WO2023216930A1 - 基于穿戴设备的振动反馈方法、系统、穿戴设备和电子设备 - Google Patents
基于穿戴设备的振动反馈方法、系统、穿戴设备和电子设备 Download PDFInfo
- Publication number
- WO2023216930A1 WO2023216930A1 PCT/CN2023/091663 CN2023091663W WO2023216930A1 WO 2023216930 A1 WO2023216930 A1 WO 2023216930A1 CN 2023091663 W CN2023091663 W CN 2023091663W WO 2023216930 A1 WO2023216930 A1 WO 2023216930A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wearable device
- electronic device
- interactive
- processing result
- user
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 84
- 238000012545 processing Methods 0.000 claims abstract description 182
- 230000003993 interaction Effects 0.000 claims abstract description 107
- 230000002452 interceptive effect Effects 0.000 claims description 173
- 238000004590 computer program Methods 0.000 claims description 26
- 230000009471 action Effects 0.000 claims description 14
- 230000004044 response Effects 0.000 claims description 10
- 230000003183 myoelectrical effect Effects 0.000 claims description 9
- 230000006870 function Effects 0.000 description 57
- 238000004891 communication Methods 0.000 description 45
- 230000006854 communication Effects 0.000 description 45
- 238000010586 diagram Methods 0.000 description 21
- 238000007726 management method Methods 0.000 description 17
- 238000010295 mobile communication Methods 0.000 description 15
- 238000005516 engineering process Methods 0.000 description 14
- 230000005236 sound signal Effects 0.000 description 13
- 230000008569 process Effects 0.000 description 12
- 210000000988 bone and bone Anatomy 0.000 description 11
- 230000000694 effects Effects 0.000 description 8
- 238000012795 verification Methods 0.000 description 7
- 229920001621 AMOLED Polymers 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 4
- 238000013528 artificial neural network Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 238000013500 data storage Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 238000010009 beating Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000036772 blood pressure Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000001755 vocal effect Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000036982 action potential Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000007175 bidirectional communication Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 238000013529 biological neural network Methods 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000003862 health status Effects 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 210000001087 myotubule Anatomy 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003238 somatosensory effect Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/016—Input arrangements with force or tactile feedback as computer generated output to the user
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
Definitions
- Embodiments of the present application relate to the field of intelligent terminal technology, and in particular to a wearable device-based vibration feedback method, system, wearable device and electronic device.
- Embodiments of the present application provide a vibration feedback method, system, wearable device and electronic device based on wearable devices.
- Embodiments of the present application also provide a computer-readable storage medium to enable users to perform air-to-air gesture interaction with electronic devices.
- vibration feedback of the interaction processing results can be provided to the user through the wearable device, so that the user can clearly perceive the processing results of gesture interaction, improve the accuracy of gesture interaction operations, and improve the user experience.
- this application provides a vibration feedback method based on a wearable device, which is applied to the wearable device.
- the wearable device is connected to an electronic device.
- the above method may include: the wearable device obtains the user's gesture for the application currently running on the electronic device. The result of interactive processing of information. Then, the wearable device generates a vibration signal corresponding to the above-mentioned interactive processing result, feeds the above-mentioned vibration signal to the user, and displays the above-mentioned interactive interface and/or operation controls, wherein the above-mentioned interactive interface and/or operation controls are used to communicate with the above-mentioned application.
- the application interacts with the above-mentioned user wearing the above-mentioned wearable device.
- the wearable device obtains the interactive processing results of the above-mentioned gesture information by the application currently running on the electronic device, generates a vibration signal corresponding to the above-mentioned interactive processing results, and then feeds back the above-mentioned vibration signals to the user, so that the user can
- the wearable device can provide the user with vibration feedback of the interaction processing result, so that the user can clearly perceive the processing result of the gesture interaction, improve the accuracy of the gesture interaction operation, and improve the user experience.
- the interactive interface and/or operation controls of the application currently running on the electronic device can be displayed on the screen of the wearable device to facilitate the user's subsequent viewing or precise interaction with the above application.
- the wearable device before generating a vibration signal corresponding to the above interactive processing result, can also obtain gesture information sent by the above-mentioned electronic device; in this way, generating a vibration signal corresponding to the above-mentioned interaction processing result can be: after determining that the wearable device is worn on the interaction hand of the above-mentioned user based on the above-mentioned gesture information, generating a vibration signal corresponding to the above-mentioned interaction processing result.
- the vibration signal corresponding to the result wherein the interactive hand of the user includes the hand of the user performing gesture interaction with the electronic device.
- the wearable device determines that the wearable device is worn on the user's interactive hand based on the above gesture information by: using the gyroscope sensor and/or myoelectric sensor in the above wearable device to determine whether the above interactive hand has performed Action corresponding to the above gesture information.
- the wearable device may generate a vibration signal corresponding to the above-mentioned interaction processing result by: generating a vibration-sensing enhancement signal when the above-mentioned interaction processing result is that the operation is successful; or, when the interaction processing result is that the operation is unsuccessful, When the vibration attenuation signal is generated, a continuous strong vibration signal is generated when the interactive processing results pose safety risks.
- the wearable device may also send the first information to the electronic device in response to the user's first operation on the above-mentioned interactive interface and/or operating controls. , so that the electronic device controls the above-mentioned application according to the above-mentioned first information.
- embodiments of the present application provide a vibration feedback method based on wearable devices, applied to electronic devices.
- the above method may include: the electronic device obtains the user's gesture captured by the gesture capture device, recognizes the above gesture, and obtains gesture recognition. As a result, the above-mentioned user wears the above-mentioned wearable device.
- the electronic device performs business processing through the currently running application according to the above gesture recognition result, and obtains the interactive processing result for the above gesture recognition result; next, the electronic device sends the above interactive processing result to the wearable device, so that the wearable device generates The vibration signal corresponding to the above interactive processing result and the interactive interface and/or operation controls of the above application, where the above interactive interface and/or operation controls are used to interact with the above application.
- the electronic device obtains the user's gesture captured by the gesture capture device, it recognizes the above-mentioned gesture and obtains the gesture recognition result. Based on the above-mentioned gesture recognition result, it performs business processing through the currently running application to obtain For the interactive processing result of the above gesture recognition result, finally, the above interactive processing result is sent to the wearable device, so that the wearable device generates a vibration signal corresponding to the above interactive processing result and the interactive interface and/or operation control of the above application, so that the When the user performs air-to-air gesture interaction with an electronic device, the wearable device provides the user with vibration feedback of the interaction processing result, so that the user can clearly perceive the processing result of the gesture interaction, improve the accuracy of the gesture interaction operation, and improve the user experience. And the wearable device can generate the interactive interface and/or operation controls of the application currently running on the electronic device, so that the user can subsequently view or accurately interact with the above-mentioned application.
- the electronic device may also determine whether there is a wearable device currently connected to the above-mentioned electronic device; in this way, the electronic device can send the above-mentioned interaction processing results to the wearable device. is: If a wearable device is currently connected to the electronic device, the electronic device sends the above interaction processing result to the wearable device.
- the electronic device before the electronic device sends the above-mentioned interaction processing results to the wearable device, it can also determine whether the current scene meets the predetermined scene; in this way, the electronic device can send the above-mentioned interaction processing results to the wearable device. : If the current scene matches the predetermined scene, the electronic device sends the above interactive processing result to the wearable device.
- the electronic device can also send the gesture information to the wearable device, so that the wearable device determines based on the above gesture information that the wearable device is worn on the user's interactive hand, and generates the corresponding The vibration signal corresponding to the interactive processing result and the interactive interface and/or operating controls of the above application; wherein the interactive hand of the user includes the hand of the user performing gesture interaction with the electronic device.
- the electronic device may also receive the first information sent by the wearable device, wherein the first information is sent by the wearable device in response to the user's first operation on the interactive interface and/or the operation control. ; Control the above-mentioned application according to the above-mentioned first information.
- embodiments of the present application provide a vibration feedback device based on a wearable device.
- the device is included in the wearable device.
- the device has the function of realizing the behavior of the wearable device in the first aspect and possible implementations of the first aspect.
- Functions can be implemented by hardware, or by hardware executing corresponding software.
- Hardware or software includes one or more modules or units corresponding to the above functions. For example, receiving module or unit, processing module or unit, sending module or unit, etc.
- embodiments of the present application provide a vibration feedback device based on a wearable device.
- the device is included in an electronic device.
- the device has the function of realizing the behavior of the electronic device in the second aspect and possible implementations of the second aspect.
- Functions can be implemented by hardware, or by hardware executing corresponding software.
- Hardware or software includes one or more modules or units corresponding to the above functions. For example, receiving module or unit, processing module or unit, sending module or unit, etc.
- embodiments of the present application provide a wearable device, including: one or more processors; memory; multiple application programs; and one or more computer programs, wherein one or more computer programs are stored in the above memory , the above-mentioned one or more computer programs include instructions.
- the wearable device When the above-mentioned instructions are executed by the wearable device, the wearable device performs the following steps: obtain the interactive processing results of the application currently running on the electronic device for the user's gesture information; wherein the above-mentioned user wears Wearable device; generates a vibration signal corresponding to the above-mentioned interactive processing result, and feeds the above-mentioned vibration signal to the user; displays the interactive interface and/or operation controls of the above-mentioned application, wherein the above-mentioned interactive interface and/or operation controls are used to communicate with the above-mentioned application to interact.
- the following steps are also performed: obtain the gesture information sent by the electronic device; when the above instruction is executed by the wearable device, the step of causing the wearable device to generate a vibration signal corresponding to the above interaction processing result may be: after determining that the wearable device is worn on the user's interactive hand based on the above gesture information, generate a vibration signal corresponding to the above interaction processing result. vibration signal; wherein the user's interactive hand includes the user's hand for gesture interaction with the electronic device.
- causing the wearable device to perform the step of determining that the wearable device is worn on the user's interactive hand based on the above gesture information includes: using the gyroscope sensor in the above wearable device and /or a myoelectric sensor to determine that the interactive hand has performed an action corresponding to the gesture information.
- causing the wearable device to execute the step of generating a vibration signal corresponding to the above interactive processing result includes: when the above interactive processing result is that the operation is successful, generating a vibration enhancement signal; or, when the above interactive processing result is that the operation is unsuccessful, a vibration attenuation signal is generated; or when the above interactive processing result has safety risks, a continuous strong vibration signal is generated.
- the wearable device when the above instructions are executed by the wearable device, after causing the wearable device to execute the step of displaying the interactive interface and/or operating controls of the above application, the following steps are also executed: in response to the above user's request to the above interactive interface. and/or a first operation of operating the control, sending first information to the electronic device to enable The electronic device controls the application based on the first information.
- embodiments of the present application provide an electronic device, including: one or more processors; memory; multiple application programs; and one or more computer programs, wherein one or more computer programs are stored in the above memory , one or more computer programs include instructions that, when the above instructions are executed by the electronic device, cause the electronic device to perform the following steps: obtain the user's gesture captured by the gesture capture device; wherein the user wears the wearable device; perform the above steps Recognize the gesture to obtain the gesture recognition result; perform business processing through the currently running application according to the above gesture recognition result, and obtain the interactive processing result for the above gesture recognition result; send the above interactive processing result to the wearable device, so that the above wearable device Generate a vibration signal corresponding to the above-mentioned interaction processing result and an interactive interface and/or operation control of the above-mentioned application, where the above-mentioned interactive interface and/or operation control are used to interact with the above-mentioned application.
- the following steps are also executed: determine whether a wearable device is currently connected to the electronic device. ;
- causing the electronic device to execute the step of sending the above interactive processing result to the wearable device includes: if a wearable device is currently connected to the above electronic device, then sending the above interactive processing result to the wearable device.
- the electronic device when the above instructions are executed by the electronic device, the electronic device also performs the following steps before executing the step of sending the above interactive processing results to the wearable device: determining whether the current scene meets the predetermined scene. ;
- causing the electronic device to execute the step of sending the above interactive processing result to the wearable device includes: if the current scene meets the predetermined scene, then sending the above interactive processing result to the wearable device. equipment.
- the electronic device when the above instruction is executed by the electronic device, the electronic device also performs the following steps: sending gesture information to the wearable device, so that the wearable device determines, based on the above gesture information, that the wearable device is worn on the user's body. After interacting with the hand, a vibration signal corresponding to the above interaction processing result and the interactive interface and/or operation control of the above application are generated; wherein the above user's interactive hand includes the user's hand for gesture interaction with the electronic device.
- the electronic device when the above instruction is executed by the electronic device, the electronic device also performs the following steps: receiving the first information sent by the wearable device, wherein the above first information is the wearable device's response to the user's interaction with the above. Sent by the first operation of the interface and/or operation control; controlling the above-mentioned application based on the above-mentioned first information.
- embodiments of the present application further provide a vibration feedback system, including the wearable device provided in the fifth aspect and the electronic device provided in the sixth aspect.
- inventions of the present application provide a computer-readable storage medium.
- the computer-readable storage medium stores a computer program that, when run on a computer, causes the computer to execute the first aspect or the third aspect. Two methods are provided.
- embodiments of the present application provide a computer program product containing instructions, which when the computer program product is run on a computer, causes the computer to execute the method provided in the first aspect or the second aspect.
- the program in the ninth aspect may be stored in whole or in part on a storage medium packaged with the processor, or in part or in whole on a memory that is not packaged with the processor.
- Figure 1 is a schematic structural diagram of the connection between a wireless handle and a smart device in the related art
- FIG. 2 is a flow chart for a smart watch provided by existing related technologies to control the main device through a controller application (application, APP);
- Figure 3 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
- Figure 4 is a schematic structural diagram of a wearable device provided by an embodiment of the present application.
- Figure 5 is a schematic diagram of the interaction between the electronic device 100 and the wearable device 200 provided by an embodiment of the present application;
- Figure 6 is a schematic diagram of the waveform of vibration feedback in one embodiment of the present application.
- Figure 7 is an interaction flow chart between the electronic device 100 and the wearable device 200 provided by an embodiment of the present application.
- Figure 8 is a schematic diagram of an application scenario provided by an embodiment of the present application.
- Figure 9 is a schematic diagram of an application scenario provided by another embodiment of the present application.
- Figure 10 is a flow chart of a vibration feedback method based on wearable devices provided by one embodiment of the present application.
- Figure 11 is a flow chart of a vibration feedback method based on wearable devices provided by yet another embodiment of the present application.
- Figure 12 is a schematic structural diagram of an electronic device provided by another embodiment of the present application.
- Figure 13 is a schematic structural diagram of a wearable device provided by another embodiment of the present application.
- the electronic device's feedback for the air gesture operation is mostly visual feedback and sound feedback. In this way, users cannot clearly perceive the processing results of gesture interaction, the accuracy of gesture interaction operations is poor, and the user experience is poor.
- the smart watch worn on the interactive hand can provide vibration feedback.
- the watch will vibrate once every time the volume is adjusted, so the user can clearly know without visual inspection. How much the volume is adjusted to improve driving safety and ease of use of air gestures.
- the control buttons of the peer device can be distributed to the watch, thereby converting air interaction into touch interaction and increasing accuracy.
- the above-mentioned finger interaction is the hand of the user performing air gesture interaction with the electronic device.
- FIG. 1 is a schematic structural diagram of the connection between a wireless handle and a smart device in the related art.
- the wireless controller/remote controller 2 communicates with the wired universal serial bus (USB) game controller 1
- USB universal serial bus
- a wired connection is made via USB, and the wireless handle/remote control 2 is wirelessly connected to the Android smart device 4 through the wireless receiver 3.
- the control data of the wired USB game controller 1 is transmitted to the wireless controller/remote controller 2 through the USB interface, and the wireless controller/remote controller 2 then transmits the above control data through the wireless transmission module.
- the wireless receiver 3 transmits the control data of the wired USB game controller 1 to the Android smart device 4 in a standard Joystick data manner.
- the Android smart device 4 uses an inherent method of processing Joysticks data to shake the above control data.
- the data of the joystick and buttons are uploaded to the application layer, and the game running in the application layer of the Android smart device 4 reads the data of the joystick and buttons and operates normally.
- the existing handle vibration technology only transmits relevant vibration data, and the processing center is still on the host itself.
- the wired USB game controller 1 does not have logical processing capabilities, and the controller is not suitable for carrying around.
- FIG 2 is a flow chart for a smart watch provided by the existing related technology to control the main device through a controller application (application, APP).
- application application, APP
- FIG 2 shows a flow chart for a smart watch provided by the existing related technology to control the main device through a controller application (application, APP).
- APP controller application
- the smart watch actively establishes a connection with the main device A
- the controller of the watch Input instructions into the APP and the watch transmits the above instructions to main device A through the connection channel between the watch and main device A.
- main device A processes the instructions and then returns the processing results to the watch.
- the user needs to actively pair the main device A with the watch, and the user needs to actively open the controller APP to perform remote control settings.
- embodiments of the present application provide a vibration feedback method based on wearable devices.
- the wearable device When the user performs air gesture interaction with electronic devices such as the cockpit and/or large screen, after the wearable device receives the interaction processing results, it combines the vibration generation The algorithm generates vibration signals to provide tactile feedback to the user, improving the accuracy of user perception of interaction results in complex environments, improving interaction safety, and preventing users from confirming the interaction results multiple times with their eyes.
- the embodiment of the present application adds vibration feedback to the wearable device for air gestures, and while triggering the vibration feedback, the control of the electronic device can also be synchronized and displayed on the wearable device to facilitate the user to continue the control.
- the vibration feedback method based on wearable devices can be applied to electronic devices and wearable devices, where the above-mentioned electronic devices can be large-screen devices, cockpits, smart phones, tablets, vehicle-mounted devices, augmented reality, AR)/virtual reality (VR) equipment, notebook computers, ultra-mobile personal computers (UMPC), netbooks or personal digital assistants (personal digital assistants, PDA) and other equipment; the embodiments of this application are suitable for There are no restrictions on the specific type of electronic equipment.
- the above-mentioned wearable device may be a smart watch, a smart bracelet, or other devices. This embodiment does not place any restrictions on the specific type of the wearable device.
- FIG. 3 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
- the electronic device 100 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (universal serial bus).
- serial bus (USB) interface 130 charging management module 140, power management module 141, battery 142, antenna 1, antenna 2, mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, Headphone interface 170D, sensor module 180, button 190, motor 191, indicator 192, camera 193, display screen 194, and subscriber identification module (subscriber identification module, SIM) card interface 195, etc.
- SIM subscriber identification module
- the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, and an acceleration sensor. 180E, distance sensor 180F, proximity light sensor 180G, fingerprint sensor 180H, temperature sensor 180J, touch sensor 180K, ambient light sensor 180L, bone conduction sensor 180M, etc.
- the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the electronic device 100 .
- the electronic device 100 may include more or fewer components than shown in the figures, or some components may be combined, some components may be separated, or some components may be arranged differently.
- the components illustrated may be implemented in hardware, software, or a combination of software and hardware.
- the processor 110 may include one or more processing units.
- the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processing unit (GPU), and an image signal processor. (image signal processor, ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural network processor (neural-network processing unit, NPU), etc.
- application processor application processor, AP
- modem processor graphics processing unit
- GPU graphics processing unit
- image signal processor image signal processor
- ISP image signal processor
- controller video codec
- digital signal processor digital signal processor
- DSP digital signal processor
- baseband processor baseband processor
- neural network processor neural-network processing unit
- the controller can generate operation control signals based on the instruction operation code and timing signals to complete the control of fetching and executing instructions.
- the processor 110 may also be provided with a memory for storing instructions and data.
- the memory in processor 110 is cache memory. This memory may hold instructions or data that have been recently used or recycled by processor 110 . If the processor 110 needs to use the instructions or data again, it can be called directly from the memory. Repeated access is avoided and the waiting time of the processor 110 is reduced, thus improving the efficiency of the system.
- processor 110 may include one or more interfaces.
- Interfaces may include integrated circuit (inter-integrated circuit, I2C) interface, integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, pulse code modulation (pulse code modulation, PCM) interface, universal asynchronous receiver and transmitter (universal asynchronous receiver/transmitter (UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and /or universal serial bus (USB) interface, etc.
- I2C integrated circuit
- I2S integrated circuit built-in audio
- PCM pulse code modulation
- UART universal asynchronous receiver and transmitter
- MIPI mobile industry processor interface
- GPIO general-purpose input/output
- SIM subscriber identity module
- USB universal serial bus
- the I2C interface is a bidirectional synchronous serial bus, including a serial data line (SDA) and a serial clock line (derail clock line, DCL).
- processor 110 may include multiple sets of I2C buses.
- the processor 110 can separately couple the touch sensor 180K, charger, flash, camera 193, etc. through different I2C bus interfaces.
- the processor 110 can be coupled to the touch sensor 180K through an I2C interface, so that the processor 110 and the touch sensor 180K communicate through the I2C bus interface to implement the touch function of the electronic device 100 .
- the I2S interface can be used for audio communication.
- processor 110 may include multiple sets of I2S buses.
- the processor 110 can be coupled with the audio module 170 through the I2S bus to implement communication between the processor 110 and the audio module 170 .
- the audio module 170 can transmit audio signals to the wireless communication module 160 through the I2S interface to implement the function of answering calls through a Bluetooth headset.
- the PCM interface can also be used for audio communications to sample, quantize and encode analog signals.
- the audio module 170 and the wireless communication module 160 may be coupled through a PCM bus interface.
- the audio module 170 can also transmit audio signals to the wireless communication module 160 through the PCM interface to achieve communication.
- the function of answering calls via Bluetooth headset. Both the I2S interface and the PCM interface can be used for audio communication.
- the UART interface is a universal serial data bus used for asynchronous communication.
- the bus can be a bidirectional communication bus. It converts the data to be transmitted between serial communication and parallel communication.
- a UART interface is generally used to connect the processor 110 and the wireless communication module 160 .
- the processor 110 communicates with the Bluetooth module in the wireless communication module 160 through the UART interface to implement the Bluetooth function.
- the audio module 170 can transmit audio signals to the wireless communication module 160 through the UART interface to implement the function of playing music through a Bluetooth headset.
- the MIPI interface can be used to connect the processor 110 with peripheral devices such as the display screen 194 and the camera 193 .
- MIPI interfaces include camera serial interface (CSI), display serial interface (DSI), etc.
- the processor 110 and the camera 193 communicate through the CSI interface to implement the shooting function of the electronic device 100 .
- the processor 110 and the display screen 194 communicate through the DSI interface to implement the display function of the electronic device 100 .
- the GPIO interface can be configured through software.
- the GPIO interface can be configured as a control signal or as a data signal.
- the GPIO interface can be used to connect the processor 110 with the camera 193, display screen 194, wireless communication module 160, audio module 170, sensor module 180, etc.
- the GPIO interface can also be configured as an I2C interface, I2S interface, UART interface, MIPI interface, etc.
- the USB interface 130 is an interface that complies with the USB standard specification, and may be a Mini USB interface, a Micro USB interface, a USB Type C interface, etc.
- the USB interface 130 can be used to connect a charger to charge the electronic device 100, and can also be used to transmit data between the electronic device 100 and peripheral devices. It can also be used to connect headphones to play audio through them. This interface can also be used to connect other electronic devices, such as AR devices, etc.
- the interface connection relationships between the modules illustrated in the embodiments of the present application are only schematic illustrations and do not constitute a structural limitation of the electronic device 100 .
- the electronic device 100 may also adopt different interface connection methods in the above embodiments, or a combination of multiple interface connection methods.
- the charging management module 140 is used to receive charging input from the charger.
- the charger can be a wireless charger or a wired charger.
- the charging management module 140 may receive charging input from the wired charger through the USB interface 130 .
- the charging management module 140 may receive wireless charging input through the wireless charging coil of the electronic device 100 . While the charging management module 140 charges the battery 142, it can also provide power to the electronic device 100 through the power management module 141.
- the power management module 141 is used to connect the battery 142, the charging management module 140 and the processor 110.
- the power management module 141 receives input from the battery 142 and/or the charging management module 140, and supplies power to the processor 110, the internal memory 121, the display screen 194, the camera 193, the wireless communication module 160, and the like.
- the power management module 141 can also be used to monitor battery capacity, battery cycle times, battery health status (leakage, impedance) and other parameters.
- the power management module 141 may also be provided in the processor 110 .
- the power management module 141 and the charging management module 140 may also be provided in the same device.
- the wireless communication function of the electronic device 100 can be implemented through the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modem processor and the baseband processor.
- Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
- Each antenna in electronic device 100 may be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
- Antenna 1 can be reused as a diversity antenna for a wireless LAN.
- the antenna can be adjusted Used in conjunction with a harmonic switch.
- the mobile communication module 150 can provide solutions for wireless communication including 2G/3G/4G/5G applied on the electronic device 100 .
- the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA), etc.
- the mobile communication module 150 can receive electromagnetic waves through the antenna 1, perform filtering, amplification and other processing on the received electromagnetic waves, and transmit them to the modem processor for demodulation.
- the mobile communication module 150 can also amplify the signal modulated by the modem processor and convert it into electromagnetic waves through the antenna 1 for radiation.
- at least part of the functional modules of the mobile communication module 150 may be disposed in the processor 110 .
- at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be provided in the same device.
- a modem processor may include a modulator and a demodulator.
- the modulator is used to modulate the low-frequency baseband signal to be sent into a medium-high frequency signal.
- the demodulator is used to demodulate the received electromagnetic wave signal into a low-frequency baseband signal.
- the demodulator then transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
- the application processor outputs sound signals through audio devices (not limited to speaker 170A, receiver 170B, etc.), or displays images or videos through display screen 194.
- the modem processor may be a stand-alone device.
- the modem processor may be independent of the processor 110 and may be provided in the same device as the mobile communication module 150 or other functional modules.
- the wireless communication module 160 can provide applications on the electronic device 100 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) network), Bluetooth (bluetooth, BT), and global navigation satellites.
- WLAN wireless local area networks
- System global navigation satellite system, GNSS
- frequency modulation frequency modulation, FM
- near field communication technology near field communication, NFC
- infrared technology infrared, IR
- the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
- the wireless communication module 160 receives electromagnetic waves via the antenna 2 , frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
- the wireless communication module 160 can also receive the signal to be sent from the processor 110, frequency modulate it, amplify it, and convert it into electromagnetic waves through the antenna 2 for radiation.
- the antenna 1 of the electronic device 100 is coupled to the mobile communication module 150, and the antenna 2 is coupled to the wireless communication module 160, so that the electronic device 100 can communicate with the network and other devices through wireless communication technology.
- the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time division code division multiple access (time-division code division multiple access, TD-SCDMA), long term evolution (long term evolution, LTE), BT, GNSS, WLAN, NFC , FM, and/or IR technology, etc.
- the GNSS may include global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), quasi-zenith satellite system (quasi) -zenith satellite system (QZSS) and/or satellite based augmentation systems (SBAS).
- GPS global positioning system
- GLONASS global navigation satellite system
- BDS Beidou navigation satellite system
- QZSS quasi-zenith satellite system
- SBAS satellite based augmentation systems
- the electronic device 100 implements display functions through a GPU, a display screen 194, an application processor, and the like.
- the GPU is an image processing microprocessor and is connected to the display screen 194 and the application processor. GPUs are used to perform math and geometry Computational, used for graphics rendering.
- Processor 110 may include one or more GPUs that execute program instructions to generate or alter display information.
- the display screen 194 is used to display images, videos, etc.
- Display 194 includes a display panel.
- the display panel can use a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active matrix organic light emitting diode or an active matrix organic light emitting diode (active-matrix organic light emitting diode).
- LCD liquid crystal display
- OLED organic light-emitting diode
- AMOLED organic light-emitting diode
- FLED flexible light-emitting diode
- Miniled MicroLed, Micro-oLed, quantum dot light emitting diode (QLED), etc.
- the electronic device 100 may include 1 or N display screens 194, where N is a positive integer greater than 1.
- the electronic device 100 can implement the shooting function through an ISP, a camera 193, a video codec, a GPU, a display screen 194, an application processor, and the like.
- the ISP is used to process the data fed back by the camera 193. For example, when taking a photo, the shutter is opened, the light is transmitted to the camera sensor through the lens, the optical signal is converted into an electrical signal, and the camera sensor passes the electrical signal to the ISP for processing, and converts it into an image visible to the naked eye. ISP can also perform algorithm optimization on image noise, brightness, and skin color. ISP can also optimize the exposure, color temperature and other parameters of the shooting scene. In some embodiments, the ISP may be provided in the camera 193.
- Camera 193 is used to capture still images or video.
- the object passes through the lens to produce an optical image that is projected onto the photosensitive element.
- the photosensitive element can be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
- CMOS complementary metal-oxide-semiconductor
- the photosensitive element converts the optical signal into an electrical signal, and then passes the electrical signal to the ISP to convert it into a digital image signal.
- ISP outputs digital image signals to DSP for processing.
- DSP converts digital image signals into standard RGB, YUV and other format image signals.
- the electronic device 100 may include 1 or N cameras 193, where N is a positive integer greater than 1.
- Digital signal processors are used to process digital signals. In addition to digital image signals, they can also process other digital signals. For example, when the electronic device 100 selects a frequency point, the digital signal processor is used to perform Fourier transform on the frequency point energy.
- Video codecs are used to compress or decompress digital video.
- Electronic device 100 may support one or more video codecs. In this way, the electronic device 100 can play or record videos in multiple encoding formats, such as moving picture experts group (MPEG) 1, MPEG2, MPEG3, MPEG4, etc.
- MPEG moving picture experts group
- MPEG2 MPEG2, MPEG3, MPEG4, etc.
- NPU is a neural network (NN) computing processor.
- NN neural network
- Intelligent cognitive applications of the electronic device 100 can be implemented through the NPU, such as image recognition, face recognition, speech recognition, text understanding, etc.
- the external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the electronic device 100.
- the external memory card communicates with the processor 110 through the external memory interface 120 to implement the data storage function. Such as saving music, videos, etc. files in external memory card.
- Internal memory 121 may be used to store computer executable program code, which includes instructions.
- the internal memory 121 may include a program storage area and a data storage area.
- the stored program area can Store the operating system, at least one application required for a function (such as a sound playback function, an image playback function, etc.), etc.
- the storage data area may store data created during use of the electronic device 100 (such as audio data, phone book, etc.).
- the internal memory 121 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (UFS), etc.
- the processor 110 executes various functional applications and data processing of the electronic device 100 by executing instructions stored in the internal memory 121 and/or instructions stored in a memory provided in the processor.
- the electronic device 100 can implement audio functions through the audio module 170, the speaker 170A, the receiver 170B, the microphone 170C, the headphone interface 170D, and the application processor. Such as music playback, recording, etc.
- the audio module 170 is used to convert digital audio information into analog audio signal output, and is also used to convert analog audio input into digital audio signals. Audio module 170 may also be used to encode and decode audio signals. In some embodiments, the audio module 170 may be provided in the processor 110 , or some functional modules of the audio module 170 may be provided in the processor 110 .
- Speaker 170A also called “speaker” is used to convert audio electrical signals into sound signals.
- the electronic device 100 can listen to music through the speaker 170A, or listen to hands-free calls.
- Receiver 170B also called “earpiece” is used to convert audio electrical signals into sound signals.
- the electronic device 100 answers a call or a voice message, the voice can be heard by bringing the receiver 170B close to the human ear.
- Microphone 170C also called “microphone” or “microphone” is used to convert sound signals into electrical signals. When making a call or sending a voice message, the user can speak close to the microphone 170C with the human mouth and input the sound signal to the microphone 170C.
- the electronic device 100 may be provided with at least one microphone 170C. In other embodiments, the electronic device 100 may be provided with two microphones 170C, which in addition to collecting sound signals, may also implement a noise reduction function. In other embodiments, the electronic device 100 can also be provided with three, four or more microphones 170C to collect sound signals, reduce noise, identify sound sources, and implement directional recording functions, etc.
- the headphone interface 170D is used to connect wired headphones.
- the headphone interface 170D may be a USB interface 130, or may be a 3.5mm open mobile terminal platform (OMTP) standard interface, or a Cellular Telecommunications Industry Association of the USA (CTIA) standard interface.
- OMTP open mobile terminal platform
- CTIA Cellular Telecommunications Industry Association of the USA
- the pressure sensor 180A is used to sense pressure signals and can convert the pressure signals into electrical signals.
- pressure sensor 180A may be disposed on display screen 194 .
- pressure sensors 180A there are many types of pressure sensors 180A, such as resistive pressure sensors, inductive pressure sensors, capacitive pressure sensors, etc.
- a capacitive pressure sensor may include at least two parallel plates of conductive material.
- the electronic device 100 determines the intensity of the pressure based on the change in capacitance.
- the electronic device 100 detects the intensity of the touch operation according to the pressure sensor 180A.
- the electronic device 100 may also calculate the touched position based on the detection signal of the pressure sensor 180A.
- touch operations acting on the same touch location but with different touch operation intensities may correspond to different operation instructions. For example: when a touch operation with a touch operation intensity less than the first pressure threshold is applied to the short message application icon, an instruction to view the short message is executed. When a touch operation with a touch operation intensity greater than or equal to the first pressure threshold is applied to the short message application icon, an instruction to create a new short message is executed.
- the gyro sensor 180B may be used to determine the motion posture of the electronic device 100 .
- the angular velocity of electronic device 100 about three axes i.e., x, y, and z axes
- the gyro sensor 180B can be used for image stabilization. For example, when the shutter is pressed, the gyro sensor 180B detects the angle at which the electronic device 100 shakes, calculates the distance that the lens module needs to compensate based on the angle, and allows the lens to offset the shake of the electronic device 100 through reverse movement to achieve anti-shake.
- the gyro sensor 180B can also be used for navigation and somatosensory game scenes.
- Air pressure sensor 180C is used to measure air pressure. In some embodiments, the electronic device 100 calculates the altitude through the air pressure value measured by the air pressure sensor 180C to assist positioning and navigation.
- Magnetic sensor 180D includes a Hall sensor.
- the electronic device 100 may utilize the magnetic sensor 180D to detect opening and closing of the flip holster.
- the electronic device 100 may detect the opening and closing of the flip according to the magnetic sensor 180D. Then, based on the detected opening and closing status of the leather case or the opening and closing status of the flip cover, features such as automatic unlocking of the flip cover are set.
- the acceleration sensor 180E can detect the acceleration of the electronic device 100 in various directions (generally three axes). When the electronic device 100 is stationary, the magnitude and direction of gravity can be detected. It can also be used to identify the posture of electronic devices and be used in horizontal and vertical screen switching, pedometer and other applications.
- Distance sensor 180F for measuring distance.
- Electronic device 100 can measure distance via infrared or laser. In some embodiments, when shooting a scene, the electronic device 100 may utilize the distance sensor 180F to measure distance to achieve fast focusing.
- Proximity light sensor 180G may include, for example, a light emitting diode (LED) and a light detector, such as a photodiode.
- the light emitting diode may be an infrared light emitting diode.
- the electronic device 100 emits infrared light outwardly through the light emitting diode.
- Electronic device 100 uses photodiodes to detect infrared reflected light from nearby objects. When sufficient reflected light is detected, it can be determined that there is an object near the electronic device 100 . When insufficient reflected light is detected, the electronic device 100 may determine that there is no object near the electronic device 100 .
- the electronic device 100 can use the proximity light sensor 180G to detect when the user holds the electronic device 100 close to the ear for talking, so as to automatically turn off the screen to save power.
- the proximity light sensor 180G can also be used in holster mode, and pocket mode automatically unlocks and locks the screen.
- the ambient light sensor 180L is used to sense ambient light brightness.
- the electronic device 100 can adaptively adjust the brightness of the display screen 194 according to the perceived ambient light brightness.
- the ambient light sensor 180L can also be used to automatically adjust the white balance when taking pictures.
- the ambient light sensor 180L can also cooperate with the proximity light sensor 180G to detect whether the electronic device 100 is in the pocket to prevent accidental touching.
- Fingerprint sensor 180H is used to collect fingerprints.
- the electronic device 100 can use the collected fingerprint characteristics to achieve fingerprint unlocking, access to application locks, fingerprint photography, fingerprint answering of incoming calls, etc.
- Temperature sensor 180J is used to detect temperature.
- the electronic device 100 utilizes the temperature detected by the temperature sensor 180J to execute the temperature processing strategy. For example, when the temperature reported by the temperature sensor 180J exceeds a threshold, the electronic device 100 reduces the performance of a processor located near the temperature sensor 180J in order to reduce power consumption and implement thermal protection. In other embodiments, when the temperature is lower than another threshold, the electronic device 100 heats the battery 142 to prevent the low temperature from causing the electronic device 100 to shut down abnormally. In some other embodiments, when the temperature is lower than another threshold, the electronic device 100 performs boosting on the output voltage of the battery 142 to avoid abnormal shutdown caused by low temperature.
- Touch sensor 180K also known as "touch device”.
- the touch sensor 180K can be disposed on the display screen 194.
- the touch sensor 180K and the display screen 194 form a touch screen, which is also called a "touch screen”.
- the touch sensor 180K is used to detect a touch operation on or near the touch sensor 180K.
- the touch sensor can transmit the detected touch operation To the application handler to determine the touch event type.
- Visual output related to the touch operation may be provided through display screen 194 .
- the touch sensor 180K may also be disposed on the surface of the electronic device 100 at a location different from that of the display screen 194 .
- Bone conduction sensor 180M can acquire vibration signals.
- the bone conduction sensor 180M can acquire the vibration signal of the vibrating bone mass of the human body's vocal part.
- the bone conduction sensor 180M can also contact the human body's pulse and receive blood pressure beating signals.
- the bone conduction sensor 180M can also be provided in an earphone and combined into a bone conduction earphone.
- the audio module 170 can analyze the voice signal based on the vibration signal of the vocal vibrating bone obtained by the bone conduction sensor 180M to implement the voice function.
- the application processor can analyze the heart rate information based on the blood pressure beating signal acquired by the bone conduction sensor 180M to implement the heart rate detection function.
- the buttons 190 include a power button, a volume button, etc.
- Key 190 may be a mechanical key. It can also be a touch button.
- the electronic device 100 may receive key inputs and generate key signal inputs related to user settings and function control of the electronic device 100 .
- the motor 191 can generate vibration prompts.
- the motor 191 can be used for vibration prompts for incoming calls and can also be used for touch vibration feedback.
- touch operations for different applications can correspond to different vibration feedback effects.
- the motor 191 can also respond to different vibration feedback effects for touch operations in different areas of the display screen 194 .
- Different application scenarios such as time reminders, receiving information, alarm clocks, games, etc.
- the touch vibration feedback effect can also be customized.
- the indicator 192 may be an indicator light, which may be used to indicate charging status, power changes, or may be used to indicate messages, missed calls, notifications, etc.
- the SIM card interface 195 is used to connect a SIM card.
- the SIM card can be connected to or separated from the electronic device 100 by inserting it into the SIM card interface 195 or pulling it out from the SIM card interface 195 .
- the electronic device 100 can support 1 or N SIM card interfaces, where N is a positive integer greater than 1.
- SIM card interface 195 can support Nano SIM card, Micro SIM card, SIM card, etc. Multiple cards can be inserted into the same SIM card interface 195 at the same time. The types of the plurality of cards may be the same or different.
- the SIM card interface 195 is also compatible with different types of SIM cards.
- the SIM card interface 195 is also compatible with external memory cards.
- the electronic device 100 interacts with the network through the SIM card to implement functions such as calls and data communications.
- the electronic device 100 uses an eSIM, that is, an embedded SIM card.
- the eSIM card can be embedded in the electronic device 100 and cannot be separated from the electronic device 100 .
- Figure 4 is a schematic structural diagram of a wearable device provided by an embodiment of the present application.
- the wearable device 200 may include a processor 210, a memory 220, a USB interface 230, a charging management module 240, and a power management module. 241, battery 242, antenna 1, antenna 2, mobile communication module 250, wireless communication module 260, audio module 270, speaker 270A, receiver 270B, microphone 270C, sensor module 280, button 290, motor 291, indicator 292, camera 293 , display screen 294, and SIM card interface 295, etc.
- the sensor module 280 may include a pressure sensor 280A, a gyro sensor 280B, a myoelectric sensor 280C, a magnetic sensor 280D, an acceleration sensor 280E, a distance sensor 280F, a proximity light sensor 280G, a fingerprint sensor 280H, a temperature sensor 280J, a touch sensor 280K, and an environment.
- the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the wearable device 200 .
- the wearable device 200 may include more or fewer components than shown, or Combine some parts, or split some parts, or arrange different parts.
- the components illustrated may be implemented in hardware, software, or a combination of software and hardware.
- Memory 220 may be used to store computer executable program code, which includes instructions.
- the memory 220 may include a program storage area and a data storage area.
- the stored program area can store an operating system, at least one application program required for a function (such as a sound playback function, an image playback function, etc.).
- the storage data area may store data created during use of the wearable device 200 (such as audio data, phone book, etc.).
- the memory 220 may include high-speed random access memory, and may also include non-volatile memory, such as at least one disk storage device, flash memory device, universal flash storage (UFS), etc.
- the processor 210 executes various functional applications and data processing of the wearable device 200 by executing instructions stored in the memory 220 and/or instructions stored in the memory provided in the processor 210 .
- the myoelectric sensor 280C can sense the action potential waveform of muscle motor units (muscle fiber cells) and convert it into a usable output signal.
- Figure 5 is a schematic diagram of the interaction between the electronic device 100 and the wearable device 200 provided by an embodiment of the present application.
- the vibration feedback method based on wearable devices provided by the embodiment of the present application may include:
- Step 501 The electronic device 100 (for example, cockpit or large screen, etc.) captures user gestures (for example, right hand rotation gesture) through a gesture capture device, and generates corresponding gesture recognition results after image analysis at the application framework layer (Framework, FWK) ( For example: adjusting the volume), the operating system of the electronic device 100 sends the gesture recognition result to the corresponding APP (for example: an audio playback APP). After the APP performs business processing, it returns the APP's business processing results to the operating system of the electronic device 100.
- the above gesture capturing device may be the camera 193 in the electronic device 100 .
- Step 502 When the electronic device 100 recognizes that the electronic device 100 is currently in a specific scene (for example, the cockpit is in a traveling state), and a wearable device 200 is currently connected to the electronic device 100 through Bluetooth (including but not limited to Bluetooth connection). , the electronic device 100 sends the gesture information and interaction processing results to the wearable device 200 .
- the gesture information can be a right-hand rotation gesture
- the interaction processing result can be a successful volume increase.
- Step 503 After the wearable device 200 receives the gesture information and interaction processing results sent by the electronic device 100, it can first perform verification.
- the verification includes whether the wearable device 200 is worn on the user's interactive hand and whether the interactive hand has performed this operation.
- Gesture action The interactive hand may be the hand used by the user to perform gesture interaction with the electronic device 100 .
- the wearable device 200 can determine whether the wearable device 200 has a This gesture action. If it is determined that the wearable device 200 does not have this gesture action, it can be determined that the wearable device 200 is not worn on the user's interactive hand, or the interactive hand has not performed this gesture action. In both cases, the verification fails. If the verification fails, the wearable device 200 will not process the electronic device 100 The gesture information passed and the interaction processing results. Only if the verification is successful, step 504 or step 505 will be executed.
- Step 504 After the verification is successful, the wearable device 200 can generate a corresponding vibration effect according to the vibration generation algorithm and provide interactive feedback to the user.
- vibration feedback is introduced by taking a clear and simple waveform as an example. It can be understood that the embodiments of the present application do not limit the vibration feedback method.
- FIG. 6 is a schematic diagram of the waveform of vibration feedback in one embodiment of the present application.
- the wearable device 200 can remind the user to pay attention to safety through continuous strong vibration and other warning prompts (such as sound).
- the electronic device 100 may send multiple interaction processing results to the wearable device 200 according to the specific business scenario.
- the video has multiple highlight nodes.
- the electronic device 100 sends an interactive processing result to the wearable device 200. At this time, it vibrates to remind the user that the highlights are not to be missed.
- the electronic device 100 can send the interactive processing result to the wearable device 200 again, and once again remind the user through vibration that the exciting event is not to be missed.
- a vibration waveform similar to an elastic edge can be used to prompt the user.
- the wearable device 200 can implement vibration feedback through the processor 210 and the motor 291.
- the wearable device 200 may determine whether the business processing corresponding to the user's gesture requires further interaction. If necessary, the wearable device 200 can display the interactive interface and/or operating controls of the corresponding APP. Therefore, the wearable device 200 can display the interactive interface and/or operating controls of the APP currently running on the electronic device 100 to facilitate the user's subsequent viewing or operation. Precise interaction.
- step 505 and step 504 can be executed in parallel or one after another. This embodiment does not limit the execution order of step 504 and step 505.
- the wearable device 200 can automatically identify whether the wearable device 200 is worn on the interacting hand, provide the user with the required vibration feedback, and can control the The relevant operations are continued to the wearable device 200, and the user can directly interact with the electronic device 100 on the wearable device 200.
- Figure 7 is an interaction flow chart between the electronic device 100 and the wearable device 200 provided by an embodiment of the present application. As shown in Figure 7, it may include:
- Step 701 The gesture capture device in the electronic device 100 captures the user's gesture.
- the above-mentioned gesture capture device can be the camera 193 in the electronic device 100.
- the above-mentioned gesture capture device is not limited to this.
- the above-mentioned gesture capture device can also be a sensor with an image capture function, or other devices. This embodiment is suitable for The type of the above gesture capture device is not limited.
- Step 702 The electronic device 100 recognizes the above gesture and obtains the gesture recognition result.
- the gesture recognition results are processed through the currently running application to obtain the interactive processing results for the above gesture recognition results.
- Step 703 If a wearable device 200 is currently connected to the electronic device 100, the electronic device 100 sends the above gesture information and the above interaction processing result to the wearable device 200.
- the electronic device 100 sends the above gesture information and interaction processing results to the wearable device 200.
- the predetermined scene may be that the vehicle is traveling.
- Step 704 After the wearable device 200 determines that the wearable device 200 is worn on the interactive hand based on the above gesture information, it generates a vibration signal corresponding to the above interactive processing result.
- Step 705 The wearable device 200 feeds back the above vibration signal to the user.
- Step 706 The wearable device 200 determines whether the business processing corresponding to the user's gesture requires further interaction. If necessary, the wearable device 200 displays an interactive interface and/or operating controls corresponding to the application, so that the user can interact with the application through the interactive interface and/or operating controls.
- FIG. 8 is a schematic diagram of an application scenario provided by one embodiment of the present application
- Figure 9 is a schematic diagram of another application scenario.
- the embodiment provides a schematic diagram of the application scenario.
- the electronic device 100 is a large-screen device and the wearable device 200 is a smart watch.
- the smart watch When the user interacts with the large screen and drags the video progress through gestures, the smart watch will There is a slight vibration reminder so that users can clearly feel the dragging progress.
- the interface of the smart watch displays an interactive interface for adjusting the video playback progress, as shown at 81 in Figure 8 , which facilitates the user to interact with the application currently running on the large screen through the interactive interface displayed on the smart watch.
- the electronic device 100 is a smart cockpit and the wearable device 200 is a smart watch.
- the user in the cockpit interacts with the smart cockpit and adjusts the volume through gesture rotation, every time a volume scale is adjusted, the smart watch There will be a slight vibration reminder so that users can clearly feel the volume adjustment.
- the interface of the smart watch displays the control interface of the application currently running in the smart cockpit, such as whether the music is the previous or next song, favorites, etc., as shown at 91 in Figure 9.
- Figure 10 is a flow chart of a vibration feedback method based on a wearable device provided by an embodiment of the present application.
- the above method can be applied to the wearable device 200.
- the wearable device 200 is connected to the electronic device 100.
- the wearable device 200 can be connected via Bluetooth or WiFi. etc. to connect to the electronic device 100 wirelessly.
- the above method may include:
- Step 1001 The wearable device 200 obtains the interactive processing results of the user's gesture information for the application currently running on the electronic device 100. Among them, the above-mentioned user wears the wearable device 200.
- the above gesture information may be a right hand rotation gesture, and the above interactive processing result may be successful volume increase.
- the wearable device 200 can obtain the above interactive processing result through the processor 210 in the wearable device 200 .
- Step 1002 The wearable device 200 generates a vibration signal corresponding to the above interactive processing result, and feeds back the above vibration signal to the user.
- generating a vibration signal corresponding to the above-mentioned interactive processing result may be: when the above-mentioned interactive processing result is that the operation is successful, generating a vibration-sensing enhancement signal; or when the above-mentioned interactive processing result is that the operation is unsuccessful, generating a vibration-sensing attenuation signal ; Or, when the above interactive processing results have safety risks, a continuous strong vibration signal is generated.
- the above forms of vibration signals are only examples. The form of the vibration signal can be set according to requirements during specific implementation. This embodiment does not limit the form of the vibration signal.
- the wearable device 200 can generate a vibration signal corresponding to the above interactive processing result through the processor 210 in the wearable device 200 .
- the wearable device 200 may feed back the vibration signal through the motor 291 in the wearable device 200 .
- Step 1003 The wearable device 200 displays the interactive interface and/or operating controls of the above-mentioned application for the user to interact with the above-mentioned application through the above-mentioned interactive interface and/or operating controls.
- the wearable device 200 can determine whether the business processing corresponding to the user's gesture requires further interaction. If necessary, the wearable device 200 displays the interactive interface and/or operating controls of the corresponding application, thereby displaying the interactive interface and/or operating controls of the application currently running on the electronic device 100 on the screen of the wearable device 200 to facilitate the user's subsequent viewing or Make precise interactions.
- the wearable device 200 may also send the first information to the electronic device 100 in response to the user's first operation on the above-mentioned interactive interface and/or operating controls, so that the electronic device 100 can
- the device 100 controls the above-mentioned application according to the above-mentioned first information.
- the above-mentioned first operation may be a user's operation on an icon in the above-mentioned interactive interface and/or operation control.
- the specific operation form may include click, double-click or long press. This embodiment does not limit the operation form of the first operation.
- the wearable device 200 responds The first operation is to send instruction information to pause playback (ie, first information) to the electronic device 100 .
- the electronic device 100 can control the above-mentioned application to pause the video playback according to the above-mentioned first information.
- the wearable device 200 can implement the function of displaying the interactive interface and/or operating controls of the above application through the processor 210 and the display screen 294 .
- step 1003 and step 1002 can be executed in parallel or one after another. This embodiment does not limit the execution order of step 1003 and step 1002.
- the wearable device 200 can also obtain the gesture information sent by the electronic device 100.
- generating a vibration signal corresponding to the interaction processing result can be: the wearable device 200 determines based on the above gesture information that the wearable device 200 is worn during the interaction. After holding it on the hand, a vibration signal corresponding to the above interactive processing result is generated.
- the above-mentioned interactive hands include the hands of the user wearing the wearable device 100 for gesture interaction with the electronic device 200 .
- determining that the wearable device 200 is worn on the interactive hand based on the above gesture information may be: determining through the gyroscope sensor 280B and/or myoelectric sensor 280C in the wearable device 200 that the interactive hand has performed Action corresponding to the above gesture information. For example, assuming that the gesture information is a right-hand rotation gesture, and through the gyro sensor 280B and the myoelectric sensor 280C in the wearable device 200, it is determined that the interacting hand has performed a right-hand rotation gesture, then the wearable device 200 can determine that the wearable device 200 is worn on the interacting hand. superior.
- the wearable device 200 can determine that the wearable device 200 is worn on the interactive hand through the processor 210 in the wearable device 200 and the gyroscope sensor 280B and/or the myoelectric sensor 280C.
- the wearable device 200 can first determine whether the wearable device 200 is worn on the interactive hand based on gesture information, and then vibrates only when the user wears it, which can improve the accuracy of vibration feedback. In other embodiments, the wearable device 200 does not need to determine whether the wearable device 200 is worn on the interactive hand, and can provide vibration feedback when the wearable device 200 is connected to the electronic device 100 .
- the wearable device 200 obtains the interactive processing results of the user's gesture information from the application currently running on the electronic device 100, generates a vibration signal corresponding to the above interactive processing results, and then feeds back the above vibration signals to the user. , thus enabling the wearable device 200 to provide vibration feedback of the interaction processing results to the user when the user performs air-to-air gesture interaction with the electronic device 100, so that the user can clearly perceive the processing results of the gesture interaction and improve the accuracy of the gesture interaction operation. Improve user experience.
- Figure 11 is a flow chart of a wearable device-based vibration feedback method provided by another embodiment of the present application.
- the above method can be applied to the electronic device 100.
- the above method can include:
- Step 1101 The electronic device 100 obtains the user's gesture captured by the gesture capture device; wherein the user wears the wearable device 200.
- the above-mentioned gesture capturing device may be the camera 193 in the electronic device 100.
- Step 1102 The electronic device 100 recognizes the above gesture and obtains the gesture recognition result.
- Step 1103 The electronic device 100 performs business processing through the currently running application according to the above-mentioned gesture recognition result, and obtains the interactive processing result for the above-mentioned gesture recognition result.
- the above gesture can be a right hand rotation gesture, and the gesture recognition result can be to adjust the volume.
- the currently running application can be an audio playback application, and the interactive processing result obtained by performing business processing on the currently running application can be to increase the volume. success.
- Step 1104 the electronic device 100 sends the above-mentioned interaction processing result to the wearable device 200, so that the wearable device 200 generates a vibration signal corresponding to the above-mentioned interaction processing result and the interactive interface and/or operation control of the above-mentioned application, wherein the above-mentioned interactive interface and /or action controls are used to interact with the above applications.
- step 1104 the electronic device 100 may also determine whether a wearable device 200 is currently connected to the electronic device 100. In this way, step 1104 may be: if a wearable device 200 is currently connected to the electronic device 100, the electronic device 100 sends the above interaction processing result to the wearable device 200.
- step 1104 can be: if the current scene meets the predetermined scene, then send the above interaction processing result to the wearable device 200 .
- the electronic device 100 may also determine whether the scene in which the electronic device 100 is currently in conforms to the predetermined scene, and determine whether a wearable device 200 is currently connected to the electronic device 100; in this way, step 1104 may be: if the electronic device 100 is currently in If the scene matches the predetermined scene, and there is currently a wearable device 200 connected to the electronic device 100, the above gesture information and the above interaction processing result are sent to the wearable device 200.
- the above-mentioned predetermined scene may be traveling.
- the above-mentioned predetermined scene may also be other scenes. This embodiment does not limit the predetermined scene.
- the electronic device 100 may be connected to the wearable device 200 through wireless methods such as Bluetooth or WiFi.
- the electronic device 100 may send the above interactive processing results to the wearable device 200 through the processor 110, the antenna 1 and the mobile communication module 150, and/or through the processor 110, the antenna 2 and the wireless communication module 160.
- the electronic device 100 may also send the gesture information to the wearable device 200. So that after the wearable device 200 determines that the wearable device 200 is worn on the user's interactive hand according to the above gesture information, it generates a vibration signal corresponding to the above interaction processing result and the interactive interface and/or operation control of the above application, thereby improving the accuracy of vibration feedback. sex.
- the interactive hand of the user includes the hand of the user performing gesture interaction with the electronic device 100 .
- the electronic device 100 can also receive the first information sent by the wearable device 200 , where the above-mentioned first information is sent by the wearable device 200 in response to the user's first operation on the above-mentioned interactive interface and/or operation control. ; then, the electronic device 100 controls the above-mentioned application according to the above-mentioned first information.
- the electronic device 100 obtains the user's gesture captured by the gesture capture device, it recognizes the above-mentioned gesture, obtains the gesture recognition result, and performs business processing through the currently running application based on the above-mentioned gesture recognition result.
- Obtain the interactive processing result for the above-mentioned gesture recognition result and finally, send the above-mentioned interactive processing result to the wearable device 200, so that the wearable device 200 generates a vibration signal corresponding to the above-mentioned interactive processing result and the interactive interface and/or operation control of the above-mentioned application.
- the electronic device includes corresponding hardware and/or software modules that perform each function.
- this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving the hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art can use different methods to implement the described functions in conjunction with the embodiments for each specific application, but such implementations should not be considered to be beyond the scope of this application.
- This embodiment can divide the electronic device into functional modules according to the above method embodiments.
- each functional module can be divided corresponding to each function, or two or more functions can be integrated into one module.
- the above integrated modules can be implemented in the form of hardware. It should be noted that the division of modules in this embodiment is schematic and is only a logical function division. In actual implementation, there may be other division methods.
- Figure 12 is a schematic structural diagram of an electronic device provided by another embodiment of the present application. In the case of dividing each functional module corresponding to each function, Figure 12 shows a possible composition of the electronic device 1200 involved in the above embodiment. Schematic diagram, as shown in Figure 12, the electronic device 1200 may include: a receiving unit 1201, Processing unit 1202 and sending unit 1203;
- the processing unit 1202 can be used to support the electronic device 1200 to perform steps 1101, 1102, 1103, etc., and/or other processes for the technical solutions described in the embodiments of this application;
- the sending unit 1203 may be used to support the electronic device 1200 to perform step 1104, and/or other processes for the technical solutions described in the embodiments of this application.
- the electronic device 1200 provided in this embodiment is used to perform the wearable device-based vibration feedback method provided by the embodiment shown in Figure 11 of this application, and therefore can achieve the same effect as the above method.
- the electronic device 1200 may correspond to the electronic device 100 shown in FIG. 3 .
- the functions of the receiving unit 1201 and the sending unit 1203 can be provided by the processor 110, the antenna 1 and the mobile communication module 150 in the electronic device 100 shown in FIG. 3, and/or by the processor 110, the antenna 2 and the wireless communication module 160.
- the function of the processing unit 1202 can be implemented by the processor 110 and the camera 193 in the electronic device 100 shown in FIG. 3 .
- the electronic device 1200 may include a processing module, a storage module, and a communication module.
- the processing module may be used to control and manage the actions of the electronic device 1200. For example, it may be used to support the electronic device 1200 to perform the steps performed by the receiving unit 1201, the processing unit 1202, and the sending unit 1203.
- the storage module can be used to support the electronic device 1200 to store program codes, data, etc.
- the communication module may be used to support communication between the electronic device 1200 and other devices.
- the processing module may be a processor or a controller, which may implement or execute various exemplary logical blocks, modules and circuits described in connection with the disclosure of this application.
- a processor can also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of digital signal processing (DSP) and a microprocessor, etc.
- the storage module may be a memory.
- the communication module may specifically be a radio frequency circuit, a Bluetooth chip, a Wi-Fi chip, and other devices that interact with other electronic devices.
- the electronic device 1200 involved in this embodiment may be a device with the structure shown in FIG. 3 .
- the wearable device includes hardware and/or software modules corresponding to each function.
- this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving the hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art can use different methods to implement the described functions in conjunction with the embodiments for each specific application, but such implementations should not be considered to be beyond the scope of this application.
- This embodiment can divide the wearable device into functional modules according to the above method embodiments.
- each functional module can be divided corresponding to each function, or two or more functions can be integrated into one module.
- the above integrated modules can be implemented in the form of hardware. It should be noted that the division of modules in this embodiment is schematic and is only a logical function division. In actual implementation, there may be other division methods.
- Figure 13 is a schematic structural diagram of a wearable device provided by another embodiment of the present application. In the case of dividing each functional module corresponding to each function, Figure 13 shows a possible composition of the wearable device 1300 involved in the above embodiment. Schematic diagram, as shown in Figure 13, the wearable device 1300 may include: a receiving unit 1301, a processing unit 1302 and a sending unit 1303;
- the receiving unit 1301 may be used to support the wearable device 1300 to perform steps 1001, etc., and/or other processes for the technical solutions described in the embodiments of this application;
- the processing unit 1302 may be used to support the wearable device 1300 to perform steps 1002, 1003, etc., and/or other processes for the technical solutions described in the embodiments of this application;
- the wearable device 1300 provided in this embodiment is used to perform the vibration feedback method based on the wearable device provided by the embodiment shown in Figure 10 of this application, and therefore can achieve the same effect as the above method.
- the wearable device 1300 may correspond to the wearable device 200 shown in FIG. 4 .
- the functions of the receiving unit 1301 and the sending unit 1303 can be provided by the processor 210, the antenna 1 and the mobile communication module 250 in the wearable device 200 shown in Figure 4, and/or by the processor 210, the antenna 2 and the wireless communication module. 260; the function of the processing unit 1302 can be realized by the processor 210, the motor 291 and the display screen 294 in the wearable device 400 shown in Figure 4.
- the wearable device 1300 may include a processing module, a storage module, and a communication module.
- the processing module may be used to control and manage the actions of the wearable device 1300. For example, it may be used to support the wearable device 1300 in performing the steps performed by the receiving unit 1301, the processing unit 1302, and the sending unit 1303.
- the storage module can be used to support the wearable device 1300 in storing program codes, data, etc.
- the communication module can be used to support communication between the wearable device 1300 and other devices.
- the processing module may be a processor or a controller, which may implement or execute various exemplary logical blocks, modules and circuits described in connection with the disclosure of this application.
- a processor can also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of digital signal processing (DSP) and a microprocessor, etc.
- the storage module may be a memory.
- the communication module may specifically be a radio frequency circuit, a Bluetooth chip, a Wi-Fi chip, and other devices that interact with other electronic devices.
- the wearable device 1300 involved in this embodiment may be a device with the structure shown in Figure 4 .
- An embodiment of the present application also provides a computer-readable storage medium.
- the computer-readable storage medium stores a computer program, which when run on a computer causes the computer to execute the method provided by the embodiment shown in Figure 10 of the present application.
- An embodiment of the present application also provides a computer-readable storage medium.
- the computer-readable storage medium stores a computer program, which when run on a computer causes the computer to execute the method provided by the embodiment shown in Figure 11 of the present application.
- Embodiments of the present application also provide a computer program product containing instructions.
- the computer program product includes a computer program, which, when run on a computer, causes the computer to execute the embodiment shown in Figure 10 of the present application. Methods.
- An embodiment of the present application also provides a computer program product containing instructions.
- the computer program product includes a computer program that, when run on a computer, causes the computer to execute the method provided by the embodiment shown in Figure 11 of the present application.
- At least one refers to one or more, and “multiple” refers to two or more.
- And/or describes the relationship between associated objects, indicating that there can be three relationships. For example, A and/or B can represent the existence of A alone, the existence of A and B at the same time, or the existence of B alone. Where A and B can be singular or plural.
- the character “/” generally indicates that the related objects are in an “or” relationship.
- At least one of the following" and similar expressions refers to any combination of these items, including any combination of single or plural items.
- At least one of a, b and c can mean: a, b, c, a and b, a and c, b and c or a and b and c, where a, b, c can be single, also Can be multiple.
- any function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
- the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
- the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
- the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code. .
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
本申请实施例提供一种基于穿戴设备的振动反馈方法、装置、穿戴设备和电子设备,上述基于穿戴设备的振动反馈方法中,穿戴设备获取电子设备当前运行的应用针对用户的手势信息的交互处理结果,生成与上述交互处理结果对应的振动信号,然后将上述振动信号反馈给用户,从而可以实现用户在针对电子设备进行隔空手势交互时,穿戴设备可以向用户提供交互处理结果的振动反馈,使用户可以明确感知手势交互的处理结果,提高手势交互操作的精准度,提高用户体验。并且可以在穿戴设备的屏幕上显示电子设备上当前运行的应用的交互界面和/或操作控件,便于用户后续查看或与上述应用进行精准交互。
Description
本申请实施例要求于2022年5月12日提交中国专利局、申请号为202210519979.8、发明名称为“基于穿戴设备的振动反馈方法、系统、穿戴设备和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请实施例中。
本申请实施例涉及智能终端技术领域,特别涉及一种基于穿戴设备的振动反馈方法、系统、穿戴设备和电子设备。
现有相关技术中,用户在与各种电子设备(例如:手机、大屏或座舱等)进行隔空交互时,隔空手势交互越来越普遍,比如音量调节、切换歌曲和/或返回桌面等等,但电子设备对于隔空手势操作的反馈大多是视觉反馈和声音反馈。以音量调节为例:车辆座舱内,司机在开车时,视线按照行驶方向直视前方,此时司机通过空中手势调节座舱播放的音频的音量,很容易将音量调得过大或过小,用户体验较差。发明内容
本申请实施例提供了一种基于穿戴设备的振动反馈方法、系统、穿戴设备和电子设备,本申请实施例还提供一种计算机可读存储介质,以实现用户在针对电子设备进行隔空手势交互时,可以通过穿戴设备向用户提供交互处理结果的振动反馈,使用户可以明确感知手势交互的处理结果,提高手势交互操作的精准度,提高用户体验。
第一方面,本申请提供了一种基于穿戴设备的振动反馈方法,应用于穿戴设备,该穿戴设备与电子设备连接,上述方法可以包括:穿戴设备获取上述电子设备当前运行的应用针对用户的手势信息的交互处理结果。然后,穿戴设备生成与上述交互处理结果对应的振动信号,并将上述振动信号反馈给用户,显示上述应用的交互界面和/或操作控件,其中,上述交互界面和/或操作控件用于与上述应用进行交互,上述用户佩戴上述穿戴设备。
上述基于穿戴设备的振动反馈方法中,穿戴设备获取电子设备当前运行的应用针对上述手势信息的交互处理结果,生成与上述交互处理结果对应的振动信号,然后将上述振动信号反馈给用户,从而可以实现用户在针对电子设备进行隔空手势交互时,穿戴设备可以向用户提供交互处理结果的振动反馈,使用户可以明确感知手势交互的处理结果,提高手势交互操作的精准度,提高用户体验。并且可以在穿戴设备的屏幕上显示电子设备上当前运行的应用的交互界面和/或操作控件,便于用户后续查看或与上述应用进行精准交互。
其中一种可能的实现方式中,生成与上述交互处理结果对应的振动信号之前,
穿戴设备还可以获取上述电子设备发送的手势信息;这样,生成与上述交互处理结果对应的振动信号可以为:根据上述手势信息确定穿戴设备佩戴在上述用户的交互手上之后,生成与上述交互处理结果对应的振动信号;其中,上述用户的交互手包括用户与上述电子设备进行手势交互的手。
其中一种可能的实现方式中,穿戴设备根据上述手势信息确定穿戴设备佩戴在用户的交互手上可以为:通过上述穿戴设备中的陀螺仪传感器和/或肌电传感器,确定上述交互手执行过与上述手势信息对应的动作。
其中一种可能的实现方式中,穿戴设备生成与上述交互处理结果对应的振动信号可以为:当上述交互处理结果为操作成功时,生成振感增强信号;或者,当交互处理结果为操作未成功时,生成振感衰减信号;或者,当交互处理结果存在安全隐患时,生成持续强振信号。
其中一种可能的实现方式中,显示上述应用的交互界面和/或操作控件之后,穿戴设备还可以响应于用户对上述交互界面和/或操作控件的第一操作,向电子设备发送第一信息,以使电子设备根据上述第一信息控制上述应用。
第二方面,本申请实施例提供一种基于穿戴设备的振动反馈方法,应用于电子设备,上述方法可以包括:电子设备获取手势捕获设备捕获的用户的手势,对上述手势进行识别,获得手势识别结果,其中,上述用户佩戴上述穿戴设备。然后,电子设备根据上述手势识别结果,通过当前运行的应用进行业务处理,获得针对上述手势识别结果的交互处理结果;接下来,电子设备将上述交互处理结果发送给穿戴设备,以使穿戴设备生成与上述交互处理结果对应的振动信号以及上述应用的交互界面和/或操作控件,其中,上述交互界面和/或操作控件用于与上述应用进行交互。
上述基于穿戴设备的振动反馈方法中,电子设备获取手势捕获设备捕获的用户的手势之后,对上述手势进行识别,获得手势识别结果,根据上述手势识别结果,通过当前运行的应用进行业务处理,获得针对上述手势识别结果的交互处理结果,最后,将上述交互处理结果发送给穿戴设备,以使穿戴设备生成与上述交互处理结果对应的振动信号以及上述应用的交互界面和/或操作控件,从而可以实现用户在针对电子设备进行隔空手势交互时,通过穿戴设备向用户提供交互处理结果的振动反馈,使用户可以明确感知手势交互的处理结果,提高手势交互操作的精准度,提高用户体验。并且可以穿戴设备可以生成电子设备上当前运行的应用的交互界面和/或操作控件,便于用户后续查看或与上述应用进行精准交互。
其中一种可能的实现方式中,电子设备将上述交互处理结果发送给穿戴设备之前,还可以判断当前是否有穿戴设备与上述电子设备连接;这样,电子设备将上述交互处理结果发送给穿戴设备可以为:如果当前有穿戴设备与电子设备连接,则电子设备将上述交互处理结果发送给穿戴设备。
其中一种可能的实现方式中,电子设备将上述交互处理结果发送给穿戴设备之前,还可以判断当前所处的场景是否符合预定场景;这样,电子设备将上述交互处理结果发送给穿戴设备可以为:如果当前所处的场景符合预定场景,则电子设备将上述交互处理结果发送给穿戴设备。
其中一种可能的实现方式中,电子设备还可以将手势信息发送给穿戴设备,以使穿戴设备根据上述手势信息确定穿戴设备佩戴在用户的交互手上之后,生成与上
述交互处理结果对应的振动信号以及上述应用的交互界面和/或操作控件;其中,上述用户的交互手包括用户与电子设备进行手势交互的手。
其中一种可能的实现方式中,电子设备还可以接收穿戴设备发送的第一信息,其中,上述第一信息是穿戴设备响应于上述用户对上述交互界面和/或操作控件的第一操作发送的;根据上述第一信息控制上述应用。
第三方面,本申请实施例提供一种基于穿戴设备的振动反馈装置,该装置包含在穿戴设备中,该装置具有实现第一方面及第一方面的可能实现方式中穿戴设备行为的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块或单元。例如,接收模块或单元、处理模块或单元、发送模块或单元等。
第四方面,本申请实施例提供一种基于穿戴设备的振动反馈装置,该装置包含在电子设备中,该装置具有实现第二方面及第二方面的可能实现方式中电子设备行为的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块或单元。例如,接收模块或单元、处理模块或单元、发送模块或单元等。
第五方面,本申请实施例提供一种穿戴设备,包括:一个或多个处理器;存储器;多个应用程序;以及一个或多个计算机程序,其中一个或多个计算机程序被存储在上述存储器中,上述一个或多个计算机程序包括指令,当上述指令被穿戴设备执行时,使得穿戴设备执行以下步骤:获取电子设备当前运行的应用针对用户的手势信息的交互处理结果;其中,上述用户佩戴穿戴设备;生成与上述交互处理结果对应的振动信号,并将上述振动信号反馈给用户;显示上述应用的交互界面和/或操作控件,其中,上述交互界面和/或操作控件用于与上述应用进行交互。
其中一种可能的实现方式中,当上述指令被穿戴设备执行时,使得穿戴设备执行生成与上述交互处理结果对应的振动信号的步骤之前,还执行以下步骤:获取电子设备发送的手势信息;当上述指令被穿戴设备执行时,使得穿戴设备执行生成与上述交互处理结果对应的振动信号的步骤可以为:根据上述手势信息确定穿戴设备佩戴在用户的交互手上之后,生成与上述交互处理结果对应的振动信号;其中,上述用户的交互手包括用户与电子设备进行手势交互的手。
其中一种可能的实现方式中,当上述指令被穿戴设备执行时,使得穿戴设备执行根据上述手势信息确定穿戴设备佩戴在用户的交互手上的步骤包括:通过上述穿戴设备中的陀螺仪传感器和/或肌电传感器,确定上述交互手执行过与上述手势信息对应的动作。
其中一种可能的实现方式中,当上述指令被穿戴设备执行时,使得穿戴设备执行生成与上述交互处理结果对应的振动信号的步骤包括:当上述交互处理结果为操作成功时,生成振感增强信号;或者,当上述交互处理结果为操作未成功时,生成振感衰减信号;或者,当上述交互处理结果存在安全隐患时,生成持续强振信号。
其中一种可能的实现方式中,当上述指令被穿戴设备执行时,使得穿戴设备执行显示上述应用的交互界面和/或操作控件的步骤之后,还执行以下步骤:响应于上述用户对上述交互界面和/或操作控件的第一操作,向电子设备发送第一信息,以使
电子设备根据上述第一信息控制上述应用。
第六方面,本申请实施例提供一种电子设备,包括:一个或多个处理器;存储器;多个应用程序;以及一个或多个计算机程序,其中一个或多个计算机程序被存储在上述存储器中,一个或多个计算机程序包括指令,当上述指令被电子设备执行时,使得电子设备执行以下步骤:获取手势捕获设备捕获的用户的手势;其中,所述用户佩戴所述穿戴设备;对上述手势进行识别,获得手势识别结果;根据上述手势识别结果,通过当前运行的应用进行业务处理,获得针对上述手势识别结果的交互处理结果;将上述交互处理结果发送给穿戴设备,以使上述穿戴设备生成与上述交互处理结果对应的振动信号以及上述应用的交互界面和/或操作控件,其中,上述交互界面和/或操作控件用于与上述应用进行交互。
其中一种可能的实现方式中,当上述指令被电子设备执行时,使得电子设备执行将上述交互处理结果发送给穿戴设备的步骤之前,还执行以下步骤:判断当前是否有穿戴设备与电子设备连接;当上述指令被电子设备执行时,使得电子设备执行将上述交互处理结果发送给穿戴设备的步骤包括:如果当前有穿戴设备与上述电子设备连接,则将上述交互处理结果发送给穿戴设备。
其中一种可能的实现方式中,当上述指令被电子设备执行时,使得电子设备执行将上述交互处理结果发送给穿戴设备的步骤之前,还执行以下步骤:判断当前所处的场景是否符合预定场景;当上述指令被所述电子设备执行时,使得电子设备执行所述将上述交互处理结果发送给穿戴设备的步骤包括:如果当前所处的场景符合预定场景,则将上述交互处理结果发送给穿戴设备。
其中一种可能的实现方式中,当上述指令被电子设备执行时,使得电子设备还执行以下步骤:将手势信息发送给穿戴设备,以使穿戴设备根据上述手势信息确定穿戴设备佩戴在上述用户的交互手上之后,生成与上述交互处理结果对应的振动信号以及上述应用的交互界面和/或操作控件;其中,上述用户的交互手包括用户与电子设备进行手势交互的手。
其中一种可能的实现方式中,当上述指令被电子设备执行时,使得电子设备还执行以下步骤:接收穿戴设备发送的第一信息,其中,上述第一信息是穿戴设备响应于用户对上述交互界面和/或操作控件的第一操作发送的;根据上述第一信息控制上述应用。
第七方面,本申请实施例还提供一种振动反馈系统,包括第五方面提供的穿戴设备以及第六方面提供的电子设备。
应当理解的是,本申请实施例的第三方面和第五方面与本申请实施例的第一方面的技术方案一致,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
应当理解的是,本申请实施例的第四方面和第六方面与本申请实施例的第二方面的技术方案一致,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
第八方面,本申请实施例提供一种计算机可读存储介质,上述计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行第一方面或第
二方面提供的方法。
第九方面,本申请实施例提供一种包含指令的计算机程序产品,当上述计算机程序产品在计算机上运行时,使得计算机执行第一方面或第二方面提供的方法。
在一种可能的设计中,第九方面中的程序可以全部或者部分存储在与处理器封装在一起的存储介质上,也可以部分或者全部存储在不与处理器封装在一起的存储器上。
图1为现有相关技术中无线手柄与智能设备连接的结构示意图;
图2为现有相关技术提供的智能手表通过控制器应用(application,APP)控制主设备的流程图;
图3为本申请一个实施例提供的电子设备的结构示意图;
图4为本申请一个实施例提供的穿戴设备的结构示意图;
图5为本申请一个实施例提供的电子设备100与穿戴设备200之间的交互示意图;
图6为本申请一个实施例中振动反馈的波形示意图;
图7为本申请一个实施例提供的电子设备100与穿戴设备200之间的交互流程图;
图8为本申请一个实施例提供的应用场景的示意图;
图9为本申请另一个实施例提供的应用场景的示意图;
图10为本申请一个实施例提供的基于穿戴设备的振动反馈方法的流程图;
图11为本申请再一个实施例提供的基于穿戴设备的振动反馈方法的流程图;
图12为本申请另一个实施例提供的电子设备的结构示意图;
图13为本申请另一个实施例提供的穿戴设备的结构示意图。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
现有相关技术中,用户在与电子设备进行隔空手势交互时,电子设备对于隔空手势操作的反馈大多是视觉反馈和声音反馈。这样,用户无法清晰感知手势交互的处理结果,手势交互操作的精准度较差,用户体验较差。
如果用户在与电子设备进行隔空手势交互时,戴在交互手上的智能手表能够提供振动反馈,每调节一个音量格,手表振动一次,则用户在不用视觉查看的情况下,就可清晰知道音量调整了多少,从而提升驾驶安全和空中手势的易用性。并且可以将对端设备的控制按钮分布到手表端,从而将隔空交互转换成触控交互,增加准确性。其中,上述交互手指的是用户与电子设备进行隔空手势交互的手。
现有相关技术中,涉及到跨设备振动全部是通用无线手柄的振动反馈技术。如图1所示,图1为现有相关技术中无线手柄与智能设备连接的结构示意图。图1中,无线手柄/遥控器2与有线通用串行总线(universal serial bus,USB)游戏手柄1通
过USB进行有线连接,无线手柄/遥控器2通过无线接收器3与Android智能设备4无线连接。
在用户操控有线USB游戏手柄1玩游戏的过程中,有线USB游戏手柄1的操控数据通过USB接口传输给无线手柄/遥控器2,无线手柄/遥控器2再将上述操控数据通过无线传输模块传给无线接收器3,无线接收器3将有线USB游戏手柄1的操控数据以标准Joystick数据方式传给Android智能设备4,Android智能设备4以固有的处理Joysticks数据的方法,将上述操控数据中摇杆和按键的数据上传到应用层,Android智能设备4的应用层中运行的游戏读取摇杆和按键的数据,正常操作。
由此可见,现有的手柄振动技术只是传输相关振动数据,处理中心仍在主机本身。有线USB游戏手柄1作为输入输出配件,本身不具备逻辑处理能力,且手柄不适合随身携带。
图2为现有相关技术提供的智能手表通过控制器应用(application,APP)控制主设备的流程图,如图2所示,智能手表在与主设备A主动建立连接后,在手表的控制器APP中输入指令,手表通过手表与主设备A之间的连接通道将上述指令传输给主设备A,主设备A接收指令后进行处理,然后返回处理结果给手表。
但上述方案中,用户需要主动将主设备A与手表进行配对连接,并且用户需要主动打开控制器APP进行遥控设置。
基于以上问题,本申请实施例提供一种基于穿戴设备的振动反馈方法,用户在针对座舱和/或大屏等电子设备进行隔空手势交互时,穿戴设备收到交互处理结果之后,结合振动生成算法生成振动信号,从而对用户进行触觉反馈,在复杂环境下提升用户感知交互结果的准确性,提升交互安全性,避免用户视线多次确认交互结果。
本申请实施例对隔空手势增加穿戴设备的振动反馈,并且在触发振动反馈的同时,还可以将电子设备的控制同步在穿戴设备上显示,方便用户接续控制。
本申请实施例提供的基于穿戴设备的振动反馈方法可以应用于电子设备和穿戴设备,其中,上述电子设备可以为大屏设备、座舱、智能手机、平板电脑、车载设备、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或个人数字助理(personal digital assistant,PDA)等设备;本申请实施例对电子设备的具体类型不作任何限制。
上述穿戴设备可以为智能手表或智能手环等设备,本实施例对穿戴设备的具体类型不作任何限制。
示例性的,图3为本申请一个实施例提供的电子设备的结构示意图,如图3所示,电子设备100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器
180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本申请实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,DCL)。在一些实施例中,处理器110可以包含多组I2C总线。处理器110可以通过不同的I2C总线接口分别耦合触摸传感器180K,充电器,闪光灯,摄像头193等。例如:处理器110可以通过I2C接口耦合触摸传感器180K,使处理器110与触摸传感器180K通过I2C总线接口通信,实现电子设备100的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器110可以包含多组I2S总线。处理器110可以通过I2S总线与音频模块170耦合,实现处理器110与音频模块170之间的通信。在一些实施例中,音频模块170可以通过I2S接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频模块170与无线通信模块160可以通过PCM总线接口耦合。在一些实施例中,音频模块170也可以通过PCM接口向无线通信模块160传递音频信号,实现通
过蓝牙耳机接听电话的功能。所述I2S接口和所述PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器110与无线通信模块160。例如:处理器110通过UART接口与无线通信模块160中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块170可以通过UART接口向无线通信模块160传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器110与显示屏194,摄像头193等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器110和摄像头193通过CSI接口通信,实现电子设备100的拍摄功能。处理器110和显示屏194通过DSI接口通信,实现电子设备100的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器110与摄像头193,显示屏194,无线通信模块160,音频模块170,传感器模块180等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为电子设备100充电,也可以用于电子设备100与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如AR设备等。
可以理解的是,本申请实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备100的结构限定。在本申请另一些实施例中,电子设备100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过电子设备100的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为电子设备100供电。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
电子设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调
谐开关结合使用。
移动通信模块150可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在电子设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,电子设备100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得电子设备100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
电子设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何
计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,电子设备100可以包括1个或N个显示屏194,N为大于1的正整数。
电子设备100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,电子设备100可以包括1个或N个摄像头193,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当电子设备100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。电子设备100可以支持一种或多种视频编解码器。这样,电子设备100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现电子设备100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可
存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。处理器110通过运行存储在内部存储器121的指令,和/或存储在设置于处理器中的存储器的指令,执行电子设备100的各种功能应用以及数据处理。
电子设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。电子设备100可以通过扬声器170A收听音乐,或收听免提通话。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当电子设备100接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。电子设备100可以设置至少一个麦克风170C。在另一些实施例中,电子设备100可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,电子设备100还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。压力传感器180A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器180A,电极之间的电容改变。电子设备100根据电容的变化确定压力的强度。当有触摸操作作用于显示屏194,电子设备100根据压力传感器180A检测所述触摸操作强度。电子设备100也可以根据压力传感器180A的检测信号计算触摸的位置。在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。
陀螺仪传感器180B可以用于确定电子设备100的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定电子设备100围绕三个轴(即,x,y和z轴)的角速
度。陀螺仪传感器180B可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器180B检测电子设备100抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消电子设备100的抖动,实现防抖。陀螺仪传感器180B还可以用于导航,体感游戏场景。
气压传感器180C用于测量气压。在一些实施例中,电子设备100通过气压传感器180C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器180D包括霍尔传感器。电子设备100可以利用磁传感器180D检测翻盖皮套的开合。在一些实施例中,当电子设备100是翻盖机时,电子设备100可以根据磁传感器180D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器180E可检测电子设备100在各个方向上(一般为三轴)加速度的大小。当电子设备100静止时可检测出重力的大小及方向。还可以用于识别电子设备姿态,应用于横竖屏切换,计步器等应用。
距离传感器180F,用于测量距离。电子设备100可以通过红外或激光测量距离。在一些实施例中,拍摄场景,电子设备100可以利用距离传感器180F测距以实现快速对焦。
接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。电子设备100通过发光二极管向外发射红外光。电子设备100使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定电子设备100附近有物体。当检测到不充分的反射光时,电子设备100可以确定电子设备100附近没有物体。电子设备100可以利用接近光传感器180G检测用户手持电子设备100贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器180G也可用于皮套模式,口袋模式自动解锁与锁屏。
环境光传感器180L用于感知环境光亮度。电子设备100可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。环境光传感器180L还可以与接近光传感器180G配合,检测电子设备100是否在口袋里,以防误触。
指纹传感器180H用于采集指纹。电子设备100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器180J用于检测温度。在一些实施例中,电子设备100利用温度传感器180J检测的温度,执行温度处理策略。例如,当温度传感器180J上报的温度超过阈值,电子设备100执行降低位于温度传感器180J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,电子设备100对电池142加热,以避免低温导致电子设备100异常关机。在其他一些实施例中,当温度低于又一阈值时,电子设备100对电池142的输出电压执行升压,以避免低温导致的异常关机。
触摸传感器180K,也称“触控器件”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递
给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于电子设备100的表面,与显示屏194所处的位置不同。
骨传导传感器180M可以获取振动信号。在一些实施例中,骨传导传感器180M可以获取人体声部振动骨块的振动信号。骨传导传感器180M也可以接触人体脉搏,接收血压跳动信号。在一些实施例中,骨传导传感器180M也可以设置于耳机中,结合成骨传导耳机。音频模块170可以基于所述骨传导传感器180M获取的声部振动骨块的振动信号,解析出语音信号,实现语音功能。应用处理器可以基于所述骨传导传感器180M获取的血压跳动信号解析心率信息,实现心率检测功能。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。电子设备100可以接收按键输入,产生与电子设备100的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏194不同区域的触摸操作,马达191也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡可以通过插入SIM卡接口195,或从SIM卡接口195拔出,实现和电子设备100的接触和分离。电子设备100可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口195可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口195可以同时插入多张卡。所述多张卡的类型可以相同,也可以不同。SIM卡接口195也可以兼容不同类型的SIM卡。SIM卡接口195也可以兼容外部存储卡。电子设备100通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,电子设备100采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在电子设备100中,不能和电子设备100分离。
示例性的,图4为本申请一个实施例提供的穿戴设备的结构示意图,如图4所示,穿戴设备200可以包括处理器210,存储器220,USB接口230,充电管理模块240,电源管理模块241,电池242,天线1,天线2,移动通信模块250,无线通信模块260,音频模块270,扬声器270A,受话器270B,麦克风270C,传感器模块280,按键290,马达291,指示器292,摄像头293,显示屏294,以及SIM卡接口295等。其中传感器模块280可以包括压力传感器280A,陀螺仪传感器280B,肌电传感器280C,磁传感器280D,加速度传感器280E,距离传感器280F,接近光传感器280G,指纹传感器280H,温度传感器280J,触摸传感器280K,环境光传感器280L,骨传导传感器280M等。
可以理解的是,本申请实施例示意的结构并不构成对穿戴设备200的具体限定。在本申请另一些实施例中,穿戴设备200可以包括比图示更多或更少的部件,或者
组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
存储器220可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。存储器220可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储穿戴设备200使用过程中所创建的数据(比如音频数据,电话本等)等。此外,存储器220可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。处理器210通过运行存储在存储器220的指令,和/或存储在设置于处理器210中的存储器的指令,执行穿戴设备200的各种功能应用以及数据处理。
肌电传感器280C可以感受肌肉运动单位(肌肉纤维细胞)动作电位波形,并转换成可用输出信号。
需要说明的是,穿戴设备200与电子设备100中相同部件的功能相同,在此不再赘述。
为了便于理解,本申请以下实施例将以具有图3所示结构的电子设备100,具有图4所示结构的穿戴设备200为例,结合附图和应用场景,对本申请实施例提供的基于穿戴设备的振动反馈方法进行具体阐述。
图5为本申请一个实施例提供的电子设备100与穿戴设备200之间的交互示意图。如图5所示,本申请实施例提供的基于穿戴设备的振动反馈方法可以包括:
步骤501,电子设备100(例如:座舱或大屏等)通过手势捕获设备捕获用户手势(例如:右手旋转手势),在应用程序框架层(Framework,FWK)通过图像分析后生成对应手势识别结果(例如:调节音量),电子设备100的操作系统将手势识别结果发送给对应APP(例如:某音频播放APP),APP进行业务处理之后,将APP的业务处理结果返回给电子设备100的操作系统。示例性的,上述手势捕获设备可以为电子设备100中的摄像头193。
步骤502,当电子设备100识别到电子设备100当前处于特定的场景(例如:座舱在行进状态下),且当前有穿戴设备200已经通过蓝牙连接(包括但不限于蓝牙连接)到电子设备100时,电子设备100将手势信息和交互处理结果发送给穿戴设备200。举例来说,手势信息可以为右手旋转手势,交互处理结果可以为音量调大成功。
步骤503,当穿戴设备200接收到电子设备100发送的手势信息和交互处理结果之后,可以首先进行校验,校验包括穿戴设备200是否佩戴在用户的交互手上,以及交互手是否执行过此手势动作。其中,交互手可以为用户与电子设备100进行手势交互的手。
举例来说,假设穿戴设备200接收到的手势信息为右手旋转手势,则穿戴设备200可以根据穿戴设备200中的陀螺仪传感器280B和/或肌电传感器280C的传感器数据,判断穿戴设备200是否有此手势动作。如果确定穿戴设备200无此手势动作,则可以确定穿戴设备200未佩戴在用户的交互手上,或者交互手未执行过此手势动作,这两种情况均为校验失败。如果校验失败,穿戴设备200将不处理电子设备100
传递的手势信息和交互处理结果。只有校验成功,才执行步骤504或步骤505。
步骤504,校验成功后,穿戴设备200可以根据振动生成算法生成对应的振动效果,给用户交互反馈。本申请实施例中,振动反馈以意义明确、简单波形为例进行介绍。可以理解,本申请实施例对振动反馈的方式不做限定。
例如,当一个交互结果用户只关心交互成功与否(例如:打开或关闭某一开关),可以通过短暂振感增强给用户传递积极信号,表示当前操作完成;通过振感衰减向用户传递消极信号,表示当前操作并未生效。如图6所示,图6为本申请一个实施例中振动反馈的波形示意图。
又例如,在座舱环境下,如果交互会带来严重安全隐患,穿戴设备200可通过持续强振配合其他警告提示(例如:声音),来提醒用户注意安全。
再例如,针对持续时间较长的交互场景,例如:调节进度条和/或音量条等,电子设备100可根据具体业务场景向穿戴设备200发送多次交互处理结果。举例说明:视频有多个精彩节点,当进度条拖动到一个精彩节点时,电子设备100发送一次交互处理结果到穿戴设备200,此时通过振动提醒用户精彩不容错过,当进度条拖动到下一个精彩节点时,电子设备100可以再发送一次交互处理结果到穿戴设备200,再次通过振动提醒用户精彩不容错过。
再例如,当音量条已经到达边界(最大或最小)音量时,可通过类似弹性撞边的振动波形,给用户提示。
以上的振动反馈的模式仅为举例,振动反馈的模式可以在具体实现时,根据实际需求自行设计,本实施例对此不作限定。具体实现时,穿戴设备200可以通过处理器210和马达291实现振动反馈。
可选地,步骤505,在步骤503校验成功之后,穿戴设备200可以判断与用户手势对应的业务处理是否需要进一步交互。如果需要,则穿戴设备200可以显示对应APP的交互界面和/或操作控件,从而,穿戴设备200可以显示电子设备100上当前运行的APP的交互界面和/或操作控件,便于用户后续查看或进行精准交互。
具体实现时,步骤505和步骤504可以并行执行,也可以先后执行,本实施例对步骤504和步骤505的执行顺序不作限定。
本实施例中,当用户在与电子设备100进行隔空手势交互时,穿戴设备200可自动识别穿戴设备200是否佩戴在交互手上,并向用户提供所需的振动反馈,并且可以将控制的相关操作接续到穿戴设备200上,用户可直接在穿戴设备200上与电子设备100进行接下来的交互。
图7为本申请一个实施例提供的电子设备100与穿戴设备200之间的交互流程图,如图7所示,可以包括:
步骤701,电子设备100中的手势捕获设备捕获用户的手势。举例来说,上述手势捕获设备可以为电子设备100中的摄像头193,当然上述手势捕获设备并不仅限于此,上述手势捕获设备也可以为具有图像捕获功能的传感器,或其他设备,本实施例对上述手势捕获设备的类型不作限定。
步骤702,电子设备100对上述手势进行识别,获得手势识别结果,根据上述手
势识别结果,通过当前运行的应用进行业务处理,获得针对上述手势识别结果的交互处理结果。
步骤703,如果当前有穿戴设备200与电子设备100连接,则电子设备100将上述手势的信息和上述交互处理结果发送给穿戴设备200。可选地,如果电子设备100当前所处的场景符合预定场景,且当前有穿戴设备200与电子设备100连接,则电子设备100将上述手势的信息和交互处理结果发送给穿戴设备200。其中,当电子设备100为座舱时,预定场景可以为车辆行进中。
步骤704,穿戴设备200根据上述手势信息确定穿戴设备200佩戴在交互手上之后,生成与上述交互处理结果对应的振动信号。
步骤705,穿戴设备200将上述振动信号反馈给用户。
步骤706,穿戴设备200判断与用户手势对应的业务处理是否需要进一步交互。如果需要,则穿戴设备200显示对应应用的交互界面和/或操作控件,以供用户通过上述交互界面和/或操作控件,与上述应用进行交互。
本申请实施例提供的基于穿戴设备的振动反馈方法可以应用在图8和图9所示场景中,其中,图8为本申请一个实施例提供的应用场景的示意图,图9为本申请另一个实施例提供的应用场景的示意图。
图8所示场景中,电子设备100为大屏设备,穿戴设备200为智能手表,用户在与大屏隔空交互、通过手势拖动视频进度的过程中,每拖动一下,智能手表均会有轻微振动提醒,让用户可以清晰感知到拖拽进度。并且此时智能手表的界面上显示调节视频播放进度的交互界面,如图8中81所示,方便用户接下来通过智能手表上显示的交互界面,与大屏上当前运行的应用进行交互。
图9所示场景中,电子设备100为智能座舱,穿戴设备200为智能手表,位于座舱中的用户在与智能座舱隔空交互、手势旋转调整音量过程中,每调整一个音量刻度,智能手表均会有轻微振动提醒,让用户可以清晰感知到调整音量的大小。并且此时智能手表的界面上显示智能座舱当前运行的应用的控制界面,比如:音乐是上一首或下一首、收藏等,如图9中91所示。
以上结合图5~图9,对电子设备100与穿戴设备200之间的交互,以及本申请实施例的应用场景进行了说明,下面对本申请实施例提供的基于穿戴设备的振动反馈方法进行介绍。
图10为本申请一个实施例提供的基于穿戴设备的振动反馈方法的流程图,上述方法可以应用于穿戴设备200,穿戴设备200与电子设备100连接,具体地,穿戴设备200可以通过蓝牙或WiFi等无线方式与电子设备100连接。
如图10所示,上述方法可以包括:
步骤1001,穿戴设备200获取电子设备100当前运行的应用针对用户的手势信息的交互处理结果。其中,上述用户佩戴穿戴设备200。
举例来说,上述手势信息可以为右手旋转手势,上述交互处理结果可以为音量调大成功。
具体地,穿戴设备200可以通过穿戴设备200中的处理器210获取上述交互处理结果。
步骤1002,穿戴设备200生成与上述交互处理结果对应的振动信号,并将上述振动信号反馈给用户。
具体地,生成与上述交互处理结果对应的振动信号可以为:当上述交互处理结果为操作成功时,生成振感增强信号;或者,当上述交互处理结果为操作未成功时,生成振感衰减信号;或者,当上述交互处理结果存在安全隐患时,生成持续强振信号。当然,以上振动信号的形式仅为举例,振动信号的形式可以在具体实现时根据需求自行设定,本实施例对振动信号的形式不作限定。
具体地,穿戴设备200可以通过穿戴设备200中的处理器210生成与上述交互处理结果对应的振动信号。
具体地,穿戴设备200可以通过穿戴设备200中的马达291反馈振动信号。
步骤1003,穿戴设备200显示上述应用的交互界面和/或操作控件,以供用户通过上述交互界面和/或操作控件与上述应用进行交互。
也就是说,穿戴设备200可以判断与用户手势对应的业务处理是否需要进一步交互。如果需要,则穿戴设备200显示对应应用的交互界面和/或操作控件,从而在穿戴设备200的屏幕上显示电子设备100上当前运行的应用的交互界面和/或操作控件,便于用户后续查看或进行精准交互。
进一步地,显示对应应用的交互界面和/或操作控件之后,穿戴设备200还可以响应于用户对上述交互界面和/或操作控件的第一操作,向电子设备100发送第一信息,以使电子设备100根据上述第一信息控制上述应用。其中,上述第一操作可以为用户对上述交互界面和/或操作控件中的图标的操作,具体操作形式可以包括点击、双击或长按,本实施例对第一操作的操作形式不作限定,举例来说,参见图8,在显示交互界面81之后,假设用户点击交互界面81中的图标82,这时第一操作即为用户点击交互界面81中的图标82的操作,那么穿戴设备200响应于该第一操作,向电子设备100发送暂停播放的指示信息(即第一信息)。这样,接收穿戴设备200发送的第一信息之后,电子设备100可以根据上述第一信息控制上述应用暂停播放视频。
具体地,穿戴设备200可以通过处理器210和显示屏294实现显示上述应用的交互界面和/或操作控件的功能。
具体实现时,步骤1003和步骤1002可以并行执行,也可以先后执行,本实施例对步骤1003和步骤1002的执行顺序不作限定。
可选地,步骤1001之前,穿戴设备200还可以获取电子设备100发送的手势信息,这样,生成与交互处理结果对应的振动信号可以为:穿戴设备200根据上述手势信息确定穿戴设备200佩戴在交互手上之后,生成与上述交互处理结果对应的振动信号。其中,上述交互手包括佩戴穿戴设备100的用户与电子设备200进行手势交互的手。
具体地,根据上述手势信息确定穿戴设备200佩戴在交互手上可以为:通过穿戴设备200中的陀螺仪传感器280B和/或肌电传感器280C,确定上述交互手执行过
与上述手势信息对应的动作。举例来说,假设手势信息为右手旋转手势,通过穿戴设备200中的陀螺仪传感器280B和肌电传感器280C,确定交互手执行过右手旋转手势,则穿戴设备200可以确定穿戴设备200佩戴在交互手上。
具体地,穿戴设备200可以通过穿戴设备200中的处理器210,以及陀螺仪传感器280B和/或肌电传感器280C确定穿戴设备200佩戴在交互手上。
可以理解,一些实施例中,穿戴设备200可以先根据手势信息确定穿戴设备200是否佩戴在交互手上,当仅在用户佩戴时才振动,可以提高振动反馈的准确性。另一些实施例中,穿戴设备200也可以不需要确定穿戴设备200是否佩戴在交互手上,当穿戴设备200与电子设备100连接时,就可以提供振动反馈。
上述基于穿戴设备的振动反馈方法中,穿戴设备200获取电子设备100当前运行的应用针对用户的手势信息的交互处理结果,生成与上述交互处理结果对应的振动信号,然后将上述振动信号反馈给用户,从而可以实现用户在针对电子设备100进行隔空手势交互时,穿戴设备200可以向用户提供交互处理结果的振动反馈,使用户可以明确感知手势交互的处理结果,提高手势交互操作的精准度,提高用户体验。
图11为本申请再一个实施例提供的基于穿戴设备的振动反馈方法的流程图,上述方法可以应用于电子设备100,如图11所示,上述方法可以包括:
步骤1101,电子设备100获取手势捕获设备捕获的用户的手势;其中,上述用户佩戴穿戴设备200。
示例性地,上述手势捕获设备可以为电子设备100中的摄像头193。
步骤1102,电子设备100对上述手势进行识别,获得手势识别结果。
步骤1103,电子设备100根据上述手势识别结果,通过当前运行的应用进行业务处理,获得针对上述手势识别结果的交互处理结果。
举例来说,上述手势可以为右手旋转手势,手势识别结果可以为调节音量,当前运行的应用可以为某音频播放应用,则通过当前运行的应用进行业务处理获得的交互处理结果可以为音量调大成功。
步骤1104,电子设备100将上述交互处理结果发送给穿戴设备200,以使穿戴设备200生成与上述交互处理结果对应的振动信号以及上述应用的交互界面和/或操作控件,其中,上述交互界面和/或操作控件用于与上述应用进行交互。
进一步地,步骤1104之前,电子设备100还可以判断当前是否有穿戴设备200与电子设备100连接。这样,步骤1104可以为:如果当前有穿戴设备200与电子设备100连接,则电子设备100将上述交互处理结果发送给穿戴设备200。
或者,电子设备100还可以先判断当前所处的场景是否符合预定场景;这样,步骤1104可以为:如果当前所处的场景符合预定场景,则将上述交互处理结果发送给穿戴设备200。
或者,电子设备100还可以判断电子设备100当前所处的场景是否符合预定场景,以及判断当前是否有穿戴设备200与电子设备100连接;这样,步骤1104可以为:如果电子设备100当前所处的场景符合预定场景,并且当前有穿戴设备200与电子设备100连接,则将上述手势的信息和上述交互处理结果发送给穿戴设备200。
其中,上述预定场景可以为行进中,当然,上述预定场景也可以为其他场景,本实施例对预定场景不作限定。
具体地,电子设备100可以通过蓝牙或WiFi等无线方式与穿戴设备200连接。电子设备100可以通过处理器110、天线1和移动通信模块150,和/或,通过处理器110、天线2和无线通信模块160将上述交互处理结果发送给穿戴设备200。
可选地,在步骤1104中,电子设备100还可以将手势信息发送给穿戴设备200。以使穿戴设备200根据上述手势信息确定穿戴设备200佩戴在用户的交互手上之后,生成与上述交互处理结果对应的振动信号以及上述应用的交互界面和/或操作控件,从而提高振动反馈的准确性。其中,上述用户的交互手包括用户与电子设备100进行手势交互的手。
进一步地,本实施例中,电子设备100还可以接收穿戴设备200发送的第一信息,其中,上述第一信息是穿戴设备200响应于用户对上述交互界面和/或操作控件的第一操作发送的;然后,电子设备100根据上述第一信息控制上述应用。
上述基于穿戴设备的振动反馈方法中,电子设备100获取手势捕获设备捕获的用户的手势之后,对上述手势进行识别,获得手势识别结果,根据上述手势识别结果,通过当前运行的应用进行业务处理,获得针对上述手势识别结果的交互处理结果,最后,将上述交互处理结果发送给穿戴设备200,以使穿戴设备200生成与上述交互处理结果对应的振动信号以及上述应用的交互界面和/或操作控件,从而可以实现用户在针对电子设备100进行隔空手势交互时,通过穿戴设备200向用户提供交互处理结果的振动反馈,使用户可以明确感知手势交互的处理结果,提高手势交互操作的精准度,提高用户体验。
可以理解的是,上述实施例中的部分或全部步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照上述实施例呈现的不同的顺序来执行,并且有可能并非要执行上述实施例中的全部操作。
可以理解的是,电子设备为了实现上述功能,其包含了执行各个功能相应的硬件和/或软件模块。结合本申请所公开的实施例描述的各示例的算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以结合实施例对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本实施例可以根据上述方法实施例对电子设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个模块中。上述集成的模块可以采用硬件的形式实现。需要说明的是,本实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图12为本申请另一个实施例提供的电子设备的结构示意图,在采用对应各个功能划分各个功能模块的情况下,图12示出了上述实施例中涉及的电子设备1200的一种可能的组成示意图,如图12所示,该电子设备1200可以包括:接收单元1201、
处理单元1202和发送单元1203;
其中,处理单元1202可以用于支持电子设备1200执行步骤1101、步骤1102和步骤1103等,和/或用于本申请实施例所描述的技术方案的其他过程;
发送单元1203可以用于支持电子设备1200执行步骤1104,和/或用于本申请实施例所描述的技术方案的其他过程。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本实施例提供的电子设备1200,用于执行本申请图11所示实施例提供的基于穿戴设备的振动反馈方法,因此可以达到与上述方法相同的效果。
应当理解的是,电子设备1200可以对应于图3所示的电子设备100。其中,接收单元1201和发送单元1203的功能可以由图3所示的电子设备100中处理器110、天线1和移动通信模块150,和/或,由处理器110、天线2和无线通信模块160实现;处理单元1202的功能可以由图3所示的电子设备100中的处理器110和摄像头193实现。
在采用集成的单元的情况下,电子设备1200可以包括处理模块、存储模块和通信模块。
其中,处理模块可以用于对电子设备1200的动作进行控制管理,例如,可以用于支持电子设备1200执行上述接收单元1201、处理单元1202和发送单元1203执行的步骤。存储模块可以用于支持电子设备1200存储程序代码和数据等。通信模块,可以用于支持电子设备1200与其他设备的通信。
其中,处理模块可以是处理器或控制器,其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框、模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理(digital signal processing,DSP)和微处理器的组合等等。存储模块可以是存储器。通信模块具体可以为射频电路、蓝牙芯片和/或Wi-Fi芯片等与其他电子设备交互的设备。
在一个实施例中,当处理模块为处理器,存储模块为存储器时,本实施例所涉及的电子设备1200可以为具有图3所示结构的设备。
同样,可以理解的是,穿戴设备为了实现上述功能,其包含了执行各个功能相应的硬件和/或软件模块。结合本申请所公开的实施例描述的各示例的算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以结合实施例对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本实施例可以根据上述方法实施例对穿戴设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个模块中。上述集成的模块可以采用硬件的形式实现。需要说明的是,本实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图13为本申请另一个实施例提供的穿戴设备的结构示意图,在采用对应各个功能划分各个功能模块的情况下,图13示出了上述实施例中涉及的穿戴设备1300的一种可能的组成示意图,如图13所示,该穿戴设备1300可以包括:接收单元1301、处理单元1302和发送单元1303;
其中,接收单元1301可以用于支持穿戴设备1300执行步骤1001等,和/或用于本申请实施例所描述的技术方案的其他过程;
处理单元1302可以用于支持穿戴设备1300执行步骤1002和步骤1003等,和/或用于本申请实施例所描述的技术方案的其他过程;
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本实施例提供的穿戴设备1300,用于执行本申请图10所示实施例提供的基于穿戴设备的振动反馈方法,因此可以达到与上述方法相同的效果。
应当理解的是,穿戴设备1300可以对应于图4所示的穿戴设备200。其中,接收单元1301和发送单元1303的功能可以由图4所示的穿戴设备200中的处理器210、天线1和移动通信模块250,和/或,由处理器210、天线2和无线通信模块260实现;处理单元1302的功能可以由图4所示的穿戴设备400中的处理器210、马达291和显示屏294实现。
在采用集成的单元的情况下,穿戴设备1300可以包括处理模块、存储模块和通信模块。
其中,处理模块可以用于对穿戴设备1300的动作进行控制管理,例如,可以用于支持穿戴设备1300执行上述接收单元1301、处理单元1302和发送单元1303执行的步骤。存储模块可以用于支持穿戴设备1300存储程序代码和数据等。通信模块,可以用于支持穿戴设备1300与其他设备的通信。
其中,处理模块可以是处理器或控制器,其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框、模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理(digital signal processing,DSP)和微处理器的组合等等。存储模块可以是存储器。通信模块具体可以为射频电路、蓝牙芯片和/或Wi-Fi芯片等与其他电子设备交互的设备。
在一个实施例中,当处理模块为处理器,存储模块为存储器时,本实施例所涉及的穿戴设备1300可以为具有图4所示结构的设备。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行本申请图10所示实施例提供的方法。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行本申请图11所示实施例提供的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该计算机程序产品包括计算机程序,当其在计算机上运行时,使得计算机执行本申请图10所示实施例提供
的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该计算机程序产品包括计算机程序,当其在计算机上运行时,使得计算机执行本申请图11所示实施例提供的方法。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示单独存在A、同时存在A和B、单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项”及其类似表达,是指的这些项中的任意组合,包括单项或复数项的任意组合。例如,a,b和c中的至少一项可以表示:a,b,c,a和b,a和c,b和c或a和b和c,其中a,b,c可以是单个,也可以是多个。
本领域普通技术人员可以意识到,本文中公开的实施例中描述的各单元及算法步骤,能够以电子硬件、计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,任一功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。本申请的保护范围应以所述权利要求的保护范围为准。
Claims (23)
- 一种基于穿戴设备的振动反馈方法,其特征在于,应用于穿戴设备,所述穿戴设备与电子设备连接,所述方法包括:获取所述电子设备当前运行的应用针对用户的手势信息的交互处理结果;其中,所述用户佩戴所述穿戴设备;生成与所述交互处理结果对应的振动信号,并将所述振动信号反馈给所述用户;显示所述应用的交互界面和/或操作控件,其中,所述交互界面和/或操作控件用于与所述应用进行交互。
- 根据权利要求1所述的方法,其特征在于,所述生成与所述交互处理结果对应的振动信号之前,还包括:获取所述电子设备发送的手势信息;所述生成与所述交互处理结果对应的振动信号包括:根据所述手势信息确定所述穿戴设备佩戴在所述用户的交互手上之后,生成与所述交互处理结果对应的振动信号;其中,所述用户的交互手包括所述用户与所述电子设备进行手势交互的手。
- 根据权利要求2所述的方法,其特征在于,所述根据所述手势信息确定所述穿戴设备佩戴在所述用户的交互手上包括:通过所述穿戴设备中的陀螺仪传感器和/或肌电传感器,确定所述交互手执行过与所述手势信息对应的动作。
- 根据权利要求1-3任意一项所述的方法,其特征在于,所述生成与所述交互处理结果对应的振动信号包括:当所述交互处理结果为操作成功时,生成振感增强信号;或者,当所述交互处理结果为操作未成功时,生成振感衰减信号;或者,当所述交互处理结果存在安全隐患时,生成持续强振信号。
- 根据权利要求1所述的方法,其特征在于,所述显示所述应用的交互界面和/或操作控件之后,还包括:响应于所述用户对所述交互界面和/或操作控件的第一操作,向所述电子设备发送第一信息,以使所述电子设备根据所述第一信息控制所述应用。
- 一种基于穿戴设备的振动反馈方法,其特征在于,应用于电子设备,所述方法包括:获取手势捕获设备捕获的用户的手势;其中,所述用户佩戴所述穿戴设备;对所述手势进行识别,获得手势识别结果;根据所述手势识别结果,通过当前运行的应用进行业务处理,获得针对所述手势识别结果的交互处理结果;将所述交互处理结果发送给所述穿戴设备,以使所述穿戴设备生成与所述交互处理结果对应的振动信号以及所述应用的交互界面和/或操作控件,其中,所述交互界面和/或操作控件用于与所述应用进行交互。
- 根据权利要求6所述的方法,其特征在于,所述将所述交互处理结果发送给所述穿戴设备之前,还包括:判断当前是否有穿戴设备与所述电子设备连接;所述将所述交互处理结果发送给所述穿戴设备包括:如果当前有穿戴设备与所述电子设备连接,则将所述交互处理结果发送给所述穿戴设备。
- 根据权利要求6或7所述的方法,其特征在于,所述将所述交互处理结果发送给所述穿戴设备之前,还包括:判断当前所处的场景是否符合预定场景;所述将所述交互处理结果发送给所述穿戴设备包括:如果当前所处的场景符合预定场景,则将所述交互处理结果发送给所述穿戴设备。
- 根据权利要求6或7所述的方法,其特征在于,还包括:将手势信息发送给所述穿戴设备,以使所述穿戴设备根据所述手势信息确定所述穿戴设备佩戴在所述用户的交互手上之后,生成与所述交互处理结果对应的振动信号以及所述应用的交互界面和/或操作控件;其中,所述用户的交互手包括所述用户与所述电子设备进行手势交互的手。
- 根据权利要求6所述的方法,其特征在于,还包括:接收所述穿戴设备发送的第一信息,其中,所述第一信息是所述穿戴设备响应于所述用户对所述交互界面和/或操作控件的第一操作发送的;根据所述第一信息控制所述应用。
- 一种穿戴设备,其特征在于,包括:一个或多个处理器;存储器;多个应用程序;以及一个或多个计算机程序,其中所述一个或多个计算机程序被存储在所述存储器中,所述一个或多个计算机程序包括指令,当所述指令被所述穿戴设备执行时,使得所述穿戴设备执行以下步骤:获取电子设备当前运行的应用针对用户的手势信息的交互处理结果;其中,所述用户佩戴所述穿戴设备;生成与所述交互处理结果对应的振动信号,并将所述振动信号反馈给所述用户;显示所述应用的交互界面和/或操作控件,其中,所述交互界面和/或操作控件用于与所述应用进行交互。
- 根据权利要求11所述的穿戴设备,其特征在于,当所述指令被所述穿戴设备执行时,使得所述穿戴设备执行所述生成与所述交互处理结果对应的振动信号的步骤之前,还执行以下步骤:获取所述电子设备发送的手势信息;当所述指令被所述穿戴设备执行时,使得所述穿戴设备执行所述生成与所述交互处理结果对应的振动信号的步骤包括:根据所述手势信息确定所述穿戴设备佩戴在所述用户的交互手上之后,生成与所述交互处理结果对应的振动信号;其中,所述用户的交互手包括所述用户与所述电子设备进行手势交互的手。
- 根据权利要求12所述的穿戴设备,其特征在于,当所述指令被所述穿戴设备执行时,使得所述穿戴设备执行所述根据所述手势信息确定所述穿戴设备佩戴在所述用户的交互手上的步骤包括:通过所述穿戴设备中的陀螺仪传感器和/或肌电传感器,确定所述交互手执行过与所述手势信息对应的动作。
- 根据权利要求11-13任意一项所述的穿戴设备,其特征在于,当所述指令被所述穿戴设备执行时,使得所述穿戴设备执行所述生成与所述交互处理结果对应的振动信号的步骤包括:当所述交互处理结果为操作成功时,生成振感增强信号;或者,当所述交互处理结果为操作未成功时,生成振感衰减信号;或者,当所述交互处理结果存在安全隐患时,生成持续强振信号。
- 根据权利要求11所述的穿戴设备,其特征在于,当所述指令被所述穿戴设备执行时,使得所述穿戴设备执行所述显示所述应用的交互界面和/或操作控件的步骤之后,还执行以下步骤:响应于所述用户对所述交互界面和/或操作控件的第一操作,向所述电子设备发送第一信息,以使所述电子设备根据所述第一信息控制所述应用。
- 一种电子设备,其特征在于,包括:一个或多个处理器;存储器;多个应用程序;以及一个或多个计算机程序,其中所述一个或多个计算机程序被存储在所述存储器中,所述一个或多个计算机程序包括指令,当所述指令被所述电子设备执行时,使得所述电子设备执行以下步骤:获取手势捕获设备捕获的用户的手势;其中,所述用户佩戴穿戴设备;对所述手势进行识别,获得手势识别结果;根据所述手势识别结果,通过当前运行的应用进行业务处理,获得针对所述手势识别结果的交互处理结果;将所述交互处理结果发送给所述穿戴设备,以使所述穿戴设备生成与所述交互处理结果对应的振动信号以及所述应用的交互界面和/或操作控件,其中,所述交互界面和/或操作控件用于与所述应用进行交互。
- 根据权利要求16所述的电子设备,其特征在于,当所述指令被所述电子设备执行时,使得所述电子设备执行所述将所述交互处理结果发送给所述穿戴设备的步骤之前,还执行以下步骤:判断当前是否有穿戴设备与所述电子设备连接;当所述指令被所述电子设备执行时,使得所述电子设备执行所述将所述交互处理结果发送给所述穿戴设备的步骤包括:如果当前有穿戴设备与所述电子设备连接,则将所述交互处理结果发送给所述穿戴设备。
- 根据权利要求16或17所述的电子设备,其特征在于,当所述指令被所述电子设备执行时,使得所述电子设备执行所述将所述交互处理结果发送给所述穿戴设备的步骤之前,还执行以下步骤:判断当前所处的场景是否符合预定场景;当所述指令被所述电子设备执行时,使得所述电子设备执行所述将所述交互处理结果发送给所述穿戴设备的步骤包括:如果当前所处的场景符合预定场景,则将所述交互处理结果发送给所述穿戴设备。
- 根据权利要求16或17所述的电子设备,其特征在于,当所述指令被所述电子设备执行时,使得所述电子设备还执行以下步骤:将手势信息发送给所述穿戴设备,以使所述穿戴设备根据所述手势信息确定所述穿戴设备佩戴在所述用户的交互手上之后,生成与所述交互处理结果对应的振动信号以及所述应用的交互界面和/或操作控件;其中,所述用户的交互手包括所述用户与所述电子设备进行手势交互的手。
- 根据权利要求16所述的电子设备,其特征在于,当所述指令被所述电子设备执行时,使得所述电子设备还执行以下步骤:接收所述穿戴设备发送的第一信息,其中,所述第一信息是所述穿戴设备响应于所述用户对所述交互界面和/或操作控件的第一操作发送的;根据所述第一信息控制所述应用。
- 一种振动反馈系统,其特征在于,包括如权利要求11-15任意一项所述的穿戴设备以及如权利要求16-20任意一项所述的电子设备。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行如权利要求1-5任一项所述的方法,或者执行如权利要求6-10任一项所述的方法。
- 一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1-5中任一项所述的方法,或者执行如权利要求6-10中任一项所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210519979.8A CN117093068A (zh) | 2022-05-12 | 2022-05-12 | 基于穿戴设备的振动反馈方法、系统、穿戴设备和电子设备 |
CN202210519979.8 | 2022-05-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023216930A1 true WO2023216930A1 (zh) | 2023-11-16 |
Family
ID=88729653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/091663 WO2023216930A1 (zh) | 2022-05-12 | 2023-04-28 | 基于穿戴设备的振动反馈方法、系统、穿戴设备和电子设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117093068A (zh) |
WO (1) | WO2023216930A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117348737A (zh) * | 2023-12-06 | 2024-01-05 | 之江实验室 | 一种基于多通道交互的数据处理系统及方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015155409A1 (en) * | 2014-04-11 | 2015-10-15 | Nokia Technologies Oy | Method, apparatus, and computer program product for haptically providing information via a wearable device |
CN106949900A (zh) * | 2015-11-09 | 2017-07-14 | 现代自动车株式会社 | 音频视频导航系统及其控制方法与车辆 |
CN111666119A (zh) * | 2019-03-06 | 2020-09-15 | 华为终端有限公司 | Ui组件显示的方法及电子设备 |
CN113413585A (zh) * | 2021-06-21 | 2021-09-21 | Oppo广东移动通信有限公司 | 头戴显示设备的交互方法、装置和电子设备 |
CN114090140A (zh) * | 2020-08-05 | 2022-02-25 | 华为技术有限公司 | 基于指向操作的设备之间的交互方法及电子设备 |
-
2022
- 2022-05-12 CN CN202210519979.8A patent/CN117093068A/zh active Pending
-
2023
- 2023-04-28 WO PCT/CN2023/091663 patent/WO2023216930A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015155409A1 (en) * | 2014-04-11 | 2015-10-15 | Nokia Technologies Oy | Method, apparatus, and computer program product for haptically providing information via a wearable device |
CN106949900A (zh) * | 2015-11-09 | 2017-07-14 | 现代自动车株式会社 | 音频视频导航系统及其控制方法与车辆 |
CN111666119A (zh) * | 2019-03-06 | 2020-09-15 | 华为终端有限公司 | Ui组件显示的方法及电子设备 |
CN114090140A (zh) * | 2020-08-05 | 2022-02-25 | 华为技术有限公司 | 基于指向操作的设备之间的交互方法及电子设备 |
CN113413585A (zh) * | 2021-06-21 | 2021-09-21 | Oppo广东移动通信有限公司 | 头戴显示设备的交互方法、装置和电子设备 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117348737A (zh) * | 2023-12-06 | 2024-01-05 | 之江实验室 | 一种基于多通道交互的数据处理系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN117093068A (zh) | 2023-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020168965A1 (zh) | 一种具有折叠屏的电子设备的控制方法及电子设备 | |
EP4024168A1 (en) | Hand gesture interaction method and apparatus, and terminal device | |
CN113795817A (zh) | 一种分屏显示的操作方法及电子设备 | |
CN114514498A (zh) | 一种对电子设备的操作方法及电子设备 | |
US11848016B2 (en) | Voice control command generation method and terminal | |
CN112119641B (zh) | 通过转发模式连接的多tws耳机实现自动翻译的方法及装置 | |
WO2021052139A1 (zh) | 手势输入方法及电子设备 | |
US20240098354A1 (en) | Connection establishment method and electronic device | |
EP4280596A1 (en) | Video call method and related device | |
WO2020237617A1 (zh) | 控屏方法、装置、设备及存储介质 | |
WO2020221062A1 (zh) | 一种导航操作方法及电子设备 | |
WO2022257563A1 (zh) | 一种音量调节的方法,电子设备和系统 | |
CN114221402A (zh) | 终端设备的充电方法、装置和终端设备 | |
WO2022242300A1 (zh) | 线性马达的振动波形调整方法及装置 | |
CN114339429A (zh) | 音视频播放控制方法、电子设备和存储介质 | |
WO2023216930A1 (zh) | 基于穿戴设备的振动反馈方法、系统、穿戴设备和电子设备 | |
CN114089902A (zh) | 手势交互方法、装置及终端设备 | |
EP4120548B1 (en) | Method and apparatus for adjusting driving waveform, and electronic device and readable storage medium | |
EP4057122A1 (en) | Screenshot method and related device | |
EP4310645A1 (en) | Method and apparatus for enabling function in application | |
WO2023093778A1 (zh) | 一种截屏方法及相关装置 | |
WO2023237087A1 (zh) | 易孕期的预测方法、装置和电子设备 | |
WO2023071497A1 (zh) | 拍摄参数调节方法、电子设备及存储介质 | |
WO2022242301A1 (zh) | 振动描述文件的生成方法、装置、设备及可读存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23802702 Country of ref document: EP Kind code of ref document: A1 |