WO2023218639A1 - Outdoor unit for air conditioner - Google Patents

Outdoor unit for air conditioner Download PDF

Info

Publication number
WO2023218639A1
WO2023218639A1 PCT/JP2022/020217 JP2022020217W WO2023218639A1 WO 2023218639 A1 WO2023218639 A1 WO 2023218639A1 JP 2022020217 W JP2022020217 W JP 2022020217W WO 2023218639 A1 WO2023218639 A1 WO 2023218639A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
panel
heat exchanger
casing
metal
Prior art date
Application number
PCT/JP2022/020217
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 鎌田
隆二 百瀬
喬太 大塚
健二 廣瀬
諭 米田
開人 萩原
裕人 竹内
正則 大井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/020217 priority Critical patent/WO2023218639A1/en
Publication of WO2023218639A1 publication Critical patent/WO2023218639A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/16Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings

Definitions

  • the present disclosure relates to an outdoor unit of an air conditioner that includes a housing and a heat exchanger.
  • a conventional outdoor unit of an air conditioner one is known that includes a box-shaped casing and a heat exchanger disposed within the casing, and the heat exchanger and the casing are each made of different metals. .
  • the metal types of the heat exchanger and the housing are selected depending on the required characteristics. For example, aluminum is generally used for heat exchangers that require high thermal conductivity, and iron is generally used for casings that require strength.
  • heat exchanger and the casing which are dissimilar metals
  • dissimilar metal contact corrosion will occur in the metal with a lower natural potential.
  • catalytic corrosion of dissimilar metals will be simply referred to as corrosion.
  • a means for preventing corrosion there is known a means for indirectly connecting the heat exchanger and the casing via a non-conductive member such as resin.
  • the heat exchanger and the casing are electrically insulated by the non-conductive member, so a parasitic capacitance is generated between the heat exchanger and the casing. Then, there is a problem in that electromagnetic noise generated from an electronic board, a compressor, etc. disposed within the housing causes a voltage change in the parasitic capacitance, and this voltage change further generates electromagnetic noise.
  • an air supply port is formed on the back of the casing to allow outdoor air to flow in, and the heat exchanger is located at a position facing the air supply port to exchange heat with the outdoor air. It is located in Electromagnetic noise is radiated from between the heat exchanger and the housing to the outside of the housing through the air supply port.
  • Patent Document 1 discloses a technique in which a conductive connecting member is interposed between the heat exchanger and the casing.
  • the connection members include a first connection part that is made of the same kind of metal as that used for the heat exchanger and directly contacts the heat exchanger, and a first connection part that is made of the same kind of metal as that used for the casing and is in direct contact with the heat exchanger. and a second connection portion in direct contact with the second connection portion.
  • an insulating layer is provided between the first connection part and the second connection part to electrically insulate the first connection part and the second connection part.
  • Patent Document 1 With the technology disclosed in Patent Document 1, the structure becomes complicated due to the use of multiple types of metals for the connection member, the provision of an insulating layer, and the use of a waterproof covering member, which increases manufacturing man-hours. There are problems such as an increase in the number of parts and an increase in the number of parts.
  • the present disclosure has been made in view of the above, and aims to provide an outdoor unit of an air conditioner that has a simple structure and can prevent corrosion and reduce electromagnetic noise.
  • an outdoor unit of an air conditioner includes a box-shaped casing made of a first metal, and a box-shaped casing made of a first metal, at least a part of which is made of the first metal.
  • a heat exchanger is formed of a second metal that has a different natural potential from that of the heat exchanger, and is placed inside the housing and fixed to the housing via a non-conductive member. and a conductive member. The conductive member is fixed to the housing and electrically connected to the housing, and is also electrically connected to the heat exchanger.
  • the outdoor unit of the air conditioner according to the present disclosure has a simple structure and has the effect of being able to prevent corrosion and reduce electromagnetic noise at the same time.
  • FIG. 2 is a front view of the outdoor unit of the air conditioner according to Embodiment 1, with the front panel of the casing removed.
  • An exploded perspective view showing an electronic board box and an interface panel in Embodiment 1 A perspective view showing an assembled state of the electronic board box and interface panel shown in FIG. 3
  • Right side view showing the outdoor unit of the air conditioner in Embodiment 1 A cross-sectional view along the VI-VI line shown in Figure 2
  • Front view showing the heat exchanger in Embodiment 1 Enlarged view of the main parts of the heat exchanger shown in Figure 8 FIG.
  • FIG. 2 is a plan view showing a conductive member in Embodiment 1, and a diagram showing a first conductive member.
  • FIG. 2 is a plan view showing the conductive member in Embodiment 1, and a diagram showing a second conductive member.
  • FIG. 2 is a plan view showing the outdoor unit of the air conditioner according to Embodiment 1, with the top panel of the casing removed and a conductive member attached to the casing.
  • a circuit diagram showing an equivalent circuit of a path through which current that causes electromagnetic noise is transmitted when the outdoor unit of the air conditioner according to Embodiment 1 does not include a conductive member.
  • FIG. 2 is a rear view of the outdoor unit of the air conditioner according to Embodiment 1, showing locations where electromagnetic noise occurs when no conductive member is provided.
  • a circuit diagram showing an equivalent circuit of a path through which current that causes electromagnetic noise is transmitted when the heat exchanger and the casing are brought into direct contact without using an insulating member.
  • FIG. 1 is an exploded perspective view schematically showing an outdoor unit 1 of an air conditioner according to a first embodiment.
  • an outdoor unit 1 of an air conditioner includes a housing 2, a plurality of conductive members 3, a partition panel 4, a blower 5, a heat exchanger 6, and a plurality of insulating members 7. , a compressor 8, and an electronic board box 9.
  • the outdoor unit 1 of the air conditioner may be simply referred to as the outdoor unit 1.
  • the depth direction of the outdoor unit 1 is referred to as the X-axis direction
  • the height direction of the outdoor unit 1 is referred to as the Y-axis direction
  • the width direction of the outdoor unit 1 is referred to as the Z-axis direction.
  • the + direction in the X-axis direction is defined as the front
  • the - direction in the X-axis direction is defined as the rear.
  • the + direction in the X-axis direction is the direction from the - side to the + side of the X-axis
  • the - direction in the X-axis direction is the direction from the + side to the - side of the X-axis.
  • the + direction in the Y-axis direction is defined as the upper direction
  • the - direction in the Y-axis direction is defined as the lower direction.
  • the + direction in the Y-axis direction is the direction from the - side to the + side of the Y-axis
  • the - direction in the Y-axis direction is the direction from the + side to the - side of the Y-axis.
  • the + direction in the Z-axis direction is defined as the right direction
  • the - direction in the Z-axis direction is defined as the left direction.
  • the + direction in the Z-axis direction is the direction from the - side to the + side of the Z-axis
  • the - direction in the Z-axis direction is the direction from the + side to the - side of the Z-axis.
  • the + direction in the X-axis direction in which the airflow generated by the blower 5 of the outdoor unit 1 is discharged to the outside is defined as the front
  • the side opposite to the front is defined as the back.
  • FIG. 2 is a front view of the outdoor unit 1 of the air conditioner according to the first embodiment, with the front panel 2e of the casing 2 removed.
  • the heat exchanger 6 is shown with dot hatching for ease of understanding.
  • the housing 2 is a box-shaped member that serves as an outer shell of the outdoor unit 1.
  • the housing 2 is made of a first metal.
  • the first metal is preferably a metal with high strength.
  • the first metal is, for example, iron or an iron alloy.
  • the housing 2 includes a housing floor panel 2a, a housing top panel 2b, a first connecting panel 2c, and a second connecting panel 2d.
  • the housing floor panel 2a constitutes the bottom surface of the outer shell of the outdoor unit 1.
  • the casing floor panel 2a has a rectangular shape in plan view with four rounded corners.
  • the housing top panel 2b is arranged above the housing floor panel 2a and away from the housing floor panel 2a.
  • the housing top panel 2b constitutes the ceiling surface of the outer shell of the outdoor unit 1.
  • the plan view shape of the housing top panel 2b is the same as the plan view shape of the housing floor panel 2a.
  • the first connection panel 2c and the second connection panel 2d connect the housing floor panel 2a and the housing top panel 2b.
  • the first connection panel 2c has an L-shape in plan view.
  • the first connection panel 2c includes a housing front panel 2e extending along the Z-axis direction, and a housing front panel 2e extending rearward from the left edge, which is one edge along the Z-axis direction of the housing front panel 2e. It has a body side panel 2f.
  • the housing front panel 2e connects the front edge of the housing floor panel 2a and the front edge of the housing top panel 2b.
  • the housing front panel 2e constitutes the front surface of the outer shell of the outdoor unit 1.
  • An exhaust port 2j is formed in the housing front panel 2e.
  • the exhaust port 2j is an opening for discharging the airflow generated by the blower 5 to the outside of the fan chamber 10, which will be described later.
  • the housing side panel 2f connects the left edge of the housing floor panel 2a and the left edge of the housing top panel 2b.
  • the housing side panel 2f constitutes the left side of the outer shell of the outdoor unit 1.
  • the plan view shape of the second connection panel 2d is L-shaped.
  • the second connection panel 2d extends leftward from the housing side panel 2g extending along the X-axis direction and the rear edge that is one edge along the X-axis direction of the housing side panel 2g.
  • the housing has a rear panel 2h.
  • the housing side panel 2g connects the right edge of the housing floor panel 2a and the right edge of the housing top panel 2b.
  • the housing side panel 2g constitutes the right side of the outer shell of the outdoor unit 1.
  • the housing back panel 2h connects a part of the rear edge of the housing floor panel 2a and a part of the rear edge of the housing top panel 2b.
  • the housing back panel 2h constitutes a part of the back surface of the outer shell of the outdoor unit 1.
  • the left edge of the housing back panel 2h and the rear edge of the housing side panel 2f are separated from each other.
  • An air supply port 2i for introducing outdoor air is formed between the left edge of the housing back panel 2h and the rear edge of the housing side panel 2f.
  • the air supply port 2i is an opening that allows air outside the housing 2 to flow into a fan chamber 10, which will be described later.
  • the air supply port 2i is surrounded by a housing floor panel 2a, a housing top panel 2b, a housing back panel 2h, and a housing side panel 2f.
  • the conductive member 3 is a member disposed within the casing 2.
  • the conductive member 3 is made of a non-metal that is conductive to metal.
  • the material of the conductive member 3 is, for example, a composite material in which a conductor such as carbon fiber is kneaded into an insulating plastic, or a composite material in which a thin film of a conductor is formed on the surface of an insulating plastic.
  • An example of such a composite material is carbon graphite.
  • the conductive member 3 is fixed to and electrically connected to the casing 2 and is also electrically connected to the heat exchanger 6 .
  • the casing 2 and the heat exchanger 6 are electrically connected via the conductive member 3.
  • electrically connected between the metal member and the conductive member 3 refers to a state in which the metal member and the conductive member 3 are in direct contact and conduction, as well as a state in which the metal member and the conductive member 3 are electrically conductive. This also includes a state in which the sexual member 3 is electrically connected through a gap.
  • the conductive member 3 is in contact with the housing 2 and the heat exchanger 6 in this embodiment.
  • each panel of the housing 2 is coated with paint or the like and has a high electrical resistance, for example, masking some or all of the joints in advance or tightening the screws using serrated screws.
  • the electrical resistance on the surface of each panel can be lowered by removing the paint when tightening.
  • the number of conductive members 3 may be singular or plural, but in this embodiment, it is two.
  • one conductive member 3 will be referred to as a first conductive member 3a
  • the other conductive member 3 will be referred to as a second conductive member 3b.
  • the partition panel 4 is a metal member that partitions the inside of the housing 2 into a fan chamber 10 and an electrical room 11.
  • the partition panel 4 becomes a part of the housing 2.
  • the fan chamber 10 and the electrical chamber 11 are formed side by side in the Z-axis direction.
  • the partition panel 4 extends in the Y-axis direction from the housing floor panel 2a to the electronic board box 9.
  • the partition panel 4 extends in the X-axis direction from the housing front panel 2e to the housing back panel 2h shown in FIG.
  • the housing 2 and the partition panel 4 shown in FIG. 1 are made of the same type of first metal.
  • the portions where the housing 2 and the partition panel 4 come into contact with each other are joined by welding, screws, or the like. If the surface of each panel of the casing 2 is coated with paint, etc. and the electrical resistance of the surface of each panel is high, for example, masking some or all of the joints in advance or using serration screws to tighten the The electrical resistance on the surface of each panel can be lowered by removing the paint when tightening.
  • the blower 5 is a device that is placed in the fan room 10 and generates airflow.
  • the blower 5 includes a support 5a rising from the housing floor panel 2a, a fan motor 5b attached to the support 5a, and a propeller fan 5c attached to the rotating shaft of the fan motor 5b to rotate as the fan motor 5b rotates. It has The upper end of the support column 5a is fixed to the housing top panel 2b. The lower end of the support column 5a is fixed to the housing floor panel 2a.
  • the fan motor 5b is electrically connected to an electronic board 9c, which will be described later, via a fan drive wire 12. The fan motor 5b rotates when receiving a drive signal output from the electronic board 9c via the fan drive wire 12.
  • the heat exchanger 6 is a member disposed in the fan room 10 to exchange heat between the refrigerant and outdoor air. Outdoor air to be taken into the blower 5 passes through the heat exchanger 6 .
  • the heat exchanger 6 is, for example, a parallel flow type heat exchanger.
  • the heat exchanger 6 is disposed within the casing 2 and fixed to the casing 2 via an insulating member 7 that is a non-conductive member. At least a portion of the heat exchanger 6 is formed of a second metal that has a different natural potential from the first metal.
  • the second metal is preferably a metal with high thermal conductivity.
  • the second metal is, for example, aluminum or an aluminum alloy.
  • the natural potential of the first metal is higher than the natural potential of the second metal.
  • the shape of the heat exchanger 6 in plan view is L-shaped.
  • the heat exchanger 6 has a first heat exchange section 6a extending along the Z-axis direction and a second heat exchange section 6b extending along the X-axis direction.
  • the second heat exchange section 6b extends forward from the left end, which is one end along the Z-axis direction of the first heat exchange section 6a.
  • the first heat exchange section 6a is arranged behind the blower 5.
  • the second heat exchange section 6b is arranged on the left side of the blower 5 when viewed from the front of the outdoor unit 1.
  • the heat exchanger 6 and the blower 5 are either spaced from each other and electrically insulated, or are arranged and electrically insulated via an insulating member (not shown).
  • the heat exchanger 6, the first connection panel 2c, and the second connection panel 2d are arranged at intervals and electrically insulated from each other, or are arranged via an insulating member (not shown). electrically isolated. As shown in FIG. 2, the upper end of the heat exchanger 6 is fixed to the housing top panel 2b via an insulating member 7. A lower end portion of the heat exchanger 6 is fixed to the housing floor panel 2a via an insulating member 7. The heat exchanger 6, the housing top panel 2b, and the housing floor panel 2a are electrically insulated. The heat exchanger 6 is arranged without directly contacting metal members such as the housing 2 and the blower 5 arranged around the heat exchanger 6.
  • the two insulating members 7 shown in FIG. 1 are made of an electrically insulating material such as resin.
  • the insulating member 7 provided at the lower end of the heat exchanger 6 will be referred to as a first insulating member 7a
  • the insulating member 7 provided at the upper end of the heat exchanger 6 will be referred to as a first insulating member 7a.
  • the member 7 is referred to as a second insulating member 7b.
  • the entire bottom and top surfaces of the heat exchanger 6 are covered by using the first insulating member 7a and the second insulating member 7b, which have the same planar shape and the same size as the heat exchanger 6.
  • the heat exchanger 6 and the housing 2 are electrically insulated by covering them, this is not intended to limit the electrical insulating means for both members.
  • a configuration may be adopted in which several stands made of electrically insulating material are provided on the bottom of the heat exchanger 6, and the stands are interposed between the heat exchanger 6 and the housing floor panel 2a. Good too. With this configuration, the heat exchanger 6 and the housing floor panel 2a are separated from each other in the Y-axis direction, so that the heat exchanger 6 and the housing floor panel 2a can be electrically insulated.
  • the compressor 8 is a device that is placed in the electrical room 11 and compresses the refrigerant flowing inside the heat exchanger 6.
  • the compressor 8 is arranged on the housing floor panel 2a in the lower space of the electrical room 11.
  • the compressor 8 is fixed to the housing floor panel 2a with screws or the like.
  • the electronic board box 9 is a member that accommodates an electronic board 9c such as a control board necessary for operating the outdoor unit 1.
  • the electronic board box 9 is formed into a hollow rectangular parallelepiped shape.
  • the electronic board box 9 is fixed to the upper end of the partition panel 4 and is disposed astride the fan room 10 and the electrical room 11.
  • a heat sink 9d extending downward is attached to a portion of the electronic board box 9 located in the fan chamber 10.
  • the heat sink 9d is exposed to the fan chamber 10.
  • the heat sink 9d is cooled by the airflow generated by the blower 5.
  • a portion of the electronic board box 9 located in the electrical room 11 is located above the compressor 8.
  • a compressor drive electric wire 13 is connected to a portion of the electronic board 9c located in the electrical room 11.
  • the compressor 8 is electrically connected to the electronic board 9c via a compressor drive wire 13.
  • the compressor 8 is driven when it receives a drive signal output from the electronic board 9c via the compressor drive wire 13.
  • the electrical room 11 is surrounded by a housing floor panel 2a, a partition panel 4, a housing side panel 2g, an electronic board box 9, a housing front panel 2e, and a housing back panel 2h shown in FIG.
  • the housing 2 has a waterproof structure that prevents moisture such as rainwater from entering from outside.
  • a stop valve 17 is provided at the lower part of the outer surface of the housing side panel 2g. The stop valve 17 serves as a terminal for connecting a refrigerant pipe connected to an indoor unit (not shown).
  • the compressor 8 and the stop valve 17 are connected to each other via a plurality of refrigerant pipes 18.
  • the compressor 8 and the heat exchanger 6 are connected to each other via a plurality of refrigerant pipes 18.
  • a connecting portion 19 between the heat exchanger 6 and the refrigerant pipe 18 is arranged in an electrical room 11 having a waterproof structure.
  • the connecting portion 19 may be waterproofed by wrapping it with waterproof tape or the like.
  • the refrigerant pipe 18 is connected to a valve device such as a four-way valve that changes the direction in which the refrigerant flows, and an expansion valve that expands the refrigerant to a predetermined pressure.
  • a valve device such as a four-way valve that changes the direction in which the refrigerant flows, and an expansion valve that expands the refrigerant to a predetermined pressure.
  • the connection form of the refrigerant piping 18 is not limited to the illustrated example.
  • An interface panel 20 is installed in the upper space of the electrical room 11.
  • the interface panel 20 is fixed to the inner surface of the housing side panel 2g and the lower surface of the electronic board box 9, respectively.
  • a terminal block 21 is installed on the interface panel 20.
  • An external AC power line 14 and an internal power line 15 are connected to the terminal block 21 .
  • External AC power line 14 is electrically connected to internal power line 15 via terminal block 21 .
  • Internal power line 15 is electrically connected to electronic board 9c. Power to the electronic board 9c is supplied via the external AC power line 14, the terminal block 21, and the internal power line 15.
  • the voltage of the power supplied to the electronic board 9c is, for example, single-phase 200V, but is not limited to this voltage.
  • the interface panel 20 is made of the same first metal as the case side panel 2g. Therefore, the interface panel 20 is joined to the housing side panel 2g with low electrical resistance.
  • the interface panel 20 is connected to the signal ground of the electronic board 9c.
  • the interface panel 20 has a ground connection point 20e to which the ground wire 16 is connected.
  • Interface panel 20 is grounded via ground connection point 20e and ground wire 16.
  • the casing 2 joined to the interface panel 20 and the partition panel 4 joined to the casing 2 are grounded via a ground connection point 20e and a ground wire 16.
  • FIG. 3 is an exploded perspective view showing the electronic board box 9 and the interface panel 20 in the first embodiment.
  • FIG. 4 is a perspective view showing a state in which the electronic board box 9 and the interface panel 20 shown in FIG. 3 are assembled.
  • the electronic board box 9 includes a box-shaped lower box 9a that opens upward, an upper lid 9b that covers the upper opening of the lower box 9a, an electronic board 9c, and a heat sink 9d. There is.
  • the electronic board 9c is placed in the lower box 9a and fixed to the lower box 9a.
  • the electronic board 9c has an internal power line 15 connected to the terminal block 21 and a compressor drive electric wire 13 connected to the compressor 8.
  • the electronic board 9c includes a heating element, a fan motor 5b, and various power lines for operating other drive devices.
  • the heat sink 9d is fixed to the electronic board 9c while being in close contact with the electronic board 9c.
  • the heat sink 9d plays a role of cooling the heat generating elements of the electronic board 9c.
  • the heating element is, for example, a power semiconductor represented by an IGBT (Insulated Gate Bipolar Transistor).
  • the electronic board 9c to which the heat sink 9d is fixed is inserted into the lower box 9a from the opening at the top of the lower box 9a. As shown in FIGS. 3 and 4, part or all of the heat sink 9d is exposed to the outside of the lower box 9a through a hole 9e formed in the bottom wall of the lower box 9a.
  • the lower box 9a and upper lid 9b shown in FIG. 3 are made of, for example, rubber, resin, metal such as iron, or a combination thereof.
  • the electronic board 9c is surrounded by metal, so that electromagnetic noise generated from the electronic board 9c is not transmitted to the outside of the electronic board box 9. Radiation can be suppressed.
  • moisture such as rainwater scattered in the fan chamber 10 may enter the electronic board box 9 and the electrical chamber 11 through the hole 9e formed in the bottom wall of the lower box 9a. Therefore, in practice, measures such as devising the shape of the hole 9e and the shape of the lower box 9a and adding new waterproof structures are taken to prevent moisture from entering the electronic board box. 9 and the electrical room 11 are ensured to be waterproof.
  • the interface panel 20 has an interface vertical wall 20a, an upper joint flange portion 20b, an interface horizontal wall 20c, and a lower joint flange portion 20d.
  • the interface vertical wall 20a is a vertical wall extending along the Y-axis direction.
  • the upper joint flange portion 20b extends horizontally in the Z-axis direction from the upper end of the interface vertical wall 20a.
  • the upper joining flange portion 20b is joined to the lower surface of the bottom wall of the lower box 9a.
  • the interface horizontal wall 20c extends horizontally in the Z-axis direction from the lower end of the interface vertical wall 20a.
  • the lower joining flange portion 20d extends downward in the Y-axis direction from the tip of the interface side wall 20c.
  • the lower joining flange portion 20d is joined to the inner surface of the housing side panel 2g shown in FIG.
  • the interface panel 20 is fixed to the housing side panel 2g at the lower joint flange portion 20d and is electrically connected to the housing side panel 2g.
  • the interface panel 20 is fixed to the housing side panel 2g and the lower box 9a, respectively.
  • FIG. 5 is a right side view showing the outdoor unit 1 of the air conditioner according to the first embodiment.
  • An opening 2k that communicates the inside and outside of the housing 2 is formed in the housing side panel 2g.
  • An interface cover 22 is removably attached to the housing side panel 2g.
  • the interface cover 22 can be opened and closed by attaching and detaching it.
  • the interface cover 22 covers the opening 2k when closed. When the interface cover 22 is open, the opening 2k is opened.
  • the interface panel 20 and terminal block 21 installed in the electrical room 11 are visible and accessible through the opening 2k. Connection work for various power lines can be performed by opening the interface cover 22 and passing through the opening 2k.
  • the interface cover 22 plays the role of preventing moisture such as rainwater from entering the electrical room 11 while ensuring ventilation between the electrical room 11 and the outside of the casing 2.
  • the interface cover 22 is made of resin, metal such as iron, or a combination thereof. If the interface cover 22 is made of metal such as iron and is bonded to the housing side panel 2g with low electrical resistance, the opening 2k can be closed by the interface cover 22, and the housing can be removed from the opening 2k. 2. Emission of electromagnetic noise to the outside can be suppressed.
  • the interface cover 22 has communication holes for the purpose of ensuring ventilation between the electrical room 11 and the outside of the casing 2 and for allowing power lines to enter and exit the electrical room 11 and the outside of the casing 2. is formed.
  • Waterproofing means is provided in the communication hole to prevent moisture such as rainwater from entering the electrical room 11.
  • a waterproofing means for example, there are means such as filling the gaps between the communication holes with sponge or making the communication holes have a shutter structure.
  • FIG. 6 is a cross-sectional view taken along line VI-VI shown in FIG. In FIG. 6, only the housing 2 is hatched for ease of understanding.
  • the partition panel 4 has a first partition part 4a and a second partition part 4b continuous to the rear end of the first partition part 4a.
  • An introduction hole 4c for introducing the end of the heat exchanger 6 in the Z-axis direction into the electrical room 11 is formed in the second partition portion 4b.
  • the heat exchanger 6 and the second partition portion 4b are formed of different metals. In order to avoid contact between dissimilar metals, it is preferable to interpose a resin material between the heat exchanger 6 and the second partition portion 4b, for example.
  • FIG. 7 is a perspective view schematically showing the heat exchanger 6 in the first embodiment.
  • FIG. 8 is a front view showing the heat exchanger 6 in the first embodiment.
  • FIG. 9 is an enlarged view of the main parts of the heat exchanger 6 shown in FIG. 8.
  • the heat exchanger 6 is a parallel flow heat exchanger in this embodiment. As shown in FIG. 8, the heat exchanger 6 includes two headers 6c and 6d, a plurality of refrigerant conduits 6e, and a plurality of fins 6f.
  • the two headers 6c and 6d are both hollow metal members. Each header 6c, 6d extends along the Y-axis direction. As shown in FIG. 7, the two headers 6c and 6d are arranged apart from each other in the Z-axis direction and shifted from each other in the X-axis direction.
  • the header 6c is provided at the front end of the second heat exchange section 6b.
  • the header 6d is provided at the right end of the first heat exchange section 6a.
  • a refrigerant pipe 18 is connected to the header 6d.
  • Each refrigerant conduit 6e shown in FIG. 8 is a hollow metal member.
  • Each refrigerant conduit 6e is, for example, a flat tube.
  • the plurality of refrigerant conduits 6e are arranged at intervals from each other in the Y-axis direction.
  • Each of the refrigerant conduits 6e extends from one header 6c toward the other header 6d.
  • the extending direction of each refrigerant conduit 6e is perpendicular to the Y-axis direction.
  • One end of each refrigerant conduit 6e in the extending direction is connected to one header 6c, and the other end of each refrigerant conduit 6e in the extending direction is connected to the other header 6d.
  • Each refrigerant conduit 6e communicates one header 6c with the other header 6d.
  • the fin 6f is a metal plate-like member.
  • the fins 6f are arranged between adjacent refrigerant conduits 6e.
  • the shape of the fin 6f is not particularly limited, in this embodiment, it is a wave-like shape that projects alternately upward and downward. That is, the fins 6f are corrugated fins in this embodiment. As shown in FIG. 9, the fins 6f are in contact with each of the adjacent refrigerant conduits 6e and are joined by welding or the like.
  • a refrigerant flows inside the headers 6c and 6d and inside the refrigerant conduit 6e shown in FIG.
  • One of the two headers 6c and 6d serves to distribute refrigerant to each of the plurality of refrigerant conduits 6e.
  • the other of the two headers 6c and 6d plays a role of merging the refrigerants flowing out from each of the plurality of refrigerant conduits 6e.
  • the refrigerant conduit 6e plays the role of exchanging heat between the refrigerant and outdoor air. That is, heat exchange is performed between the refrigerant flowing inside the refrigerant conduit 6e and the outdoor air flowing around the refrigerant conduit 6e.
  • the fins 6f play a role of promoting heat exchange between the refrigerant and outdoor air.
  • FIG. 10 is a plan view showing the conductive member 3 in the first embodiment, and is a diagram showing the first conductive member 3a.
  • FIG. 11 is a plan view showing the conductive member 3 in the first embodiment, and is a diagram showing the second conductive member 3b.
  • FIG. 12 is a plan view showing the outdoor unit 1 of the air conditioner according to the first embodiment, with the top panel 2b of the casing 2 removed and the conductive member 3 attached to the casing 2. It is a figure showing the attached state.
  • FIG. 10 is a plan view showing the conductive member 3 in the first embodiment, and is a diagram showing the first conductive member 3a.
  • FIG. 11 is a plan view showing the conductive member 3 in the first embodiment, and is a diagram showing the second conductive member 3b.
  • FIG. 12 is a plan view showing the outdoor unit 1 of the air conditioner according to the first embodiment, with the top panel 2b of the casing 2 removed and the conductive member 3 attached to the casing 2. It is a figure showing the attached
  • the heat exchanger 6 is shown in direct contact with the partition panel 4 of the housing 2, the side panel 2f of the housing, etc., but in reality, the heat exchanger 6 is in direct contact with the partition panel 4 of the housing 2, the side panel 2f of the housing, etc. Placed without direct contact with metal members. In FIG. 12, the heat exchanger 6 is shown with dot hatching for ease of understanding.
  • the shape of the first conductive member 3a is not particularly limited, but is L-shaped in this embodiment.
  • the first conductive member 3a has a first plate portion 3c and a second plate portion 3d.
  • the first conductive member 3a shown in FIG. 12 electrically connects the partition panel 4 and the first heat exchange section 6a.
  • the first conductive member 3a is arranged in the fan chamber 10.
  • the first conductive member 3a is arranged at an inner corner formed by the partition panel 4 and the first heat exchange section 6a.
  • the first conductive member 3a is arranged on the left side of the partition panel 4.
  • the first conductive member 3a is arranged in front of the first heat exchange section 6a.
  • the first conductive member 3a is fixed to and electrically connected to the partition panel 4 that is part of the housing 2, and is also electrically connected to the first heat exchange section 6a. There is.
  • the first plate portion 3c extends along the X-axis direction.
  • the first plate portion 3c is in contact with a side surface 4d of the partition panel 4 facing the fan chamber 10.
  • the side surface 4d is a plane extending in the X-axis direction and the Y-axis direction.
  • the first plate portion 3c is fixed to the partition panel 4.
  • the second plate portion 3d extends along the Z-axis direction.
  • the second plate portion 3d extends leftward from the rear end portion of the first plate portion 3c, which is one end along the Z-axis direction.
  • the second plate portion 3d is in contact with a front surface 6g of the first heat exchange portion 6a facing the fan chamber 10.
  • the front surface 6g is a plane extending in the Z-axis direction and the Y-axis direction.
  • the shape of the second conductive member 3b is not particularly limited, but is crank-shaped in this embodiment.
  • the second conductive member 3b has a fixing part 3e, a plate part 3f, and a connecting part 3g that connects the fixing part 3e and the plate part 3f.
  • the second conductive member 3b shown in FIG. 12 electrically connects the housing side panel 2f and the second heat exchange section 6b.
  • the second conductive member 3b is arranged in the fan chamber 10.
  • the second conductive member 3b is arranged at an inner corner formed by the housing side panel 2f and the second heat exchange section 6b.
  • the second conductive member 3b is arranged on the right side of the housing side panel 2f.
  • the second conductive member 3b is arranged from the front to the left of the second heat exchange section 6b.
  • the second conductive member 3b is fixed to and electrically connected to the housing side panel 2f, and is also electrically connected to the second heat exchange section 6b.
  • the fixed portion 3e extends along the X-axis direction.
  • the fixing portion 3e is in contact with an inner surface 2m of the housing side panel 2f facing the fan chamber 10.
  • the inner surface 2m is a plane extending in the X-axis direction and the Y-axis direction.
  • the fixing portion 3e is fixed to the housing side panel 2f.
  • the connecting portion 3g extends rightward from the rear end portion of the fixed portion 3e, which is one end along the X-axis direction.
  • the connecting portion 3g extends along the Z-axis direction.
  • the connecting portion 3g is in contact with a front surface 6h of the second heat exchange portion 6b facing the fan chamber 10.
  • the front surface 6h is a plane extending in the Z-axis direction and the Y-axis direction.
  • the plate portion 3f extends rearward from the right end, which is one end along the Z-axis direction of the connecting portion 3g.
  • the plate portion 3f extends along the X-axis direction.
  • the plate portion 3f is in contact with a side surface 6i of the second heat exchange portion 6b facing the fan chamber 10.
  • the side surface 6i is a plane extending in the X-axis direction and the Y-axis direction.
  • the side surface 6i extends rearward toward the front surface 6g from the right end, which is one end along the Z-axis direction, of the front surface 6h.
  • the conductive member 3 is fixed to the housing side panel 2f or the partition panel 4 and is electrically connected to the housing 2, but the conductive member 3 is fixed to the housing side panel 2f or the partition panel 4 and is electrically connected to the housing 2. , the housing front panel 2e, the housing rear panel 2h, the housing side panels 2f and 2g, and the partition panel 4.
  • the size of the conductive member 3 is preferably such that the electrical connection between the casing 2 and the heat exchanger 6 can be maintained even when the outdoor unit 1 vibrates during operation.
  • the electronic board 9c when power is supplied to the electronic board 9c from the external AC power line 14 via the internal power line 15, the electronic board 9c enters a standby state.
  • the electronic board 9c receives a command signal to start operation from the indoor unit via a communication signal line (not shown) between the indoor unit and the outdoor unit 1, the electronic board 9c starts the operation of the outdoor unit 1.
  • the electronic board 9c outputs a drive signal to the fan motor 5b through the fan drive wire 12 to drive the fan motor 5b.
  • the electronic board 9c outputs another drive signal to the compressor 8 through the compressor drive electric wire 13 to drive the compressor 8.
  • a rectangular wave pulse generated by switching of a power semiconductor is generally used as a drive signal output by the electronic board 9c.
  • the drive signal includes high frequency components that are not originally necessary to drive the AC motors of the compressor 8 and the fan motor 5b, such as switching noise of the power semiconductor and harmonic components of the rectangular wave pulse.
  • high frequency components become an electromagnetic noise source and become a cause of electromagnetic noise being radiated to the outside of the housing 2 through a transmission path described later.
  • FIG. 13 is a schematic diagram showing the transmission path of electromagnetic noise as an electric circuit in the outdoor unit 1 of the air conditioner according to the first embodiment.
  • the heat exchanger 6 is shown with dot hatching for ease of understanding.
  • electromagnetic noise generated on the electronic board 9c is transmitted to the motor winding 8a and the compressor via the three-phase motor winding neutral point 8d. It is transmitted to the casing of the compressor 8 through the parasitic capacitance 8b existing between the casing of the compressor 8 and the casing of the compressor 8.
  • a part of the electromagnetic noise transmitted to the housing of the compressor 8 is transmitted to the housing floor panel 2a and then returned to the electronic board 9c.
  • the characteristics of the parasitic impedance component of the heat exchanger 6 differ depending on the structure of the heat exchanger 6.
  • the heat exchanger 6 is a parallel flow type heat exchanger equipped with fins 6f and flat refrigerant conduits 6e shown in FIG. 8
  • the parasitic inductance of the heat exchanger 6 is An equivalent circuit in which 23 are combined as shown in FIG. 13 is shown as an example.
  • the parasitic impedance components such as the parasitic inductance 23 of the heat exchanger 6 exist in a complex manner as a distributed constant circuit as shown in FIG.
  • FIG. 14 is a circuit diagram showing an equivalent circuit of a path through which a current causing electromagnetic noise is transmitted when the outdoor unit 1 of the air conditioner according to the first embodiment does not include the conductive member 3.
  • a voltage change occurs in the parasitic capacitances 22a and 22b due to resonance.
  • FIG. 15 is a rear view of the outdoor unit 1 of the air conditioner according to the first embodiment, showing locations where electromagnetic noise occurs when the conductive member 3 is not provided.
  • the heat exchanger 6 is hatched with dots for easy understanding. Gaps G1, G2, G3, and G4 are formed between the heat exchanger 6 and each panel of the housing 2 to ensure electrical insulation.
  • the respective positions of gaps G1, G2, G3, and G4 are surrounded by broken lines.
  • FIG. 15 shows that there are no gaps G1, G2, G3, and G4 in a part of the space between the heat exchanger 6 and the housing 2, in reality, the gaps G1, G2, G3, and G4 extend so as to surround the four sides of the heat exchanger 6.
  • gaps G1, G2, G3, and G4 become locations where electromagnetic noise occurs when the outdoor unit 1 does not include the conductive member 3.
  • Voltage changes occur between the heat exchanger 6 and the housing floor panel 2a and between the heat exchanger 6 and the housing top panel 2b through parasitic capacitances 22a and 22b shown in FIG. 13.
  • the gaps G1, G2, G3, and G4 function as slot antennas, and further generate electromagnetic noise in response to changes in the voltage applied across the gaps G1, G2, G3, and G4.
  • Electromagnetic noise generated in the gaps G1, G2, G3, and G4 is radiated to the outside of the housing 2 through the air supply port 2i when the outdoor unit 1 does not include the conductive member 3.
  • FIG. 16 shows that in the outdoor unit 1 of the air conditioner according to the first embodiment, when the heat exchanger 6 and the casing 2 are brought into direct contact without going through the insulating member 7, a current that causes electromagnetic noise is transmitted.
  • FIG. 3 is a circuit diagram in which a route is converted into an equivalent circuit.
  • parasitic capacitances 22a, 22b as shown in FIG. 16 are generated between the heat exchanger 6 and the housing floor panel 2a shown in FIG. 15 and between the heat exchanger 6 and the housing top panel 2b. There is no change in voltage across the gap, and no electromagnetic noise is generated in the gaps G1, G2, G3, and G4.
  • G4 can be prevented from generating electromagnetic noise and the radiation of electromagnetic noise to the outside of the housing 2 can be reduced. occurs.
  • the insulating member 7 is provided between the heat exchanger 6 and the casing 2, corrosion of the heat exchanger 6, which has a low natural potential at the contact point between the heat exchanger 6 and the casing 2, can be prevented; Electromagnetic noise is generated in the gaps G1, G2, G3, and G4, and the amount of electromagnetic noise radiated to the outside of the housing 2 increases.
  • a box-shaped casing 2 is formed of a first metal, and a casing 2 is formed of a second metal whose natural potential is different from that of the first metal.
  • the heat exchanger 6 is disposed inside the housing 2 and is fixed to the housing 2 via an insulating member 7, and the conductive member 3 is made of a non-metallic material and is placed inside the housing 2.
  • the conductive member 3 is fixed to and electrically connected to the casing 2 and is also electrically connected to the heat exchanger 6 . With these configurations, the heat exchanger 6 and the casing 2 are electrically connected via the conductive member 3. Therefore, the parasitic capacitances 22a and 22b generated between the heat exchanger 6 and each panel of the housing 2 shown in FIG.
  • the conductive member 3 is fixed and electrically connected to the case side panel 2f and the partition panel 4, but the conductive member 3 is fixed to and electrically connected to the case side panel 2f and the partition panel 4, but the It may be fixed to all of the front panel 2a, the top panel 2b, the front panel 2e, the rear panel 2h, the side panels 2f and 2g, and the partition panel 4. In this way, the electrical connection between the panels is strengthened, and the contact resistance and parasitic inductance 23 of the housing 2 shown in FIG. 13 can be reduced. Therefore, electromagnetic noise transmitted to the electronic board 9c, the compressor 8, and each panel of the housing 2, ie, noise terminal voltage, interference power intensity, etc., can be reduced.
  • the natural potential of the first metal is higher than the natural potential of the second metal, when the heat exchanger 6 and the casing 2 are brought into direct contact, the second metal Corrosion will occur in the formed heat exchanger 6.
  • the heat exchanger 6 and the casing 2 do not come into direct contact as described above, corrosion of the heat exchanger 6 can be prevented.
  • the first metal is iron or an iron alloy
  • the strength of the casing 2 made of the first metal can be increased.
  • the second metal is aluminum or an aluminum alloy, the thermal conductivity of the heat exchanger 6 formed of the second metal can be increased.
  • serpentine heat exchangers and aluminum parallel flow heat exchangers. Both serpentine heat exchangers and parallel flow heat exchangers have fins and refrigerant conduits. In a serpentine heat exchanger, aluminum is generally used for the fins, and copper is generally used for the refrigerant conduits.
  • the standard electrode potentials of the respective metals have a relationship of aluminum ⁇ iron ⁇ copper. That is, the magnitude relationship of the standard electrode potential of each metal member is the relationship of fin ⁇ casing 2 ⁇ refrigerant conduit.
  • the fins of a serpentine heat exchanger and the refrigerant conduit come into direct contact with the housing 2 and moisture adheres to the contact points, the fins, which have a lower standard electrode potential than the housing 2, will corrode. Although corrosion may occur, corrosion does not occur in the refrigerant conduit whose standard electrode potential is higher than that of the housing 2.
  • an aluminum parallel flow heat exchanger aluminum is used as the material for the fins and refrigerant pipes, so if iron is used for the housing 2, both the fins and the refrigerant pipes will corrode. may occur. If corrosion occurs in the refrigerant conduit and a hole opens, the refrigerant in the refrigerant conduit will leak into the atmosphere. If the refrigerant leaks into the atmosphere, the heating and cooling functions of the air conditioner will be impaired. In this way, aluminum parallel flow heat exchangers are susceptible to corrosion, so it is important to take measures to prevent corrosion, and it is also important to take measures to reduce electromagnetic noise that is generated by taking measures to prevent corrosion. It is necessary to take appropriate measures.
  • achieving both prevention of corrosion and reduction of electromagnetic noise by using the non-metallic conductive member 3 as in this embodiment means that the natural potential of the refrigerant conduit is lower than the natural potential of the surrounding members such as the casing 2. This is particularly useful when using a heat exchanger with a lower potential.
  • the installation location and shape of the conductive member 3 are not limited to the illustrated example.
  • the conductive member 3 may be fixed to the housing floor panel 2a, the housing top panel 2b, etc., or may be electrically connected to any surface of the heat exchanger 6.
  • the shape of the conductive member 3 may be changed as appropriate so that the conductive member 3 can be electrically connected to the housing 2 and the heat exchanger 6.
  • the entire heat exchanger 6 be formed of the second metal, and it is sufficient that at least a portion of the heat exchanger 6 be formed of the second metal.
  • at least one of the fins of the heat exchanger 6 and the refrigerant conduit may be formed of the second metal.
  • the configuration shown in the above embodiments is an example, and it is possible to combine it with another known technology, and a part of the configuration can be omitted or changed without departing from the gist. It is possible.
  • 1 outdoor unit of air conditioner 2 housing, 2a housing floor panel, 2b housing top panel, 2c first connection panel, 2d second connection panel, 2e housing front panel, 2f, 2g housing Body side panel, 2h Housing back panel, 2i Air supply port, 2j Exhaust port, 2k Opening, 2m inner surface, 3 Conductive member, 3a First conductive member, 3b Second conductive member, 3c First plate part, 3d second plate part, 3e fixing part, 3f plate part, 3g connecting part, 4 partition panel, 4a first partition part, 4b second partition part, 4c introduction hole, 4d, 6i side surface, 5 blower, 5a strut, 5b fan motor, 5c propeller fan, 6 heat exchanger, 6a first heat exchange section, 6b second heat exchange section, 6c, 6d header, 6e refrigerant conduit, 6f fin, 6g, 6h Front, 7 Insulating member, 7a First insulating member, 7b Second insulating member, 8 Compressor, 8a Motor winding, 8b, 22

Abstract

An outdoor unit (1) for an air conditioner comprises: a box-like housing (2) formed from a first metal; a heat exchanger (6) that has at least a portion formed from a second metal having a different spontaneous potential from the first metal, and that is disposed inside the housing (2) and fixed to the housing (2) with a non-conductive member therebetween; and a conductive member (3) formed from non-metal and disposed in the housing (2). The conductive member (3) is fixed to the housing (2) and electrically connected to the housing (2) and is also electrically connected to the heat exchanger (6).

Description

空気調和機の室外機Air conditioner outdoor unit
 本開示は、筐体と熱交換器とを備える空気調和機の室外機に関する。 The present disclosure relates to an outdoor unit of an air conditioner that includes a housing and a heat exchanger.
 従来の空気調和機の室外機として、箱状の筐体と筐体内に配置される熱交換器とを備え、熱交換器と筐体とがそれぞれ異種金属により形成されたものが知られている。熱交換器と筐体とは、要求される特性に応じて金属の種類が選択されている。例えば、高い熱伝導率が要求される熱交換器にはアルミニウムが用いられ、強度が要求される筐体には鉄が用いられるのが一般的である。 As a conventional outdoor unit of an air conditioner, one is known that includes a box-shaped casing and a heat exchanger disposed within the casing, and the heat exchanger and the casing are each made of different metals. . The metal types of the heat exchanger and the housing are selected depending on the required characteristics. For example, aluminum is generally used for heat exchangers that require high thermal conductivity, and iron is generally used for casings that require strength.
 異種金属である熱交換器と筐体とを直接接触させた状態で、接触箇所に水分が付着した場合、自然電位が低い方の金属において異種金属接触腐食が発生する。以下、異種金属接触腐食を単に腐食と称する。腐食を防ぐ手段としては、樹脂などの非導電性部材を介して熱交換器と筐体とを間接的に接続する手段が知られている。 If the heat exchanger and the casing, which are dissimilar metals, are in direct contact and moisture adheres to the contact area, dissimilar metal contact corrosion will occur in the metal with a lower natural potential. Hereinafter, catalytic corrosion of dissimilar metals will be simply referred to as corrosion. As a means for preventing corrosion, there is known a means for indirectly connecting the heat exchanger and the casing via a non-conductive member such as resin.
 しかし、このような手段を用いると、非導電性部材により熱交換器と筐体とが電気的に絶縁されるため、熱交換器と筐体との間に寄生容量が生じる。そして、筐体内に配置される電子基板、圧縮機などから発生する電磁ノイズにより寄生容量に電圧の変化を発生させ、この電圧の変化によりさらに電磁ノイズが発生するという問題がある。なお、筐体の背面には、室外の空気を流入させるための給気口が形成されていて、熱交換器は、室外の空気との間で熱交換を行うために給気口に臨む位置に配置されている。電磁ノイズは、熱交換器と筐体との間から給気口を通じて筐体の外部に放射される。 However, when such means are used, the heat exchanger and the casing are electrically insulated by the non-conductive member, so a parasitic capacitance is generated between the heat exchanger and the casing. Then, there is a problem in that electromagnetic noise generated from an electronic board, a compressor, etc. disposed within the housing causes a voltage change in the parasitic capacitance, and this voltage change further generates electromagnetic noise. Note that an air supply port is formed on the back of the casing to allow outdoor air to flow in, and the heat exchanger is located at a position facing the air supply port to exchange heat with the outdoor air. It is located in Electromagnetic noise is radiated from between the heat exchanger and the housing to the outside of the housing through the air supply port.
 腐食の防止と電磁ノイズの低減という2つの課題を同時に解決するために、特許文献1には、熱交換器と筐体との間に導電性の接続部材を介在させた技術が開示されている。接続部材は、熱交換器に用いられた金属と同種の金属により形成されて熱交換器に直接接触する第1接続部と、筐体に用いられた金属と同種の金属により形成されて筐体に直接接触する第2接続部とを有している。また、第1接続部と第2接続部との間には、第1接続部と第2接続部とを電気的に絶縁する絶縁層が設けられている。 In order to simultaneously solve the two problems of preventing corrosion and reducing electromagnetic noise, Patent Document 1 discloses a technique in which a conductive connecting member is interposed between the heat exchanger and the casing. . The connection members include a first connection part that is made of the same kind of metal as that used for the heat exchanger and directly contacts the heat exchanger, and a first connection part that is made of the same kind of metal as that used for the casing and is in direct contact with the heat exchanger. and a second connection portion in direct contact with the second connection portion. Moreover, an insulating layer is provided between the first connection part and the second connection part to electrically insulate the first connection part and the second connection part.
 特許文献1に開示された技術では、絶縁層の一部を除去して異種金属である第1接続部と第2接続部とを部分的に直接接触させることにより電気的導通を確保して電磁ノイズを低減させる一方で、防水テープなどの被覆部材で第1接続部と第2接続部との接触箇所を被覆することにより接触箇所への水分の浸入を遮断して金属の腐食を防いでいる。 In the technology disclosed in Patent Document 1, a part of the insulating layer is removed and a first connection part and a second connection part made of different metals are brought into direct contact with each other to ensure electrical continuity and electromagnetic While reducing noise, covering the contact points between the first and second connection sections with a covering material such as waterproof tape blocks moisture from entering the contact points and prevents metal corrosion. .
特許第6583489号公報Patent No. 6583489
 しかしながら、特許文献1に開示された技術では、接続部材に複数種類の金属を用いること、絶縁層を設けること、および、防水用の被覆部材を用いることにより構造の複雑化を招くため、製造工数の増加、部品点数の増加といった問題がある。 However, with the technology disclosed in Patent Document 1, the structure becomes complicated due to the use of multiple types of metals for the connection member, the provision of an insulating layer, and the use of a waterproof covering member, which increases manufacturing man-hours. There are problems such as an increase in the number of parts and an increase in the number of parts.
 本開示は、上記に鑑みてなされたものであって、簡易な構造で、腐食の防止と電磁ノイズの低減との両立を図ることができる空気調和機の室外機を得ることを目的とする。 The present disclosure has been made in view of the above, and aims to provide an outdoor unit of an air conditioner that has a simple structure and can prevent corrosion and reduce electromagnetic noise.
 上述した課題を解決し、目的を達成するために、本開示にかかる空気調和機の室外機は、第1の金属により形成されている箱状の筐体と、少なくとも一部が第1の金属とは自然電位が異なる第2の金属により形成され、筐体内に配置されて非導電性部材を介して筐体に固定される熱交換器と、非金属により形成されて、筐体内に配置される導電性部材と、を備えている。導電性部材は、筐体に固定されて筐体と電気的に接続されるとともに、熱交換器と電気的に接続されている。 In order to solve the above-mentioned problems and achieve the objects, an outdoor unit of an air conditioner according to the present disclosure includes a box-shaped casing made of a first metal, and a box-shaped casing made of a first metal, at least a part of which is made of the first metal. A heat exchanger is formed of a second metal that has a different natural potential from that of the heat exchanger, and is placed inside the housing and fixed to the housing via a non-conductive member. and a conductive member. The conductive member is fixed to the housing and electrically connected to the housing, and is also electrically connected to the heat exchanger.
 本開示にかかる空気調和機の室外機は、簡易な構造で、腐食の防止と電磁ノイズの低減との両立を図ることができるという効果を奏する。 The outdoor unit of the air conditioner according to the present disclosure has a simple structure and has the effect of being able to prevent corrosion and reduce electromagnetic noise at the same time.
実施の形態1にかかる空気調和機の室外機を模式的に示した分解斜視図An exploded perspective view schematically showing the outdoor unit of the air conditioner according to the first embodiment. 実施の形態1にかかる空気調和機の室外機を示した正面図であって、筐体の筐体前面パネルを取り外した状態を示した図FIG. 2 is a front view of the outdoor unit of the air conditioner according to Embodiment 1, with the front panel of the casing removed. 実施の形態1における電子基板箱およびインターフェースパネルを示した分解斜視図An exploded perspective view showing an electronic board box and an interface panel in Embodiment 1 図3に示される電子基板箱とインターフェースパネルとを組み立てた状態を示した斜視図A perspective view showing an assembled state of the electronic board box and interface panel shown in FIG. 3 実施の形態1における空気調和機の室外機を示した右側面図Right side view showing the outdoor unit of the air conditioner in Embodiment 1 図2に示されたVI-VI線に沿った断面図A cross-sectional view along the VI-VI line shown in Figure 2 実施の形態1における熱交換器を模式的に示した斜視図A perspective view schematically showing a heat exchanger in Embodiment 1. 実施の形態1における熱交換器を示した正面図Front view showing the heat exchanger in Embodiment 1 図8に示された熱交換器の要部拡大図Enlarged view of the main parts of the heat exchanger shown in Figure 8 実施の形態1における導電性部材を示した平面図であって、第1の導電性部材を示した図FIG. 2 is a plan view showing a conductive member in Embodiment 1, and a diagram showing a first conductive member. 実施の形態1における導電性部材を示した平面図であって、第2の導電性部材を示した図FIG. 2 is a plan view showing the conductive member in Embodiment 1, and a diagram showing a second conductive member. 実施の形態1にかかる空気調和機の室外機を示した平面図であって、筐体の筐体天面パネルを取り外した状態かつ筐体に導電性部材を取り付けた状態を示した図FIG. 2 is a plan view showing the outdoor unit of the air conditioner according to Embodiment 1, with the top panel of the casing removed and a conductive member attached to the casing. 実施の形態1にかかる空気調和機の室外機において電磁ノイズの伝達経路を電気回路として示した模式図A schematic diagram showing an electromagnetic noise transmission path as an electric circuit in the outdoor unit of the air conditioner according to Embodiment 1. 実施の形態1にかかる空気調和機の室外機において、導電性部材を備えない場合に電磁ノイズとなる電流が伝達する経路を等価回路化した回路図A circuit diagram showing an equivalent circuit of a path through which current that causes electromagnetic noise is transmitted when the outdoor unit of the air conditioner according to Embodiment 1 does not include a conductive member. 実施の形態1にかかる空気調和機の室外機の背面図であって、導電性部材を備えない場合に電磁ノイズが発生する箇所を示した図FIG. 2 is a rear view of the outdoor unit of the air conditioner according to Embodiment 1, showing locations where electromagnetic noise occurs when no conductive member is provided. 実施の形態1にかかる空気調和機の室外機において、絶縁部材を介することなく熱交換器と筐体とを直接接触させた場合に電磁ノイズとなる電流が伝達する経路を等価回路化した回路図In the outdoor unit of the air conditioner according to Embodiment 1, a circuit diagram showing an equivalent circuit of a path through which current that causes electromagnetic noise is transmitted when the heat exchanger and the casing are brought into direct contact without using an insulating member.
 以下に、実施の形態にかかる空気調和機の室外機を図面に基づいて詳細に説明する。 Below, an outdoor unit of an air conditioner according to an embodiment will be described in detail based on the drawings.
実施の形態1.
 図1は、実施の形態1にかかる空気調和機の室外機1を模式的に示した分解斜視図である。図1に示すように、空気調和機の室外機1は、筐体2と、複数の導電性部材3と、仕切りパネル4と、送風機5と、熱交換器6と、複数の絶縁部材7と、圧縮機8と、電子基板箱9とを備えている。以下、空気調和機の室外機1を単に室外機1と称する場合もある。
Embodiment 1.
FIG. 1 is an exploded perspective view schematically showing an outdoor unit 1 of an air conditioner according to a first embodiment. As shown in FIG. 1, an outdoor unit 1 of an air conditioner includes a housing 2, a plurality of conductive members 3, a partition panel 4, a blower 5, a heat exchanger 6, and a plurality of insulating members 7. , a compressor 8, and an electronic board box 9. Hereinafter, the outdoor unit 1 of the air conditioner may be simply referred to as the outdoor unit 1.
 以下、室外機1の各構成要素について方向を説明するときには、室外機1の奥行方向をX軸方向、室外機1の高さ方向をY軸方向、室外機1の幅方向をZ軸方向とする。また、X軸方向の+向きを前方、X軸方向の-向きを後方とする。X軸方向の+向きは、X軸の-側から+側への向きであり、X軸方向の-向きは、X軸の+側から-側への向きである。また、Y軸方向の+向きを上方、Y軸方向の-向きを下方とする。Y軸方向の+向きは、Y軸の-側から+側への向きであり、Y軸方向の-向きは、Y軸の+側から-側への向きである。また、Z軸方向の+向きを右方、Z軸方向の-向きを左方とする。Z軸方向の+向きは、Z軸の-側から+側への向きであり、Z軸方向の-向きは、Z軸の+側から-側への向きである。本実施の形態では、室外機1のうち送風機5によって生成された空気流が外部へ排出されるX軸方向の+向きを正面とし、正面の反対側を背面とする。 Hereinafter, when explaining the directions of each component of the outdoor unit 1, the depth direction of the outdoor unit 1 is referred to as the X-axis direction, the height direction of the outdoor unit 1 is referred to as the Y-axis direction, and the width direction of the outdoor unit 1 is referred to as the Z-axis direction. do. Further, the + direction in the X-axis direction is defined as the front, and the - direction in the X-axis direction is defined as the rear. The + direction in the X-axis direction is the direction from the - side to the + side of the X-axis, and the - direction in the X-axis direction is the direction from the + side to the - side of the X-axis. Further, the + direction in the Y-axis direction is defined as the upper direction, and the - direction in the Y-axis direction is defined as the lower direction. The + direction in the Y-axis direction is the direction from the - side to the + side of the Y-axis, and the - direction in the Y-axis direction is the direction from the + side to the - side of the Y-axis. Further, the + direction in the Z-axis direction is defined as the right direction, and the - direction in the Z-axis direction is defined as the left direction. The + direction in the Z-axis direction is the direction from the - side to the + side of the Z-axis, and the - direction in the Z-axis direction is the direction from the + side to the - side of the Z-axis. In this embodiment, the + direction in the X-axis direction in which the airflow generated by the blower 5 of the outdoor unit 1 is discharged to the outside is defined as the front, and the side opposite to the front is defined as the back.
 図2は、実施の形態1にかかる空気調和機の室外機1を示した正面図であって、筐体2の筐体前面パネル2eを取り外した状態を示した図である。図2では、理解の容易化のために、熱交換器6にドットハッチングを付している。図1および図2に示すように、筐体2は、室外機1の外殻となる箱状の部材である。筐体2は、第1の金属により形成されている。第1の金属は、強度が高い金属であることが好ましい。第1の金属は、例えば、鉄、鉄合金である。 FIG. 2 is a front view of the outdoor unit 1 of the air conditioner according to the first embodiment, with the front panel 2e of the casing 2 removed. In FIG. 2, the heat exchanger 6 is shown with dot hatching for ease of understanding. As shown in FIGS. 1 and 2, the housing 2 is a box-shaped member that serves as an outer shell of the outdoor unit 1. As shown in FIGS. The housing 2 is made of a first metal. The first metal is preferably a metal with high strength. The first metal is, for example, iron or an iron alloy.
 図1に示すように、筐体2は、筐体床面パネル2aと、筐体天面パネル2bと、第1の連結パネル2cと、第2の連結パネル2dとを有している。筐体床面パネル2aは、室外機1の外殻の底面を構成する。筐体床面パネル2aの平面視形状は、四隅が丸みを帯びた矩形である。筐体天面パネル2bは、筐体床面パネル2aの上方に筐体床面パネル2aから離れて配置されている。筐体天面パネル2bは、室外機1の外殻の天井面を構成する。筐体天面パネル2bの平面視形状は、筐体床面パネル2aの平面視形状と同じである。 As shown in FIG. 1, the housing 2 includes a housing floor panel 2a, a housing top panel 2b, a first connecting panel 2c, and a second connecting panel 2d. The housing floor panel 2a constitutes the bottom surface of the outer shell of the outdoor unit 1. The casing floor panel 2a has a rectangular shape in plan view with four rounded corners. The housing top panel 2b is arranged above the housing floor panel 2a and away from the housing floor panel 2a. The housing top panel 2b constitutes the ceiling surface of the outer shell of the outdoor unit 1. The plan view shape of the housing top panel 2b is the same as the plan view shape of the housing floor panel 2a.
 第1の連結パネル2cおよび第2の連結パネル2dは、筐体床面パネル2aと筐体天面パネル2bとを連結する。第1の連結パネル2cの平面視形状は、L字である。第1の連結パネル2cは、Z軸方向に沿って延びる筐体前面パネル2eと、筐体前面パネル2eのZ軸方向に沿った一方の縁部となる左縁部から後方に向かって延びる筐体側面パネル2fとを有している。 The first connection panel 2c and the second connection panel 2d connect the housing floor panel 2a and the housing top panel 2b. The first connection panel 2c has an L-shape in plan view. The first connection panel 2c includes a housing front panel 2e extending along the Z-axis direction, and a housing front panel 2e extending rearward from the left edge, which is one edge along the Z-axis direction of the housing front panel 2e. It has a body side panel 2f.
 筐体前面パネル2eは、筐体床面パネル2aの前縁部と筐体天面パネル2bの前縁部とを連結する。筐体前面パネル2eは、室外機1の外殻の正面を構成する。筐体前面パネル2eには、排気口2jが形成されている。排気口2jは、送風機5によって生成された空気流を後記するファン室10の外部へ排出するための開口である。筐体側面パネル2fは、筐体床面パネル2aの左縁部と筐体天面パネル2bの左縁部とを連結する。筐体側面パネル2fは、室外機1の外殻の左側面を構成する。筐体前面パネル2eと筐体側面パネル2fとは本実施の形態では一体に形成されているが、別体で形成されてもよい。 The housing front panel 2e connects the front edge of the housing floor panel 2a and the front edge of the housing top panel 2b. The housing front panel 2e constitutes the front surface of the outer shell of the outdoor unit 1. An exhaust port 2j is formed in the housing front panel 2e. The exhaust port 2j is an opening for discharging the airflow generated by the blower 5 to the outside of the fan chamber 10, which will be described later. The housing side panel 2f connects the left edge of the housing floor panel 2a and the left edge of the housing top panel 2b. The housing side panel 2f constitutes the left side of the outer shell of the outdoor unit 1. Although the housing front panel 2e and the housing side panel 2f are integrally formed in this embodiment, they may be formed separately.
 第2の連結パネル2dの平面視形状は、L字である。第2の連結パネル2dは、X軸方向に沿って延びる筐体側面パネル2gと、筐体側面パネル2gのX軸方向に沿った一方の縁部となる後縁部から左方に向かって延びる筐体背面パネル2hとを有している。 The plan view shape of the second connection panel 2d is L-shaped. The second connection panel 2d extends leftward from the housing side panel 2g extending along the X-axis direction and the rear edge that is one edge along the X-axis direction of the housing side panel 2g. The housing has a rear panel 2h.
 筐体側面パネル2gは、筐体床面パネル2aの右縁部と筐体天面パネル2bの右縁部とを連結する。筐体側面パネル2gは、室外機1の外殻の右側面を構成する。筐体背面パネル2hは、筐体床面パネル2aの後縁部の一部と筐体天面パネル2bの後縁部の一部とを連結する。筐体背面パネル2hは、室外機1の外殻の背面の一部を構成する。筐体側面パネル2gと筐体背面パネル2hとは本実施の形態では一体に形成されているが、別体で形成されてもよい。 The housing side panel 2g connects the right edge of the housing floor panel 2a and the right edge of the housing top panel 2b. The housing side panel 2g constitutes the right side of the outer shell of the outdoor unit 1. The housing back panel 2h connects a part of the rear edge of the housing floor panel 2a and a part of the rear edge of the housing top panel 2b. The housing back panel 2h constitutes a part of the back surface of the outer shell of the outdoor unit 1. Although the housing side panel 2g and the housing back panel 2h are integrally formed in this embodiment, they may be formed separately.
 図1に示される各パネルが組み付けられた状態で、筐体背面パネル2hの左縁部と筐体側面パネル2fの後縁部とは、互いに離れている。筐体背面パネル2hの左縁部と筐体側面パネル2fの後縁部との間には、室外の空気を流入させるための給気口2iが形成される。給気口2iは、筐体2の外部の空気を後記するファン室10に流入させるための開口である。給気口2iは、筐体床面パネル2aと筐体天面パネル2bと筐体背面パネル2hと筐体側面パネル2fとに囲まれて形成されている。 In the assembled state of each panel shown in FIG. 1, the left edge of the housing back panel 2h and the rear edge of the housing side panel 2f are separated from each other. An air supply port 2i for introducing outdoor air is formed between the left edge of the housing back panel 2h and the rear edge of the housing side panel 2f. The air supply port 2i is an opening that allows air outside the housing 2 to flow into a fan chamber 10, which will be described later. The air supply port 2i is surrounded by a housing floor panel 2a, a housing top panel 2b, a housing back panel 2h, and a housing side panel 2f.
 導電性部材3は、筐体2内に配置される部材である。導電性部材3は、金属に対して導電性を有する非金属により形成されている。導電性部材3の材料は、例えば、絶縁性を有するプラスチックに炭素繊維などの導体を練り込んだ複合材料、絶縁性を有するプラスチックの表面に導体の薄膜を形成した複合材料である。このような複合材料としては、例えば、カーボングラファイトが挙げられる。導電性部材3は、筐体2に固定されて筐体2と電気的に接続されるとともに、熱交換器6と電気的に接続されている。筐体2と熱交換器6とは、導電性部材3を介して電気的に接続されている。本明細書において金属製部材と導電性部材3とにおける「電気的に接続」とは、金属製部材と導電性部材3とが直接接触して導通している状態の他、金属製部材と導電性部材3とが隙間を介して導通している状態も含まれる。導電性部材3は、本実施の形態では筐体2と熱交換器6とに接触している。 The conductive member 3 is a member disposed within the casing 2. The conductive member 3 is made of a non-metal that is conductive to metal. The material of the conductive member 3 is, for example, a composite material in which a conductor such as carbon fiber is kneaded into an insulating plastic, or a composite material in which a thin film of a conductor is formed on the surface of an insulating plastic. An example of such a composite material is carbon graphite. The conductive member 3 is fixed to and electrically connected to the casing 2 and is also electrically connected to the heat exchanger 6 . The casing 2 and the heat exchanger 6 are electrically connected via the conductive member 3. In this specification, "electrically connected" between the metal member and the conductive member 3 refers to a state in which the metal member and the conductive member 3 are in direct contact and conduction, as well as a state in which the metal member and the conductive member 3 are electrically conductive. This also includes a state in which the sexual member 3 is electrically connected through a gap. The conductive member 3 is in contact with the housing 2 and the heat exchanger 6 in this embodiment.
 筐体2と導電性部材3とが互いに接触する箇所は、溶接、ネジなどにより接合されている。筐体2の各パネルの表面に塗装などが施されて各パネルの表面の電気抵抗が高い場合には、例えば、予め接合部の一部または全部にマスキングを施したり、セレーションネジを用いてネジ締めの際に塗装を剥がしたりして、各パネルの表面の電気抵抗を下げればよい。導電性部材3の数は、単数でも複数でもよいが、本実施の形態では2つである。以下、2つの導電性部材3を区別する場合には、一方の導電性部材3を第1の導電性部材3aと称し、他方の導電性部材3を第2の導電性部材3bと称する。 The portions where the housing 2 and the conductive member 3 come into contact with each other are joined by welding, screws, or the like. If the surface of each panel of the housing 2 is coated with paint or the like and has a high electrical resistance, for example, masking some or all of the joints in advance or tightening the screws using serrated screws. The electrical resistance on the surface of each panel can be lowered by removing the paint when tightening. The number of conductive members 3 may be singular or plural, but in this embodiment, it is two. Hereinafter, when distinguishing between the two conductive members 3, one conductive member 3 will be referred to as a first conductive member 3a, and the other conductive member 3 will be referred to as a second conductive member 3b.
 図2に示すように、仕切りパネル4は、筐体2の内部をファン室10と電気室11とに区画する金属製部材である。仕切りパネル4は、筐体2の一部となる。ファン室10と電気室11とは、Z軸方向に並んで形成されている。仕切りパネル4は、筐体床面パネル2aから電子基板箱9に亘ってY軸方向に延びている。仕切りパネル4は、図1に示される筐体前面パネル2eから筐体背面パネル2hに亘ってX軸方向に延びている。 As shown in FIG. 2, the partition panel 4 is a metal member that partitions the inside of the housing 2 into a fan chamber 10 and an electrical room 11. The partition panel 4 becomes a part of the housing 2. The fan chamber 10 and the electrical chamber 11 are formed side by side in the Z-axis direction. The partition panel 4 extends in the Y-axis direction from the housing floor panel 2a to the electronic board box 9. The partition panel 4 extends in the X-axis direction from the housing front panel 2e to the housing back panel 2h shown in FIG.
 図1に示される筐体2と仕切りパネル4とは、同種の第1の金属により形成されている。筐体2と仕切りパネル4とが互いに接触する箇所は、溶接、ネジなどにより接合されている。筐体2の各パネルの表面に塗装などが施されて各パネルの表面の電気抵抗が高い場合には、例えば、あらかじめ接合部の一部または全部にマスキングを施したり、セレーションネジを用いてネジ締めの際に塗装を剥がしたりして、各パネルの表面の電気抵抗を下げればよい。 The housing 2 and the partition panel 4 shown in FIG. 1 are made of the same type of first metal. The portions where the housing 2 and the partition panel 4 come into contact with each other are joined by welding, screws, or the like. If the surface of each panel of the casing 2 is coated with paint, etc. and the electrical resistance of the surface of each panel is high, for example, masking some or all of the joints in advance or using serration screws to tighten the The electrical resistance on the surface of each panel can be lowered by removing the paint when tightening.
 図2に示すように、送風機5は、ファン室10に配置されて、空気流を生成する機器である。送風機5は、筐体床面パネル2aから立ち上がる支柱5aと、支柱5aに取り付けられたファンモータ5bと、ファンモータ5bの回転軸に取り付けられてファンモータ5bの回転に伴って回転するプロペラファン5cとを有している。支柱5aの上端部は、筐体天面パネル2bに固定されている。支柱5aの下端部は、筐体床面パネル2aに固定されている。ファンモータ5bは、ファン駆動電線12を介して後記する電子基板9cと電気的に接続されている。ファンモータ5bは、ファン駆動電線12を介して電子基板9cから出力される駆動信号を受信したときに回転する。ファンモータ5bが回転してプロペラファン5cが駆動すると、ファン室10が負圧になるため、室外機1の外部の空気は、給気口2iからファン室10に流入する。ファン室10に流入した空気は、熱交換器6を通過して、送風機5によって空気流となり、図1に示される排気口2jからファン室10の外部へと排出される。 As shown in FIG. 2, the blower 5 is a device that is placed in the fan room 10 and generates airflow. The blower 5 includes a support 5a rising from the housing floor panel 2a, a fan motor 5b attached to the support 5a, and a propeller fan 5c attached to the rotating shaft of the fan motor 5b to rotate as the fan motor 5b rotates. It has The upper end of the support column 5a is fixed to the housing top panel 2b. The lower end of the support column 5a is fixed to the housing floor panel 2a. The fan motor 5b is electrically connected to an electronic board 9c, which will be described later, via a fan drive wire 12. The fan motor 5b rotates when receiving a drive signal output from the electronic board 9c via the fan drive wire 12. When the fan motor 5b rotates and the propeller fan 5c is driven, the pressure in the fan chamber 10 becomes negative, so that air outside the outdoor unit 1 flows into the fan chamber 10 from the air supply port 2i. The air that has flowed into the fan chamber 10 passes through the heat exchanger 6, becomes an airflow by the blower 5, and is discharged to the outside of the fan chamber 10 from the exhaust port 2j shown in FIG.
 熱交換器6は、ファン室10に配置されて、冷媒と室外の空気との熱交換を行うための部材である。熱交換器6には、送風機5に取り込むための室外の空気が通過する。熱交換器6は、例えば、パラレルフロー型の熱交換器である。熱交換器6は、筐体2内に配置されて、非導電性部材である絶縁部材7を介して筐体2に固定されている。熱交換器6の少なくとも一部は、第1の金属とは自然電位が異なる第2の金属により形成されている。第2の金属は、熱伝導率の高い金属であることが好ましい。第2の金属は、例えば、アルミニウム、アルミニウム合金である。第1の金属の自然電位は、第2の金属の自然電位よりも高い。 The heat exchanger 6 is a member disposed in the fan room 10 to exchange heat between the refrigerant and outdoor air. Outdoor air to be taken into the blower 5 passes through the heat exchanger 6 . The heat exchanger 6 is, for example, a parallel flow type heat exchanger. The heat exchanger 6 is disposed within the casing 2 and fixed to the casing 2 via an insulating member 7 that is a non-conductive member. At least a portion of the heat exchanger 6 is formed of a second metal that has a different natural potential from the first metal. The second metal is preferably a metal with high thermal conductivity. The second metal is, for example, aluminum or an aluminum alloy. The natural potential of the first metal is higher than the natural potential of the second metal.
 図1に示すように、熱交換器6の平面視形状は、L字である。熱交換器6は、Z軸方向に沿って延びる第1の熱交換部6aと、X軸方向に沿って延びる第2の熱交換部6bとを有している。第2の熱交換部6bは、第1の熱交換部6aのZ軸方向に沿った一方の端部となる左端部から前方に向かって延びている。第1の熱交換部6aは、送風機5の後方に配置されている。第2の熱交換部6bは、室外機1の正面から見て送風機5の左方に配置されている。熱交換器6と送風機5とは、互いに間隔を空けて配置されていて電気的に絶縁されているか、または、図示しない絶縁部材を介して配置されていて電気的に絶縁されている。 As shown in FIG. 1, the shape of the heat exchanger 6 in plan view is L-shaped. The heat exchanger 6 has a first heat exchange section 6a extending along the Z-axis direction and a second heat exchange section 6b extending along the X-axis direction. The second heat exchange section 6b extends forward from the left end, which is one end along the Z-axis direction of the first heat exchange section 6a. The first heat exchange section 6a is arranged behind the blower 5. The second heat exchange section 6b is arranged on the left side of the blower 5 when viewed from the front of the outdoor unit 1. The heat exchanger 6 and the blower 5 are either spaced from each other and electrically insulated, or are arranged and electrically insulated via an insulating member (not shown).
 熱交換器6と第1の連結パネル2cおよび第2の連結パネル2dとは、互いに間隔を空けて配置されていて電気的に絶縁されているか、または、図示しない絶縁部材を介して配置されていて電気的に絶縁されている。図2に示すように、熱交換器6の上端部は、絶縁部材7を介して筐体天面パネル2bに固定されている。熱交換器6の下端部は、絶縁部材7を介して筐体床面パネル2aに固定されている。熱交換器6と筐体天面パネル2bおよび筐体床面パネル2aとは、電気的に絶縁されている。熱交換器6は、熱交換器6の周辺に配置される筐体2、送風機5などの金属製部材と直接接触することなく配置されている。 The heat exchanger 6, the first connection panel 2c, and the second connection panel 2d are arranged at intervals and electrically insulated from each other, or are arranged via an insulating member (not shown). electrically isolated. As shown in FIG. 2, the upper end of the heat exchanger 6 is fixed to the housing top panel 2b via an insulating member 7. A lower end portion of the heat exchanger 6 is fixed to the housing floor panel 2a via an insulating member 7. The heat exchanger 6, the housing top panel 2b, and the housing floor panel 2a are electrically insulated. The heat exchanger 6 is arranged without directly contacting metal members such as the housing 2 and the blower 5 arranged around the heat exchanger 6.
 図1に示される2つの絶縁部材7の材料には、樹脂などの電気的な絶縁性を有する材料が用いられる。以下、2つの絶縁部材7を区別する場合には、熱交換器6の下端部に設けられた絶縁部材7を第1の絶縁部材7aと称し、熱交換器6の上端部に設けられた絶縁部材7を第2の絶縁部材7bと称する。本実施の形態では、熱交換器6と同じ平面視形状および同じ大きさである第1の絶縁部材7aおよび第2の絶縁部材7bを用いて、熱交換器6の底面および天面の全面を覆うことにより熱交換器6と筐体2とを電気的に絶縁しているが、両部材の電気的な絶縁手段を限定する趣旨ではない。例えば、電気的な絶縁性を有する材料により形成された台を熱交換器6の底面に数箇所設けて、熱交換器6と筐体床面パネル2aとの間に台を介在させる構成にしてもよい。このような構成にすると、熱交換器6と筐体床面パネル2aとが互いにY軸方向に離れるため、熱交換器6と筐体床面パネル2aとを電気的に絶縁することができる。 The two insulating members 7 shown in FIG. 1 are made of an electrically insulating material such as resin. Hereinafter, when distinguishing between the two insulating members 7, the insulating member 7 provided at the lower end of the heat exchanger 6 will be referred to as a first insulating member 7a, and the insulating member 7 provided at the upper end of the heat exchanger 6 will be referred to as a first insulating member 7a. The member 7 is referred to as a second insulating member 7b. In this embodiment, the entire bottom and top surfaces of the heat exchanger 6 are covered by using the first insulating member 7a and the second insulating member 7b, which have the same planar shape and the same size as the heat exchanger 6. Although the heat exchanger 6 and the housing 2 are electrically insulated by covering them, this is not intended to limit the electrical insulating means for both members. For example, a configuration may be adopted in which several stands made of electrically insulating material are provided on the bottom of the heat exchanger 6, and the stands are interposed between the heat exchanger 6 and the housing floor panel 2a. Good too. With this configuration, the heat exchanger 6 and the housing floor panel 2a are separated from each other in the Y-axis direction, so that the heat exchanger 6 and the housing floor panel 2a can be electrically insulated.
 図2に示すように、圧縮機8は、電気室11に配置されて、熱交換器6内を流れる冷媒を圧縮する機器である。圧縮機8は、電気室11のうち下方空間において、筐体床面パネル2aの上に配置されている。圧縮機8は、ネジなどにより筐体床面パネル2aに固定されている。 As shown in FIG. 2, the compressor 8 is a device that is placed in the electrical room 11 and compresses the refrigerant flowing inside the heat exchanger 6. The compressor 8 is arranged on the housing floor panel 2a in the lower space of the electrical room 11. The compressor 8 is fixed to the housing floor panel 2a with screws or the like.
 電子基板箱9は、室外機1を運転させるために必要な制御基板などの電子基板9cを収容する部材である。電子基板箱9は、中空の直方体状に形成されている。電子基板箱9は、仕切りパネル4の上端部に固定されていて、ファン室10と電気室11とに跨って配置されている。電子基板箱9のうちファン室10に配置された部分には、下向きに延びるヒートシンク9dが取り付けられている。ヒートシンク9dは、ファン室10に露出している。ヒートシンク9dは、送風機5が生成した空気流により冷却される。 The electronic board box 9 is a member that accommodates an electronic board 9c such as a control board necessary for operating the outdoor unit 1. The electronic board box 9 is formed into a hollow rectangular parallelepiped shape. The electronic board box 9 is fixed to the upper end of the partition panel 4 and is disposed astride the fan room 10 and the electrical room 11. A heat sink 9d extending downward is attached to a portion of the electronic board box 9 located in the fan chamber 10. The heat sink 9d is exposed to the fan chamber 10. The heat sink 9d is cooled by the airflow generated by the blower 5.
 電子基板箱9のうち電気室11に配置された部分は、圧縮機8の上方に配置されている。電子基板9cのうち電気室11に配置された部分には、圧縮機駆動電線13が接続されている。圧縮機8は、圧縮機駆動電線13を介して電子基板9cと電気的に接続されている。圧縮機8は、圧縮機駆動電線13を介して電子基板9cから出力される駆動信号を受信したときに駆動する。 A portion of the electronic board box 9 located in the electrical room 11 is located above the compressor 8. A compressor drive electric wire 13 is connected to a portion of the electronic board 9c located in the electrical room 11. The compressor 8 is electrically connected to the electronic board 9c via a compressor drive wire 13. The compressor 8 is driven when it receives a drive signal output from the electronic board 9c via the compressor drive wire 13.
 電気室11は、筐体床面パネル2aと仕切りパネル4と筐体側面パネル2gと電子基板箱9と図1に示される筐体前面パネル2eと筐体背面パネル2hとに囲われて形成されていて、筐体2の外部からの雨水などの水分の浸入を防げる防水構造となっている。筐体側面パネル2gの外面の下部には、ストップバルブ17が設けられている。ストップバルブ17は、図示しない室内機ユニットと繋がる冷媒配管を接続するためのターミナルとなる。 The electrical room 11 is surrounded by a housing floor panel 2a, a partition panel 4, a housing side panel 2g, an electronic board box 9, a housing front panel 2e, and a housing back panel 2h shown in FIG. The housing 2 has a waterproof structure that prevents moisture such as rainwater from entering from outside. A stop valve 17 is provided at the lower part of the outer surface of the housing side panel 2g. The stop valve 17 serves as a terminal for connecting a refrigerant pipe connected to an indoor unit (not shown).
 圧縮機8とストップバルブ17とは、複数本の冷媒配管18を介して互いに接続されている。圧縮機8と熱交換器6とは、複数本の冷媒配管18を介して互いに接続されている。熱交換器6と冷媒配管18との接続部19は、防水構造となっている電気室11に配置されている。このように接続部19を電気室11に配置すると、接続部19と水分との接触を防止することができるため、接続部19の腐食を防止できる。なお、接続部19に対する防水効果をさらに高めるため、接続部19に防水テープなどを巻き付けて防水加工を施してもよい。具体的な図示は省略するが、冷媒配管18には、冷媒の流れる方向を切り替える四方弁、冷媒を既定の圧力まで膨張させる膨張弁といった弁装置が接続される。冷媒配管18の接続形態は、図示した例に限定されない。 The compressor 8 and the stop valve 17 are connected to each other via a plurality of refrigerant pipes 18. The compressor 8 and the heat exchanger 6 are connected to each other via a plurality of refrigerant pipes 18. A connecting portion 19 between the heat exchanger 6 and the refrigerant pipe 18 is arranged in an electrical room 11 having a waterproof structure. When the connecting portion 19 is disposed in the electrical room 11 in this manner, it is possible to prevent the connecting portion 19 from coming into contact with moisture, thereby preventing corrosion of the connecting portion 19. In addition, in order to further enhance the waterproof effect on the connecting portion 19, the connecting portion 19 may be waterproofed by wrapping it with waterproof tape or the like. Although not shown in detail, the refrigerant pipe 18 is connected to a valve device such as a four-way valve that changes the direction in which the refrigerant flows, and an expansion valve that expands the refrigerant to a predetermined pressure. The connection form of the refrigerant piping 18 is not limited to the illustrated example.
 電気室11のうち上方空間には、インターフェースパネル20が設置されている。インターフェースパネル20は、筐体側面パネル2gの内面と電子基板箱9の下面とにそれぞれ固定されている。インターフェースパネル20には、端子台21が設置されている。端子台21には、外部AC電力線14と内部電力線15とが接続されている。外部AC電力線14は、端子台21を介して、内部電力線15と電気的に接続されている。内部電力線15は、電子基板9cと電気的に接続されている。電子基板9cへの電力は、外部AC電力線14、端子台21および内部電力線15を経由して供給される。電子基板9cに供給される電力の電圧は、例えば、単相200Vであるが、この電圧に限定されない。 An interface panel 20 is installed in the upper space of the electrical room 11. The interface panel 20 is fixed to the inner surface of the housing side panel 2g and the lower surface of the electronic board box 9, respectively. A terminal block 21 is installed on the interface panel 20. An external AC power line 14 and an internal power line 15 are connected to the terminal block 21 . External AC power line 14 is electrically connected to internal power line 15 via terminal block 21 . Internal power line 15 is electrically connected to electronic board 9c. Power to the electronic board 9c is supplied via the external AC power line 14, the terminal block 21, and the internal power line 15. The voltage of the power supplied to the electronic board 9c is, for example, single-phase 200V, but is not limited to this voltage.
 インターフェースパネル20は、筐体側面パネル2gと同じ第1の金属により形成されている。そのため、インターフェースパネル20は、電気抵抗が低い状態で筐体側面パネル2gに接合されている。インターフェースパネル20は、電子基板9cのシグナルグラウンドに接続されている。インターフェースパネル20は、アース線16が接続されるアース接続点20eを有している。インターフェースパネル20は、アース接続点20eおよびアース線16を介して接地されている。インターフェースパネル20に接合される筐体2と筐体2に接合される仕切りパネル4とは、アース接続点20eおよびアース線16を介して接地されている。 The interface panel 20 is made of the same first metal as the case side panel 2g. Therefore, the interface panel 20 is joined to the housing side panel 2g with low electrical resistance. The interface panel 20 is connected to the signal ground of the electronic board 9c. The interface panel 20 has a ground connection point 20e to which the ground wire 16 is connected. Interface panel 20 is grounded via ground connection point 20e and ground wire 16. The casing 2 joined to the interface panel 20 and the partition panel 4 joined to the casing 2 are grounded via a ground connection point 20e and a ground wire 16.
 次に、室外機1の構成についてさらに詳しく説明する。まず、図3および図4を参照して、電子基板箱9およびインターフェースパネル20の構成について説明する。図3は、実施の形態1における電子基板箱9およびインターフェースパネル20を示した分解斜視図である。図4は、図3に示される電子基板箱9とインターフェースパネル20とを組み立てた状態を示した斜視図である。 Next, the configuration of the outdoor unit 1 will be explained in more detail. First, the configurations of the electronic board box 9 and the interface panel 20 will be described with reference to FIGS. 3 and 4. FIG. 3 is an exploded perspective view showing the electronic board box 9 and the interface panel 20 in the first embodiment. FIG. 4 is a perspective view showing a state in which the electronic board box 9 and the interface panel 20 shown in FIG. 3 are assembled.
 図3に示すように、電子基板箱9は、上方に開口する箱状の下箱9aと、下箱9aの上部の開口を覆う上蓋9bと、電子基板9cと、ヒートシンク9dとを有している。電子基板9cは、下箱9a内に配置されて下箱9aに固定される。電子基板9cは、端子台21に接続される内部電力線15と、圧縮機8に接続される圧縮機駆動電線13とを有している。図示は省略するが、電子基板9cは、発熱素子、ファンモータ5b、その他の駆動機器を動作させるための各種電力線などを有している。 As shown in FIG. 3, the electronic board box 9 includes a box-shaped lower box 9a that opens upward, an upper lid 9b that covers the upper opening of the lower box 9a, an electronic board 9c, and a heat sink 9d. There is. The electronic board 9c is placed in the lower box 9a and fixed to the lower box 9a. The electronic board 9c has an internal power line 15 connected to the terminal block 21 and a compressor drive electric wire 13 connected to the compressor 8. Although not shown, the electronic board 9c includes a heating element, a fan motor 5b, and various power lines for operating other drive devices.
 ヒートシンク9dは、電子基板9cに密着した状態で、電子基板9cに固定される。ヒートシンク9dは、電子基板9cの発熱素子を冷却する役割を果たしている。発熱素子は、例えば、IGBT(Insulated Gate Bipolar Transistor)に代表されるパワー半導体である。ヒートシンク9dが固定された電子基板9cは、下箱9aの上部の開口から下箱9a内に挿入される。図3および図4に示すように、ヒートシンク9dの一部または全部は、下箱9aの底壁に形成された孔9eを通じて下箱9aの外部に露出する。 The heat sink 9d is fixed to the electronic board 9c while being in close contact with the electronic board 9c. The heat sink 9d plays a role of cooling the heat generating elements of the electronic board 9c. The heating element is, for example, a power semiconductor represented by an IGBT (Insulated Gate Bipolar Transistor). The electronic board 9c to which the heat sink 9d is fixed is inserted into the lower box 9a from the opening at the top of the lower box 9a. As shown in FIGS. 3 and 4, part or all of the heat sink 9d is exposed to the outside of the lower box 9a through a hole 9e formed in the bottom wall of the lower box 9a.
 図3に示される下箱9aと上蓋9bとは、例えば、ゴム、樹脂、鉄などの金属、または、これらの組み合わせにより形成されている。例えば、下箱9aと上蓋9bとが金属により形成された場合には、電子基板9cの周囲を金属で覆う構造になるため、電子基板9cから発生する電磁ノイズの電子基板箱9の外部への放射を抑制できる。ファン室10で飛散する雨水などの水分が、下箱9aの底壁に形成された孔9eを通じて、電子基板箱9内、電気室11に浸入する虞がある。そのため、実際には、水分が浸入しにくいように孔9eの形状および下箱9aの形状を工夫したり、防水用の構造物を新たに追加したりするなどの手段を講じて、電子基板箱9内および電気室11の防水性を確保している。 The lower box 9a and upper lid 9b shown in FIG. 3 are made of, for example, rubber, resin, metal such as iron, or a combination thereof. For example, when the lower box 9a and the upper lid 9b are made of metal, the electronic board 9c is surrounded by metal, so that electromagnetic noise generated from the electronic board 9c is not transmitted to the outside of the electronic board box 9. Radiation can be suppressed. There is a possibility that moisture such as rainwater scattered in the fan chamber 10 may enter the electronic board box 9 and the electrical chamber 11 through the hole 9e formed in the bottom wall of the lower box 9a. Therefore, in practice, measures such as devising the shape of the hole 9e and the shape of the lower box 9a and adding new waterproof structures are taken to prevent moisture from entering the electronic board box. 9 and the electrical room 11 are ensured to be waterproof.
 インターフェースパネル20は、インターフェース縦壁20aと、上側接合フランジ部20bと、インターフェース横壁20cと、下側接合フランジ部20dとを有している。インターフェース縦壁20aは、Y軸方向に沿って延びる鉛直状の壁である。上側接合フランジ部20bは、インターフェース縦壁20aの上端部から水平にZ軸方向に延びている。上側接合フランジ部20bは、下箱9aの底壁の下面に接合される。インターフェース横壁20cは、インターフェース縦壁20aの下端部から水平にZ軸方向に延びている。下側接合フランジ部20dは、インターフェース横壁20cの先端部から下方に向かってY軸方向に延びている。下側接合フランジ部20dは、図2に示される筐体側面パネル2gの内面に接合される。インターフェースパネル20は、下側接合フランジ部20dにおいて、筐体側面パネル2gに固定されて筐体側面パネル2gと電気的に接続される。インターフェースパネル20は、筐体側面パネル2gと下箱9aとにそれぞれ固定される。 The interface panel 20 has an interface vertical wall 20a, an upper joint flange portion 20b, an interface horizontal wall 20c, and a lower joint flange portion 20d. The interface vertical wall 20a is a vertical wall extending along the Y-axis direction. The upper joint flange portion 20b extends horizontally in the Z-axis direction from the upper end of the interface vertical wall 20a. The upper joining flange portion 20b is joined to the lower surface of the bottom wall of the lower box 9a. The interface horizontal wall 20c extends horizontally in the Z-axis direction from the lower end of the interface vertical wall 20a. The lower joining flange portion 20d extends downward in the Y-axis direction from the tip of the interface side wall 20c. The lower joining flange portion 20d is joined to the inner surface of the housing side panel 2g shown in FIG. The interface panel 20 is fixed to the housing side panel 2g at the lower joint flange portion 20d and is electrically connected to the housing side panel 2g. The interface panel 20 is fixed to the housing side panel 2g and the lower box 9a, respectively.
 続いて、図5を参照して、室外機1の右側面の構成について説明する。図5は、実施の形態1における空気調和機の室外機1を示した右側面図である。 Next, with reference to FIG. 5, the configuration of the right side of the outdoor unit 1 will be described. FIG. 5 is a right side view showing the outdoor unit 1 of the air conditioner according to the first embodiment.
 筐体側面パネル2gには、筐体2の内部と外部とを連通する開口部2kが形成されている。筐体側面パネル2gには、インターフェースカバー22が着脱可能に取り付けられている。インターフェースカバー22は、着脱により開閉可能である。インターフェースカバー22は閉じているときに開口部2kを覆う。インターフェースカバー22は開いているときに開口部2kを開放する。電気室11に設置されたインターフェースパネル20と端子台21とは、開口部2kを通じて視認可能かつ取り扱い可能である。各種電力線の結線作業は、インターフェースカバー22を開けて開口部2kを通じて行うことができる。 An opening 2k that communicates the inside and outside of the housing 2 is formed in the housing side panel 2g. An interface cover 22 is removably attached to the housing side panel 2g. The interface cover 22 can be opened and closed by attaching and detaching it. The interface cover 22 covers the opening 2k when closed. When the interface cover 22 is open, the opening 2k is opened. The interface panel 20 and terminal block 21 installed in the electrical room 11 are visible and accessible through the opening 2k. Connection work for various power lines can be performed by opening the interface cover 22 and passing through the opening 2k.
 インターフェースカバー22は、電気室11と筐体2の外部との通風性を確保しながら、電気室11への雨水などの水分の浸入を防ぐ役割を果たしている。インターフェースカバー22は、樹脂、鉄などの金属、または、これらの組み合わせにより形成されている。インターフェースカバー22が鉄などの金属により形成されて、筐体側面パネル2gと電気抵抗が低い状態で接合される場合には、インターフェースカバー22によって開口部2kを閉じることで、開口部2kから筐体2の外部への電磁ノイズの放射を抑制できる。 The interface cover 22 plays the role of preventing moisture such as rainwater from entering the electrical room 11 while ensuring ventilation between the electrical room 11 and the outside of the casing 2. The interface cover 22 is made of resin, metal such as iron, or a combination thereof. If the interface cover 22 is made of metal such as iron and is bonded to the housing side panel 2g with low electrical resistance, the opening 2k can be closed by the interface cover 22, and the housing can be removed from the opening 2k. 2. Emission of electromagnetic noise to the outside can be suppressed.
 図示は省略するが、インターフェースカバー22には、電気室11と筐体2の外部との通風性の確保および電気室11と筐体2の外部とに電力線を出入りさせることを目的に、通用孔が形成される。通用孔には、電気室11に雨水などの水分が浸入しないように、防水手段が講じられる。防水手段としては、例えば、通用孔の隙間にスポンジを敷き詰めたり、通用孔を鎧戸構造にしたりする手段がある。 Although not shown, the interface cover 22 has communication holes for the purpose of ensuring ventilation between the electrical room 11 and the outside of the casing 2 and for allowing power lines to enter and exit the electrical room 11 and the outside of the casing 2. is formed. Waterproofing means is provided in the communication hole to prevent moisture such as rainwater from entering the electrical room 11. As a waterproofing means, for example, there are means such as filling the gaps between the communication holes with sponge or making the communication holes have a shutter structure.
 続いて、図6を参照して、仕切りパネル4の構成について説明する。図6は、図2に示されたVI-VI線に沿った断面図である。図6では、理解の容易化のために、筐体2のみに斜線ハッチングを付している。 Next, the configuration of the partition panel 4 will be described with reference to FIG. 6. FIG. 6 is a cross-sectional view taken along line VI-VI shown in FIG. In FIG. 6, only the housing 2 is hatched for ease of understanding.
 仕切りパネル4は、第1の仕切り部4aと、第1の仕切り部4aの後端部に連なる第2の仕切り部4bとを有している。第2の仕切り部4bには、熱交換器6のZ軸方向の端部を電気室11に導入するための導入孔4cが形成される。熱交換器6と第2の仕切り部4bとは、異種金属により形成される。異種金属同士の接触を避けるために、例えば、熱交換器6と第2の仕切り部4bとの間に樹脂材料を介在することが好ましい。 The partition panel 4 has a first partition part 4a and a second partition part 4b continuous to the rear end of the first partition part 4a. An introduction hole 4c for introducing the end of the heat exchanger 6 in the Z-axis direction into the electrical room 11 is formed in the second partition portion 4b. The heat exchanger 6 and the second partition portion 4b are formed of different metals. In order to avoid contact between dissimilar metals, it is preferable to interpose a resin material between the heat exchanger 6 and the second partition portion 4b, for example.
 続いて、図7から図9を参照して、熱交換器6の構成についてさらに説明する。図7は、実施の形態1における熱交換器6を模式的に示した斜視図である。図8は、実施の形態1における熱交換器6を示した正面図である。図9は、図8に示された熱交換器6の要部拡大図である。 Next, the configuration of the heat exchanger 6 will be further described with reference to FIGS. 7 to 9. FIG. 7 is a perspective view schematically showing the heat exchanger 6 in the first embodiment. FIG. 8 is a front view showing the heat exchanger 6 in the first embodiment. FIG. 9 is an enlarged view of the main parts of the heat exchanger 6 shown in FIG. 8.
 図7に示すように、熱交換器6は、本実施の形態ではパラレルフロー型熱交換器である。図8に示すように、熱交換器6は、2つのヘッダ6c,6dと、複数の冷媒導管6eと、複数のフィン6fとを有している。 As shown in FIG. 7, the heat exchanger 6 is a parallel flow heat exchanger in this embodiment. As shown in FIG. 8, the heat exchanger 6 includes two headers 6c and 6d, a plurality of refrigerant conduits 6e, and a plurality of fins 6f.
 2つのヘッダ6c,6dは、いずれも中空形状の金属製部材である。各ヘッダ6c,6dは、Y軸方向に沿って延びている。図7に示すように、2つのヘッダ6c,6dは、Z軸方向に互いに離れて配置されるとともに、X軸方向に互いにずれて配置されている。ヘッダ6cは、第2の熱交換部6bの前端部に設けられている。ヘッダ6dは、第1の熱交換部6aの右端部に設けられている。ヘッダ6dには、冷媒配管18が接続されている。 The two headers 6c and 6d are both hollow metal members. Each header 6c, 6d extends along the Y-axis direction. As shown in FIG. 7, the two headers 6c and 6d are arranged apart from each other in the Z-axis direction and shifted from each other in the X-axis direction. The header 6c is provided at the front end of the second heat exchange section 6b. The header 6d is provided at the right end of the first heat exchange section 6a. A refrigerant pipe 18 is connected to the header 6d.
 図8に示される各冷媒導管6eは、中空形状の金属製部材である。各冷媒導管6eは、例えば、扁平形状の扁平管である。複数の冷媒導管6eは、Y軸方向に互いに間隔を空けて配置されている。各冷媒導管6eのそれぞれは、一方のヘッダ6cから他方のヘッダ6dに向かって延びている。各冷媒導管6eの延伸方向は、Y軸方向と直交している。各冷媒導管6eの延伸方向の一端部は、一方のヘッダ6cに接続されていて、各冷媒導管6eの延伸方向の他端部は、他方のヘッダ6dに接続されている。各冷媒導管6eは、一方のヘッダ6cと他方のヘッダ6dとを連通している。 Each refrigerant conduit 6e shown in FIG. 8 is a hollow metal member. Each refrigerant conduit 6e is, for example, a flat tube. The plurality of refrigerant conduits 6e are arranged at intervals from each other in the Y-axis direction. Each of the refrigerant conduits 6e extends from one header 6c toward the other header 6d. The extending direction of each refrigerant conduit 6e is perpendicular to the Y-axis direction. One end of each refrigerant conduit 6e in the extending direction is connected to one header 6c, and the other end of each refrigerant conduit 6e in the extending direction is connected to the other header 6d. Each refrigerant conduit 6e communicates one header 6c with the other header 6d.
 フィン6fは、金属製の板状部材である。フィン6fは、隣り合う冷媒導管6eの間に配置されている。フィン6fの形状は、特に制限されないが、本実施の形態では上方と下方とに交互に突出する波形形状である。すなわち、フィン6fは、本実施の形態ではコルゲートフィンである。図9に示すように、フィン6fは、隣り合う冷媒導管6eのそれぞれと接触するとともに溶接などで接合されている。 The fin 6f is a metal plate-like member. The fins 6f are arranged between adjacent refrigerant conduits 6e. Although the shape of the fin 6f is not particularly limited, in this embodiment, it is a wave-like shape that projects alternately upward and downward. That is, the fins 6f are corrugated fins in this embodiment. As shown in FIG. 9, the fins 6f are in contact with each of the adjacent refrigerant conduits 6e and are joined by welding or the like.
 図8に示されるヘッダ6c,6dの内部および冷媒導管6eの内部には、冷媒が流れる。2つのヘッダ6c,6dのうち一方は、複数の冷媒導管6eのそれぞれに冷媒を分配する役割を果たす。2つのヘッダ6c,6dのうち他方は、複数の冷媒導管6eのそれぞれから流出した冷媒を合流させる役割を果たす。冷媒導管6eは、冷媒と室外の空気との間で熱交換させる役割を果たす。すなわち、冷媒導管6eの内部を流れる冷媒と、冷媒導管6eの周囲を流れる室外の空気との間で熱交換が行われる。フィン6fは、冷媒と室外の空気との熱交換を促進させる役割を果たす。 A refrigerant flows inside the headers 6c and 6d and inside the refrigerant conduit 6e shown in FIG. One of the two headers 6c and 6d serves to distribute refrigerant to each of the plurality of refrigerant conduits 6e. The other of the two headers 6c and 6d plays a role of merging the refrigerants flowing out from each of the plurality of refrigerant conduits 6e. The refrigerant conduit 6e plays the role of exchanging heat between the refrigerant and outdoor air. That is, heat exchange is performed between the refrigerant flowing inside the refrigerant conduit 6e and the outdoor air flowing around the refrigerant conduit 6e. The fins 6f play a role of promoting heat exchange between the refrigerant and outdoor air.
 続いて、図10および図11を参照して、導電性部材3の構成についてさらに説明する。図10は、実施の形態1における導電性部材3を示した平面図であって、第1の導電性部材3aを示した図である。図11は、実施の形態1における導電性部材3を示した平面図であって、第2の導電性部材3bを示した図である。図12は、実施の形態1にかかる空気調和機の室外機1を示した平面図であって、筐体2の筐体天面パネル2bを取り外した状態かつ筐体2に導電性部材3を取り付けた状態を示した図である。図12では、熱交換器6が筐体2の仕切りパネル4、筐体側面パネル2fなどと直接接触している状態で図示しているが、実際には熱交換器6は筐体2などの金属製部材と直接接触することなく配置される。図12では、理解の容易化のために、熱交換器6にドットハッチングを付している。 Next, the configuration of the conductive member 3 will be further described with reference to FIGS. 10 and 11. FIG. 10 is a plan view showing the conductive member 3 in the first embodiment, and is a diagram showing the first conductive member 3a. FIG. 11 is a plan view showing the conductive member 3 in the first embodiment, and is a diagram showing the second conductive member 3b. FIG. 12 is a plan view showing the outdoor unit 1 of the air conditioner according to the first embodiment, with the top panel 2b of the casing 2 removed and the conductive member 3 attached to the casing 2. It is a figure showing the attached state. In FIG. 12, the heat exchanger 6 is shown in direct contact with the partition panel 4 of the housing 2, the side panel 2f of the housing, etc., but in reality, the heat exchanger 6 is in direct contact with the partition panel 4 of the housing 2, the side panel 2f of the housing, etc. Placed without direct contact with metal members. In FIG. 12, the heat exchanger 6 is shown with dot hatching for ease of understanding.
 図10に示すように、第1の導電性部材3aの形状は、特に制限されないが、本実施の形態ではL字状である。第1の導電性部材3aは、第1の板部3cと、第2の板部3dとを有している。図12に示される第1の導電性部材3aは、仕切りパネル4と第1の熱交換部6aとを電気的に接続する。第1の導電性部材3aは、ファン室10に配置されている。第1の導電性部材3aは、仕切りパネル4と第1の熱交換部6aとが成す内隅部に配置されている。第1の導電性部材3aは、仕切りパネル4の左方に配置されている。第1の導電性部材3aは、第1の熱交換部6aの前方に配置されている。第1の導電性部材3aは、筐体2の一部となる仕切りパネル4に固定されて仕切りパネル4と電気的に接続されるとともに、第1の熱交換部6aと電気的に接続されている。 As shown in FIG. 10, the shape of the first conductive member 3a is not particularly limited, but is L-shaped in this embodiment. The first conductive member 3a has a first plate portion 3c and a second plate portion 3d. The first conductive member 3a shown in FIG. 12 electrically connects the partition panel 4 and the first heat exchange section 6a. The first conductive member 3a is arranged in the fan chamber 10. The first conductive member 3a is arranged at an inner corner formed by the partition panel 4 and the first heat exchange section 6a. The first conductive member 3a is arranged on the left side of the partition panel 4. The first conductive member 3a is arranged in front of the first heat exchange section 6a. The first conductive member 3a is fixed to and electrically connected to the partition panel 4 that is part of the housing 2, and is also electrically connected to the first heat exchange section 6a. There is.
 第1の板部3cは、X軸方向に沿って延びている。第1の板部3cは、仕切りパネル4のうちファン室10に臨む側面4dに接触している。側面4dは、X軸方向およびY軸方向に延びる平面である。第1の板部3cは、仕切りパネル4に固定されている。第2の板部3dは、Z軸方向に沿って延びている。第2の板部3dは、第1の板部3cのうちZ軸方向に沿った一方の端部となる後端部から左方に向かって延びている。第2の板部3dは、第1の熱交換部6aのうちファン室10に臨む前面6gに接触している。前面6gは、Z軸方向およびY軸方向に延びる平面である。 The first plate portion 3c extends along the X-axis direction. The first plate portion 3c is in contact with a side surface 4d of the partition panel 4 facing the fan chamber 10. The side surface 4d is a plane extending in the X-axis direction and the Y-axis direction. The first plate portion 3c is fixed to the partition panel 4. The second plate portion 3d extends along the Z-axis direction. The second plate portion 3d extends leftward from the rear end portion of the first plate portion 3c, which is one end along the Z-axis direction. The second plate portion 3d is in contact with a front surface 6g of the first heat exchange portion 6a facing the fan chamber 10. The front surface 6g is a plane extending in the Z-axis direction and the Y-axis direction.
 図11に示すように、第2の導電性部材3bの形状は、特に制限されないが、本実施の形態ではクランク状である。第2の導電性部材3bは、固定部3eと、板部3fと、固定部3eと板部3fとを連結する連結部3gとを有している。図12に示される第2の導電性部材3bは、筐体側面パネル2fと第2の熱交換部6bとを電気的に接続する。第2の導電性部材3bは、ファン室10に配置されている。第2の導電性部材3bは、筐体側面パネル2fと第2の熱交換部6bとが成す内隅部に配置されている。第2の導電性部材3bは、筐体側面パネル2fの右方に配置されている。第2の導電性部材3bは、第2の熱交換部6bの前方から左方にかけて配置されている。第2の導電性部材3bは、筐体側面パネル2fに固定されて筐体側面パネル2fと電気的に接続されるとともに、第2の熱交換部6bと電気的に接続されている。 As shown in FIG. 11, the shape of the second conductive member 3b is not particularly limited, but is crank-shaped in this embodiment. The second conductive member 3b has a fixing part 3e, a plate part 3f, and a connecting part 3g that connects the fixing part 3e and the plate part 3f. The second conductive member 3b shown in FIG. 12 electrically connects the housing side panel 2f and the second heat exchange section 6b. The second conductive member 3b is arranged in the fan chamber 10. The second conductive member 3b is arranged at an inner corner formed by the housing side panel 2f and the second heat exchange section 6b. The second conductive member 3b is arranged on the right side of the housing side panel 2f. The second conductive member 3b is arranged from the front to the left of the second heat exchange section 6b. The second conductive member 3b is fixed to and electrically connected to the housing side panel 2f, and is also electrically connected to the second heat exchange section 6b.
 固定部3eは、X軸方向に沿って延びている。固定部3eは、筐体側面パネル2fのうちファン室10に臨む内面2mに接触している。内面2mは、X軸方向およびY軸方向に延びる平面である。固定部3eは、筐体側面パネル2fに固定されている。連結部3gは、固定部3eのうちX軸方向に沿った一方の端部となる後端部から右方に向かって延びている。連結部3gは、Z軸方向に沿って延びている。連結部3gは、第2の熱交換部6bのうちファン室10に臨む前面6hに接触している。前面6hは、Z軸方向およびY軸方向に延びる平面である。板部3fは、連結部3gのうちZ軸方向に沿った一方の端部となる右端部から後方に向かって延びている。板部3fは、X軸方向に沿って延びている。板部3fは、第2の熱交換部6bのうちファン室10に臨む側面6iに接触している。側面6iは、X軸方向およびY軸方向に延びる平面である。側面6iは、前面6hのうちZ軸方向に沿った一方の端部となる右端部から前面6gに向かって後方に延びている。 The fixed portion 3e extends along the X-axis direction. The fixing portion 3e is in contact with an inner surface 2m of the housing side panel 2f facing the fan chamber 10. The inner surface 2m is a plane extending in the X-axis direction and the Y-axis direction. The fixing portion 3e is fixed to the housing side panel 2f. The connecting portion 3g extends rightward from the rear end portion of the fixed portion 3e, which is one end along the X-axis direction. The connecting portion 3g extends along the Z-axis direction. The connecting portion 3g is in contact with a front surface 6h of the second heat exchange portion 6b facing the fan chamber 10. The front surface 6h is a plane extending in the Z-axis direction and the Y-axis direction. The plate portion 3f extends rearward from the right end, which is one end along the Z-axis direction of the connecting portion 3g. The plate portion 3f extends along the X-axis direction. The plate portion 3f is in contact with a side surface 6i of the second heat exchange portion 6b facing the fan chamber 10. The side surface 6i is a plane extending in the X-axis direction and the Y-axis direction. The side surface 6i extends rearward toward the front surface 6g from the right end, which is one end along the Z-axis direction, of the front surface 6h.
 導電性部材3は、本実施の形態では筐体側面パネル2fまたは仕切りパネル4に固定されて筐体2と電気的に接続されているが、筐体床面パネル2a、筐体天面パネル2b、筐体前面パネル2e、筐体背面パネル2h、筐体側面パネル2f,2gおよび仕切りパネル4のうち少なくとも一つに固定されて筐体2と電気的に接続されていればよい。導電性部材3のサイズは、室外機1の運転時の振動などによっても筐体2と熱交換器6との電気的な接続が保たれる程度のサイズであることが好ましい。 In this embodiment, the conductive member 3 is fixed to the housing side panel 2f or the partition panel 4 and is electrically connected to the housing 2, but the conductive member 3 is fixed to the housing side panel 2f or the partition panel 4 and is electrically connected to the housing 2. , the housing front panel 2e, the housing rear panel 2h, the housing side panels 2f and 2g, and the partition panel 4. The size of the conductive member 3 is preferably such that the electrical connection between the casing 2 and the heat exchanger 6 can be maintained even when the outdoor unit 1 vibrates during operation.
 次に、実施の形態1にかかる室外機1の動作および効果について説明する。 Next, the operation and effects of the outdoor unit 1 according to the first embodiment will be explained.
 図2に示すように、電力が外部AC電力線14から内部電力線15を経由して電子基板9cに供給されると、電子基板9cが待機状態となる。電子基板9cは、図示しない室内機と室外機1との連絡信号線を介して室内機から運転開始の指令信号を受信すると、室外機1の運転を開始する。具体的には、電子基板9cは、ファン駆動電線12を通じてファンモータ5bに駆動信号を出力し、ファンモータ5bを駆動させる。また、電子基板9cは、圧縮機駆動電線13を通じて圧縮機8に別の駆動信号を出力し、圧縮機8を駆動させる。このとき、電子基板9cが出力する駆動信号には、パワー半導体のスイッチングによる矩形波パルスが一般に用いられる。そのため、駆動信号には、パワー半導体のスイッチングノイズ、矩形波パルスの高調波成分などの、圧縮機8およびファンモータ5bの交流モータを駆動させるのに本来必要ではない高周波成分が含まれる。このような高周波成分が電磁ノイズ源となり、後記する伝達経路を通じて電磁ノイズが筐体2の外部へ放射される一因となる。 As shown in FIG. 2, when power is supplied to the electronic board 9c from the external AC power line 14 via the internal power line 15, the electronic board 9c enters a standby state. When the electronic board 9c receives a command signal to start operation from the indoor unit via a communication signal line (not shown) between the indoor unit and the outdoor unit 1, the electronic board 9c starts the operation of the outdoor unit 1. Specifically, the electronic board 9c outputs a drive signal to the fan motor 5b through the fan drive wire 12 to drive the fan motor 5b. Further, the electronic board 9c outputs another drive signal to the compressor 8 through the compressor drive electric wire 13 to drive the compressor 8. At this time, a rectangular wave pulse generated by switching of a power semiconductor is generally used as a drive signal output by the electronic board 9c. Therefore, the drive signal includes high frequency components that are not originally necessary to drive the AC motors of the compressor 8 and the fan motor 5b, such as switching noise of the power semiconductor and harmonic components of the rectangular wave pulse. Such high frequency components become an electromagnetic noise source and become a cause of electromagnetic noise being radiated to the outside of the housing 2 through a transmission path described later.
 図13は、実施の形態1にかかる空気調和機の室外機1において電磁ノイズの伝達経路を電気回路として示した模式図である。図13では、理解の容易化のために、熱交換器6にドットハッチングを付している。例えば、圧縮機8の交流モータに三相モータを用いた場合には、電子基板9cで発生した電磁ノイズは、三相モータ巻線中性点8dを経由して、モータ巻線8aと圧縮機8の筐体との間に存在する寄生容量8bを通じて圧縮機8の筐体へと伝達される。圧縮機8の筐体に伝達された電磁ノイズの一部は、筐体床面パネル2aへと伝達された後に電子基板9cへと還流される。しかし、圧縮機8の筐体と筐体床面パネル2aとの間の接触抵抗8cなどのインピーダンス成分があるため、圧縮機8の筐体に伝達された電磁ノイズの一部は、冷媒配管18を通じて熱交換器6へと伝達される。 FIG. 13 is a schematic diagram showing the transmission path of electromagnetic noise as an electric circuit in the outdoor unit 1 of the air conditioner according to the first embodiment. In FIG. 13, the heat exchanger 6 is shown with dot hatching for ease of understanding. For example, when a three-phase motor is used as the AC motor of the compressor 8, electromagnetic noise generated on the electronic board 9c is transmitted to the motor winding 8a and the compressor via the three-phase motor winding neutral point 8d. It is transmitted to the casing of the compressor 8 through the parasitic capacitance 8b existing between the casing of the compressor 8 and the casing of the compressor 8. A part of the electromagnetic noise transmitted to the housing of the compressor 8 is transmitted to the housing floor panel 2a and then returned to the electronic board 9c. However, since there is an impedance component such as contact resistance 8c between the casing of the compressor 8 and the casing floor panel 2a, some of the electromagnetic noise transmitted to the casing of the compressor 8 is transmitted to the refrigerant piping 18. The heat is transmitted to the heat exchanger 6 through the heat exchanger 6.
 熱交換器6の寄生インピーダンス成分の特性は、熱交換器6の構造により異なる。ここでは一例として、熱交換器6が図8に示されるフィン6fと扁平形状の冷媒導管6eとを備えたパラレルフロー型の熱交換器である場合を想定し、熱交換器6が有する寄生インダクタンス23が図13に示すように組み合わされた等価回路を例として示す。熱交換器6が有する寄生インダクタンス23などの寄生インピーダンス成分は、図13に示すような分布定数回路として複雑に存在する。第1の絶縁部材7aと第2の絶縁部材7bとによって熱交換器6と筐体2とが電気的に絶縁されているため、熱交換器6と筐体2との間には寄生容量22a,22bが発生する。すなわち、熱交換器6と筐体床面パネル2aとの間には、寄生容量22aが発生し、熱交換器6と筐体天面パネル2bとの間には、寄生容量22bが発生する。寄生容量22a,22bは、電磁ノイズの伝達経路上に発生する。 The characteristics of the parasitic impedance component of the heat exchanger 6 differ depending on the structure of the heat exchanger 6. Here, as an example, assuming that the heat exchanger 6 is a parallel flow type heat exchanger equipped with fins 6f and flat refrigerant conduits 6e shown in FIG. 8, the parasitic inductance of the heat exchanger 6 is An equivalent circuit in which 23 are combined as shown in FIG. 13 is shown as an example. The parasitic impedance components such as the parasitic inductance 23 of the heat exchanger 6 exist in a complex manner as a distributed constant circuit as shown in FIG. Since the heat exchanger 6 and the casing 2 are electrically insulated by the first insulating member 7a and the second insulating member 7b, there is a parasitic capacitance 22a between the heat exchanger 6 and the casing 2. , 22b are generated. That is, a parasitic capacitance 22a is generated between the heat exchanger 6 and the housing floor panel 2a, and a parasitic capacitance 22b is generated between the heat exchanger 6 and the housing top panel 2b. The parasitic capacitances 22a and 22b occur on the electromagnetic noise transmission path.
 図14は、実施の形態1にかかる空気調和機の室外機1において、導電性部材3を備えない場合に電磁ノイズとなる電流が伝達する経路を等価回路化した回路図である。電子基板9cから圧縮機8を通じて図13に示される熱交換器6と筐体2とに伝達された電磁ノイズは、熱交換器6が有する寄生インダクタンス23との間で共振を発生させるとともに寄生容量22a,22bとの間で共振を発生させ、さらには筐体2の各パネルが有する寄生インダクタンス24などの寄生インピーダンス成分との間で共振を発生させる。このとき、寄生容量22a,22bには共振による電圧の変化が発生する。 FIG. 14 is a circuit diagram showing an equivalent circuit of a path through which a current causing electromagnetic noise is transmitted when the outdoor unit 1 of the air conditioner according to the first embodiment does not include the conductive member 3. The electromagnetic noise transmitted from the electronic board 9c through the compressor 8 to the heat exchanger 6 and the housing 2 shown in FIG. 22a and 22b, and furthermore, resonance is generated between the parasitic impedance components such as the parasitic inductance 24 of each panel of the housing 2. At this time, a voltage change occurs in the parasitic capacitances 22a and 22b due to resonance.
 図15は、実施の形態1にかかる空気調和機の室外機1の背面図であって、導電性部材3を備えない場合に電磁ノイズが発生する箇所を示した図である。図15では、理解の容易化のために、熱交換器6にドットハッチングを付している。熱交換器6と筐体2の各パネルとの間には、電気的な絶縁性を確保するために隙間G1,G2,G3,G4が形成される。図15では、隙間G1,G2,G3,G4のそれぞれの位置を破線で囲んでいる。図15では熱交換器6と筐体2との間の一部に隙間G1,G2,G3,G4がないように図示されているが、実際には熱交換器6の四辺を取り囲むように延びる細長い形状の隙間G1,G2,G3,G4が存在する。隙間G1,G2,G3,G4は、室外機1が導電性部材3を備えない場合に、電磁ノイズが発生する箇所となる。熱交換器6と筐体床面パネル2aとの間および熱交換器6と筐体天面パネル2bとの間には、図13に示される寄生容量22a,22bを通じて電圧の変化が発生する。その結果、隙間G1,G2,G3,G4は、スロットアンテナとして機能し、隙間G1,G2,G3,G4の両端に印加される電圧の変化に応じて電磁ノイズをさらに発生させる。この隙間G1,G2,G3,G4で発生した電磁ノイズは、室外機1が導電性部材3を備えない場合に、給気口2iを通じて筐体2の外部へと放射される。 FIG. 15 is a rear view of the outdoor unit 1 of the air conditioner according to the first embodiment, showing locations where electromagnetic noise occurs when the conductive member 3 is not provided. In FIG. 15, the heat exchanger 6 is hatched with dots for easy understanding. Gaps G1, G2, G3, and G4 are formed between the heat exchanger 6 and each panel of the housing 2 to ensure electrical insulation. In FIG. 15, the respective positions of gaps G1, G2, G3, and G4 are surrounded by broken lines. Although FIG. 15 shows that there are no gaps G1, G2, G3, and G4 in a part of the space between the heat exchanger 6 and the housing 2, in reality, the gaps G1, G2, G3, and G4 extend so as to surround the four sides of the heat exchanger 6. There are elongated gaps G1, G2, G3, and G4. The gaps G1, G2, G3, and G4 become locations where electromagnetic noise occurs when the outdoor unit 1 does not include the conductive member 3. Voltage changes occur between the heat exchanger 6 and the housing floor panel 2a and between the heat exchanger 6 and the housing top panel 2b through parasitic capacitances 22a and 22b shown in FIG. 13. As a result, the gaps G1, G2, G3, and G4 function as slot antennas, and further generate electromagnetic noise in response to changes in the voltage applied across the gaps G1, G2, G3, and G4. Electromagnetic noise generated in the gaps G1, G2, G3, and G4 is radiated to the outside of the housing 2 through the air supply port 2i when the outdoor unit 1 does not include the conductive member 3.
 図16は、実施の形態1にかかる空気調和機の室外機1において、絶縁部材7を介することなく熱交換器6と筐体2とを直接接触させた場合に電磁ノイズとなる電流が伝達する経路を等価回路化した回路図である。図15に示される第1の絶縁部材7aおよび第2の絶縁部材7bを取り除くことにより、熱交換器6と筐体2の各パネルとが電気的に接続される。つまり、熱交換器6と筐体2の各パネルとが電気的に短絡される。そのため、図16に示すように、熱交換器6と筐体2の各パネルとの間で発生する寄生容量22a,22bが短絡される。これにより、図15に示される熱交換器6と筐体床面パネル2aとの間および熱交換器6と筐体天面パネル2bとの間には、図16に示される寄生容量22a,22bを通じて電圧の変化が発生せず、隙間G1,G2,G3,G4で電磁ノイズが発生しない。 FIG. 16 shows that in the outdoor unit 1 of the air conditioner according to the first embodiment, when the heat exchanger 6 and the casing 2 are brought into direct contact without going through the insulating member 7, a current that causes electromagnetic noise is transmitted. FIG. 3 is a circuit diagram in which a route is converted into an equivalent circuit. By removing the first insulating member 7a and the second insulating member 7b shown in FIG. 15, the heat exchanger 6 and each panel of the housing 2 are electrically connected. In other words, the heat exchanger 6 and each panel of the housing 2 are electrically short-circuited. Therefore, as shown in FIG. 16, the parasitic capacitances 22a and 22b generated between the heat exchanger 6 and each panel of the housing 2 are short-circuited. As a result, parasitic capacitances 22a, 22b as shown in FIG. 16 are generated between the heat exchanger 6 and the housing floor panel 2a shown in FIG. 15 and between the heat exchanger 6 and the housing top panel 2b. There is no change in voltage across the gap, and no electromagnetic noise is generated in the gaps G1, G2, G3, and G4.
 図15に示される熱交換器6と筐体2とを異種金属により形成する場合には、熱交換器6と筐体2との間に絶縁部材7を設けないと、隙間G1,G2,G3,G4における電磁ノイズの発生を防止して筐体2の外部への電磁ノイズの放射を低減できるが、熱交換器6と筐体2との接触箇所で自然電位が低い熱交換器6に腐食が発生する。一方で、熱交換器6と筐体2との間に絶縁部材7を設けると、熱交換器6と筐体2との接触箇所で自然電位が低い熱交換器6の腐食を防止できるが、隙間G1,G2,G3,G4で電磁ノイズが発生して筐体2の外部への電磁ノイズの放射量が増大する。 When the heat exchanger 6 and the casing 2 shown in FIG. , G4 can be prevented from generating electromagnetic noise and the radiation of electromagnetic noise to the outside of the housing 2 can be reduced. occurs. On the other hand, if the insulating member 7 is provided between the heat exchanger 6 and the casing 2, corrosion of the heat exchanger 6, which has a low natural potential at the contact point between the heat exchanger 6 and the casing 2, can be prevented; Electromagnetic noise is generated in the gaps G1, G2, G3, and G4, and the amount of electromagnetic noise radiated to the outside of the housing 2 increases.
 本実施の形態では、図12に示すように、第1の金属により形成されている箱状の筐体2と、第1の金属とは自然電位が異なる第2の金属により形成され筐体2内に配置されて絶縁部材7を介して筐体2に固定される熱交換器6と、非金属により形成されて筐体2内に配置される導電性部材3とを備えている。導電性部材3は、筐体2に固定されて筐体2と電気的に接続されるとともに、熱交換器6と電気的に接続されている。これらの構成により、熱交換器6と筐体2とが導電性部材3を介して電気的に接続される。そのため、図13に示される熱交換器6と筐体2の各パネルとの間で発生する寄生容量22a,22bが短絡される。これにより、熱交換器6と筐体2との間の寄生容量22a,22bを通じて発生する電圧の変化が抑制され、図15に示される隙間G1,G2,G3,G4から放射される電磁ノイズが抑制される。 In this embodiment, as shown in FIG. 12, a box-shaped casing 2 is formed of a first metal, and a casing 2 is formed of a second metal whose natural potential is different from that of the first metal. The heat exchanger 6 is disposed inside the housing 2 and is fixed to the housing 2 via an insulating member 7, and the conductive member 3 is made of a non-metallic material and is placed inside the housing 2. The conductive member 3 is fixed to and electrically connected to the casing 2 and is also electrically connected to the heat exchanger 6 . With these configurations, the heat exchanger 6 and the casing 2 are electrically connected via the conductive member 3. Therefore, the parasitic capacitances 22a and 22b generated between the heat exchanger 6 and each panel of the housing 2 shown in FIG. 13 are short-circuited. As a result, changes in voltage generated through the parasitic capacitances 22a and 22b between the heat exchanger 6 and the housing 2 are suppressed, and electromagnetic noise radiated from the gaps G1, G2, G3, and G4 shown in FIG. 15 is suppressed. suppressed.
 本実施の形態では、図12に示すように、熱交換器6と筐体2とは直接接触しないため、熱交換器6と筐体2との接触による腐食を防ぐことができる。また、本実施の形態では、導電性部材3が非金属により形成されているため、筐体2と導電性部材3との接触による腐食および熱交換器6と導電性部材3との接触による腐食を防止することができる。つまり、室外機1が導電性部材3を備えるという簡易な構造で、腐食の防止と電磁ノイズの低減とを両立させることができる。 In this embodiment, as shown in FIG. 12, since the heat exchanger 6 and the casing 2 do not come into direct contact, corrosion due to contact between the heat exchanger 6 and the casing 2 can be prevented. Further, in this embodiment, since the conductive member 3 is formed of a non-metal, corrosion due to contact between the casing 2 and the conductive member 3 and corrosion due to contact between the heat exchanger 6 and the conductive member 3 can be prevented. In other words, with a simple structure in which the outdoor unit 1 includes the conductive member 3, it is possible to prevent corrosion and reduce electromagnetic noise at the same time.
 本実施の形態では、図12に示すように、導電性部材3は、筐体側面パネル2fと仕切りパネル4とに固定されて電気的に接続されているが、図1に示される筐体床面パネル2a、筐体天面パネル2b、筐体前面パネル2e、筐体背面パネル2h、筐体側面パネル2f,2gおよび仕切りパネル4のうち全部に固定されていてもよい。このようにすると、各パネル同士の電気的な接続が強まり、図13に示される筐体2が持つ接触抵抗および寄生インダクタンス23を低減させることができる。そのため、電子基板9cと圧縮機8と筐体2の各パネルとに伝わる電磁ノイズ、すなわち雑音端子電圧、妨害電力強度などを低減させることができる。 In this embodiment, as shown in FIG. 12, the conductive member 3 is fixed and electrically connected to the case side panel 2f and the partition panel 4, but the conductive member 3 is fixed to and electrically connected to the case side panel 2f and the partition panel 4, but the It may be fixed to all of the front panel 2a, the top panel 2b, the front panel 2e, the rear panel 2h, the side panels 2f and 2g, and the partition panel 4. In this way, the electrical connection between the panels is strengthened, and the contact resistance and parasitic inductance 23 of the housing 2 shown in FIG. 13 can be reduced. Therefore, electromagnetic noise transmitted to the electronic board 9c, the compressor 8, and each panel of the housing 2, ie, noise terminal voltage, interference power intensity, etc., can be reduced.
 本実施の形態では、第1の金属の自然電位が第2の金属の自然電位よりも高いことにより、熱交換器6と筐体2とを直接接触させた場合には、第2の金属で形成された熱交換器6の方に腐食が発生することになる。この点、本実施の形態では、前記のように熱交換器6と筐体2とが直接接触しないため、熱交換器6の腐食を防止することができる。 In this embodiment, since the natural potential of the first metal is higher than the natural potential of the second metal, when the heat exchanger 6 and the casing 2 are brought into direct contact, the second metal Corrosion will occur in the formed heat exchanger 6. In this regard, in this embodiment, since the heat exchanger 6 and the casing 2 do not come into direct contact as described above, corrosion of the heat exchanger 6 can be prevented.
 本実施の形態では、第1の金属が鉄または鉄合金であることにより、第1の金属で形成された筐体2の強度を高めることができる。また、本実施の形態では、第2の金属がアルミニウムまたはアルミニウム合金であることにより、第2の金属で形成された熱交換器6の熱伝導性を高めることができる。 In this embodiment, since the first metal is iron or an iron alloy, the strength of the casing 2 made of the first metal can be increased. Further, in this embodiment, since the second metal is aluminum or an aluminum alloy, the thermal conductivity of the heat exchanger 6 formed of the second metal can be increased.
 従来の熱交換器として、サーペンタイン型の熱交換器、アルミニウム製のパラレルフロー型の熱交換器がある。サーペンタイン型の熱交換器、パラレルフロー型の熱交換器は、いずれもフィンと冷媒導管とを有する。サーペンタイン型の熱交換器では、フィンの材料にアルミニウムが用いられ、冷媒導管の材料に銅が用いられることが一般的である。筐体2の材料に鉄を用いた場合には、それぞれの金属が有する標準電極電位の大小関係は、アルミニウム<鉄<銅の関係になる。すなわち、各金属製部材の標準電極電位の大小関係は、フィン<筐体2<冷媒導管の関係になる。仮に、サーペンタイン型の熱交換器のフィンおよび冷媒導管と筐体2とを直接接触させて、接触箇所に水分が付着した場合には、筐体2よりも標準電極電位が低いフィンには腐食が発生する可能性があるが、筐体2よりも標準電極電位が高い冷媒導管には腐食が発生しない。 Conventional heat exchangers include serpentine heat exchangers and aluminum parallel flow heat exchangers. Both serpentine heat exchangers and parallel flow heat exchangers have fins and refrigerant conduits. In a serpentine heat exchanger, aluminum is generally used for the fins, and copper is generally used for the refrigerant conduits. When iron is used as the material for the housing 2, the standard electrode potentials of the respective metals have a relationship of aluminum<iron<copper. That is, the magnitude relationship of the standard electrode potential of each metal member is the relationship of fin<casing 2<refrigerant conduit. If the fins of a serpentine heat exchanger and the refrigerant conduit come into direct contact with the housing 2 and moisture adheres to the contact points, the fins, which have a lower standard electrode potential than the housing 2, will corrode. Although corrosion may occur, corrosion does not occur in the refrigerant conduit whose standard electrode potential is higher than that of the housing 2.
 一方で、アルミニウム製のパラレルフロー型の熱交換器では、フィンおよび冷媒導管の材料にアルミニウムが用いられるため、筐体2の材料に鉄を用いた場合には、フィンおよび冷媒導管の両方に腐食が発生する可能性がある。冷媒導管に腐食が発生して孔が開けば、冷媒導管内の冷媒が大気中に漏出する。冷媒の大気中への漏出は、空気調和機としての冷暖房機能が損なわれる。このようにアルミニウム製のパラレルフロー型の熱交換器では、腐食による弊害が大きいことから腐食の防止対策を講じる重要性が高く、腐食の防止対策を講じることにより発生する電磁ノイズの低減対策も併せて講じる必要がある。そのため、本実施の形態のように図12に示される非金属の導電性部材3を用いて腐食の防止と電磁ノイズの低減とを両立させることは、アルミニウム製のパラレルフロー型の熱交換器のような腐食による弊害が大きい熱交換器を用いた場合に特に有用である。換言すると、本実施の形態のように非金属の導電性部材3を用いて腐食の防止と電磁ノイズの低減とを両立させることは、冷媒導管の自然電位が筐体2などの周辺部材の自然電位よりも低い熱交換器を用いた場合に特に有用である。 On the other hand, in an aluminum parallel flow heat exchanger, aluminum is used as the material for the fins and refrigerant pipes, so if iron is used for the housing 2, both the fins and the refrigerant pipes will corrode. may occur. If corrosion occurs in the refrigerant conduit and a hole opens, the refrigerant in the refrigerant conduit will leak into the atmosphere. If the refrigerant leaks into the atmosphere, the heating and cooling functions of the air conditioner will be impaired. In this way, aluminum parallel flow heat exchangers are susceptible to corrosion, so it is important to take measures to prevent corrosion, and it is also important to take measures to reduce electromagnetic noise that is generated by taking measures to prevent corrosion. It is necessary to take appropriate measures. Therefore, it is important to prevent corrosion and reduce electromagnetic noise by using the non-metallic conductive member 3 shown in FIG. 12 as in this embodiment. This is particularly useful when using a heat exchanger that suffers from serious corrosion problems. In other words, achieving both prevention of corrosion and reduction of electromagnetic noise by using the non-metallic conductive member 3 as in this embodiment means that the natural potential of the refrigerant conduit is lower than the natural potential of the surrounding members such as the casing 2. This is particularly useful when using a heat exchanger with a lower potential.
 なお、導電性部材3の設置場所および形状は図示した例に限定されない。例えば、導電性部材3は、筐体床面パネル2a、筐体天面パネル2bなどに固定されてもよいし、熱交換器6のうちのどの面と電気的に接続されてもよい。導電性部材3の形状は、筐体2と熱交換器6とに導電性部材3を電気的に接続可能なように、適宜変更してもよい。 Note that the installation location and shape of the conductive member 3 are not limited to the illustrated example. For example, the conductive member 3 may be fixed to the housing floor panel 2a, the housing top panel 2b, etc., or may be electrically connected to any surface of the heat exchanger 6. The shape of the conductive member 3 may be changed as appropriate so that the conductive member 3 can be electrically connected to the housing 2 and the heat exchanger 6.
 熱交換器6の全部が第2の金属により形成されている必要はなく、熱交換器6の少なくとも一部が第2の金属により形成されていればよい。例えば、熱交換器6のフィンおよび冷媒導管のうち少なくとも一方が第2の金属により形成されていればよい。 It is not necessary that the entire heat exchanger 6 be formed of the second metal, and it is sufficient that at least a portion of the heat exchanger 6 be formed of the second metal. For example, at least one of the fins of the heat exchanger 6 and the refrigerant conduit may be formed of the second metal.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiments is an example, and it is possible to combine it with another known technology, and a part of the configuration can be omitted or changed without departing from the gist. It is possible.
 1 空気調和機の室外機、2 筐体、2a 筐体床面パネル、2b 筐体天面パネル、2c 第1の連結パネル、2d 第2の連結パネル、2e 筐体前面パネル、2f,2g 筐体側面パネル、2h 筐体背面パネル、2i 給気口、2j 排気口、2k 開口部、2m 内面、3 導電性部材、3a 第1の導電性部材、3b 第2の導電性部材、3c 第1の板部、3d 第2の板部、3e 固定部、3f 板部、3g 連結部、4 仕切りパネル、4a 第1の仕切り部、4b 第2の仕切り部、4c 導入孔、4d,6i 側面、5 送風機、5a 支柱、5b ファンモータ、5c プロペラファン、6 熱交換器、6a 第1の熱交換部、6b 第2の熱交換部、6c,6d ヘッダ、6e 冷媒導管、6f フィン、6g,6h 前面、7 絶縁部材、7a 第1の絶縁部材、7b 第2の絶縁部材、8 圧縮機、8a モータ巻線、8b,22a,22b 寄生容量、8c 接触抵抗、8d 三相モータ巻線中性点、9 電子基板箱、9a 下箱、9b 上蓋、9c 電子基板、9d ヒートシンク、9e 孔、10 ファン室、11 電気室、12 ファン駆動電線、13 圧縮機駆動電線、14 外部AC電力線、15 内部電力線、16 アース線、17 ストップバルブ、18 冷媒配管、19 接続部、20 インターフェースパネル、20a インターフェース縦壁、20b 上側接合フランジ部、20c インターフェース横壁、20d 下側接合フランジ部、20e アース接続点、21 端子台、22 インターフェースカバー、23,24 寄生インダクタンス。 1 outdoor unit of air conditioner, 2 housing, 2a housing floor panel, 2b housing top panel, 2c first connection panel, 2d second connection panel, 2e housing front panel, 2f, 2g housing Body side panel, 2h Housing back panel, 2i Air supply port, 2j Exhaust port, 2k Opening, 2m inner surface, 3 Conductive member, 3a First conductive member, 3b Second conductive member, 3c First plate part, 3d second plate part, 3e fixing part, 3f plate part, 3g connecting part, 4 partition panel, 4a first partition part, 4b second partition part, 4c introduction hole, 4d, 6i side surface, 5 blower, 5a strut, 5b fan motor, 5c propeller fan, 6 heat exchanger, 6a first heat exchange section, 6b second heat exchange section, 6c, 6d header, 6e refrigerant conduit, 6f fin, 6g, 6h Front, 7 Insulating member, 7a First insulating member, 7b Second insulating member, 8 Compressor, 8a Motor winding, 8b, 22a, 22b Parasitic capacitance, 8c Contact resistance, 8d Three-phase motor winding neutral point , 9 Electronic board box, 9a Lower box, 9b Upper cover, 9c Electronic board, 9d Heat sink, 9e Hole, 10 Fan room, 11 Electrical room, 12 Fan drive wire, 13 Compressor drive wire, 14 External AC power line, 15 Internal power line , 16 Earth wire, 17 Stop valve, 18 Refrigerant pipe, 19 Connection part, 20 Interface panel, 20a Interface vertical wall, 20b Upper joint flange part, 20c Interface horizontal wall, 20d Lower joint flange part, 20e Earth connection point, 21 Terminal Stand, 22 Interface cover, 23, 24 Parasitic inductance.

Claims (5)

  1.  第1の金属により形成されている箱状の筐体と、
     少なくとも一部が前記第1の金属とは自然電位が異なる第2の金属により形成され、前記筐体内に配置されて非導電性部材を介して前記筐体に固定される熱交換器と、
     非金属により形成されて、前記筐体内に配置される導電性部材と、を備え、
     前記導電性部材は、前記筐体に固定されて前記筐体と電気的に接続されるとともに、前記熱交換器と電気的に接続されている空気調和機の室外機。
    a box-shaped casing formed of a first metal;
    a heat exchanger, at least a portion of which is formed of a second metal having a different natural potential from that of the first metal, and which is disposed within the housing and fixed to the housing via a non-conductive member;
    a conductive member formed of a non-metal and disposed within the casing;
    In the outdoor unit of the air conditioner, the conductive member is fixed to and electrically connected to the casing, and is also electrically connected to the heat exchanger.
  2.  前記筐体は、筐体床面パネルと、前記筐体床面パネルの上方に配置される筐体天面パネルと、前記筐体床面パネルと前記筐体天面パネルとを連結する筐体前面パネル、筐体背面パネルおよび筐体側面パネルと、を有し、
     前記導電性部材は、前記筐体床面パネル、前記筐体天面パネル、前記筐体前面パネル、前記筐体背面パネルおよび前記筐体側面パネルのうち少なくとも一つに固定されている請求項1に記載の空気調和機の室外機。
    The casing includes a casing floor panel, a casing top panel disposed above the casing floor panel, and a casing that connects the casing floor panel and the casing top panel. It has a front panel, a housing rear panel, and a housing side panel,
    2. The conductive member is fixed to at least one of the housing floor panel, the housing top panel, the housing front panel, the housing back panel, and the housing side panel. The outdoor unit of the air conditioner described in .
  3.  前記第1の金属の自然電位は、前記第2の金属の自然電位よりも高い請求項1または2に記載の空気調和機の室外機。 The outdoor unit of an air conditioner according to claim 1 or 2, wherein the natural potential of the first metal is higher than the natural potential of the second metal.
  4.  前記第1の金属は、鉄または鉄合金であり、
     前記第2の金属は、アルミニウムまたはアルミニウム合金である請求項1から3のいずれか1項に記載の空気調和機の室外機。
    The first metal is iron or an iron alloy,
    The outdoor unit of an air conditioner according to claim 1, wherein the second metal is aluminum or an aluminum alloy.
  5.  前記熱交換器は、パラレルフロー型の熱交換器である請求項1から4のいずれか1項に記載の空気調和機の室外機。 The outdoor unit of an air conditioner according to any one of claims 1 to 4, wherein the heat exchanger is a parallel flow type heat exchanger.
PCT/JP2022/020217 2022-05-13 2022-05-13 Outdoor unit for air conditioner WO2023218639A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020217 WO2023218639A1 (en) 2022-05-13 2022-05-13 Outdoor unit for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020217 WO2023218639A1 (en) 2022-05-13 2022-05-13 Outdoor unit for air conditioner

Publications (1)

Publication Number Publication Date
WO2023218639A1 true WO2023218639A1 (en) 2023-11-16

Family

ID=88730179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020217 WO2023218639A1 (en) 2022-05-13 2022-05-13 Outdoor unit for air conditioner

Country Status (1)

Country Link
WO (1) WO2023218639A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886474A (en) * 1994-09-16 1996-04-02 Hitachi Ltd Outdoor machine of air conditioner
JP2014081139A (en) * 2012-10-16 2014-05-08 Sharp Corp Air conditioner
KR20150009865A (en) * 2013-07-17 2015-01-27 삼성전자주식회사 Outdoor heat exchanger fixing structure and outdoor unit of air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886474A (en) * 1994-09-16 1996-04-02 Hitachi Ltd Outdoor machine of air conditioner
JP2014081139A (en) * 2012-10-16 2014-05-08 Sharp Corp Air conditioner
KR20150009865A (en) * 2013-07-17 2015-01-27 삼성전자주식회사 Outdoor heat exchanger fixing structure and outdoor unit of air conditioner

Similar Documents

Publication Publication Date Title
JP5925270B2 (en) Power converter
JP2008121966A (en) Outdoor unit for air conditioner
CN103907278A (en) Dc-dc converter device and power conversion device
JP2005057130A (en) Semiconductor cooling unit
JPWO2018207240A1 (en) Power converter cooling structure
WO2001016532A1 (en) Air conditioner
JPH06123449A (en) Outdoor device of air conditioner
WO2023218639A1 (en) Outdoor unit for air conditioner
CN103907276A (en) Power conversion device
WO2001016531A1 (en) Air conditioner
WO2023119565A1 (en) Outdoor unit for air conditioner
WO2023199518A1 (en) Outdoor unit of air conditioner
EP1500882B1 (en) Outdoor unit for use in air conditioner
JP6186439B2 (en) DC-DC converter device
CN214070225U (en) Radiating assembly, electric control board and air conditioner
WO2023157130A1 (en) Electrical equipment module
CN219612380U (en) Power amplifier module, radio frequency generating device, radio frequency thawing device and refrigerator
CN215379513U (en) Dust-protection type uninterrupted power source
CN213280235U (en) Electric control device, compressor, air conditioning equipment and vehicle
CN215733915U (en) Heat insulation device of driving motor controller based on CAN protocol
WO2023162029A1 (en) Drive device and air-conditioning device
CN208285206U (en) A kind of Switching Power Supply convenient for wiring
US20240125489A1 (en) Outdoor unit for air-conditioning apparatus
CN208508808U (en) A kind of Switching Power Supply
WO2020003587A1 (en) Refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941716

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024520212

Country of ref document: JP

Kind code of ref document: A