリなど)であってもよい。制御部21の機能は、ストレージに格納されたプログラムをメモリに展開しプロセッサによって実行することにより実現される。なお、制御部21の構成はこれらに限られない。例えば、機能の全部又は一部をASICやFPGAなどの回路で構成してもよいし、あるいは、機能の全部又は一部をクラウドサーバや他の装置で実行してもよい。 The control unit 21 is a controller that controls the entire operation of the generation device 100. The control unit 21 may be configured by a dedicated device or may be configured by a general-purpose computer. The control unit 21 includes hardware resources such as a processor (CPU), memory, storage, and communication I/F. The memory may be RAM. The storage may be a nonvolatile storage device (eg, ROM, flash memory, etc.). The functions of the control unit 21 are realized by loading a program stored in a storage into a memory and executing it by a processor. Note that the configuration of the control unit 21 is not limited to these. For example, all or part of the function may be configured with a circuit such as an ASIC or FPGA, or all or part of the function may be executed by a cloud server or other device.
 制御部21は、熱媒体ヒーター5を制御する。熱媒体ヒーター5の動作が制御されることで、熱媒体ヒーター5は、熱媒体に対する加熱を行い、又は、熱媒体に対する加熱を停止する。このように、熱媒体ヒーター5を用いて熱媒体に対する加熱や加熱の停止が行われる。また、制御部21は、調整弁13及び14を制御する。調整弁13及び14の開閉が制御され、熱媒体が熱媒体用熱交換器6を経由して熱媒体ヒーター5に送られることで、熱媒体に対する冷却が行われる。調整弁13及び14の開閉が制御され、熱媒体が熱媒体用熱交換器6を経由せずに熱媒体ヒーター5に送られることで、熱媒体に対する冷却の停止が行われる。このように、冷却器としての熱媒体用熱交換器6を用いて熱媒体に対する冷却や冷却の停止が行われる。熱媒体に対する加熱、冷却、加熱の停止、及び、冷却の停止の少なくとも一つが行われることで、熱媒体の温度調整が行われる。制御部21は、温度調整部の一例である。 The control unit 21 controls the heat medium heater 5. By controlling the operation of the heat medium heater 5, the heat medium heater 5 heats the heat medium or stops heating the heat medium. In this way, the heat medium heater 5 is used to heat the heat medium and to stop heating the heat medium. Further, the control unit 21 controls the regulating valves 13 and 14. The opening and closing of the regulating valves 13 and 14 are controlled, and the heat medium is sent to the heat medium heater 5 via the heat exchanger 6 for heat medium, thereby cooling the heat medium. The opening and closing of the regulating valves 13 and 14 are controlled, and the heat medium is sent to the heat medium heater 5 without passing through the heat exchanger 6 for heat medium, thereby stopping cooling of the heat medium. In this way, the heat medium heat exchanger 6 as a cooler is used to cool the heat medium or stop the cooling. The temperature of the heat medium is adjusted by performing at least one of heating, cooling, stopping heating, and stopping cooling of the heat medium. The control unit 21 is an example of a temperature adjustment unit.
 制御部21は、熱媒体の温度調整により、反応塔1内を所定範囲の運転温度に維持する。制御部21は、反応塔1内の温度を、例えば、200℃以上220℃以下に維持するように、熱媒体の温度を調整してもよい。運転温度は、200℃以上220℃以下に限られない。運転温度は、原料ガスの発熱反応が良好に進行する温度である定格温度であってもよい。定格温度は、高濃度の製品ガスが生成される温度であってもよい。また、運転温度及び定格温度は、反応塔1内の触媒反応が開始する温度よりも高い温度であり、例えば、反応塔1内の触媒反応が効率よく進行する温度である。 The control unit 21 maintains the operating temperature within the reaction tower 1 within a predetermined range by adjusting the temperature of the heat medium. The control unit 21 may adjust the temperature of the heat medium so as to maintain the temperature inside the reaction tower 1 at, for example, 200° C. or more and 220° C. or less. The operating temperature is not limited to 200°C or higher and 220°C or lower. The operating temperature may be a rated temperature that is a temperature at which the exothermic reaction of the raw material gas proceeds satisfactorily. The rated temperature may be a temperature at which a high concentration of product gas is produced. Further, the operating temperature and the rated temperature are temperatures higher than the temperature at which the catalytic reaction within the reaction tower 1 starts, for example, temperatures at which the catalytic reaction within the reaction tower 1 proceeds efficiently.
 制御部21は、熱媒体の温度調整により、反応塔3内を所定範囲の運転温度に維持する。制御部21は、反応塔3内の温度を、例えば、200℃以上220℃以下に維持するように、熱媒体の温度を調整してもよい。運転温度は、200℃以上220℃以下に限られない。運転温度は、原料ガスの発熱反応が良好に進行する温度である定格温度であってもよい。定格温度は、高濃度の製品ガスが生成される温度であってもよい。また、運転温度及び定格温度は、反応塔3内の触媒反応が開始する温度よりも高い温度であり、例えば、反応塔3内の触媒反応が効率よく進行する温度である。 The control unit 21 maintains the operating temperature within the reaction tower 3 within a predetermined range by adjusting the temperature of the heat medium. The control unit 21 may adjust the temperature of the heat medium so as to maintain the temperature inside the reaction tower 3 at, for example, 200°C or more and 220°C or less. The operating temperature is not limited to 200°C or higher and 220°C or lower. The operating temperature may be a rated temperature that is a temperature at which the exothermic reaction of the raw material gas proceeds satisfactorily. The rated temperature may be a temperature at which a high concentration of product gas is produced. Further, the operating temperature and the rated temperature are temperatures higher than the temperature at which the catalytic reaction within the reaction tower 3 starts, for example, temperatures at which the catalytic reaction within the reaction tower 3 proceeds efficiently.
 <運転手順>
 第1実施形態に係る生成装置100の運転手順を説明する。図2は、第1実施形態に係る生成装置100の運転手順の流れを示すフロー図である。まず、熱媒体循環ポンプ12を起動する(S101)。熱媒体が反応塔1のジャケット部分に送られ、反応塔1を通る。反応塔1を通った熱媒体は、反応塔3のジャケット部分へ送られ、反応塔3を通る。このようにして、反応塔1の運転開始操作が行われると共に、反応塔3の運転開始操作が行われる。
<Operating procedure>
The operating procedure of the generation device 100 according to the first embodiment will be explained. FIG. 2 is a flow diagram showing the flow of the operating procedure of the generation device 100 according to the first embodiment. First, the heat medium circulation pump 12 is started (S101). A heat transfer medium is sent to the jacket part of the reaction column 1 and passes through the reaction column 1. The heat medium that has passed through the reaction tower 1 is sent to the jacket part of the reaction tower 3 and passes through the reaction tower 3. In this way, the operation of the reaction tower 1 is started, and the operation of the reaction tower 3 is started.
 原料ガス供給部9による反応塔1への原料ガスの供給が停止された状態(冷温停止状態)にある反応塔1の運転開始操作が行われた場合、制御部21は、熱媒体の加熱により反応塔1の昇温を開始する(S102)。具体的には、制御部21が、熱媒体ヒーター5の電源を入れ、熱媒体ヒーター5を制御することで、熱媒体を加熱する。加熱された熱媒体は、反応塔1のジャケット部分に送られ、反応塔1を通る。加熱された熱媒体が反応塔1を通ることで、反応塔1が昇温する。これにより、反応塔1内の温度が上昇する。そして、反応塔1を通った熱媒体は、反応塔3のジャケット部分へ送られ、反応塔3を通る。加熱された熱媒体が反応塔3を通ることで、反応塔3が昇温する。これにより、反応塔3内の温度が上昇する。 When the operation of the reaction tower 1 is started in a state where the supply of raw material gas to the reaction tower 1 by the raw material gas supply unit 9 is stopped (cold stop state), the control unit 21 controls the operation of the reaction tower 1 by heating the heat medium. The temperature increase of the reaction tower 1 is started (S102). Specifically, the control unit 21 turns on the power to the heat medium heater 5 and controls the heat medium heater 5 to heat the heat medium. The heated heat medium is sent to the jacket part of the reaction tower 1 and passes through the reaction tower 1. The temperature of the reaction tower 1 increases as the heated heat medium passes through the reaction tower 1. As a result, the temperature inside the reaction tower 1 increases. The heat medium that has passed through the reaction tower 1 is then sent to the jacket portion of the reaction tower 3 and passes through the reaction tower 3. The temperature of the reaction tower 3 increases as the heated heat medium passes through the reaction tower 3. As a result, the temperature inside the reaction tower 3 increases.
 原料ガス供給部9は、昇温中の反応塔1内の温度が運転温度よりも低い所定の供給開始温度において、反応塔1への原料ガスの供給を開始する(S103)。所定の供給開始温度は、例えば、180℃である。所定の供給開始温度は、180℃に限らず、他の温度であってもよい。反応塔1内に原料ガスが供給されることにより、製品ガスが生成される。原料ガスの発熱反応により、反応塔1が昇温する。加熱された熱媒体が反応塔1を通る際の反応塔1の昇温と、反応塔1内における原料ガスの発熱反応による反応塔1の昇温とにより、反応塔1内の温度が上昇し、運転温度に到達する。 The raw material gas supply section 9 starts supplying the raw material gas to the reaction tower 1 at a predetermined supply start temperature at which the temperature inside the reaction tower 1, which is being heated up, is lower than the operating temperature (S103). The predetermined supply start temperature is, for example, 180°C. The predetermined supply start temperature is not limited to 180°C, and may be other temperatures. A product gas is generated by supplying the raw material gas into the reaction tower 1 . The temperature of the reaction tower 1 rises due to the exothermic reaction of the raw material gas. The temperature inside the reaction tower 1 increases due to the temperature rise of the reaction tower 1 when the heated heat transfer medium passes through the reaction tower 1 and the temperature rise of the reaction tower 1 due to the exothermic reaction of the raw material gas within the reaction tower 1. , reach operating temperature.
 比較例について説明する。比較例に係る方法では、ヒーターによって熱媒体を加熱し、熱媒体の温度が運転温度に達したタイミングで、反応塔に原料ガスを供給する。すなわち、比較例に係る方法では、熱媒体の温度が運転温度に達した後、反応塔に原料ガスが供給されるため、熱媒体の温度が運転温度に達するまで、ヒーターによる熱媒体の加熱が行われる。したがって、比較例に係る方法では、反応塔内の温度が運転温度に達するまでに時間を要する。また、比較例に係る方法では、熱媒体の温度が運転温度に達するまで、ヒーターによる熱媒体の加熱が行われるため、ヒーターの消費電力が大きい。第1実施形態によれば、加熱された熱媒体が反応塔1を通る際の反応塔1の昇温と、反応塔1内における原料ガスの発熱反応による反応塔1の昇温とにより、反応塔1内の温度が上昇する。そのため、第1実施形態では、熱媒体ヒーター5による熱媒体の加熱が開始された後、反応塔1内の温度が運転温度に達するまでに要する時間が短縮される。この結果、熱媒体ヒーター5の消費電力を抑制することができる。 A comparative example will be explained. In the method according to the comparative example, the heat medium is heated by a heater, and the raw material gas is supplied to the reaction tower at the timing when the temperature of the heat medium reaches the operating temperature. That is, in the method according to the comparative example, the raw material gas is supplied to the reaction tower after the temperature of the heat medium reaches the operating temperature, so the heat medium is not heated by the heater until the temperature of the heat medium reaches the operating temperature. It will be done. Therefore, in the method according to the comparative example, it takes time for the temperature inside the reaction tower to reach the operating temperature. Furthermore, in the method according to the comparative example, the heating medium is heated by the heater until the temperature of the heating medium reaches the operating temperature, so the power consumption of the heater is large. According to the first embodiment, the reaction occurs due to the temperature rise of the reaction tower 1 when the heated heat medium passes through the reaction tower 1 and the temperature rise of the reaction tower 1 due to the exothermic reaction of the raw material gas in the reaction tower 1. The temperature inside column 1 rises. Therefore, in the first embodiment, the time required for the temperature inside the reaction tower 1 to reach the operating temperature after the heat medium heater 5 starts heating the heat medium is shortened. As a result, power consumption of the heat medium heater 5 can be suppressed.
 また、第1実施形態では、反応塔1内の温度が運転温度よりも低い温度において、反応塔1への原料ガスの供給が開始される。反応塔1内の温度が運転温度よりも低い温度の段階で、反応塔1内で原料ガスの発熱反応が開始されることにより、第1実施形態では、比較例に比べて、反応塔1内における原料ガスの発熱反応が早期に開始される。そのため、生成装置100は、製品ガスの生成に要する時間を短縮することができ、また、高濃度の製品ガスを短時間で生成することができる。この結果、第1実施形態では、比較例に比べて、高濃度の製品ガスの生成に要する時間を短縮することができる。 Furthermore, in the first embodiment, the supply of raw material gas to the reaction tower 1 is started when the temperature inside the reaction tower 1 is lower than the operating temperature. By starting the exothermic reaction of the raw material gas in the reaction tower 1 when the temperature inside the reaction tower 1 is lower than the operating temperature, in the first embodiment, the temperature inside the reaction tower 1 is lower than that in the comparative example. The exothermic reaction of the raw material gas starts early. Therefore, the generation device 100 can shorten the time required to generate product gas, and can also generate highly concentrated product gas in a short time. As a result, in the first embodiment, the time required to generate highly concentrated product gas can be shortened compared to the comparative example.
 反応塔1のジャケット部分に流入し、循環する熱媒体は、原料ガスの発熱反応により温められる。したがって、原料ガスの発熱反応は、熱媒体の加熱源にもなり、第1実施形態における熱媒体の温度は、比較例よりも早く上昇する。図3は、第1実施形態における反応塔1を通る熱媒体の温度変化と、比較例における反応塔を通る熱媒体の温度変化との関係を示す図である。図3の横軸は、熱媒体の加熱開始後からの時間を示す。図3の縦軸は、各時間における熱媒体の温度(℃)を示す。第1実施形態では、反応塔1を通る熱媒体の温度が230℃に達するのに要する時間は、6時間程度である。比較例に係る方法では、反応塔を通る熱媒体の温度が230℃に達するのに要する時間は、7時間程度である。このように、比較例と比較して、第1実施形態における反応塔1を通る熱媒体の温度が230℃に達するのに要する時間が1時間程度短い。 The heat medium that flows into the jacket part of the reaction tower 1 and circulates is warmed by the exothermic reaction of the raw material gas. Therefore, the exothermic reaction of the raw material gas also serves as a heating source for the heat medium, and the temperature of the heat medium in the first embodiment rises faster than in the comparative example. FIG. 3 is a diagram showing the relationship between the temperature change of the heat medium passing through the reaction tower 1 in the first embodiment and the temperature change of the heat medium passing through the reaction tower in the comparative example. The horizontal axis in FIG. 3 indicates time from the start of heating the heat medium. The vertical axis in FIG. 3 indicates the temperature (° C.) of the heat medium at each time. In the first embodiment, the time required for the temperature of the heat medium passing through the reaction tower 1 to reach 230°C is about 6 hours. In the method according to the comparative example, the time required for the temperature of the heat medium passing through the reaction tower to reach 230° C. is about 7 hours. Thus, compared to the comparative example, the time required for the temperature of the heat medium passing through the reaction tower 1 to reach 230° C. in the first embodiment is about one hour shorter.
 制御部21は、熱媒体の温度調整により、反応塔1内を所定範囲の運転温度に維持する(S104)。例えば、反応塔1の昇温中に原料ガス供給部9による原料ガスの供給が開始された場合、制御部21は、熱媒体の加熱による反応塔1の昇温を停止してもよい。熱媒体ヒーター5による熱媒体の加熱を停止することで、熱媒体の加熱による反応塔1の昇温が停止する。反応塔1内では、原料ガスの発熱反応による反応塔1の昇温が行われているため、熱媒体の加熱による反応塔1の昇温が停止しても、反応塔1内の温度が運転温度に達する。したがって、反応塔1内を運転温度に維持することが可能となる。制御部21は、熱媒体の加熱による反応塔1の昇温を停止した後、熱媒体の加熱による反応塔1の昇温を再度開始してもよい。 The control unit 21 maintains the operating temperature within the reaction tower 1 within a predetermined range by adjusting the temperature of the heat medium (S104). For example, when the raw material gas supply unit 9 starts supplying the raw material gas while the temperature of the reaction tower 1 is being raised, the control unit 21 may stop raising the temperature of the reaction tower 1 by heating the heat medium. By stopping the heating of the heat medium by the heat medium heater 5, the temperature increase in the reaction tower 1 due to heating of the heat medium is stopped. Inside the reaction tower 1, the temperature of the reaction tower 1 is raised due to the exothermic reaction of the raw material gas, so even if the temperature rise of the reaction tower 1 due to heating of the heating medium stops, the temperature inside the reaction tower 1 remains unchanged during operation. Reach temperature. Therefore, it becomes possible to maintain the inside of the reaction tower 1 at the operating temperature. After stopping the temperature increase of the reaction tower 1 by heating the heat medium, the control unit 21 may restart the temperature increase of the reaction tower 1 by heating the heat medium.
 原料ガス供給部9は、反応塔1内の温度に基づいて、反応塔1への原料ガスの供給量を決定してもよい。反応塔1内の温度と、反応塔1内において原料ガスから生成される製品ガスの濃度とは相関関係がある。原料ガス供給部9は、反応塔1内の温度と、製品ガスの濃度との相関関係を示すマップや関係式に基づいて、反応塔1への原料ガスの供給量を決定してもよい。マップや関係式は、設計、実験又はシミュレーションによって求めてもよい。マップや関係式は、原料ガス供給部9が有する記憶部に記憶してもよい。マップや関係式は、制御部21が有するメモリなどの記憶部に記憶してもよい。原料ガス供給部9は、制御部21から反応塔1への原料ガスの供給量を取得してもよい。反応塔1内の温度と、反応塔1内において原料ガスから生成される製品ガスの濃度との相関関係に基づいて、反応塔1内への原料ガスの供給量を決定することで、反応塔1によって生成される製品ガスの濃度をコントロールすることができる。 The raw material gas supply unit 9 may determine the amount of raw material gas to be supplied to the reaction tower 1 based on the temperature inside the reaction tower 1. There is a correlation between the temperature inside the reaction tower 1 and the concentration of the product gas generated from the raw material gas inside the reaction tower 1. The raw material gas supply unit 9 may determine the amount of raw material gas to be supplied to the reaction tower 1 based on a map or a relational expression showing the correlation between the temperature inside the reaction tower 1 and the concentration of the product gas. The map or relational expression may be obtained by design, experiment, or simulation. The map and the relational expression may be stored in a storage section included in the raw material gas supply section 9. The map and the relational expression may be stored in a storage unit such as a memory included in the control unit 21. The raw material gas supply unit 9 may obtain the amount of raw material gas supplied to the reaction tower 1 from the control unit 21 . By determining the amount of raw material gas supplied into the reaction tower 1 based on the correlation between the temperature inside the reaction tower 1 and the concentration of product gas generated from the raw material gas in the reaction tower 1, 1 allows the concentration of the product gas produced to be controlled.
 図4は、第1実施形態に係る運転負荷量(%)と、比較例に係る運転負荷量(%)との関係を示す図である。図4の横軸は、熱媒体の加熱開始後からの時間を示す。図4の縦軸は、運転負荷量(運転温度における原料ガスの供給量に対する各時間における原料ガスの供給量の割合)を示す。第1実施形態では、反応塔1内の温度が運転温度よりも低い所定の供給開始温度において反応塔1への原料ガスの供給を開始し、運転負荷量を25%、50%、75%、100%の順序で段階的に増加する。比較例では、反応塔内の温度が運転温度に達してから反応塔への原料ガスの供給を開始し、運転負荷量を増加する。図4に示すように、第1実施形態と比較例とでは、原料ガスの供給開始時間が異なると共に、運転負荷量の増加の手法が異なる。 FIG. 4 is a diagram showing the relationship between the operating load amount (%) according to the first embodiment and the operating load amount (%) according to the comparative example. The horizontal axis in FIG. 4 indicates time from the start of heating the heat medium. The vertical axis in FIG. 4 indicates the operating load amount (the ratio of the amount of raw material gas supplied at each time to the amount of raw material gas supplied at the operating temperature). In the first embodiment, the supply of raw material gas to the reaction tower 1 is started at a predetermined supply start temperature where the temperature inside the reaction tower 1 is lower than the operating temperature, and the operating load is set to 25%, 50%, 75%, Increase step by step in order of 100%. In the comparative example, supply of raw material gas to the reaction tower is started after the temperature inside the reaction tower reaches the operating temperature, and the operating load amount is increased. As shown in FIG. 4, the first embodiment and the comparative example differ in the raw material gas supply start time and in the method of increasing the operating load amount.
 次いで、分離部10について説明する。図5は、分離部10の構成図である。分離部10は、反応塔1において製品ガスが生成される際に反応塔1で生成された生成水から生成水に溶存する溶存ガスを分離する。また、分離部10は、反応塔3において製品ガスが生成される際に反応塔3で生成された生成水から生成水に溶存する溶存ガスを分離する。分離部10は、ポンプ31と、分離膜モジュール32と、真空ポンプ33と、バッファタンク34と、コンプレッサ35とを備える。生成装置100は、反応塔3から送出される製品ガスが流れる製品ガス経路41を備える。 Next, the separation section 10 will be explained. FIG. 5 is a configuration diagram of the separation section 10. The separation unit 10 separates dissolved gas dissolved in the product water from the product water produced in the reaction tower 1 when the product gas is produced in the reaction tower 1 . Further, the separation unit 10 separates dissolved gas dissolved in the product water from the product water produced in the reaction tower 3 when the product gas is produced in the reaction tower 3 . The separation unit 10 includes a pump 31, a separation membrane module 32, a vacuum pump 33, a buffer tank 34, and a compressor 35. The generation device 100 includes a product gas path 41 through which the product gas sent out from the reaction tower 3 flows.
 気液分離器7及び8から分離部10に送られた生成水は、ポンプ31により分離膜モジュール32に送られる。分離膜モジュール32は、分離膜36を有する。分離膜36は、例えば、中空糸膜である。分離膜モジュール32に真空ポンプ33が接続されている。分離膜36により生成水から溶存ガスが分離される。溶存ガスが製品ガスである場合、真空ポンプ33により分離膜モジュール32内が真空引きされ、バッファタンク34に製品ガスが送られる。バッファタンク34は、製品ガスを一時的に貯留する。バッファタンク34に貯留された製品ガスは、コンプレッサ35により製品ガス経路41に送られる。これにより、製品ガス経路41を流れる製品ガスに対して生成水から分離された製品ガスが合流する。 The produced water sent from the gas-liquid separators 7 and 8 to the separation unit 10 is sent to the separation membrane module 32 by the pump 31. The separation membrane module 32 has a separation membrane 36. The separation membrane 36 is, for example, a hollow fiber membrane. A vacuum pump 33 is connected to the separation membrane module 32. Dissolved gas is separated from the produced water by the separation membrane 36. When the dissolved gas is a product gas, the inside of the separation membrane module 32 is evacuated by the vacuum pump 33 and the product gas is sent to the buffer tank 34 . The buffer tank 34 temporarily stores the product gas. The product gas stored in the buffer tank 34 is sent to the product gas path 41 by the compressor 35. As a result, the product gas separated from the generated water joins the product gas flowing through the product gas path 41.
 従来、生成水に溶存する製品ガスを大気中に拡散する方法や、デガッサー(脱気装置)を用いて、生成水を貯留したタンク内に空気などの気体を吹き込み、強制的に生成水から製品ガスを追い出す方法が用いられていた。このような方法では、製品ガスを貯留するための容積の大きいタンクや、タンク内に気体を吹き込むための機器が必要となる。第1実施形態によれば、バッファタンク34は、製品ガスを一時的に貯留するバッファタンク34の容積は小さいため、省スペース化を実現できる。また、第1実施形態によれば、タンク内に気体を吹き込むための機器は不要である。製品ガス経路41を流れる製品ガスに対して生成水から分離された製品ガスを合流させるため、大気中への製品ガスの拡散を抑止することができる。 Conventionally, the product gas dissolved in the produced water is diffused into the atmosphere, or a degasser (deaerator) is used to blow air or other gas into the tank where the produced water is stored, to forcibly remove the product from the produced water. A method was used to expel the gas. Such a method requires a large-capacity tank for storing the product gas and equipment for blowing gas into the tank. According to the first embodiment, the volume of the buffer tank 34 that temporarily stores the product gas is small, so space saving can be achieved. Further, according to the first embodiment, there is no need for a device for blowing gas into the tank. Since the product gas separated from the generated water is combined with the product gas flowing through the product gas path 41, diffusion of the product gas into the atmosphere can be suppressed.
 上記では、溶存ガスが製品ガスである場合について説明しているが、溶存ガスは未反応の原料ガスであってもよい。分離膜モジュール32の分離膜36の種類を変更することにより生成水に溶存する製品ガスを生成水から分離したり、生成水に溶存する未反応の原料ガスを生成水から分離したりすることができる。また、分離部10は、生成水に溶存する製品ガスを生成水から分離するための分離膜モジュール32と、生成水に溶存する未反応の原料ガスを生成水から分離するための分離膜モジュール32と、を備えてもよい。また、分離部10は、製品ガス用のバッファタンク34と、未反応の原料ガス用のバッファタンク34と、を備えてもよい。 Although the above describes the case where the dissolved gas is a product gas, the dissolved gas may be an unreacted raw material gas. By changing the type of separation membrane 36 of the separation membrane module 32, it is possible to separate the product gas dissolved in the produced water from the produced water, or to separate the unreacted raw material gas dissolved in the produced water from the produced water. can. The separation unit 10 also includes a separation membrane module 32 for separating product gas dissolved in the produced water from the produced water, and a separation membrane module 32 for separating unreacted raw material gas dissolved in the produced water from the produced water. and may also be provided. Further, the separation unit 10 may include a buffer tank 34 for product gas and a buffer tank 34 for unreacted raw material gas.
 溶存ガスが未反応の原料ガスである場合、真空ポンプ33により分離膜モジュール32内が真空引きされ、バッファタンク34に未反応の原料ガスが送られる。バッファタンク34に貯留された未反応の原料ガスは、コンプレッサ35により原料ガス供給部9に送られる。これにより、未反応の原料ガスが原料ガス供給部9に戻される。第1実施形態によれば、バッファタンク34は、未反応の原料ガスを一時的に貯留するバッファタンク34の容積は小さいため、省スペース化を実現できる。また、第1実施形態によれば、タンク内に気体を吹き込むための機器は不要である。未反応の原料ガスを原料ガス供給部9に戻すため、大気中への未反応の原料ガスの拡散を抑止することができる。 If the dissolved gas is unreacted raw material gas, the inside of the separation membrane module 32 is evacuated by the vacuum pump 33 and the unreacted raw material gas is sent to the buffer tank 34. The unreacted raw material gas stored in the buffer tank 34 is sent to the raw material gas supply section 9 by the compressor 35. As a result, unreacted raw material gas is returned to the raw material gas supply section 9. According to the first embodiment, the volume of the buffer tank 34 that temporarily stores unreacted raw material gas is small, so space saving can be realized. Further, according to the first embodiment, there is no need for a device for blowing gas into the tank. Since the unreacted source gas is returned to the source gas supply section 9, diffusion of the unreacted source gas into the atmosphere can be suppressed.
 <第2実施形態>
 第2実施形態について説明する。第2実施形態において、第1実施形態と同一の構成要素については、第1実施形態と同一の符号を付し、その説明を適宜省略する。第1,第2実施形態に係る生成装置100を適宜組み合わせてもよい。
<Second embodiment>
A second embodiment will be described. In the second embodiment, the same components as in the first embodiment are given the same reference numerals as in the first embodiment, and the description thereof will be omitted as appropriate. The generation devices 100 according to the first and second embodiments may be combined as appropriate.
 図6は、本発明の第2実施形態に係る生成装置100の構成図である。図6では、生成装置100の一部を示している。第1実施形態に係る生成装置100と比較して、第2実施形態に係る生成装置100は、ブースト用反応塔51と、切り替え部52と、ガス冷却用熱交換器53と、気液分離器54と、測定センサ55とを更に備える。 FIG. 6 is a configuration diagram of a generation device 100 according to a second embodiment of the present invention. In FIG. 6, a part of the generation device 100 is shown. Compared to the generation device 100 according to the first embodiment, the generation device 100 according to the second embodiment includes a boost reaction tower 51, a switching section 52, a gas cooling heat exchanger 53, and a gas-liquid separator. 54 and a measurement sensor 55.
 ブースト用反応塔51は、触媒における原料ガスの発熱反応によって製品ガスを生成する。原料ガス供給部9とブースト用反応塔51とが配管によって接続され、原料ガス供給部9とブースト用反応塔51とを接続する配管の途中に切り替え部52が設けられている。切り替え部52は、例えば、三方弁である。切り替え部52は、原料ガス供給部9による原料ガスの供給先を反応塔1とブースト用反応塔51との間で切り替える。制御部21が、切り替え部52の切り替え制御を行ってもよい。原料ガス供給部9による原料ガスの供給先が反応塔1からブースト用反応塔51に切り替えられた場合、原料ガスが原料ガス供給部9からブースト用反応塔51内に供給される。ブースト用反応塔51は、触媒における原料ガスの発熱反応によって生成水を生成する。また、原料ガス供給部9による原料ガスの供給先がブースト用反応塔51から反応塔1に切り替えられた場合、原料ガスが原料ガス供給部9から反応塔1内に供給される。 The boosting reaction tower 51 generates product gas by exothermic reaction of the raw material gas in the catalyst. The raw material gas supply section 9 and the boost reaction tower 51 are connected by piping, and a switching section 52 is provided in the middle of the piping that connects the raw material gas supply section 9 and the boost reaction tower 51. The switching unit 52 is, for example, a three-way valve. The switching unit 52 switches the destination of the raw material gas supplied by the raw material gas supply unit 9 between the reaction tower 1 and the boosting reaction tower 51. The control unit 21 may perform switching control of the switching unit 52. When the supply destination of the raw material gas by the raw material gas supply unit 9 is switched from the reaction tower 1 to the boosting reaction tower 51, the raw material gas is supplied from the raw material gas supplying unit 9 into the boosting reaction tower 51. The boosting reaction tower 51 generates water through an exothermic reaction of raw material gas in a catalyst. Further, when the destination of the source gas supplied by the source gas supply unit 9 is switched from the boosting reaction tower 51 to the reaction tower 1, the source gas is supplied from the source gas supply unit 9 into the reaction tower 1.
 ブースト用反応塔51には、予め触媒が充填されている。ブースト用反応塔51の構成は、反応塔1と同様の構成であるが、ブースト用反応塔51内の容量は、反応塔1内の容量よりも小さい。ブースト用反応塔51とガス冷却用熱交換器53とが配管によって接続されている。ブースト用反応塔51とガス冷却用熱交換器53とを接続する配管にはバルブなどが設けられている。反応塔1と気液分離器54とが配管によって接続されている。反応塔1と気液分離器54とを接続する配管にはバルブなどが設けられている。 The boost reaction tower 51 is filled with a catalyst in advance. The configuration of the boost reaction tower 51 is similar to that of the reaction tower 1, but the capacity inside the boost reaction tower 51 is smaller than the capacity inside the reaction tower 1. A boost reaction tower 51 and a gas cooling heat exchanger 53 are connected by piping. The piping connecting the boosting reaction tower 51 and the gas cooling heat exchanger 53 is provided with a valve and the like. The reaction tower 1 and the gas-liquid separator 54 are connected by piping. The piping connecting the reaction tower 1 and the gas-liquid separator 54 is provided with a valve and the like.
 ガス冷却用熱交換器53は、ガス冷却用熱交換器2と同様の構成であり、ブースト用反応塔51において生成された生成水(水蒸気)を凝縮する。気液分離器54は、気液分離器7と同様の構成であり、製品ガス及び未反応の原料ガスから生成水(液体)を分離する。測定センサ55は、測定センサ22と同様の構成であり、ブースト用反応塔51内の温度を測定する。熱媒体ヒーター5によって加熱された熱媒体は、ブースト用反応塔51、反応塔1及び反応塔3の順に通る。 The gas cooling heat exchanger 53 has the same configuration as the gas cooling heat exchanger 2, and condenses the water (steam) generated in the boosting reaction tower 51. The gas-liquid separator 54 has the same configuration as the gas-liquid separator 7, and separates produced water (liquid) from the product gas and unreacted raw material gas. The measurement sensor 55 has the same configuration as the measurement sensor 22, and measures the temperature inside the boost reaction tower 51. The heat medium heated by the heat medium heater 5 passes through the boosting reaction tower 51, the reaction tower 1, and the reaction tower 3 in this order.
 制御部21は、熱媒体の温度調整により、ブースト用反応塔51内を所定範囲の運転温度に維持する。制御部21は、ブースト用反応塔51内の温度を、例えば、200℃以上220℃以下に維持するように、熱媒体の温度を調整してもよい。運転温度は、200℃以上220℃以下に限られない。運転温度は、原料ガスの発熱反応が良好に進行する温度である定格温度であってもよい。定格温度は、高濃度の製品ガスが生成される温度であってもよい。 The control unit 21 maintains the inside of the boost reaction tower 51 at an operating temperature within a predetermined range by adjusting the temperature of the heat medium. The control unit 21 may adjust the temperature of the heat medium so as to maintain the temperature inside the boosting reaction tower 51 at, for example, 200°C or more and 220°C or less. The operating temperature is not limited to 200°C or higher and 220°C or lower. The operating temperature may be a rated temperature that is a temperature at which the exothermic reaction of the raw material gas proceeds satisfactorily. The rated temperature may be a temperature at which a high concentration of product gas is produced.
 <運転手順>
 第2実施形態に係る生成装置100の運転手順を説明する。図7は、第2実施形態に係る生成装置100の運転手順の流れを示すフロー図である。まず、熱媒体循環ポンプ12を起動する(S201)。熱媒体がブースト用反応塔51のジャケット部分に送られ、ブースト用反応塔51を通る。熱媒体がブースト用反応塔51を通った熱媒体は、反応塔1のジャケット部分に送られ、反応塔1を通る。反応塔1を通った熱媒体は、反応塔3のジャケット部分へ送られ、反応塔3を通る。このようにして、反応塔1の運転開始操作、反応塔3の運転開始操作及びブースト用反応塔51の運転開始操作が行われる。
<Operating procedure>
The operating procedure of the generation device 100 according to the second embodiment will be explained. FIG. 7 is a flowchart showing the flow of the operating procedure of the generation device 100 according to the second embodiment. First, the heat medium circulation pump 12 is started (S201). The heat medium is sent to the jacket portion of the boosting reaction tower 51 and passes through the boosting reaction tower 51. The heat medium that has passed through the boost reaction tower 51 is sent to the jacket portion of the reaction tower 1 and passes through the reaction tower 1. The heat medium that has passed through the reaction tower 1 is sent to the jacket part of the reaction tower 3 and passes through the reaction tower 3. In this way, the operation start operation of the reaction tower 1, the operation start operation of the reaction tower 3, and the operation start operation of the boost reaction tower 51 are performed.
 原料ガス供給部9によるブースト用反応塔51への原料ガスの供給が停止された状態(冷温停止状態)にあるブースト用反応塔51の運転開始操作が行われた場合、制御部21は、熱媒体の加熱によりブースト用反応塔51の昇温を開始する(S202)。具体的には、制御部21が、熱媒体ヒーター5の電源を入れ、熱媒体ヒーター5を制御することで、熱媒体を加熱する。加熱された熱媒体は、ブースト用反応塔51のジャケット部分に送られ、ブースト用反応塔51を通る。これにより、ブースト用反応塔51内の温度が上昇する。そして、ブースト用反応塔51を通った熱媒体は、反応塔1のジャケット部分に送られ、反応塔1を通る。加熱された熱媒体が反応塔1を通ることで、反応塔1が昇温する。これにより、反応塔1内の温度が上昇する。更に、反応塔1を通った熱媒体は、反応塔3のジャケット部分へ送られ、反応塔3を通る。加熱された熱媒体が反応塔3を通ることで、反応塔3が昇温する。これにより、反応塔3内の温度が上昇する。 When an operation is performed for the boosting reaction tower 51 in a state where the supply of raw material gas to the boosting reaction tower 51 by the raw material gas supply unit 9 is stopped (cold stop state), the control unit 21 controls the The heating of the boosting reaction tower 51 is started by heating the medium (S202). Specifically, the control unit 21 turns on the power to the heat medium heater 5 and controls the heat medium heater 5 to heat the heat medium. The heated heat medium is sent to the jacket part of the boosting reaction tower 51 and passes through the boosting reaction tower 51. As a result, the temperature inside the boosting reaction tower 51 increases. The heat medium that has passed through the boost reaction tower 51 is sent to the jacket portion of the reaction tower 1 and passes through the reaction tower 1. The temperature of the reaction tower 1 increases as the heated heat medium passes through the reaction tower 1. As a result, the temperature inside the reaction tower 1 increases. Furthermore, the heat medium that has passed through the reaction tower 1 is sent to the jacket part of the reaction tower 3 and passes through the reaction tower 3. The temperature of the reaction tower 3 increases as the heated heat medium passes through the reaction tower 3. As a result, the temperature inside the reaction tower 3 increases.
 原料ガス供給部9は、昇温中のブースト用反応塔51内の温度が運転温度よりも低い所定の供給開始温度において、ブースト用反応塔51への原料ガスの供給を開始する(S203)。原料ガス供給部9による原料ガスの供給先は、反応塔1からブースト用反応塔51に切り替えられている。したがって、原料ガスがブースト用反応塔51に供給されると共に、原料ガスがブースト用反応塔51を経由して反応塔1に供給される。所定の供給開始温度は、例えば、180℃である。所定の供給開始温度は、180℃に限らず、他の温度であってもよい。ブースト用反応塔51内に原料ガスが供給されることにより、製品ガスが生成される。原料ガスの発熱反応により、ブースト用反応塔51が昇温する。加熱された熱媒体がブースト用反応塔51を通る際のブースト用反応塔51の昇温と、ブースト用反応塔51内における原料ガスの発熱反応によるブースト用反応塔51の昇温とにより、ブースト用反応塔51内の温度が上昇し、運転温度に到達する。 The raw material gas supply unit 9 starts supplying the raw material gas to the boosting reaction tower 51 at a predetermined supply start temperature at which the temperature inside the boosting reaction tower 51 is lower than the operating temperature (S203). The destination of the raw material gas supplied by the raw material gas supply unit 9 has been switched from the reaction tower 1 to the boosting reaction tower 51. Therefore, the raw material gas is supplied to the boost reaction tower 51, and the raw material gas is also supplied to the reaction tower 1 via the boost reaction tower 51. The predetermined supply start temperature is, for example, 180°C. The predetermined supply start temperature is not limited to 180°C, and may be other temperatures. A product gas is generated by supplying the raw material gas into the boosting reaction tower 51. Due to the exothermic reaction of the raw material gas, the temperature of the boosting reaction tower 51 increases. Boosting is achieved by increasing the temperature of the boosting reaction tower 51 when the heated heat transfer medium passes through the boosting reaction tower 51 and by raising the temperature of the boosting reaction tower 51 due to the exothermic reaction of the raw material gas in the boosting reaction tower 51. The temperature inside the reaction tower 51 rises and reaches the operating temperature.
 第2実施形態によれば、加熱された熱媒体がブースト用反応塔51を通る際のブースト用反応塔51の昇温と、ブースト用反応塔51内における原料ガスの発熱反応によるブースト用反応塔51の昇温とにより、ブースト用反応塔51内の温度が上昇する。そのため、第2実施形態では、熱媒体ヒーター5による熱媒体の加熱が開始された後、ブースト用反応塔51内の温度が運転温度に達するまでに要する時間が短縮される。この結果、熱媒体ヒーター5の消費電力を抑制することができる。 According to the second embodiment, the temperature of the boosting reaction tower 51 is increased when the heated heat medium passes through the boosting reaction tower 51, and the boosting reaction tower is caused by an exothermic reaction of the raw material gas in the boosting reaction tower 51. 51, the temperature inside the boosting reaction tower 51 increases. Therefore, in the second embodiment, after the heat medium heater 5 starts heating the heat medium, the time required for the temperature inside the boosting reaction tower 51 to reach the operating temperature is shortened. As a result, power consumption of the heat medium heater 5 can be suppressed.
 また、第2実施形態では、ブースト用反応塔51内の温度が運転温度よりも低い温度において、ブースト用反応塔51への原料ガスの供給が開始される。ブースト用反応塔51内の温度が運転温度よりも低い温度の段階で、ブースト用反応塔51内で原料ガスの発熱反応が開始されることにより、第2実施形態では、比較例に比べて、ブースト用反応塔51内における原料ガスの発熱反応が早期に開始される。そのため、生成装置100は、製品ガスの生成に要する時間を短縮することができ、また、高濃度の製品ガスを短時間で生成することができる。この結果、第2実施形態では、比較例に比べて、高濃度の製品ガスを生成するまでの時間を短縮できる。 Furthermore, in the second embodiment, the supply of raw material gas to the boosting reaction tower 51 is started when the temperature inside the boosting reaction tower 51 is lower than the operating temperature. By starting the exothermic reaction of the raw material gas in the boosting reaction tower 51 when the temperature inside the boosting reaction tower 51 is lower than the operating temperature, in the second embodiment, compared to the comparative example, The exothermic reaction of the raw material gas within the boost reaction tower 51 is started early. Therefore, the generation device 100 can shorten the time required to generate product gas, and can also generate highly concentrated product gas in a short time. As a result, in the second embodiment, compared to the comparative example, the time required to generate a highly concentrated product gas can be shortened.
 また、第2実施形態では、ブースト用反応塔51を通った熱媒体は、ブースト用反応塔51内で原料ガスの発熱反応によって加熱されている。すなわち、反応塔1を通る熱媒体は、ブースト用反応塔51内で原料ガスの発熱反応によって予め温められている。そのため、第2実施形態では、熱媒体ヒーター5による熱媒体の加熱が開始された後、反応塔1内の温度が運転温度に達するまでに要する時間が短縮される。この結果、熱媒体ヒーター5の消費電力を抑制することができる。 Furthermore, in the second embodiment, the heat medium passing through the boosting reaction tower 51 is heated by the exothermic reaction of the raw material gas within the boosting reaction tower 51. That is, the heat medium passing through the reaction tower 1 is warmed in advance by the exothermic reaction of the raw material gas within the boosting reaction tower 51. Therefore, in the second embodiment, the time required for the temperature inside the reaction tower 1 to reach the operating temperature after the heat medium heater 5 starts heating the heat medium is shortened. As a result, power consumption of the heat medium heater 5 can be suppressed.
 第2実施形態では、製品ガス及び未反応の原料ガスをブースト用反応塔51によって加熱した状態で、反応塔1内に製品ガス及び未反応の原料ガスを供給することができる。ブースト用反応塔51内の容量は、反応塔1内の容量よりも小さい。そのため、ブースト用反応塔51内の温度が運転温度に達するまでに要する時間は、第1実施形態における反応塔1内の温度が運転温度に達するまでに要する時間よりも短い。したがって、熱媒体ヒーター5による熱媒体の加熱が開始された後の早い段階で、高温状態の製品ガス及び未反応の原料ガスを反応塔1内に供給することができる。これにより、反応塔1内の温度が運転温度に達するまでに要する時間が短縮される。 In the second embodiment, the product gas and unreacted raw material gas can be supplied into the reaction tower 1 in a state where the product gas and unreacted raw material gas are heated by the boosting reaction tower 51. The capacity inside the boost reaction tower 51 is smaller than the capacity inside the reaction tower 1. Therefore, the time required for the temperature inside the boosting reaction tower 51 to reach the operating temperature is shorter than the time required for the temperature inside the reaction tower 1 to reach the operating temperature in the first embodiment. Therefore, the high-temperature product gas and unreacted raw material gas can be supplied into the reaction tower 1 at an early stage after the heat medium heater 5 starts heating the heat medium. This shortens the time required for the temperature inside the reaction tower 1 to reach the operating temperature.
 制御部21は、熱媒体の温度調整により、ブースト用反応塔51内を所定範囲の運転温度に維持する(S204)。例えば、ブースト用反応塔51の昇温中に原料ガス供給部9による原料ガスの供給が開始された場合、制御部21は、熱媒体の加熱によるブースト用反応塔51の昇温を停止してもよい。熱媒体ヒーター5による熱媒体の加熱を停止することで、熱媒体の加熱によるブースト用反応塔51の昇温が停止する。ブースト用反応塔51内では、原料ガスの発熱反応によるブースト用反応塔51の昇温が行われているため、熱媒体の加熱によるブースト用反応塔51の昇温が停止しても、ブースト用反応塔51内の温度が運転温度に達する。また、高温状態の製品ガス及び未反応の原料ガスがブースト用反応塔51から反応塔1内に供給され、かつ、ブースト用反応塔51内の原料ガスの発熱反応によって加熱された熱媒体が反応塔1を通る。したがって、熱媒体の加熱によるブースト用反応塔51の昇温が停止しても、反応塔1内の温度が運転温度に達する。制御部21は、熱媒体の加熱によるブースト用反応塔51の昇温を停止した後、熱媒体の加熱によるブースト用反応塔51の昇温を再度開始してもよい。 The control unit 21 maintains the operating temperature within the boost reaction tower 51 within a predetermined range by adjusting the temperature of the heat medium (S204). For example, when the raw material gas supply unit 9 starts supplying the raw material gas while the temperature of the boosting reaction tower 51 is rising, the control unit 21 stops raising the temperature of the boosting reaction tower 51 by heating the heat medium. Good too. By stopping the heating of the heat medium by the heat medium heater 5, the temperature increase of the boosting reaction tower 51 due to heating of the heat medium is stopped. In the boost reaction tower 51, the temperature of the boost reaction tower 51 is raised due to the exothermic reaction of the raw material gas, so even if the temperature rise of the boost reaction tower 51 due to heating of the heating medium is stopped, the boost reaction tower 51 is heated. The temperature inside the reaction tower 51 reaches the operating temperature. In addition, the product gas and unreacted raw material gas in a high temperature state are supplied into the reaction tower 1 from the boosting reaction tower 51, and the heating medium heated by the exothermic reaction of the raw material gas in the boosting reaction tower 51 reacts. Pass through tower 1. Therefore, even if the temperature increase in the boosting reaction tower 51 due to heating of the heat medium stops, the temperature inside the reaction tower 1 reaches the operating temperature. After stopping the temperature increase of the boost reaction tower 51 by heating the heat medium, the control unit 21 may restart the temperature increase of the boost reaction tower 51 by heating the heat medium.
 原料ガス供給部9は、ブースト用反応塔51内の温度に基づいて、ブースト用反応塔51への原料ガスの供給量を決定してもよい。また、原料ガス供給部9は、反応塔1内の温度に基づいて、ブースト用反応塔51への原料ガスの供給量を決定してもよい。原料ガス供給部9は、ブースト用反応塔51内の温度と、製品ガスの濃度との相関関係を示すマップや関係式に基づいて、ブースト用反応塔51への原料ガスの供給量を決定してもよい。原料ガス供給部9は、反応塔1内の温度と、製品ガスの濃度との相関関係を示すマップや関係式に基づいて、ブースト用反応塔51への原料ガスの供給量を決定してもよい。マップや関係式は、設計、実験又はシミュレーションによって求めてもよい。マップや関係式は、原料ガス供給部9が有する記憶部に記憶してもよい。マップや関係式は、制御部21が有するメモリなどの記憶部に記憶してもよい。原料ガス供給部9は、制御部21からブースト用反応塔51への原料ガスの供給量を取得してもよい。 The raw material gas supply unit 9 may determine the amount of raw material gas to be supplied to the boosting reaction tower 51 based on the temperature inside the boosting reaction tower 51. Further, the raw material gas supply unit 9 may determine the amount of raw material gas to be supplied to the boosting reaction tower 51 based on the temperature inside the reaction tower 1. The raw material gas supply unit 9 determines the amount of raw material gas to be supplied to the boosting reaction tower 51 based on a map and a relational expression showing the correlation between the temperature inside the boosting reaction tower 51 and the concentration of the product gas. It's okay. The raw material gas supply unit 9 determines the amount of raw material gas supplied to the boosting reaction tower 51 based on a map or relational expression showing the correlation between the temperature inside the reaction tower 1 and the concentration of the product gas. good. The map or relational expression may be obtained by design, experiment, or simulation. The map and the relational expression may be stored in a storage section included in the raw material gas supply section 9. The map and the relational expression may be stored in a storage unit such as a memory included in the control unit 21. The raw material gas supply unit 9 may obtain the amount of raw material gas supplied to the boosting reaction tower 51 from the control unit 21 .
 <変形例>
 次に、上記の実施形態の変形例を説明する。第1及び第2実施形態では、測定センサ22が反応塔1内の温度を測定し、測定センサ23が反応塔3内の温度を測定している。これに限らず、測定センサ22は、反応塔1を通る熱媒体の温度を測定し、測定センサ23は、反応塔3を通る熱媒体の温度を測定してもよい。制御部21は、反応塔1を通る熱媒体の温度及び反応塔3を通る熱媒体の温度の少なくとも一方に基づいて、種々の制御を行ってもよい。また、原料ガス供給部9は、反応塔1を通る熱媒体の温度及び反応塔3を通る熱媒体の温度の少なくとも一方に基づいて、原料ガスの供給の制御を行ってもよい。
<Modified example>
Next, a modification of the above embodiment will be described. In the first and second embodiments, the measurement sensor 22 measures the temperature inside the reaction tower 1, and the measurement sensor 23 measures the temperature inside the reaction tower 3. However, the measurement sensor 22 may measure the temperature of the heat medium passing through the reaction tower 1, and the measurement sensor 23 may measure the temperature of the heat medium passing through the reaction tower 3. The control unit 21 may perform various controls based on at least one of the temperature of the heat medium passing through the reaction tower 1 and the temperature of the heat medium passing through the reaction tower 3. Further, the raw material gas supply unit 9 may control the supply of the raw material gas based on at least one of the temperature of the heat medium passing through the reaction tower 1 and the temperature of the heat medium passing through the reaction tower 3.
 第2実施形態では、測定センサ55がブースト用反応塔51内の温度を測定している。これに限らず、測定センサ55は、ブースト用反応塔51を通る熱媒体の温度を測定してもよい。制御部21は、反応塔1を通る熱媒体の温度、反応塔3を通る熱媒体の温度及びブースト用反応塔51を通る熱媒体の温度の少なくとも一つに基づいて、種々の制御を行ってもよい。また、原料ガス供給部9は、反応塔1を通る熱媒体の温度、反応塔3を通る熱媒体の温度及びブースト用反応塔51を通る熱媒体の温度の少なくとも一つに基づいて、原料ガスの供給の制御を行ってもよい。 In the second embodiment, the measurement sensor 55 measures the temperature inside the boost reaction tower 51. The measurement sensor 55 is not limited to this, and may measure the temperature of the heat medium passing through the boosting reaction tower 51. The control unit 21 performs various controls based on at least one of the temperature of the heat medium passing through the reaction tower 1, the temperature of the heat medium passing through the reaction tower 3, and the temperature of the heat medium passing through the boosting reaction tower 51. Good too. In addition, the raw material gas supply unit 9 supplies the raw material gas based on at least one of the temperature of the heat medium passing through the reaction tower 1, the temperature of the heat medium passing through the reaction tower 3, and the temperature of the heat medium passing through the boosting reaction tower 51. The supply may be controlled.
 第1及び第2実施形態では、反応塔を2つ備えているが、反応塔の数は、1段でも3段でも4段でも何段でもよい。また、第1及び第2実施形態では、熱媒体に熱媒油を用いたが、熱媒体は、使用温度、使用設備などの使用条件を考慮して溶融塩や高圧水などといった、使用条件に適した物質を用いてもよい。また、反応塔1と熱交換した熱媒体の一部が、反応塔3を経由せずに熱媒体用熱交換器6へ送られてもよい。また、反応塔で行われる反応が不可逆反応である場合にも生成装置100は用いられてもよい。 In the first and second embodiments, two reaction towers are provided, but the number of reaction towers may be one, three, four, or any number of stages. In addition, in the first and second embodiments, heat medium oil was used as the heat medium, but the heat medium may be molten salt, high-pressure water, etc. Any suitable substance may be used. Further, a part of the heat medium that has exchanged heat with the reaction tower 1 may be sent to the heat exchanger 6 for heat medium without passing through the reaction tower 3. Further, the generation device 100 may be used even when the reaction performed in the reaction tower is an irreversible reaction.
 また、上記で説明した各処理は、生成装置100の生成方法や運転方法などとして捉えてもよい。上記で説明した各処理ないし機能の少なくとも一部を有する生成システムや運転システムとして捉えてもよい。なお、上記手段および処理の各々は可能な限り互いに組み合わせて本発明を構成することができる。 Furthermore, each of the processes described above may be regarded as a generation method, an operation method, etc. of the generation device 100. It may be regarded as a generation system or an operation system having at least a part of each process or function described above. Note that each of the above means and processes can be combined to the extent possible to constitute the present invention.
1,3・・反応塔;2,4,53・・ガス冷却用熱交換器;5・・熱媒体ヒーター;6・・熱媒体用熱交換器;7,8,54・・気液分離器;9・・原料ガス供給部;10・・分離部;11・・貯留タンク;12・・熱媒体循環ポンプ;13,14・・調整弁;15・・チラー;16・・冷却塔;17・・冷却水循環ポンプ;21・・制御部;22,23,55・・測定センサ;31・・ポンプ;32・・分離膜モジュール;33・・真空ポンプ;34・・バッファタンク;35・・コンプレッサ;36・・分離膜;41・・製品ガス経路;52・・切り替え部;100・・生成装置 1, 3... Reaction tower; 2, 4, 53... Heat exchanger for gas cooling; 5... Heat medium heater; 6... Heat exchanger for heat medium; 7, 8, 54... Gas-liquid separator 9.. Raw material gas supply section; 10.. Separation section; 11.. Storage tank; 12.. Heat medium circulation pump; 13, 14.. Regulating valve; 15.. Chiller; 16.. Cooling tower; 17. - Cooling water circulation pump; 21... Control unit; 22, 23, 55... Measurement sensor; 31... Pump; 32... Separation membrane module; 33... Vacuum pump; 34... Buffer tank; 35... Compressor; 36... Separation membrane; 41... Product gas path; 52... Switching section; 100... Generation device

Claims (10)

  1.  触媒における原料ガスの発熱反応によって製品ガスを生成する反応塔と、
     前記反応塔へ前記原料ガスを供給する原料ガス供給部と、
     前記反応塔に通す熱媒体の温度調整により、前記反応塔内を所定範囲の運転温度に維持する温度調整部と、を備え、
     前記温度調整部は、前記原料ガス供給部による前記反応塔への前記原料ガスの供給が停止された冷温停止状態にある前記反応塔の運転開始操作が行われると、前記熱媒体の加熱により前記反応塔の昇温を開始し、
     前記原料ガス供給部は、昇温中の前記反応塔内の温度が前記運転温度より低い所定の供給開始温度において前記原料ガスの供給を開始する、
     生成装置。
    a reaction tower that generates a product gas through an exothermic reaction of a raw material gas in a catalyst;
    a raw material gas supply section that supplies the raw material gas to the reaction tower;
    a temperature adjustment unit that maintains the inside of the reaction tower at an operating temperature within a predetermined range by adjusting the temperature of a heat medium passed through the reaction tower,
    When an operation start operation of the reaction tower, which is in a cold stop state where the supply of the raw material gas to the reaction tower by the raw material gas supply unit is stopped, the temperature adjustment unit is configured to heat the heat medium to increase the temperature of the reaction tower. Start raising the temperature of the reaction tower,
    The raw material gas supply unit starts supplying the raw material gas at a predetermined supply start temperature where the temperature inside the reaction tower is lower than the operating temperature.
    generator.
  2.  前記温度調整部は、前記反応塔の昇温中に前記原料ガス供給部で前記原料ガスの供給が開始されると、前記熱媒体の加熱による前記反応塔の昇温を停止する、
     請求項1に記載の生成装置。
    The temperature adjustment unit stops raising the temperature of the reaction tower by heating the heat medium when the raw material gas supply unit starts supplying the raw material gas while the temperature of the reaction tower is rising.
    The generating device according to claim 1.
  3.  前記温度調整部は、前記熱媒体に対して加熱、冷却、加熱の停止、及び、冷却の停止の少なくとも一つを行うことにより前記熱媒体の温度調整を行う、
     請求項1に記載の生成装置。
    The temperature adjustment unit adjusts the temperature of the heat medium by performing at least one of heating, cooling, stopping heating, and stopping cooling the heat medium.
    The generating device according to claim 1.
  4.  前記原料ガス供給部は、前記反応塔内の温度に基づいて、前記原料ガスの供給量を決定する、
     請求項1に記載の生成装置。
    The raw material gas supply unit determines the supply amount of the raw material gas based on the temperature within the reaction tower.
    The generating device according to claim 1.
  5.  前記製品ガスが生成される際に前記反応塔で生成された生成水から前記生成水に溶存する溶存ガスを分離する分離部を備える、
     請求項1に記載の生成装置。
    comprising a separation unit that separates dissolved gas dissolved in the product water from the product water produced in the reaction tower when the product gas is produced;
    The generating device according to claim 1.
  6.  前記反応塔から送出される前記製品ガスが流れる製品ガス経路を備え、
     前記分離部は、
     前記溶存ガスが前記製品ガスである場合、前記製品ガス経路を流れる前記製品ガスに対して前記生成水から分離された前記製品ガスを合流させ、
     前記溶存ガスが未反応の前記原料ガスである場合、未反応の前記原料ガスを前記原料ガス供給部に戻す、
     請求項5に記載の生成装置。
    comprising a product gas path through which the product gas sent out from the reaction tower flows;
    The separation section is
    When the dissolved gas is the product gas, combining the product gas separated from the generated water with the product gas flowing through the product gas path;
    when the dissolved gas is the unreacted raw material gas, returning the unreacted raw material gas to the raw material gas supply section;
    The generating device according to claim 5.
  7.  触媒における前記原料ガスの発熱反応によって前記製品ガスを生成するブースト用反応塔と、
     前記原料ガス供給部による前記原料ガスの供給先を前記反応塔と前記ブースト用反応塔との間で切り替える切り替え部と、を備え、
     前記温度調整部は、
      前記ブースト用反応塔および前記反応塔に通す前記熱媒体の温度調整により、前記ブースト用反応塔内および前記反応塔内を前記運転温度に維持し、
      前記原料ガス供給部による前記ブースト用反応塔への前記原料ガスの供給が停止された冷温停止状態にある前記ブースト用反応塔の運転開始操作が行われると、前記熱媒体の加熱により前記ブースト用反応塔および前記反応塔の昇温を開始し、
     前記原料ガス供給部は、昇温中の前記ブースト用反応塔内の温度が前記供給開始温度において前記ブースト用反応塔への前記原料ガスの供給を開始し、
     前記ブースト用反応塔から前記製品ガスおよび未反応の前記原料ガスが前記反応塔内に供給され、
     前記ブースト用反応塔内の容量は、前記反応塔内の容量よりも小さい、
     請求項1から6の何れか一項に記載の生成装置。
    a boosting reaction tower that generates the product gas through an exothermic reaction of the raw material gas in a catalyst;
    a switching unit that switches the supply destination of the raw material gas by the raw material gas supply unit between the reaction tower and the boosting reaction tower,
    The temperature adjustment section is
    Maintaining the interior of the boosting reaction tower and the reaction tower at the operating temperature by adjusting the temperature of the boosting reaction tower and the heating medium passed through the reaction tower,
    When the operation start operation of the boosting reaction tower which is in a cold stop state where the supply of the raw material gas to the boosting reaction tower by the raw material gas supply unit is stopped, the boosting reaction tower is heated by heating the heating medium. Start raising the temperature of the reaction tower and the reaction tower,
    The raw material gas supply unit starts supplying the raw material gas to the boost reaction tower when the temperature inside the boost reaction tower, which is being heated, reaches the supply start temperature,
    The product gas and the unreacted raw material gas are supplied from the boosting reaction tower into the reaction tower,
    The capacity of the boosting reaction column is smaller than the capacity of the reaction column.
    A generating device according to any one of claims 1 to 6.
  8.  触媒における原料ガスの発熱反応によって製品ガスを生成する反応塔と、
     触媒における前記原料ガスの発熱反応によって前記製品ガスを生成するブースト用反応塔と、
     前記ブースト用反応塔へ前記原料ガスを供給する原料ガス供給部と、
     前記反応塔および前記ブースト用反応塔に通す熱媒体の温度調整により、前記反応塔内および前記ブースト用反応塔内を所定範囲の運転温度に維持する温度調整部と、を備え、
     前記温度調整部は、前記原料ガス供給部による前記ブースト用反応塔への前記原料ガスの供給が停止された冷温停止状態にある前記ブースト用反応塔の運転開始操作が行われると、前記熱媒体の加熱により前記反応塔および前記ブースト用反応塔の昇温を開始し、
     前記原料ガス供給部は、昇温中の前記ブースト用反応塔内の温度が前記運転温度より低い所定の供給開始温度において前記ブースト用反応塔への前記原料ガスの供給を開始し、
     前記ブースト用反応塔から前記製品ガスおよび未反応の前記原料ガスが前記反応塔内に供給され、
     前記ブースト用反応塔内の容量は、前記反応塔内の容量よりも小さい、
     生成装置。
    a reaction tower that generates a product gas through an exothermic reaction of a raw material gas in a catalyst;
    a boosting reaction tower that generates the product gas through an exothermic reaction of the raw material gas in a catalyst;
    a raw material gas supply section that supplies the raw material gas to the boosting reaction tower;
    A temperature adjustment unit that maintains the inside of the reaction tower and the inside of the boost reaction tower at an operating temperature within a predetermined range by adjusting the temperature of a heat medium passed through the reaction tower and the boost reaction tower,
    The temperature adjustment unit is configured to adjust the temperature of the heating medium when an operation start operation of the boosting reaction tower which is in a cold stop state where the supply of the raw material gas to the boosting reaction tower by the raw material gas supplying unit is stopped is performed. start raising the temperature of the reaction tower and the boosting reaction tower by heating,
    The raw material gas supply unit starts supplying the raw material gas to the boosting reaction tower at a predetermined supply start temperature where the temperature inside the boosting reaction tower is lower than the operating temperature, and
    The product gas and the unreacted raw material gas are supplied from the boosting reaction tower into the reaction tower,
    The capacity of the boosting reaction column is smaller than the capacity of the reaction column.
    generator.
  9.  触媒における原料ガスの発熱反応によって製品ガスを生成する反応塔と、
     前記反応塔へ前記原料ガスを供給する原料ガス供給部と、
     前記反応塔に通す熱媒体の温度調整により、前記反応塔内を所定範囲の運転温度に維持する温度調整部と、を備える生成装置の生成方法であって、
     前記原料ガス供給部による前記反応塔への前記原料ガスの供給が停止された冷温停止状態にある前記反応塔の運転開始操作が行われると、前記熱媒体の加熱により前記反応塔の昇温を開始する工程と、
     昇温中の前記反応塔内の温度が前記運転温度より低い所定の供給開始温度において前記原料ガスの供給を開始する工程と、を含む
     生成装置の生成方法。
    a reaction tower that generates a product gas through an exothermic reaction of a raw material gas in a catalyst;
    a raw material gas supply section that supplies the raw material gas to the reaction tower;
    A production method of a production apparatus, comprising: a temperature adjustment section that maintains the inside of the reaction tower at an operating temperature within a predetermined range by adjusting the temperature of a heat medium passed through the reaction tower,
    When an operation is performed for the reaction tower which is in a cold shutdown state where the supply of the raw material gas to the reaction tower by the raw material gas supply unit is stopped, the temperature of the reaction tower is increased by heating the heat medium. the process of starting;
    A production method for a production apparatus, comprising the step of starting supply of the raw material gas at a predetermined supply start temperature at which the temperature inside the reaction tower is lower than the operating temperature.
  10.  触媒における原料ガスの発熱反応によって製品ガスを生成する反応塔と、
     触媒における前記原料ガスの発熱反応によって前記製品ガスを生成するブースト用反応塔と、
     前記ブースト用反応塔へ前記原料ガスを供給する原料ガス供給部と、
     前記反応塔および前記ブースト用反応塔に通す熱媒体の温度調整により、前記反応塔内および前記ブースト用反応塔内を所定範囲の運転温度に維持する温度調整部と、を備える生成装置の生成方法であって、
     前記原料ガス供給部による前記ブースト用反応塔への前記原料ガスの供給が停止された冷温停止状態にある前記ブースト用反応塔の運転開始操作が行われると、前記熱媒体の加熱により前記反応塔および前記ブースト用反応塔の昇温を開始する工程と、
     昇温中の前記ブースト用反応塔内の温度が前記運転温度より低い所定の供給開始温度において前記ブースト用反応塔への前記原料ガスの供給を開始する工程と、を含み、
     前記ブースト用反応塔から前記製品ガスおよび未反応の前記原料ガスが前記反応塔内に供給され、
     前記ブースト用反応塔内の容量は、前記反応塔内の容量よりも小さい、
     生成装置の生成方法。
    a reaction tower that generates a product gas through an exothermic reaction of a raw material gas in a catalyst;
    a boosting reaction tower that generates the product gas through an exothermic reaction of the raw material gas in a catalyst;
    a raw material gas supply section that supplies the raw material gas to the boosting reaction tower;
    A method for producing a generator, comprising: a temperature adjustment section that maintains the inside of the reaction tower and the inside of the boosting reaction tower at an operating temperature within a predetermined range by adjusting the temperature of a heat medium passed through the reaction tower and the boosting reaction tower. And,
    When the operation start operation of the boosting reaction tower which is in a cold shutdown state where the supply of the raw material gas to the boosting reaction tower by the raw material gas supply unit is stopped, the reaction tower is heated by the heating medium. and a step of starting to raise the temperature of the boosting reaction tower;
    starting the supply of the raw material gas to the boosting reaction tower at a predetermined supply start temperature where the temperature inside the boosting reaction tower is lower than the operating temperature;
    The product gas and the unreacted raw material gas are supplied from the boosting reaction tower into the reaction tower,
    The capacity of the boosting reaction column is smaller than the capacity of the reaction column.
    How to generate a generator.
PCT/JP2023/013316 2022-05-11 2023-03-30 Generation device and generation method WO2023218791A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-078044 2022-05-11
JP2022078044A JP2023167123A (en) 2022-05-11 2022-05-11 Generation device and generation method

Publications (1)

Publication Number Publication Date
WO2023218791A1 true WO2023218791A1 (en) 2023-11-16

Family

ID=88730023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013316 WO2023218791A1 (en) 2022-05-11 2023-03-30 Generation device and generation method

Country Status (3)

Country Link
JP (1) JP2023167123A (en)
TW (1) TW202344301A (en)
WO (1) WO2023218791A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053519A (en) * 2000-08-07 2002-02-19 Nippon Shokubai Co Ltd Method for start-up of reactor
JP2003321400A (en) * 2002-04-24 2003-11-11 Fc Tekku:Kk Methanation reactor
JP2005336085A (en) * 2004-05-26 2005-12-08 Mitsubishi Chemicals Corp Method for producing (meth)acrylic acid or (meth)acrolein
JP2017115143A (en) * 2015-12-22 2017-06-29 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Process for selective hydrogenation of olefinic feeds with single principal reactor and guard reactor of reduced size
JP2018020278A (en) * 2016-08-02 2018-02-08 日立造船株式会社 Catalyst for methanation reaction, manufacturing method of catalyst for methanation and manufacturing method of methane
JP2019076860A (en) * 2017-10-26 2019-05-23 日立造船株式会社 Gas generator and gas generation method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053519A (en) * 2000-08-07 2002-02-19 Nippon Shokubai Co Ltd Method for start-up of reactor
JP2003321400A (en) * 2002-04-24 2003-11-11 Fc Tekku:Kk Methanation reactor
JP2005336085A (en) * 2004-05-26 2005-12-08 Mitsubishi Chemicals Corp Method for producing (meth)acrylic acid or (meth)acrolein
JP2017115143A (en) * 2015-12-22 2017-06-29 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Process for selective hydrogenation of olefinic feeds with single principal reactor and guard reactor of reduced size
JP2018020278A (en) * 2016-08-02 2018-02-08 日立造船株式会社 Catalyst for methanation reaction, manufacturing method of catalyst for methanation and manufacturing method of methane
JP2019076860A (en) * 2017-10-26 2019-05-23 日立造船株式会社 Gas generator and gas generation method

Also Published As

Publication number Publication date
JP2023167123A (en) 2023-11-24
TW202344301A (en) 2023-11-16

Similar Documents

Publication Publication Date Title
JP2009168348A (en) Cogeneration apparatus and its control method
JP2010212141A (en) Fuel cell generator
JPS6222374A (en) Method for starting pressure-type fuel cell
WO2023218791A1 (en) Generation device and generation method
US11065590B2 (en) Gas generation device and gas generation method
US20070104997A1 (en) Fuel cell system
JP2008159463A (en) Fuel cell device and its operation method
JPH09283158A (en) Cooling device and cooling method for fuel cell stack
US8328886B2 (en) Fuel processor having temperature control function for co shift reactor and method of operating the fuel processor
WO2023218794A1 (en) Power-generating system
US8142529B2 (en) Fuel processor having carbon monoxide removing unit and method of operating the same
US10439237B2 (en) Fuel cell system and control of collector and burner when stopped
JP2001206701A (en) Fuel reforming device and starting-up method
JP2024055688A (en) Generation device and generation method
JP2021155242A (en) Reformer and reformation treatment apparatus
JP2006046132A (en) Gas turbine system, reformed fuel combustion gas turbine system, and reformed fuel supply method for gas turbine system
JP2001035517A (en) Temperature control method for reforming device and temperature control device thereof
JP4265239B2 (en) Fuel reforming system
JPH0992316A (en) Method of raising temperature of fuel cell power generating device
JP2013004467A (en) Fuel cell system
JP2003206104A (en) Membrane reactor system
JP2003229147A (en) Temperature control method and device for shift reaction catalyst, and fuel cell generating system
JP2008247701A (en) Method and device for controlling operation of fuel treating apparatus
JP2006312917A (en) Power generating facility, gas turbine power generating facility, reformed fuel supplying method for power generating facility
JP2023116093A (en) Temperature adjustment device of solid oxide electrolysis cell and temperature adjustment method of solid oxide electrolysis cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803274

Country of ref document: EP

Kind code of ref document: A1