WO2023216606A1 - Led光源模组 - Google Patents

Led光源模组 Download PDF

Info

Publication number
WO2023216606A1
WO2023216606A1 PCT/CN2022/141170 CN2022141170W WO2023216606A1 WO 2023216606 A1 WO2023216606 A1 WO 2023216606A1 CN 2022141170 W CN2022141170 W CN 2022141170W WO 2023216606 A1 WO2023216606 A1 WO 2023216606A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
chip
white light
chips
source module
Prior art date
Application number
PCT/CN2022/141170
Other languages
English (en)
French (fr)
Inventor
曾伟均
Original Assignee
深圳市神牛摄影器材有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202221163142.6U external-priority patent/CN217387153U/zh
Priority claimed from CN202221157438.7U external-priority patent/CN217361580U/zh
Application filed by 深圳市神牛摄影器材有限公司 filed Critical 深圳市神牛摄影器材有限公司
Publication of WO2023216606A1 publication Critical patent/WO2023216606A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the present disclosure belongs to the technical field of lamps, and particularly relates to an LED light source module.
  • LED (Lighting Emitting Diode) lighting uses solid semiconductor chips as luminescent materials. The excess energy is released through carrier recombination in the semiconductor, causing photon emission, and directly emits red, yellow, blue, and green light. Because LED lighting has the characteristics of soft light, no harm to the eyes, energy saving, and natural light, with the development of LED lighting technology, LED light sources have become representatives of energy conservation and environmental protection.
  • Embodiments of the present disclosure provide an LED light source module that can meet the demand for light mixing of multiple light colors, achieve better light mixing, and thereby obtain high-quality lighting effects.
  • the LED light source module includes: a substrate; a plurality of light mixing units located on the substrate; the light mixing unit includes a micro substrate and a warm white light chip, a cold white light chip, a red light chip, a blue light chip, and a micro substrate integrated on the micro substrate. Green light chip.
  • each light mixing unit integrates LED chips of five different colors, namely warm white light chip, cold white light chip, red light chip, blue light chip and green light chip.
  • Each light mixing unit includes five light colors.
  • the red, green, and blue chips are combined to form a three-primary color mixing unit for synthesizing white light.
  • This white light is further superimposed and mixed with cold and warm white light, and can pass through the five light colors.
  • Superposition achieves better light mixing, thereby obtaining high-quality lighting effects to meet specific needs.
  • Figure 1 is a schematic structural diagram of an LED light source module in the first embodiment of the present application.
  • Figure 2 is a schematic layout diagram of each light mixing unit inside the first area in the first embodiment of the present application.
  • Figure 3 is a schematic structural diagram of the first light mixing unit in the first embodiment of the present application.
  • Figure 4 is a schematic structural diagram of the second light mixing unit in the first embodiment of the present application.
  • Figure 5 is a schematic structural diagram of the third light mixing unit in the first embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a radially symmetric light mixing unit in the first embodiment of the present application.
  • Figure 7 is a schematic structural diagram of an LED light source module in the second embodiment of the present application.
  • Figure 8 is a schematic structural diagram of the fourth light mixing unit in the second embodiment of the present application.
  • Figure 9 is a schematic diagram of the deformed structure of the fourth light mixing unit in the second embodiment of the present application.
  • Figure 10 is a schematic structural diagram of another deformation of the fourth light mixing unit in the second embodiment of the present application.
  • Figure 11 is a schematic structural diagram of another deformation of the fourth light mixing unit in the second embodiment of the present application.
  • Figure 12 is a schematic structural diagram of another deformation of the fourth light mixing unit in the second embodiment of the present application.
  • Figure 13 is a schematic structural diagram of another deformation of the fourth light mixing unit in the second embodiment of the present application.
  • Figure 14 is a schematic structural diagram of another deformation of the fourth light mixing unit in the second embodiment of the present application.
  • Figure 15 is a schematic structural diagram of another deformation of the fourth light mixing unit in the second embodiment of the present application.
  • Figure 16 is a schematic structural diagram of another deformation of the fourth light mixing unit in the second embodiment of the present application.
  • Figure 17 is a schematic structural diagram of another deformation of the fourth light mixing unit in the second embodiment of the present application.
  • Figure 18 is a schematic structural diagram of another deformation of the fourth light mixing unit in the second embodiment of the present application.
  • Figure 19 is a schematic structural diagram of another deformation of the fourth light mixing unit in the second embodiment of the present application.
  • Figure 20 is a schematic structural diagram of another deformation of the fourth light mixing unit in the second embodiment of the present application.
  • Figure 21 is a schematic structural diagram of another deformation of the fourth light mixing unit in the second embodiment of the present application.
  • Figure 22 is a schematic structural diagram of another deformation of the fourth light mixing unit in the second embodiment of the present application.
  • Figure 23 is a schematic structural diagram of another deformation of the fourth light mixing unit in the second embodiment of the present application.
  • Figure 24 is a schematic structural diagram of another deformation of the fourth light mixing unit in the second embodiment of the present application.
  • Figure 25 is a schematic structural diagram of another deformation of the fourth light mixing unit in the second embodiment of the present application.
  • Figure 26 is a schematic structural diagram of another deformation of the fourth light mixing unit in the second embodiment of the present application.
  • Figure 27 is a schematic structural diagram of another deformation of the fourth light mixing unit in the second embodiment of the present application.
  • Figure 28 is a schematic structural diagram of another deformation of the fourth light mixing unit in the second embodiment of the present application.
  • Figure 29 is a schematic structural diagram of another deformation of the fourth light mixing unit in the second embodiment of the present application.
  • Figure 30 is a schematic structural diagram of another deformation of the fourth light mixing unit in the second embodiment of the present application.
  • Figure 31 is a schematic structural diagram of another deformation of the fourth light mixing unit in the second embodiment of the present application.
  • Figure 32 is a schematic structural diagram of another deformation of the fourth light mixing unit in the second embodiment of the present application.
  • Figure 33 is a schematic structural diagram of the fifth light mixing unit in the second embodiment of the present application.
  • Figure 34 is a schematic structural diagram of an LED light source module in the third embodiment of the present application.
  • Figure 35 is a schematic structural diagram of the three primary color light mixing portion in the third embodiment of the present application.
  • Figure 36 is a schematic structural diagram of the sixth light mixing unit in the third embodiment of the present application.
  • Figure 37 is a schematic structural diagram of an LED light source module in the fourth embodiment of the present application.
  • Figure 38 is a schematic layout diagram of LED chips of various colors in the light mixing unit in the fourth embodiment of the present application.
  • Figure 39 is a schematic structural diagram of the lens in the light mixing unit in the fourth embodiment of the present application.
  • 2-light mixing unit 21-first light mixing unit, 22-second light mixing unit, 23-third light mixing unit, 24-fourth light mixing unit, 25-fifth light mixing unit, 26-sixth mixed light unit,
  • 31-warm white light chip 32-cold white light chip, 33-red light chip, 34-blue light chip, 35-green light chip,
  • This embodiment provides an LED light source module, in which LEDs with different attributes are packaged in a device in a certain manner and proportion to form a mixed light unit.
  • LEDs with different attributes are packaged in a device in a certain manner and proportion to form a mixed light unit.
  • driving different LED chips (colors) with different proportions through current (voltage) or PWM, they can emit white light with high color quality in the spectrum, thus being able to adapt to the higher lighting needs of the photography industry.
  • the LED light source module is equipped with light mixing optical accessories (specifically, light mixing cavity + frosted glass & compound eye glass & matte glass can be used) to form a point light source with uniform color and high color quality.
  • light mixing optical accessories specifically, light mixing cavity + frosted glass & compound eye glass & matte glass can be used
  • FIG. 1 shows the specific structure of an LED light source module provided in this embodiment, which includes a substrate 1 and a plurality of light mixing units 2 dispersed on the substrate 1 .
  • a circular area is formed inside the substrate 1 , and the circular area has a first radial axis 11 and a second radial axis 12 that are perpendicular to each other.
  • the surface of the substrate 1 can be divided into four equal-area areas according to the above two radial axes, which are divided into a first area 101, a second area 102, a third area 103 and a fourth area 104 in counterclockwise order.
  • the plurality of light mixing units 2 are divided into a plurality of equal number groups, and the plurality of light mixing units in each group are arranged rotationally symmetrically about the center of the substrate 1 .
  • the rotational symmetry angle of each group of multiple light mixing units 2 with respect to the substrate 1 is 90 degrees. That is, each group has four light mixing units 2, and the four light mixing units 2 are respectively provided in the first area 101, the second area 102, the third area 103 and the fourth area 104.
  • the rotational symmetry angle of the plurality of light mixing units 2 with respect to the substrate 1 may also be 180 degrees.
  • the light mixing unit 2 is an independent packaged device.
  • the light mixing unit 2 includes LED chips of multiple colors and can emit white light.
  • the light mixing units 2 of each group have different shapes (they contain different numbers of LED chips).
  • each light mixing unit 2 located in the first area 101 is taken as an example.
  • the main parts are positioned as the first light mixing unit 21, the second light mixing unit 22 and the third light mixing unit 23. .
  • the first light mixing unit 21 includes a micro substrate (not shown) and a warm white light chip 31 (marked as W), a cold white light chip 32 (marked as C), and a red light chip 33 integrated on the micro substrate. (marked as R), a blue light chip 34 (marked as B) and a green light chip 35 (marked as G).
  • the red light chip 33 , the blue light chip 34 and the green light chip 35 are adjacent and form the three primary color light mixing part 41 .
  • the three primary color light mixing part 41 is specifically in a square shape and includes a blue light chip 34 , a green light chip 35 and two red light chips 33 .
  • the two red light chips 33 are staggered and arranged centrally symmetrically.
  • the three primary color light mixing part 41 uses two red light chips 33 to ensure that the power is large enough to achieve better luminous efficiency. In other embodiments, on the premise that the power is satisfied, the three primary color light mixing part 41 may only use one red light chip 33 , one blue light chip 34 and one green light chip 35 .
  • the warm white light chip 31 and the cool white light chip 32 are located on the outside of the three primary color mixing portion 41 .
  • the warm white light chip 31 and the cold white light chip 32 are adjacent and located on the same side of the three primary color mixing portion 41, so that the color of the light source is relatively uniform, the light mixing effect is good, and the color change of the LED does not occur when the LED emits light. Too abrupt.
  • the two warm white light chips 31 are adjacent and located in the same column, which facilitates wiring; the two cold white light chips 32 are adjacent and located in the same column, which facilitates wiring.
  • the second light mixing unit 22 also includes five colors of LED chips, namely a warm white light chip 31 (marked as W), a cold white light chip 32 (marked as C), and a red light chip 33 (marked as R). ), blue light chip 34 (marked as B) and green light chip 35 (marked as G).
  • a warm white light chip 31 marked as W
  • a cold white light chip 32 marked as C
  • a red light chip 33 marked as R
  • blue light chip 34 marked as B
  • G green light chip 35
  • the red light chip 33 , the blue light chip 34 and the green light chip 35 are adjacent and form the three primary color light mixing part 41 .
  • the warm white light chip 31 and the cold white light chip 32 are symmetrically located on the upper and lower sides of the three primary color mixing portion 41 respectively.
  • two warm white light chips 31 and two cold white light chips 32 are respectively provided.
  • the two warm white light chips 31 are adjacent and located in the same column, which facilitates wiring; the two cold white light chips 32 are adjacent and located in the same column, which facilitates wiring.
  • the warm white light chips 31 and the cold white light chips 32 can be staggered in the same column to further optimize the symmetry of the light source and make the light color distribution of the LED light source more uniform. .
  • the third light mixing unit 23 also includes LED chips of five colors. The number of chips is relatively large and will not be described again.
  • each three primary color light mixing part 41 there are two three primary color light mixing parts 41 , and the two three primary color light mixing parts 41 are spaced apart laterally, with a warm white light chip 31 and a cold white light chip 32 arranged between them. Moreover, cold and warm light chips are arranged on the left and right sides of each three primary color light mixing part 41 .
  • the LED light source module also includes a plurality of radially symmetrical light mixing units 5 .
  • the radially symmetric light mixing unit 5 is different from the light mixing unit 2 located inside the four regions. It is distributed on the first radial axis 11 or the second radial axis 12, similar to a cross shape.
  • the radially symmetric light mixing unit 5 also includes a micro substrate and a warm white light chip 31 , a cold white light chip 32 , a red light chip 33 , a blue light chip 34 and a green light chip 35 integrated on the micro substrate.
  • the above-mentioned LED chips of each color are in a rectangular array, mainly showing two horizontal rows or two vertical rows.
  • a plurality of radially symmetric light mixing units 5 on the same radial axis are arranged symmetrically about the center of the substrate 1 .
  • a radially symmetric light mixing unit 5 may also be distributed 90 degrees rotationally symmetrically about the center of the substrate 1 .
  • the above-mentioned radially symmetric light mixing unit 5 follows the principle of light source symmetry. Specifically, the red light chip 33 , the blue light chip 34 and the green light chip 35 are adjacent and form a three-primary color light mixing part 41 . There are two three primary color mixing parts 41 arranged in a staggered manner. The warm white light chip 31 and the cool white light chip 32 are adjacent and symmetrically located on both sides of the three primary color light mixing portion 41 .
  • the LED chips of each color in each light mixing unit 2 are in a rectangular array, that is, the number of LED chips in the light mixing unit 2 is 2N (N ⁇ 4).
  • the LED light source module also includes a warm and cold light mixing part 42 .
  • the warm and cold light mixing part 42 only includes two colors of LED chips, such as a warm white light chip 31 and a cool white light chip 32 .
  • the minimum number of LED chips in the warm and cold light mixing part 42 can be 2, and the maximum number is not limited.
  • the color temperature range of the warm white light chip 31 is 2000K ⁇ 5000K
  • the color temperature range of the cool white light chip 32 is 5000K ⁇ 20000K, which has a wide color temperature range.
  • the wavelength range of the red light chip 33 is 610mm ⁇ 650mm
  • the wavelength range of the blue light chip 34 is 440mm ⁇ 480mm
  • the wavelength range of the green light chip 35 is 510mm ⁇ 550mm.
  • the CCT (color temperature) range of the LED light source module can be 2000 ⁇ 20000K.
  • Both TLCI and RA can reach 90 or above, and the white balance can be adjusted significantly; the luminous flux (or illumination) of white light can be 0.5 to 3 times that of green light.
  • the LED light source module has at least the following beneficial technical effects: it has multiple arrays of light mixing units 2, and each light mixing unit 2 integrates LED chips of five different colors, one for warm and one for warm.
  • a plurality of warm white light chips 31 and a plurality of cold white light chips 32 are distributed along an annular shape, enclosing a circular area.
  • the warm white light chips 31 and the cold white light chips 32 are used to emit cold and warm white light respectively, becoming the main components of the LED light source.
  • the main light; and the cold and warm white light chips are interlaced with each other, making the LED light more evenly.
  • the red light chip 33, the blue light chip 34 and the green light chip 35 are located inside the circular area formed by the cold and warm white light 31.
  • the red, green and blue chips can emit light to synthesize white light. This white light is superimposed with the peripheral cold and warm white light to create a mixed light effect. The result is a high-quality lighting effect.
  • the plurality of light mixing units 2 are divided into multiple groups of equal number, and the plurality of light mixing units in each group are arranged rotationally symmetrically about the center of the substrate 1 .
  • Such an arrangement optimizes the symmetry of the light source and makes the light spot symmetrical through simple secondary optics, which can meet the requirements of more scenes.
  • the difference is that the light mixing units 2 in this embodiment are more dispersed than the light mixing units 2 in the first embodiment, and there are more light mixing units 2 in the same area.
  • the number of LED chips contained in a single light mixing unit 2 is relatively small.
  • the fourth light mixing unit 24 has a total of 8 LED chips, including two warm white light chips 31 (marked as W), two cold white light chips 32 (marked as C), and two red light chips 33 ( (marked R), a blue light chip 34 (marked B) and a green light chip 35 (marked G).
  • the three primary color light mixing part 41 is specifically in a square shape, in which two red light chips 33 are adjacent and located in the same row, which facilitates wiring. Warm white light chips 31 and cold white light chips 32 are combined into one group, and the two groups are respectively located on the left and right sides of the three primary color mixing part 41.
  • the light source color is relatively uniform and the light mixing effect is good.
  • FIGS. 9 to 24 illustrate multiple modified embodiments based on the light mixing unit 2 in FIG. 8 .
  • the two red light chips 33 in the three primary color light mixing part 41 can be adjacent to each other in the same horizontal row or the same vertical column, or they can be staggered so as to be located on the same diagonal diagonal line.
  • the two warm white light chips 31 are respectively located on the left and right sides of the three primary color light mixing portion 41, and may be on the same horizontal row or on the same diagonal diagonal line.
  • the arrangement of the two cold white light chips 32 is similar to the warm white light chip 31, and the positions can be adjusted to achieve any combination.
  • the reason why the three primary color light mixing part 41 in the above embodiment uses two red light chips 33 is to ensure that the power is large enough to achieve better luminous efficiency.
  • the three primary color light mixing part 41 can only use one red light chip 33, one blue light chip 34 and one green light chip 35.
  • the fifth light mixing unit 25 also includes the above-mentioned five colors of LED chips. Compared with the fourth light mixing unit 24 , it has a larger number of warm white light chips 31 and cold white light chips 32 .
  • the warm white light chips 31 and the cold white light chips 32 are adjacent and located in the same column to facilitate wiring.
  • the two cold white light chips 32 are adjacent and located in the same column to facilitate wiring.
  • the warm white light chips 31 and the cold white light chips 32 can be staggered in the same column to further optimize the symmetry of the light source and make the light color distribution of the LED light source more uniform. .
  • the difference of the light mixing unit 2 in this embodiment is that compared with the first embodiment, it has a three primary color light mixing part 41 that is separately integrated.
  • the three primary color light mixing part 41 is specifically in a square shape and includes a blue light chip 34 , a green light chip 35 and two red light chips 33 .
  • the two red light chips 33 are adjacent and located in the same column, which facilitates wiring.
  • the sixth light mixing unit 26 includes five colors of LED chips, and has a larger number of warm white light chips 31 and cold white light chips 32 than the fifth light mixing unit 25 .
  • the three warm white light chips 31 are adjacent and located in the same column to facilitate wiring; the three cold white light chips 32 are adjacent. and are located on the same column for easy wiring.
  • the warm white light chips 31 and the cold white light chips 32 can be staggered in the same column to further optimize the symmetry of the light source and make the light color distribution of the LED light source more uniform. .
  • the warm white light chips 31 and the cold white light chips 32 can be staggered in the same column to further optimize the symmetry of the light source and make the light color distribution of the LED light source more uniform. .
  • FIG. 37 shows the specific structure of an LED light source module provided in this embodiment, which mainly includes a substrate 1 and a plurality of light mixing units 2 distributed in an array on the substrate 1 .
  • Each light mixing unit 2 is an independent packaged device that can emit white light.
  • the light mixing unit 2 has LED chips of five different colors.
  • the light mixing unit 2 includes a micro-substrate 40, and a warm white light chip 31 (marked as W), a cold white light chip 32 (marked as C), a red light chip 33 (marked as R), integrated on the micro-substrate 40.
  • Blue light chip 34 marked as B
  • green light chip 35 marked as G.
  • the total number of LED chips is 8.
  • the number of warm white light chips 31 and cold white light chips 32 is two respectively
  • the number of red light chips 33 is two
  • the number of blue light chip 34 and green light chip 35 is one respectively.
  • Microsubstrate 40 is square.
  • the two warm white light chips 31 and the two cold white light chips 32 are located on the same circle 401 .
  • the warm white light chips 31 and the cold white light chips 32 are interlaced and not adjacent, thereby making the light color distribution of the LED light source more uniform.
  • the two warm white light chips 31 are symmetrically distributed about the center of the micro substrate 40
  • the two cold white light chips 32 are symmetrically distributed about the center of the micro substrate 40 .
  • the warm white light chip 31 and the cold white light chip 32 are larger in size, larger than the red light chip 33 and the like, have larger power, and are the main light of the LED light source.
  • the sizes of the warm white light chip 31 and the cool white light chip 32 may be consistent with the sizes of LED chips of other colors.
  • the red light chip 33 , the blue light chip 34 and the green light chip 35 are located inside the circular area formed by the warm white light chip 31 and the cold white light chip 32 .
  • the advantage is that the above-mentioned red, green and blue LED chips can emit light to synthesize white light. This white light is superimposed with the peripheral cold and warm white light.
  • the color of the light source is relatively uniform and the light mixing effect is good.
  • the number of the above eight LED chips is not limited.
  • Three or more warm white light chips 31 and cold white light chips 32 can be provided respectively. Multiple warm white light chips 31 and multiple cold white light chips 32 are arranged on the micro substrate. 40 are distributed in a circumferential direction, and the warm white light chips 31 and the cold white light chips 32 are staggered. There can also be multiple red light chips 33 , blue light chips 34 and green light chips 35 , and they are all located in the area enclosed by the warm white light chip 31 and the cool white light chip 32 .
  • one red light chip 33, one blue light chip 34 and one green light chip 35 are distributed in an isosceles triangle.
  • the red light chip 33 is located at the top of the triangle and is equidistant from the other two chips. .
  • the other red light chip 33 is centrally symmetrically arranged with the red light chip 33 located at the top of the triangle, so that the above four LED chips form a relatively symmetrical pattern.
  • the blue light chip 34 and the green light chip 35 are located on the same radial axis, and the two red light chips 33 are located on another radial axis; the above two radial axes are perpendicular to each other.
  • the above symmetrical arrangement can improve the light mixing effect of the LED light source.
  • the red, green, and blue chips are not limited to the above-mentioned symmetrical distribution method.
  • the red, green, and blue chips can change their positions according to specific needs and move flexibly in the reserved space to match the best optics.
  • the color temperature range of the warm white light chip 31 is 1800K ⁇ 5000K
  • the color temperature range of the cool white light chip 32 is 5000K ⁇ 10000K, which has a wide color temperature range.
  • the wavelength range of the red light chip 33 is 610mm ⁇ 660mm
  • the wavelength range of the blue light chip 34 is 450mm ⁇ 480mm
  • the wavelength range of the green light chip 35 is 510mm ⁇ 550mm.
  • the LED light source synthesized by the above-mentioned five colors of light in this embodiment has different wavelengths corresponding to the light of each color, and has the characteristics of covering a wide wavelength range. In addition, it is proportioned in a specific way to emit uniform light. Has good spectral continuity.
  • the light mixing unit 2 also includes a lens 46 .
  • the lens 46 includes a lens platform 461 and a lens body 462 provided on the lens platform 461 .
  • the lens platform 461 is in a rectangular shape (not limited to a rectangular shape, other symmetrical shapes such as squares and circles can be used) for being fixed on the substrate 1 .
  • the lens body 462 is a truncated cone-shaped body of revolution, and is formed with a light source cavity 463 having a reflective surface.
  • the micro-substrate 40 is installed at the bottom center of the light source cavity 463 (the lower opening of the lens body 462).
  • the red, green, and blue LED chips face the upper opening of the lens body 462, and the light emitted by them is reflected by the reflective surface and converged.
  • the eight LED chip packages in Figure 38 are integrated into an independent light mixing unit 2, and multiple packaged light mixing units 2 are SMT (surface mount) arrayed onto the PCB substrate 1, and finally installed
  • the total reflection lens controls the current of the PCB through the circuit to obtain a lighting device that emits uniform light and has high color quality.
  • a plurality of light mixing units 2 are distributed on the PCB substrate 1 in a rectangular array, and the distance between any adjacent light mixing units 2 is small and relatively close.
  • the plurality of light mixing units 2 can be arranged based on the symmetrical pattern, and can also be a circular array or a polygonal array, and through free matching and rotation angles, a uniform light spot with relatively good quality can be obtained.
  • the LED light source module provided in this embodiment has at least the following advantages and positive effects:
  • the LED light source module has multiple arrays of mixed light units 2.
  • Each mixed light unit 2 integrates LED chips of five different colors, namely warm white light chip 31, cold white light chip 32, red light chip 33, and blue light chip. 34 and green light chip 35. Since the warm white light, cold white light, red light, blue light and green light in the light mixing unit 2 are superimposed and combined in a suitable wavelength range, covering the wavelength range of visible light, the user's choice range can be maximized.
  • the specific arrangement is that a plurality of warm white light chips 31 and a plurality of cold white light chips 32 are distributed along an annular shape to form a circular area.
  • the warm white light chips 31 and the cold white light chips 32 are used to emit cold and warm white light respectively.
  • the main light of the LED light source; and the cold and warm white light chips 31 are interlaced with each other, making the LED light emitting more uniformly.
  • the red light chip 33, the blue light chip 34 and the green light chip 35 are located inside the circular area formed by the cold and warm white light.
  • the three emits light at the same time to synthesize white light. This white light is superimposed with the peripheral cold and warm white light, and the light mixing effect is good. Finally, Get high-quality lighting effects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)

Abstract

本发明提供了一种LED光源模组,包括:基板;多个混光单元,设置于所述基板上;混光单元包括微基板以及集成于微基板上的暖白光芯片、冷白光芯片、红光芯片、蓝光芯片和绿光芯片。如此,在工作时,能够通过多种光色进行混光,实现效果较好的混光,进而得到高质量的灯光效果。

Description

LED光源模组
交叉引用
本申请引用于2022年5月13日递交的名称为“LED光源模组”的第2022211574387号中国专利申请,其通过引用被全部并入本申请。
本申请还引用于2022年5月13日递交的名称为“LED光源模组”的第2022211631426号中国专利申请,其通过引用被全部并入本申请。
技术领域
本公开属于灯具技术领域,特别涉及一种LED光源模组。
背景技术
LED(Lighting Emitting Diode,发光二极管)照明利用固体半导体芯片作为发光材料,在半导体中通过载流子发生复合放出过剩的能量而引起光子发射,直接发出红、黄、蓝、绿色的光。由于LED照明具有出光柔和、不伤眼、省电、光线自然等特点,随着LED照明技术的发展,LED光源已经成为节能环保的代表。
目前,在大量场合需要多种发光芯片发出多种颜色的光进行混光,但现有的LED光源的混光单元的发光芯片单一,不能满足通过多种光色进行混光的需求。
发明内容
本公开实施例提供一种LED光源模组,能够满足多种光色进行混光的需求,实现效果较好的混光,进而得到高质量的灯光效果。
其中,该LED光源模组包括:基板;多个混光单元,设于基板上;混光单元包括微基板以及集成于微基板上的暖白光芯片、冷白光芯片、红光芯片、蓝光芯片和绿光芯片。
有益效果:基于本申请提供的LED光源模组,每一混光单元集成了五种不同颜色的LED芯片,分别为暖白光芯片、冷白光芯片、红光芯片、蓝光芯片和绿光芯片。每一混光单元包括五种光色,在进行混光时,红绿蓝芯片组合形成三原色混光部以用于合成白光,该白光进一步与冷暖白光相叠加混光,能够通过五重光色的叠加实现效果较好的混光,进而得到高质量的灯光效果,以满足特定需求。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请第一实施例中LED光源模组的结构示意图。
图2为本申请第一实施例中第一区域内部的各混光单元的布置示意图。
图3为本申请第一实施例中第一混光单元的结构示意图。
图4为本申请第一实施例中第二混光单元的结构示意图。
图5为本申请第一实施例中第三混光单元的结构示意图。
图6为本申请第一实施例中径向对称混光单元的结构示意图。
图7为本申请第二实施例中LED光源模组的结构示意图。
图8为本申请第二实施例中第四混光单元的结构示意图。
图9为本申请第二实施例中第四混光单元的变形结构示意图。
图10为本申请第二实施例中第四混光单元的另一变形结构示意图。
图11为本申请第二实施例中第四混光单元的另一变形结构示意图。
图12为本申请第二实施例中第四混光单元的另一变形结构示意图。
图13为本申请第二实施例中第四混光单元的另一变形结构示意图。
图14为本申请第二实施例中第四混光单元的另一变形结构示意图。
图15为本申请第二实施例中第四混光单元的另一变形结构示意图。
图16为本申请第二实施例中第四混光单元的另一变形结构示意图。
图17为本申请第二实施例中第四混光单元的另一变形结构示意图。
图18为本申请第二实施例中第四混光单元的另一变形结构示意图。
图19为本申请第二实施例中第四混光单元的另一变形结构示意图。
图20为本申请第二实施例中第四混光单元的另一变形结构示意图。
图21为本申请第二实施例中第四混光单元的另一变形结构示意图。
图22为本申请第二实施例中第四混光单元的另一变形结构示意图。
图23为本申请第二实施例中第四混光单元的另一变形结构示意图。
图24为本申请第二实施例中第四混光单元的另一变形结构示意图。
图25为本申请第二实施例中第四混光单元的另一变形结构示意图。
图26为本申请第二实施例中第四混光单元的另一变形结构示意图。
图27为本申请第二实施例中第四混光单元的另一变形结构示意图。
图28为本申请第二实施例中第四混光单元的另一变形结构示意图。
图29为本申请第二实施例中第四混光单元的另一变形结构示意图。
图30为本申请第二实施例中第四混光单元的另一变形结构示意图。
图31为本申请第二实施例中第四混光单元的另一变形结构示意图。
图32为本申请第二实施例中第四混光单元的另一变形结构示意图。
图33为本申请第二实施例中第五混光单元的结构示意图。
图34为本申请第三实施例中LED光源模组的结构示意图。
图35为本申请第三实施例中三原色混光部的结构示意图。
图36为本申请第三实施例中第六混光单元的结构示意图。
图37为本申请第四实施例中LED光源模组的结构示意图。
图38为本申请第四实施例中混光单元中的各个颜色的LED芯片的布置示意图。
图39为本申请第四实施例中混光单元中的透镜的结构示意图。
附图标记说明如下:
1-基板、11-第一径向轴线、12-第二径向轴线、101-第一区域、102-第二区域、103-第三区域、104-第四区域、
2-混光单元、21-第一混光单元、22-第二混光单元、23-第三混光单元、24-第四混光单元、25-第五混光单元、26-第六混光单元、
31-暖白光芯片、32-冷白光芯片、33-红光芯片、34-蓝光芯片、35-绿光芯片、
41-三原色混光部、42-冷暖混光部、
5-径向对称混光单元、
40-微基板、401-圆、31-暖白光芯片、32-冷白光芯片、33-红光芯片、34-蓝光芯片、35-绿光芯片、46-透镜、461-透镜平台、462-透镜本体、463-光源腔。
具体实施方式
LED光源模组第一实施例
本实施例提供一种LED光源模组,将不同属性的LED按照一定的方式和配比进行封装在一个器件中,形成混光单位。通过电流(电压)或者PWM驱动不同LED芯片(颜色)不同的比例就可以使其发出光谱的高颜色质量的白光,从而能够适应摄影行业的较高照明需求。
该LED光源模组装配上混光光学附件(具体可以采用混光腔+磨砂玻璃&复眼玻璃&雾面玻璃),即可形成颜色均匀且颜色质量较高的点光源。
请参照图1,图1示出了本实施例提供的一种LED光源模组的具体结构,其包括基板1和多个分散设于基板1上的混光单元2。
在本实施例中,基板1的内部形成有圆形区域,圆形区域具有相互垂直的第一径向轴线11和第二径向轴线12。基板1的表面按照上述两条径向轴线可划分为四个等面积的区域,按照逆时针的顺序 依次分为第一区域101、第二区域102、第三区域103和第四区域104。
多个混光单元2分为数量相等的多组,每一组的多个混光单位关于基板1的中心旋转对称布置。具体为,每一组的多个混光单元2关于基板1的旋转对称角度为90度。即,每一组具有4个混光单元2,该4个混光单元2分别一一设于第一区域101、第二区域102、第三区域103和第四区域104。如此布置,优化光源的对称性,通过简单的二次光学从而使得光斑的对称性良好,可以满足更多场景要求。当然,在其他实施例中,多个混光单元2关于基板1的旋转对称角度还可以为180度。
混光单元2为独立的封装器件,混光单元2包括多种颜色的LED芯片,可发出白光。
每组的混光单元2的形状不一(其包含的LED芯片数量不同)。
请参照图2,为了方便区分,以位于第一区域101的各个混光单元2为例,其中主要的部分定位为第一混光单元21、第二混光单元22和第三混光单元23。
请参照图3,第一混光单元21包括微基板(未示出)以及集成于微基板上的暖白光芯片31(标识为W)、冷白光芯片32(标识为C)、红光芯片33(标识为R)、蓝光芯片34(标识为B)和绿光芯片35(标识为G)。
红光芯片33、蓝光芯片34和绿光芯片35相邻并组成三原色混光部41。
在本实施例中,三原色混光部41具体呈方形,包括一个蓝光芯片34、一个绿光芯片35和两个红光芯片33。
并且,两红光芯片33错开呈中心对称布置。
在本实施例中,三原色混光部41采用两红光芯片33能够保证功率足够大,达到较好的发光效率。在其他实施例中,在满足功率的前提下,三原色混光部41可以仅采用一个红光芯片33、一个蓝光芯片34和一个绿光芯片35。
暖白光芯片31和冷白光芯片32位于三原色混光部41的外侧上。
更具体地是,暖白光芯片31和冷白光芯片32相邻,并位于三原色混光部41的同一侧上,使得光源颜色较为均匀,混光效果佳,使得LED在发光时颜色的转变不会过于突兀。
如图3所示,暖白光芯片31和冷白光芯片32分别设有两个。
两暖白光芯片31相邻并位于同一列上,方便布线;两冷白光芯片32相邻并位于同一列上,方便布线。
请参照图4,第二混光单元22亦包括五种颜色的LED芯片,分别为暖白光芯片31(标识为W)、冷白光芯片32(标识为C)、红光芯片33(标识为R)、蓝光芯片34(标识为B)和绿光芯片35(标识为G)。
其中,红光芯片33、蓝光芯片34和绿光芯片35相邻并组成三原色混光部41。
暖白光芯片31和冷白光芯片32分别对称位于三原色混光部41的上下两侧上。
在三原色混光部41的同一侧上,暖白光芯片31和冷白光芯片32分别设有两个。两暖白光芯片31相邻并位于同一列上,方便布线;两冷白光芯片32相邻并位于同一列上,方便布线。当然,在其他实施例中,在布置空间足够的情况下,暖白光芯片31和冷白光芯片32可以在同一列上交错排布,进一步优化光源的对称性,使得LED光源的光色分布更加均匀。
请参照图5,第三混光单元23亦包括五种颜色的LED芯片,芯片数量较多,不再赘述。
其中,三原色混光部41设有两个,两三原色混光部41在横向上间隔开来,两者之间布置有暖白光芯片31和冷白光芯片32。并且,各三原色混光部41的左右两侧上均布置有冷暖光芯片。
请参照图6,LED光源模组还包括多个径向对称混光单元5。
径向对称混光单元5不同于位于四个区域内部的混光单元2,其分布在第一径向轴线11或者第二径向轴线12上,类似于十字交叉状。
径向对称混光单元5亦包括微基板以及集成于微基板上的暖白光芯片31、冷白光芯片32、红光芯片33、蓝光芯片34和绿光芯片35。
上述各颜色的LED芯片为矩形阵列,主要表现为两横行或者两竖行。在同一径向轴线上的多个径向对称混光单元5关于基板1的中心对称布置。当然,也可以是一个径向对称混光单元5关于基板1的中心呈90度旋转对称分布。
上述径向对称混光单元5遵循光源对称的原理,具体为,红光芯片33、蓝光芯片34和绿光芯片35相邻并组成三原色混光部41。三原色混光部41设有两个,呈交错分布。暖白光芯片31和冷白光芯片32相邻,并分别对称位于三原色混光部41的两侧上。
在本实施例中,各个混光单元2中的各个颜色的LED芯片呈矩形阵列,即混光单元2的LED芯片数量为2N(N≥4)。
另外,如图2所示,LED光源模组还包括冷暖混光部42。
该冷暖混光部42仅包括两个颜色的LED芯片,如暖白光芯片31和冷白光芯片32。冷暖混光部42中的LED芯片数量可以最小为2,数量最大不限。
在本实施例中,暖白光芯片31的色温范围为2000K~5000K,冷白光芯片32的色温范围为5000K~20000K,色温范围广。红光芯片33的波长范围为610mm~650mm,蓝光芯片34的波长范围为440mm~480mm,绿光芯片35的波长范围为510mm~550mm。
如此,LED光源模组的CCT(色温)范围可以做到2000~20000K。TLCI和RA均能达到90或者以上,可以较大幅度调整白平衡;可以达到白光的光通量(或者照度)是绿光的0.5~3倍率。
综上,通过上述实施例提供的LED光源模组至少具备如下有益技术效果:其具有多个阵列的混光 单元2,每一混光单元2集成了五种不同颜色的LED芯片,分别为暖白光芯片31、冷白光芯片32、红光芯片33、蓝光芯片34和绿光芯片35。其中,多个暖白光芯片31和多个冷白光芯片32沿环形分布,围合形成了一个圆形区域,暖白光芯片31和冷白光芯片32分别用于发出冷暖两种白光,成为LED光源的主光;并且冷暖白光芯片两者彼此交错,使得LED发光更加均匀。红光芯片33、蓝光芯片34和绿光芯片35位于冷暖白光31围合形成的圆形区域内部,红绿蓝芯片可发光用于合成白光,该白光与外围的冷暖白光相叠加,混光效果佳,最终得到高质量的灯光效果。
LED光源模组第二实施例
请参照图7,在本实施例中,多个混光单元2分为数量相等的多组,每一组的多个混光单位关于基板1的中心旋转对称布置。如此布置,优化光源的对称性,通过简单的二次光学从而使得光斑的对称性良好,可以满足更多场景要求。
不同之处在于,本实施例中的混光单元2相比于第一实施例中的混光单元2更为分散,在同一区域的内部,混光单元2的数量更多。
并且,单个混光单元2所包含的LED芯片数量偏少。
请参照图8,第四混光单元24一共有8个LED芯片,包括两个暖白光芯片31(标识为W)、两个冷白光芯片32(标识为C)、两个红光芯片33(标识为R)、一个蓝光芯片34(标识为B)和一个绿光芯片35(标识为G)。
三原色混光部41具体呈方形,其中两红光芯片33相邻并位于同一行上,如此方便布线。暖白光芯片31和冷白光芯片32两两合为一组,两组分别位于三原色混光部41的左右两侧上,光源颜色较为均匀,混光效果佳。
接下来请一并参照图9至图24,其共同示出了以图8中的混光单元2作出基础的多个变形实施例。其中,三原色混光部41中的两红光芯片33可以相邻呈同一横行或者同一竖列,也可以交错以位于同一对角斜线上。两暖白光芯片31分别位于三原色混光部41的左右两侧上,可以在同一横行上,也可以在同一对角斜线上。两冷白光芯片32的布置方式与暖白光芯片31相似,可以调节位置从而实现任意组合。
需要说明的是,上述实施例中的三原色混光部41之所以采用两红光芯片33是为了保证功率足够大,达到较好的发光效率。
请一并参照图25至图32,,在满足功率的前提下,三原色混光部41可以仅采用一个红光芯片33、一个蓝光芯片34和一个绿光芯片35。
请参照图33,第五混光单元25亦包括上述五种颜色的LED芯片,其相比于第四混光单元24,暖白光芯片31和冷白光芯片32的数量更多。
在三原色混光部41的同一侧上,暖白光芯片31和冷白光芯片32分别设有两个,两暖白光芯片31相邻并位于同一列上,方便布线。两冷白光芯片32相邻并位于同一列上,方便布线。当然,在其他实施例中,在布置空间足够的情况下,暖白光芯片31和冷白光芯片32可以在同一列上交错排布,进一步优化光源的对称性,使得LED光源的光色分布更加均匀。
LED光源模组第三实施例
请一并参照图34至图36,本实施例中的混光单元2的不同之处在于,相比于第一实施例具有单独集成在一起的三原色混光部41。
如图11所示,三原色混光部41具体呈方形,包括一个蓝光芯片34、一个绿光芯片35和两个红光芯片33。
并且,两红光芯片33相邻并位于同一列上,如此方便布线。
如图12所示,第六混光单元26包括五种颜色的LED芯片,其相比于第五混光单元25,暖白光芯片31和冷白光芯片32的数量更多。在三原色混光部41的右侧上,暖白光芯片31和冷白光芯片32分别设有三个,三个暖白光芯片31相邻并位于同一列上,方便布线;三个冷白光芯片32相邻并位于同一列上,方便布线。当然,在其他实施例中,在布置空间足够的情况下,暖白光芯片31和冷白光芯片32可以在同一列上交错排布,进一步优化光源的对称性,使得LED光源的光色分布更加均匀。
当然,在其他实施例中,在布置空间足够的情况下,暖白光芯片31和冷白光芯片32可以在同一列上交错排布,进一步优化光源的对称性,使得LED光源的光色分布更加均匀。
LED光源模组第四实施例
请参照图37,图37示出了本实施例提供的一种LED光源模组的具体结构,其主要包括基板1和多个阵列分布于基板1的混光单元2。
每一混光单元2为独立的封装器件,可发出白光。
请参照图38,混光单元2具有五种不同颜色的LED芯片。
具体为,混光单元2包括微基板40,以及集成于微基板40上的暖白光芯片31(标识为W)、冷白光芯片32(标识为C)、红光芯片33(标识为R)、蓝光芯片34(标识为B)和绿光芯片35(标识为G)。
在本实施例中,LED芯片的总数量为8个。其中,暖白光芯片31和冷白光芯片32的数量分别为两个,红光芯片33的数量为两个,蓝光芯片34和绿光芯片35的数量分别为一个。
微基板40为正方形。两个暖白光芯片31和两个冷白光芯片32均位于同一个圆401上。在该圆401上,暖白光芯片31和冷白光芯片32交错并不相邻,从而使得LED光源的光色分布更加均匀。并且,两个暖白光芯片31关于微基板40的中心对称分布,两个冷白光芯片32关于微基板40的中心对称分布。
需要说明的是,如图2所示,暖白光芯片31和冷白光芯片32的尺寸较大,大于红光芯片33等的尺寸,功率较大,为LED光源的主光。在其他实施例中,暖白光芯片31和冷白光芯片32的尺寸可以与其他颜色的LED芯片的尺寸一致。
红光芯片33、蓝光芯片34和绿光芯片35位于暖白光芯片31和冷白光芯片32围合形成的圆形区域内部。其好处在于,上述红绿蓝LED芯片可发光用于合成白光,该白光与外围的冷暖白光相叠加,光源颜色较为均匀,混光效果佳。
在其他实施例中,不限于上述8个LED芯片的数量,暖白光芯片31和冷白光芯片32可以分别设有三个或者更多,多个暖白光芯片31和多个冷白光芯片32在微基板40上沿环向分布,且暖白光芯片31和冷白光芯片32交错。红光芯片33、蓝光芯片34和绿光芯片35也可以设有多个,且均位于暖白光芯片31和冷白光芯片32围合形成的区域内。
在本实施例中,其中一个红光芯片33、一个蓝光芯片34和一个绿光芯片35呈等腰三角形分布,红光芯片33位于该三角形的顶端,其与另外两个芯片之间的距离相等。另一个红光芯片33与该位于三角形顶端的红光芯片33为中心对称布置,使得上述4个LED芯片形成较为对称的图案。
具体表现为,蓝光芯片34和绿光芯片35位于同一径向轴线上,两个红光芯片33位于另一径向轴线上;上述两条径向轴线相互垂直。上述对称排布方式,能够使得LED光源的混光效果得到提高。
在其他实施例中,红绿蓝芯片不限于上述的对称分布方式,红绿蓝芯片可以根据具体需求进行位置上的改变,在预留出的空间进行灵活的移动,以匹配最佳的光学。
在本实施例中,暖白光芯片31的色温范围为1800K~5000K,冷白光芯片32的色温范围为5000K~10000K,色温范围广。红光芯片33的波长范围为610mm~660mm,蓝光芯片34的波长范围为450mm~480mm,绿光芯片35的波长范围为510mm~550mm。如此,本实施例的由上述五种颜色的光合成的LED光源,各个颜色的光所对应的波长不相同,具有波长范围覆盖广的特点,再加上按照特定的方式进行配比,发光均匀,具有较好的光谱连续性。
请参照图39,混光单元2还包括透镜46。
透镜46包括透镜平台461和设于透镜平台461上的透镜本体462。透镜平台461呈矩形状(不限于矩形,可以采用其他对称图形如方形、圆形),用以固定于基板1上。透镜本体462为呈圆台状的回转体,并形成有具有反射面的光源腔463。微基板40安装于光源腔463的底部中心(透镜本体462的下开口)处,红绿蓝等各颜色的LED芯片朝向透镜本体462的上开口,其发出的光线经反射面反射并汇聚。
在制造时,把图38的8个LED芯片封装集成为一个独立的混光单元2,将把多个封装好的混光单元2SMT(表面贴片)阵列到PCB基板1上,最后再装上全反射透镜,通过线路控制PCB的电流的方式 就能得到发光均匀,且颜色质量较高的照明装置。
在本实施例中,如图37所示,多个混光单元2呈矩形阵列分布在PCB基板1上,任意相邻混光单元2之间的距离较小,较为紧密。在其他实施例中,不限于上述方式,多个混光单元2基于对称图形排列的规律,还可以是圆周阵列或者多边形阵列,并通过自由搭配和旋转角度,得到质量比较好的均匀光斑。
综上所述,本实施例提供的一种LED光源模组至少具有如下优点和积极效果:
该LED光源模组具有多个阵列的混光单元2,每一混光单元2集成了五种不同颜色的LED芯片,分别为暖白光芯片31、冷白光芯片32、红光芯片33、蓝光芯片34和绿光芯片35。由于混光单元2中的暖白光、冷白光、红光、蓝光和绿光在合适的波长范围中进行叠加组合,涵盖了可见光的波长范围,能够在最大程度上提升用户的选择范围。
具体布置方式为,多个暖白光芯片31和多个冷白光芯片32沿环形分布,围合形成了一个圆形区域,暖白光芯片31和冷白光芯片32分别用于发出冷暖两种白光,成为LED光源的主光;并且冷暖白光芯片31两者彼此交错,使得LED发光更加均匀。红光芯片33、蓝光芯片34和绿光芯片35位于冷暖白光围合形成的圆形区域内部,三者同时发光用于合成白光,该白光与外围的冷暖白光相叠加,混光效果佳,最终得到高质量的灯光效果。

Claims (21)

  1. 一种LED光源模组,其特征在于,包括:
    基板;
    多个混光单元,设于所述基板上,所述混光单元包括微基板以及集成于所述微基板上的暖白光芯片、冷白光芯片、红光芯片、蓝光芯片和绿光芯片。
  2. 根据权利要求1所述的LED光源模组,多个所述混光单元分为数量相等的多组,每一组的多个混光单位关于所述基板的中心旋转对称布置;所述红光芯片、所述蓝光芯片和所述绿光芯片相邻并组成三原色混光部,所述暖白光芯片和所述冷白光芯片位于所述三原色混光部的外侧上。
  3. 根据权利要求2所述的LED光源模组,其特征在于,所述暖白光芯片和所述冷白光芯片相邻,并位于所述三原色混光部的同一侧上。
  4. 根据权利要求2所述的LED光源模组,其特征在于,所述暖白光芯片和所述冷白光芯片分别对称位于所述三原色混光部的两侧上。
  5. 根据权利要求3或4所述的LED光源模组,其特征在于,所述混光单元的暖白光芯片、冷白光芯片、红光芯片、蓝光芯片和绿光芯片呈矩形阵列。
  6. 根据权利要求5所述的LED光源模组,其特征在于,所述暖白光芯片设有多个,多个所述暖白光芯片位于同一列上;所述冷白光芯片设有多个,多个所述冷白光芯片位于同一列上。
  7. 根据权利要求5所述的LED光源模组,其特征在于,所述暖白光芯片设有多个,所述冷白光芯片设有多个,所述暖白光芯片和所述冷白光芯片在同一列上交错排布。
  8. 根据权利要求5所述的LED光源模组,其特征在于,所述三原色混光部包括一个所述蓝光芯片、一个所述绿光芯片和一个所述红光芯片。
  9. 根据权利要求8所述的LED光源模组,其特征在于,所述三原色混光部设有两个,两所述三原色混光部间隔开来,两者之间布置有所述暖白光芯片和所述冷白光芯片。
  10. 根据权利要求2所述的LED光源模组,其特征在于,每一组的多个混光单位关于所述基板的旋转对称角度为90度或者180度。
  11. 根据权利要求2所述的LED光源模组,其特征在于,所述基板具有相互垂直的第一径向轴线和第二径向轴线;所述LED光源模组还包括多个径向对称混光单元,所述径向对称混光单元包括微基板以及集成于所述微基板上的暖白光芯片、冷白光芯片、红光芯片、蓝光芯片和绿光芯 片;各所述径向对称混光单元位于所述第一径向轴线或者所述第二径向轴线上,在同一径向轴线上的多个径向对称混光单元关于所述基板的中心对称布置。
  12. 根据权利要求1所述的LED光源模组,其特征在于,所述暖白光芯片和所述冷白光芯片分别设有多个,多个所述暖白光芯片和多个所述冷白光芯片沿环向分布,且所述暖白光芯片和所述冷白光芯片交错;所述红光芯片、所述蓝光芯片和所述绿光芯片位于所述暖白光芯片和所述冷白光芯片围合形成的区域内。
  13. 根据权利要求12所述的LED光源模组,其特征在于,所述红光芯片、所述蓝光芯片和所述绿光芯片呈等腰三角形分布。
  14. 根据权利要求13所述的LED光源模组,其特征在于,所述红光芯片设有两个,两所述红光芯片关于所述微基板的中心对称布置。
  15. 根据权利要求12所述的LED光源模组,其特征在于,所述暖白光芯片关于所述微基板的中心对称布置。
  16. 根据权利要求12所述的LED光源模组,其特征在于,所述冷白光芯片关于所述微基板的中心对称布置。
  17. 根据权利要求12所述的LED光源模组,其特征在于,所述暖白光芯片的色温范围为1800K~5000K,所述冷白光芯片的色温范围为5000K~10000K。
  18. 根据权利要求12所述的LED光源模组,其特征在于,所述红光芯片的波长范围为610mm~660mm,所述蓝光芯片的波长范围为450mm~480mm,所述绿光芯片的波长范围为510mm~550mm。
  19. 根据权利要求12所述的LED光源模组,其特征在于,所述混光单元还包括透镜;所述透镜包括固定于所述基板上的透镜平台和设于所述透镜平台上的透镜本体;所述透镜本体为呈圆台状的回转体,并形成有光源腔;所述微基板安装于所述光源腔的底部中心处,各颜色的芯片朝向所述透镜本体的上开口。
  20. 根据权利要求12所述的LED光源模组,其特征在于,多个所述混光单元为对称图形阵列。
  21. 根据权利要求20所述的LED光源模组,其特征在于,多个所述混光单元呈矩形阵列、圆周阵列或者多边形阵列。
PCT/CN2022/141170 2022-05-13 2022-12-22 Led光源模组 WO2023216606A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202221157438.7 2022-05-13
CN202221163142.6U CN217387153U (zh) 2022-05-13 2022-05-13 Led光源模组
CN202221163142.6 2022-05-13
CN202221157438.7U CN217361580U (zh) 2022-05-13 2022-05-13 Led光源模组

Publications (1)

Publication Number Publication Date
WO2023216606A1 true WO2023216606A1 (zh) 2023-11-16

Family

ID=88729565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141170 WO2023216606A1 (zh) 2022-05-13 2022-12-22 Led光源模组

Country Status (1)

Country Link
WO (1) WO2023216606A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203286343U (zh) * 2013-06-05 2013-11-13 广州市鸿利光电股份有限公司 一种多基色led光源
CN214745043U (zh) * 2021-06-15 2021-11-16 深圳市爱图仕影像器材有限公司 一种调光模组及照明装置
CN217361580U (zh) * 2022-05-13 2022-09-02 深圳市神牛摄影器材有限公司 Led光源模组
CN217387153U (zh) * 2022-05-13 2022-09-06 深圳市神牛摄影器材有限公司 Led光源模组

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203286343U (zh) * 2013-06-05 2013-11-13 广州市鸿利光电股份有限公司 一种多基色led光源
CN214745043U (zh) * 2021-06-15 2021-11-16 深圳市爱图仕影像器材有限公司 一种调光模组及照明装置
CN217361580U (zh) * 2022-05-13 2022-09-02 深圳市神牛摄影器材有限公司 Led光源模组
CN217387153U (zh) * 2022-05-13 2022-09-06 深圳市神牛摄影器材有限公司 Led光源模组

Similar Documents

Publication Publication Date Title
JP5974242B2 (ja) 一様な投影照明を供給するための方法及び装置
US8672517B2 (en) Light-emitting module
EP2764293B1 (en) Arrangement of solid state light sources and lamp using same
US9010961B2 (en) LED integrated packaging light source module
US9269697B2 (en) System and methods for warm white LED light source
US20130107517A1 (en) Light emitting diode bulb
JP5696980B2 (ja) 照明器具
WO2009016604A1 (en) Etendue conserving, color-mixed, and high brightness led light source
JP5842147B2 (ja) 発光装置及びそれを用いた照明器具
US9803837B2 (en) White-light LED modules
CN217361580U (zh) Led光源模组
EP2696134B1 (en) Led projection lamp
CN211507628U (zh) Led光源装置
CN217387153U (zh) Led光源模组
WO2023216606A1 (zh) Led光源模组
US20210098433A1 (en) Multi-cob-led lighting module
JP6256528B2 (ja) 照明器具
CN217004098U (zh) 灯具
CN213040507U (zh) 一种灯具
TW201439464A (zh) 發光裝置及其製造方法
TW201525367A (zh) 發光單元以及光源模組
CN214672604U (zh) 一种无荧光粉多基色led灯具的混光结构
CN217361576U (zh) Cob光源和照明装置
CN210771671U (zh) Led阵列、led灯具及摄影灯
JP6460581B2 (ja) 照明器具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941539

Country of ref document: EP

Kind code of ref document: A1