WO2023216480A1 - 服务基地电能补给和被补给车通过物联网架构的补给体系 - Google Patents

服务基地电能补给和被补给车通过物联网架构的补给体系 Download PDF

Info

Publication number
WO2023216480A1
WO2023216480A1 PCT/CN2022/117820 CN2022117820W WO2023216480A1 WO 2023216480 A1 WO2023216480 A1 WO 2023216480A1 CN 2022117820 W CN2022117820 W CN 2022117820W WO 2023216480 A1 WO2023216480 A1 WO 2023216480A1
Authority
WO
WIPO (PCT)
Prior art keywords
control system
robot
battery box
motor
programmable controller
Prior art date
Application number
PCT/CN2022/117820
Other languages
English (en)
French (fr)
Inventor
韩磊
Original Assignee
岳秀兰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岳秀兰 filed Critical 岳秀兰
Publication of WO2023216480A1 publication Critical patent/WO2023216480A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/68Off-site monitoring or control, e.g. remote control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60PVEHICLES ADAPTED FOR LOAD TRANSPORTATION OR TO TRANSPORT, TO CARRY, OR TO COMPRISE SPECIAL LOADS OR OBJECTS
    • B60P3/00Vehicles adapted to transport, to carry or to comprise special loads or objects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to the field of electric vehicles, and in particular to a supply system for supplying electric energy to a service base and supplying vehicles through an Internet of Things architecture.
  • the present invention provides a power swapping system based on the idea of conforming to current characteristics, that is, the mode of finding cars with power to cope with the current situation of a small number of cars looking for power in power swapping stations. Change the idea of service centered on the battery swap station to a service centered on the vehicle with the battery being replaced. Let the electric energy supply vehicle become the nanny car of the electric vehicle and complete the de-battery service so that the driver of the electric vehicle no longer has to worry about the battery. .
  • the supply system of the service base electric energy supply and the supplied vehicles provided by the present invention through the Internet of Things architecture is composed of the following systems: a variety of electric energy supply vehicles and electric energy supply vehicle control systems; electric vehicles to be replaced and electric vehicle replacement systems. Electrical control system; robot and robot drive system, handling robot and handling robot control system; fill light, manipulator control system, robot slider control system, rear door control system, side door control system, multiple charging and swapping cabinets and charging stations Battery swap cabinet control system, multiple programmable controllers, multiple wireless programmable controllers, and multiple electric vehicles with different structures to be swapped.
  • the invention has the following beneficial effects: the service base electric energy supply and the supplied vehicle perform battery exchange services on the vehicle to be exchanged through the electric vehicle search mode constructed by the supply system of the Internet of Things architecture, eliminating the need to build a battery exchange station and reducing a large number of costs. In the case of large-scale investment in the construction of battery replacement stations, it is easy to operate and saves space.
  • One electric energy supply vehicle can provide supplies for multiple electric vehicles. Electric energy supply vehicles can be deployed according to the number of electric vehicles owned to avoid ineffective investment. De-battery the car owners so that they no longer have to worry about the battery.
  • Figure 1 is a structural diagram of the supply system of the invention's service base electric energy supply and supplied vehicles through the Internet of Things architecture;
  • Figure 2 is a schematic structural diagram of the rear door system of the smart trolley car of the present invention.
  • Figure 3 is a side view of the smart battery swapping vehicle charging at the headquarters base charging pile and the smart battery swapping vehicle according to the present invention
  • Fig. 4 is a schematic structural diagram of the rear hydraulic folding door of the smart tram exchanger of the present invention in an open state
  • FIG. 5 is a schematic diagram of the charging system of the smart electric vehicle of the present invention.
  • Figure 6 is a schematic structural diagram of the top track of the side double door of the intelligent tram exchanger of the present invention.
  • Figure 7 is a top view of the smart battery-swapping vehicle charging at a public charging pile and the smart battery-swapping vehicle according to the present invention.
  • Figure 8 is a coordinate system diagram of the robot and the first, second, and third charging and swapping cabinets of the smart battery swapping vehicle of the present invention
  • Figure 9 is a schematic structural diagram of the robot of the present invention.
  • Figure 10 is a structural diagram of the first leveling control system of the present invention.
  • Figure 11 is a perspective view of the robot mobile device of the present invention.
  • Figure 12 is a perspective view of the remote console of the present invention.
  • Figure 13 is a top view of the manipulator of the present invention.
  • Figure 14 is a side cross-sectional view of the robot manipulator of the present invention.
  • Figure 15 is a schematic side view of the first process when holding the battery box in the robot holding area of the present invention.
  • Figure 16 is a schematic side view of the second process when holding the battery box in the robot holding area of the present invention.
  • Figure 17 is a block diagram of the robot control system of the machine of the present invention.
  • Figure 18 is a block diagram of the robot mobile device control system of the machine of the present invention.
  • Figures 19 to 23 are schematic structural diagrams of the first battery box system 243 of the first charging and swapping cabinet and the second charging and swapping cabinet of the present invention.
  • Figure 24 is a front view of the first bracket of the present invention.
  • Figure 25 is a top view of the first bracket of the present invention.
  • Figure 26 is a block diagram of the first battery box control system of the present invention.
  • Figure 27 is a perspective view of the floating plug body of the magnetic pull-out dual-action connector of the present invention.
  • Figure 28 is a front cross-sectional view of the magnetic pull-out dual-action connector plug of the present invention.
  • Figure 29 shows the common connection method between the power supply surge protector of the present invention and the power line in the circuit, which is parallel connection;
  • Figure 30 is a front view of the magnetic pull-out dual-action connector plug of the present invention.
  • Figure 31 is a schematic diagram of the magnetic pull-out dual-action connector of the present invention after it is inserted in place;
  • Figure 32 is a front cross-sectional view of the magnetic pull-out dual-action connector socket of the present invention.
  • Figure 33 is a perspective view of the floating socket body of the magnetic pull-out dual-action connector of the present invention.
  • Figure 34 is a front view of the magnetic pull-out dual-action connector socket of the present invention.
  • Figure 35 is a connection diagram between the rear door control system, the side door control system, the first to twelfth battery compartment control systems and the first programmable controller of the present invention
  • Figure 36 is a front view of the third charging and swapping cabinet of the present invention and a schematic diagram of the connection between the third charging and swapping cabinet and the charging pile;
  • Figure 37 is a structural diagram of the battery box compartment of the third charging and swapping cabinet of the present invention.
  • Figure 38 is a perspective view of the cooling compartment of the third charging and swapping cabinet of the present invention.
  • Figure 39 is an internal logic equivalent diagram of the first wireless programmable controller of the present invention.
  • Figure 40 is a structural diagram of the thirteenth charging and replacing battery box control system to the sixteenth charging and replacing battery box control system of the present invention.
  • Figure 41 is a top view of the transport robot of the present invention.
  • Figure 42 is a perspective view of the correction mechanism of the present invention.
  • Figure 43 is a structural diagram of the lifting mechanism of the handling robot of the present invention.
  • Figures 44 and 46 are structural diagrams of the terminal platform of the handling robot of the present invention.
  • Figure 45 is a structural diagram of the handling robot of the present invention.
  • Figure 47 is a block diagram of the handling robot control system of the present invention.
  • Figures 48, 49, 51 and 53 are structural diagrams of the first to fourth lifters on the electric vehicle chassis of the present invention.
  • Figure 50 is a structural diagram of the second double-acting multi-stage hydraulic cylinder system of the present invention.
  • Figure 52 is a QR code arrangement diagram provided on the electric vehicle and chassis of the present invention.
  • Figure 53 is a top view of the electric vehicle outrigger lifting system of the present invention.
  • Figures 54 and 55 are structural diagrams of the two-dimensional code provided on the battery box of the present invention.
  • Figures 56 and 57 are structural diagrams of the two-dimensional code used in the present invention.
  • Figures 54, 58 to 61 are schematic structural diagrams of the battery box controller on the electric vehicle chassis of the present invention.
  • Figure 62 is a block diagram of the electric vehicle battery swap control system of the present invention.
  • Figures 63 to 66 are schematic diagrams of the first, second, third and fourth traveling paths of the transport robot released by the intelligent battery-changing vehicle of the present invention.
  • Figures 65 and 63 are schematic diagrams of the third traveling path of the transport robot released by the intelligent battery-changing vehicle of the present invention.
  • Figure 64 is a diagram of the battery swapping operation of the third electric vehicle to be swapped and the smart battery swapping vehicle of the present invention.
  • Figures 65 and 66 are schematic top views of the fourth driving path of the transport robot released by the intelligent battery-changing vehicle of the present invention.
  • Figure 67 is a block diagram of the robot control system of the present invention.
  • Figure 68 is a diagram of the battery swapping operation of the second electric vehicle to be swapped and the smart battery swapping vehicle of the present invention.
  • Figure 69 is a diagram of the power swapping operation of the second electric vehicle to be swapped and the fourth charging and swapping cabinet of the present invention.
  • Figures 70 to 75 and 77 are structural diagrams of the second electric vehicle battery box replacement system of the electric vehicle to be replaced according to the second embodiment of the present invention.
  • Figure 76 is a structural diagram of the battery swap control system of the electric vehicle to be swapped according to the second embodiment of the present invention.
  • Figures 78 to 83 are structural diagrams of the second handling robot lifting system of the present invention.
  • Figure 84 is a block diagram of the second handling robot control system of the present invention.
  • Figures 85 to 87 are the structure of the guard plate rotation system of the present invention.
  • Figure 88 is a control system diagram of the third electric vehicle to be replaced according to the present invention.
  • the supply system 3 of the service base's electric energy supply and supplied vehicles through the Internet of Things architecture consists of a remote control system 2, an electric energy supply vehicle control system 45, a handling robot control system 442, and an electric vehicle battery replacement control system 600 , the third charging and swapping cabinet control system 362, the first supply base system 34 and the second supply base system 38 constitute and support the circulation of the battery box transportation network 44.
  • the remote control system 2 has; a remote communication system 1, a backup remote communication system 4 and a remote service terminal system 19.
  • the telecommunications system 1 has a wireless carrier system 28, a global navigation satellite system 24, a communication satellite 23, an uplink transmitting station 22, a computer 21, and a ground network 20.
  • Wireless carrier system 28 is a cellular telephone system having cell towers 25 , mobile switching centers 26 and other networking components required to connect wireless carrier system 28 to terrestrial network 20 .
  • Cell towers 25 have transmitting and receiving antennas and base stations, to which the base stations from different cell towers are connected directly to the mobile switching center 27 or through intermediary equipment of base station controllers.
  • the communication technology implemented by the wireless carrier system 28 has the analog technology of AMPS and the digital technologies of CDMA and GSM/GPRS.
  • the Global Navigation Satellite System 24 is a space-based radio navigation and positioning system that can provide users with all-weather three-dimensional coordinates, speed and time information at any location on the earth's surface or near-Earth space.
  • Communication satellite 23 is an artificial earth satellite serving as a radio communication relay station. Communication satellites can transmit telephone and data information.
  • the uplink refers to the physical channel for signals from the mobile station to the base station.
  • Computer 21 is a computer that provides Internet connection access, provides DNS services and serves as a network address server, which allocates IP addresses to the electric energy supply vehicle 30 and the electric vehicle 41 using DHCP or other appropriate protocols.
  • the ground network 20 has a public switched telephone network (PSTN) and an Internet protocol (IP) network, a standard wired network, an optical fiber network, a cable network, and a wireless network.
  • PSTN public switched telephone network
  • IP Internet protocol
  • the remote service terminal system 19 has a second switch 17, a server 16, a database 15, a computer device 14, and a remote console system 13 that are communicatively connected via a wired and wireless local area network 18.
  • the second switch 17 routes the incoming signal, sending the voice transmission to the remote customer attendant 6 of the remote console system 13; and passing the data transmission to the computer device 14 for demodulation and further signal processing.
  • Computer equipment 14 has a coder, connected to a server 16 and a database 15 .
  • the server 16 sends and receives data information stored in the database 15, the first telematics unit 55 and the second telematics unit 61.
  • the database 15 can store account information, user authentication information, and vehicle identification. Data transmission via wireless systems 422.11x and GPRS is also possible.
  • the remote console system 13 has a remote console 5 , a remote operator 7 and a remote customer service attendant 6 .
  • the input device 9 , the display device 10 , the second memory 11 (RAM, ROM), and the second processor 12 (CPU, GPU) included in the remote console 5 are communicatively connected through the third communication bus 8 .
  • the input device 9 has a keyboard with a plurality of operating keys and is used to receive input operations from the remote operator 7 .
  • the display device 10 is an LCD organic EL display and displays data as an image to the remote operator 7 .
  • the remote operator 7 starts to perform remote control work after activating the second processor 12 on the remote console 5, and the remote customer attendant 6 is responsible for providing voice and text services to customers.
  • the backup remote communication system 4 uses the communication satellite 23 and the uplink transmitting station 22 to complete the remote service terminal system 19 and the first charging base communication system 29, the second charging base communication system 42, the third charging base communication system 43, and the electric energy One-way communication and two-way communication between the supply vehicle communication system 57 and the electric vehicle communication system 63.
  • the third communication bus 8 of the remote communication system 1 is connected to the wired and wireless local area network 18, the second processor 12 is connected to the first switch 13, the first switch 13 is connected to the wired and wireless local area network 18, the wired and wireless The local area network 18 is connected to the second switch 17, the second switch 17 is connected to the ground network 20, the ground network 20 is connected to the mobile switching center 26, the mobile switching center 26 is connected to the wireless carrier system 28, and the wireless carrier system 28 is simultaneously connected to the first charging base
  • the communication system 29, the second charging base communication system 42, the third charging base communication system 43, the electric energy supply vehicle communication system 57 and the electric vehicle communication system 63 are wirelessly connected and perform one-way communication and two-way communication at the same time.
  • the wireless carrier system 28 performs cellular communication through the first main antenna 54 via the cellular protocol with the first telematics unit 55 of the electric energy supply vehicle communication system 57 , which has a first cellular chipset 47
  • the communication bus 56 is connected to the data acquisition device 621 of the robot control system 618 .
  • the first short-range wireless communication (SRWC) circuit 46 is connected to the wireless communication unit 343 through the second antenna 355 of the handling robot 77 via the first SRWC antenna 53 .
  • the wireless carrier system 28 performs cellular communication via the second main antenna 59 via a cellular protocol with the second cellular chipset 64 included in the second telematics unit 61 of the electric vehicle communication system 63 .
  • the wireless carrier system 28 is connected to the second wireless programmable controller 361 through the first antenna 354 and the cellular wireless network antenna interface 347.
  • the second wireless programmable controller 361 is connected to the thirteenth battery compartment control system 653 and the fourteenth battery.
  • the bin control system 654, the fifteenth battery bin control system 655 and the sixteenth battery bin control system 656 are connected.
  • the electric energy supply vehicle control system 45 has an electric energy supply vehicle system 33 which is a vehicle for transporting the battery box 35.
  • the electric energy supply vehicle 30 has a passenger car body and a container body.
  • the electric energy supply vehicle control system 45 has an electric energy supply vehicle communication system 57, an electric energy supply vehicle charging system 128, a rear door control system 303, a rear door system 146; a side door control system 304, a side door system 158; a robot slider control system 226, Robot slider system 83; first leveling control system 197, manipulator control system 225, manipulator system 200; first charging and swapping cabinet control system 632, first charging and swapping cabinet 72, second charging and swapping cabinet control system 633, The second charging and swapping cabinet 75, the magnetic pull-out dual-action connector system 278, the robot control system 618, the robot 78, the third charging and swapping cabinet control system 362, the third charging and swapping cabinet 31, and the handling robot control system 442 , transportation robot system 638, transportation robot 77, second transportation robot 79, monitor 73, first bracket 80, second bracket 81, multiple legs.
  • the electric energy supply vehicle communication system 57 has a first telematics unit 55 , a first global navigation satellite system receiver 50 and a first vehicle-mounted computer 51 that are communicatively connected through a first communication bus 56 .
  • the first communication bus 56 provides network connectivity to the electric energy supply vehicle communication system 57 using a network protocol.
  • First GNSS receiver 50 receives radio signals from GNSS 24 .
  • the first global navigation satellite system receiver 50 may be configured for use with various GNSS systems.
  • the first telematics unit 55 has a first short range wireless communication (SRWC) circuit 46 , a first cellular chipset 47 , a first processor 48 , a first memory 49 , a first SRWC antenna 53 and a first main antenna 54 .
  • SRWC short range wireless communication
  • the first SRWC antenna 53 is connected to the first short range wireless communication (SRWC) circuit 46 .
  • the first main antenna 54 is connected to the first cellular chipset 47 .
  • the first telematics unit 55 is configured to perform wireless communication according to the first short range wireless communication (SRWC) circuit 46, Wi-FiTM, WiMAXTM, Wi-FiTM Direct, other IEEE 802.11 protocols, ZigBeeTM, BluetoothTM, Any of Bluetooth TM.
  • the first processor 48 is a device that processes electronic instructions and has a microprocessor, a microcontroller, a main processor, a controller, a vehicle communication processor, and an application specific integrated circuit (ASIC).
  • ASIC application specific integrated circuit
  • the electric energy supply vehicle charging system 128 of the electric energy supply vehicle system 33 has a photovoltaic cell layer 134, a charge controller 154, an on-board charging device (OBC) 156, a battery management system (BMS) 157, a first charger A power swapping cabinet 72 and a second charging and swapping cabinet 75 .
  • the charging controller 154 controls fast charging; the on-board charging device (OBC) 156 controls slow charging, and the battery management system (BMS) 157 manages and charges the first charging and swapping cabinet 72 and the second charging and swapping cabinet 75 .
  • the charging controller 154, the on-board charging device (OBC) 156, and the battery management system (BMS) 157 are communicatively connected through a controller area network (CAN).
  • the charging controller 154 and the on-board charging device (OBC) 156 are connected to the charging interface 135 of the electric energy supply vehicle 30 through the first line 155 .
  • the photovoltaic cell layers 134 installed at the front, rear, left, right and top of the compartment of the electric energy supply vehicle 30 are connected to the charge controller 154 through the second line 153 .
  • the photovoltaic cell layer 134 absorbs solar energy and charges the first charging and exchanging cabinet 72 and the second charging and exchanging cabinet 75 through the charging controller 154 .
  • the cycle of fully charged and depleted battery boxes is completed in the battery box transport network 44.
  • the electric energy supply vehicle 30 transports the electric energy supply vehicle 30 back to the first charging base 34, the second charging base 38 and the third charging and exchanging cabinet 31 for charging and exchanging electricity.
  • the driver 40 inserts the charging gun 136 of the personal charging pile 36 into the charging interface 135 of the electric energy supply vehicle 30.
  • the personal charging gun 136 is connected to the charging interface 135, and the electric energy supply vehicle is charged.
  • the battery box 35 in the first charging and swapping cabinet 72 and the second charging and swapping cabinet 75 of 30 is charged.
  • the electric energy supply vehicle 30 arrives at the public charging pile 37 of the second charging base 38.
  • the driver 40 inserts the charging gun 137 of the public charging pile 37 into the charging interface 135 of the electric energy supply vehicle 30.
  • the public charging gun 137 is connected to the charging interface 135.
  • the battery boxes 35 in the first charging and exchanging cabinet 72 and the second charging and exchanging cabinet 75 of the electric energy supply vehicle 30 are charged.
  • the third threaded screw section 295, the fourth bracket 299 and the third threaded rod section 295 of the rear door system 146 are installed on the bottom plate 139 of the first side 142 of the rear door frame 149 of the electric energy supply vehicle 30.
  • the first electric motor 298 is installed on the sixth bracket 301 .
  • the third threaded screw section 295 penetrates the fifth nut 300, the fourth bracket 299 and the fifth bracket 297.
  • the upper end of the first strut 143 is hingedly connected to the upper part of the inner side of the rear door upper section 130; the lower end of the first strut 143 is connected to the fifth nut 300, and the lower end of the first air pressure rod 145 is hingedly connected to the upper end of the inner side of the rear door upper section 130. Connection; the upper end of the first air pressure rod 145 is hingedly connected to the upper part of the inner side of the rear door lower section 131.
  • the lower end of the second air pressure rod 144 is hingedly connected to the upper part of the inner surface of the rear door upper section 130; the upper end of the second air pressure rod 144 is hingedly connected to the upper part of the inner surface of the rear door lower section 131.
  • the upper ends of the first hinge 140 and the second hinge 141 are connected to the rear door frame 149 of the electric energy supply vehicle 30; the lower ends of the first hinge 140 and the second hinge 141 are connected to the upper section 130 of the rear door.
  • the first limit switch 294 and the second limit switch 296 of the rear door control system 303 are connected to the first programmable controller 188, and the first limit switch 294 and the second limit switch 296 are connected to the first electric motor 298.
  • An electric motor 298 is connected to the first programmable controller 188 .
  • the side door system 158 installed on the side 147 of the compartment of the electric energy supply vehicle 30 has a threaded screw rod 169, a lower end track 179, a first sliding door 132, a second sliding door 133, and A bracket 159, a second bracket 166 and a third bracket 167.
  • the third limit switch 176 and the fourth limit switch 180 are installed on the lower end track 179
  • the second motor 168 is installed on the third bracket 167 .
  • the first pulley 174 and the second pulley 175 are installed at the bottom of the first sliding door 132
  • the third pulley 177 and the fourth pulley 178 are installed at the bottom of the second sliding door 133 .
  • the first pulley 174 , the second pulley 175 , the third pulley 177 and the fourth pulley 178 slide on the lower end track 179 .
  • the first screw rod section 161 penetrates the first bracket 159, the first nut 160 and the second nut 162; the second screw rod section 164 penetrates the second bracket 166, the third nut 163 and the fourth nut 165.
  • the first nut 160 is connected to the first connecting block 170
  • the second nut 162 is connected to the second connecting block 171
  • the third nut 163 is connected to the third connecting block 172
  • the fourth nut 165 is connected to the fourth connecting block 173 .
  • the first connecting block 170 and the second connecting block 171 are connected to the first sliding door 132; the third connecting block 172 and the fourth connecting block 173 are connected to the second sliding door 133.
  • the first programmable controller 188 is connected to the third limit switch 176 and the fourth limit switch 180 of the side door control system 304, and the second electric motor 168 is connected to the third limit switch 176 and the fourth limit switch 180.
  • the second motor 168 is connected to the first programmable controller 188 .
  • the robot 78 mounted on the robot slider system 83 has a base 110 and a rotating body 112 that is supported to rotate relative to the base 110 about a vertical first axis 111 ;
  • the first arm 114 is supported so as to be rotatable about the second horizontal axis 113 relative to the rotating body 112;
  • the second arm 118 is supported so as to be rotatable about the third horizontal axis 115 relative to the first arm 114 rotation;
  • a first wrist element 119 that is supported to rotate relative to the second arm 118 about a fourth axis 116 orthogonal to the third axis 115;
  • a first wrist element 119 is rotatable about a fifth axis 117 orthogonal to the fourth axis 116;
  • a third wrist element 125 is supported relative to the second wrist element 120 so as to be rotatable about a fifth axis 117 orthogonal to the fourth axis 116.
  • the sixth axis 121 of the axis 117 rotates.
  • Each of the first to sixth axes is equipped with a servo motor and an encoder, and the motors installed on the first to sixth axes are collectively referred to as the robot drive motor 634 .
  • the robot drive motor 634 is used for rotational driving, and the encoder is used for detecting the rotation angle of the robot drive motor 634 .
  • the video sensor 631 mounted on the second wrist element 120 consists of a separately arranged first camera 122 and a second camera 126 .
  • a fill light 127 is installed on the second wrist element 120 .
  • the robot hand 200 mounted on the third wrist element 125 has fingers 124 that open and close to grasp or release the battery box 35; the fingers 124 are composed of a first gripping plate 201 and a second gripping plate 209.
  • the first slide rail 202, the second slide rail 207, the first fixed plate 214 and the second fixed plate 221 are installed on the first side 208 of the first main board 211 of the robot system 200, and the first fixed plate 221 is installed in the middle of the first load-bearing plate 220. Flange 213.
  • a first hollow groove 199 and a second hollow groove 210 are provided on the first main board 211 .
  • the first gripping plate 201 is installed vertically on the first slide rail 202, and the first gripping plate 201 slides on the first slide rail 202.
  • a second gripping plate 209 is installed vertically on the second slide rail 207, and the second gripping plate 209 slides on the second slide rail 207.
  • the first pressure sensor 222 is installed on the first gripping plate 201, and the second pressure sensor 247 is installed on the second gripping plate 209.
  • the seventh limit switch 219 and the eighth limit switch 206 are installed on the lower part of the first load-bearing plate 220 .
  • a third gripping plate 198 and a fourth gripping plate 212 are mounted vertically on the third side 217 .
  • a first fixed frame 203 is installed outside the first side 208, and a fourth motor 205 is installed on the first fixed frame 203.
  • the first output shaft 204 of the fourth motor 205 passes through the first fixed frame 203 and the first fixed frame 203 through a coupling.
  • the rotating rod 220 is connected.
  • the first screw rod section 218 is installed on the first rotating rod 220.
  • the first nut 216 is set on the first screw rod section 218.
  • the first connecting rod 215 is installed on the first nut 216.
  • the first connecting rod 218 is installed on the first rotating rod 220.
  • the rod 215 is connected to the first gripping plate 201 and the second gripping plate 209 .
  • the second programmable controller 224 of the manipulator control system 225 is connected to the seventh limit switch 219 and the eighth limit switch 206; the fourth motor 205 is connected to the seventh limit switch 219 and the eighth limit switch 206; the fourth The motor 205 is connected to the second programmable controller 224.
  • the first pressure sensor 222 and the second pressure sensor 247 are electrically connected to the second programmable controller 224 .
  • the robot slider system 83 installed on the electric energy supply vehicle 30 is equipped with a stopper 103, a guide rail 105, a coupling 108, a fifth limit switch 109, and a sixth limit switch 107. and a third electric motor 129.
  • the spiral guide rod 104 is installed on the guide rail 105, and the sliding base 106 is installed on the spiral guide rod 104.
  • the installation position of the fifth limit switch 109 is on a vertical line with the second operating position 71
  • the installation position of the sixth limit switch 107 is on a vertical line with the first operating position 74 .
  • the spiral guide rod 104 is connected to the coupling 108, the coupling 108 is connected to the third motor 129, and the first programmable controller 188 of the robot slider control system 226 is connected to the fifth limit switch 109 and the sixth limit switch 107.
  • the third motor 129 is connected to the fifth limit switch 109 and the sixth limit switch 107
  • the third motor 129 is connected to the first programmable controller 188 .
  • the first programmable controller 188 controls the third motor 129 to drive the robot 78 installed on the sliding base 106.
  • the third motor 129 Stop rotating, the robot 78 reaches the second working position 71; the robot 78 returns to the sixth limit switch 107 position along the first axis 82, the third motor 129 stops rotating, and the robot 78 returns to the first working position 74.
  • the first leg 84, the second leg 85, the third leg 86 and the fourth leg 87 of the electric energy supply vehicle 30 are all controlled by the first leveling control system 197 and the third leg. It consists of two double-acting multi-stage hydraulic cylinders 543 and 543.
  • the first leveling control system 197 has a first hydraulic pressure sensor 182, a first position sensor 183, a first length sensor 184, a first microwave distance sensor 185, a first tilt sensor 186, a second tilt sensor 187, A hydraulic servo controller 189, a second hydraulic servo controller 191, a third hydraulic servo controller 193 and a fourth hydraulic servo controller 195 are all connected to the first programmable logic controller 188 through data lines.
  • the first hydraulic servo controller 189 is connected to the first hydraulic valve group 190 through a data line; the second hydraulic servo controller 191 is connected to the second hydraulic valve group 192 through a data line; the third hydraulic servo controller 193 is connected to the third hydraulic valve group 190 through a data line.
  • the three hydraulic valve groups 194 are connected; the fourth hydraulic servo controller 195 is connected to the fourth hydraulic valve group 196 through a data line.
  • the first position sensor 183 detects the fully retracted state of the strut cylinder and feeds the data back to the first programmable logic controller 188 .
  • the first length measurement sensor 184 is installed on the top of the strut cylinder, detects the telescopic position distance of the strut cylinder, and feeds back the telescopic speed and position data of the strut cylinder to the first programmable logic controller 188 .
  • the first microwave ranging sensor 185 is installed on the top of the hydraulic pillar for detecting the distance from the pillar to the ground and feeding the data back to the first programmable logic controller 188 .
  • the first tilt sensor 186 and the second tilt sensor 187 are installed at the center of the chassis of the electric energy supply vehicle 30 for detecting tilt data in the X-axis direction and the Y-axis direction.
  • the action instructions to control the first leveling control system 197 are issued by the remote operator 7 through the remote operation console system 13 and uploaded to the first programmable logic controller 188 through the remote control system 2.
  • the first programmable logic controller 188 responds to the sensor
  • the feedback data and preset action instructions send control signals to the first hydraulic servo controller 189 , the second hydraulic servo controller 191 , the third hydraulic servo controller 193 and the fourth hydraulic servo controller 195 .
  • the first hydraulic servo controller 189 controls the action of the first hydraulic valve group 190 according to the control signal; thereby controlling the second double-acting multi-stage hydraulic cylinder 543 of the first leg 84 to complete the telescopic action to a designated position.
  • the second hydraulic servo controller 191 controls the action of the second hydraulic valve group 192 according to the control signal, thereby controlling the second double-acting multi-stage hydraulic cylinder 543 of the second leg 85 to complete the telescopic action to a designated position.
  • the third hydraulic servo controller 193 controls the action of the third hydraulic valve group 194 according to the control signal, thereby controlling the second double-acting multi-stage hydraulic cylinder 543 of the third leg 86 to complete the telescopic action to a designated position.
  • the fourth hydraulic servo controller 195 controls the action of the fourth hydraulic valve group 196 according to the control signal, thereby controlling the second double-acting multi-stage hydraulic cylinder 543 of the fourth leg 87 to complete the telescopic action to a designated position.
  • the leveling process of the third leg 86 and the fourth leg 87 is as follows: the action command of the first leveling control system 197 is issued by the remote operator 7 through the remote operation console system 13, and is uploaded to the first programmable leveling system through the remote control system 2.
  • the logic controller 188 starts the leveling operation.
  • the first leveling control system 197 controls the extension length of the pillar cylinder according to the calculated distance between the pillar and the ground.
  • the first length measurement sensor 184 detects the value of the extension length of the pillar cylinder accordingly until the pillar cylinder
  • the first hydraulic pressure sensor 182 detects that the pressure of the pillar cylinder reaches the preset value, indicating that the pillar cylinder has reached the top.
  • the system re-reads the corresponding detection of each first microwave distance sensor 185 and the first length sensor 184 to detect the extension of the pillar cylinder.
  • the length value is read at the same time.
  • the first tilt sensor 186 and the second tilt sensor 187 respectively detect the tilt state of the vehicle in the X-axis direction and the Y-axis direction.
  • the first leveling control system 197 calculates according to the preset model based on the feedback information from each sensor.
  • the tilt state of the electric vehicle chassis 497 is detected, and a leveling control plan is given according to the system settings, and each pillar is controlled to complete automatic leveling according to the leveling control plan.
  • the third fixing plate 251 and the fourth fixing plate 232 are installed on the lower part of the second main board 240 of the first battery box system 243 .
  • the third slide rail 250 is installed on the third fixed plate 251, and the fourth slide rail 258 is installed on the fourth fixed plate 232.
  • a third hollow groove 239 and a fourth hollow groove 248 are provided on the second main board 240 .
  • a fifth gripping plate 241 is installed vertically on the third slide rail 250, a first gripper 258 is provided on the fifth gripping plate 241, and the fifth gripping plate 241 slides on the third slide rail 250.
  • a sixth gripping plate 231 is installed vertically on the fourth slide rail 258, a second gripper 233 is provided on the sixth gripping plate 231, and the sixth gripping plate 231 slides on the fourth slide rail 258.
  • Install the eighth gripping plate 228, and set the fourth gripper 229 on the eighth gripping plate 228, the first gripper 258, the second gripper 233, the third gripper 246 and the fourth gripper 229 are all semicircular, which is convenient for fixing the battery box 35.
  • the fifth motor 235 is installed on the second fixed frame 236 installed on the fifth side 244.
  • the second output shaft 234 of the fifth motor 235 passes through the second fixed frame 236 and is connected to the second rotating rod 256 through a coupling.
  • a second connecting rod 255 is installed on the second nut 254, and the second connecting rod 255 is connected to the fifth gripping plate 241 and the sixth gripping plate 231.
  • a ninth limit switch 252 and a tenth limit switch 257 are installed on the lower part of the second load-bearing plate 249 .
  • the first programmable controller 188 installed on the smart trolley 30 is connected to the ninth limit switch 252 and the tenth limit switch 257 , and the ninth limit switch 252 and the tenth limit switch 257 are connected to the fifth motor 235 , the fifth motor 235 is connected to the first programmable controller 188 .
  • first battery box systems 243 are respectively fixed on the first support 237 with first screws 227 to form the first battery in the first charging and swapping cabinet 72.
  • the seventh of the battery box warehouse 305, the second battery box warehouse 307, the third battery box warehouse 309, the fourth battery box warehouse 311, the fifth battery box warehouse 313, the sixth battery box warehouse 315 and the second charging and swapping cabinet 75 The battery box compartment 306 , the eighth battery box compartment 308 , the ninth battery box compartment 310 , the tenth battery box compartment 312 , the eleventh battery box compartment 314 , and the twelfth battery box compartment 316 .
  • the first programmable controller 188 controls the first battery box control system 641 and the second battery box control system 641 of the first charging and swapping cabinet control system 632 composed of the first battery box control system 260 and the first battery box system 243
  • the control system 643, the third battery compartment control system 645, the fourth battery compartment control system 647, the fifth battery compartment control system 649, the sixth battery compartment control system 651 and the second charging and swapping cabinet control system 633 have The seventh battery compartment control system 642, the eighth battery compartment control system 644, the ninth battery compartment controller system 646, the tenth battery compartment control system 648, the eleventh battery compartment control system 650 and the tenth The action of the second battery compartment control system 652.
  • the magnetic plug-in dual-action connector system 278 has a plug 261 and a socket 262.
  • the plug 261 is installed on the electric vehicle chassis equipment, and the socket 262 is installed on the battery box 35.
  • the plug 261 has a plug housing 266, a plug shock-absorbing rubber ball 267, a first output port 268, a second output port 269, a third output port 270, a floating plug body 263, and a floating plug body front end 265; at the floating plug body front end 265
  • the first N-pole magnet cone positioner 264, the second N-pole magnet cone positioner 273, the first high-voltage positive plug connector 274, the first high-voltage negative plug connector 276, and the first ground plug connector 275 are installed on the , the first pin array 271 is set to 2 rows of 12 small current pins, the first cooling air inlet 272, and the first cooling air outlet 277.
  • the plug shock-absorbing rubber ball 267 is installed in the plug housing 266, between the plug housing 266 and the floating plug body 263.
  • the plug shock-absorbing rubber ball 267 is in close contact with the inner wall of the plug housing 266 and the outside of the floating plug body 263, and has Elasticity and cushioning.
  • the first output port 268 is a passage through which the connecting pipe of the first cooling air inlet 272 and the first cooling air outlet 277 enters the chassis of the electric vehicle; the second output port 269 is used to connect the first high-voltage positive electrode connector 274 and the first high-voltage negative electrode connector.
  • the wires of the connector 276 and the first ground connector 275 enter the passage of the electric vehicle chassis; the third output port 270 is the passage of the connecting wires of the first pin array 271 entering the electric vehicle chassis.
  • the socket 262 has a floating socket body 279, a socket housing 282, a fourth output port 283, a fifth output port 284, a sixth output port 285 and a socket shock-absorbing rubber ball 286.
  • the first S pole magnet floating inverted cone positioner 280, the second S pole magnet inverted cone positioner 287, the second high voltage positive connector 288, and the second high voltage are installed on the front end 281 of the floating socket body 279.
  • the negative connector 291 , the second ground connector 289 , and the second pin base 290 are configured as 2 rows of 12 small current jacks, a second cooling air inlet 292 , and a second cooling air outlet 293 .
  • the socket shock-absorbing rubber ball 286 is installed in the socket shell 282, between the socket shell 282 and the floating socket body 279.
  • the socket shock-absorbing rubber ball 286 is in close contact with the inner wall of the socket shell 282 and the outside of the floating socket body 279 and has Elasticity and cushioning.
  • the fourth output port 283 is a passage through which the connecting pipe of the second cooling air inlet 292 and the second cooling air outlet 293 enters the battery box 35;
  • the fifth output port 284 is used to connect the second high-voltage positive connector 288 and the second high-voltage negative connector
  • the wires of 291 enter the channel of the battery box 35;
  • the sixth output port 285 is the channel through which the connecting wire of the second pin base 290 enters the battery box 35.
  • signal lines, a control line protector 640 and a power surge protector 639 are installed on the lower part of the third main board 557.
  • the connection lines of the first pin array 271 are connected in series with the signal lines and the control line protector 640 .
  • the first high-voltage positive plug connector 274 , the first high-voltage negative plug connector 276 , and the first ground plug connector 275 are connected in parallel with the power supply surge protector 639 .
  • the battery box 35 moves toward the plug 261, and the socket 262 gradually approaches the plug 261. Due to the attraction of opposite sexes, the first N-pole magnet cone positioner 264 on the plug 261 is gradually inserted into the first S-pole magnet on the socket 262 to float the inverted cone. Inside the locator 280; because opposite sexes attract, the second N-pole magnet cone locator 273 on the plug 261 is gradually inserted into the inside of the second S-pole magnet inverted cone locator 287 on the socket 262.
  • the gas in the battery box 35 begins to circulate with the air cooling system inside the electric vehicle 41 .
  • the plug shock-absorbing rubber ball 267 and the socket shock-absorbing rubber ball 286 are used to resolve the vibration generated by the movement of the electric vehicle, which is transmitted to the battery box 35 and drives the floating socket body 279 to vibrate.
  • the main control unit 345 of the first wireless programmable controller 356 has a first memory 341 , a first processor 342 and a wireless communication unit 343 that are signally connected.
  • the main control unit 345 is connected with signals to the input and output unit 344, the Ethernet communication unit 349, the RS485 communication unit 350, the RS232 communication unit 351 and the CAN communication unit 352 respectively.
  • the main control unit 345 and the power supply unit 353 are connected.
  • the wireless communication unit 343 includes a radio frequency circuit for SMS and GPRS communication.
  • the wireless communication unit 343 is signally connected to the SIM card holder interface 346, the cellular wireless network antenna interface 347 and the WIFI antenna interface 348 respectively.
  • the cellular wireless network antenna interface 347 is signal-connected to the first antenna 354; the WIFI antenna interface 348 is signal-connected to the second antenna 355.
  • the first wireless programmable controller 356 directly builds a remote control system, with input collection, relay control, timer and serial port communication, GPRS, SMS and wireless data transmission radio communication functions.
  • the software has the ability to read input, execute programs, and process communications.
  • the five scan cycle processes of requesting and executing CPU self-diagnosis and writing output also have the functions of channel management, driver management, collection management and application management, and remote collection management.
  • a plurality of first battery box systems 243 are respectively fixed on the first support 237 with first screws 227 to form a third charging and swapping cabinet 31.
  • a second wireless programmable controller 361 is installed inside the third charging and swapping cabinet 31 .
  • the second wireless programmable controller 361 is composed of the functions of the first wireless programmable controller 356 .
  • the second wireless programmable controller 361 controls the thirteenth battery compartment control system 653, the fourteenth battery compartment control system 654, and the tenth battery compartment control system 654 of the third charging and swapping cabinet control system 362 composed of the first battery compartment system 243.
  • the second wireless programmable controller 361 is connected to the ninth limit switch 252 and the tenth limit switch 257 .
  • the ninth limit switch 252 and the tenth limit switch 257 are connected to the fifth motor 235 .
  • the fifth motor 235 is connected to the fifth limit switch 252 and the tenth limit switch 257 .
  • Two wireless programmable controllers 361 are connected.
  • the thirteenth battery compartment control system 653, the fourteenth battery compartment control system 654, the fifteenth battery compartment control system 655 and the sixteenth battery compartment control system 656 are simultaneously connected to the second wireless programmable controller 361 .
  • the third charging and swapping cabinet 31 has a box body 321, a door body 324, a top rainproof plate 317, and a second monitor 322.
  • a battery box compartment 329 is installed in the box 321 , and a thirteenth battery box compartment 357 , a fourteenth battery box compartment 358 , a fifteenth battery box compartment 359 and a sixteenth battery box compartment 360 are installed inside the battery box compartment 329 .
  • a compressor chamber 337 is installed on the upper part of the battery box chamber 329, a door 324 is installed on the front surface of the box 321, an insulation layer 323 is installed inside the box 321, and an air inlet 328 and an air outlet 327 are installed on the box 321.
  • the compressor The bin 337 is connected to the external space below the box 321 through the air inlet 328 and the air outlet 327 to dissipate heat from the compressor bin 337.
  • a condenser 333 and a compressor 334 are installed in the compressor bin 337; a side panel 331 is installed on the side panel 331.
  • the air inlet 330 and the side air outlet 336 are installed on the side panel 335.
  • the charging gun 137 of the public charging pile 37 is connected to the charging interface 318 of the third charging and swapping cabinet 31 .
  • the electric energy supply vehicle control system 45 includes a robot control system 618 and a remote operation console system 13 .
  • the robot control system 618 has a third memory 624 and a third processor 622.
  • the third memory 624 has ROM and RAM to store various data; the third processor 622 is a CPU or a GPU.
  • the third memory 624 and the third processor 622 are communicably connected via the fourth communication bus 623 .
  • the robot control system 618 controls the electric vehicle power exchange control system 600, the handling robot control system 442, the third charging and exchange cabinet control system 362, the robot drive system 630, the fill light 127, the manipulator control system 225, and the robot slider control system 226 , rear door control system 303, side door control system 304, first charging and swapping cabinet control system 632, second charging and swapping cabinet control system 633, first programmable controller 188, second programmable controller 224, Three programmable controllers 597, second wireless programmable controller 361, third wireless programmable controller 433, fourth wireless programmable controller 752, first leveling control system 197, second leveling control system 432, Third level control system 616 and fourth level control system 696 .
  • the remote console system 13 has a remote console 5 , a remote operator 7 and a remote customer service attendant 6 .
  • the input device 9 , the display device 10 , the second memory 11 (RAM, ROM), and the second processor 12 (CPU, GPU) included in the remote console 5 are communicatively connected through the third communication bus 8 .
  • the input device 9 has a keyboard with a plurality of operating keys and is used to receive input operations from the remote operator 7 .
  • the display device 10 displays data as images for an LCD display.
  • the remote console system 13 is communicably connected to the robot control system 618 through the remote control system 2 .
  • the second processor 12 of the remote console 5 accepts the input of the action program pre-generated by the remote operator 7 via the input device 9 and sends the input information of the action command to the action program storage system of the third memory 624 of the robot control system 618 625.
  • the action control system 629 sends the action instruction for driving the side door system 158 to the first programmable controller 188 of the side door control system 304 according to the action program pre-generated by the remote operator 7, hereinafter referred to as the "pre-generated action program".
  • the programmable controller 188 supplies power to the second motor 168 according to the action instructions.
  • the action control system 629 sends the action instruction for driving the rear door system 146 to the first programmable controller 188 of the rear door control system 303 according to the pre-generated action program.
  • the first programmable controller 188 controls the first electric motor 298 according to the action instruction. powered by.
  • the motion control system 629 sends the motion program instructions for driving the robot 78 to the robot drive system 630 according to the pre-generated motion program.
  • the robot drive system 630 has a circuit for driving the robot drive motor 634.
  • the robot drive system 630 drives the robot according to the motion instructions.
  • Electric motor 634 supplies power.
  • the action control system 629 sends the action instruction for driving the robot 200 to the second programmable controller 224 of the robot control system 225 according to the pre-generated action program, and the second programmable controller 224 supplies power to the fourth motor 205 according to the action instruction.
  • the action control system 629 sends the action instructions for driving the robot slider system 83 to the first programmable controller 188 of the robot slider control system 226 according to the pre-generated action program.
  • the first programmable controller 188 controls the third step according to the action instructions.
  • the motor 129 supplies power, and the robot slider system 83 configures the robot 78 in the first working position 74 or the second working position 71 .
  • a pre-generated action program is input to the robot control system 618 to perform the action of the robot 78.
  • the pre-generated action program is stored in the action program storage system 625 of the third memory 624.
  • the robot control system 618 delivers the battery according to the pre-generated action program. Box 35.
  • the robot 78 can automatically transport the battery box 35 to a predetermined position.
  • the action control system 629 sends an action instruction to drive the video sensor 631 to the video sensor 631 according to the pre-generated action program.
  • the action control system 629 drives the fill light according to the automatic fill-light program based on the image definition pre-generated by the remote operator 7
  • the fill light action command 127 is sent to the fill light 127 to fill the area collected by the video sensor 631 .
  • the acquisition system 628 included in the robot control system 618 processes the images captured by the first camera 122 and the second camera 126 .
  • the acquisition system 628 is capable of generating three-dimensional information of the battery box 35 through the stereoscopic method.
  • the three-dimensional information includes information on the position where the twelfth two-dimensional code 468 set on the first side of the battery box 35 is the first measurement point and the distance from the video sensor 631 to the first measurement point.
  • the acquisition system 628 calculates the distance to the first measurement point set for the battery box 35 based on the parallax of the two images captured by the first camera 122 and the second camera 126 .
  • the selection system 627 provided in the monitoring device 626 selects the target battery box 35 based on the three-dimensional information acquired from the image of the video sensor 631 .
  • the selection system 627 detects the position and posture of the battery box 35 based on the three-dimensional information, and selects the battery boxes 35 in order from high to low positions.
  • the selection system 627 sends the target position and target posture of the robot 78 to the motion control system 629 .
  • the robot 78 moves toward the target position and target posture and changes the position and posture.
  • the robot 200 opens the fingers 124 so that the battery box 35 is arranged between the fingers 124 .
  • the motion control system 629 changes the position and posture of the robot 78 to transport the battery box 35 to a desired position.
  • the remote operator 7 sets the robot slider coordinate system CT on the keyboard of the input device 9 so that its origin is located at the left end of the guide rail 105, its X-axis direction is consistent with the direction of the first axis 82, and its Y-axis direction is consistent with the direction of the first axis 82.
  • the direction of taking out and placing the battery box 35 inside the charging and swapping cabinet 72 is consistent, and its Z-axis direction is parallel to the vertical direction.
  • the remote operator 7 sets the robot coordinate system CR on the keyboard of the input device 9 so that its origin is located at the center of the base 110, its X-axis direction is consistent with the direction of the first axis 82, and its Y-axis direction is consistent with the direction of the first axis 82.
  • the direction of taking out and placing the battery box 35 inside the charging and swapping cabinet 72 is consistent, and its Z-axis direction is parallel to the vertical direction.
  • the robot slider coordinate system CT is set such that its origin is located at the left end of the guide rail 105, its X-axis direction is consistent with the direction of the first axis 82, its Y-axis direction is consistent with the Y-axis direction of the robot coordinate system CR, and its Z The axis direction is parallel to the vertical direction.
  • the first charging and swapping cabinet coordinate system C The Y-axis direction of C R is consistent, and its Z-axis direction is parallel to the vertical direction.
  • the second charging and swapping cabinet coordinate system C F is set such that its origin is located at the center of the top of the second charging and swapping cabinet 75 , its X-axis direction is consistent with the direction of the first axis 82 , and its Y-axis direction is consistent with the robot coordinate system
  • the Y-axis direction of C R is consistent, and its Z-axis direction is parallel to the vertical direction.
  • the coordinate system CK of the transfer robot 77 is set such that its origin is located at the center of the top of the transfer robot 77, its X-axis direction is consistent with the direction of the first axis 82, and its Y-axis direction is consistent with the Y-axis direction of the robot coordinate system CR , its Z-axis direction is parallel to the vertical direction.
  • the coordinate system CN of the second transfer robot 79 is set such that its origin is located at the center of the top of the second transfer robot 79, its X-axis direction is consistent with the direction of the first axis 82, and its Y-axis direction is consistent with the robot coordinate system CR The Y-axis direction is consistent, and the Z-axis direction is parallel to the vertical direction.
  • the robot slider 105 transports the robot 78 to a preselected first working position 74 in the direction of the first axis 82 .
  • the robot 78 is controlled based on the robot coordinate system CR.
  • the robot 78 is connected with the first battery compartment control system 641, the second battery compartment control system 643, the third battery compartment control system 645, the fourth battery compartment control system 647, the fifth battery compartment control system 649, and the sixth battery compartment control system.
  • the battery box 35 in the battery box warehouse control system 651 is taken out and put in in a coordinated manner in the Y-axis direction of the first charging and swapping cabinet coordinate system C E, and is sequentially completed in the first charging and swapping cabinet 72. Enter the battery box 35.
  • the robot slider 105 transports the robot 78 to a preselected first working position 74 in the direction of the first axis 82 .
  • the robot 78 is controlled based on the robot coordinate system CR.
  • the robot 78 is connected with the seventh battery compartment control system 642, the eighth battery compartment control system 644, and the ninth battery compartment controller system 646.
  • the tenth battery box control system 648, the eleventh battery box control system 650 and the battery box 35 in the twelfth battery box control system 652 are in the Y-axis direction of the second charging and swapping cabinet coordinate system C F
  • the operations of taking out and putting in the battery box 35 in the second charging and changing cabinet 75 are completed in sequence by coordinating the actions of taking out and putting in the battery box 35 .
  • the robot slider 105 transports the robot 78 to a preselected second working position 71 , and the second working position 71 is in the direction of the first axis 82 .
  • the robot 78 is controlled based on the robot coordinate system CR.
  • the robot 78 is connected with the thirteenth battery box control system 653, the fourteenth battery box control system 654, and the fifteenth battery box control system.
  • the battery box 35 in the system 655 and the sixteenth battery box warehouse control system 656 is coordinated with the actions of being taken out and put in in the X-axis direction of the coordinate system CH of the third charging and swapping cabinet, and sequentially completes the third charging process. The operation of taking out and putting the battery box 35 into the changing cabinet 30.
  • the handling robot control system 442 has a second leveling control system 432, an obstacle avoidance system 434, a magnetic navigation system 435, a walking mechanism control system 436, a visual navigation system 437, and a terminal platform rotation control system 438. and angle correction mechanism control system 439.
  • the transportation robot system 638 has a transportation robot walking system 637 , a transportation robot lifting system 636 and an angle correction system 635 .
  • the handling robot walking system 637, the handling robot lifting system 636 and the angle correction system 635 are installed on the handling robot chassis 384.
  • the second leveling control system 432, angle correction mechanism control system 439 and traveling mechanism control system 436 of the handling robot control system 442 are connected to the third wireless programmable controller 433.
  • the third wireless programmable controller 433 is composed of the functions of the first wireless programmable controller 356 .
  • the wireless carrier system 28 performs cellular communication through the first main antenna 54 via the cellular protocol with the first telematics unit 55 of the electric energy supply vehicle communication system 57 , which has a first cellular chipset 47
  • the communication bus 56 is connected to the data acquisition device 621 of the robot control system 618 .
  • the first short-range wireless communication (SRWC) circuit 46 is connected to the wireless communication unit 343 through the second antenna 355 of the handling robot 77 via the first SRWC antenna 53 .
  • the electric energy supply vehicle communication system 57 outputs the received sensor signal to the data acquisition device 621 , and the data acquisition device 621 stores the acquired sensor signal in the third memory 624 .
  • the motion control system 629 performs feedback control based on the signal from the position detector of each rotary encoder included in the transport robot control system 442, so that the rotation of each robot drive motor 634 of the robot 78 is consistent with the instructions of the motion program, and cooperates with the transport Operations of the robot control system 442.
  • the remote operator 7 issues movement instructions to control the handling robot control system 442 through the remote operation console system 13, and uploads them to the movement control system 629 of the robot control system 618 through the remote control system 2.
  • the movement control system 629 outputs according to the pre-generated movement program.
  • the driving instructions are sent to the third wireless programmable controller 433, and the third wireless programmable controller 433 controls the handling robot 77 to execute various programs.
  • the third wireless programmable controller 433 is connected to the signal preprocessor 449 , the signal preprocessor 449 is connected to the electronic differential controller 450 , and the electronic differential controller 450 is connected to the first motor controller 390 and the second motor controller 391 , the third motor controller 404 and the fourth motor controller 402 are connected.
  • the first drive motor 389 is connected to and controlled by the first motor controller 390; the second drive motor 392 is connected to and controlled by the second motor controller 391; the third drive motor 403 is connected to and controlled by the third motor controller 404. Controlled by it; the fourth drive motor 407 is connected to and controlled by the fourth motor controller 402.
  • the first drive motor 389 is connected to and directly drives the first wheel 382
  • the second drive motor 392 is connected to and directly drives the second wheel 386
  • the third drive motor 403 is connected to and directly drives the third wheel 385
  • the fourth drive motor 407 Connected to and directly driven by the fourth wheel 388
  • the battery 401 is connected to the third wireless programmable controller 433 through the start switch 405, and the start switch 405 controls the battery 401 to be on and off.
  • the battery charging port 406 is connected to the battery 401.
  • the obstacle avoidance system 434 has an ultrasonic ranging sensor 395 and a laser ranging sensor 396 .
  • the ultrasonic ranging sensor 395 is divided into two channels with a total of 8 ultrasonic probes, and is connected to the third wireless programmable controller 433 through the RS485 communication unit 350.
  • the laser ranging sensor 396 is connected to the CAN communication unit 352 of the third wireless programmable controller 433 through four sensors in series.
  • the third camera 394 and the fourth camera 398 of the visual navigation system 437 are electrically connected to the image sensor 393 , and the image sensor 393 is electrically connected to the third wireless programmable controller 433 .
  • the magnetic navigation sensor 397 of the magnetic navigation system 435 is electrically connected to the third wireless programmable controller 433 .
  • the lifting system 636 of the handling robot controlled by the second leveling control system 432 is composed of a plurality of first double-acting multi-stage hydraulic cylinders 431 installed on the four corners of the second bottom plate 377.
  • the first double-acting multi-stage hydraulic cylinders 431 are installed on the four corners of the second bottom plate 377.
  • There are four hydraulic cylinders 431, that is, the first lifting column 383, the second lifting column 376, the third lifting column 387 and the fourth lifting column 373 are all controlled by the second leveling control system 432 and the first double-acting It is composed of multi-stage hydraulic cylinder 431.
  • the supporting plate 363 is installed on the top of the first lifting column 383 , the second lifting column 376 , the third lifting column 387 and the fourth lifting column 373 .
  • the second leveling control system 432 has a second hydraulic pressure sensor 429, a second position sensor 408, a second length measurement sensor 419, a second microwave distance measurement sensor 420, a third tilt sensor 399, a fourth tilt sensor 400, and a second hydraulic pressure sensor 429.
  • the fifth hydraulic servo controller 440, the sixth hydraulic servo controller 443, the seventh hydraulic servo controller 445 and the eighth hydraulic servo controller 447 are respectively connected to the third wireless programmable controller 433 through data lines.
  • the fifth hydraulic servo controller 440 is connected to the fifth hydraulic valve group 441 through a data line; the sixth hydraulic servo controller 443 is connected to the sixth hydraulic valve group 444 through a data line; the seventh hydraulic servo controller 445 is connected to the sixth hydraulic valve group 444 through a data line.
  • the seven hydraulic valve groups 446 are connected; the eighth hydraulic servo controller 447 is connected to the eighth hydraulic valve group 448 through a data line.
  • the servo motor 374 is installed on the seventh bracket 378, and the encoder 375 is installed on the shaft of the servo motor 374.
  • the shaft of the pinion 369 passes through the inner ring of the bearing 370 and is connected to the output shaft of the servo motor 374 through the coupling 302 .
  • the ball bearing is sleeved on the outer wall of the connecting ring 367.
  • the positioning gear 365 is installed on the ball bearing.
  • the rotating positioning block 366 and the battery tray 380 are installed on the positioning gear 365.
  • the fifteenth QR code is installed on the battery tray 380. 663 and positioning blocks 604.
  • the pinion gear 369 meshes with the positioning gear 365.
  • the servo motor controller 372 is installed on the second base plate 377, and the second base plate 377 is fixed to the truck chassis 384 through the installation opening 371 with screws.
  • the twenty-first limit switch 364 and the twenty-second limit switch 368 are on a straight line with the center point of the support plate 363 .
  • the third wireless programmable controller 433 of the angle correction control system 439 is connected to the servo motor controller 372, the servo motor controller 372 is connected to the servo motor 374, the servo motor 374 is connected to the encoder 375, and the encoder 375 is connected to the third wireless programmable controller 433.
  • Programmable controller 433 is connected.
  • the twenty-first limit switch 364 and the twenty-second limit switch 368 are connected to the third wireless programmable controller 433 .
  • the angle correction control system 439 knows how many pulses it has sent to the servo motor 374 and how many pulses it has recovered at the same time.
  • the rotation of motor 374 achieves positioning.
  • the encoder 375 is used to detect the rotation angle of the shaft of the servo motor 374.
  • the encoder 375 transmits the detected angle value to the third wireless programmable controller 433.
  • the third wireless programmable controller 433 is based on the angle value detected by the encoder 375.
  • the angle value and rotation time are used to calculate the rotation speed.
  • the servo motor 374 drives the positioning gear 365 to rotate 90° counterclockwise to the twenty-first limit switch 364 position.
  • the rotating positioning block 366 touches the twenty-first limit switch 364 and the servo motor 374 stops rotating.
  • the servo motor 374 drives the positioning gear 365 to rotate 90° clockwise to the 22nd limit switch 368 position, and the rotating positioning block 366 touches the 22nd limit switch 368 and the servo motor 374 stops rotating.
  • the eleventh motor 549 and the rotating shaft 605 are installed on the support plate 363.
  • the terminal platform 381 is installed on the rotating shaft 605.
  • the third camera 394, the fourth camera 398, the ultrasonic ranging sensor 395 and the laser ranging sensor are installed on the terminal platform 381.
  • a nineteenth limit switch 547 and a twentieth limit switch 548 are installed on the support plate 363 .
  • the remote operator 7 sets the correct corresponding angle between the battery tray 380 and the vehicle-mounted battery box replacement system 564 on the robot control system 618.
  • the robot control system 618 uses the third wireless
  • the programming controller 433 sends a control signal to the servo motor controller 372.
  • the servo motor controller 372 controls the servo motor 374 to generate a specific torque and controls the rotation angle of the battery tray 380 so that the battery tray 380 returns to the correct corresponding angle with the battery replacement box. .
  • the rotation angle of the encoder 375 is read, and the rotation angle detected by the encoder 375 is compared with the set rotation angle to ensure the accuracy of the rotation angle of the battery tray 380 .
  • the first double-acting multi-stage hydraulic cylinder 431 is an N-stage hydraulic cylinder N ⁇ 2.
  • the present invention is a three-stage cylinder.
  • the hydraulic oil enters the first stage from the second oil port 427.
  • the cylinder jacking oil chamber 426 first jacks up the primary cylinder piston 410, and then the hydraulic oil passes through the secondary cylinder jacking oil chamber oil passage 425 and enters the secondary cylinder jacking oil chamber 424 to jack up the secondary cylinder piston 414. Then, it enters the three-stage cylinder lifting oil chamber 422 through the oil passage 423 of the three-stage cylinder lifting oil chamber to push up the three-stage cylinder piston 421.
  • the remaining oil in the contraction oil chambers of each stage enters the central oil pipe through the contraction oil chamber oil passage. Outflow is from the first oil port 409.
  • the hydraulic oil enters the central oil pipes of each stage from the first oil port 409, passes through the first-stage cylinder contraction oil chamber oil passage 411, enters the first-stage cylinder contraction oil chamber 412, and compresses the first-stage cylinder piston 410 downward.
  • it enters the secondary cylinder contraction oil chamber 416 through the secondary cylinder contraction oil chamber oil passage 415 to compress the secondary cylinder piston 414 downward, and then enters the third-stage cylinder contraction oil chamber 418 through the third-stage cylinder contraction oil chamber oil passage 417 to compress the third-stage cylinder contraction oil chamber 418.
  • the stage cylinder piston 421 compresses downward, and the remaining oil in the jacking oil chambers of each stage flows out of the second oil port 427 through the oil passages in the jacking oil chambers.
  • the second hydraulic pressure sensor 429 is installed on the first base 430 at the bottom end of the pillar, and feeds back the data on the stress condition of the pillar cylinder to the third wireless programmable controller 433 .
  • the second position sensor 408 is installed on the first base 430 at the bottom of the pillar, detects the fully retracted state of the pillar cylinder and feeds the data back to the third wireless programmable controller 433 .
  • the second length measurement sensor 419 is installed on the top of the strut cylinder, detects the telescopic position distance of the strut cylinder, and feeds back the telescopic speed and position data of the strut cylinder to the third wireless programmable controller 433 .
  • the second microwave ranging sensor 420 is installed on the top of the hydraulic pillar for detecting the distance from the pillar to the bottom of the pillar and feeding the data back to the third wireless programmable controller 433 .
  • the third tilt sensor 399 and the fourth tilt sensor 400 are installed at the center of the top mounting support plate 363 for detecting tilt data of the top mounting support plate 363 in the X-axis direction and the Y-axis direction.
  • the electric vehicle battery replacement control system 600 consists of an electric vehicle communication system 63, a third programmable controller 597, a battery box replacement control system 598, a vehicle-mounted battery box replacement system 564, a second rotating
  • the control system 599 is composed of the second rotation control system 601, the third rotation control system 602, the fourth rotation control system 603 and the third leveling control system 616.
  • the electric vehicle communication system 63 has a second telematics unit 61 , a second global navigation satellite system receiver 68 and a second vehicle-mounted computer 69 that are communicatively connected through a second communication bus 62 .
  • the second communication bus 62 provides network connectivity to the electric vehicle communication system 63 using a network protocol.
  • Second GNSS receiver 68 receives radio signals from GNSS 24 .
  • the second GNSS receiver 68 may be configured for use with various GNSS systems.
  • the second telematics unit 61 has a second cellular chipset 64 , a second short range wireless communication (SRWC) circuit 65 , a second processor 66 , a second memory 67 , a second main antenna 59 and a second SRWC antenna 60 .
  • SRWC short range wireless communication
  • the second main antenna 59 is connected to the second cellular chipset 64 .
  • the second SRWC antenna 60 is connected to a second short range wireless communication (SRWC) circuit 65 .
  • the second telematics unit 61 is configured to perform wireless communication according to the second short range wireless communication (SRWC) circuit 65, Wi-Fi TM, WiMAX TM, Wi-Fi TM Direct, other IEEE 802.11 protocols, ZigBee TM, Bluetooth TM , any one of Bluetooth TM.
  • the second processor 66 is a device that processes electronic instructions and has a microprocessor, a microcontroller, a main processor, a controller, a vehicle communication processor, and an application specific integrated circuit (ASIC).
  • ASIC application specific integrated circuit
  • the second communication bus 62 is communicably connected to the third programmable controller 597 installed on the electric vehicle 41 .
  • the wireless carrier system 28 performs cellular communication via the second main antenna 59 via a cellular protocol with the second cellular chipset 64 included in the second telematics unit 61 of the electric vehicle communication system 63 .
  • the electric vehicle outrigger lifting system 573 has a first lifter 472 , a second lifter 491 , a third lifter 505 and a fourth lifter 516 .
  • the first lifter 472 is composed as follows: an eighth bracket 477 is installed on the electric vehicle chassis 497, a seventh electric motor 476, a first universal gear 478 and a second universal gear 479 are installed on the eighth bracket 477.
  • the gear 478 meshes with the second universal gear 479.
  • the first leg 475 is installed on the first rotating rod 473 of the second universal gear 479.
  • the first dust cover 474 is installed on the first leg 475.
  • the seventh The output shaft of the electric motor 476 passes through the eighth bracket 477 through a coupling and is connected to the first universal gear 478.
  • An eleventh limit switch 480 and a twelfth limit switch 481 are installed on the electric vehicle chassis 497.
  • the third programmable controller 597 of the first rotation control system 599 is connected to the eleventh limit switch 480 and the twelfth limit switch 481, and the seventh electric motor 476 is connected to the eleventh limit switch 480 and the twelfth limit switch.
  • the switch 481 is connected, and the seventh motor 476 is connected to the third programmable controller 597 .
  • the third programmable controller 597 controls the seventh motor 476 to start, the seventh motor 476 drives the first universal gear 478 to rotate, the first universal gear 478 drives the second universal gear 479 to rotate, and the second universal gear 479 rotates. 479 drives the first rotating rod 473 to rotate, and the first rotating rod 473 drives the first leg 475 to rotate.
  • the second lifter 491 is composed as follows: a ninth bracket 488 is installed on the electric vehicle chassis 497, and an eighth electric motor 489, a third universal gear 485 and a fourth universal gear 487 are installed on the ninth bracket 488.
  • the third universal gear 485 meshes with the fourth universal gear 487.
  • the second leg 490 is installed on the second rotating rod 484 of the third universal gear 485, and the second dust cover 483 is installed on the second leg 490.
  • the output shaft of the eighth electric motor 489 is connected to the fourth universal gear 487 through a coupling through the ninth bracket 488, and a thirteenth limit switch 492 and a fourteenth limit switch 493 are installed on the electric vehicle chassis 497.
  • the third programmable controller 597 of the second leg lifting control system 601 is connected to the thirteenth limit switch 492 and the fourteenth limit switch 493.
  • the thirteenth limit switch 492 and the fourteenth limit switch 493 are connected to
  • the eighth motor 489 is connected, and the eighth motor 489 is connected to the third programmable controller 597 .
  • the third programmable controller 597 controls the eighth motor 489 to start, the eighth motor 489 drives the fourth universal gear 487 to rotate, the fourth universal gear 487 drives the third universal gear 485 to rotate, and the third universal gear 485 drives the second rotating rod 484 to rotate, and the second rotating rod 484 drives the second leg 490 to rotate.
  • the third lifter 505 is composed as follows: a tenth bracket 500 is installed on the electric vehicle chassis 497, and a ninth electric motor 501, a fifth universal gear 498 and a sixth universal gear 499 are installed on the tenth bracket 500.
  • the fifth universal gear 498 meshes with the sixth universal gear 499.
  • a third leg 502 is installed on the third rotating rod 504 of the fifth universal gear 498, and a third dust cover is installed on the third leg 502. 503.
  • the output shaft of the ninth electric motor 501 passes through the tenth bracket 500 through a coupling and is connected to the sixth universal gear 499.
  • the fifteenth limit switch 506 and the sixteenth limit switch 507 are installed on the electric vehicle chassis 497. .
  • the third programmable controller 597 of the third leg lifting control system 602 is connected to the fifteenth limit switch 506 and the sixteenth limit switch 507, and the fifteenth limit switch 506 and the sixteenth limit switch 507 are connected to
  • the ninth motor 501 is connected, and the ninth motor 501 is connected to the third programmable controller 597 .
  • the third programmable controller 597 controls the ninth motor 501 to start, the ninth motor 501 drives the sixth universal gear 499 to rotate, the sixth universal gear 499 drives the fifth universal gear 498 to rotate, and the fifth universal gear 498 rotates. 498 drives the third rotating rod 504 to rotate, and the third rotating rod 504 drives the third leg 502 to rotate.
  • the fourth lifter 516 is composed as follows: an eleventh bracket 510 is installed on the electric vehicle chassis 497, and a tenth electric motor 509, a seventh universal gear 511 and an eighth universal gear 512 are installed on the eleventh bracket 510.
  • the directional gear 511 meshes with the eighth universal gear 512
  • the fourth leg 515 is installed on the fourth rotating rod 513 of the eighth universal gear 512
  • the fourth dust cover 514 is installed on the fourth leg 515.
  • the output shaft of the electric motor 509 passes through the eleventh bracket 510 through a coupling and is connected to the seventh universal gear 511.
  • the seventeenth limit switch 544 and the eighteenth limit switch 545 are installed on the electric vehicle chassis 497.
  • the third programmable controller 597 of the fourth leg lifting control system 603 is connected to the seventeenth limit switch 544 and the eighteenth limit switch 545.
  • the seventeenth limit switch 544 and the eighteenth limit switch 545 are connected to the tenth limit switch 544 and the eighteenth limit switch 545.
  • the electric motor 509 is connected, and the tenth electric motor 509 is connected with the third programmable controller 597.
  • the third programmable controller 597 controls the tenth motor 509 to start, the tenth motor 509 drives the seventh universal gear 511 to rotate, the seventh universal gear 511 drives the eighth universal gear 512 to rotate, and the eighth universal gear 512 rotates.
  • the third programmable controller 597 controls the seventh motor 476, the eighth motor 489, the ninth motor 501 and the tenth motor 509 to start at the same time.
  • the first telescopic leg 482 is installed in the first leg 475 of the electric vehicle leg lifting system 573, the second telescopic leg 494 is installed in the second leg 490, and the third telescopic leg 508 is installed in the third leg 502.
  • a fourth telescopic leg 546 is installed inside the fourth leg 515 .
  • the first telescopic leg 482, the second telescopic leg 494, the third telescopic leg 508 and the fourth telescopic leg 546 are all composed of a third leveling control system 616 and a second double-acting multi-stage hydraulic cylinder 543.
  • the third leveling control system 616 includes a second hydraulic pressure sensor 528, a second position sensor 530, a second length sensor 533, a second microwave distance sensor 525, a third tilt sensor 495, a fourth tilt sensor 496, a fifth
  • the hydraulic servo controller 608, the sixth hydraulic servo controller 610, the seventh hydraulic servo controller 612 and the eighth hydraulic servo controller 614 are all connected to the third programmable logic controller 597 through data lines respectively.
  • the fifth hydraulic servo controller 608 is connected to the fifth hydraulic valve group 609 through a data line; the sixth hydraulic servo controller 610 is connected to the sixth hydraulic valve group 611 through a data line; the seventh hydraulic servo controller 612 is connected to the sixth hydraulic valve group 611 through a data line.
  • the seven hydraulic valve groups 613 are connected; the eighth hydraulic servo controller 614 is connected to the eighth hydraulic valve group 615 through a data line.
  • the second double-acting multi-stage hydraulic cylinder 543 is an N-stage hydraulic cylinder N ⁇ 2.
  • the present invention is a three-stage cylinder.
  • the hydraulic oil enters the third oil port 526 from the third oil port 526.
  • the second-stage cylinder piston 534 is pushed downward, and then the hydraulic oil enters the second-stage cylinder lift oil chamber 522 through the oil passage 523 of the second-stage cylinder lift oil chamber.
  • the cylinder piston 534 compresses upward, and then passes through the second-stage cylinder contraction oil chamber oil passage 539 and enters the second-stage cylinder contraction oil chamber 540 to compress the second-stage cylinder piston 538 upward, and then passes through the second three-stage cylinder contraction oil chamber.
  • the oil passage 541 enters the contraction oil chamber 518 of the second and third-stage cylinder to compress the piston 519 of the second and third-stage cylinder upward.
  • the remaining oil in the lifting oil chambers of each stage flows out of the third oil port 526 through the oil passage of the lifting oil chamber.
  • the second hydraulic pressure sensor 528 installed at the lower part of the second base 535 of the second double-acting multi-stage hydraulic cylinder 543 feeds back the data of its stress condition to the third programmable logic controller 597; the second hydraulic pressure sensor 528 installed at the lower part of the second base 535
  • the second position sensor 530 detects the fully retracted state of the strut cylinder and feeds the data back to the third programmable logic controller 597 .
  • the second length measurement sensor 533 is installed on the top of the strut cylinder, detects the telescopic position distance of the strut cylinder, and feeds back the telescopic speed and position data of the strut cylinder to the third programmable logic controller 597 .
  • the second microwave ranging sensor 525 is installed on the top of the hydraulic pillar for detecting the distance from the pillar to the ground and feeding the data back to the third programmable logic controller 597 .
  • the third tilt sensor 495 and the fourth tilt sensor 496 are installed at the center of the electric vehicle chassis 497 for detecting tilt data of the bracket plate 384 in the X-axis direction and the Y-axis direction.
  • a concave base 542 is installed on the spherical end 517 of the telescopic leg.
  • the first QR code 456, the second QR code 455, the third QR code 463 and the fourth QR code are installed on the front, rear, left and right sides of the electric vehicle chassis 497.
  • the fifth QR code 465, the sixth QR code 461, the seventh QR code 462, the eighth QR code 466 and the ninth QR code are installed on the front, rear, left, right and middle of the bottom of the electric vehicle chassis 497 464; Install the eleventh QR code 467 on the top of the battery box 35, the twelfth QR code 468 on the first side, and the thirteenth QR code 469 on the bottom of the battery box 35.
  • the above-mentioned QR codes are composed of the upper QR code 470 and the lower navigation magnetic pin 471.
  • Each QR code contains an independent piece of information.
  • the visual navigation system 437 dynamically reads the information contained in the QR code to obtain the position information of the handling robot 77 at this time. It is decided whether the transport robot 77 will move forward or stop.
  • the twelfth QR code 468 installed on the first side of the battery box 35 is set as the first measurement point
  • the eleventh QR code 467 installed on the top of the battery box 35 is set as the second measurement point, which is installed at the bottom of the battery box 35
  • the thirteenth QR code 469 is the third measurement point.
  • the fifth slide rail front end fixing plate 574 , the sixth slide rail front end fixing plate 582 , and the fifth slide rail front end fixing plate 574 are installed at the lower part of the third main board 557 of the vehicle-mounted battery box replacement system 564 of the battery box replacement control system 598 .
  • Slide rail 575 and sixth slide rail 583. Install the second flange 553 on the third load-bearing plate 558, and use the second screws 554 to fix the second flange 553 on the electric vehicle chassis 497. Use the third screw 555 to fix other parts of the vehicle-mounted battery box replacement system 564 on the electric vehicle chassis 497.
  • a fifth hollow groove 568 and a sixth hollow groove 572 are provided on the third main plate 557 .
  • a ninth gripping plate 569 is installed vertically on the fifth slide rail 575 , a fifth gripper 570 is provided on the ninth gripping plate 569 , and the ninth gripping plate 569 slides on the fifth slide rail 575 .
  • a tenth gripping plate 571 is installed vertically on the sixth slide rail 583 , a sixth gripper 559 is provided on the tenth gripping plate 571 , and the tenth gripping plate 571 slides on the sixth slide rail 583 .
  • a nineteenth limit switch 579 and a twentieth limit switch 581 are installed on the lower part of the third load-bearing plate 558 .
  • the fifth grabber 570 , the sixth grabber 559 , the seventh grabber 567 and the eighth grabber 552 are semicircular, which facilitates fixing the grabbed battery box 35 .
  • a second fixed frame 563 is installed outside the ninth side 565, and a sixth motor 562 is installed on the second fixed frame 563.
  • the third output shaft 561 of the sixth motor 562 passes through the second fixed frame 563 and the third fixed frame 563 through a coupling.
  • the rotating rod 580 is connected, the third screw rod section 577 is installed on the third rotating rod 580, the third nut 578 is set on the third screw rod section 577, and the third connecting rod 576 is installed on the third nut 578.
  • the connecting rod 576 is connected to the ninth gripping plate 569 and the tenth gripping plate 571 .
  • the third programmable controller 597 is connected to the nineteenth limit switch 579 and the twentieth limit switch 581.
  • the sixth motor 562 is connected to the nineteenth limit switch 579 and the twentieth limit switch 581.
  • the sixth motor 562 is connected to the nineteenth limit switch 579 and the twentieth limit switch 581. 562 is connected to the third programmable controller 597.
  • the vision sensor 631 will capture the first working point 591 of the first working area 593 to the third working point 586 and the fourth working point 584 of the second working area 588.
  • the optical images around the second working point 592 to the fifth working point 607 of the third working area 590 and the second working point 592 of the first working area 593 to the sixth working point 596 of the fourth working area 594 are sent to the monitoring device 626 .
  • the third processor 622 generates digital panoramic image navigation information in the preset area based on the video image information received through the third memory 624 and the monitoring device 626 based on the video image splicing algorithm, and sets the first path 585 and the second path 587 , the third path 589 and the fourth path 595 are navigation routes.
  • the remote operator 7 stores the above paths in the action program storage system 625 and sends them to the third wireless programmable controller 433.
  • the signal preprocessor 449 receives the third path.
  • the processor 622 generates digital panoramic image navigation information within the preset area, sets the navigation route, and calculates the desired driving torque and critical vehicle speed.
  • the electronic differential controller 450 receives the desired driving torque, the critical vehicle speed from the signal preprocessor 449, and the wheel speed signals of the first speed sensor 451, the second speed sensor 452, the third speed sensor 453 and the fourth speed sensor 454. , calculate the driving torque of each wheel according to the steering driving conditions.
  • the electronic differential controller 450 sends the torque control target signal to the first motor controller 390 , the second motor controller 391 , the third motor controller 404 and the fourth motor controller 402 .
  • the second electric vehicle battery swap control system 731 of the second electric vehicle 780 to be swapped is referred to as the second electric vehicle communication system 729, hereinafter referred to as the second communication system 729.
  • a fourth programmable controller 695, a second battery box replacement control system 697, a second vehicle battery box replacement system 617 and a fourth leveling control system 696 is referred to as the second electric vehicle communication system 729.
  • the third telematics unit 728 , the third global navigation satellite system receiver 719 and the third vehicle-mounted computer 720 provided by the second communication system 729 are communicatively connected through the third communication bus 718 .
  • the third communication bus 718 provides network connectivity to the second communication system 729 using network protocols.
  • Third GNSS receiver 719 receives radio signals from GNSS 24 .
  • the third GNSS receiver 719 may be configured for use with various GNSS systems.
  • the third telematics unit 728 has a third cellular chipset 722 , a third short range wireless communication (SRWC) circuit 723 , a third processor 724 , a third memory 725 , a third main antenna 726 and a third SRWC antenna 727 .
  • SRWC short range wireless communication
  • the third main antenna 726 is connected to the third cellular chipset 722 .
  • the third SRWC antenna 727 is connected to a third short range wireless communication (SRWC) circuit 723 .
  • the third telematics unit 728 is configured to perform wireless communication according to the third short range wireless communication (SRWC) circuit 723, Wi-Fi TM, WiMAX TM, Wi-Fi TM Direct, other IEEE 802.11 protocols, ZigBee TM, Bluetooth TM , any one of Bluetooth TM.
  • the third processor 724 is a device that processes electronic instructions and has a microprocessor, a microcontroller, a main processor, a controller, a vehicle communication processor, and an application specific integrated circuit (ASIC).
  • ASIC application specific integrated circuit
  • the third communication bus 718 is communicably connected to the fourth programmable controller 695 installed on the electric vehicle 41 .
  • the third cellular chipset 722 included in the third telematics unit 728 of the wireless carrier system 28 and the second communication system 729 performs cellular communications via a third main antenna 726 via a cellular protocol.
  • the seventh slide rail front end fixing plate 672 and the eighth slide rail front end fixing plate are installed on the fourth main board 692 of the second vehicle-mounted battery box replacement system 617 included in the second battery box replacement control system 697 679, seventh slide rail 668 and eighth slide rail 684.
  • the third flange 691 is installed on the fourth load-bearing plate 683, and the fourth flange 703 is installed on the second support plate 699.
  • a seventh hollow groove 665 and an eighth hollow groove 674 are provided on the fourth main plate 692 .
  • a thirteenth gripping plate 667 is installed vertically on the seventh slide rail 668, a ninth gripper 693 is provided on the thirteenth gripping plate 667, and the thirteenth gripping plate 667 slides on the seventh slide rail 668.
  • a fourteenth gripping plate 685 is installed vertically on the eighth slide rail 684, a tenth gripper 663 is provided on the fourteenth gripping plate 685, and the fourteenth gripping plate 685 slides on the eighth slide rail 684.
  • the twenty-first limit switch 680 and the twenty-second limit switch 681 are installed on the lower part of the fourth load-bearing plate 683 .
  • a sixteenth gripping plate 673 is installed vertically on the five side surfaces 664, and a twelfth gripper 682 is provided on the sixteenth gripping plate 673.
  • the ninth gripper 693 , the tenth gripper 663 , the eleventh gripper 670 and the twelfth gripper 682 are semicircular to facilitate fixing the captured battery box 35 .
  • a third fixed frame 690 is installed outside the twelfth side 689, and a seventh motor 688 is installed on the third fixed frame 690.
  • the fourth output shaft 687 of the seventh motor 688 passes through the third fixed frame 690 and the third fixed frame 690 through a coupling.
  • the four rotating rods 678 are connected, the fourth screw rod section 675 is installed on the fourth rotating rod 678, the sixth nut 676 is set on the fourth screw rod section 675, and the fourth connecting rod 677 is installed on the sixth nut 676.
  • the four connecting rods 677 are connected to the thirteenth gripping plate 667 and the fourteenth gripping plate 685.
  • Use the fifth screw 716 to fix the third bottom plate 707 on the front compartment chassis 730 of the electric vehicle 37.
  • the driving motor 607 is connected to the plug 261.
  • the fourth programmable controller 695 of the second battery box replacement control system 697 is connected to the twenty-first limit switch 680 and the twenty-second limit switch 681.
  • the twenty-first limit switch 680 and The twenty-second limit switch 681 is connected to the seventh motor 688, and the seventh motor 688 is connected to the fourth programmable controller 695.
  • the handling robot lifting system 700 controlled by the fourth leveling control system 696 consists of a plurality of first double-acting multi-stage hydraulic cylinders 431 installed on the four corners of the third bottom plate 707.
  • the fourth leveling control system 696 is composed of the second leveling control system 432 and the first double-acting multi-stage hydraulic cylinder 431 .
  • the second supporting plate 699 is installed on the top of the fifth lifting column 706 , the sixth lifting column 713 , the seventh lifting column 705 and the forty-eighth lifting column 712 .
  • the second leveling control system 432 has a second hydraulic pressure sensor 429, a second position sensor 408, a second length measurement sensor 419, a second microwave distance measurement sensor 420, a third tilt sensor 399, a fourth tilt sensor 400, and a second hydraulic pressure sensor 429.
  • the fifth hydraulic servo controller 440, the sixth hydraulic servo controller 443, the seventh hydraulic servo controller 445 and the eighth hydraulic servo controller 447 are respectively connected to the third wireless programmable controller 433 through data lines.
  • the fifth hydraulic servo controller 440 is connected to the fifth hydraulic valve group 441 through a data line; the sixth hydraulic servo controller 443 is connected to the sixth hydraulic valve group 444 through a data line; the seventh hydraulic servo controller 445 is connected to the sixth hydraulic valve group 444 through a data line.
  • the seven hydraulic valve groups 446 are connected; the eighth hydraulic servo controller 447 is connected to the eighth hydraulic valve group 448 through a data line.
  • a second robot 735 is installed inside the third charging and swapping cabinet 31 to form a fourth charging and swapping cabinet 781 .
  • the second robot 735 is composed of the robot 78 .
  • the control system of the second robot 735 is composed of the robot control system 618 .
  • the second conveying robot control system 753 has a second conveying robot leveling control system 751, a second obstacle avoidance system 769, a second magnetic navigation system 775, a second traveling mechanism control system 774, a second The visual navigation system 776 and the second terminal platform rotation control system 778 are connected to the fourth wireless programmable controller 752.
  • the fourth wireless programmable controller 752 is composed of the functions of the first wireless programmable controller 356 .
  • the second transport robot system 743 has a second transport robot traveling system 747 and a second transport robot lifting system 746 .
  • a second transport robot walking system 747 and a second transport robot lifting system 746 are installed on the second transport robot chassis 744 .
  • the wireless carrier system 28 performs cellular communication through the first main antenna 54 via the cellular protocol with the first telematics unit 55 of the electric energy supply vehicle communication system 57 having the first cellular chipset 47 .
  • the communication bus 56 is connected to the data acquisition device 621 of the robot control system 618 .
  • the first short-range wireless communication (SRWC) circuit 46 is connected to the wireless communication unit 343 through the second antenna 355 of the second transfer robot 79 via the first SRWC antenna 53 .
  • the electric energy supply vehicle communication system 57 outputs the received sensor signal to the data acquisition device 621 , and the data acquisition device 621 stores the acquired sensor signal in the third memory 624 .
  • the motion control system 629 performs feedback control based on signals from the position detectors of the rotary encoders included in each of the second transfer robot control systems 753 so that the rotation of each robot drive motor 634 of the robot 78 is consistent with the instructions of the motion program, Cooperate with the operation of the second transport robot control system 753.
  • the remote operator 7 issues action instructions to control the second transport robot control system 753 through the remote operation console system 13, and uploads them to the action control system 629 of the robot control system 618 through the remote control system 2.
  • the action control system 629 operates according to the pre-generated action program.
  • the driving instructions are output to the fourth wireless programmable controller 752, and the fourth wireless programmable controller 752 controls the second transport robot 79 to execute various programs.
  • the twenty-third limit switch 749 and the twenty-fourth limit switch 750 are installed on the second support plate 716 .
  • the fourth wireless programmable controller 752 is connected to the second signal preprocessor 770 , the second signal preprocessor 770 is connected to the second electronic differential controller 771 , and the second electronic differential controller 771 is connected to the fifth motor controller.
  • 734 is connected to the sixth motor controller 735.
  • the fifth drive motor 733 is connected to and controlled by the fifth motor controller 734; the sixth drive motor 736 is connected to and controlled by the sixth motor controller 735.
  • the fifth drive motor 733 is connected to and directly drives the fifth wheel 738
  • the sixth drive motor 736 is connected to and directly drives the sixth wheel 740
  • the seventh wheel 739 and the eighth wheel 741 are driven wheels.
  • the second battery 737 is connected to the fourth wireless programmable controller 752 through the second start switch 768, and the second start switch 768 controls the second battery 737 to be on and off.
  • the second battery charging port 742 is connected to the second battery 737 .
  • the second obstacle avoidance system 769 has a second ultrasonic ranging sensor 729 and a second laser ranging sensor 730 .
  • the second ultrasonic ranging sensor 729 is divided into two channels and has a total of 8 ultrasonic probes, and is connected to the fourth wireless programmable controller 752 through the RS485 communication unit 350.
  • the second laser ranging sensor 730 is connected to the CAN communication unit 352 of the fourth wireless programmable controller 752 through four sensors in series.
  • the fifth camera 728 and the sixth camera 732 of the second visual navigation system 776 are electrically connected to the second image sensor 777 ; the second image sensor 777 is electrically connected to the fourth wireless programmable controller 752 .
  • the second magnetic navigation sensor 731 of the second magnetic navigation system 775 is electrically connected to the fourth wireless programmable controller 752 .
  • the fourth wireless programmable controller 752 of the second terminal platform rotation control system 778 is connected to the twenty-third limit switch 749 and the twenty-fourth limit switch 750.
  • the limit switch 750 is connected to the twelfth motor 745 , and the twelfth motor 745 is connected to the fourth wireless programmable controller 752 .
  • the second handling robot lifting system 746 controlled by the second handling robot leveling control system 751 is composed of a plurality of second double-acting multi-stage hydraulic cylinder systems 758 installed on the four corners of the fourth bottom plate 726.
  • the second double-acting multi-stage hydraulic cylinder system 758 has four, that is, the fifth lifting column 721, the sixth lifting column 722, the seventh lifting column 724 and the eighth lifting column 725 are all leveled by the second transport robot.
  • the control system 751 is composed of a second double-acting multi-stage hydraulic cylinder system 758.
  • the structure of the second double-acting multi-stage hydraulic cylinder system 758 is the same as that of the first double-acting multi-stage hydraulic cylinder 431.
  • a second support plate 716 is installed on the top of the fifth lifting column 721 , the sixth lifting column 722 , the seventh lifting column 724 and the eighth lifting column 725 .
  • the second support plate 716 has a concave structure to facilitate the transportation of the robot 77 Enter the second support plate 716 from the entrance and exit 717 position.
  • the second transport robot leveling control system 751 has a third hydraulic pressure sensor 754, a third position sensor 755, a third length sensor 756, a third microwave distance sensor 757, a fifth tilt sensor 715, and a sixth tilt sensor 719.
  • the ninth hydraulic servo controller 760, the tenth hydraulic servo controller 762, the eleventh hydraulic servo controller 764 and the twelfth hydraulic servo controller 766 are respectively connected to the fourth wireless programmable controller 752 through data lines.
  • the ninth hydraulic servo controller 760 is connected to the ninth hydraulic valve group 761 through a data line;
  • the tenth hydraulic servo controller 762 is connected to the tenth hydraulic valve group 763 through a data line;
  • the eleventh hydraulic servo controller 764 is connected to the ninth hydraulic valve group 761 through a data line.
  • the eleventh hydraulic valve group 765 is connected;
  • the twelfth hydraulic servo controller 766 is connected to the twelfth hydraulic valve group 767 through a data line.
  • the third hydraulic pressure sensor 754 is installed on the second base 779 at the bottom of the pillar, and feeds back the data on the stress condition of the pillar cylinder to the fourth wireless programmable controller 752 .
  • the third position sensor 755 is installed on the second base 779 at the bottom of the pillar to detect the fully retracted state of the pillar cylinder and feeds the data back to the fourth wireless programmable controller 752 .
  • the third length measurement sensor 756 is installed on the top of the strut cylinder, detects the telescopic position distance of the strut cylinder, and feeds back the telescopic speed and position data of the strut cylinder to the fourth wireless programmable controller 752 .
  • the third microwave ranging sensor 757 is installed on the top of the hydraulic pillar for detecting the distance from the pillar to the bottom of the pillar and feeding the data back to the fourth wireless programmable controller 752 .
  • the fifth tilt sensor 715 and the sixth tilt sensor 719 are installed on both sides of the second support plate 716 for detecting tilt data of the second support plate 716 in the X-axis direction and the Y-axis direction.
  • a guard rotation system 797 is added to the side body 801 of the electric vehicle to be replaced to form a third electric vehicle 802 to be replaced, according to the third embodiment of the present invention.
  • the battery replacement control system 600 of the electric vehicle is added
  • the connection guard plate rotation control system 798 forms the third electric vehicle control system 803 to be replaced.
  • the rotation axis 791 of the fender rotation system 797 passes through the first fixed block 792 and the second fixed block 793 fixed on the vehicle body 801.
  • the guard plate 787 and the first gear 794 are installed on the rotating shaft 791.
  • the twenty-fifth limit switch 795 and the twenty-sixth limit switch 796 of the fender rotation control system 798 are installed on the vehicle body 801 .
  • the third programmable controller 597 of the guard plate rotation control system 798 is connected to the twenty-fifth limit switch 795 and the twenty-sixth limit switch 796.
  • the twenty-fifth limit switch 795 and the twenty-sixth limit switch 796 is connected to the thirteenth electric motor 789, and the thirteenth electric motor 789 is connected to the third programmable controller 597.
  • the third programmable controller 597 of the guard plate rotation control system 798 controls the start of the thirteenth motor 789.
  • the thirteenth motor 789 drives the second gear 788 to rotate, and the second gear 788 drives the first gear 794 to rotate.
  • the gear 794 drives the rotating shaft 791 to rotate, and the rotating shaft 791 drives the guard plate 787 to rotate 90° to expose the battery box replacement control system 598 .
  • step 1 the remote operator 7 activates the electric energy supply vehicle control system 45, the electric energy supply vehicle 30 reaches the optimal battery replacement parking position of the electric vehicle 41 to be replaced, and the remote operator 7 passes the remote operation console
  • the system 13 controls the electric energy supply vehicle 30 and the electric vehicle 41 to be replaced, and the remote operator 7 starts the pre-generated action program to carry out the battery box 35 replacement operation of the electric vehicle 41 to be replaced.
  • Step 2 The first rotation control system 599 of the electric vehicle battery replacement control system 600 starts the seventh motor 476 to drive the first leg 475 to rotate, and the second rotation control system 601 starts the eighth motor 489 to drive the second leg 490 to rotate.
  • the third rotation control system 602 starts the ninth motor 501 to drive the third leg 502 to rotate, and the fourth rotation control system 603 starts the tenth motor 509 to drive the fourth leg 515 to rotate to make the first leg 475, the second leg 490, and the fourth leg 515 rotate.
  • the third leg 502 and the fourth leg 515 simultaneously rotate toward the ground to the preset position.
  • Step 3 The remote operator 7 issues action instructions to control the third leveling control system 616 through the remote operation console system 13, and uploads them to the third programmable logic controller 597 through the remote control system 2.
  • the third programmable logic controller 597 According to the data fed back by the sensor and the preset action instructions, control signals are simultaneously sent to the fifth hydraulic servo controller 608, the sixth hydraulic servo controller 610, the seventh hydraulic servo controller 612 and the eighth hydraulic servo controller 614.
  • the fifth hydraulic servo controller 608 controls the action of the fifth hydraulic valve group 609 according to the control signal, thereby controlling the second double-acting multi-stage hydraulic cylinder 543 of the first telescopic leg 482 to complete the telescopic action to the designated position.
  • the sixth hydraulic servo controller 610 controls the action of the fifth hydraulic valve group 609 according to the control signal.
  • the control signal controls the action of the sixth hydraulic valve group 611 to control the second double-acting multi-stage hydraulic cylinder 543 of the second telescopic leg 494 to complete the telescopic action to the designated position.
  • the seventh hydraulic servo controller 612 controls the seventh hydraulic valve according to the control signal.
  • the group 613 operates to control the second double-acting multi-stage hydraulic cylinder 543 of the third telescopic leg 508 to complete the telescopic action to the designated position.
  • the eighth hydraulic servo controller 614 controls the operation of the eighth hydraulic valve group 615 according to the control signal, thereby controlling the operation of the eighth hydraulic valve group 615.
  • the second double-acting multi-stage hydraulic cylinder 543 of the four telescopic legs 546 completes the telescopic action to the designated position.
  • the leveling process of the first telescopic leg 482, the second telescopic leg 494, the third telescopic leg 508 and the fourth telescopic leg 546 controlled by the third leveling control system 616 is as follows: the action instructions of the third leveling control system 616 are remotely operated Operator 7 issues the command through the remote operation console system 13 and uploads it to the third programmable logic controller 597 through the remote control system 2 to start the leveling operation.
  • the third leveling control system 616 controls the extension of the pillar cylinder according to the calculated distance between the pillar and the ground. length, the second length measurement sensor 533 detects the extended length value of the pillar cylinder correspondingly, until the second hydraulic pressure sensor 528 of the pillar cylinder detects that the pressure of the pillar cylinder reaches the preset value, indicating that the pillar cylinder has reached the top, and the system re-reads each
  • the second microwave distance sensor 525 and the second length sensor 533 detect and detect the extension length of the pillar cylinder correspondingly, and simultaneously read the third tilt sensor 495 and the fourth tilt sensor 496 to detect the X-axis and Y-axis directions of the electric vehicle chassis 497 respectively.
  • the third leveling control system 616 calculates the tilting state of the electric vehicle chassis 497 according to the preset model according to the feedback information of each sensor, and provides a leveling control plan according to the system settings, and controls each pillar to level according to the system settings.
  • the control scheme completes automatic leveling.
  • Step 4 The selection system 627 sets the target position of the robot 78 according to the position coordinates of the target handling robot 77, and the motion control system 629 sends the motion command to drive the robot slider system 83 to the robot slider control system according to the pre-generated motion program.
  • the first programmable controller 188 supplies power to the third motor 129 according to the action instructions
  • the robot slider system 83 configures the robot 78 in the second working position 71
  • the action control system 629 generates power according to the preset
  • the action program sends the action program instructions for driving the robot 78 to the robot drive system 630.
  • the robot drive system 630 has a circuit for driving the robot drive motor 634.
  • the robot drive system 630 supplies power to the robot drive motor 634 according to the action instructions.
  • Step 5 The action control system 629 sends the action instruction for driving the rear door system 146 to the first programmable controller 188 of the rear door control system 303 according to the pre-generated action program.
  • the first programmable controller 188 controls the first programmable controller 188 according to the action instruction.
  • a motor 298 supplies power, and the first programmable controller 188 controls the first motor 298 to drive the third threaded screw rod section 295 to rotate forward, and the fifth nut 300 drives the first strut 143 to move in the direction of the first limit switch 294, and then
  • the upper door section 130 begins to open, the fifth nut 300 moves to the first limit switch 294 position and touches the first limit switch 294, the first motor 298 stops working, and the upper rear door section 130 opens to a predetermined position.
  • Step 6 The action control system 629 sends the action instruction to drive the video sensor 631 to the video sensor 631 according to the pre-generated action program.
  • the action control system 629 drives the video sensor 631 according to the automatic light fill program according to the image definition pre-generated by the remote operator 7.
  • the action instruction of the fill light 127 to fill the light is sent to the fill light 127 to fill the image acquisition area of the video sensor 631 .
  • Step 7 The visual sensor 631 starts photographing the transport robot 77, and the acquisition system 628 implements the acquisition process of obtaining the three-dimensional information of the transport robot 77 based on the output of the visual sensor 631.
  • the distance between the four QR codes 338 generates the three-dimensional information of the handling robot 77.
  • the acquisition system 628 calculates the distance from the visual sensor 631 to the fourteenth two-dimensional code based on the parallax of the two images captured by the first camera 122 and the second camera 126. Distance of 338 yards.
  • Step 8 The selection system 627 executes a selection process of selecting the transfer robot 77 taken out by the robot 78 based on the three-dimensional information of the transfer robot 77.
  • the selection system 627 selects the transfer robot 77 based on the position and posture of the transfer robot 77.
  • Step 9 The action control system 629 sends the action instructions for driving the first pressure sensor 222 and the second pressure sensor 247 to the second programmable controller 224 of 225 according to the pre-generated action program, and the second programmable controller 224 A pressure sensor 222 and a second pressure sensor 247 are powered.
  • Step 10 After the robot 78 adjusts its posture, the fingers 124 of the manipulator 200 are closed to hold the transport robot 77.
  • the first pressure sensor 222 and the second pressure sensor 247 transmit the pressure information to the second programmable controller 224.
  • the programmable controller 224 determines that the handling robot 77 has been grasped.
  • the second programmable controller 224 turns off the fourth motor 205 and takes out the handling robot 77 from the first bracket 80 , the manipulator 200 holds the transport robot 77 and transports it to the first working point 591 of the first working area 593 .
  • Step 11 After determining that the transfer robot 77 ordered by the remote operator 7 has been taken out, the monitoring device 626 ends the control.
  • Step 12 After the operation of the robot 78 in the first operating area 593 is completed, the action control system 629 issues control instructions according to the pre-generated action program to cause the visual navigation system 437 of the handling robot 77 to start navigation.
  • the magnetic navigation system 435 is in a closed state.
  • the third processor 622 sends the control instruction to the remote operation console system 13, and the remote operator 7 controls the transport robot 77, and the transport robot 77 travels to the second operating area 588 according to the predetermined second path 587.
  • the visual navigation system 437 collects the second QR code 455 of the electric vehicle 41 to be replaced as the starting position, and sets the thirteenth QR code 469 on the battery box 35 as the second position.
  • the transport robot 77 is controlled to move forward from the starting position to just below the second position.
  • Step 13 The action control system 629 sends the action instruction for driving the terminal platform rotation control system 438 to the third wireless programmable controller 433 of the terminal platform rotation control system 438 according to the pre-generated action program.
  • the third wireless programmable controller 433 Power is supplied to the eleventh motor 549, and the eleventh motor 549 drives the terminal platform 381 to rotate toward the twentieth limit switch 548, rotate to the position of the twentieth limit switch 548, and touch the twentieth limit switch 548.
  • the eleventh The motor 549 stops rotating, and the third camera 394 and the fourth camera 398 on the terminal platform 381 aim at the thirteenth QR code 469 at the bottom of the battery box 35 of the on-board battery box replacement system 564 to capture the system.
  • the acquisition system 628 calculates the thirteenth two-dimensional image from the third camera 394 and the fourth camera 398 to the bottom of the battery box 35 based on the parallax of the two images captured by the third camera 394 and the fourth camera 398 469, the battery tray 380 is placed at the preset position below the battery box 35.
  • Step 14 The control action instructions of the second leveling control system 432 are issued by the remote operator 7 through the remote operation console system 13 and uploaded to the third wireless programmable controller 433 through the remote control system 2.
  • the third wireless programmable controller 433 is based on The data fed back by the sensor and the preset action instructions send control signals to the fifth hydraulic servo controller 440, the sixth hydraulic servo controller 443, the seventh hydraulic servo controller 445 and the eighth hydraulic servo controller 447.
  • the servo controller 440 controls the action of the fifth hydraulic valve group 441 according to the control signal, thereby controlling the first double-acting multi-stage hydraulic cylinder 431 of the first pillar to complete the telescopic action to the designated position; the sixth hydraulic servo controller 443 controls the fifth hydraulic valve group 441 according to the control signal.
  • the six hydraulic valve groups 444 act to control the first double-acting multi-stage hydraulic cylinder 431 of the second pillar to complete the telescopic action to the designated position; the seventh hydraulic servo controller 445 controls the action of the seventh hydraulic valve 446 according to the control signal, thereby controlling the action of the seventh hydraulic valve 446.
  • the first double-acting multi-stage hydraulic cylinder 431 of the three pillars completes the telescopic action to the designated position; the eighth hydraulic servo controller 447 controls the action of the eighth hydraulic valve group 448 according to the control signal, thereby controlling the first double-acting multi-stage hydraulic cylinder of the fourth pillar.
  • the hydraulic cylinder 431 completes the telescopic action to the designated position; after the first pillar 383, the second pillar 376, the third pillar 387 and the fourth pillar 373 all reach the designated position, the control action instructions of the second leveling control system 432 are sent by the remote operator. 7.
  • the leveling operation is started through the remote control system 13 and uploaded to the third wireless programmable controller 433 through the remote control system 2.
  • the system first controls the extension length of the pillar cylinder according to the calculated distance between the pillar and the ground.
  • the second length measurement sensor 419 corresponds to detecting the prop cylinder extension length value until the second hydraulic pressure sensor 429 of the prop cylinder detects that the pressure of the prop cylinder reaches the preset value, indicating that the prop cylinder has reached the top.
  • the system re-reads each second microwave measurement
  • the distance sensor 420 and the second length sensor 419 detect and detect the extension length of the support cylinder correspondingly, and at the same time, the third tilt sensor 399 and the fourth tilt sensor 400 respectively detect the tilt state of the bracket plate 384 in the X-axis direction and the Y-axis direction.
  • the system calculates the tilt state of the bracket plate 384 according to the preset model based on the feedback information from each sensor, and provides a leveling control plan according to the system settings, controls each pillar to complete automatic leveling according to the leveling control plan, and lifts the battery tray 380 In the preset ready position for replacing the battery box 35 .
  • Step 15 The action control system 629 sends the action instruction for driving the battery box replacement control system 598 to the third programmable controller 597 according to the pre-generated action program.
  • the third programmable controller 597 controls the sixth motor 562 according to the action instruction. Power supply, the third output shaft 561 of the sixth motor 562 drives the third screw segment 577 to rotate in reverse, the third nut 578 drives the third connecting rod 576 to move, the third connecting rod 576 drives the ninth gripping plate 569 and the tenth
  • the gripping plate 571 moves toward the twentieth limit switch 581, the third connecting rod 576 touches the twentieth limit switch 581 to stop the sixth motor 562, and the ninth gripping plate 569 and the tenth gripping plate 571 are separated from the battery.
  • the battery box 35 is dropped onto the top of the handling robot 77 .
  • Step 16 After the operation of the robot 78 in the second operating area 588 is completed, the action control system 629 issues control instructions according to the pre-generated action program to cause the visual navigation system 437 of the handling robot 77 to start navigation.
  • the visual navigation system 437 collects the information of the electric vehicle 41
  • the ninth QR code 464 is the starting position
  • the sixth QR code 461 is the second position
  • the transport robot 77 is controlled to start from the starting position and move forward to the second position.
  • Step 17 The action control system 629 sends the action instruction for driving the terminal platform rotation control system 438 to the third wireless programmable controller 433 of the terminal platform rotation control system 438 according to the pre-generated action program.
  • the third wireless programmable controller 433 The eleventh motor 549 is supplied with power, and the eleventh motor 549 drives the terminal platform 381 to rotate toward the nineteenth limit switch 547, touching the nineteenth limit switch 547.
  • the eleventh motor 549 stops rotating, and the third terminal platform 381 on the terminal platform 381
  • the camera 394 and the fourth camera 398 are aimed straight ahead.
  • the action control system 629 issues control instructions according to the pre-generated action program to cause the visual navigation system 437 of the handling robot 77 to start navigation.
  • the handling robot 77 travels to the second predetermined path 585.
  • Step 18 The visual sensor 631 starts photographing the battery box 35 on the top of the transportation robot 77.
  • the acquisition system 628 implements the acquisition process of acquiring the three-dimensional information of the battery box 35 on the top of the transportation robot 77 based on the output of the visual sensor 631.
  • the acquisition system 628 performs the acquisition process according to the output of the visual sensor 631.
  • the distance from the visual sensor 631 to the eleventh QR code 467 installed on the top of the battery box 35 is the second measurement point, and the three-dimensional information of the battery box 35 on the top of the handling robot 77 is generated. and the parallax of the two images captured by the second camera 126 to calculate the distance from the visual sensor 631 to the second measurement point.
  • Step 19 After the robot 78 adjusts its posture, the action control system 629 sends the action instructions for driving the manipulator 200 to the second programmable controller 224 of the manipulator control system 225 according to the pre-generated action program.
  • the second programmable controller 224 Power is supplied to the fourth motor 205 according to the action command.
  • the second programmable controller 224 starts the fourth motor 205.
  • the first output shaft 204 of the fourth motor 205 drives the first screw section 218 to rotate forward.
  • the first screw section 218 Pushing the first connecting rod 215 drives the first gripping plate 201 and the second gripping plate 209 to move toward the battery box 35.
  • the first connecting rod 215 moves to the seventh limit switch 219 position, and touching the seventh limit switch 219 causes the seventh limit switch 219 to move.
  • the four motors 205 stop rotating, the first gripping plate 201 and the second gripping plate 209 clamp the battery box 35, and the first gripping plate 201 and the second gripping plate 209 move toward the third gripping plate 198 and the fourth gripping plate 198.
  • the plate 212 is closed, the battery box 35 is clamped, the battery box 35 is taken out on the top of the transport robot 77, and the robot 200 holds the battery box 35 to be transported to a predetermined position. During the transportation of the battery box 35, the battery box 35 will not move from The manipulator 200 falls off.
  • Step 20 The visual sensor 631 starts to photograph the battery box 35 in the first charging and swapping cabinet 72, and the acquisition system 628 acquires the information of the vacant first battery box compartment 305 in the first charging and swapping cabinet 72 based on the output of the visual sensor 631.
  • the acquisition system 628 generates three-dimensional information of the first charging and swapping cabinet 72 based on the distance from the visual sensor 631 to the vacant first battery box 305.
  • the parallax of the two images captured by the camera 126 is used to calculate the distance from the visual sensor 631 to the empty first battery box compartment 305 .
  • Step 21 The selection system 627 implements the selection process of placing the battery box 35 into the target first battery box warehouse 305 by the robot 78 based on the three-dimensional information of the first charging and swapping cabinet 72. 72. Select the vacant battery compartment in order of position and posture from high to low.
  • Step 22 After the robot 78 adjusts its posture, the fingers 124 of the robot hand 200 close and hold the battery box 35.
  • the robot hand 200 holds the battery box 35 and transports it to the vacant first battery box warehouse 305 of the first charging and swapping cabinet 72.
  • Step 23 The action control system 629 sends the action instruction for driving the first battery compartment control system 641 to the first programmable controller 188 of the first battery compartment control system 641 according to the pre-generated action program.
  • the controller 188 supplies power to the fifth motor 235 according to the action command.
  • the first programmable controller 188 starts the fifth motor 235.
  • the second output shaft 234 of the fifth motor 235 drives the second screw rod section 253 to rotate forward, and the second nut 254 drives the second connecting rod 255 to move toward the battery box 35.
  • the second connecting rod 255 drives the fifth gripping plate 241 and the sixth gripping plate 231 to move toward the battery box 35.
  • the second connecting rod 255 moves to the ninth limit. position switch 252, touching the ninth limit switch 252 causes the fifth motor 235 to stop rotating, and the fifth gripping plate 241 and the sixth gripping plate 231 are closed toward the seventh gripping plate 245 and the eighth gripping plate 228. Clamp the battery box 35,
  • Step 24 The action control system 629 sends the action instruction for driving the robot 200 to the second programmable controller 224 of the robot control system 225 according to the pre-generated action program.
  • the second programmable controller 224 controls the fourth motor 205 according to the action instruction. Power is supplied, the second programmable controller 224 starts the fourth motor 205, the first output shaft 204 of the fourth motor 205 drives the first screw rod section 218 to rotate in the reverse direction, and the first screw rod section 218 drives the first connecting rod 215 to move,
  • the first connecting rod 215 drives the first gripping plate 201 and the second gripping plate 209 to move toward the eighth limit switch 206.
  • the first connecting rod 215 touches the eighth limit switch 206, and the fourth motor 205 stops rotating.
  • the first gripping plate 201 and the second gripping plate 209 are separated from the battery box 35 .
  • Step 25 After determining that the number of battery boxes 35 predetermined by the remote operator 7 has been placed in the first battery box compartment 305 of the first charging and swapping cabinet 72, the monitoring device 626 ends the control.
  • Step 26 The selection system 627 sets the target position of the robot 78 according to the position and posture of the target battery box 35, and the motion control system 629 causes the robot slider system 83 to drive the robot 78 to the second working position 71. At this time, the manipulator 200 Fingers 124 open.
  • Step 27 The visual sensor 631 starts to photograph the fully charged battery box 35 in the first charging and swapping cabinet 72, and the acquisition system 628 implements obtaining the three-dimensional image of the fully charged battery box 35 in the first charging and swapping cabinet 72 based on the output of the visual sensor 631.
  • the acquisition system 628 generates three-dimensional information of the first charging and swapping cabinet 72 based on the distance from the visual sensor 631 to the first measurement point of the fully charged battery box 35 in the first charging and swapping cabinet 72.
  • the acquisition system Step 628 calculates the distance from the visual sensor 631 to the first measurement point based on the parallax of the two images captured by the first camera 122 and the second camera 126 .
  • Step 28 The selection system 627 implements the selection process of selecting the battery box 35 in the target second battery box compartment 307 taken out by the robot 78 based on the three-dimensional information of the first charging and swapping cabinet 72.
  • the selection system 627 selects the battery box 35 according to the first charging and swapping cabinet.
  • the position and posture of the cabinet 72 are in order from high to low and the QR code of each battery box is selected from the second battery box compartment 307 to the sixth battery box compartment 315 to select a fully charged battery box 35.
  • Step 29 After the robot 78 aligns with the fully charged battery box 35 in the second battery box chamber 307 and adjusts its posture, the fingers 124 of the manipulator 200 close and hold the battery box 35 .
  • Step 30 The action control system 629 sends the action instructions for driving the second battery compartment control system 643 to the first programmable controller 188 of the second battery compartment control system 643 according to the pre-generated action program.
  • the controller 188 supplies power to the fifth motor 235 according to the action command.
  • the first programmable controller 188 starts the fifth motor 235.
  • the second output shaft 234 of the fifth motor 235 drives the second screw rod section 253 to rotate in the opposite direction.
  • the second nut 254 drives the second connecting rod 255 to move, the second connecting rod 255 drives the fifth gripping plate 241 and the sixth gripping plate 231 to move toward the tenth limit switch 257, and the second connecting rod 255 touches the tenth limit switch 257,
  • the fifth motor 235 stops rotating, and the fifth gripping plate 241 and the sixth gripping plate 231 are separated from the battery box 35 .
  • Step 31 The robot 200 takes out the battery box 35 from the second battery box compartment 307, and the robot 200 holds the battery box 35.
  • Step 32 The visual sensor 631 starts photographing the fifteenth QR code 663 on the battery tray 380 of the transportation robot 77, and the acquisition system 628 implements the acquisition process of obtaining the three-dimensional information of the battery tray 380 of the transportation robot 77 based on the output of the visual sensor 631. , the acquisition system 628 generates three-dimensional information of the battery box 35 on the top of the handling robot 77 based on the distance from the visual sensor 631 to the fifteenth QR code 663 installed on the battery tray 380 as the fourth measurement point. The distance from the visual sensor 631 to the fourth measurement point is calculated based on the parallax of the two images captured by the first camera 122 and the second camera 126 .
  • Step 33 After the robot 78 adjusts its posture, the fingers 124 of the manipulator 200 are closed to hold the battery box 35, the battery box 35 is placed on the top battery tray 380 of the transport robot 77, and the fingers 124 of the manipulator 200 are opened.
  • Step 34 After the monitoring device 626 determines that the number of battery boxes 35 predetermined by the remote operator 7 has been placed on the top of the transport robot 77, the control ends.
  • Step 35 When taking out and placing the battery box 35 in the second charging and swapping cabinet 75, the motion control system 629 causes the robot slider system 83 to drive the robot 78 to the first working position 74.
  • Step 36 Repeat steps 4 to 34.
  • Step 37 After the operation of the robot 78 in the first operating area 593 is completed, the action control system 629 issues control instructions according to the pre-generated action program to cause the visual navigation system 437 of the handling robot 77 to start navigation, and the handling robot 77 follows the predetermined first path 585 After traveling to the second working area 588 and the third working point 586, the visual navigation system 437 collects the second QR code 455 of the electric vehicle 41 to be replaced as the starting position, which is set to the ninth position in the middle of the bottom of the electric vehicle chassis 497.
  • the QR code 464 is the second position, and the transport robot 77 is controlled to move forward from the starting position to just below the second position.
  • Step 38 The action control system 629 sends the action instruction for driving the terminal platform rotation control system 438 to the third wireless programmable controller 433 of the terminal platform rotation control system 438 according to the pre-generated action program.
  • the third wireless programmable controller 433 The eleventh motor 549 is powered, and the eleventh motor 549 drives the terminal platform rotation control system 438 to rotate toward the twentieth limit switch 548, touching the twentieth limit switch 548, the eleventh motor 549 stops rotating, and the terminal platform 381
  • the third camera 394 and the fourth camera 398 on the vehicle-mounted battery box replacement system 564 are aimed at the ninth QR code 464 in the middle of the bottom of the vehicle battery box replacement system 564 to take pictures.
  • the parallax of the image is calculated, the distance from the third camera 394 and the fourth camera 398 to the ninth QR code 464 is generated, and the three-dimensional information of the vehicle battery box replacement system 564 is generated.
  • the acquisition system 628 is based on the data generated by the third camera 394 and the fourth camera 398 takes the parallax of the two images, calculates the distance from the third camera 394 and the fourth camera 398 to the ninth QR code 464 at the bottom of the battery box 35, and presses the battery box 35 on the upper part of the battery tray 380 against the vehicle battery Box changing system 564 is located below the preset position.
  • Step 39 The second leveling control system 432 completes automatic leveling according to the leveling control plan, and pushes the battery tray 380 to the preset preparation position for replacing the battery box 35.
  • Step 40 The action control system 629 sends the action instruction for driving the battery box replacement control system 598 to the third programmable controller 597 of the battery box replacement control system 598 according to the pre-generated action program.
  • the third programmable controller 597 The action command supplies power to the sixth motor 562.
  • the third output shaft 561 of the sixth motor 562 drives the third screw section 577 to rotate forward.
  • the third screw section 577 drives the third connecting rod 576 to move in the direction of the battery box 35.
  • the third connecting rod 576 drives the ninth gripping plate 569 and the tenth gripping plate 571 to move toward the battery box 35.
  • the third connecting rod 576 moves to the nineteenth limit switch 579 position, and touches the nineteenth limit switch 579 to cause the nineteenth limit switch 579 to move.
  • the sixth motor 562 stops rotating, the ninth gripping plate 569 and the tenth gripping plate 571 close to the eleventh gripping plate 566 and the twelfth gripping plate 551, the ninth gripping plate 569 and the tenth gripping plate 571 Clamp the battery box 35.
  • Step 41 After the monitoring device 626 determines that the battery box 35 ordered by the remote operator 7 has been delivered, this step ends, and the second leveling control system 432 returns to the original state.
  • Step 42 After the operation of the robot 78 in the second operating area 588 is completed, the action control system 629 issues control instructions according to the pre-generated action program, so that the visual navigation system 437 of the handling robot 77 starts navigation, and the visual navigation system 437 collects the power to be replaced.
  • the thirteenth QR code 469 at the bottom of the battery box 35 of the electric vehicle 41 is the starting position, and the sixth QR code 461 is the second position.
  • the transport robot 77 is controlled to start from the starting position and move forward to the second position.
  • Step 43 Repeat step 17.
  • Step 44 After the robot 78 adjusts its posture, the fingers 124 of the manipulator 200 close to grasp the transport robot 77.
  • Step 45 The visual sensor 631 starts to photograph the first bracket 80, and the acquisition system 628 implements the acquisition process of acquiring the three-dimensional information of the first bracket 80 based on the output of the visual sensor 631.
  • the distance of the fifteenth QR code 657 generates the three-dimensional information of the first bracket 80.
  • the acquisition system 628 calculates the distance from the visual sensor 631 to the first image according to the parallax of the two images captured by the first camera 122 and the second camera 126. Bracket 80 distance.
  • Step 46 The selection system 627 implements the selection process of selecting the transfer robot 77 put in by the robot 78 based on the three-dimensional information of the transfer robot 77.
  • the selection system 627 selects the transfer robot 77 based on the position and posture of the transfer robot 77, and the manipulator 200 controls the transfer.
  • the robot 77 is transported to the first bracket 80, and the charging port 658 of the first bracket is connected to the charging port 662 of the transport robot.
  • Step 47 The action control system 629 sends the action instruction for driving the rear door system 146 to the first programmable controller 188 of the rear door control system 303 according to the pre-generated action program.
  • the first programmable controller 188 controls the first programmable controller 188 according to the action instruction.
  • An electric motor 298 supplies power, and the first programmable controller 188 controls the first electric motor 298 to drive the third threaded screw rod section 295 to rotate in the opposite direction, and the fifth nut 300 drives the first strut 143 to move in the direction of the fifth bracket 297, and the upper section of the rear door 130 begins to close, the fifth nut 300 touches the second limit switch 296, the first electric motor 298 stops working, and the upper section of the rear door 130 closes.
  • Step 48 After the monitoring device 626 determines that the robot 78 scheduled by the remote operator 7 has been put down on the first stand 80, it ends the control.
  • Step 49 The electric energy supply vehicle 30 navigates to the best operating position near the third charging and exchanging cabinet 31 according to the position coordinates of the third charging and exchanging cabinet 31 .
  • Step 50 The visual sensor 631 starts to photograph the battery box 35 in the third charging and swapping cabinet 31, and the acquisition system 628 implements the acquisition of the three-dimensional information of the battery box 35 in the third charging and swapping cabinet 31 based on the output of the visual sensor 631.
  • the acquisition system 628 generates three-dimensional information of the third charging and swapping cabinet 31 based on the distance from the visual sensor 631 to the first measurement point of the battery box 35 in the third charging and swapping cabinet 31.
  • the acquisition system 628 generates three-dimensional information of the third charging and swapping cabinet 31 based on the first measurement point.
  • the distance from the visual sensor 631 to the first measurement point is calculated based on the parallax of the two images captured by the camera 122 and the second camera 126 .
  • Step 51 The selection system 627 implements the selection process of selecting the fully charged battery box 35 in the target thirteenth battery box compartment 357 taken out by the robot 78 based on the three-dimensional information of the third battery box 3.
  • the fully charged battery box 35 is selected from the thirteenth battery box compartment 357 to the sixteenth battery box compartment 360 in order of the position and posture of the power swap cabinet from high to low.
  • Step 52 The selection system 627 sets the target position of the robot 78 according to the position and posture of the target battery box 35, and the motion control system 629 causes the robot slider system 83 to drive the robot 78 to the second working position 71. At this time, the manipulator 200 Fingers 124 open.
  • Step 53 After the robot 78 adjusts its posture, the fingers 124 of the manipulator 200 close and hold the battery box 35 .
  • Step 54 The action control system 629 sends the action instruction for driving the thirteenth battery box control system 653 to the second wireless programmable controller 361 of the thirteenth battery box control system 653 according to the pre-generated action program.
  • the second wireless programmable controller 361 supplies power to the fifth motor 235 according to the action command.
  • the second wireless programmable controller 361 starts the fifth motor 235.
  • the second output shaft 234 of the fifth motor 235 drives the second screw segment 253 in the reverse direction. Rotate, the second screw section 253 drives the second connecting rod 255 to move, and the second connecting rod 255 drives the fifth gripping plate 241 and the sixth gripping plate 231 to move toward the tenth limit switch 257.
  • the second connecting rod 25 , the tenth limit switch 257 is triggered, the fifth motor 235 stops rotating, and the fifth gripping plate 241 and the sixth gripping plate 231 are separated from the battery box 35 .
  • Step 55 The robot 200 takes out the battery box 35 from the thirteenth battery box compartment 357, and the robot 200 holds the battery box 35.
  • Step 56 The visual sensor 631 starts to photograph the battery box 35 in the first charging and swapping cabinet 72, and the acquisition system 628 acquires the three-dimensional image of the empty first battery box compartment 305 in the first charging and swapping cabinet 72 based on the output of the visual sensor 631.
  • the acquisition system 628 generates three-dimensional information of the first charging and swapping cabinet 72 based on the distance from the visual sensor 631 to the vacant first battery box 305.
  • the acquisition system 628 generates three-dimensional information of the first charging and swapping cabinet 72 based on the distance from the first camera 122 and the second camera. 126 to calculate the distance from the visual sensor 631 to the first battery compartment 305 based on the parallax of the two images captured.
  • Step 57 The selection system 627 implements the selection process of placing the battery box 35 into the target first battery box warehouse 305 by the robot 78 based on the three-dimensional information of the first charging and swapping cabinet 72. 72. Select the vacant battery compartment in order of position and posture from high to low.
  • Step 58 After the robot 78 adjusts its posture, the fingers 124 of the robot hand 200 close and hold the battery box 35. The robot hand 200 holds the battery box 35 and transports it to the first battery box compartment 305 of the first charging and swapping cabinet 72.
  • Step 59 The action control system 629 sends the action instruction for driving the first battery compartment control system 641 to the first programmable controller 188 of the first battery compartment control system 641 according to the pre-generated action program.
  • the controller 188 supplies power to the fifth motor 235 according to the action command.
  • the first programmable controller 188 starts the fifth motor 235.
  • the second output shaft 234 of the fifth motor 235 drives the second screw rod section 253 to rotate forward, and the second nut 254 drives the second connecting rod 255 to move in the direction of the battery box 35, the second connecting rod 255 drives the fifth gripping plate 241 and the sixth gripping plate 231 to move in the direction of the battery box 35, and the second connecting rod 255 touches the ninth limiter.
  • the switch 252 stops the fifth motor 235 from rotating, and the fifth gripping plate 241 and the sixth gripping plate 231 close toward the seventh gripping plate 245 and the eighth gripping plate 228 and clamp the battery box 35.
  • Step 60 After the monitoring device 626 determines that the number of fully charged battery boxes 35 predetermined by the remote operator 7 has been placed in the first battery box compartment 305 of the first charging and swapping cabinet 72, the control ends.
  • Step 61 The selection system 627 sets the target position of the robot 78 according to the position coordinates of the target transport robot 77.
  • the motion control system 629 causes the robot slider system 83 to drive the robot 78 to the second working position 71. At this time, the manipulator 200 fingers Part 124 is open.
  • Step 62 The visual sensor 631 starts to photograph the battery box 35 in the first charging and swapping cabinet 72, and the acquisition system 628 implements the process of acquiring the three-dimensional information of the battery box 35 in the first charging and swapping cabinet 72 based on the output of the visual sensor 631.
  • the acquisition system 628 generates three-dimensional information of the first charging and swapping cabinet 72 based on the distance from the visual sensor 631 to the first measurement point of the battery box 35 that is depleted in the first charging and swapping cabinet 72.
  • the distance from the visual sensor 631 to the first measurement point is calculated based on the parallax of the two images captured by the first camera 122 and the second camera 126 .
  • Step 63 The acquisition system 628 implements the acquisition process of acquiring the three-dimensional information of the depleted battery box 35 in the first battery box compartment 305 of the first charging and swapping cabinet 72 based on the output of the visual sensor 631. 631 to the out-of-charge battery box 35 to generate three-dimensional information of the first charging and swapping cabinet 72.
  • the acquisition system 628 calculates the distance from the visual sensor based on the parallax of the two images captured by the first camera 122 and the second camera 126. The distance from 631 to the battery box that is running out of power is 35.
  • Step 64 The selection system 627 implements the selection process of selecting the robot 78 to take out the depleted battery box 35 based on the three-dimensional information of the first charging and swapping cabinet 72.
  • the selection system 627 selects based on the position and posture of the first charging and swapping cabinet 72. Select the battery box 35 that is running out of power in order from high to low and based on the QR code information of the battery box 35 .
  • Step 65 After the robot 78 adjusts its posture, the fingers 124 of the manipulator 200 close and hold the battery box 35 .
  • Step 66 The action control system 629 sends the action instruction for driving the first battery compartment control system 641 to the first programmable controller 188 of the first battery compartment control system 641 according to the pre-generated action program.
  • the controller 188 supplies power to the fifth motor 235 according to the action command.
  • the first programmable controller 188 starts the fifth motor 235.
  • the second output shaft 234 of the fifth motor 235 drives the second screw rod section 253 to rotate in the opposite direction.
  • the second nut 254 drives the second connecting rod 255 to move, the second connecting rod 255 drives the fifth gripping plate 241 and the sixth gripping plate 231 to move toward the tenth limit switch 257, and the second connecting rod 255 touches the tenth limit switch 257 to cause
  • the fifth motor 235 stops rotating, and the fifth gripping plate 241 and the sixth gripping plate 231 are separated from the battery box 35 .
  • Step 67 The robot 200 takes out the battery box 35 from the first battery box compartment 305.
  • the robot 200 holds the battery box 35.
  • the fingers 124 of the robot 200 close to hold the battery box 35.
  • Step 68 The visual sensor 631 starts to photograph the battery box 35 in the third charging and swapping cabinet 31, and the acquisition system 628 implements acquiring the information of the thirteenth vacant battery box compartment 357 in the third charging and swapping cabinet 31 based on the output of the visual sensor 631.
  • the acquisition system 628 generates three-dimensional information of the third charging and swapping cabinet 31 based on the distance from the visual sensor 631 to the vacant thirteenth battery box 357.
  • the acquisition system 628 generates three-dimensional information of the third charging and swapping cabinet 31 based on the distance from the first camera 122 and the third
  • the parallax of the two images captured by the two cameras 126 is used to calculate the distance from the visual sensor 631 to the vacant thirteenth battery box compartment 357 .
  • Step 69 The selection system 627 implements the selection process of placing the battery box 35 into the target thirteenth battery box warehouse 357 by the robot 78 based on the three-dimensional information of the third charging and swapping cabinet 31. The positions and postures of the cabinet 31 are selected in order from high to low.
  • Step 70 After the robot 78 adjusts its posture, the fingers 124 of the manipulator 200 close and hold the battery box 35.
  • the manipulator 200 holds the battery box 35 and transports it to the thirteenth battery box compartment 357 of the third charging and swapping cabinet 31.
  • Step 71 The action control system 629 sends the action instruction for driving the thirteenth battery box control system 653 to the second wireless programmable controller 361 of the thirteenth battery box control system 653 according to the pre-generated action program.
  • the second wireless programmable controller 361 supplies power to the fifth motor 235 according to the action command.
  • the second wireless programmable controller 361 starts the fifth motor 235.
  • the second output shaft 234 of the fifth motor 235 drives the second screw section 253 forward.
  • the second screw rod section 253 pushes the second connecting rod 255 to move toward the battery box 35
  • the second connecting rod 255 drives the third fixed plate 251 and the sixth gripping plate 231 to move toward the battery box 35
  • the second connecting rod 255 Touching the ninth limit switch 252 causes the fifth motor 235 to stop rotating, and the third fixing plate 251 and the sixth gripping plate 231 clamp the battery box 35 .
  • Step 72 Repeat step 47.
  • Step 73 After determining that the number of depleted battery boxes 35 predetermined by the remote operator 7 has been placed in the thirteenth battery box compartment 357 of the third charging and swapping cabinet 31, the monitoring device 626 ends the control.
  • Step 74 The action control system 629 sends the action instruction for driving the side door system 158 to the first programmable controller 188 of the side door control system 304 according to the pre-generated action program.
  • the first programmable controller 188 controls the first programmable controller 188 according to the action instruction.
  • the second motor 168 supplies power, and the first programmable controller 188 controls the second motor 168 to drive the threaded screw rod 169 to rotate forward, and the thread direction of the first screw rod segment 161 and the second screw rod segment 164 on the threaded screw rod 169
  • the first sliding door 132 and the second sliding door 133 move to both sides at the same time, the second sliding door 133 touches the fourth limit switch 180 and the second motor 168 stops working, and the side door system 158 is opened.
  • Step 75 The visual sensor 631 starts photographing the transport robot 77, and the acquisition system 628 implements the acquisition process of obtaining the three-dimensional information of the transport robot 77 based on the output of the visual sensor 631.
  • the distance between the four QR codes 338 generates the three-dimensional information of the handling robot 77.
  • the acquisition system 628 calculates the distance from the visual sensor 631 to the fourteenth two-dimensional code based on the parallax of the two images captured by the first camera 122 and the second camera 126. Distance of 338 yards.
  • Step 76 The selection system 627 executes a selection process of selecting the transfer robot 77 taken out by the robot 78 based on the three-dimensional information of the transfer robot 77.
  • the selection system 627 selects the transfer robot 77 based on the position and posture of the transfer robot 77.
  • Step 77 Repeat steps 2, 3 and 4.
  • Step 78 After the robot 78 adjusts its posture, the fingers 124 of the manipulator 200 are closed to grasp the transport robot 77, and the transport robot 77 is taken out on the first bracket 80. The manipulator 200 holds the transport robot 77 and transports it to the first working area 593. Two working points 592.
  • Step 79 After the operation of the robot 78 in the first operating area 593 is completed, the action control system 629 issues control instructions according to the pre-generated action program to cause the visual navigation system 437 of the handling robot 77 to start navigation, and the handling robot 77 follows the predetermined fourth path 595 After traveling to the sixth working point 596 of the fourth operating area 594, the visual navigation system 437 collects the first QR code 456 of the electric vehicle 41 to be replaced as the starting position, and sets it to the thirteenth position on the battery box 35.
  • the QR code 469 is the second position, and the transport robot 77 is controlled to move forward from the starting position to just below the second position.
  • Step 80 Repeat steps 13, 14 and 15.
  • Step 81 The operation of the robot 78 ends at the sixth working point 596 of the fourth working area 594.
  • the action control system 629 issues control instructions according to the pre-generated action program to cause the visual navigation system 437 of the handling robot 77 to start navigation.
  • the visual navigation system 437 The ninth QR code 464 of the electric vehicle 41 to be exchanged is collected as the starting position, and the fifth QR code 465 is the second position.
  • the handling robot 77 is controlled to start from the starting position and drive forward to the second position.
  • the handling robot 77 travels to the second working point 592 of the first working area 593 according to the predetermined fourth path 595 as the navigation route.
  • Step 82 Repeat steps 16 to 25.
  • Step 83 The action control system 629 sends the action instruction for driving the side door system 158 to the first programmable controller 188 of the side door control system 304 according to the pre-generated action program.
  • the first programmable controller 188 controls the first programmable controller 188 according to the action instruction.
  • the second motor 168 supplies power, and the first programmable controller 188 controls the second motor 168 to drive the threaded screw rod 169 to rotate in the opposite direction, and the thread direction of the first screw rod segment 161 and the second screw rod segment 164 on the threaded screw rod 169
  • the first sliding door 132 and the second sliding door 133 move toward the center at the same time.
  • the second motor 168 stops working and the side door system 158 is closed.
  • Step 84 The electric energy supply vehicle 30 navigates to the best operating position near the second electric vehicle 780 to be exchanged based on the position coordinates of the second electric vehicle 780 to be exchanged.
  • Step 85 Open the front cabin cover 733 of the second electric vehicle 780 to be replaced.
  • Step 86 The control action instructions of the fourth leveling control system 696 are issued by the remote operator 7 through the remote operation console system 13 and uploaded to the fourth programmable controller 695 through the remote control system 2.
  • the fourth programmable controller 695 responds to the sensor Based on the feedback data and the preset action instructions, a control signal is sent to complete the leveling action, and the second vehicle-mounted battery box replacement system 617 is pushed to the preset preparation position 734 for replacing the battery box 35 .
  • Step 87 The visual sensor 631 starts to photograph the battery box 35 in the second vehicle-mounted battery box replacement system 617, and the acquisition system 628 implements acquisition of the three-dimensional information of the battery box 35 in the second vehicle-mounted battery box replacement system 617 based on the output of the visual sensor 631.
  • the acquisition system 628 generates three-dimensional information of the second vehicle-mounted battery box replacement system 617 based on the distance from the visual sensor 631 to the first measurement point of the battery box 35 in the second vehicle-mounted battery box replacement system 617.
  • the distance from the visual sensor 631 to the first measurement point is calculated based on the parallax of the two images captured by the first camera 122 and the second camera 126 .
  • Step 88 The selection system 627 implements the selection process of selecting the battery box 35 in the target second vehicle-mounted battery box replacement system 617 taken out by the robot 78 based on the three-dimensional information of the second vehicle-mounted battery box replacement system 617.
  • Step 89 The selection system 627 sets the target position of the robot 78 according to the position and posture of the target battery box 35, and the motion control system 629 causes the robot slider system 83 to drive the robot 78 to the second working position 71. At this time, the manipulator 200 Fingers 124 open.
  • Step 90 After the robot 78 adjusts its posture, the fingers 124 of the manipulator 200 close and hold the battery box 35.
  • Step 91 The action control system 629 sends the action instruction for driving the second vehicle-mounted battery box replacement system 617 to the fourth programmable controller 695 of the second battery box replacement control system 697 according to the pre-generated action program.
  • the fourth programmable The controller 695 supplies power to the seventh motor 688 according to the action command.
  • the fourth programmable controller 695 starts the seventh motor 688.
  • the fourth output shaft 687 of the seventh motor 688 drives the fourth screw rod segment 675 to rotate in the reverse direction.
  • the rod section 675 drives the sixth nut 676 to rotate, the sixth nut 676 drives the fourth connecting rod 677 to rotate, and the fourth connecting rod 677 drives the thirteenth gripping plate 667 and the fourteenth gripping plate 685 to the 22nd limit.
  • the switch 681 moves in the direction, the fourth connecting rod 677 touches the twenty-second limit switch 681 to stop the seventh motor 688 from rotating, and the thirteenth gripping plate 667 and the fourteenth gripping plate 685 are separated from the battery box 35 .
  • Step 92 The robot 200 takes out the battery box 35 in the second vehicle-mounted battery box replacement system 617, and the robot 200 holds the battery box 35.
  • Step 93 Repeat steps 56 to 60.
  • Step 94 Repeat steps 26 to 31.
  • Step 95 The visual sensor 631 starts to photograph the second vehicle-mounted battery box replacement system 617, and the acquisition system 628 implements obtaining the three-dimensional information of the seventeenth vacant battery box warehouse 698 in the second vehicle-mounted battery box replacement system 617 according to the output of the visual sensor 631.
  • the acquisition system 628 generates three-dimensional information of the second vehicle-mounted battery box replacement system 617 based on the distance from the visual sensor 631 to the vacant second vehicle-mounted battery box replacement system 617.
  • the acquisition system 628 generates three-dimensional information of the second vehicle-mounted battery box replacement system 617 based on the distance from the first camera 122 and the second The disparity of the two images captured by the two cameras 126 is used to calculate the distance from the visual sensor 631 to the second vehicle-mounted battery box replacement system 617 .
  • Step 96 The selection system 627 implements the selection process of placing the battery box 35 into the target seventeenth battery box compartment 698 by the robot 78 based on the three-dimensional information of the second vehicle-mounted battery box replacement system 617.
  • Step 97 After the robot 78 adjusts its posture, the fingers 124 of the manipulator 200 are closed to hold the battery box 35.
  • the manipulator 200 holds the battery box 35 and transports it to the seventeenth battery box warehouse 698 of the second vehicle-mounted battery box replacement system 617.
  • the fourth programmable The controller 695 supplies power to the seventh motor 688 according to the action command.
  • the fourth programmable controller 695 starts the seventh motor 688.
  • the fourth output shaft 687 of the seventh motor 688 drives the fourth screw rod segment 675 to rotate forward.
  • the rod section 675 drives the sixth nut 676 to rotate, the sixth nut 676 drives the fourth connecting rod 677 to rotate, and the fourth connecting rod 677 drives the thirteenth gripping plate 667 and the fourteenth gripping plate 685 to move toward the battery box 35.
  • the four connecting rods 677 touch the twenty-first limit switch 680 to stop the seventh motor 688 from rotating, and the thirteenth gripping plate 667 and the fourteenth gripping plate 6851 clamp the battery box 35 .
  • Step 98 After determining that the number of battery boxes 35 predetermined by the remote operator 7 has been placed in the seventeenth battery box compartment 698 of the second vehicle-mounted battery box replacement system 617, the monitoring device 626 ends the control.
  • Step 99 The visual sensor 631 starts photographing the second transport robot 79, and the acquisition system 628 implements the acquisition process of acquiring the three-dimensional information of the second transport robot 79 based on the output of the visual sensor 631.
  • the distance between the sixteenth QR code 714 in front of 79 generates three-dimensional information of the second transport robot 79.
  • the acquisition system 628 calculates the visual difference based on the parallax of the two images captured by the first camera 122 and the second camera 126. The distance from the sensor 631 to the sixteenth QR code 714.
  • Step 100 The selection system 627 implements a selection process of selecting the second transfer robot 79 taken out by the robot 78 based on the three-dimensional information of the transfer robot 77.
  • the selection system 627 selects the second transfer robot 79 based on the position and posture of the second transfer robot 79.
  • Step 101 The action control system 629 sends the action instructions for driving the first pressure sensor 222 and the second pressure sensor 247 to the second programmable controller 224 of 225 according to the pre-generated action program, and the second programmable controller 224 One pressure sensor 222 and a second pressure sensor 247 are powered.
  • Step 102 After the robot 78 adjusts its posture, the fingers 124 of the manipulator 200 close and hold the transport robot 77.
  • the first pressure sensor 222 and the second pressure sensor 247 transmit the pressure information to the second programmable controller 224.
  • the controller 224 compares the received pressure information with the preset information and determines that the second transport robot 79 has been grasped, the second programmable controller 224 turns off the fourth motor 205 and takes out the second robot 79 from the second bracket 81 .
  • the robot 200 holds the second transportation robot 79 and transports it to the first working point 591 of the first working area 593 .
  • Step 103 After the monitoring device 626 determines that the second transfer robot 79 ordered by the remote operator 7 has been taken out, the control ends.
  • Step 104 After the operation of the robot 78 in the first operating area 593 is completed, the action control system 629 issues control instructions according to the pre-generated action program to cause the second visual navigation system 776 of the second handling robot 79 to start navigation, and the magnetic navigation system 435 is turned off. state, when the second visual navigation system 776 fails, the third processor 622 sends the control instruction to the remote operation console system 13, and the remote operator 7 controls the second transport robot 79.
  • the second transport robot 79 follows the predetermined After the third path 589 travels to the fifth working point 607 of the third operating area 590, the second visual navigation system 776 collects the second QR code 455 of the electric vehicle 41 to be replaced as the starting position, and sets it at the battery box 35
  • the thirteenth QR code 469 is the second position, controlling the second transport robot 79 to travel to the starting position.
  • Step 105 The action control system 629 sends the action instruction for driving the second terminal platform rotation control system 778 to the fourth wireless programmable controller 752 of the second terminal platform rotation control system 778 according to the pre-generated action program.
  • the fourth The wireless programmable controller 752 supplies power to the twelfth motor 745.
  • the twelfth motor 745 drives the second terminal platform 718 to rotate toward the twenty-fourth limit switch 750, rotate to the twenty-fourth limit switch 750 position, and touch the second terminal platform 718.
  • the thirteenth QR code 469 is photographed, and the acquisition system 628 calculates from the fifth camera 728 and the sixth camera 732 to the thirteenth second QR code according to the parallax of the two images shot by the fifth camera 728 and the sixth camera 732
  • the distance of the QR code 469 generates the three-dimensional information of the vehicle battery box replacement system 564.
  • the acquisition system 628 calculates the distance from the fifth camera 728 and the sixth camera 732 based on the parallax of the two images captured by the fifth camera 728 and the sixth camera 732. 732 to the thirteenth QR code 469 at the bottom of the battery box 35 , the second transport robot 79 starts to drive forward from the starting position to just below the second position, and pushes the second support plate 716 under the battery box 35 Default position on the outside.
  • Step 106 The second transport robot leveling control system 751 is leveled to a predetermined height.
  • Step 107 Repeat steps 7 to 48.
  • Step 108 The electric energy supply vehicle 30 navigates to the best operating position near the electric vehicle 41 to be exchanged based on the position coordinates of the electric vehicle 41 to be exchanged.
  • Step 109 Repeat step 3.
  • Step 110 Repeat step 74.
  • Step 111 The action control system 629 sends the action instruction for driving the guard plate rotation control system 798 to the third programmable controller 597 of the guard plate rotation control system 798 according to the pre-generated action program, and the third programmable controller 597
  • the thirteenth motor 789 supplies power, and the thirteenth motor 789 drives the rotating shaft 791 and the guard plate 787 to rotate toward the twenty-sixth limit switch 796, rotate to the twenty-sixth limit switch 796 position, and touch the twenty-sixth limit switch. 796, the thirteenth electric motor 789 stops rotating, and at this time, the side of the entire vehicle-mounted battery box replacement system 564 is exposed.
  • Step 109 The visual sensor 631 starts photographing the battery box 35 in the vehicle-mounted battery box replacement system 564, and the acquisition system 628 implements the acquisition process of acquiring the three-dimensional information of the battery box 35 in the vehicle-mounted battery box replacement system 564 based on the output of the visual sensor 631.
  • the acquisition system 628 generates three-dimensional information of the vehicle-mounted battery box replacement system 564 based on the distance from the visual sensor 631 to the first measurement point of the battery box 35 in the vehicle-mounted battery box replacement system 564.
  • the acquisition system 628 generates three-dimensional information of the vehicle-mounted battery box replacement system 564 based on the distance from the first camera 122 and the The disparity of the two images captured by the two cameras 126 is used to calculate the distance from the visual sensor 631 to the first measurement point.
  • Step 112 The selection system 627 implements a selection process of selecting the battery box 35 in the target vehicle-mounted battery box replacement system 564 taken out by the robot 78 based on the three-dimensional information of the vehicle-mounted battery box replacement system 564.
  • Step 113 The selection system 627 sets the target position of the robot 78 according to the position and posture of the target battery box 35, and the motion control system 629 causes the robot slider system 83 to drive the robot 78 to the first working position 74. At this time, the manipulator 200 Fingers 124 open.
  • Step 114 After the robot 78 adjusts its posture, the fingers 124 of the manipulator 200 close and hold the battery box 35 .
  • Step 115 The action control system 629 sends the action instruction for driving the battery box replacement control system 598 to the third programmable controller 597 of the battery box replacement control system 598 according to the pre-generated action program.
  • the third programmable controller 597 The action command supplies power to the sixth motor 562.
  • the third output shaft 561 of the sixth motor 562 drives the third screw rod section 577 to rotate in the opposite direction.
  • the third screw rod section 577 drives the third nut 578 to rotate.
  • the third nut 578 drives the third screw rod section 577 to rotate.
  • the connecting rod 576 rotates, and the third connecting rod 576 drives the ninth gripping plate 569 and the tenth gripping plate 571 to move toward the twentieth limit switch 581, and the third connecting rod 576 touches the twentieth limit switch 581 and the sixth motor 562 stops rotating, and the ninth gripping plate 569 and the tenth gripping plate 571 are separated from the battery box 35 .
  • Step 116 The robot 200 takes out the battery box 35 from the vehicle-mounted battery box replacement system 564, and the robot 200 holds the battery box 35.
  • Step 117 Repeat steps 56 to 60.
  • Step 118 Repeat steps 26 to 31.
  • Step 119 The visual sensor 631 starts photographing the vehicle-mounted battery box replacement system 564, and the acquisition system 628 implements the acquisition process of acquiring the three-dimensional information of the vacant vehicle-mounted battery box replacement system 564 in the vehicle-mounted battery box replacement system 564 based on the output of the visual sensor 631, and obtains The system 628 generates three-dimensional information of the vehicle-mounted battery box replacement system 564 based on the distance from the vision sensor 631 to the vacant vehicle-mounted battery box replacement system 564. The acquisition system 628 generates three-dimensional information of the vehicle-mounted battery box replacement system 564 based on the two images captured by the first camera 122 and the second camera 126. The distance from the vision sensor 631 to the vehicle battery box replacement system 564 is calculated.
  • Step 120 The selection system 627 implements the selection process of selecting the robot 78 to place the battery box 35 into the target vehicle-mounted battery box replacement system 564 based on the three-dimensional information of the vehicle-mounted battery box replacement system 564.
  • Step 121 After the robot 78 adjusts its posture, the fingers 124 of the manipulator 200 are closed to hold the battery box 35, and the manipulator 200 holds the battery box 35 and transports it to the vehicle-mounted battery box replacement system 564.
  • Step 122 The action control system 629 sends the action instruction for driving the battery box replacement control system 598 to the third programmable controller 597 of the battery box replacement control system 598 according to the pre-generated action program.
  • the action command supplies power to the sixth motor 562.
  • the third output shaft 561 of the sixth motor 562 drives the third screw rod segment 577 to rotate forward.
  • the third screw rod segment 577 pushes the third connecting rod 576 to move toward the battery box 35.
  • the third connecting rod 576 drives the ninth gripping plate 569 and the tenth gripping plate 571 to move toward the battery box 35.
  • the third connecting rod 576 moves to the nineteenth limit switch 579 position, and touches the nineteenth limit switch 579 to cause the nineteenth limit switch 579 to move.
  • the sixth motor 562 stops rotating, the ninth gripping plate 569 and the tenth gripping plate 571 are closed to the seventh gripping plate 245 and the eighth gripping plate 228, and the ninth gripping plate 569 and the tenth gripping plate 571 are clamped Battery Box 35.
  • Step 123 After determining that the number of battery boxes 35 predetermined by the remote operator 7 has been placed in the vehicle-mounted battery box replacement system 564, the monitoring device 626 ends the control.
  • Step 124 The action control system 629 sends the action instruction for driving the guard plate rotation control system 798 to the third programmable controller 597 of the guard plate rotation control system 798 according to the pre-generated action program, and the third programmable controller 597
  • the thirteenth motor 789 supplies power, and the thirteenth motor 789 drives the rotating shaft 791 and the guard plate 787 to rotate toward the twenty-fifth limit switch 795, rotate to the twenty-fifth limit switch 795 position, and touch the twenty-fifth limit switch. 795, the thirteenth electric motor 789 stops rotating, and the guard plate 787 is closed.
  • Step 125 The second electric vehicle 780 to be swapped navigates to the best operating position near the fourth charging and swapping cabinet 781 based on the location coordinates provided by the remote customer service attendant 6 .
  • Step 126 Repeat steps 85 and 86.
  • Step 127 The remote operator 7 activates the control system of the second robot 735, that is, the robot 78.
  • the selection system 627 sets the position of the robot 78 according to the position coordinates of the target second electric vehicle 780 to be replaced, and the action control system 629 makes the robot 78 Entering the working position, at this time, the fingers 124 of the manipulator 200 are opened.
  • Step 128 Repeat steps 87 to 92.
  • Step 129 Repeat steps 68 to 73.
  • Step 130 Repeat steps 50 to 55.
  • Step 131 Repeat steps 95 to 98.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种服务基地电能补给和被补给车通过物联网架构的补给体系由下列系统构成:多种电能补给车(30)和电能补给车控制系统(45);待换电电动汽车(41)和电动汽车换电控制系统(600);机器人(78)和机器人驱动系统(618)、搬运机器人(77)和搬运机器人控制系统(442);补光灯(127)、机械手控制系统(225)、机器人滑动器控制系统(226)、后车门控制系统(303)、侧车门控制系统(304)、多个充换电柜和充换电柜控制系统、多个可编程控制器。

Description

服务基地电能补给和被补给车通过物联网架构的补给体系 技术领域
本发明涉及电动汽车领域,特别是涉及一种服务基地电能补给和被补给车通过物联网架构的补给体系。
背景技术
2015年《联合国气候变化框架公约》近200个缔约方在巴黎气候变化大会上达成《巴黎协定》,世界各国对环境保护的重视对电动汽车的发展起到了促进作用。充电问题困扰着电动汽车的发展,目前最好的解决方案就是电动汽车换电模式,但是目前的换电站还是模仿汽油车去加油站加油的模式,即电动汽车去换电站找电池换掉亏电电池的状模式。用加油的站的思路建设换电站制约着电动汽车的发展。必须找到一条以电流为特点的换电模式建设电动汽车换电体系。但现有的固定式换电站数量少,待换电车辆要去找换电站才能进行换电,制约着电池为动力的汽车发展。把以换电站为中心的服务思路。变为以待换电车辆为中心的服务。
发明内容
现有的固定式换电站数量少,被换电车辆要去找换电站才能进行换电,制约着电池为动力的汽车发展。为了解决上述问题,本发明提供一种用符合电流特点的思路建设换电体系,即电找车的模式,来应对目前换电站数量较少车找电的现状。改变以换电站为中心的思路服务,变为以被换电池车辆为中心的服务,让电能补给车成为电动汽车的保姆车,完成让电动汽车的驾驶员不再为电池操心的去电池化服务。为了达到上述目的,本发明提供的服务基地电能补给和被补给车通过物联网架构的补给体系由下列系统构成:多种电能补给车和电能补给车控制系统;待换电电动汽车和电动汽车换电控制系统;机器人和机器人驱动系统、搬运机器人和搬运机器人控制系统;补光灯、机械手控制系统、机器人滑动器控制系统、后车门控制系统、侧车门控制系统、多个充换电柜和充换电柜控制系统、多个可编程控制器,多个无线可编程控制器,多种结构不同的待换电电动汽车。
本发明具有如下有益效果:服务基地电能补给和被补给车通过物联网架构的补给体系建设的电找车的模式对被换电车辆进行换电服务,省去了建设换电站环节,减少了大规模投资建换电站的情况,运行简便,节省场地,一辆电能补给车可为多辆电动汽车提供补给,可以根据电动汽车的拥有量投放电能补给车,避免无效投资。对车主的去电池化,让车主不用再为电池操心。
附图说明
图1是本发明的服务基地电能补给和被补给车通过物联网架构的补给体系的结构图;
图2为本发明的智能换电车的后车门系统的结构示意图;
图3是本发明的智能换电车在总部基地充电桩充电和智能换电车的侧视图;
图4是本发明的智能换电车的后部液压折叠门打开状态的结构示意图;
图5是本发明的智能换电车的充电系统的示意图;
图6是本发明的智能换电车的侧部对开门顶部轨道的结构示意图;
图7是本发明的智能换电车在公用充电桩充电和智能换电车的俯视图;
图8是本发明的智能换电车的机器人、第一、二、三充换电柜的各个坐标系图;
图9是本发明的机器人结构示意图;
图10是本发明的第一调平控制系统结构图;
图11是本发明的机器人移动装置立体图;
图12是本发明的远程控制台的立体图;
图13是本发明的机械手的俯视图;
图14是本发明的机器人机械手的侧视剖视图;
图15是本发明的机械手把持区域内把持电池箱时的第一工序的概要侧视图;
图16是本发明的机械手把持区域内把持电池箱时的第二工序的概要侧视图;
图17是本发明机的机械手控制系统框图;
图18是本发明机的机器人移动装置控制系统框图;
图19—图23是本发明的第一充换电柜和第二充换电柜的第一电池箱系统243的结构示意图;
图24是本发明的第一支架的正视图;
图25是本发明的第一支架的俯视图;
图26是本发明的第一电池箱控制系统框图;
图27为本发明的磁吸拔插双作用连接器浮动插头体的立体图;
图28为本发明的磁吸拔插双作用连接器插头的正视剖视图;
图29为本发明的电源浪涌保护器在电路中与电源线的常用连接方式是并联;
图30为本发明的磁吸拔插双作用连接器插头的正视图;
图31为本发明的磁吸拔插双作用连接器插合到位后的示意图;
图32为本发明的磁吸拔插双作用连接器插座的正视剖视图;
图33为本发明的磁吸拔插双作用连接器浮动插座体立体图;
图34为本发明的磁吸拔插双作用连接器插座的正视图;
图35是本发明的后车门控制系统、侧车门控制系统和第一至第十二电池箱仓控制系统与第一可编程控制器连接图;
图36是本发明的第三充换电柜正视图和第三充换电柜与充电桩连接示意图;
图37是本发明的第三充换电柜电池箱仓结构图;
图38是本发明的第三充换电柜冷却仓立体图;
图39是本发明的第一无线可编程控制器内部逻辑等效图;
图40是本发明的第十三充换电池箱控制系统到第十六充换电池箱控制系统的结构图;
图41是本发明的搬运机器人的俯视图;
图42是本发明的纠偏机构的立体图;
图43是本发明的搬运机器人的举升机构结构图;
图44和图46是本发明的搬运机器人的终端平台的结构图;
图45是本发明的搬运机器人的结构图;
图47是本发明的搬运机器人控制系统框图;
图48、图49、图51和图53是本发明的电动汽车底盘上的第一升降器到和第四升降器的结构图;
图50是本发明的第二双作用多级液压缸系统结构图;
图52是本发明的电动汽车和底盘上设置的二维码设置图;
图53是本发明的电动汽车支腿升降系统俯视图;
图54和图55是本发明的电池箱上设置的二维码的结构图;
图56和图57是本发明使用的二维码的结构图;
图54、图58—图61是本发明的电动汽车底盘上的电池箱控制器的结构示意图;
图62是本发明的电动汽车换电控制系统框图;
图63-图66是本发明的智能换电池车释放出的搬运机器人的第一、二、三、四行驶路径的模式图;
图65和图63是本发明的智能换电池车释放出的搬运机器人的第三行驶路径的模式图;
图64是本发明的第三待换电电动汽车与智能换电车换电作业图;
图65和图66是本发明的智能换电池车释放出的搬运机器人的第四行驶路径的模式俯视图;
图67是本发明的机器人控制系统框图;
图68是本发明的第二待换电电动汽车与智能换电车换电作业图;
图69是本发明的第二待换电电动汽车与第四充换电柜换电作业图;
图70—图75和图77是本发明的第二实施例的待换电电动汽车第二电动汽车电池箱更换系统结构图;
图76是本发明的第二实施例的待换电电动汽车换电控制系统结构图;
图78—图83是本发明的第二搬运机器人举升系统结构图;
图84是本发明的第二搬运机器人控制系统框图;
图85—图87是本发明的护板旋转系统结构;
图88是本发明的第三待换电电动汽车控制系统图。
具体实施方式
在图1-图88中,服务基地电能补给和被补给车通过物联网架构的补给体系3由远程控制系统2、电能补给车控制系统45、搬运机器人控制系统442、电动汽车换电控制系统600、第三充换电柜控制系统362、第一补给基地系统34和第二补给基地系统38组成并支撑电池箱运送网络44的循环。
远程控制系统2具有;远程通信系统1、备用远程通信系统4和远程服务终端系统19。
远程通信系统1具有无线载波系统28、全球导航卫星系统24、通信卫星23、上行链路发射站22、计算机21、地面网络20。
无线载波系统28是蜂窝电话系统,具有蜂窝塔25,移动交换中心26以及将无线载波系统28与地面网络20连接所需的其它联网组件。蜂窝塔25具有发送和接收天线以及基站,来自不同蜂窝塔的基站直接地连接到移动交换中心27或者通过基站控制器的中间设备连接到移动交换中心27。无线载波系统28实施的通信技术具有AMPS的模拟技术和CDMA和GSM/GPRS数字技术。
全球导航卫星系统24,是能在地球表面或近地空间的任何地点为用户提供全天候的三维坐标和速度以及时间信息的空基无线电导航定位系统。
通信卫星23作为无线电通信中继站的人造地球卫星,通信卫星可以传输电话和数据信息。
上行链路发射站22,上行链路指信号从移动台到基站的物理通道。
计算机21提供因特网连接访问的计算机,提供DNS服务和作为网络地址服务器,其使用DHCP或其它适当协议向电能补给车30和电动汽车41分配IP地址。
地面网络20具有公用电话交换网(PSTN)和因特网协议(IP)网络,标准有线网络、光纤网络、电缆网络、无线网络。
远程服务终端系统19具有的第二交换机17、服务器16、数据库15、计算机设备14、远程操作台系统13经由有线和无线局域网18可通信的连接。
第二交换机17路由输入信号,把话音传输被发送到远程操作台系统13的远程客户服务员6;并把数据传输传递到计算机设备14进行解调和进一步的信号处理。
计算机设备14具有编码器,连接到服务器16和数据库15。
服务器16发送和接收存储在数据库15、第一远程信息处理单元55和第二远程信息处理单元61中的数据信息。
数据库15能够存储账户信息、用户认证信息、车辆标识。还能够通过无线系统422.11x、GPRS进行数据传输。
远程操作台系统13具有远程控制台5、远程操作员7和远程客户服务员6。
远程控制台5具有的输入装置9、显示装置10、第二存储器11(RAM、ROM)和第二处理器12(CPU、GPU)通过第三通信总线8可通信地连接。输入装置9具有多个操作键的键盘,用于接收远程操作员7的输入操作。显示装置10为LCD有机EL显示器将数据显示为图像提供给远程操作员7。远程操作员7在远程控制台5激活第二处理器12后开始执行远程控制工作,远程客户服务员6负责对客户的语音和文字服务。
备用远程通信系统4是使用通信卫星23和上行链路发射站22来完成远程服务终端系统19和第一充电基地通信系统29、第二充电基地通信系统42、第三充电基地通信系统43、电能补给车通信系统57和电动汽车通信系统63之间的单向通信和双向通信。
在图1中,远程通信系统1的第三通信总线8与有线和无线局域网18连接,第二处理器12与第一交换机13连接,第一交换机13与有线和无线局域网18连接,有线和无线局域网18与第二交换机17连接,第二交换机17与地面网络20连接,地面网络20与移动交换中心26连接,移动交换中心26与无线载波系统28连接,无线载波系统28同时与第一充电基地通信系统29、第二充电基地通信系统42、第三充电基地通信系统43、电能补给车通信系统57和电动汽车通信系统63无线连接,并同时进行单向通信和双向通信。无线载波系统28与电能补给车通信系统57的第一远程信息处理单元55包含的第一蜂窝芯片组47经由蜂窝协议通过第一主天线54执行蜂窝通信,电能补给车通信系统57具有的第一通信总线56与机器人控制系统618的数据取得装置621连接。第一短距离无线通信(SRWC)电路46经由第一SRWC天线53通过搬运机器人77的第二天线355与无线通讯单元343连接。无线载波系统28与电动汽车通信系统63的第二远程信息处理单元61包含的第二蜂窝芯片组64经由蜂窝协议通过第二主天线59执行蜂窝通信。无线载波系统28通过第一天线354和蜂窝无线网络天线接口347与第二无线可编程控制器361连接,第二无线可编程控制器361与第十三电池箱仓控制系统653、第十四电池箱仓控制系统654、第十五电池箱仓控制系统655和第十六电池箱仓控制系统656连接。
在图1-图47和图67中,电能补给车控制系统45具有电能补给车系统33是能够行驶的运输电池箱35的工具,具备客车车体的电能补给车30和以集装箱为车体的第二电能补给车39。电能补给车控制系统45具有电能补给车通信系统57、电能补给车充电系统128、后车门控制系统303、后车门系统146;侧车门控制系统304、侧车门系统158;机器人滑动器控制系统226、机器人滑动器系统83;第一调平控制系统197、机械手控制系统225、机械手系统200;第一充换电柜控制系统632、第一充电换柜72、第二充换电柜控制系统633、第二充换电柜75、磁吸拔插双作用连接器系统278、机器人控制系统618、机器人78、第三充换电柜控制系统362、第三充换电柜31、搬运机器人控制系统442、搬运机器人系统638、搬运机器人77、第二搬运机器人79、监控器73、第一支架80、第 二支架81、多条支腿本发明中为四根:第一支腿84、第二支腿85、第三支腿86和第四支腿87。
电能补给车通信系统57具有的第一远程信息处理单元55、第一全球导航卫星系统接收器50和第一车载计算机51通过第一通信总线56可通信地连接。第一通信总线56使用网络协议向电能补给车通信系统57提供网络连接。第一全球导航卫星系统接收器50从全球导航卫星系统24接收无线电信号。第一全球导航卫星系统接收器50可以配置用于各种GNSS系统。第一远程信息处理单元55具有第一短距离无线通信(SRWC)电路46、第一蜂窝芯片组47、第一处理器48、第一存储器49、第一SRWC天线53和第一主天线54。第一SRWC天线53和第一短距离无线通信(SRWC)电路46连接。第一主天线54和第一蜂窝芯片组47连接。第一远程信息处理单元55配置为根据第一短距离无线通信(SRWC)电路46进行无线通信,Wi-Fi TM、WiMAX TM、Wi-Fi TM Direct、其它IEEE 802.11协议、ZigBee TM、Bluetooth TM、Bluetooth TM中的任何一种。第一处理器48是处理电子指令的设备,具有微处理器、微控制器、主处理器、控制器、车辆通信处理器和专用集成电路(ASIC)。
在图3和图5中,电能补给车系统33的电能补给车充电系统128具有光伏电池层134、充电控制器154、车载充电装置(OBC)156、电池管理系统(BMS)157、第一充换电柜72和第二充换电柜75。充电控制器154控制快速充电;车载充电装置(OBC)156控制缓慢充电,电池管理系统(BMS)157管理第一充换电柜72和第二充换电柜75并对其充电。充电控制器154、车载充电装置(OBC)156和电池管理系统(BMS)157通过控制器局域网(CAN)可通信地的连接。充电控制器154和车载充电装置(OBC)156通过第一线路155与电能补给车30的充电接口135连接。在电能补给车30车厢的前、后、左、右和顶部安装的光伏电池层134通过第二线路153与充电控制器154连接。光伏电池层134吸收太阳能,通过充电控制器154给第一充换电柜72和第二充换电柜75充电。
在图1-图7中、在电池箱运送网络44中完成满电和亏电电池箱的循环。将电能补给车30开到与待换电电动汽车41见面的停车场,把待换电电动汽车41中亏电的电池箱35取出,换上充满电的电池箱35,亏电电池箱35被电能补给车30运回第一充电基地34、第二充电基地38和第三充换电柜31进行充换电。电能补给车30回到第一充电基地34后,驾驶员40把自用充电桩36的充电枪136插到电能补给车30充电接口135上,自用充电枪136和充电接口135连接,对电能补给车30的第一充换电柜72和第二充换电柜75中的电池箱35充电。电能补给车30到达第二充电基地38的公用充电桩37,驾驶员40把公用充电桩37的充电枪137插到电能补给车30的充电接口135上,公共充电枪137和充电接口135连接,对电能补给车30的第一充换电柜72和第二充换电柜75中的电池箱35充电。
在图2-图5和图35中,在电能补给车30的后门框149的第一侧面142的底板139上安装后车门系统146具有的第三螺纹丝杆段295、第四支架299、第五支架297、第六支架301、第一限位开关294和第二限位开关296。在第六支架301上安装第一电动机298。第三螺纹丝杆段295贯穿第五螺母300、第四支架299和第五支架297。第一支杆143的上端与后车门上段130的内侧面上部铰接连接;第一支杆143的下端与第五螺母300连接,第一气压棒145的下端与后车门上段130的内侧面上部铰接连接;第一气压棒145的上端与后车门下段131的内侧面上部铰接连接。第二气压棒144的下端与后车门上段130的内侧面上部铰接连接;第二气压棒144的上端与后车门下段131的内侧面上部铰接连接。第一铰链140和第二铰链141的上端与电能补给车30的后门框149连接;第一铰链140和第二铰链141的下端与后车门上段130连接。后车门控制系统303的第一限位开关294和第二限位开关296与第一可编程控制器188连接,第一限位开关294和第二限位开关296与第一电动机298连接,第一电动机298与第一可编程控制器188连接。
在图3、图6和图35中,在电能补给车30车厢的侧面147上安装的侧车门系统158具有螺纹丝杆169、下端轨道179,第一滑动门132、第二滑动门133,第一支架159、第二支架166和第三支架167。在下端轨道179上安装第三限位开关176和第四限位开关180,在第三支架167上安装第二电动机168。在第一滑动门132的底部安装第一滑轮174和第二滑轮175,在第二滑动门133的底部安装第三滑轮177和第四滑轮178。第一滑轮174、第二滑轮175、第三滑轮177和第四滑轮178在下端轨道179上滑动。第一丝杆段161贯穿第一支架159、第一螺母160和第二螺母162;第二丝杆段164贯穿第二支架166第三螺母163和第四螺母165。第一螺母160与第一连接块170连接,第二螺母162与第二连接块171连接,第三螺母163与第三连接块172连接,第四螺母165与第四连接块173连接。第一连接块170和第二连接块171与第一滑动门132连接;第三连接块172和第四连接块173与第二滑动门133连接。第一可编程控制器188与侧车门控制系统304具有的第三限位开关176和第四限位开关180连接,第二电动机168与第三限位开关176和第四限位开关180连接,第二电动机168与第一可编程控制器188连接。
在图9和图13-图17中,在机器人滑动器系统83上安装的机器人78具有基座110,旋转主体112,其被支承为能够相对于基座110而绕垂直的第一轴111旋转;第一臂114,其被支承为能够相对于旋转主体112而绕水平的第二轴113旋转;第二臂118,其被支承为能够相对于第一臂114而绕水平的第三轴115旋转;第一腕部元件119,其被支承为能够相对于第二臂118而绕正交于第三轴115的第四轴116旋转;第二腕部元件120,其被支承为能够相对于第一腕部元件119而绕正交于第四轴116的第五轴117旋转;以及第三腕部元件125,其被支承为能够相对于第二腕部元件120而绕正交于第五轴117的第六轴121旋转。第一轴到第六轴中的每一个轴都安装有伺服电动机和编码器,将第一轴到第六轴安装的电动机总称为机器人驱动电动机634。机器人驱动电动机634用于旋转驱动,编码器用于检测机器人驱动电动机634的旋转角度。在第二腕部元件120上安装的视频传感器631由分开配置的第一摄像机122和第二摄像机126组成。在第二腕部元件120上安装补光灯127。在第三腕部元件125上安装的机械手200具有通过开闭的指部124来抓取或释放电池箱35;指部124由第一抓持板201和第二抓持板209组成。
在机械手系统200的第一主板211的第一侧面208上安装第一滑轨202、第二滑轨207、第一固定板214、第二固定板221,在第一承重板220中部安装第一法兰213。在第一主板211上设置第一空心槽199和第二空心槽210。在第一滑轨202上竖直安装第一抓持板201,第一抓持板201在第一滑轨202上滑动。在第二滑轨207上竖直安装第二抓持板209,第二抓持板209在第二滑轨207上滑动。在第一抓持板201上安装第一压力传感器222,在第二抓持板209上安装第二压力传感器247。在第一承重板220下部安装第七限位开关219和第八限位开关206。在第三侧面217上竖直安装第三抓持板198和第四抓持板212。在第一侧面208外部安装第一固定架203,在第一固定架203上安装第四电动机205,第四电动机205的第一输出轴204通过联轴器穿过第一固定架203与第一转杆220连接,第一转杆220上安装第一丝杆段218,把第一螺母216套装在第一丝杆段218上,在第一螺母216上安装第一连接杆215,第一连接杆215与第一抓持板201和第二抓持板209连接。机械手控制系统225的第二可编程控制器224与第七限位开关219和第八限位开关206连接;第四电动机205与第七限位开关219和第八限位开关206连接;第四电动机205与第二可编程控制器224连接。第一压力传感器222和第二压力传感器247与第二可编程控制器224电连接。
在图8图11和图18中,在电能补给车30上安装的机器人滑动器系统83上安装挡块103、导轨105、联轴器108、第五限位开关109、第六限位开关107和第三电动机129。在导轨105上安装螺旋导杆104,在螺旋导杆104上安装滑动基座106。第五限位开关109安装位置与第二作业位置71在一条垂直线上,第六限位开关107安装位置与第一作业位置74在一条垂直线上。螺旋导杆104与联轴器108连接,联轴器108与第三电动机129连接,机器人滑动器控制系统226的第一可编程控制器188与第五限位开关109和第六限位开关107连接,第三电动机129与第五限位开关109和第六限位开关107连接,第三电动机129与第一可编程控制器188连接。第一可编程控制器188控制第三电动机129带动在滑动基座106安装的机器人78,从第一作业位置74出发沿着第一轴线82到达第五限位开关109位置后,第三电动机129停止转动,机器人78到达第二作业位置71;机器人78沿着第一轴线82回到第六限位开关107位置,第三电动机129停止转动,机器人78回到第一作业位置74。
在图8-图10和图50中,电能补给车30的第一支腿84、第二支腿85、第三支腿86和第四支腿87都由第一调平控制系统197和第二双作用多级液压缸543和组成。第一调平控制系统197具有的第一液压压力传感器182、第一位置传感器183、第一测长传感器184、第一微波测距传感器185、第一倾斜传感器186、第二倾斜传感器187、第一液压伺服控制器189、第二液压伺服控制器191、第三液压伺服控制器193和第四液压伺服控制器195都通过数据线分别与第一可编程逻辑控制器188连接。第一液压伺服控制器189通过数据线与第一液压阀组190连接;第二液压伺服控制器191通过数据线与第二液压阀组192连接;第三液压伺服控制器193通过数据线与第三液压阀组194连接;第四液压伺服控制器195通过数据线与第四液压阀组196连接。
在第二双作用多级液压缸543的第二底座535下部安装的第一液压压力传感器182,将其受力情况的数据反馈至第一可编程逻辑控制器188;在第二底座535下部安装的第一位置传感器183检测支柱油缸完全收回状态并将数据反馈至第一可编程逻辑控制器188。第一测长传感器184安装在支柱油缸的顶部,检测支柱油缸伸缩位置距离,并将支柱油缸伸缩速度和位置数据反馈至第一可编程逻辑控制器188。第一微波测距传感器185安装在液压支柱顶部,用于检测支柱到地面的距离,并将数据反馈至第一可编程逻辑控制器188。第一倾斜传感器186和第二倾斜传感器187安装在电能补给车30底盘的中心处,用于检测在X轴方向和Y轴方向的倾斜数据。
控制第一调平控制系统197的动作指令由远程操作员7通过远程操作台系统13下达,通过远程控制系统2上传到第一可编程逻辑控制器188,第一可编程逻辑控制器188根据传感器反馈的数据及预设的动作指令,发出控制信号到第一液压伺服控制器189、第二液压伺服控制器191、第三液压伺服控制器193和第四液压伺服控制器195。第一液压伺服控制器189根据控制信号控制第一液压阀组190动作;从而控制第一支腿84的第二双作用多级液压缸543完成伸缩动作到指定位置。第二液压伺服控制器191根据控制信号控制第二液压阀组192动作,从而控制第二支腿85的第二双作用多级液压缸543完成伸缩动作到指定位置。第三液压伺服控制器193根据控制信号控制第三液压阀组194动作,从而控制第三支腿86的第二双作用多级液压缸543完成伸缩动作到指定位置。第四液压伺服控制器195根据控制信号控制第四液压阀组196动作,从而控制第四支腿87的第二双作用多级液压缸543完成伸缩动作到指定位置。第一支腿84、第二支腿85、第三支腿86和第四支腿87都到达指定位置后,第一调平控制系统197具有的第一支腿84、第二支腿85、第三支腿86和第四支腿87调平过程如下:第一调平控制系统197的动作指令由远程操作员7通过远程操作台系统13下达,通过远程控制系统2上传到第一可编程逻辑控制器188启动调平作业,第一调平控制系统197按照计算的支柱到地面的距离控制支柱油缸伸出长度,第一测长传感器184对应检测检测支柱油缸伸出长度数值,直到支柱油缸第一液压压力传感器182检测到支柱油缸承压达到预设值,说明支柱油缸已经触顶,系统重新读取各个第一微波测距传感器185和第一测长传感器184对应检测检测支柱油缸伸出长度数值,同时读取第一倾斜传感器186和第二倾斜传感器187分别检测车辆在X轴方向和Y轴方向的倾斜状态,第一调平控制系统197根据各个传感器反馈信息,按预设模型计算出电动汽车底盘497倾斜状态,并按系统设定给出调平控制方案,控制各个支柱按调平控制方案完成自动调平。
在图19-图23和图26中,在第一电池箱系统243的第二主板240下部安装第三固定板251和第四固定板232。在第三固定板251上安装第三滑轨250,在第四固定板232上安装第四滑轨258。在第二主板240上设置第三空心槽239和第四空心槽248。在第三滑轨250上竖直安装第五抓持板241,在第五抓持板241上设置第一抓持器258,第五抓持板241在第三滑轨250上滑动。在第四滑轨258上竖直安装第六抓持板231,在第六抓持板231上设置第二抓持器233,第六抓持板231在第四滑轨258上滑动。在第七侧面238上安装插头261;在第七侧面238上竖直安装第七抓持板245,在第七抓持板245上设置第三抓持器246;在第七侧面238上竖直安装第八抓持板228,在第八抓持板228上设置第四抓持器229,第一抓持器258、第二抓持器233、第三抓持器246和第四抓持器229均是半圆形,便于固定电池箱35。在第五侧面244上安装的第二固定架236上安装第五电动机235,第五电动机235的第二输出轴234通过联轴器穿过第二固定架236与第二转杆256连接。在第二转杆256上安装第二丝杆段253,把第二螺母254套装在第二丝杆段253上。在第二螺母254上安装第二连接杆255,第二连接杆255与第五抓持板241和第六抓持板231连接。在第二承重板249下部安装第九限位开关252和第十限位开关257。在智能换电车30上安装的第一可编程控制器188与第九限位开关252和第十限位开关257连接,第九限位开关252和第十限位开关257与第五电动机235连接,第五电动机235与第一可编程控制器188连接。
在图8、图19-图23和图35中,将多个第一电池箱系统243用第一螺丝227分别固定在第一支座237上组成第一充换电柜72中的第一电池箱仓305、第二电池箱仓307、第三电池箱仓309、第四电池箱仓311、第五电池箱仓313、第六电池箱仓315和第二充换电柜75中的第七电池箱仓306、第八电池箱仓308、第九电池箱仓310、第十电池箱仓312、第十一电池箱仓314、第十二电池箱仓316。第一可编程控制器188控制由第一电池箱控制系统260和第一电池箱系统243构成的第一充换电柜控制系统632具有的第一电池箱仓控制系统641、第二电池箱仓控制系统643、第三电池箱仓控制系统645、第四电池箱仓控制系统647、第五电池箱仓控制系统649、第六电池箱仓控制系统651和第二充换电柜控制系统633具有的第七电池箱仓控制系统642、第八电池箱仓控制系统644、第九电池箱仓控制器系统646、第十电池箱仓控制系统648、第十一电池箱仓控制系统650和第十二电池箱仓控制系统652的动作。
在图27-图34中,磁吸拔插双作用连接器系统278具有插头261和插座262,插头261安装在电动汽车底盘设备上,插座262安装在电池箱35上。插头261具有插头壳体266、插头减震橡胶球267、第一输出口268、第二输出口269、第三输出口270、浮动插头体263、浮动插头体前端265;在浮动插头体前端265上安装的第一N极磁铁圆锥体定位器264、第二N极磁铁圆锥体定位器273、第一高压正极插接件274、第一高压负极插接件276、第一接地插接件275、第一插针阵列271设置为2排12个小电流插针,第一降温空气进口272、第一降温空气出口277。插头减震橡胶球267安装在插头壳体266内,插头壳体266和浮动插头体263之间,插头减震橡胶球267与插头壳体266的内壁和浮动插头体263的外部紧密接触,具有弹性和缓冲作用。第一输出口268是第一降温空气进口272和第一降温空气出口277的连接管道进入电动汽车底盘的通道;第二输出口269是连接第一高压正极插接件274、第一高压负极插接件276和第一接地插接件275的导线进入电动汽车底盘的通道;第三输出口270是第一插针阵列271连接线进入电动汽车底盘的通道。
插座262具有浮动插座体279、插座壳体282、第四输出口283、第五输出口284、第六输出口285和插座减震橡胶球286。在浮动插座体279具有的浮动插座体前端281上安装第一S极磁铁浮倒圆锥体定位器280、第二S极磁铁倒圆锥体定位器287、第二高压正极接插件288、第二高压负极接插件291、第二接地接插件289、第二插针基座290设置为2排12个小电流插孔、第二降温空气进口292、第二降温空气出口293。插座减震橡胶球286安装在插座壳体282内,插座壳体282和浮动插座体279之间,插座减震橡胶球286与插座壳体282的内壁和浮动插座体279的外部紧密接触且具有弹性和缓冲作用。第四输出口283是第二降温空气进口292和第二降温空气出口293的连接管道进入电池箱35的通道;第五输出口284是连接第二高压正极接插件288和第二高压负极接插件291的导线进入电池箱35的通道;第六输出口285是第二插针基座290连接线进入电池箱35的通道。
在图31和图60中,在第三主板557下部安装信号线、控制线路保护器640和电源浪涌保护器639。第一插针阵列271连接线与信号线、控制线路保护器640串联连接。
在图29和图31中,第一高压正极插接件274、第一高压负极插接件276、第一接地插接件275电源线与电源浪涌保护器639并联连接。
电池箱35向插头261方向运动,插座262逐渐靠近插头261,由于异性相吸插头261上的第一N极磁铁圆锥体定位器264逐渐插 入到插座262上的第一S极磁铁浮倒圆锥体定位器280内部;由于异性相吸插头261上第二N极磁铁圆锥体定位器273逐渐插入到插座262上第二S极磁铁倒圆锥体定位器287内部。浮动插头体263和浮动插座体279吸附紧密接触后,第一高压正极插接件274与第二高压正极接插件288插合到位;第一高压负极插接件276与第二高压负极接插件291插合到位;第一接地插接件275与第二接地接插件289插合到位;第一插针阵列271插针与第二插针基座290插孔啮合到位;第一降温空气进口272与第二降温空气进口292插合到位,第一降温空气出口277与第二降温空气出口293插合到位后,电池箱35内的气体开始与电动汽车41内部的空气降温系统流通。插头减震橡胶球267和插座减震橡胶球286用于化解电动汽车运动产生的震动传导到电池箱35后带动浮动插座体279的震动。
在图39中,第一无线可编程控制器356的主控单元345具有的第一存储器341、第一处理器342和无线通讯单元343信号连接。主控单元345分别与输入输出单元344、以太网通讯单元349、RS485通讯单元350、RS232通讯单元351和CAN通讯单元352信号连接。主控单元345和电源单元353连接。无线通讯单元343包含短信与GPRS通信的射频电路。无线通讯单元343分别与SIM卡座接口346、蜂窝无线网络天线接口347和WIFI天线接口348信号连接。蜂窝无线网络天线接口347与第一天线354信号连接;WIFI天线接口348与第二天线355信号连接。第一无线可编程控制器356直接构建远程控制系统,具备输入采集、继电器控制、定时器和串口通信,GPRS、短信和无线数传电台通信功能,在软件上具备读输入、执行程序、处理通信请求、执行CPU自诊断和写输出这五个扫描周期过程,还具备信道管理、驱动管理、采集管理和应用管理、远程采集管理功能。
在图8、图19-图23和图36-图40中,将多个第一电池箱系统243用第一螺丝227分别固定在第一支座237上组成第三充换电柜31。在第三充换电柜31内部安装第二无线可编程控制器361,第二无线可编程控制器361由第一无线可编程控制器356的功能构成。第二无线可编程控制器361控制第一电池箱系统243构成的第三充换电柜控制系统362具有的第十三电池箱仓控制系统653、第十四电池箱仓控制系统654、第十五电池箱仓控制系统655和第十六电池箱仓控制系统656的动作。第二无线可编程控制器361与第九限位开关252和第十限位开关257连接,第九限位开关252和第十限位开关257与第五电动机235连接,第五电动机235与第二无线可编程控制器361连接。第十三电池箱仓控制系统653、第十四电池箱仓控制系统654、第十五电池箱仓控制系统655和第十六电池箱仓控制系统656同时与第二无线可编程控制器361连接。
第三充换电柜31具有箱体321、门体324、顶部防雨板317、第二监控器322。在箱体321内安装电池箱仓329,在电池箱仓329内部安装第十三电池箱仓357、第十四电池箱仓358、第十五电池箱仓359和第十六电池箱仓360。在电池箱仓329上部安装压缩机仓337,在箱体321的前表面安装门体324,在箱体321内部安装保温层323,在箱体321上安装进风口328和出风口327,压缩机仓337通过进风口328和出风口327与箱体321下方的外部空间连通,对压缩机仓337进行散热,在缩机仓337安装冷凝器333和安装压缩机334;在侧面板331上安装侧面进风口330,在侧面板335上安装侧面出风口336。公用充电桩37的充电枪137与第三充换电柜31充电接口318连接。
在图1和图8、图9和图67中,电能补给车控制系统45具备机器人控制系统618和远程操作台系统13。机器人控制系统618具有第三存储器624和第三处理器622,第三存储器624具有ROM和RAM存储各种数据;第三处理器622为CPU或GPU。第三存储器624与第三处理器622经由第四通信总线623可通信地连接。机器人控制系统618控制电动汽车换电控制系统600、搬运机器人控制系统442、第三充换电柜控制系统362、机器人驱动系统630、补光灯127、机械手控制系统225、机器人滑动器控制系统226、后车门控制系统303、侧车门控制系统304、第一充换电柜控制系统632、第二充换电柜控制系统633、第一可编程控制器188、第二可编程控制器224、第三可编程控制器597、第二无线可编程控制器361、第三无线可编程控制器433、第四无线可编程控制器752、第一调平控制系统197、第二调平控制系统432、第三调平控制系统616和第四调平控制系统696。
远程操作台系统13具有远程控制台5、远程操作员7和远程客户服务员6。远程控制台5具有的输入装置9、显示装置10、第二存储器11(RAM、ROM)和第二处理器12(CPU、GPU)通过第三通信总线8可通信地连接。输入装置9具有多个操作键的键盘,用于接收远程操作员7的输入操作。显示装置10为LCD显示器将数据显示为图像。远程操作台系统13通过远程控制系统2与机器人控制系统618可通信地连接。远程控制台5的第二处理器12经由输入装置9接受远程操作员7预先生成的动作程序的输入,将该动作命令的输入信息发送到机器人控制系统618的第三存储器624的动作程序存储系统625。
动作控制系统629根据远程操作员7预先生成的动作程序以下简称“预先生成的动作程序”将驱动侧车门系统158的动作指令发送到侧车门控制系统304的第一可编程控制器188,第一可编程控制器188根据动作指令对第二电动机168供电。动作控制系统629根据预先生成的动作程序将驱动后车门系统146的动作指令发送到后车门控制系统303的第一可编程控制器188,第一可编程控制器188根据动作指令对第一电动机298供电。动作控制系统629根据预先生成的动作程序将用于驱动机器人78的动作程序指令发送到机器人驱动系统630,机器人驱动系统630具有驱动机器人驱动电动机634的电路,机器人驱动系统630根据动作指令对机器人驱动电动机634供电。动作控制系统629根据预先生成的动作程序将驱动机械手200的动作指令发送到机械手控制系统225的第二可编程控制器224,第二可编程控制器224根据动作指令对第四电动机205供电。动作控制系统629根据预先生成的动作程序将驱动机器人滑动器系统83的动作指令发送到机器人滑动器控制系统226的第一可编程控制器188,第一可编程控制器188根据动作指令对第三电动机129供电,机器人滑动器系统83将机器人78配置在第一作业位置74或第二作业位置71。向机器人控制系统618输入预先生成的动作程序以进行机器人78的动作,预先生成的动作程序被存储到第三存储器624的动作程序存储系统625,机器人控制系统618根据预先生成的动作程序来输送电池箱35。机器人78能够自动地将电池箱35输送到预定的位置。动作控制系统629根据预先生成的动作程序将驱动视频传感器631的动作指令发送到视频传感器631,动作控制系统629根据远程操作员7预先生成的根据图像清晰度自动补光程序,将驱动补光灯127补光的动作指令发送到补光灯127,对视频传感器631采集的区域进行补光。
机器人控制系统618具有的获取系统628对由第一摄像机122和第二摄像机126拍摄得到的图像进行处理。获取系统628能够通过立体法来生成电池箱35的三维信息。三维信息具有与设定在电池箱35第一侧面的第十二二维码468为第一测量点的位置以及从视频传感器631至第一测量点为止的距离有关的信息。获取系统628根据由第一摄像机122和第二摄像机126拍摄得到的两个图像的视差,计算直到对电池箱35设定的第一测量点为止的距离。
监控装置626具有的选择系统627根据从视频传感器631的图像获取的三维信息来选择目标电池箱35。选择系统627根据三维信息来检测电池箱35的位置和姿势,按照电池箱35的位置从高到低的顺序选择电池箱35。选择系统627对动作控制系统629发送机器人78的目标位置和目标姿势。机器人78朝向目标位置和目标姿势并变更位置和姿势。此时,机械手200使指部124处于打开的状态,以便在指部124之间配置电池箱35。在机器人78到达目标位置和目标姿势之后,将机械手200的指部124闭合来把持电池箱35,动作控制系统629变更机器人78的位置和姿势而将电池箱35输送到期望的位置。
远程操作员7在输入装置9的键盘上将机器人滑动器坐标系CT设定为,其原点配置在导轨105的左端,其X轴方向与第一轴线82方向一致,其Y轴方向与在第一充换电柜72内部的取出和放入电池箱35的方向一致,,其Z轴方向与铅垂方向平行。远程操作员7在输入装置9的键盘上将机器人坐标系C R设定为,其原点配置在基座110的中心,其X轴方向与第一轴线82方向一致,其Y轴方向与在第一充换电柜72内部的取出和放入电池箱35的方向一致,其Z轴方向与铅垂方向平行。将机器人滑动器坐标系CT设定为,其原点配置在导轨105的左端,其X轴方向与第一轴线82方向一致,其Y轴方向与机器人坐标系C R的Y轴方向一致,其Z轴方向与铅垂方向平行。将第一充换电柜坐标系C E设定为,其原点配置在第一充换电柜72顶部的中心,其X轴方向与第一轴线82方向一 致,其Y轴方向与机器人坐标系C R的Y轴方向一致,其Z轴方向与铅垂方向平行。将第二充换电柜坐标系C F设定为,其原点配置在第二充换电柜75顶部的中心,其X轴方向与第一轴线82方向一致,其Y轴方向与机器人坐标系C R的Y轴方向一致,其Z轴方向与铅垂方向平行。将搬运机器人77的坐标系CK设定为,其原点配置在搬运机器人77顶部的中心,其X轴方向与第一轴线82方向一致,其Y轴方向与机器人坐标系C R的Y轴方向一致,其Z轴方向与铅垂方向平行。将第二搬运机器人79的坐标系CN设定为,其原点配置在第二搬运机器人79顶部的中心,其X轴方向与第一轴线82方向一致,其Y轴方向与机器人坐标系C R的Y轴方向一致,其Z轴方向与铅垂方向平行。将第三充换电柜坐标系C H设定为,其原点配置在第三直流充换电柜30顶部的中心,其X轴方向与第一轴线82方向一致,其Y轴方向与在第三直流充换电柜30内部的取出和放入电池箱35的方向成90°夹角,其Z轴方向与铅垂方向平行。
机器人78对第一充电换柜72作业时,机器人滑动器105将机器人78运送到在预先选定的第一作业位置74上,第一作业位置74在第一轴线82方向上。在第一作业位置74以机器人坐标系C R为基准对机器人78进行控制。机器人78与第一电池箱仓控制系统641、第二电池箱仓控制系统643、第三电池箱仓控制系统645、第四电池箱仓控制系统647、第五电池箱仓控制系统649、第六电池箱仓控制系统651中的电池箱35在第一充换电柜坐标系C E的Y轴方向上被取出和放入的动作相协调,依次完成在第一充电换柜72中取出和放入电池箱35的作业。机器人78对第二充电换柜75作业时,机器人滑动器105将机器人78运送到在预先选定的第一作业位置74上,第一作业位置74在第一轴线82方向上。在第一作业位置74以机器人坐标系C R为基准对机器人78进行控制,机器人78与第七电池箱仓控制系统642、第八电池箱仓控制系统644、第九电池箱仓控制器系统646、第十电池箱仓控制系统648、第十一电池箱仓控制系统650和在第十二电池箱仓控制系统652中的电池箱35在第二充换电柜坐标系C F的Y轴方向上被取出和放入的动作相协调,依次完成在第二充电换柜75中取出和放入电池箱35的作业。机器人78对第三充电换柜30作业时,机器人滑动器105将机器人78运送到在预先选定的第二作业位置71上,第二作业位置71在第一轴线82方向上。在第二作业位置71以机器人坐标系C R为基准对机器人78进行控制,机器人78与第十三电池箱仓控制系统653、第十四电池箱仓控制系统654、第十五电池箱仓控制系统655和第十六电池箱仓控制系统656中的电池箱35,在第三充换电柜坐标系C H的X轴方向上被取出和放入的动作相协调,依次完成在第三充电换柜30中取出和放入电池箱35的作业。
图41-图47中,搬运机器人控制系统442通过具有的第二调平控制系统432、避障系统434、磁导航系统435、行走机构控制系统436、视觉导航系统437、终端平台旋转控制系统438和角度纠偏机构控制系统439。搬运机器人系统638具有搬运机器人行走系统637、搬运机器人举升系统636和角度纠偏系统635。在搬运机器人底盘384上安装搬运机器人行走系统637、搬运机器人举升系统636和角度纠偏系统635。搬运机器人控制系统442的第二调平控制系统432、角度纠偏机构控制系统439和行走机构控制系统436与第三无线可编程控制器433连接。第三无线可编程控制器433由第一无线可编程控制器356的功能构成。无线载波系统28与电能补给车通信系统57的第一远程信息处理单元55包含的第一蜂窝芯片组47经由蜂窝协议通过第一主天线54执行蜂窝通信,电能补给车通信系统57具有的第一通信总线56与机器人控制系统618的数据取得装置621连接。第一短距离无线通信(SRWC)电路46经由第一SRWC天线53通过搬运机器人77的第二天线355与无线通讯单元343连接。
电能补给车通信系统57将接收到的传感器信号输出到数据取得装置621,数据取得装置621将所取得的传感器信号存储在第三存储器624中。动作控制系统629根据来自搬运机器人控制系统442的每一个所包含的旋转编码器的位置检测器的信号进行反馈控制,使得机器人78的各个机器人驱动电动机634的旋转与动作程序的指令一致,配合搬运机器人控制系统442的作业。远程操作员7通过远程操作台系统13下达,控制搬运机器人控制系统442的动作指令,通过远程控制系统2上传到机器人控制系统618的动作控制系统629,动作控制系统629根据预先生成的动作程序输出驱动指令到第三无线可编程控制器433,第三无线可编程控制器433控制搬运机器人77执行各个程序。
在搬运机器人底盘384上安装第三无线可编程控制器433、避障系统434、视觉导航系统437、信号预处理器449、电子差速控制器450、第一电机控制器390、第一驱动电动机389、第一转速传感器451、第二电机控制器391、第二驱动电动机392、第二转速传感器452、第三电机控制器404、第三驱动电动机403、第三转速传感器453、第四电机控制器402、第四驱动电动机407、第四转速传感器454、电池充电口406、电池401和启动开关405。第三无线可编程控制器433与信号预处理器449连接,信号预处理器449与电子差速控制器450连接,电子差速控制器450与第一电机控制器390、第二电机控制器391、第三电机控制器404和第四电机控制器402连接。第一驱动电动机389与第一电机控制器390连接并受其控制;第二驱动电动机392与第二电机控制器391连接并受其控制;第三驱动电动机403与第三电机控制器404连接并受其控制;第四驱动电动机407与第四电机控制器402连接并受其控制。第一驱动电动机389与第一车轮382连接并直接驱动,第二驱动电动机392与第二车轮386连接并直接驱动,第三驱动电动机403与第三车轮385连接并直接驱动,第四驱动电动机407与第四车轮388连接并直接驱动,电池401通过启动开关405与第三无线可编程控制器433连接,启动开关405控制电池401通断。电池充电口406与电池401连接。
避障系统434具有超声波测距传感器395和激光测距传感器396。超声波测距传感器395分两路共8个超声探头,通过RS485通讯单元350与第三无线可编程控制器433连接。激光测距传感器396通过4个传感器串联连接至第三无线可编程控制器433的CAN通讯单元352。视觉导航系统437具有的第三摄像机394和第四摄像机398与图像传感器393电连接,图像传感器393与第三无线可编程控制器433电连接。磁导航系统435的磁导航传感器397与第三无线可编程控制器433电连接。
第二调平控制系统432控制的搬运机器人举升系统636由在第二底板377的四角上安装的多个第一双作用多级液压缸431组成,在本实施例中,第一双作用多级液压缸431为四根,即第一顶升柱383、第二顶升柱376、第三顶升柱387和第四顶升柱373都由第二调平控制系统432和第一双作用多级液压缸431组成。在第一顶升柱383、第二顶升柱376、第三顶升柱387和第四顶升柱373的顶部安装支板363。第二调平控制系统432具有的第二液压压力传感器429、第二位置传感器408、第二测长传感器419、第二微波测距传感器420、第三倾斜传感器399、第四倾斜传感器400、第五液压伺服控制器440、第六液压伺服控制器443、第七液压伺服控制器445和第八液压伺服控制器447通过数据线分别与第三无线可编程控制器433连接。第五液压伺服控制器440通过数据线与第五液压阀组441连接;第六液压伺服控制器443通过数据线与第六液压阀组444连接;第七液压伺服控制器445通过数据线与第七液压阀组446连接;第八液压伺服控制器447通过数据线与第八液压阀组448连接。
在角度纠偏系统635的支板363上安装第二十一限位开关364、第二十二限位开关368、连接圆环367、轴承370的外圈、第七支架378、第三倾斜传感器399和第四倾斜传感器400。在第七支架378上安装伺服电机374,在伺服电机374的轴上安装编码器375。小齿轮369的轴穿过轴承370的内圈通过联轴器302与伺服电机374的输出轴连接。滚珠轴承套设在连接圆环367的外侧壁上,在滚珠轴承上安装定位齿轮365,在定位齿轮365上安装转动定位块366和电池托盘380,在电池托盘380上安装第十五二维码663和定位块604,在本实施例定位块604为4个,用于固定电池箱35。小齿轮369和定位齿轮365相啮合,伺服电机374带动小齿轮369转动时,定位齿轮365带动电池托盘380转动。在第二底板377上安装伺服电机控制器372,用螺丝通过安装口371把第二底板377固定在搬运车底盘384上。
第二十一限位开关364和第二十二限位开关368与支板363中心点在一条直线上。角度纠偏控制系统439具有的第三无线可编程控制器433与伺服电机控制器372连接,伺服电机控制器372与伺服电机374连接,伺服电机374与编码器375连接,编码器375与第三无线可编程控制器433连接。第二十一限位开关364和第二十二限位开关368与第三无线可编程控制器433连接。伺服电机374 每旋转一个角度,就发出对应数量的脉冲和伺服电机374接受的脉冲形成了呼应,角度纠偏控制系统439就知道发了多少脉冲给伺服电机374,同时又回收了多少脉冲,对伺服电机374的转动实现定位。编码器375用于检测伺服电机374的轴的转动角度,编码器375将检测到的角度值传输到第三无线可编程控制器433,第三无线可编程控制器433基于编码器375检测到的角度值以及转动时间,计算转动速度。伺服电机374带动定位齿轮365逆时针转动90°到第二十一限位开关364位置,转动定位块366触动第二十一限位开关364伺服电机374停止转动。伺服电机374带动定位齿轮365顺时针转动90°到第二十二限位开关368位置,转动定位块366触动第二十二限位开关368伺服电机374停止转动。
在支板363上安装第十一电动机549和转轴605,在转轴605上安装终端平台381,在终端平台381上安装第三摄像机394、第四摄像机398、超声波测距传感器395、激光测距传感器396、磁导航传感器397、导线进出口606和第十四二维码338。在支板363上安装第十九限位开关547和第二十限位开关548。
远程操作员7在机器人控制系统618上设置电池托盘380与车载电池箱更换系统564的正确对应角度,在电池托盘380与换电箱的对应角度有偏差时,机器人控制系统618通过第三无线可编程控制器433发送控制信号至伺服电机控制器372,伺服电机控制器372控制伺服电机374产生特定的扭矩,控制电池托盘380的转动角度,使电池托盘380回到与换电箱的正确对应角度。在调整完成后,读取编码器375的转动角度,并将编码器375所检测的转动角度与设置的转动角度进行比对,保证电池托盘380转动角度的精确性。
在图43中,第一双作用多级液压缸431为N级液压缸N≥2,本发明为三级缸,当三级液压缸顶升时液压油从第二油口427进入到一级缸顶升油腔426首先将一级缸活塞410向上顶起,然后液压油通过二级缸顶升油腔油道425进入二级缸顶升油腔424将二级缸活塞414向上顶起,再通过三级缸顶升油腔油道423进入三级缸顶升油腔422将三级缸活塞421向上顶起,各级收缩油腔里的余油通过收缩油腔油道进入中置油管流出第一油口409。当三级液压缸收缩时液压油从第一油口409进入到各级中置油管通过一级缸收缩油腔油道411进入一级缸收缩油腔412将一级缸活塞410向下压缩,然后通过二级缸收缩油腔油道415进入二级缸收缩油腔416将二级缸活塞414向下压缩,再通过三级缸收缩油腔油道417进入三级缸收缩油腔418将三级缸活塞421向下压缩,各级顶升油腔里的余油通过顶升油腔油道流出第二油口427。
第二液压压力传感器429安装在支柱底端的第一底座430上,将支柱油缸的受力情况的数据反馈至第三无线可编程控制器433。第二位置传感器408安装在支柱底端的第一底座430上,检测支柱油缸完全收回状态并将数据反馈至第三无线可编程控制器433。第二测长传感器419安装在支柱油缸的顶部,检测支柱油缸伸缩位置距离,并将支柱油缸伸缩速度和位置数据反馈至第三无线可编程控制器433。第二微波测距传感器420安装在液压支柱顶部,用于检测支柱到支柱底端的距离,并将数据反馈至第三无线可编程控制器433。第三倾斜传感器399和第四倾斜传感器400安装在顶部安装支板363的中心处,用于检测顶部安装支板363在X轴方向和Y轴方向的倾斜数据。
在图1和图48-图62中,电动汽车换电控制系统600由电动汽车通信系统63、第三可编程控制器597、电池箱更换控制系统598、车载电池箱更换系统564、第二转动控制系统599、第二转动控制系统601、第三转动控制系统602、第四转动控制系统603和第三调平控制系统616组成。
电动汽车通信系统63具有的第二远程信息处理单元61、第二全球导航卫星系统接收器68和第二车载计算机69通过第二通信总线62可通信地连接。第二通信总线62使用网络协议向电动汽车通信系统63提供网络连接。第二全球导航卫星系统接收器68从全球导航卫星系统24接收无线电信号。第二全球导航卫星系统接收器68可以配置用于各种GNSS系统。第二远程信息处理单元61具有第二蜂窝芯片组64、第二短距离无线通信(SRWC)电路65、第二处理器66、第二存储器67、第二主天线59和第二SRWC天线60。第二主天线59和第二蜂窝芯片组64连接。第二SRWC天线60和第二短距离无线通信(SRWC)电路65连接。第二远程信息处理单元61配置为能够根据第二短距离无线通信(SRWC)电路65进行无线通信,Wi-Fi TM、WiMAX TM、Wi-Fi TM Direct、其它IEEE 802.11协议、ZigBee TM、Bluetooth TM、Bluetooth TM中的任何一种。第二处理器66是处理电子指令的设备,具有微处理器、微控制器、主处理器、控制器、车辆通信处理器和专用集成电路(ASIC)。第二通信总线62与在电动汽车41上安装的第三可编程控制器597可通信地连接。无线载波系统28与电动汽车通信系统63的第二远程信息处理单元61包含的第二蜂窝芯片组64经由蜂窝协议通过第二主天线59执行蜂窝通信。
在图48—图53中,电动汽车支腿升降系统573具有第一升降器472、第二升降器491、第三升降器505和第四升降器516。第一升降器472组成如下:在电动汽车底盘497上安装第八支架477,在第八支架477上安装第七电动机476、第一万向齿轮478和第二万向齿轮479,第一万向齿轮478与第二万向齿轮479相啮合,在第二万向齿轮479的第一转杆473上安装第一支腿475,在第一支腿475上安装第一防尘盖474,第七电动机476的输出轴通过联轴器穿过第八支架477与第一万向齿轮478连接,在电动汽车底盘497上安装第十一限位开关480和第十二限位开关481。第一转动控制系统599的第三可编程控制器597与第十一限位开关480和第十二限位开关481连接,第七电动机476与第十一限位开关480和第十二限位开关481连接,第七电动机476与第三可编程控制器597连接。使用时,第三可编程控制器597控制第七电动机476启动,第七电动机476带动第一万向齿轮478转动,第一万向齿轮478带动第二万向齿轮479转动,第二万向齿轮479带动第一转杆473转动,第一转杆473带动第一支腿475转动。
第二升降器491组成如下:在电动汽车底盘497上安装第九支架488,在第九支架488上安装第八电动机489、第三万向齿轮485和第四万向齿轮487。第三万向齿轮485和第四万向齿轮487相啮合,第三万向齿轮485的第二转杆484上安装第二支腿490,在第二支腿490上安装第二防尘盖483,第八电动机489的输出轴通过联轴器穿过第九支架488与第四万向齿轮487连接,在电动汽车底盘497上安装第十三限位开关492和第十四限位开关493。第二支腿升降控制系统601的第三可编程控制器597与第十三限位开关492和第十四限位开关493连接,第十三限位开关492和第十四限位开关493与第八电动机489连接,第八电动机489与第三可编程控制器597连接。使用时,第三可编程控制器597控制第八电动机489启动,第八电动机489带动第四万向齿轮487转动,第四万向齿轮487带动第三万向齿轮485转动,第三万向齿轮485带动第二转杆484转动,第二转杆484带动第二支腿490转动。
第三升降器505组成如下:在电动汽车底盘497上安装第十支架500,在第十支架500上安装第九电动机501、第五万向齿轮498和第六万向齿轮499。第五万向齿轮498和第六万向齿轮499相啮合,在第五万向齿轮498的第三转杆504上安装第三支腿502,在第三支腿502上安装第三防尘盖503,第九电动机501的输出轴通过联轴器穿过第十支架500与第六万向齿轮499连接,在电动汽车底盘497上安装第十五限位开关506和第十六限位开关507。第三支腿升降控制系统602的第三可编程控制器597与第十五限位开关506和第十六限位开关507连接,第十五限位开关506和第十六限位开关507与第九电动机501连接,第九电动机501与第三可编程控制器597连接。使用时,第三可编程控制器597控制第九电动机501启动,第九电动机501带动第六万向齿轮499转动,第六万向齿轮499带动第五万向齿轮498转动,第五万向齿轮498带动第三转杆504转动,第三转杆504带动第三支腿502转动。
第四升降器516组成如下:在电动汽车底盘497安装第十一支架510,在第十一支架510上安装第十电动机509、第七万向齿轮511和第八万向齿轮512,第七万向齿轮511和第八万向齿轮512相啮合,第八万向齿轮512的第四转杆513上安装第四支腿515,在第四支腿515上安装第四防尘盖514,第十电动机509的输出轴通过联轴器穿过第十一支架510与第七万向齿轮511连接,在电动汽车底盘497安装第十七限位开关544和十八限位开关545。第四支腿升降控制系统603的第三可编程控制器597与第十七限位开关 544和十八限位开关545连接,第十七限位开关544和十八限位开关545与第十电动机509连接,第十电动机509与第三可编程控制器597连接。使用时,第三可编程控制器597控制第十电动机509启动,第十电动机509带动第七万向齿轮511转动,第七万向齿轮511带动第八万向齿轮512转动,第八万向齿轮512带动第四转杆513转动,第四转杆513带动第四支腿515转动。第三可编程控制器597控制第七电动机476、第八电动机489、第九电动机501和第十电动机509同时启动,当运行到每台电动机的上、下限位开关时,先到先停,后到后停。
在电动汽车支腿升降系统573的第一支腿475内安装第一伸缩腿482、在第二支腿490内部安装第二伸缩腿494、在第三支腿502内安装第三伸缩腿508、在第四支腿515内部安装第四伸缩腿546。第一伸缩腿482、第二伸缩腿494、第三伸缩腿508和第四伸缩腿546都由第三调平控制系统616和第二双作用多级液压缸543和组成。第三调平控制系统616的第二液压压力传感器528、第二位置传感器530、第二测长传感器533、第二微波测距传感器525、第三倾斜传感器495、第四倾斜传感器496、第五液压伺服控制器608、第六液压伺服控制器610、第七液压伺服控制器612和第八液压伺服控制器614都通过数据线分别与第三可编程逻辑控制器597连接。第五液压伺服控制器608通过数据线与第五液压阀组609连接;第六液压伺服控制器610通过数据线与第六液压阀组611连接;第七液压伺服控制器612通过数据线与第七液压阀组613连接;第八液压伺服控制器614通过数据线与第八液压阀组615连接。
在图50中,第二双作用多级液压缸543为N级液压缸N≥2,本发明为三级缸,当三级液压缸顶升时,液压油从第三油口526进入到第二一级缸顶升油腔524后将第二一级缸活塞534向下顶起,然后液压油通过第二二级缸顶升油腔油道523进入第二二级缸顶升油腔522将第二二级缸活塞538向下顶起,再通过第二三级缸顶升油腔油道521进入第二三级缸顶升油腔520将第二三级缸活塞519向下顶起,各级收缩油腔里的余油通过收缩油腔油道流出第四油口532。当三级液压缸收缩时,液压油从第四油口532进入到各级中置油管通过第二一级缸收缩油腔油道535进入第二一级缸收缩油腔536将第二一级缸活塞534向上压缩,然后通过第二二级缸收缩油腔油道539进入第二二级缸收缩油腔540将第二二级缸活塞538向上压缩,再通过第二三级缸收缩油腔油道541进入第二三级缸收缩油腔518将第二三级缸活塞519向上压缩,各级顶升油腔里的余油通过顶升油腔油道流出第三油口526。
第二双作用多级液压缸543的第二底座535下部安装的第二液压压力传感器528,将其受力情况的数据反馈至第三可编程逻辑控制器597;在第二底座535下部安装的第二位置传感器530检测支柱油缸完全收回状态并将数据反馈至第三可编程逻辑控制器597。第二测长传感器533安装在支柱油缸的顶部,检测支柱油缸伸缩位置距离,并将支柱油缸伸缩速度和位置数据反馈至第三可编程逻辑控制器597。第二微波测距传感器525安装在液压支柱顶部,用于检测支柱到地面的距离,并将数据反馈至第三可编程逻辑控制器597。第三倾斜传感器495和第四倾斜传感器496安装在电动汽车底盘497的中心处,用于检测支架板384在X轴方向和Y轴方向的倾斜数据。在伸缩腿的球形端头517上安装凹型底座542。
在图52和图54-图57中,在电动汽车底盘497的前、后、左、右安装第一二维码456、第二二维码455、第三二维码463、第四二维码459。在电动汽车底盘497底部的前、后、左、右、中间安装第五二维码465、第六二维码461、第七二维码462、第八二维码466和第九二维码464;在电池箱35的顶部安装第十一二维码467,第一侧面安装第十二二维码468,在电池箱35的底部安装第十三二维码469。上述二维码都由上面的的二维码470和下面的导航磁钉471组成。每个二维码都包含一个独立的信息,当搬运机器人77经过不同位置的二位码时,视觉导航系统437动态读取该二维码包含的信息,得到搬运机器人77此时的位置信息,决定该搬运机器人77是前进还是停止。设定安装在电池箱35第一侧面的第十二二维码468为第一测量点,安装在电池箱35顶部的第十一二维码467为第二测量点,安装在电池箱35底部的第十三二维码469为第三测量点。
在图54-图62中,在电池箱更换控制系统598具有的车载电池箱更换系统564的第三主板557下部安装第五滑轨前端固定板574、第六滑轨前端固定板582、第五滑轨575和第六滑轨583。在第三承重板558上安装第二法兰553,用第二螺丝554把第二法兰553固定在电动汽车底盘497上。用第三螺丝555把车载电池箱更换系统564的其它部位固定在电动汽车底盘497上。在第三主板557上设置第五空心槽568和第六空心槽572。在第五滑轨575上竖直安装第九抓持板569,在第九抓持板569上设置第五抓持器570,第九抓持板569在第五滑轨575上滑动。在第六滑轨583上竖直安装第十抓持板571,在第十抓持板571上设置第六抓持器559,第十抓持板571在第六滑轨583上滑动。在第三承重板558下部安装第十九限位开关579和第二十限位开关581。在第十一侧面550上安装插头261;在第十一侧面550上竖直安装第十一抓持板566,在第十一抓持板566上设置第七抓持器567;在第十一侧面550上竖直安装第十二抓持板551,在第十二抓持板551上设置第八抓持器552。第五抓持器570、第六抓持器559、第七抓持器567和第八抓持器552是半圆形,便于固定抓取到的电池箱35。在第九侧面565外部安装第二固定架563,在第二固定架563上安装第六电动机562,第六电动机562的第三输出轴561通过联轴器穿过第二固定架563与第三转杆580连接,在第三转杆580上安装第三丝杆段577,把第三螺母578套装在第三丝杆段577上,在第三螺母578上安装第三连接杆576,第三连接杆576与第九抓持板569和第十抓持板571连接。第三可编程控制器597与第十九限位开关579和第二十限位开关581连接,第六电动机562与第十九限位开关579和第二十限位开关581连接,第六电动机562与第三可编程控制器597连接。
在图63-图66中,视觉传感器631将拍摄的第一作业区593的第一工作点591到第二作业区588的第三工作点586和第四工作点584,第一作业区593的第二工作点592到第三作业区590的第五工作点607,第一作业区593的第二工作点592到第四作业区594的第六工作点596周围的光学影像发送给监控装置626。第三处理器622通过第三存储器624和监控装置626接收的该视频图像信息,基于视频图像拼接算法,生成预设区域内的数字化全景图像导航信息,设定第一路径585、第二路径587、第三路径589和第四路径595为导航路线,远程操作员7把上述路径存储在动作程序存储系统625中,发送给第三无线可编程控制器433,信号预处理器449接收到第三处理器622的生成预设区域内的数字化全景图像导航信息,设定的导航路线,计算出期望驱动转矩和临界车速。电子差速控制器450接收信号预处理器449的期望驱动转矩、临界车速,以及第一转速传感器451、第二转速传感器452、第三转速传感器453和第四转速传感器454的车轮轮速信号,根据转向行驶工况计算每个车轮的驱动转矩。电子差速控制器450向第一电机控制器390、第二电机控制器391、第三电机控制器404和第四电机控制器402发送转矩控制目标信号。
在图1和图68-图77中,第二实施例中第二待换电电动汽车780具有的第二电动汽车换电控制系统731由第二电动汽车通信系统729以下简称第二通信系统729、第四可编程控制器695、第二电池箱更换控制系统697、第二车载电池箱更换系统617和第四调平控制系统696组成。
在图76中,第二通信系统729具有的第三远程信息处理单元728、第三全球导航卫星系统接收器719和第三车载计算机720通过第三通信总线718可通信地连接。第三通信总线718使用网络协议向第二通信系统729提供网络连接。第三全球导航卫星系统接收器719从全球导航卫星系统24接收无线电信号。第三全球导航卫星系统接收器719可以配置用于各种GNSS系统。第三远程信息处理单元728具有第三蜂窝芯片组722、第三短距离无线通信(SRWC)电路723、第三处理器724、第三存储器725、第三主天线726和第三SRWC天线727。第三主天线726和第三蜂窝芯片组722连接。第三SRWC天线727和第三短距离无线通信(SRWC)电路723连接。第三远程信息处理单元728配置为能够根据第三短距离无线通信(SRWC)电路723进行无线通信,Wi-Fi TM、WiMAX TM、Wi-Fi TM Direct、其它IEEE 802.11协议、ZigBee TM、Bluetooth TM、Bluetooth TM中的任何一种。第三处理器724是处理电子指令的设备,具有微处理器、微控制器、主处理器、控制器、车辆通信处理器和专用集成电路(ASIC)。第三通信总线718与在电动汽车41上安装的第四可编程控制器695可通信地连接。无线载波系统28与第二通信系统729的第三远程信息处理单元728包含的第三蜂窝芯 片组722经由蜂窝协议通过第三主天线726执行蜂窝通信。
在图70-图75中,在第二电池箱更换控制系统697具有的第二车载电池箱更换系统617的第四主板692上安装第七滑轨前端固定板672、第八滑轨前端固定板679、第七滑轨668和第八滑轨684。在第四承重板683上安装第三法兰691,在第二支板699安装第四法兰703。用第四螺丝701连接第三法兰691和第四法兰703。在第四主板692上设置第七空心槽665和第八空心槽674。在第七滑轨668上竖直安装第十三抓持板667,在第十三抓持板667上设置第九抓持器693,第十三抓持板667在第七滑轨668上滑动。在第八滑轨684上竖直安装第十四抓持板685,在第十四抓持板685上设置第十抓持器663,第十四抓持板685在第八滑轨684上滑动。在第四承重板683下部安装第二十一限位开关680和第二十二限位开关681。在第十五侧面664上安装插头261;在第十五侧面664上竖直安装第十五抓持板669,在第十五抓持板669上设置第十一抓持器670;在第十五侧面664上竖直安装第十六抓持板673,在第十六抓持板673上设置第十二抓持器682。第九抓持器693、第十抓持器663、第十一抓持器670和第十二抓持器682是半圆形,便于固定抓取到的电池箱35。在第十二侧面689外部安装第三固定架690,在第三固定架690上安装第七电动机688,第七电动机688的第四输出轴687通过联轴器穿过第三固定架690与第四转杆678连接,在第四转杆678上安装第四丝杆段675,把第六螺母676套装在第四丝杆段675上,在第六螺母676上安装第四连接杆677,第四连接杆677与第十三抓持板667和第十四抓持板685连接。用第五螺丝716把第三底板707固定在电动汽车37前仓底盘730上,在电动汽车37的后仓安装驱动电动机607,驱动电动机607与插头261连接。
在图76中,第二电池箱更换控制系统697的第四可编程控制器695与第二十一限位开关680和第二十二限位开关681连接,第二十一限位开关680和第二十二限位开关681与第七电动机688连接,第七电动机688与第四可编程控制器695连接。
在图75、图77和图43中,第四调平控制系统696控制的搬运机器人举升系统700由在第三底板707的四角上安装的多个第一双作用多级液压缸431组成,在本实施例中,第一双作用多级液压缸431为四根,即第五顶升柱706、第六顶升柱713、第七顶升柱705和第四八顶升柱712都由第四调平控制系统696组成,第四调平控制系统696由第二调平控制系统432和第一双作用多级液压缸431组成。在第五顶升柱706、第六顶升柱713、第七顶升柱705和第四八顶升柱712的顶部安装第二支板699。第二调平控制系统432具有的第二液压压力传感器429、第二位置传感器408、第二测长传感器419、第二微波测距传感器420、第三倾斜传感器399、第四倾斜传感器400、第五液压伺服控制器440、第六液压伺服控制器443、第七液压伺服控制器445和第八液压伺服控制器447通过数据线分别与第三无线可编程控制器433连接。第五液压伺服控制器440通过数据线与第五液压阀组441连接;第六液压伺服控制器443通过数据线与第六液压阀组444连接;第七液压伺服控制器445通过数据线与第七液压阀组446连接;第八液压伺服控制器447通过数据线与第八液压阀组448连接。
在图69中,本发明第三实施例,在第三充换电柜31的内部安装第二机器人735构成第四充换电柜781。第二机器人735由机器人78构成。第二机器人735的控制系统由机器人控制系统618构成。
图78-图84中,第二搬运机器人控制系统753具有的第二搬运机器人调平控制系统751、第二避障系统769、第二磁导航系统775、第二行走机构控制系统774、第二视觉导航系统776和第二终端平台旋转控制系统778与第四无线可编程控制器752连接。第四无线可编程控制器752由第一无线可编程控制器356的功能构成。第二搬运机器人系统743具有第二搬运机器人行走系统747和第二搬运机器人举升系统746。在第二搬运机器人底盘744上安装第二搬运机器人行走系统747和第二搬运机器人举升系统746。无线载波系统28与电能补给车通信系统57的第一远程信息处理单元55具有的第一蜂窝芯片组47经由蜂窝协议通过第一主天线54执行蜂窝通信,电能补给车通信系统57具有的第一通信总线56与机器人控制系统618的数据取得装置621连接。第一短距离无线通信(SRWC)电路46经由第一SRWC天线53通过第二搬运机器人79的第二天线355与无线通讯单元343连接。电能补给车通信系统57将接收到的传感器信号输出到数据取得装置621,数据取得装置621将所取得的传感器信号存储在第三存储器624中。动作控制系统629根据来自第二搬运机器人控制系统753的每一个所包含的旋转编码器的位置检测器的信号进行反馈控制,使得机器人78的各个机器人驱动电动机634的旋转与动作程序的指令一致,配合第二搬运机器人控制系统753的作业。远程操作员7通过远程操作台系统13下达,控制第二搬运机器人控制系统753动作指令,通过远程控制系统2上传到机器人控制系统618的动作控制系统629,动作控制系统629根据预先生成的动作程序输出驱动指令到第四无线可编程控制器752,第四无线可编程控制器752控制第二搬运机器人79执行各个程序。
用第六螺丝720穿过安装孔721把第四底板726固定在第二搬运机器人底盘744上,在第二支板716下部安装第四无线可编程控制器752、第二信号预处理器770、第二电子差速控制器771、第五电机控制器734、第五驱动电动机733、第五转速传感器774、第六电机控制器735、第六驱动电动机736、第六转速传感器773、第二电池充电口742、第二电池737和第二启动开关768。在第二支板716上安装第十二电动机745和第二转轴748,在第二转轴748上安装第二终端平台718,在第二终端平台718上安装第五摄像机728、第六摄像机732、第二超声波测距传感器729、第二激光测距传感器730、第二磁导航传感器731、第二导线进出口759和第十六二维码714。在第二支板716上安装第二十三限位开关749和第二十四限位开关750。第四无线可编程控制器752与第二信号预处理器770连接,第二信号预处理器770与第二电子差速控制器771连接,第二电子差速控制器771与第五电机控制器734和第六电机控制器735连接。第五驱动电动机733与第五电机控制器734连接并受其控制;第六驱动电动机736与第六电机控制器735连接并受其控制。第五驱动电动机733与第五车轮738连接并直接驱动,第六驱动电动机736与第六车轮740连接并直接驱动,第七车轮739和第八车轮741是从动轮。第二电池737通过第二启动开关768与第四无线可编程控制器752连接,第二启动开关768控制第二电池737通断。第二电池充电口742与第二电池737连接。
第二避障系统769具有第二超声波测距传感器729和第二激光测距传感器730。第二超声波测距传感器729分两路共8个超声探头,通过RS485通讯单元350与第四无线可编程控制器752连接。第二激光测距传感器730通过4个传感器串联连接至第四无线可编程控制器752的CAN通讯单元352。第二视觉导航系统776具有的第五摄像机728和第六摄像机732与第二图像传感器777电连接;第二图像传感器777与第四无线可编程控制器752电连接。第二磁导航系统775的第二磁导航传感器731与第四无线可编程控制器752电连接。第二终端平台旋转控制系统778的第四无线可编程控制器752与第二十三限位开关749和第二十四限位开关750连接,第二十三限位开关749和第二十四限位开关750第十二电动机745连接,第十二电动机745与第四无线可编程控制器752连接。
第二搬运机器人调平控制系统751控制的第二搬运机器人举升系统746由在第四底板726的四角上安装的多个第二双作用多级液压缸系统758组成,在本实施例中,第二双作用多级液压缸系统758为四根,即第五顶升柱721、第六顶升柱722、第七顶升柱724和第八顶升柱725都由第二搬运机器人调平控制系统751和第二双作用多级液压缸系统758组成,第二双作用多级液压缸系统758的结构与第一双作用多级液压缸431的结构相同。在第五顶升柱721、第六顶升柱722、第七顶升柱724和第八顶升柱725的顶部安装第二支板716,第二支板716为凹型结构,便于搬运机器人77从进出口717位置进入第二支板716。第二搬运机器人调平控制系统751具有的第三液压压力传感器754、第三位置传感器755、第三测长传感器756、第三微波测距传感器757、第五倾斜传感器715、第六倾斜传感器719、第九液压伺服控制器760、第十液压伺服控制器762、第十一液压伺服控制器764和第十二液压伺服控制器766通过数据线分别与第四无线可编程控制器752连接。第九液压伺服控制器760通过数据线与第九液压阀组761连接;第十液压伺服控制器762通过数据线与第十液压阀组763连接;第十一液压伺服控制器764通过数据线与第十一液压阀组765连接;第十二液压伺服 控制器766通过数据线与第十二液压阀组767连接。第三液压压力传感器754安装在支柱底端的第二底座779上,将支柱油缸的受力情况的数据反馈至第四无线可编程控制器752。第三位置传感器755安装在支柱底端的第二底座779上,检测支柱油缸完全收回状态并将数据反馈至第四无线可编程控制器752。第三测长传感器756安装在支柱油缸的顶部,检测支柱油缸伸缩位置距离,并将支柱油缸伸缩速度和位置数据反馈至第四无线可编程控制器752。第三微波测距传感器757安装在液压支柱顶部,用于检测支柱到支柱底端的距离,并将数据反馈至第四无线可编程控制器752。第五倾斜传感器715和第六倾斜传感器719安装在第二支板716的两侧,用于检测第二支板716在X轴方向和Y轴方向的倾斜数据。
在图85-图88中,在待换电电动汽车侧面车体801添加护板旋转系统797组成本发明第三实施例第三待换电电动汽车802,在电动汽车换电控制系统600上添加连接护板旋转控制系统798组成第三待换电电动汽车控制系统803。护板旋转系统797的旋转轴791穿过固定在车体801上的第一固定块792和第二固定块793。在旋转轴791上安装护板787和第一齿轮794。在车体801上安装固定架790,把第十三电动机789安装在固定架790上,在第十三电动机789转动轴上安装第二齿轮788,第二齿轮788和第一齿轮794相齿和。在车体801上安装护板旋转控制系统798的第二十五限位开关795和第二十六限位开关796。护板旋转控制系统798的第三可编程控制器597与第二十五限位开关795和第二十六限位开关796连接,第二十五限位开关795和第二十六限位开关796与第十三电动机789连接,第十三电动机789与第三可编程控制器597连接。使用时,护板旋转控制系统798的第三可编程控制器597控制第十三电动机789启动,第十三电动机789带动第二齿轮788转动,第二齿轮788带动第一齿轮794转动,第一齿轮794带动旋转轴791转动,旋转轴791带动护板787转动90°露出电池箱更换控制系统598。
在图1-图88中,步骤1:远程操作员7激活电能补给车控制系统45,电能补给车30到达待换电电动汽车41的最佳换电停车位置,远程操作员7通过远程操作台系统13控制电能补给车30和待换电电动汽车41,远程操作员7启动预先生成的动作程序展开对待换电电动汽车41的换电池箱35作业。
步骤2:电动汽车换电控制系统600具有的第一转动控制系统599启动七电动机476带动第一支腿475转动、第二转动控制系统601启动第八电动机489带动第二支腿490转动、第三转动控制系统602启动第九电动机501带动第三支腿502转动、第四转动控制系统603启动第十电动机509带动第四支腿515转动使第一支腿475,第二支腿490、第三支腿502和第四支腿515同时向地面转动到预设位置。
步骤3:远程操作员7通过远程操作台系统13下达控制第三调平控制系统616的动作指令,通过远程控制系统2上传到第三可编程逻辑控制器597,第三可编程逻辑控制器597根据传感器反馈的数据及预设的动作指令,同时发出控制信号到第五液压伺服控制器608、第六液压伺服控制器610、第七液压伺服控制器612和第八液压伺服控制器614,第五液压伺服控制器608根据控制信号控制第五液压阀组609动作,从而控制第一伸缩腿482的第二双作用多级液压缸543完成伸缩动作到指定位置,第六液压伺服控制器610根据控制信号控制第六液压阀组611动作,从而控制第二伸缩腿494的第二双作用多级液压缸543完成伸缩动作到指定位置,第七液压伺服控制器612根据控制信号控制第七液压阀组613动作,从而控制第三伸缩腿508的第二双作用多级液压缸543完成伸缩动作到指定位置,第八液压伺服控制器614根据控制信号控制第八液压阀组615动作,从而控制第四伸缩腿546的第二双作用多级液压缸543完成伸缩动作到指定位置,第一伸缩腿482、第二伸缩腿494、第三伸缩腿508和第四伸缩腿546都到达指定位置后,第三调平控制系统616控制的第一伸缩腿482、第二伸缩腿494、第三伸缩腿508和第四伸缩腿546调平过程如下:第三调平控制系统616的动作指令由远程操作员7通过远程操作台系统13下达,通过远程控制系统2上传到第三可编程逻辑控制器597启动调平作业,第三调平控制系统616按照计算的支柱到地面的距离控制支柱油缸伸出长度,第二测长传感器533对应检测检测支柱油缸伸出长度数值,直到支柱油缸第二液压压力传感器528检测到支柱油缸承压达到预设值,说明支柱油缸已经触顶,系统重新读取各个第二微波测距传感器525和第二测长传感器533对应检测检测支柱油缸伸出长度数值,同时读取第三倾斜传感器495和第四倾斜传感器496分别检测电动汽车底盘497在X轴方向和Y轴方向的倾斜状态,第三调平控制系统616根据各个传感器反馈信息,按预设模型计算出电动汽车底盘497倾斜状态,并按系统设定给出调平控制方案,控制各个支柱按调平控制方案完成自动调平。
步骤4:选择系统627根据目标搬运机器人77的位置坐标来设定机器人78的目标位置,动作控制系统629根据预先生成的动作程序将驱动机器人滑动器系统83的动作指令发送到机器人滑动器控制系统226的第一可编程控制器188,第一可编程控制器188根据动作指令对第三电动机129供电,机器人滑动器系统83将机器人78配置在第二作业位置71,动作控制系统629根据预先生成的动作程序将用于驱动机器人78的动作程序指令发送到机器人驱动系统630,机器人驱动系统630具有驱动机器人驱动电动机634的电路,机器人驱动系统630根据动作指令对机器人驱动电动机634供电。
步骤5:动作控制系统629根据预先生成的动作程序将驱动后车门系统146的动作指令发送到后车门控制系统303的第一可编程控制器188,第一可编程控制器188根据动作指令对第一电动机298供电,第一可编程控制器188控制第一电动机298带动第三螺纹丝杆段295正向转动,第五螺母300带动第一支杆143向第一限位开关294方向运动,后车门上段130开始打开,第五螺母300运动到第一限位开关294位置触动第一限位开关294,第一电动机298停止工作,后车门上段130打开到预定位置。
步骤6:动作控制系统629根据预先生成的动作程序将驱动视频传感器631的动作指令发送到视频传感器631,动作控制系统629根据远程操作员7预先生成的根据图像清晰度自动补光程序,将驱动补光灯127补光的动作指令发送到补光灯127,对视频传感器631的图像采集区域进行补光。
步骤7:视觉传感器631开始拍摄搬运机器人77,获取系统628实施根据视觉传感器631的输出来获取搬运机器人77三维信息的获取工序,获取系统628根据从视觉传感器631至搬运机器人77前部的第十四二维码338的距离,生成搬运机器人77的三维信息,获取系统628根据由第一摄像机122和第二摄像机126拍摄得到的两个图像的视差,计算从视觉传感器631至第十四二维码338的距离。
步骤8:选择系统627实施根据搬运机器人77的三维信息来选择由机器人78取出的搬运机器人77的选择工序,选择系统627根据搬运机器人77的位置和姿势选择搬运机器人77。
步骤9:动作控制系统629根据预先生成的动作程序将驱动第一压力传感器222和第二压力传感器247的动作指令发送到225的第二可编程控制器224,第二可编程控制器224对第一压力传感器222和第二压力传感器247供电。
步骤10:在机器人78调整好姿势后,机械手200的指部124闭合把持搬运机器人77,第一压力传感器222和第二压力传感器247将压力信息传递给第二可编程控制器224,第二可编程控制器224将接收到的压力信息与预设的信息比对之后,确定已经把握到搬运机器人77,第二可编程控制器224关闭第四电动机205,在第一支架80上取出搬运机器人77,机械手200把持住搬运机器人77输送到第一作业区593的第一工作点591。
步骤11:监控装置626在判断为取出了由远程操作员7预定的搬运机器人77后,结束该控制。
步骤12:在第一作业区593中机器人78作业结束,动作控制系统629根据预先生成的动作程序下发控制指令使搬运机器人77视觉导航系统437开始导航,磁导航系统435处于关闭状态,当视觉导航系统437发生故障时,第三处理器622将控制指令发送到远程操作台系统13,由远程操作员7控制搬运机器人77,搬运机器人77按照预定的第二路径587行驶到第二作业区588第三工作点586后,视觉导航系统437采集到待换电电动汽车41的第二二维码455为起始位置,设定在电池箱35的第十三二维码469为第二位置,控制搬运机器人77由起始位置开始向前行驶到第二位置正下方。
步骤13:动作控制系统629根据预先生成的动作程序将驱动终端平台旋转控制系统438的动作指令发送到终端平台旋转控制系统438的第三无线可编程控制器433,第三无线可编程控制器433对第十一电动机549供电,第十一电动机549带动终端平台381向第二十限位开关548旋转,旋转到第二十限位开关548位置,触动第二十限位开关548,第十一电动机549停止转动,终端平台381上的第三摄像机394和第四摄像机398对准车载电池箱更换系统564的在亏电的电池箱35的底部的第十三二维码469进行拍摄,获取系统628根据由第三摄像机394和第四摄像机398拍摄得到的两个图像的视差,计算从第三摄像机394和第四摄像机398至第十三二维码469的距离,生成亏电的电池箱35的三维信息,获取系统628根据由第三摄像机394和第四摄像机398拍摄得到的两个图像的视差,计算从第三摄像机394和第四摄像机398至电池箱35的底部的第十三二维码469的距离,将电池托盘380顶在电池箱35下方的预设位置。
步骤14:第二调平控制系统432控制动作指令由远程操作员7通过远程操作台系统13下达通过远程控制系统2上传到第三无线可编程控制器433,第三无线可编程控制器433根据传感器反馈的数据及预设的动作指令,发出控制信号到第五液压伺服控制器440,第六液压伺服控制器443,第七液压伺服控制器445和第八液压伺服控制器447,第五液压伺服控制器440根据控制信号控制第五液压阀组441动作,从而控制第一支柱的第一双作用多级液压缸431完成伸缩动作到指定位置;第六液压伺服控制器443根据控制信号控制第六液压阀组444动作,从而控制第二支柱的第一双作用多级液压缸431完成伸缩动作到指定位置;第七液压伺服控制器445根据控制信号控制第七液压阀446动作,从而控制第三支柱的第一双作用多级液压缸431完成伸缩动作到指定位置;第八液压伺服控制器447根据控制信号控制第八液压阀组448动作,从而控制第四支柱的第一双作用多级液压缸431完成伸缩动作到指定位置;第一支柱383、第二支柱376、第三支柱387和第四支柱373都到达指定位置后,第二调平控制系统432的控制动作指令由远程操作员7通过远程操作台系统13下达通过远程控制系统2上传到第三无线可编程控制器433启动调平作业,系统首先按照计算的支柱到地面的距离控制支柱油缸伸出长度,第二测长传感器419对应检测检测支柱油缸伸出长度数值,直到支柱油缸第二液压压力传感器429检测到支柱油缸承压达到预设值,说明支柱油缸已经触顶,此时,系统重新读取各个第二微波测距传感器420和第二测长传感器419对应检测检测支柱油缸伸出长度数值,同时读取第三倾斜传感器399和第四倾斜传感器400分别检测支架板384在X轴方向和Y轴方向的倾斜状态,系统根据各个传感器反馈信息,按预设模型计算出支架板384倾斜状态,并按系统设定给出调平控制方案,控制各个支柱按调平控制方案完成自动调平,将电池托盘380顶在更换电池箱35的预设的准备位置。
步骤15:动作控制系统629根据预先生成的动作程序将驱动电池箱更换控制系统598的动作指令,发送到第三可编程控制器597,第三可编程控制器597根据动作指令对第六电动机562供电,第六电动机562的第三输出轴561带动第三丝杆段577反向转动,第三螺母578带动第三连接杆576运动,第三连接杆576带动第九抓持板569和第十抓持板571向第二十限位开关581运动,第三连接杆576触动第二十限位开关581使第六电动机562停止转动,第九抓持板569和第十抓持板571脱离电池箱35,电池箱35落到搬运机器人77的顶部。
步骤16:在第二作业区588中机器人78作业结束,动作控制系统629根据预先生成的动作程序下发控制指令使搬运机器人77视觉导航系统437开始导航,视觉导航系统437采集到电动汽车41的第九二维码464为起始位置,第六二维码461为第二位置,控制搬运机器人77由起始位置开始向前行驶到第二位置。
步骤17:动作控制系统629根据预先生成的动作程序将驱动终端平台旋转控制系统438的动作指令发送到终端平台旋转控制系统438的第三无线可编程控制器433,第三无线可编程控制器433对第十一电动机549供电,第十一电动机549带动终端平台381向第十九限位开关547旋转,触动第十九限位开关547第十一电动机549停止转动,终端平台381上的第三摄像机394和第四摄像机398对准正前方,动作控制系统629根据预先生成的动作程序下发控制指令使搬运机器人77视觉导航系统437开始导航,搬运机器人77按照预定的第二路径585行驶到第一作业区593的第一工作点591。
步骤18:视觉传感器631开始拍摄搬运机器人77的顶部的电池箱35,获取系统628实施根据视觉传感器631的输出来获取搬运机器人77的顶部的电池箱35的三维信息的获取工序,获取系统628根据从视觉传感器631至安装在电池箱35顶部的第十一二维码467为第二测量点的距离,生成搬运机器人77的顶部的电池箱35的三维信息,获取系统628根据由第一摄像机122和第二摄像机126拍摄得到的两个图像的视差,计算从视觉传感器631至第二测量点的距离。
步骤19:在机器人78调整好姿势后,动作控制系统629根据预先生成的动作程序将驱动机械手200的动作指令发送到机械手控制系统225的第二可编程控制器224,第二可编程控制器224根据动作指令对第四电动机205供电,第二可编程控制器224启动第四电动机205,第四电动机205的第一输出轴204带动第一丝杆段218正向转动,第一丝杆段218推动第一连接杆215带动第一抓持板201和第二抓持板209向电池箱35运动,第一连接杆215运行到第七限位开关219位置,触动第七限位开关219使第四电动机205停止转动,第一抓持板201和第二抓持板209夹紧电池箱35,第一抓持板201和第二抓持板209向第三抓持板198和第四抓持板212闭合,电池箱35被夹持,在搬运机器人77的顶部取走电池箱35,机械手200把持住电池箱35准备输送到预定的位置,在输送电池箱35的期间电池箱35不会从机械手200脱落。
步骤20:视觉传感器631开始拍摄第一充换电柜72中的电池箱35,获取系统628实施根据视觉传感器631的输出来获取第一充换电柜72中空置的第一电池箱仓305的三维信息的获取工序,获取系统628根据从视觉传感器631到空置的第一电池箱仓305的距离,生成第一充换电柜72的三维信息,获取系统628根据由第一摄像机122和第二摄像机126拍摄得到的两个图像的视差,计算从视觉传感器631至空置的第一电池箱仓305的距离。
步骤21:选择系统627实施根据第一充换电柜72的三维信息来选择由机器人78把电池箱35放入目标第一电池箱仓305的选择工序,选择系统627根据第一充换电柜72的位置和姿势从高到低的顺序选择空置的电池箱仓。
步骤22:在机器人78调整好姿势后,机械手200的指部124闭合把持电池箱35,机械手200把持住电池箱35输送到第一充换电柜72的空置的第一电池箱仓305中。
步骤23:动作控制系统629根据预先生成的动作程序将驱动第一电池箱仓控制系统641的动作指令,发送到第一电池箱仓控制系统641的第一可编程控制器188,第一可编程控制器188根据动作指令对第五电动机235供电,第一可编程控制器188启动第五电动机235,第五电动机235的第二输出轴234带动第二丝杆段253正向转动,第二螺母254带动第二连接杆255向电池 箱35方向运动,第二连接杆255带动第五抓持板241和第六抓持板231向电池箱35方向移动,第二连接杆255运行到第九限位开关252位置,触动第九限位开关252使第五电动机235停止转动,第五抓持板241和第六抓持板231向第七抓持板245和第八抓持板228方向闭合并夹紧电池箱35,
步骤24:动作控制系统629根据预先生成的动作程序将驱动机械手200的动作指令发送到机械手控制系统225的第二可编程控制器224,第二可编程控制器224根据动作指令对第四电动机205供电,第二可编程控制器224启动第四电动机205,第四电动机205的第一输出轴204带动第一丝杆段218反向转动,第一丝杆段218带动第一连接杆215运动,第一连接杆215带动第一抓持板201和第二抓持板209向第八限位开关206方向运动,第一连接杆215触动第八限位开关206,第四电动机205停止转动,第一抓持板201和第二抓持板209脱离电池箱35。
步骤25:监控装置626在判断为在第一充换电柜72的第一电池箱仓305放入了由远程操作员7预定个数的电池箱35后,结束该控制。
步骤26:选择系统627根据目标电池箱35的位置和姿势来设定机器人78的目标位置,动作控制系统629使机器人滑动器系统83带动机器人78行驶到第二作业位置71,此时,机械手200指部124打开。
步骤27:视觉传感器631开始拍摄第一充换电柜72中充满电电池箱35,获取系统628实施根据视觉传感器631的输出来获取第一充换电柜72中充满电的电池箱35的三维信息的获取工序,获取系统628根据从视觉传感器631至第一充换电柜72中充满电的电池箱35的第一测量点的距离,生成第一充换电柜72的三维信息,获取系统628根据由第一摄像机122和第二摄像机126拍摄得到的两个图像的视差,计算从视觉传感器631至第一测量点的距离。
步骤28:选择系统627实施根据第一充换电柜72的三维信息来选择由机器人78取出的目标第二电池箱仓307中的电池箱35的选择工序,选择系统627根据第一充换电柜72的位置和姿势从高到低的顺序和每个电池箱的二维码从第二电池箱仓307到第六电池箱仓315选择充满电的电池箱35。
步骤29:在机器人78对准第二电池箱仓307中的充满电的电池箱35调整好姿势后,机械手200的指部124闭合把持电池箱35。
步骤30:动作控制系统629根据预先生成的动作程序将驱动第二电池箱仓控制系统643的动作指令,发送到第二电池箱仓控制系统643的第一可编程控制器188,第一可编程控制器188根据动作指令对第五电动机235供电,第一可编程控制器188启动第五电动机235,第五电动机235的第二输出轴234带动第二丝杆段253反向转动,第二螺母254带动第二连接杆255运动,第二连接杆255带动第五抓持板241和第六抓持板231向第十限位开关257运动,第二连接杆255触动第十限位开关257,第五电动机235停止转动,第五抓持板241和第六抓持板231脱离电池箱35。
步骤31:机械手200在第二电池箱仓307中取出电池箱35,机械手200把持住电池箱35。
步骤32:视觉传感器631开始拍摄搬运机器人77的电池托盘380上的第十五二维码663,获取系统628实施根据视觉传感器631的输出来获取搬运机器人77的电池托盘380的三维信息的获取工序,获取系统628根据从视觉传感器631至安装在电池托盘380上的第十五二维码663为第四测量点的距离,生成搬运机器人77的顶部的电池箱35的三维信息,获取系统628根据由第一摄像机122和第二摄像机126拍摄得到的两个图像的视差,计算从视觉传感器631至第四测量点的距离。
步骤33:在机器人78调整好姿势后,机械手200的指部124闭合把持电池箱35,在搬运机器人77的顶部电池托盘380放下电池箱35,机械手200指部124打开。
步骤34:监控装置626在判断为在搬运机器人77的顶部放下了由远程操作员7预定个数的电池箱35后,结束该控制。
步骤35:取出和放入第二充换电柜75中的电池箱35时,动作控制系统629使机器人滑动器系统83带动机器人78行驶到第一作业位置74。
步骤36:重复步骤4到步骤34的动作。
步骤37:在第一作业区593中机器人78作业结束,动作控制系统629根据预先生成的动作程序下发控制指令使搬运机器人77视觉导航系统437开始导航,搬运机器人77按照预定的第一路径585行驶到第二作业区588第三工作点586后,视觉导航系统437采集到待换电电动汽车41的第二二维码455为起始位置,设定在电动汽车底盘497底部中间的第九二维码464为第二位置,控制搬运机器人77由起始位置开始向前行驶到第二位置正下方。
步骤38:动作控制系统629根据预先生成的动作程序将驱动终端平台旋转控制系统438的动作指令发送到终端平台旋转控制系统438的第三无线可编程控制器433,第三无线可编程控制器433对第十一电动机549供电,第十一电动机549带动终端平台旋转控制系统438向第二十限位开关548旋转,触动第二十限位开关548,第十一电动机549停止转动,终端平台381上的第三摄像机394和第四摄像机398对准车载电池箱更换系统564的底部中间的第九二维码464进行拍摄,获取系统628根据由第三摄像机394和第四摄像机398拍摄得到的两个图像的视差,计算从第三摄像机394和第四摄像机398至第九二维码464的距离,生成车载电池箱更换系统564的三维信息,获取系统628根据由第三摄像机394和第四摄像机398拍摄得到的两个图像的视差,计算从第三摄像机394和第四摄像机398至电池箱35的底部的第九二维码464的距离,将电池托盘380上部的电池箱35顶在车载电池箱更换系统564预设位置的下方。
步骤39:第二调平控制系统432,按照调平控制方案完成自动调平,将电池托盘380顶在更换电池箱35的预设的准备位置。
步骤40:动作控制系统629根据预先生成的动作程序将驱动电池箱更换控制系统598的动作指令,发送到电池箱更换控制系统598的第三可编程控制器597,第三可编程控制器597根据动作指令对第六电动机562供电,第六电动机562的第三输出轴561带动第三丝杆段577正向转动,第三丝杆段577带动第三连接杆576向电池箱35方向运动,第三连接杆576带动第九抓持板569和第十抓持板571向电池箱35运动,第三连接杆576运行到第十九限位开关579位置,触动第十九限位开关579使第六电动机562停止转动,第九抓持板569和第十抓持板571向第十一抓持板566和第十二抓持板551闭合,第九抓持板569和第十抓持板571夹紧电池箱35。
步骤41:监控装置626判断为送出了由远程操作员7预定的电池箱35后,结束该步骤,第二调平控制系统432恢复到原始状态。
步骤42:在第二作业区588中机器人78作业结束,动作控制系统629根据预先生成的动作程序下发控制指令,使搬运机器人77视觉导航系统437开始导航,视觉导航系统437采集到待换电电动汽车41的电池箱35底部第十三二维码469为起始位 置,第六二维码461为第二位置,控制搬运机器人77由起始位置开始向前行驶到第二位置。
步骤43:重复步骤17的动作。
步骤44在机器人78调整好姿势后,机械手200的指部124闭合把持搬运机器人77。
步骤45:视觉传感器631开始拍摄第一支架80,获取系统628实施根据视觉传感器631的输出来获取第一支架80三维信息的获取工序,获取系统628根据从视觉传感器631至第一支架80顶部的第十五二维码657的距离,生成第一支架80的三维信息,获取系统628根据由第一摄像机122和第二摄像机126拍摄得到的两个图像的视差,计算从视觉传感器631至第一支架80的距离。
步骤46:选择系统627实施根据搬运机器人77的三维信息来选择由机器人78放入的搬运机器人77的选择工序,选择系统627根据搬运机器人77的位置和姿势选择搬运机器人77,机械手200把持住搬运机器人77输送到第一支架80上,第一支架充电口658与搬运机器人充电口662连接。
步骤47:动作控制系统629根据预先生成的动作程序将驱动后车门系统146的动作指令发送到后车门控制系统303的第一可编程控制器188,第一可编程控制器188根据动作指令对第一电动机298供电,第一可编程控制器188控制第一电动机298带动第三螺纹丝杆段295反向转动,第五螺母300带动第一支杆143向第五支架297方向运动,后车门上段130开始闭合,第五螺母300触动第二限位开关296,第一电动机298停止工作,后车门上段130闭合。
步骤48:监控装置626在判断为在第一支架80放下了由远程操作员7预定的机器人78后,结束该控制。
步骤49:电能补给车30根据第三充换电柜31的位置坐标,导航到达第三充换电柜31附近的最佳作业位置。
步骤50:视觉传感器631开始拍摄第三充换电柜31中的电池箱35,获取系统628实施根据视觉传感器631的输出来获取第三充换电柜31中的电池箱35的三维信息的获取工序,获取系统628根据从视觉传感器631至第三充换电柜31中的电池箱35的第一测量点的距离,生成第三充换电柜31的三维信息,获取系统628根据由第一摄像机122和第二摄像机126拍摄得到的两个图像的视差,计算从视觉传感器631至第一测量点的距离。
步骤51:选择系统627实施根据第三电池箱3的三维信息来选择由机器人78取出的目标第十三电池箱仓357中的充满电的电池箱35的选择工序,选择系统627根据第三充换电柜的位置和姿势从高到低的顺序从第十三电池箱仓357到第十六电池箱仓360中选择充满电的电池箱35。
步骤52:选择系统627根据目标电池箱35的位置和姿势来设定机器人78的目标位置,动作控制系统629使机器人滑动器系统83带动机器人78行驶到第二作业位置71,此时,机械手200指部124打开。
步骤53:在机器人78调整好姿势后,机械手200的指部124闭合把持电池箱35。
步骤54:动作控制系统629根据预先生成的动作程序将驱动第十三电池箱仓控制系统653的动作指令,发送到第十三电池箱仓控制系统653的第二无线可编程控制器361,第二无线可编程控制器361根据动作指令对第五电动机235供电,第二无线可编程控制器361启动第五电动机235,第五电动机235的第二输出轴234带动第二丝杆段253反向转动,第二丝杆段253带动第二连接杆255运动,第二连接杆255带动第五抓持板241和第六抓持板231向第十限位开关257方向运动,第二连接杆25,触动第十限位开关257,第五电动机235停止转动,第五抓持板241和第六抓持板231脱离电池箱35。
步骤55:机械手200在第十三电池箱仓357中取出电池箱35,机械手200把持住电池箱35。
步骤56:视觉传感器631开始拍摄第一充换电柜72中电池箱35,获取系统628实施根据视觉传感器631的输出来获取第一充换电柜72中空置的第一电池箱仓305的三维信息的获取工序,获取系统628根据从视觉传感器631到空置的第一电池箱仓305的距离,生成第一充换电柜72的三维信息,获取系统628根据由第一摄像机122和第二摄像机126拍摄得到的两个图像的视差,计算从视觉传感器631至第一电池箱仓305的距离。
步骤57:选择系统627实施根据第一充换电柜72的三维信息来选择由机器人78把电池箱35放入目标第一电池箱仓305的选择工序,选择系统627根据第一充换电柜72的位置和姿势从高到低的顺序选择空置的电池箱仓。
步骤58:在机器人78调整好姿势后,机械手200的指部124闭合把持电池箱35,机械手200把持住电池箱35输送到第一充换电柜72的第一电池箱仓305中。
步骤59:动作控制系统629根据预先生成的动作程序将驱动第一电池箱仓控制系统641的动作指令,发送到第一电池箱仓控制系统641的第一可编程控制器188,第一可编程控制器188根据动作指令对第五电动机235供电,第一可编程控制器188启动第五电动机235,第五电动机235的第二输出轴234带动第二丝杆段253正向转动,第二螺母254带动第二连接杆255向电池箱35方向运动,第二连接杆255带动第五抓持板241和第六抓持板231向电池箱35方向移动,第二连接杆255触动第九限位开关252使第五电动机235停止转动,第五抓持板241和第六抓持板231向第七抓持板245和第八抓持板228方向闭合并夹紧电池箱35,
步骤60:监控装置626在判断为在第一充换电柜72的第一电池箱仓305放入了由远程操作员7预定个数的充满电的电池箱35后,结束该控制。
步骤61:选择系统627根据目标搬运机器人77的位置坐标来设定机器人78的目标位置,动作控制系统629使机器人滑动器系统83带动机器人78行驶到第二作业位置71,此时,机械手200指部124打开。
步骤62:视觉传感器631开始拍摄第一充换电柜72中电池箱35,获取系统628实施根据视觉传感器631的输出来获取第一充换电柜72中亏电的电池箱35的三维信息的获取工序,获取系统628根据从视觉传感器631至第一充换电柜72中亏电的电池箱35的第一测量点的距离,生成第一充换电柜72的三维信息,获取系统628根据由第一摄像机122和第二摄像机126拍摄得到的两个图像的视差,计算从视觉传感器631至第一测量点的距离。
步骤63:获取系统628实施根据视觉传感器631的输出来获取第一充换电柜72的第一电池箱仓305中亏电的电池箱35的三维信息的获取工序,获取系统628根据从视觉传感器631到亏电的电池箱35的距离,生成第一充换电柜72的三维信息,获取系统628根据由第一摄像机122和第二摄像机126拍摄得到的两个图像的视差,计算从视觉传感器631至亏电的电池箱35的距离。
步骤64:选择系统627实施根据第一充换电柜72的三维信息来选择由机器人78把亏电的电池箱35取出的选择工序,选择系统627根据第一充换电柜72的位置和姿势从高到低的顺序和电池箱35的二维码信息选择亏电的电池箱35。
步骤65:机器人78调整好姿势后,机械手200的指部124闭合把持电池箱35。
步骤66:动作控制系统629根据预先生成的动作程序将驱动第一电池箱仓控制系统641的动作指令,发送到第一电池箱仓控制系统641的第一可编程控制器188,第一可编程控制器188根据动作指令对第五电动机235供电,第一可编程控制器188启动第五电动机235,第五电动机235的第二输出轴234带动第二丝杆段253反向转动,第二螺母254带动第二连接杆255运动,第二连接杆255带动第五抓持板241和第六抓持板231向第十限位开关257运动,第二连接杆255触动第十限位开关257使第五电动机235停止转动,第五抓持板241和第六抓持板231脱离电池箱35。
步骤67:机械手200在第一电池箱仓305中取出电池箱35,机械手200把持住电池箱35,在机器人78调整好姿势后,机械手200的指部124闭合把持电池箱35。
步骤68:视觉传感器631开始拍摄第三充换电柜31中电池箱35,获取系统628实施根据视觉传感器631的输出来获取第三充换电柜31中空置的第十三电池箱仓357的三维信息的获取工序,获取系统628根据从视觉传感器631到空置的第十三电池箱仓357的距离,生成第三充换电柜31的三维信息,获取系统628根据由第一摄像机122和第二摄像机126拍摄得到的两个图像的视差,计算从视觉传感器631至空置的第十三电池箱仓357的距离。
步骤69:选择系统627实施根据第三充换电柜31的三维信息来选择由机器人78把电池箱35放入目标第十三电池箱仓357的选择工序,选择系统627根据第三充换电柜31的位置和姿势从高到低的顺序选择空置的电池箱仓。
步骤70:在机器人78调整好姿势后,机械手200的指部124闭合把持电池箱35,机械手200把持住电池箱35输送到第三充换电柜31的第十三电池箱仓357中。
步骤71:动作控制系统629根据预先生成的动作程序将驱动第十三电池箱仓控制系统653的动作指令,发送到第十三电池箱仓控制系统653的第二无线可编程控制器361,第二无线可编程控制器361根据动作指令对第五电动机235供电,第二无线可编程控制器361启动第五电动机235,第五电动机235的第二输出轴234带动第二丝杆段253正向转动,第二丝杆段253推动第二连接杆255向电池箱35方向运动,第二连接杆255带动第三固定板251和第六抓持板231向电池箱35运动,第二连接杆255触动第九限位开关252使第五电动机235停止转动,第三固定板251和第六抓持板231夹紧电池箱35。
步骤72:重复步骤47的动作。
步骤73:监控装置626在判断为在第三充换电柜31的第十三电池箱仓357放入了由远程操作员7预定个数的亏电的电池箱35后,结束该控制。
步骤74:动作控制系统629根据预先生成的动作程序将驱动侧车门系统158的动作指令发送到侧车门控制系统304的第一可编程控制器188,第一可编程控制器188根据动作指令对第二电动机168供电,第一可编程控制器188控制第二电动机168带动螺纹丝杆169正向转动,在螺纹丝杆169上的第一丝杆段161和第二丝杆段164的螺纹旋向相反,第一滑动门132和第二滑动门133同时向两侧移动,第二滑动门133触动第四限位开关180第二电动机168停止工作,侧车门系统158开启。
步骤75:视觉传感器631开始拍摄搬运机器人77,获取系统628实施根据视觉传感器631的输出来获取搬运机器人77三维信息的获取工序,获取系统628根据从视觉传感器631至搬运机器人77前部的第十四二维码338的距离,生成搬运机器人77的三维信息,获取系统628根据由第一摄像机122和第二摄像机126拍摄得到的两个图像的视差,计算从视觉传感器631至第十四二维码338的距离。
步骤76:选择系统627实施根据搬运机器人77的三维信息来选择由机器人78取出的搬运机器人77的选择工序,选择系统627根据搬运机器人77的位置和姿势选择搬运机器人77。
步骤77:重复步骤2、步骤3和步骤4的动作。
步骤78:在机器人78调整好姿势后,机械手200的指部124闭合把持搬运机器人77,在第一支架80上取出搬运机器人77,机械手200把持住搬运机器人77输送到第一作业区593的第二工作点592。
步骤79:在第一作业区593中机器人78作业结束,动作控制系统629根据预先生成的动作程序下发控制指令使搬运机器人77视觉导航系统437开始导航,搬运机器人77按照预定的第四路径595行驶到第四作业区594的第六工作点596后,视觉导航系统437采集到待换电电动汽车41的第一二维码456为起始位置,设定在电池箱35上的第十三二维码469为第二位置,控制搬运机器人77由起始位置开始向前行驶到第二位置正下方。
步骤80:重复步骤13、步骤14和步骤15的动作。
步骤81:在第四作业区594的第六工作点596中机器人78作业结束,动作控制系统629根据预先生成的动作程序下发控制指令使搬运机器人77视觉导航系统437开始导航,视觉导航系统437采集到待换电电动汽车41的第九二维码464为起始位置,第五二维码465为第二位置,控制搬运机器人77由起始位置开始向前行驶到第二位置,搬运机器人77按照预定的第四路径595为导航路线行驶到第一作业区593的第二工作点592。
步骤82:重复步骤16到步骤25的动作。
步骤83:动作控制系统629根据预先生成的动作程序将驱动侧车门系统158的动作指令发送到侧车门控制系统304的第一可编程控制器188,第一可编程控制器188根据动作指令对第二电动机168供电,第一可编程控制器188控制第二电动机168带动螺纹丝杆169反向转动,在螺纹丝杆169上的第一丝杆段161和第二丝杆段164的螺纹旋向相反,第一滑动门132和第二滑动门133同时向中央并拢,第二滑动门133运动到第三限位开关176位置时第二电动机168停止工作,侧车门系统158关闭,
步骤84:电能补给车30根据第二待换电电动汽车780的位置坐标,导航到达第二待换电电动汽车780附近的最佳作业位置。
步骤85:第二待换电电动汽车780的前机舱盖板733打开。
步骤86:第四调平控制系统696的控制动作指令由远程操作员7通过远程操作台系统13下达通过远程控制系统2上传到第四可编程控制器695,第四可编程控制器695根据传感器反馈的数据及预设的动作指令,发出控制信号完成调平动作,将第二车载电池箱更换系统617顶在更换电池箱35的预设的准备位置734。
步骤87:视觉传感器631开始拍摄第二车载电池箱更换系统617中的电池箱35,获取系统628实施根据视觉传感器631的输出来获取第二车载电池箱更换系统617中电池箱35的三维信息的获取工序,获取系统628根据从视觉传感器631至第二车载电池箱更换系统617中电池箱35的第一测量点的距离,生成第二车载电池箱更换系统617的三维信息,获取系统628根据由第 一摄像机122和第二摄像机126拍摄得到的两个图像的视差,计算从视觉传感器631至第一测量点的距离。
步骤88:选择系统627实施根据第二车载电池箱更换系统617的三维信息来选择由机器人78取出的目标第二车载电池箱更换系统617中的电池箱35的选择工序,
步骤89:选择系统627根据目标电池箱35的位置和姿势来设定机器人78的目标位置,动作控制系统629使机器人滑动器系统83带动机器人78行驶到第二作业位置71,此时,机械手200指部124打开。
步骤90:在机器人78调整好姿势后,机械手200的指部124闭合把持电池箱35。
步骤91:动作控制系统629根据预先生成的动作程序将驱动第二车载电池箱更换系统617的动作指令,发送到第二电池箱更换控制系统697的第四可编程控制器695,第四可编程控制器695根据动作指令对第七电动机688供电,第四可编程控制器695启动第七电动机688,第七电动机688的第四输出轴687带动第四丝杆段675反向转动,第四丝杆段675带动第六螺母676转动,第六螺母676带动第四连接杆677转动,第四连接杆677带动第十三抓持板667和第十四抓持板685向第二十二限位开关681方向运动,第四连接杆677触动第二十二限位开关681使第七电动机688停止转动,第十三抓持板667和第十四抓持板685脱离电池箱35。
步骤92:机械手200在第二车载电池箱更换系统617中取出电池箱35,机械手200把持住电池箱35。
步骤93:重复步骤56到步骤60的动作。
步骤94:重复步骤26到步骤31的动作。
步骤95:视觉传感器631开始拍摄第二车载电池箱更换系统617,获取系统628实施根据视觉传感器631的输出来获取第二车载电池箱更换系统617中空置的第十七电池箱仓698的三维信息的获取工序,获取系统628根据从视觉传感器631到空置的第二车载电池箱更换系统617的距离,生成第二车载电池箱更换系统617的三维信息,获取系统628根据由第一摄像机122和第二摄像机126拍摄得到的两个图像的视差,计算从视觉传感器631至第二车载电池箱更换系统617的距离。
步骤96:选择系统627实施根据第二车载电池箱更换系统617的三维信息来选择由机器人78把电池箱35放入目标第十七电池箱仓698的选择工序。
步骤97:在机器人78调整好姿势后,机械手200的指部124闭合把持电池箱35,机械手200把持住电池箱35输送到第二车载电池箱更换系统617的第十七电池箱仓698中,步骤94:动作控制系统629根据预先生成的动作程序将驱动第二电池箱更换控制系统697的动作指令,发送到第二电池箱更换控制系统697的第四可编程控制器695,第四可编程控制器695根据动作指令对第七电动机688供电,第四可编程控制器695启动第七电动机688,第七电动机688的第四输出轴687带动第四丝杆段675正向转动,第四丝杆段675带动第六螺母676转动,第六螺母676带动第四连接杆677转动,第四连接杆677带动第十三抓持板667和第十四抓持板685向电池箱35运动,第四连接杆677触动第二十一限位开关680使第七电动机688停止转动,第十三抓持板667和第十四抓持板6851夹紧电池箱35。
步骤98:监控装置626在判断为在第二车载电池箱更换系统617的第十七电池箱仓698放入了由远程操作员7预定个数的电池箱35后,结束该控制。
步骤99:视觉传感器631开始拍摄第二搬运机器人79,获取系统628实施根据视觉传感器631的输出来获取第二搬运机器人79三维信息的获取工序,获取系统628根据从视觉传感器631至第二搬运机器人79前部的第十六二维码714的距离,生成第二搬运机器人79的三维信息,获取系统628根据由第一摄像机122和第二摄像机126拍摄得到的两个图像的视差,计算从视觉传感器631至第十六二维码714的距离。
步骤100:选择系统627实施根据搬运机器人77的三维信息来选择由机器人78取出的第二搬运机器人79的选择工序,选择系统627根据第二搬运机器人79的位置和姿势选择第二搬运机器人79。
步骤101:动作控制系统629根据预先生成的动作程序将驱动第一压力传感器222和第二压力传感器247的动作指令发送到225的第二可编程控制器224,第二可编程控制器224对第一压力传感器222和第二压力传感器247供电.
步骤102:在机器人78调整好姿势后,机械手200的指部124闭合把持搬运机器人77第一压力传感器222和第二压力传感器247将压力信息传递给第二可编程控制器224,第二可编程控制器224将接收到的压力信息与预设的信息比对之后,确定已经把握到第二搬运机器人79,第二可编程控制器224关闭第四电动机205,在第二支架81上取出第二搬运机器人79,机械手200把持住第二搬运机器人79输送到第一作业区593的第一工作点591。
步骤103:监控装置626在判断为取出了由远程操作员7预定的第二搬运机器人79后,结束该控制。
步骤104:在第一作业区593中机器人78作业结束,动作控制系统629根据预先生成的动作程序下发控制指令使第二搬运机器人79第二视觉导航系统776开始导航,磁导航系统435处于关闭状态,当第二视觉导航系统776发生故障时,第三处理器622将控制指令发送到远程操作台系统13,由远程操作员7控制第二搬运机器人79,第二搬运机器人79按照预定的第三路径589行驶到第三作业区590的第五工作点607后,第二视觉导航系统776采集到待换电电动汽车41的第二二维码455为起始位置,设定在电池箱35的第十三二维码469为第二位置,控制第二搬运机器人79行驶到起始位置。
步骤105:动作控制系统629根据预先生成的动作程序将驱动终第二终端平台旋转控制系统778的动作指令发送到终第二终端平台旋转控制系统778的第四无线可编程控制器752,第四无线可编程控制器752对第十二电动机745供电,第十二电动机745带动第二终端平台718向第二十四限位开关750旋转,旋转到第二十四限位开关750位置,触动第二十四限位开关750,第十二电动机745停止转动,第二终端平台718上的第五摄像机728和第六摄像机732对准车载电池箱更换系统564的在亏电的电池箱35的底部的第十三二维码469进行拍摄,获取系统628根据由第五摄像机728和第六摄像机732拍摄得到的两个图像的视差,计算从第五摄像机728和第六摄像机732至第十三二维码469的距离,生成车载电池箱更换系统564的三维信息,获取系统628根据由第五摄像机728和第六摄像机732拍摄得到的两个图像的视差,计算从第五摄像机728和第六摄像机732至电池箱35的底部的第十三二维码469的距离,第二搬运机器人79由起始位置开始向前行驶到第二位置正下方,将第二支板716顶在电池箱35下方外侧的预设位置。
步骤106:第二搬运机器人调平控制系统751调平到预定的高度。
步骤107:重复步骤7到步骤48的动作。
步骤108:电能补给车30根据待换电电动汽车41的位置坐标,导航到达待换电电动汽车41附近的最佳作业位置。
步骤109:重复步骤3的动作。
步骤110:重复步骤74的动作。
步骤111:动作控制系统629根据预先生成的动作程序将驱动护板旋转控制系统798的动作指令发送到护板旋转控制系统798的第三可编程控制器597,第三可编程控制器597对第十三电动机789供电,第十三电动机789带动旋转轴791和护板787向第二十六限位开关796旋转,旋转到第二十六限位开关796位置,触动第二十六限位开关796,第十三电动机789停止转动,此时整个车载电池箱更换系统564的侧面露出。
步骤109:视觉传感器631开始拍摄车载电池箱更换系统564中的电池箱35,获取系统628实施根据视觉传感器631的输出来获取车载电池箱更换系统564中的电池箱35的三维信息的获取工序,获取系统628根据从视觉传感器631至车载电池箱更换系统564中的电池箱35的第一测量点的距离,生成车载电池箱更换系统564的三维信息,获取系统628根据由第一摄像机122和第二摄像机126拍摄得到的两个图像的视差,计算从视觉传感器631至第一测量点的距离。
步骤112:选择系统627实施根据车载电池箱更换系统564的三维信息来选择由机器人78取出的目标车载电池箱更换系统564中的电池箱35的选择工序。
步骤113:选择系统627根据目标电池箱35的位置和姿势来设定机器人78的目标位置,动作控制系统629使机器人滑动器系统83带动机器人78行驶到第一作业位置74,此时,机械手200指部124打开。
步骤114:在机器人78调整好姿势后,机械手200的指部124闭合把持电池箱35。
步骤115:动作控制系统629根据预先生成的动作程序将驱动电池箱更换控制系统598的动作指令,发送到电池箱更换控制系统598的第三可编程控制器597,第三可编程控制器597根据动作指令对第六电动机562供电,第六电动机562的第三输出轴561带动第三丝杆段577反向转动,第三丝杆段577带动第三螺母578转动,第三螺母578带动第三连接杆576转动,第三连接杆576带动第九抓持板569和第十抓持板571向第二十限位开关581运动,第三连接杆576触动第二十限位开关581第六电动机562停止转动,第九抓持板569和第十抓持板571脱离电池箱35。
步骤116:机械手200在车载电池箱更换系统564中取出电池箱35,机械手200把持住电池箱35。
步骤117:重复步骤56到步骤60的动作。
步骤118:重复步骤26到步骤31的动作。
步骤119:视觉传感器631开始拍摄车载电池箱更换系统564,获取系统628实施根据视觉传感器631的输出来获取车载电池箱更换系统564中空置的车载电池箱更换系统564的三维信息的获取工序,获取系统628根据从视觉传感器631到空置的车载电池箱更换系统564的距离,生成车载电池箱更换系统564的三维信息,获取系统628根据由第一摄像机122和第二摄像机126拍摄得到的两个图像的视差,计算从视觉传感器631至车载电池箱更换系统564的距离。
步骤120:选择系统627实施根据车载电池箱更换系统564的三维信息来选择由机器人78把电池箱35放入目标车载电池箱更换系统564的选择工序。
步骤121:在机器人78调整好姿势后,机械手200的指部124闭合把持电池箱35,机械手200把持住电池箱35输送到车载电池箱更换系统564中。
步骤122:动作控制系统629根据预先生成的动作程序将驱动电池箱更换控制系统598的动作指令,发送到电池箱更换控制系统598的第三可编程控制器597,第三可编程控制器597根据动作指令对第六电动机562供电,第六电动机562的第三输出轴561带动第三丝杆段577正向转动,第三丝杆段577推动第三连接杆576向电池箱35方向运动,第三连接杆576带动第九抓持板569和第十抓持板571向电池箱35运动,第三连接杆576运行到第十九限位开关579位置,触动第十九限位开关579使第六电动机562停止转动,第九抓持板569和第十抓持板571向第七抓持板245和第八抓持板228闭合,第九抓持板569和第十抓持板571夹紧电池箱35。
步骤123:监控装置626在判断为在车载电池箱更换系统564中放入了由远程操作员7预定个数的电池箱35后,结束该控制。
步骤124:动作控制系统629根据预先生成的动作程序将驱动护板旋转控制系统798的动作指令发送到护板旋转控制系统798的第三可编程控制器597,第三可编程控制器597对第十三电动机789供电,第十三电动机789带动旋转轴791和护板787向第二十五限位开关795旋转,旋转到第二十五限位开关795位置,触动第二十五限位开关795,第十三电动机789停止转动,护板787闭合。
步骤125:第二待换电电动汽车780根据根据远程客户服务员6提供的位置坐标,导航到达第四充换电柜781附近的最佳作业位置。
步骤126:重复步骤85和步骤86动作。
步骤127:远程操作员7激活第二机器人735即机器人78的控制系统,选择系统627根据目标第二待换电电动汽车780的位置坐标来设定机器人78的位置,动作控制系统629使机器人78进入作业位置,此时,机械手200指部124打开。
步骤128:重复步骤87到步骤92的动作。
步骤129:重复步骤68到步骤73的动作。
步骤130:重复步骤50到步骤55的动作。
步骤131:重复步骤95到步骤98的动作。

Claims (15)

  1. 一种服务基地电能补给和被补给车通过物联网架构的补给体系,其特征是:远程通信系统1的第三通信总线8与有线和无线局域网18连接,第二处理器12与第一交换机13连接,第一交换机13与有线和无线局域网18连接,有线和无线局域网18与第二交换机17连接,第二交换机17与地面网络20连接,地面网络20与移动交换中心26连接,移动交换中心26与无线载波系统28连接,无线载波系统28同时与第一充电基地通信系统29、第二充电基地通信系统42、第三充电基地通信系统43、电能补给车通信系统57和电动汽车通信系统63无线连接,并同时进行单向通信和双向通信,无线载波系统28与电能补给车通信系统57的第一远程信息处理单元55包含的第一蜂窝芯片组47经由蜂窝协议通过第一主天线54执行蜂窝通信,电能补给车通信系统57具有的第一通信总线56与机器人控制系统618的数据取得装置621连接,第一短距离无线通信(SRWC)电路46经由第一SRWC天线53通过搬运机器人77的第二天线355与无线通讯单元343连接,无线载波系统28与电动汽车通信系统63的第二远程信息处理单元61包含的第二蜂窝芯片组64经由蜂窝协议通过第二主天线59执行蜂窝通信,无线载波系统28通过第一天线354和蜂窝无线网络天线接口347与第二无线可编程控制器361连接,第二无线可编程控制器361与第十三电池箱仓控制系统653、第十四电池箱仓控制系统654、第十五电池箱仓控制系统655和第十六电池箱仓控制系统656连接。
  2. 一种服务基地电能补给和被补给车通过物联网架构的补给体系,其特征是:在待换电电动汽车侧面车体801添加护板旋转系统797组成本发明第三实施例第三待换电电动汽车802,在电动汽车换电控制系统600上添加连接护板旋转控制系统798组成第三待换电电动汽车控制系统803,护板旋转系统797的旋转轴791穿过固定在车体801上的第一固定块792和第二固定块793,在旋转轴791上安装护板787和第一齿轮794,在车体801上安装固定架790,把第十三电动机789安装在固定架790上,在第十三电动机789转动轴上安装第二齿轮788,第二齿轮788和第一齿轮794相齿和,在车体801上安装护板旋转控制系统798的第二十五限位开关795和第二十六限位开关796,护板旋转控制系统798的第三可编程控制器597与第二十五限位开关795和第二十六限位开关796连接,第二十五限位开关795和第二十六限位开关796与第十三电动机789连接,第十三电动机789与第三可编程控制器597连接,使用时,护板旋转控制系统798的第三可编程控制器597控制第十三电动机789启动,第十三电动机789带动第二齿轮788转动,第二齿轮788带动第一齿轮794转动,第一齿轮794带动旋转轴791转动,旋转轴791带动护板787转动90°露出电池箱更换控制系统598。
  3. 一种服务基地电能补给和被补给车通过物联网架构的补给体系,其特征是:本发明第三实施例,在第三充换电柜31的内部安装第二机器人735构成第四充换电柜781,第二机器人735由机器人78构成,第二机器人735的控制系统由机器人控制系统618构成,将多个第一电池箱系统243用第一螺丝227分别固定在第一支座237上组成第三充换电柜31,在第三充换电柜31内部安装第二无线可编程控制器361,第二无线可编程控制器361由第一无线可编程控制器356的功能构成,第二无线可编程控制器361控制第一电池箱系统243构成的第三充换电柜控制系统362具有的第十三电池箱仓控制系统653、第十四电池箱仓控制系统654、第十五电池箱仓控制系统655和第十六电池箱仓控制系统656的动作,第二无线可编程控制器361与第九限位开关252和第十限位开关257连接,第九限位开关252和第十限位开关257与第五电动机235连接,第五电动机235与第二无线可编程控制器361连接,第十三电池箱仓控制系统653、第十四电池箱仓控制系统654、第十五电池箱仓控制系统655和第十六电池箱仓控制系统656同时与第二无线可编程控制器361连接,第三充换电柜31具有箱体321、门体324、顶部防雨板317、第二监控器322,在箱体321内安装电池箱仓329,在电池箱仓329内部安装第十三电池箱仓357、第十四电池箱仓358、第十五电池箱仓359和第十六电池箱仓360,在电池箱仓329上部安装压缩机仓337,在箱体321的前表面安装门体324,在箱体321内部安装保温层323,在箱体321上安装进风口328和出风口327,压缩机仓337通过进风口328和出风口327与箱体321下方的外部空间连通,对压缩机仓337进行散热,在缩机仓337安装冷凝器333和安装压缩机334;在侧面板331上安装侧面进风口330,在侧面板335上安装侧面出风口336,公用充电桩37的充电枪137与第三充换电柜31充电接口318连接。
  4. 根据权利要求1所述的服务基地电能补给和被补给车通过物联网架构的补给体系,其特征是:电能补给车控制系统45具备机器人控制系统618和远程操作台系统13,机器人控制系统618具有第三存储器624和第三处理器622,第三存储器624具有ROM和RAM存储各种数据;第三处理器622为CPU或GPU,第三存储器624与第三处理器622经由第四通信总线623可通信地连接,机器人控制系统618控制电动汽车换电控制系统600、搬运机器人控制系统442、第三充换电柜控制系统362、机器人驱动系统630、补光灯127、机械手控制系统225、机器人滑动器控制系统226、后车门控制系统303、侧车门控制系统304、第一充换电柜控制系统632、第二充换电柜控制系统633、第一可编程控制器188、第二可编程控制器224、第三可编程控制器597、第二无线可编程控制器361、第三无线可编程控制器433、第四无线可编程控制器752、第一调平控制系统197、第二调平控制系统432、第三调平控制系统616和第四调平控制系统696。
  5. 根据权利要求1所述的服务基地电能补给和被补给车通过物联网架构的补给体系,其特征是:电能补给车控制系统45具有电能补给车系统33是能够行驶的运输电池箱35的工具,具备客车车体的电能补给车30和以集装箱为车体的第二电能补给车39,电能补给车控制系统45具有电能补给车通信系统57、电能补给车充电系统128、后车门控制系统303、后车门系统146;侧车门控制系统304、侧车门系统158;机器人滑动器控制系统226、机器人滑动器系统83;第一调平控制系统197、机械手控制系统225、机械手系统200;第一充换电柜控制系统632、第一充电换柜72、第二充换电柜控制系统633、第二充换电柜75、磁吸拔插双作用连接器系统278、机器人控制系统618、机器人78、第三充换电柜控制系统362、第三充换电柜31、搬运机器人控制系统442、搬运机器人系统638、搬运机器人77、第二搬运机器人79、监控器73、第一支架80、第二支架81、多条支腿本发明中为四根:第一支腿84、第二支腿85、第三支腿86和第四支腿87。
  6. 根据权利要求1所述的服务基地电能补给和被补给车通过物联网架构的补给体系,其特征是:电能补给车通信系统57具有的第一远程信息处理单元55、第一全球导航卫星系统接收器50和第一车载计算机51通过第一通信总线56可通信地连接,第一通信总线56使用网络协议向电能补给车通信系统57提供网络连接,第一全球导航卫星系统接收器50从全球导航卫星系统24接收无线电信号,第一全球导航卫星系统接收器50可以配置用于各种GNSS系统,第一远程信息处理单元55具有第一短距离无线通信(SRWC)电路46、第一蜂窝芯片组47、第一处理器48、第一存储器49、第一SRWC天线53和第一主天线54,第一SRWC天线53和第一短距离无线通信(SRWC)电路46连 接,第一主天线54和第一蜂窝芯片组47连接,第一远程信息处理单元55配置为根据第一短距离无线通信(SRWC)电路46进行无线通信,Wi-Fi TM、WiMAX TM、Wi-Fi TM Direct、其它IEEE 802.11协议、ZigBee TM、Bluetooth TM、Bluetooth TM中的任何一种,第一处理器48是处理电子指令的设备,具有微处理器、微控制器、主处理器、控制器、车辆通信处理器和专用集成电路(ASIC),电能补给车系统33的电能补给车充电系统128具有光伏电池层134、充电控制器154、车载充电装置(OBC)156、电池管理系统(BMS)157、第一充换电柜72和第二充换电柜75,充电控制器154控制快速充电;车载充电装置(OBC)156控制缓慢充电,电池管理系统(BMS)157管理第一充换电柜72和第二充换电柜75并对其充电,充电控制器154、车载充电装置(OBC)156和电池管理系统(BMS)157通过控制器局域网(CAN)可通信地的连接,充电控制器154和车载充电装置(OBC)156通过第一线路155与电能补给车30的充电接口135连接,在电能补给车30车厢的前、后、左、右和顶部安装的光伏电池层134通过第二线路153与充电控制器154连接,光伏电池层134吸收太阳能,通过充电控制器154给第一充换电柜72和第二充换电柜75充电。
  7. 根据权利要求1所述的服务基地电能补给和被补给车通过物联网架构的补给体系,其特征是:在电能补给车30的后门框149的第一侧面142的底板139上安装后车门系统146具有的第三螺纹丝杆段295、第四支架299、第五支架297、第六支架301、第一限位开关294和第二限位开关296,在第六支架301上安装第一电动机298,第三螺纹丝杆段295贯穿第五螺母300、第四支架299和第五支架297,第一支杆143的上端与后车门上段130的内侧面上部铰接连接;第一支杆143的下端与第五螺母300连接,第一气压棒145的下端与后车门上段130的内侧面上部铰接连接;第一气压棒145的上端与后车门下段131的内侧面上部铰接连接,第二气压棒144的下端与后车门上段130的内侧面上部铰接连接;第二气压棒144的上端与后车门下段131的内侧面上部铰接连接,第一铰链140和第二铰链141的上端与电能补给车30的后门框149连接;第一铰链140和第二铰链141的下端与后车门上段130连接,后车门控制系统303的第一限位开关294和第二限位开关296与第一可编程控制器188连接,第一限位开关294和第二限位开关296与第一电动机298连接,第一电动机298与第一可编程控制器188连接,在电能补给车30车厢的侧面147上安装的侧车门系统158具有螺纹丝杆169、下端轨道179,第一滑动门132、第二滑动门133,第一支架159、第二支架166和第三支架167,在下端轨道179上安装第三限位开关176和第四限位开关180,在第三支架167上安装第二电动机168,在第一滑动门132的底部安装第一滑轮174和第二滑轮175,在第二滑动门133的底部安装第三滑轮177和第四滑轮178,第一滑轮174、第二滑轮175、第三滑轮177和第四滑轮178在下端轨道179上滑动,第一丝杆段161贯穿第一支架159、第一螺母160和第二螺母162;第二丝杆段164贯穿第二支架166第三螺母163和第四螺母165,第一螺母160与第一连接块170连接,第二螺母162与第二连接块171连接,第三螺母163与第三连接块172连接,第四螺母165与第四连接块173连接,第一连接块170和第二连接块171与第一滑动门132连接;第三连接块172和第四连接块173与第二滑动门133连接,第一可编程控制器188与侧车门控制系统304具有的第三限位开关176和第四限位开关180连接,第二电动机168与第三限位开关176和第四限位开关180连接,第二电动机168与第一可编程控制器188连接,在机器人滑动器系统83上安装的机器人78具有基座110,旋转主体112,其被支承为能够相对于基座110而绕垂直的第一轴111旋转;第一臂114,其被支承为能够相对于旋转主体112而绕水平的第二轴113旋转;第二臂118,其被支承为能够相对于第一臂114而绕水平的第三轴115旋转;第一腕部元件119,其被支承为能够相对于第二臂118而绕正交于第三轴115的第四轴116旋转;第二腕部元件120,其被支承为能够相对于第一腕部元件119而绕正交于第四轴116的第五轴117旋转;以及第三腕部元件125,其被支承为能够相对于第二腕部元件120而绕正交于第五轴117的第六轴121旋转,第一轴到第六轴中的每一个轴都安装有伺服电动机和编码器,将第一轴到第六轴安装的电动机总称为机器人驱动电动机634,机器人驱动电动机634用于旋转驱动,编码器用于检测机器人驱动电动机634的旋转角度,在第二腕部元件120上安装的视频传感器631由分开配置的第一摄像机122和第二摄像机126组成,在第二腕部元件120上安装补光灯127,在第三腕部元件125上安装的机械手200具有通过开闭的指部124来抓取或释放电池箱35;指部124由第一抓持板201和第二抓持板209组成,在机械手系统200的第一主板211的第一侧面208上安装第一滑轨202、第二滑轨207、第一固定板214、第二固定板221,在第一承重板220中部安装第一法兰213,在第一主板211上设置第一空心槽199和第二空心槽210,在第一滑轨202上竖直安装第一抓持板201,第一抓持板201在第一滑轨202上滑动,在第二滑轨207上竖直安装第二抓持板209,第二抓持板209在第二滑轨207上滑动,在第一抓持板201上安装第一压力传感器222,在第二抓持板209上安装第二压力传感器247,在第一承重板220下部安装第七限位开关219和第八限位开关206,在第三侧面217上竖直安装第三抓持板198和第四抓持板212,在第一侧面208外部安装第一固定架203,在第一固定架203上安装第四电动机205,第四电动机205的第一输出轴204通过联轴器穿过第一固定架203与第一转杆220连接,第一转杆220上安装第一丝杆段218,把第一螺母216套装在第一丝杆段218上,在第一螺母216上安装第一连接杆215,第一连接杆215与第一抓持板201和第二抓持板209连接,机械手控制系统225的第二可编程控制器224与第七限位开关219和第八限位开关206连接;第四电动机205与第七限位开关219和第八限位开关206连接;第四电动机205与第二可编程控制器224连接,第一压力传感器222和第二压力传感器247与第二可编程控制器224电连接,在电能补给车30上安装的机器人滑动器系统83上安装挡块103、导轨105、联轴器108、第五限位开关109、第六限位开关107和第三电动机129,在导轨105上安装螺旋导杆104,在螺旋导杆104上安装滑动基座106,第五限位开关109安装位置与第二作业位置71在一条垂直线上,第六限位开关107安装位置与第一作业位置74在一条垂直线上,螺旋导杆104与联轴器108连接,联轴器108与第三电动机129连接,机器人滑动器控制系统226的第一可编程控制器188与第五限位开关109和第六限位开关107连接,第三电动机129与第五限位开关109和第六限位开关107连接,第三电动机129与第一可编程控制器188连接,第一可编程控制器188控制第三电动机129带动在滑动基座106安装的机器人78,从第一作业位置74出发沿着第一轴线82到达第五限位开关109位置后,第三电动机129停止转动,机器人78到达第二作业位置71;机器人78沿着第一轴线82回到第六限位开关107位置,第三电动机129停止转动,机器人78回到第一作业位置74,电能补给车30的第一支腿84、第二支腿85、第三支腿86和第四支腿87都由第一调平控制系统197和第二双作用多级液压缸543和组成,第一调平控制系统197具有的第一液压压力传感器182、第一位置传感器183、第一测长传感器184、第一微波测距传感器185、第一倾斜传感器186、第二倾斜传感器187、第一液压伺服控制器189、第二液压伺服控制器191、第三液压伺服控制器193和第四液压伺服控制器195都通过数据线分别与第一可编程逻辑控制器188连接,第一液压伺服控制器189通过数据线与第 一液压阀组190连接;第二液压伺服控制器191通过数据线与第二液压阀组192连接;第三液压伺服控制器193通过数据线与第三液压阀组194连接;第四液压伺服控制器195通过数据线与第四液压阀组196连接,在第二双作用多级液压缸543的第二底座535下部安装的第一液压压力传感器182,将其受力情况的数据反馈至第一可编程逻辑控制器188;在第二底座535下部安装的第一位置传感器183检测支柱油缸完全收回状态并将数据反馈至第一可编程逻辑控制器188,第一测长传感器184安装在支柱油缸的顶部,检测支柱油缸伸缩位置距离,并将支柱油缸伸缩速度和位置数据反馈至第一可编程逻辑控制器188,第一微波测距传感器185安装在液压支柱顶部,用于检测支柱到地面的距离,并将数据反馈至第一可编程逻辑控制器188,第一倾斜传感器186和第二倾斜传感器187安装在电能补给车30底盘的中心处,用于检测在X轴方向和Y轴方向的倾斜数据。
  8. 根据权利要求1所述的服务基地电能补给和被补给车通过物联网架构的补给体系,其特征是:磁吸拔插双作用连接器系统278具有插头261和插座262,插头261安装在电动汽车底盘设备上,插座262安装在电池箱35上,插头261具有插头壳体266、插头减震橡胶球267、第一输出口268、第二输出口269、第三输出口270、浮动插头体263、浮动插头体前端265;在浮动插头体前端265上安装的第一N极磁铁圆锥体定位器264、第二N极磁铁圆锥体定位器273、第一高压正极插接件274、第一高压负极插接件276、第一接地插接件275、第一插针阵列271设置为2排12个小电流插针,第一降温空气进口272、第一降温空气出口277,插头减震橡胶球267安装在插头壳体266内,插头壳体266和浮动插头体263之间,插头减震橡胶球267与插头壳体266的内壁和浮动插头体263的外部紧密接触,具有弹性和缓冲作用,第一输出口268是第一降温空气进口272和第一降温空气出口277的连接管道进入电动汽车底盘的通道;第二输出口269是连接第一高压正极插接件274、第一高压负极插接件276和第一接地插接件275的导线进入电动汽车底盘的通道;第三输出口270是第一插针阵列271连接线进入电动汽车底盘的通道,插座262具有浮动插座体279、插座壳体282、第四输出口283、第五输出口284、第六输出口285和插座减震橡胶球286,在浮动插座体279具有的浮动插座体前端281上安装第一S极磁铁浮倒圆锥体定位器280、第二S极磁铁倒圆锥体定位器287、第二高压正极接插件288、第二高压负极接插件291、第二接地接插件289、第二插针基座290设置为2排12个小电流插孔、第二降温空气进口292、第二降温空气出口293,插座减震橡胶球286安装在插座壳体282内,插座壳体282和浮动插座体279之间,插座减震橡胶球286与插座壳体282的内壁和浮动插座体279的外部紧密接触且具有弹性和缓冲作用,第四输出口283是第二降温空气进口292和第二降温空气出口293的连接管道进入电池箱35的通道;第五输出口284是连接第二高压正极接插件288和第二高压负极接插件291的导线进入电池箱35的通道;第六输出口285是第二插针基座290连接线进入电池箱35的通道,在第三主板557下部安装信号线、控制线路保护器640和电源浪涌保护器639,第一插针阵列271连接线与信号线、控制线路保护器640串联连接,第一高压正极插接件274、第一高压负极插接件276、第一接地插接件275电源线与电源浪涌保护器639并联连接。
  9. 根据权利要求1所述的服务基地电能补给和被补给车通过物联网架构的补给体系,其特征是:在电动汽车底盘497的前、后、左、右安装第一二维码456、第二二维码455、第三二维码463、第四二维码459,在电动汽车底盘497底部的前、后、左、右、中间安装第五二维码465、第六二维码461、第七二维码462、第八二维码466和第九二维码464;在电池箱35的顶部安装第十一二维码467,第一侧面安装第十二二维码468,在电池箱35的底部安装第十三二维码469,上述二维码都由上面的的二维码470和下面的导航磁钉471组成,每个二维码都包含一个独立的信息,当搬运机器人77经过不同位置的二位码时,视觉导航系统437动态读取该二维码包含的信息,得到搬运机器人77此时的位置信息。
  10. 根据权利要求1所述的服务基地电能补给和被补给车通过物联网架构的补给体系,其特征是:电动汽车换电控制系统600由电动汽车通信系统63、第三可编程控制器597、电池箱更换控制系统598、车载电池箱更换系统564、第二转动控制系统599、第二转动控制系统601、第三转动控制系统602、第四转动控制系统603和第三调平控制系统616组成,电动汽车通信系统63具有的第二远程信息处理单元61、第二全球导航卫星系统接收器68和第二车载计算机69通过第二通信总线62可通信地连接,第二通信总线62使用网络协议向电动汽车通信系统63提供网络连接,第二全球导航卫星系统接收器68从全球导航卫星系统24接收无线电信号,第二全球导航卫星系统接收器68可以配置用于各种GNSS系统,第二远程信息处理单元61具有第二蜂窝芯片组64、第二短距离无线通信(SRWC)电路65、第二处理器66、第二存储器67、第二主天线59和第二SRWC天线60,第二主天线59和第二蜂窝芯片组64连接,第二SRWC天线60和第二短距离无线通信(SRWC)电路65连接,第二远程信息处理单元61配置为能够根据第二短距离无线通信(SRWC)电路65进行无线通信,Wi-Fi TM、WiMAX TM、Wi-Fi TM Direct、其它IEEE 802.11协议、ZigBee TM、Bluetooth TM、Bluetooth TM中的任何一种,第二处理器66是处理电子指令的设备,具有微处理器、微控制器、主处理器、控制器、车辆通信处理器和专用集成电路(ASIC),第二通信总线62与在电动汽车41上安装的第三可编程控制器597可通信地连接,无线载波系统28与电动汽车通信系统63的第二远程信息处理单元61包含的第二蜂窝芯片组64经由蜂窝协议通过第二主天线59执行蜂窝通信,电动汽车支腿升降系统573具有第一升降器472、第二升降器491、第三升降器505和第四升降器516,第一升降器472组成如下:在电动汽车底盘497上安装第八支架477,在第八支架477上安装第七电动机476、第一万向齿轮478和第二万向齿轮479,第一万向齿轮478与第二万向齿轮479相啮合,在第二万向齿轮479的第一转杆473上安装第一支腿475,在第一支腿475上安装第一防尘盖474,第七电动机476的输出轴通过联轴器穿过第八支架477与第一万向齿轮478连接,在电动汽车底盘497上安装第十一限位开关480和第十二限位开关481,第一转动控制系统599的第三可编程控制器597与第十一限位开关480和第十二限位开关481连接,第七电动机476与第十一限位开关480和第十二限位开关481连接,第七电动机476与第三可编程控制器597连接,使用时,第三可编程控制器597控制第七电动机476启动,第七电动机476带动第一万向齿轮478转动,第一万向齿轮478带动第二万向齿轮479转动,第二万向齿轮479带动第一转杆473转动,第一转杆473带动第一支腿475转动,第二升降器491组成如下:在电动汽车底盘497上安装第九支架488,在第九支架488上安装第八电动机489、第三万向齿轮485和第四万向齿轮487,第三万向齿轮485和第四万向齿轮487相啮合,第三万向齿轮485的第二转杆484上安装第二支腿490,在第二支腿490上安装第二防尘盖483,第八电动机489的输出轴通过联轴器穿过第九支架488与第四万向齿轮487连接,在电动汽车底盘497上安装第十三限位开关492和第十四限位开关493,第二支腿升降控制系统601的第三可编程控制器597与第十三限位开关492和第十四限位开关493连接,第十三限位开关492和第十四限位开关493与第八电动机489连接,第八电动机489与第三可编程控制器597连接,使用时,第三可编程 控制器597控制第八电动机489启动,第八电动机489带动第四万向齿轮487转动,第四万向齿轮487带动第三万向齿轮485转动,第三万向齿轮485带动第二转杆484转动,第二转杆484带动第二支腿490转动,第三升降器505组成如下:在电动汽车底盘497上安装第十支架500,在第十支架500上安装第九电动机501、第五万向齿轮498和第六万向齿轮499,第五万向齿轮498和第六万向齿轮499相啮合,在第五万向齿轮498的第三转杆504上安装第三支腿502,在第三支腿502上安装第三防尘盖503,第九电动机501的输出轴通过联轴器穿过第十支架500与第六万向齿轮499连接,在电动汽车底盘497上安装第十五限位开关506和第十六限位开关507,第三支腿升降控制系统602的第三可编程控制器597与第十五限位开关506和第十六限位开关507连接,第十五限位开关506和第十六限位开关507与第九电动机501连接,第九电动机501与第三可编程控制器597连接,使用时,第三可编程控制器597控制第九电动机501启动,第九电动机501带动第六万向齿轮499转动,第六万向齿轮499带动第五万向齿轮498转动,第五万向齿轮498带动第三转杆504转动,第三转杆504带动第三支腿502转动,第四升降器516组成如下:在电动汽车底盘497安装第十一支架510,在第十一支架510上安装第十电动机509、第七万向齿轮511和第八万向齿轮512,第七万向齿轮511和第八万向齿轮512相啮合,第八万向齿轮512的第四转杆513上安装第四支腿515,在第四支腿515上安装第四防尘盖514,第十电动机509的输出轴通过联轴器穿过第十一支架510与第七万向齿轮511连接,在电动汽车底盘497安装第十七限位开关544和十八限位开关545,第四支腿升降控制系统603的第三可编程控制器597与第十七限位开关544和十八限位开关545连接,第十七限位开关544和十八限位开关545与第十电动机509连接,第十电动机509与第三可编程控制器597连接,使用时,第三可编程控制器597控制第十电动机509启动,第十电动机509带动第七万向齿轮511转动,第七万向齿轮511带动第八万向齿轮512转动,第八万向齿轮512带动第四转杆513转动,第四转杆513带动第四支腿515转动,第三可编程控制器597控制第七电动机476、第八电动机489、第九电动机501和第十电动机509同时启动,当运行到每台电动机的上、下限位开关时,先到先停,后到后停,在电动汽车支腿升降系统573的第一支腿475内安装第一伸缩腿482、在第二支腿490内部安装第二伸缩腿494、在第三支腿502内安装第三伸缩腿508、在第四支腿515内部安装第四伸缩腿546,第一伸缩腿482、第二伸缩腿494、第三伸缩腿508和第四伸缩腿546都由第三调平控制系统616和第二双作用多级液压缸543和组成,第三调平控制系统616的第二液压压力传感器528、第二位置传感器530、第二测长传感器533、第二微波测距传感器525、第三倾斜传感器495、第四倾斜传感器496、第五液压伺服控制器608、第六液压伺服控制器610、第七液压伺服控制器612和第八液压伺服控制器614都通过数据线分别与第三可编程逻辑控制器597连接,第五液压伺服控制器608通过数据线与第五液压阀组609连接;第六液压伺服控制器610通过数据线与第六液压阀组611连接;第七液压伺服控制器612通过数据线与第七液压阀组613连接;第八液压伺服控制器614通过数据线与第八液压阀组615连接。
  11. 根据权利要求1所述的服务基地电能补给和被补给车通过物联网架构的补给体系,其特征是:在电池箱更换控制系统598具有的车载电池箱更换系统564的第三主板557下部安装第五滑轨前端固定板574、第六滑轨前端固定板582、第五滑轨575和第六滑轨583,在第三承重板558上安装第二法兰553,用第二螺丝554把第二法兰553固定在电动汽车底盘497上,用第三螺丝555把车载电池箱更换系统564的其它部位固定在电动汽车底盘497上,在第三主板557上设置第五空心槽568和第六空心槽572,在第五滑轨575上竖直安装第九抓持板569,在第九抓持板569上设置第五抓持器570,第九抓持板569在第五滑轨575上滑动,在第六滑轨583上竖直安装第十抓持板571,在第十抓持板571上设置第六抓持器559,第十抓持板571在第六滑轨583上滑动,在第三承重板558下部安装第十九限位开关579和第二十限位开关581,在第十一侧面550上安装插头261;在第十一侧面550上竖直安装第十一抓持板566,在第十一抓持板566上设置第七抓持器567;在第十一侧面550上竖直安装第十二抓持板551,在第十二抓持板551上设置第八抓持器552,第五抓持器570、第六抓持器559、第七抓持器567和第八抓持器552是半圆形,便于固定抓取到的电池箱35,在第九侧面565外部安装第二固定架563,在第二固定架563上安装第六电动机562,第六电动机562的第三输出轴561通过联轴器穿过第二固定架563与第三转杆580连接,在第三转杆580上安装第三丝杆段577,把第三螺母578套装在第三丝杆段577上,在第三螺母578上安装第三连接杆576,第三连接杆576与第九抓持板569和第十抓持板571连接,第三可编程控制器597与第十九限位开关579和第二十限位开关581连接,第六电动机562与第十九限位开关579和第二十限位开关581连接,第六电动机562与第三可编程控制器597连接。
  12. 根据权利要求1所述的服务基地电能补给和被补给车通过物联网架构的补给体系,其特征是:搬运机器人控制系统442通过具有的第二调平控制系统432、避障系统434、磁导航系统435、行走机构控制系统436、视觉导航系统437、终端平台旋转控制系统438和角度纠偏机构控制系统439,搬运机器人系统638具有搬运机器人行走系统637、搬运机器人举升系统636和角度纠偏系统635,在搬运机器人底盘384上安装搬运机器人行走系统637、搬运机器人举升系统636和角度纠偏系统635,搬运机器人控制系统442的第二调平控制系统432、角度纠偏机构控制系统439和行走机构控制系统436与第三无线可编程控制器433连接,第三无线可编程控制器433由第一无线可编程控制器356的功能构成,无线载波系统28与电能补给车通信系统57的第一远程信息处理单元55包含的第一蜂窝芯片组47经由蜂窝协议通过第一主天线54执行蜂窝通信,电能补给车通信系统57具有的第一通信总线56与机器人控制系统618的数据取得装置621连接,第一短距离无线通信(SRWC)电路46经由第一SRWC天线53通过搬运机器人77的第二天线355与无线通讯单元343连接,电能补给车通信系统57将接收到的传感器信号输出到数据取得装置621,数据取得装置621将所取得的传感器信号存储在第三存储器624中,动作控制系统629根据来自搬运机器人控制系统442的每一个所包含的旋转编码器的位置检测器的信号进行反馈控制,使得机器人78的各个机器人驱动电动机634的旋转与动作程序的指令一致,配合搬运机器人控制系统442的作业,远程操作员7通过远程操作台系统13下达,控制搬运机器人控制系统442的动作指令,通过远程控制系统2上传到机器人控制系统618的动作控制系统629,动作控制系统629根据预先生成的动作程序输出驱动指令到第三无线可编程控制器433,第三无线可编程控制器433控制搬运机器人77执行各个程序,在搬运机器人底盘384上安装第三无线可编程控制器433、避障系统434、视觉导航系统437、信号预处理器449、电子差速控制器450、第一电机控制器390、第一驱动电动机389、第一转速传感器451、第二电机控制器391、第二驱动电动机392、第二转速传感器452、第三电机控制器404、第三驱动电动机403、第三转速传感器453、第四电机控制器402、第四驱动电动机407、第四转速传感器454、电池充电口406、电池401和启动开关405,第三无线可编程控制器433与信号预处理器449连接,信号预处理器449与电子差速控制器450连接,电子差速控制器450与第一电机控制器390、第二电机控制 器391、第三电机控制器404和第四电机控制器402连接,第一驱动电动机389与第一电机控制器390连接并受其控制;第二驱动电动机392与第二电机控制器391连接并受其控制;第三驱动电动机403与第三电机控制器404连接并受其控制;第四驱动电动机407与第四电机控制器402连接并受其控制,第一驱动电动机389与第一车轮382连接并直接驱动,第二驱动电动机392与第二车轮386连接并直接驱动,第三驱动电动机403与第三车轮385连接并直接驱动,第四驱动电动机407与第四车轮388连接并直接驱动,电池401通过启动开关405与第三无线可编程控制器433连接,启动开关405控制电池401通断,电池充电口406与电池401连接,避障系统434具有超声波测距传感器395和激光测距传感器396,超声波测距传感器395分两路共8个超声探头,通过RS485通讯单元350与第三无线可编程控制器433连接,激光测距传感器396通过4个传感器串联连接至第三无线可编程控制器433的CAN通讯单元352,视觉导航系统437具有的第三摄像机394和第四摄像机398与图像传感器393电连接,图像传感器393与第三无线可编程控制器433电连接,磁导航系统435的磁导航传感器397与第三无线可编程控制器433电连接,第二调平控制系统432控制的搬运机器人举升系统636由在第二底板377的四角上安装的多个第一双作用多级液压缸431组成,在本实施例中,第一双作用多级液压缸431为四根,即第一顶升柱383、第二顶升柱376、第三顶升柱387和第四顶升柱373都由第二调平控制系统432和第一双作用多级液压缸431组成,在第一顶升柱383、第二顶升柱376、第三顶升柱387和第四顶升柱373的顶部安装支板363,第二调平控制系统432具有的第二液压压力传感器429、第二位置传感器408、第二测长传感器419、第二微波测距传感器420、第三倾斜传感器399、第四倾斜传感器400、第五液压伺服控制器440、第六液压伺服控制器443、第七液压伺服控制器445和第八液压伺服控制器447通过数据线分别与第三无线可编程控制器433连接,第五液压伺服控制器440通过数据线与第五液压阀组441连接;第六液压伺服控制器443通过数据线与第六液压阀组444连接;第七液压伺服控制器445通过数据线与第七液压阀组446连接;第八液压伺服控制器447通过数据线与第八液压阀组448连接,在角度纠偏系统635的支板363上安装第二十一限位开关364、第二十二限位开关368、连接圆环367、轴承370的外圈、第七支架378、第三倾斜传感器399和第四倾斜传感器400,在第七支架378上安装伺服电机374,在伺服电机374的轴上安装编码器375,小齿轮369的轴穿过轴承370的内圈通过联轴器302与伺服电机374的输出轴连接,滚珠轴承套设在连接圆环367的外侧壁上,在滚珠轴承上安装定位齿轮365,在定位齿轮365上安装转动定位块366和电池托盘380,在电池托盘380上安装第十五二维码663和定位块604,在本实施例定位块604为4个,用于固定电池箱35,小齿轮369和定位齿轮365相啮合,伺服电机374带动小齿轮369转动时,定位齿轮365带动电池托盘380转动,在第二底板377上安装伺服电机控制器372,用螺丝通过安装口371把第二底板377固定在搬运车底盘384上,第二十一限位开关364和第二十二限位开关368与支板363中心点在一条直线上,角度纠偏控制系统439具有的第三无线可编程控制器433与伺服电机控制器372连接,伺服电机控制器372与伺服电机374连接,伺服电机374与编码器375连接,编码器375与第三无线可编程控制器433连接,第二十一限位开关364和第二十二限位开关368与第三无线可编程控制器433连接,伺服电机374每旋转一个角度,就发出对应数量的脉冲和伺服电机374接受的脉冲形成了呼应,角度纠偏控制系统439就知道发了多少脉冲给伺服电机374,同时又回收了多少脉冲,对伺服电机374的转动实现定位,编码器375用于检测伺服电机374的轴的转动角度,编码器375将检测到的角度值传输到第三无线可编程控制器433,第三无线可编程控制器433基于编码器375检测到的角度值以及转动时间,计算转动速度,伺服电机374带动定位齿轮365逆时针转动90°到第二十一限位开关364位置,转动定位块366触动第二十一限位开关364伺服电机374停止转动,伺服电机374带动定位齿轮365顺时针转动90°到第二十二限位开关368位置,转动定位块366触动第二十二限位开关368伺服电机374停止转动,在支板363上安装第十一电动机549和转轴605,在转轴605上安装终端平台381,在终端平台381上安装第三摄像机394、第四摄像机398、超声波测距传感器395、激光测距传感器396、磁导航传感器397、导线进出口606和第十四二维码338,在支板363上安装第十九限位开关547和第二十限位开关548。
  13. 根据权利要求1所述的服务基地电能补给和被补给车通过物联网架构的补给体系,其特征是:第二实施例中第二待换电电动汽车780具有的第二电动汽车换电控制系统731由第二电动汽车通信系统729以下简称第二通信系统729、第四可编程控制器695、第二电池箱更换控制系统697、第二车载电池箱更换系统617和第四调平控制系统696组成,第二通信系统729具有的第三远程信息处理单元728、第三全球导航卫星系统接收器719和第三车载计算机720通过第三通信总线718可通信地连接,第三通信总线718使用网络协议向第二通信系统729提供网络连接,第三全球导航卫星系统接收器719从全球导航卫星系统24接收无线电信号,第三全球导航卫星系统接收器719可以配置用于各种GNSS系统,第三远程信息处理单元728具有第三蜂窝芯片组722、第三短距离无线通信(SRWC)电路723、第三处理器724、第三存储器725、第三主天线726和第三SRWC天线727,第三主天线726和第三蜂窝芯片组722连接,第三SRWC天线727和第三短距离无线通信(SRWC)电路723连接,第三远程信息处理单元728配置为能够根据第三短距离无线通信(SRWC)电路723进行无线通信,Wi-Fi TM、WiMAX TM、Wi-Fi TM Direct、其它IEEE 802.11协议、ZigBee TM、Bluetooth TM、Bluetooth TM中的任何一种,第三处理器724是处理电子指令的设备,具有微处理器、微控制器、主处理器、控制器、车辆通信处理器和专用集成电路(ASIC),第三通信总线718与在电动汽车41上安装的第四可编程控制器695可通信地连接,无线载波系统28与第二通信系统729的第三远程信息处理单元728包含的第三蜂窝芯片组722经由蜂窝协议通过第三主天线726执行蜂窝通信,在第二电池箱更换控制系统697具有的第二车载电池箱更换系统617的第四主板692上安装第七滑轨前端固定板672、第八滑轨前端固定板679、第七滑轨668和第八滑轨684,在第四承重板683上安装第三法兰691,在第二支板699安装第四法兰703,用第四螺丝701连接第三法兰691和第四法兰703,在第四主板692上设置第七空心槽665和第八空心槽674,在第七滑轨668上竖直安装第十三抓持板667,在第十三抓持板667上设置第九抓持器693,第十三抓持板667在第七滑轨668上滑动,在第八滑轨684上竖直安装第十四抓持板685,在第十四抓持板685上设置第十抓持器663,第十四抓持板685在第八滑轨684上滑动,在第四承重板683下部安装第二十一限位开关680和第二十二限位开关681,在第十五侧面664上安装插头261;在第十五侧面664上竖直安装第十五抓持板669,在第十五抓持板669上设置第十一抓持器670;在第十五侧面664上竖直安装第十六抓持板673,在第十六抓持板673上设置第十二抓持器682,第九抓持器693、第十抓持器663、第十一抓持器670和第十二抓持器682是半圆形,便于固定抓取到的电池箱35,在第十二侧面689外部安装第三固定架690,在第三固定架690上安装第七电动机688,第七电动机688的第四输出轴687通过联轴器穿过第三固定架690与第四转杆678连接,在第四转杆678上安装第四丝杆段675,把第六螺母676套装在第四丝杆段675上,在第六螺母676上安装第四连接 杆677,第四连接杆677与第十三抓持板667和第十四抓持板685连接,用第五螺丝716把第三底板707固定在电动汽车37前仓底盘730上,在电动汽车37的后仓安装驱动电动机607,驱动电动机607与插头261连接,第二电池箱更换控制系统697的第四可编程控制器695与第二十一限位开关680和第二十二限位开关681连接,第二十一限位开关680和第二十二限位开关681与第七电动机688连接,第七电动机688与第四可编程控制器695连接,第四调平控制系统696控制的搬运机器人举升系统700由在第三底板707的四角上安装的多个第一双作用多级液压缸431组成,在本实施例中,第一双作用多级液压缸431为四根,即第五顶升柱706、第六顶升柱713、第七顶升柱705和第四八顶升柱712都由第四调平控制系统696组成,第四调平控制系统696由第二调平控制系统432和第一双作用多级液压缸431组成,在第五顶升柱706、第六顶升柱713、第七顶升柱705和第四八顶升柱712的顶部安装第二支板699,第二调平控制系统432具有的第二液压压力传感器429、第二位置传感器408、第二测长传感器419、第二微波测距传感器420、第三倾斜传感器399、第四倾斜传感器400、第五液压伺服控制器440、第六液压伺服控制器443、第七液压伺服控制器445和第八液压伺服控制器447通过数据线分别与第三无线可编程控制器433连接,第五液压伺服控制器440通过数据线与第五液压阀组441连接;第六液压伺服控制器443通过数据线与第六液压阀组444连接;第七液压伺服控制器445通过数据线与第七液压阀组446连接;第八液压伺服控制器447通过数据线与第八液压阀组448连接。
  14. 根据权利要求1所述的服务基地电能补给和被补给车通过物联网架构的补给体系,其特征是:第二搬运机器人控制系统753具有的第二搬运机器人调平控制系统751、第二避障系统769、第二磁导航系统775、第二行走机构控制系统774、第二视觉导航系统776和第二终端平台旋转控制系统778与第四无线可编程控制器752连接,第四无线可编程控制器752由第一无线可编程控制器356的功能构成,第二搬运机器人系统743具有第二搬运机器人行走系统747和第二搬运机器人举升系统746,在第二搬运机器人底盘744上安装第二搬运机器人行走系统747和第二搬运机器人举升系统746,无线载波系统28与电能补给车通信系统57的第一远程信息处理单元55具有的第一蜂窝芯片组47经由蜂窝协议通过第一主天线54执行蜂窝通信,电能补给车通信系统57具有的第一通信总线56与机器人控制系统618的数据取得装置621连接,第一短距离无线通信(SRWC)电路46经由第一SRWC天线53通过第二搬运机器人79的第二天线355与无线通讯单元343连接,电能补给车通信系统57将接收到的传感器信号输出到数据取得装置621,数据取得装置621将所取得的传感器信号存储在第三存储器624中,动作控制系统629根据来自第二搬运机器人控制系统753的每一个所包含的旋转编码器的位置检测器的信号进行反馈控制,使得机器人78的各个机器人驱动电动机634的旋转与动作程序的指令一致,配合第二搬运机器人控制系统753的作业,远程操作员7通过远程操作台系统13下达,控制第二搬运机器人控制系统753动作指令,通过远程控制系统2上传到机器人控制系统618的动作控制系统629,动作控制系统629根据预先生成的动作程序输出驱动指令到第四无线可编程控制器752,第四无线可编程控制器752控制第二搬运机器人79执行各个程序,用第六螺丝720穿过安装孔721把第四底板726固定在第二搬运机器人底盘744上,在第二支板716下部安装第四无线可编程控制器752、第二信号预处理器770、第二电子差速控制器771、第五电机控制器734、第五驱动电动机733、第五转速传感器774、第六电机控制器735、第六驱动电动机736、第六转速传感器773、第二电池充电口742、第二电池737和第二启动开关768,在第二支板716上安装第十二电动机745和第二转轴748,在第二转轴748上安装第二终端平台718,在第二终端平台718上安装第五摄像机728、第六摄像机732、第二超声波测距传感器729、第二激光测距传感器730、第二磁导航传感器731、第二导线进出口759和第十六二维码714,在第二支板716上安装第二十三限位开关749和第二十四限位开关750,第四无线可编程控制器752与第二信号预处理器770连接,第二信号预处理器770与第二电子差速控制器771连接,第二电子差速控制器771与第五电机控制器734和第六电机控制器735连接,第五驱动电动机733与第五电机控制器734连接并受其控制;第六驱动电动机736与第六电机控制器735连接并受其控制,第五驱动电动机733与第五车轮738连接并直接驱动,第六驱动电动机736与第六车轮740连接并直接驱动,第七车轮739和第八车轮741是从动轮,第二电池737通过第二启动开关768与第四无线可编程控制器752连接,第二启动开关768控制第二电池737通断,第二电池充电口742与第二电池737连接,第二避障系统769具有第二超声波测距传感器729和第二激光测距传感器730,第二超声波测距传感器729分两路共8个超声探头,通过RS485通讯单元350与第四无线可编程控制器752连接,第二激光测距传感器730通过4个传感器串联连接至第四无线可编程控制器752的CAN通讯单元352,第二视觉导航系统776具有的第五摄像机728和第六摄像机732与第二图像传感器777电连接;第二图像传感器777与第四无线可编程控制器752电连接,第二磁导航系统775的第二磁导航传感器731与第四无线可编程控制器752电连接,第二终端平台旋转控制系统778的第四无线可编程控制器752与第二十三限位开关749和第二十四限位开关750连接,第二十三限位开关749和第二十四限位开关750第十二电动机745连接,第十二电动机745与第四无线可编程控制器752连接,第二搬运机器人调平控制系统751控制的第二搬运机器人举升系统746由在第四底板726的四角上安装的多个第二双作用多级液压缸系统758组成,在本实施例中,第二双作用多级液压缸系统758为四根,即第五顶升柱721、第六顶升柱722、第七顶升柱724和第八顶升柱725都由第二搬运机器人调平控制系统751和第二双作用多级液压缸系统758组成,第二双作用多级液压缸系统758的结构与第一双作用多级液压缸431的结构相同,在第五顶升柱721、第六顶升柱722、第七顶升柱724和第八顶升柱725的顶部安装第二支板716,第二支板716为凹型结构,便于搬运机器人77从进出口717位置进入第二支板716,第二搬运机器人调平控制系统751具有的第三液压压力传感器754、第三位置传感器755、第三测长传感器756、第三微波测距传感器757、第五倾斜传感器715、第六倾斜传感器719、第九液压伺服控制器760、第十液压伺服控制器762、第十一液压伺服控制器764和第十二液压伺服控制器766通过数据线分别与第四无线可编程控制器752连接,第九液压伺服控制器760通过数据线与第九液压阀组761连接;第十液压伺服控制器762通过数据线与第十液压阀组763连接;第十一液压伺服控制器764通过数据线与第十一液压阀组765连接;第十二液压伺服控制器766通过数据线与第十二液压阀组767连接,第三液压压力传感器754安装在支柱底端的第二底座779上,将支柱油缸的受力情况的数据反馈至第四无线可编程控制器752,第三位置传感器755安装在支柱底端的第二底座779上,检测支柱油缸完全收回状态并将数据反馈至第四无线可编程控制器752,第三测长传感器756安装在支柱油缸的顶部,检测支柱油缸伸缩位置距离,并将支柱油缸伸缩速度和位置数据反馈至第四无线可编程控制器752,第三微波测距传感器757安装在液压支柱顶部,用于检测支柱到支柱底端的距离,并将数据反馈至第四无线可编程控制器752,第五倾斜传感器715和第六倾斜传感器719安装在第二支板716的两侧,用于检测第二支板716在X轴方向和Y轴方向的倾斜数据。
  15. 根据权利要求1所述的服务基地电能补给和被补给车通过物联网架构的补给体系,其特征是:服务基地电能补给和被补给车通过物联网架构的补给体系3由远程控制系统2、电能补给车控制系统45、搬运机器人控制系统442、电动汽车换电控制系统600、第三充换电柜控制系统362、第一补给基地系统34和第二补给基地系统38组成并支撑电池箱运送网络44的循环,远程控制系统2具有;远程通信系统1、备用远程通信系统4和远程服务终端系统19,远程通信系统1具有无线载波系统28、全球导航卫星系统24、通信卫星23、上行链路发射站22、计算机21、地面网络20,无线载波系统28是蜂窝电话系统,具有蜂窝塔25,移动交换中心26以及将无线载波系统28与地面网络20连接所需的其它联网组件,蜂窝塔25具有发送和接收天线以及基站,来自不同蜂窝塔的基站直接地连接到移动交换中心27或者通过基站控制器的中间设备连接到移动交换中心27,无线载波系统28实施的通信技术具有AMPS的模拟技术和CDMA和GSM/GPRS数字技术,全球导航卫星系统24,是能在地球表面或近地空间的任何地点为用户提供全天候的三维坐标和速度以及时间信息的空基无线电导航定位系统,通信卫星23作为无线电通信中继站的人造地球卫星,通信卫星可以传输电话和数据信息,上行链路发射站22,上行链路指信号从移动台到基站的物理通道,计算机21提供因特网连接访问的计算机,提供DNS服务和作为网络地址服务器,其使用DHCP或其它适当协议向电能补给车30和电动汽车41分配IP地址,地面网络20具有公用电话交换网(PSTN)和因特网协议(IP)网络,标准有线网络、光纤网络、电缆网络、无线网络,远程服务终端系统19具有的第二交换机17、服务器16、数据库15、计算机设备14、远程操作台系统13经由有线和无线局域网18可通信的连接,第二交换机17路由输入信号,把话音传输被发送到远程操作台系统13的远程客户服务员6;并把数据传输传递到计算机设备14进行解调和进一步的信号处理,计算机设备14具有编码器,连接到服务器16和数据库15,服务器16发送和接收存储在数据库15、第一远程信息处理单元55和第二远程信息处理单元61中的数据信息,数据库15能够存储账户信息、用户认证信息、车辆标识,还能够通过无线系统422.11x、GPRS进行数据传输,远程操作台系统13具有远程控制台5、远程操作员7和远程客户服务员6,远程控制台5具有的输入装置9、显示装置10、第二存储器11(RAM、ROM)和第二处理器12(CPU、GPU)通过第三通信总线8可通信地连接,输入装置9具有多个操作键的键盘,用于接收远程操作员7的输入操作,显示装置10为LCD有机EL显示器将数据显示为图像提供给远程操作员7,远程操作员7在远程控制台5激活第二处理器12后开始执行远程控制工作,远程客户服务员6负责对客户的语音和文字服务,备用远程通信系统4是使用通信卫星23和上行链路发射站22来完成远程服务终端系统19和第一充电基地通信系统29、第二充电基地通信系统42、第三充电基地通信系统43、电能补给车通信系统57和电动汽车通信系统63之间的单向通信和双向通信,远程通信系统1的第三通信总线8与有线和无线局域网18连接,第二处理器12与第一交换机13连接,第一交换机13与有线和无线局域网18连接,有线和无线局域网18与第二交换机17连接,第二交换机17与地面网络20连接,地面网络20与移动交换中心26连接,移动交换中心26与无线载波系统28连接,无线载波系统28同时与第一充电基地通信系统29、第二充电基地通信系统42、第三充电基地通信系统43、电能补给车通信系统57和电动汽车通信系统63无线连接,并同时进行单向通信和双向通信,无线载波系统28与电能补给车通信系统57的第一远程信息处理单元55包含的第一蜂窝芯片组47经由蜂窝协议通过第一主天线54执行蜂窝通信,电能补给车通信系统57具有的第一通信总线56与机器人控制系统618的数据取得装置621连接,第一短距离无线通信(SRWC)电路46经由第一SRWC天线53通过搬运机器人77的第二天线355与无线通讯单元343连接,无线载波系统28与电动汽车通信系统63的第二远程信息处理单元61包含的第二蜂窝芯片组64经由蜂窝协议通过第二主天线59执行蜂窝通信,无线载波系统28通过第一天线354和蜂窝无线网络天线接口347与第二无线可编程控制器361连接,第二无线可编程控制器361与第十三电池箱仓控制系统653、第十四电池箱仓控制系统654、第十五电池箱仓控制系统655和第十六电池箱仓控制系统656连接,电能补给车控制系统45具有电能补给车系统33是能够行驶的运输电池箱35的工具,具备客车车体的电能补给车30和以集装箱为车体的第二电能补给车39,电能补给车控制系统45具有电能补给车通信系统57、电能补给车充电系统128、后车门控制系统303、后车门系统146;侧车门控制系统304、侧车门系统158;机器人滑动器控制系统226、机器人滑动器系统83;第一调平控制系统197、机械手控制系统225、机械手系统200;第一充换电柜控制系统632、第一充电换柜72、第二充换电柜控制系统633、第二充换电柜75、磁吸拔插双作用连接器系统278、机器人控制系统618、机器人78、第三充换电柜控制系统362、第三充换电柜31、搬运机器人控制系统442、搬运机器人系统638、搬运机器人77、第二搬运机器人79、监控器73、第一支架80、第二支架81、多条支腿本发明中为四根:第一支腿84、第二支腿85、第三支腿86和第四支腿87,在电池箱运送网络44中完成满电和亏电电池箱的循环,将电能补给车30开到与待换电电动汽车41见面的停车场,把待换电电动汽车41中亏电的电池箱35取出,换上充满电的电池箱35,亏电电池箱35被电能补给车30运回第一充电基地34、第二充电基地38和第三充换电柜31进行充换电,电能补给车30回到第一充电基地34后,驾驶员40把自用充电桩36的充电枪136插到电能补给车30充电接口135上,自用充电枪136和充电接口135连接,对电能补给车30的第一充换电柜72和第二充换电柜75中的电池箱35充电,电能补给车30到达第二充电基地38的公用充电桩37,驾驶员40把公用充电桩37的充电枪137插到电能补给车30的充电接口135上,公共充电枪137和充电接口135连接,对电能补给车30的第一充换电柜72和第二充换电柜75中的电池箱35充电,控制第一调平控制系统197的动作指令由远程操作员7通过远程操作台系统13下达,通过远程控制系统2上传到第一可编程逻辑控制器188,第一可编程逻辑控制器188根据传感器反馈的数据及预设的动作指令,发出控制信号到第一液压伺服控制器189、第二液压伺服控制器191、第三液压伺服控制器193和第四液压伺服控制器195,第一液压伺服控制器189根据控制信号控制第一液压阀组190动作;从而控制第一支腿84的第二双作用多级液压缸543完成伸缩动作到指定位置,第二液压伺服控制器191根据控制信号控制第二液压阀组192动作,从而控制第二支腿85的第二双作用多级液压缸543完成伸缩动作到指定位置,第三液压伺服控制器193根据控制信号控制第三液压阀组194动作,从而控制第三支腿86的第二双作用多级液压缸543完成伸缩动作到指定位置,第四液压伺服控制器195根据控制信号控制第四液压阀组196动作,从而控制第四支腿87的第二双作用多级液压缸543完成伸缩动作到指定位置,第一支腿84、第二支腿85、第三支腿86和第四支腿87都到达指定位置后,第一调平控制系统197具有的第一支腿84、第二支腿85、第三支腿86和第四支腿87调平过程如下:第一调平控制系统197的动作指令由远程操作员7通过远程操作台系统13下达,通过远程控制系统2上传到第一可编程逻辑控制器188启动调平作业,第一调平控制系统197按照计算的支柱到地面的距离控制支柱油缸伸出长度,第一测长传感器184对应检测检测支柱油缸伸出长度数值,直到支柱油缸第一液压压力传感器182检测到支柱油缸承压达到预设值,说明支柱油缸已经触顶,系统重新读取各个第一微波测距传感器185和第一测长传感器184对应检测检测支柱油缸伸出长度数值,同时读取第一倾斜传感器186和第二倾斜传感 器187分别检测车辆在X轴方向和Y轴方向的倾斜状态,第一调平控制系统197根据各个传感器反馈信息,按预设模型计算出电动汽车底盘497倾斜状态,并按系统设定给出调平控制方案,控制各个支柱按调平控制方案完成自动调平,电池箱35向插头261方向运动,插座262逐渐靠近插头261,由于异性相吸插头261上的第一N极磁铁圆锥体定位器264逐渐插入到插座262上的第一S极磁铁浮倒圆锥体定位器280内部;由于异性相吸插头261上第二N极磁铁圆锥体定位器273逐渐插入到插座262上第二S极磁铁倒圆锥体定位器287内部,浮动插头体263和浮动插座体279吸附紧密接触后,第一高压正极插接件274与第二高压正极接插件288插合到位;第一高压负极插接件276与第二高压负极接插件291插合到位;第一接地插接件275与第二接地接插件289插合到位;第一插针阵列271插针与第二插针基座290插孔啮合到位;第一降温空气进口272与第二降温空气进口292插合到位,第一降温空气出口277与第二降温空气出口293插合到位后,电池箱35内的气体开始与电动汽车41内部的空气降温系统流通,插头减震橡胶球267和插座减震橡胶球286用于化解电动汽车运动产生的震动传导到电池箱35后带动浮动插座体279的震动,第一无线可编程控制器356的主控单元345具有的第一存储器341、第一处理器342和无线通讯单元343信号连接,主控单元345分别与输入输出单元344、以太网通讯单元349、RS485通讯单元350、RS232通讯单元351和CAN通讯单元352信号连接,主控单元345和电源单元353连接,无线通讯单元343包含短信与GPRS通信的射频电路,无线通讯单元343分别与SIM卡座接口346、蜂窝无线网络天线接口347和WIFI天线接口348信号连接,蜂窝无线网络天线接口347与第一天线354信号连接;WIFI天线接口348与第二天线355信号连接,第一无线可编程控制器356直接构建远程控制系统,具备输入采集、继电器控制、定时器和串口通信,GPRS、短信和无线数传电台通信功能,在软件上具备读输入、执行程序、处理通信请求、执行CPU自诊断和写输出这五个扫描周期过程,还具备信道管理、驱动管理、采集管理和应用管理、远程采集管理功能,电能补给车控制系统45具备机器人控制系统618和远程操作台系统13,机器人控制系统618具有第三存储器624和第三处理器622,第三存储器624具有ROM和RAM存储各种数据;第三处理器622为CPU或GPU,第三存储器624与第三处理器622经由第四通信总线623可通信地连接,机器人控制系统618控制电动汽车换电控制系统600、搬运机器人控制系统442、第三充换电柜控制系统362、机器人驱动系统630、补光灯127、机械手控制系统225、机器人滑动器控制系统226、后车门控制系统303、侧车门控制系统304、第一充换电柜控制系统632、第二充换电柜控制系统633、第一可编程控制器188、第二可编程控制器224、第三可编程控制器597、第二无线可编程控制器361、第三无线可编程控制器433、第四无线可编程控制器752、第一调平控制系统197、第二调平控制系统432、第三调平控制系统616和第四调平控制系统696,远程操作员7在输入装置9的键盘上将机器人滑动器坐标系CT设定为,其原点配置在导轨105的左端,其X轴方向与第一轴线82方向一致,其Y轴方向与在第一充换电柜72内部的取出和放入电池箱35的方向一致,,其Z轴方向与铅垂方向平行,远程操作员7在输入装置9的键盘上将机器人坐标系C R设定为,其原点配置在基座110的中心,其X轴方向与第一轴线82方向一致,其Y轴方向与在第一充换电柜72内部的取出和放入电池箱35的方向一致,其Z轴方向与铅垂方向平行,将机器人滑动器坐标系CT设定为,其原点配置在导轨105的左端,其X轴方向与第一轴线82方向一致,其Y轴方向与机器人坐标系C R的Y轴方向一致,其Z轴方向与铅垂方向平行,将第一充换电柜坐标系C E设定为,其原点配置在第一充换电柜72顶部的中心,其X轴方向与第一轴线82方向一致,其Y轴方向与机器人坐标系C R的Y轴方向一致,其Z轴方向与铅垂方向平行,将第二充换电柜坐标系C F设定为,其原点配置在第二充换电柜75顶部的中心,其X轴方向与第一轴线82方向一致,其Y轴方向与机器人坐标系C R的Y轴方向一致,其Z轴方向与铅垂方向平行,将搬运机器人77的坐标系CK设定为,其原点配置在搬运机器人77顶部的中心,其X轴方向与第一轴线82方向一致,其Y轴方向与机器人坐标系C R的Y轴方向一致,其Z轴方向与铅垂方向平行,将第二搬运机器人79的坐标系CN设定为,其原点配置在第二搬运机器人79顶部的中心,其X轴方向与第一轴线82方向一致,其Y轴方向与机器人坐标系C R的Y轴方向一致,其Z轴方向与铅垂方向平行,将第三充换电柜坐标系C H设定为,其原点配置在第三直流充换电柜30顶部的中心,其X轴方向与第一轴线82方向一致,其Y轴方向与在第三直流充换电柜30内部的取出和放入电池箱35的方向成90°夹角,其Z轴方向与铅垂方向平行,机器人78对第一充电换柜72作业时,机器人滑动器105将机器人78运送到在预先选定的第一作业位置74上,第一作业位置74在第一轴线82方向上,在第一作业位置74以机器人坐标系C R为基准对机器人78进行控制,机器人78与第一电池箱仓控制系统641、第二电池箱仓控制系统643、第三电池箱仓控制系统645、第四电池箱仓控制系统647、第五电池箱仓控制系统649、第六电池箱仓控制系统651中的电池箱35在第一充换电柜坐标系C E的Y轴方向上被取出和放入的动作相协调,依次完成在第一充电换柜72中取出和放入电池箱35的作业,机器人78对第二充电换柜75作业时,机器人滑动器105将机器人78运送到在预先选定的第一作业位置74上,第一作业位置74在第一轴线82方向上,在第一作业位置74以机器人坐标系C R为基准对机器人78进行控制,机器人78与第七电池箱仓控制系统642、第八电池箱仓控制系统644、第九电池箱仓控制器系统646、第十电池箱仓控制系统648、第十一电池箱仓控制系统650和在第十二电池箱仓控制系统652中的电池箱35在第二充换电柜坐标系C F的Y轴方向上被取出和放入的动作相协调,依次完成在第二充电换柜75中取出和放入电池箱35的作业,机器人78对第三充电换柜30作业时,机器人滑动器105将机器人78运送到在预先选定的第二作业位置71上,第二作业位置71在第一轴线82方向上,在第二作业位置71以机器人坐标系C R为基准对机器人78进行控制,机器人78与第十三电池箱仓控制系统653、第十四电池箱仓控制系统654、第十五电池箱仓控制系统655和第十六电池箱仓控制系统656中的电池箱35,在第三充换电柜坐标系C H的X轴方向上被取出和放入的动作相协调,依次完成在第三充电换柜30中取出和放入电池箱35的作业,远程操作员7在机器人控制系统618上设置电池托盘380与车载电池箱更换系统564的正确对应角度,在电池托盘380与换电箱的对应角度有偏差时,机器人控制系统618通过第三无线可编程控制器433发送控制信号至伺服电机控制器372,伺服电机控制器372控制伺服电机374产生特定的扭矩,控制电池托盘380的转动角度,使电池托盘380回到与换电箱的正确对应角度,在调整完成后,读取编码器375的转动角度,并将编码器375所检测的转动角度与设置的转动角度进行比对,保证电池托盘380转动角度的精确性,第一双作用多级液压缸431为N级液压缸N≥2,本发明为三级缸,当三级液压缸顶升时液压油从第二油口427进入到一级缸顶升油腔426首先将一级缸活塞410向上顶起,然后液压油通过二级缸顶升油腔油道425进入二级缸顶升油腔424将二级缸活塞414向上顶起,再通过三级缸顶升油腔油道423进入三级缸顶升油腔422将三级缸活塞421向上顶起,各级收缩油腔里的余油通过收缩油腔油道进入中置油管流出第一油口409,当三级液压缸收缩时液压油从第一油口409进入到各级中置油管通过一级缸收缩油腔油道411进入一级缸收缩油腔412将一级缸活塞410向下压缩,然后通过二级缸收缩油腔油道415进入二级缸收缩油腔416将二级缸活塞414向下压缩,再通过三级缸收缩油腔 油道417进入三级缸收缩油腔418将三级缸活塞421向下压缩,各级顶升油腔里的余油通过顶升油腔油道流出第二油口427,第二液压压力传感器429安装在支柱底端的第一底座430上,将支柱油缸的受力情况的数据反馈至第三无线可编程控制器433,第二位置传感器408安装在支柱底端的第一底座430上,检测支柱油缸完全收回状态并将数据反馈至第三无线可编程控制器433,第二测长传感器419安装在支柱油缸的顶部,检测支柱油缸伸缩位置距离,并将支柱油缸伸缩速度和位置数据反馈至第三无线可编程控制器433,第二微波测距传感器420安装在液压支柱顶部,用于检测支柱到支柱底端的距离,并将数据反馈至第三无线可编程控制器433,第三倾斜传感器399和第四倾斜传感器400安装在顶部安装支板363的中心处,用于检测顶部安装支板363在X轴方向和Y轴方向的倾斜数据,第二双作用多级液压缸543为N级液压缸N≥2,本发明为三级缸,当三级液压缸顶升时,液压油从第三油口526进入到第二一级缸顶升油腔524后将第二一级缸活塞534向下顶起,然后液压油通过第二二级缸顶升油腔油道523进入第二二级缸顶升油腔522将第二二级缸活塞538向下顶起,再通过第二三级缸顶升油腔油道521进入第二三级缸顶升油腔520将第二三级缸活塞519向下顶起,各级收缩油腔里的余油通过收缩油腔油道流出第四油口532,当三级液压缸收缩时,液压油从第四油口532进入到各级中置油管通过第二一级缸收缩油腔油道535进入第二一级缸收缩油腔536将第二一级缸活塞534向上压缩,然后通过第二二级缸收缩油腔油道539进入第二二级缸收缩油腔540将第二二级缸活塞538向上压缩,再通过第二三级缸收缩油腔油道541进入第二三级缸收缩油腔518将第二三级缸活塞519向上压缩,各级顶升油腔里的余油通过顶升油腔油道流出第三油口526,第二双作用多级液压缸543的第二底座535下部安装的第二液压压力传感器528,将其受力情况的数据反馈至第三可编程逻辑控制器597;在第二底座535下部安装的第二位置传感器530检测支柱油缸完全收回状态并将数据反馈至第三可编程逻辑控制器597,第二测长传感器533安装在支柱油缸的顶部,检测支柱油缸伸缩位置距离,并将支柱油缸伸缩速度和位置数据反馈至第三可编程逻辑控制器597,第二微波测距传感器525安装在液压支柱顶部,用于检测支柱到地面的距离,并将数据反馈至第三可编程逻辑控制器597,第三倾斜传感器495和第四倾斜传感器496安装在电动汽车底盘497的中心处,用于检测支架板384在X轴方向和Y轴方向的倾斜数据,在伸缩腿的球形端头517上安装凹型底座542,视觉传感器631将拍摄的第一作业区593的第一工作点591到第二作业区588的第三工作点586和第四工作点584,第一作业区593的第二工作点592到第三作业区590的第五工作点607,第一作业区593的第二工作点592到第四作业区594的第六工作点596周围的光学影像发送给监控装置626,第三处理器622通过第三存储器624和监控装置626接收的该视频图像信息,基于视频图像拼接算法,生成预设区域内的数字化全景图像导航信息,设定第一路径585、第二路径587、第三路径589和第四路径595为导航路线,远程操作员7把上述路径存储在动作程序存储系统625中,发送给第三无线可编程控制器433,信号预处理器449接收到第三处理器622的生成预设区域内的数字化全景图像导航信息,设定的导航路线,计算出期望驱动转矩和临界车速,电子差速控制器450接收信号预处理器449的期望驱动转矩、临界车速,以及第一转速传感器451、第二转速传感器452、第三转速传感器453和第四转速传感器454的车轮轮速信号,根据转向行驶工况计算每个车轮的驱动转矩,电子差速控制器450向第一电机控制器390、第二电机控制器391、第三电机控制器404和第四电机控制器402发送转矩控制目标信号。
    步骤1:远程操作员7激活电能补给车控制系统45,电能补给车30到达待换电电动汽车41的最佳换电停车位置,远程操作员7通过远程操作台系统13控制电能补给车30和待换电电动汽车41,远程操作员7启动预先生成的动作程序展开对待换电电动汽车41的换电池箱35作业。
    步骤2:电动汽车换电控制系统600具有的第一转动控制系统599启动七电动机476带动第一支腿475转动、第二转动控制系统601启动第八电动机489带动第二支腿490转动、第三转动控制系统602启动第九电动机501带动第三支腿502转动、第四转动控制系统603启动第十电动机509带动第四支腿515转动使第一支腿475,第二支腿490、第三支腿502和第四支腿515同时向地面转动到预设位置。
    步骤3:远程操作员7通过远程操作台系统13下达控制第三调平控制系统616的动作指令,通过远程控制系统2上传到第三可编程逻辑控制器597,第三可编程逻辑控制器597根据传感器反馈的数据及预设的动作指令,同时发出控制信号到第五液压伺服控制器608、第六液压伺服控制器610、第七液压伺服控制器612和第八液压伺服控制器614,第五液压伺服控制器608根据控制信号控制第五液压阀组609动作,从而控制第一伸缩腿482的第二双作用多级液压缸543完成伸缩动作到指定位置,第六液压伺服控制器610根据控制信号控制第六液压阀组611动作,从而控制第二伸缩腿494的第二双作用多级液压缸543完成伸缩动作到指定位置,第七液压伺服控制器612根据控制信号控制第七液压阀组613动作,从而控制第三伸缩腿508的第二双作用多级液压缸543完成伸缩动作到指定位置,第八液压伺服控制器614根据控制信号控制第八液压阀组615动作,从而控制第四伸缩腿546的第二双作用多级液压缸543完成伸缩动作到指定位置,第一伸缩腿482、第二伸缩腿494、第三伸缩腿508和第四伸缩腿546都到达指定位置后,第三调平控制系统616控制的第一伸缩腿482、第二伸缩腿494、第三伸缩腿508和第四伸缩腿546调平过程如下:第三调平控制系统616的动作指令由远程操作员7通过远程操作台系统13下达,通过远程控制系统2上传到第三可编程逻辑控制器597启动调平作业,第三调平控制系统616按照计算的支柱到地面的距离控制支柱油缸伸出长度,第二测长传感器533对应检测检测支柱油缸伸出长度数值,直到支柱油缸第二液压压力传感器528检测到支柱油缸承压达到预设值,说明支柱油缸已经触顶,系统重新读取各个第二微波测距传感器525和第二测长传感器533对应检测检测支柱油缸伸出长度数值,同时读取第三倾斜传感器495和第四倾斜传感器496分别检测电动汽车底盘497在X轴方向和Y轴方向的倾斜状态,第三调平控制系统616根据各个传感器反馈信息,按预设模型计算出电动汽车底盘497倾斜状态,并按系统设定给出调平控制方案,控制各个支柱按调平控制方案完成自动调平。
    步骤4:选择系统627根据目标搬运机器人77的位置坐标来设定机器人78的目标位置,动作控制系统629根据预先生成的动作程序将驱动机器人滑动器系统83的动作指令发送到机器人滑动器控制系统226的第一可编程控制器188,第一可编程控制器188根据动作指令对第三电动机129供电,机器人滑动器系统83将机器人78配置在第二作业位置71,动作控制系统629根据预先生成的动作程序将用于驱动机器人78的动作程序指令发送到机器人驱动系统630,机器人驱动系统630具有驱动机器人驱动电动机634的电路,机器人驱动系统630根据动作指令对机器人驱动电动机634供电。
    步骤5:动作控制系统629根据预先生成的动作程序将驱动后车门系统146的动作指令发送到后车门控制系统303的第一可编程控制器188,第一可编程控制器188根据动作指令对第一电动机298供电,第一可编程控制器188控制第一电动机298带动第三螺纹丝杆段295正向转动,第五螺母300带动第一支杆143向第一限位开关294方向运动,后车门上段130开始打开,第五螺母300运动到第一限位开关294位置触动第一限位开关294,第一电动机298停止工作,后车门上段130打开到预定位置。
    步骤6:动作控制系统629根据预先生成的动作程序将驱动视频传感器631的动作指令发送到视频传感器631,动作控制系统629 根据远程操作员7预先生成的根据图像清晰度自动补光程序,将驱动补光灯127补光的动作指令发送到补光灯127,对视频传感器631的图像采集区域进行补光。
    步骤7:视觉传感器631开始拍摄搬运机器人77,获取系统628实施根据视觉传感器631的输出来获取搬运机器人77三维信息的获取工序,获取系统628根据从视觉传感器631至搬运机器人77前部的第十四二维码338的距离,生成搬运机器人77的三维信息,获取系统628根据由第一摄像机122和第二摄像机126拍摄得到的两个图像的视差,计算从视觉传感器631至第十四二维码338的距离。
    步骤8:选择系统627实施根据搬运机器人77的三维信息来选择由机器人78取出的搬运机器人77的选择工序,选择系统627根据搬运机器人77的位置和姿势选择搬运机器人77。
    步骤9:动作控制系统629根据预先生成的动作程序将驱动第一压力传感器222和第二压力传感器247的动作指令发送到225的第二可编程控制器224,第二可编程控制器224对第一压力传感器222和第二压力传感器247供电。
    步骤10:在机器人78调整好姿势后,机械手200的指部124闭合把持搬运机器人77,第一压力传感器222和第二压力传感器247将压力信息传递给第二可编程控制器224,第二可编程控制器224将接收到的压力信息与预设的信息比对之后,确定已经把握到搬运机器人77,第二可编程控制器224关闭第四电动机205,在第一支架80上取出搬运机器人77,机械手200把持住搬运机器人77输送到第一作业区593的第一工作点591。
    步骤11:监控装置626在判断为取出了由远程操作员7预定的搬运机器人77后,结束该控制。
    步骤12:在第一作业区593中机器人78作业结束,动作控制系统629根据预先生成的动作程序下发控制指令使搬运机器人77视觉导航系统437开始导航,磁导航系统435处于关闭状态,当视觉导航系统437发生故障时,第三处理器622将控制指令发送到远程操作台系统13,由远程操作员7控制搬运机器人77,搬运机器人77按照预定的第二路径587行驶到第二作业区588第三工作点586后,视觉导航系统437采集到待换电电动汽车41的第二二维码455为起始位置,设定在电池箱35的第十三二维码469为第二位置,控制搬运机器人77由起始位置开始向前行驶到第二位置正下方。
    步骤13:动作控制系统629根据预先生成的动作程序将驱动终端平台旋转控制系统438的动作指令发送到终端平台旋转控制系统438的第三无线可编程控制器433,第三无线可编程控制器433对第十一电动机549供电,第十一电动机549带动终端平台381向第二十限位开关548旋转,旋转到第二十限位开关548位置,触动第二十限位开关548,第十一电动机549停止转动,终端平台381上的第三摄像机394和第四摄像机398对准车载电池箱更换系统564的在亏电的电池箱35的底部的第十三二维码469进行拍摄,获取系统628根据由第三摄像机394和第四摄像机398拍摄得到的两个图像的视差,计算从第三摄像机394和第四摄像机398至第十三二维码469的距离,生成亏电的电池箱35的三维信息,获取系统628根据由第三摄像机394和第四摄像机398拍摄得到的两个图像的视差,计算从第三摄像机394和第四摄像机398至电池箱35的底部的第十三二维码469的距离,将电池托盘380顶在电池箱35下方的预设位置。
    步骤14:第二调平控制系统432控制动作指令由远程操作员7通过远程操作台系统13下达通过远程控制系统2上传到第三无线可编程控制器433,第三无线可编程控制器433根据传感器反馈的数据及预设的动作指令,发出控制信号到第五液压伺服控制器440,第六液压伺服控制器443,第七液压伺服控制器445和第八液压伺服控制器447,第五液压伺服控制器440根据控制信号控制第五液压阀组441动作,从而控制第一支柱的第一双作用多级液压缸431完成伸缩动作到指定位置;第六液压伺服控制器443根据控制信号控制第六液压阀组444动作,从而控制第二支柱的第一双作用多级液压缸431完成伸缩动作到指定位置;第七液压伺服控制器445根据控制信号控制第七液压阀446动作,从而控制第三支柱的第一双作用多级液压缸431完成伸缩动作到指定位置;第八液压伺服控制器447根据控制信号控制第八液压阀组448动作,从而控制第四支柱的第一双作用多级液压缸431完成伸缩动作到指定位置;第一支柱383、第二支柱376、第三支柱387和第四支柱373都到达指定位置后,第二调平控制系统432的控制动作指令由远程操作员7通过远程操作台系统13下达通过远程控制系统2上传到第三无线可编程控制器433启动调平作业,系统首先按照计算的支柱到地面的距离控制支柱油缸伸出长度,第二测长传感器419对应检测检测支柱油缸伸出长度数值,直到支柱油缸第二液压压力传感器429检测到支柱油缸承压达到预设值,说明支柱油缸已经触顶,此时,系统重新读取各个第二微波测距传感器420和第二测长传感器419对应检测检测支柱油缸伸出长度数值,同时读取第三倾斜传感器399和第四倾斜传感器400分别检测支架板384在X轴方向和Y轴方向的倾斜状态,系统根据各个传感器反馈信息,按预设模型计算出支架板384倾斜状态,并按系统设定给出调平控制方案,控制各个支柱按调平控制方案完成自动调平,将电池托盘380顶在更换电池箱35的预设的准备位置。
    步骤15:动作控制系统629根据预先生成的动作程序将驱动电池箱更换控制系统598的动作指令,发送到第三可编程控制器597,第三可编程控制器597根据动作指令对第六电动机562供电,第六电动机562的第三输出轴561带动第三丝杆段577反向转动,第三螺母578带动第三连接杆576运动,第三连接杆576带动第九抓持板569和第十抓持板571向第二十限位开关581运动,第三连接杆576触动第二十限位开关581使第六电动机562停止转动,第九抓持板569和第十抓持板571脱离电池箱35,电池箱35落到搬运机器人77的顶部。
    步骤16:在第二作业区588中机器人78作业结束,动作控制系统629根据预先生成的动作程序下发控制指令使搬运机器人77视觉导航系统437开始导航,视觉导航系统437采集到电动汽车41的第九二维码464为起始位置,第六二维码461为第二位置,控制搬运机器人77由起始位置开始向前行驶到第二位置。
    步骤17:动作控制系统629根据预先生成的动作程序将驱动终端平台旋转控制系统438的动作指令发送到终端平台旋转控制系统438的第三无线可编程控制器433,第三无线可编程控制器433对第十一电动机549供电,第十一电动机549带动终端平台381向第十九限位开关547旋转,触动第十九限位开关547第十一电动机549停止转动,终端平台381上的第三摄像机394和第四摄像机398对准正前方,动作控制系统629根据预先生成的动作程序下发控制指令使搬运机器人77视觉导航系统437开始导航,搬运机器人77按照预定的第二路径585行驶到第一作业区593的第一工作点591。
    步骤18:视觉传感器631开始拍摄搬运机器人77的顶部的电池箱35,获取系统628实施根据视觉传感器631的输出来获取搬运机器人77的顶部的电池箱35的三维信息的获取工序,获取系统628根据从视觉传感器631至安装在电池箱35顶部的第十一二维码467为第二测量点的距离,生成搬运机器人77的顶部的电池箱35的三维信息,获取系统628根据由第一摄像机122和第二摄像机126拍摄得到的两个图像的视差,计算从视觉传感器631至第二测量点的距离。
    步骤19:在机器人78调整好姿势后,动作控制系统629根据预先生成的动作程序将驱动机械手200的动作指令发送到机械手控制系统225的第二可编程控制器224,第二可编程控制器224根据动作指令对第四电动机205供电,第二可编程控制器224启动第四电动机205,第四电动机205的第一输出轴204带动第一丝杆段218正向转动,第一丝杆段218推动第一连接杆215带动第一抓持板 201和第二抓持板209向电池箱35运动,第一连接杆215运行到第七限位开关219位置,触动第七限位开关219使第四电动机205停止转动,第一抓持板201和第二抓持板209夹紧电池箱35,第一抓持板201和第二抓持板209向第三抓持板198和第四抓持板212闭合,电池箱35被夹持,在搬运机器人77的顶部取走电池箱35,机械手200把持住电池箱35准备输送到预定的位置,在输送电池箱35的期间电池箱35不会从机械手200脱落。
    步骤20:视觉传感器631开始拍摄第一充换电柜72中的电池箱35,获取系统628实施根据视觉传感器631的输出来获取第一充换电柜72中空置的第一电池箱仓305的三维信息的获取工序,获取系统628根据从视觉传感器631到空置的第一电池箱仓305的距离,生成第一充换电柜72的三维信息,获取系统628根据由第一摄像机122和第二摄像机126拍摄得到的两个图像的视差,计算从视觉传感器631至空置的第一电池箱仓305的距离。
    步骤21:选择系统627实施根据第一充换电柜72的三维信息来选择由机器人78把电池箱35放入目标第一电池箱仓305的选择工序,选择系统627根据第一充换电柜72的位置和姿势从高到低的顺序选择空置的电池箱仓。
    步骤22:在机器人78调整好姿势后,机械手200的指部124闭合把持电池箱35,机械手200把持住电池箱35输送到第一充换电柜72的空置的第一电池箱仓305中。
    步骤23:动作控制系统629根据预先生成的动作程序将驱动第一电池箱仓控制系统641的动作指令,发送到第一电池箱仓控制系统641的第一可编程控制器188,第一可编程控制器188根据动作指令对第五电动机235供电,第一可编程控制器188启动第五电动机235,第五电动机235的第二输出轴234带动第二丝杆段253正向转动,第二螺母254带动第二连接杆255向电池箱35方向运动,第二连接杆255带动第五抓持板241和第六抓持板231向电池箱35方向移动,第二连接杆255运行到第九限位开关252位置,触动第九限位开关252使第五电动机235停止转动,第五抓持板241和第六抓持板231向第七抓持板245和第八抓持板228方向闭合并夹紧电池箱35,
    步骤24:动作控制系统629根据预先生成的动作程序将驱动机械手200的动作指令发送到机械手控制系统225的第二可编程控制器224,第二可编程控制器224根据动作指令对第四电动机205供电,第二可编程控制器224启动第四电动机205,第四电动机205的第一输出轴204带动第一丝杆段218反向转动,第一丝杆段218带动第一连接杆215运动,第一连接杆215带动第一抓持板201和第二抓持板209向第八限位开关206方向运动,第一连接杆215触动第八限位开关206,第四电动机205停止转动,第一抓持板201和第二抓持板209脱离电池箱35。
    步骤25:监控装置626在判断为在第一充换电柜72的第一电池箱仓305放入了由远程操作员7预定个数的电池箱35后,结束该控制。
    步骤26:选择系统627根据目标电池箱35的位置和姿势来设定机器人78的目标位置,动作控制系统629使机器人滑动器系统83带动机器人78行驶到第二作业位置71,此时,机械手200指部124打开。
    步骤27:视觉传感器631开始拍摄第一充换电柜72中充满电电池箱35,获取系统628实施根据视觉传感器631的输出来获取第一充换电柜72中充满电的电池箱35的三维信息的获取工序,获取系统628根据从视觉传感器631至第一充换电柜72中充满电的电池箱35的第一测量点的距离,生成第一充换电柜72的三维信息,获取系统628根据由第一摄像机122和第二摄像机126拍摄得到的两个图像的视差,计算从视觉传感器631至第一测量点的距离。
    步骤28:选择系统627实施根据第一充换电柜72的三维信息来选择由机器人78取出的目标第二电池箱仓307中的电池箱35的选择工序,选择系统627根据第一充换电柜72的位置和姿势从高到低的顺序和每个电池箱的二维码从第二电池箱仓307到第六电池箱仓315选择充满电的电池箱35。
    步骤29:在机器人78对准第二电池箱仓307中的充满电的电池箱35调整好姿势后,机械手200的指部124闭合把持电池箱35。
    步骤30:动作控制系统629根据预先生成的动作程序将驱动第二电池箱仓控制系统643的动作指令,发送到第二电池箱仓控制系统643的第一可编程控制器188,第一可编程控制器188根据动作指令对第五电动机235供电,第一可编程控制器188启动第五电动机235,第五电动机235的第二输出轴234带动第二丝杆段253反向转动,第二螺母254带动第二连接杆255运动,第二连接杆255带动第五抓持板241和第六抓持板231向第十限位开关257运动,第二连接杆255触动第十限位开关257,第五电动机235停止转动,第五抓持板241和第六抓持板231脱离电池箱35。
    步骤31:机械手200在第二电池箱仓307中取出电池箱35,机械手200把持住电池箱35。
    步骤32:视觉传感器631开始拍摄搬运机器人77的电池托盘380上的第十五二维码663,获取系统628实施根据视觉传感器631的输出来获取搬运机器人77的电池托盘380的三维信息的获取工序,获取系统628根据从视觉传感器631至安装在电池托盘380上的第十五二维码663为第四测量点的距离,生成搬运机器人77的顶部的电池箱35的三维信息,获取系统628根据由第一摄像机122和第二摄像机126拍摄得到的两个图像的视差,计算从视觉传感器631至第四测量点的距离。
    步骤33:在机器人78调整好姿势后,机械手200的指部124闭合把持电池箱35,在搬运机器人77的顶部电池托盘380放下电池箱35,机械手200指部124打开。
    步骤34:监控装置626在判断为在搬运机器人77的顶部放下了由远程操作员7预定个数的电池箱35后,结束该控制。
    步骤35:取出和放入第二充换电柜75中的电池箱35时,动作控制系统629使机器人滑动器系统83带动机器人78行驶到第一作业位置74。
    步骤36:重复步骤4到步骤34的动作。
    步骤37:在第一作业区593中机器人78作业结束,动作控制系统629根据预先生成的动作程序下发控制指令使搬运机器人77视觉导航系统437开始导航,搬运机器人77按照预定的第一路径585行驶到第二作业区588第三工作点586后,视觉导航系统437采集到待换电电动汽车41的第二二维码455为起始位置,设定在电动汽车底盘497底部中间的第九二维码464为第二位置,控制搬运机器人77由起始位置开始向前行驶到第二位置正下方。
    步骤38:动作控制系统629根据预先生成的动作程序将驱动终端平台旋转控制系统438的动作指令发送到终端平台旋转控制系统438的第三无线可编程控制器433,第三无线可编程控制器433对第十一电动机549供电,第十一电动机549带动终端平台旋转控制系统438向第二十限位开关548旋转,触动第二十限位开关548,第十一电动机549停止转动,终端平台381上的第三摄像机394和第四摄像机398对准车载电池箱更换系统564的底部中间的第九二维码464进行拍摄,获取系统628根据由第三摄像机394和第四摄像机398拍摄得到的两个图像的视差,计算从第三摄像机394和第四摄像机398至第九二维码464的距离,生成车载电池箱更换系统564的三维信息,获取系统628根据由第三摄像机394和第四摄像机398拍摄得到的两个图像的视差,计算从第三摄像机394 和第四摄像机398至电池箱35的底部的第九二维码464的距离,将电池托盘380上部的电池箱35顶在车载电池箱更换系统564预设位置的下方。
    步骤39:第二调平控制系统432,按照调平控制方案完成自动调平,将电池托盘380顶在更换电池箱35的预设的准备位置。
    步骤40:动作控制系统629根据预先生成的动作程序将驱动电池箱更换控制系统598的动作指令,发送到电池箱更换控制系统598的第三可编程控制器597,第三可编程控制器597根据动作指令对第六电动机562供电,第六电动机562的第三输出轴561带动第三丝杆段577正向转动,第三丝杆段577带动第三连接杆576向电池箱35方向运动,第三连接杆576带动第九抓持板569和第十抓持板571向电池箱35运动,第三连接杆576运行到第十九限位开关579位置,触动第十九限位开关579使第六电动机562停止转动,第九抓持板569和第十抓持板571向第十一抓持板566和第十二抓持板551闭合,第九抓持板569和第十抓持板571夹紧电池箱35。
    步骤41:监控装置626判断为送出了由远程操作员7预定的电池箱35后,结束该步骤,第二调平控制系统432恢复到原始状态。
    步骤42:在第二作业区588中机器人78作业结束,动作控制系统629根据预先生成的动作程序下发控制指令,使搬运机器人77视觉导航系统437开始导航,视觉导航系统437采集到待换电电动汽车41的电池箱35底部第十三二维码469为起始位置,第六二维码461为第二位置,控制搬运机器人77由起始位置开始向前行驶到第二位置。
    步骤43:重复步骤17的动作。
    步骤44在机器人78调整好姿势后,机械手200的指部124闭合把持搬运机器人77。
    步骤45:视觉传感器631开始拍摄第一支架80,获取系统628实施根据视觉传感器631的输出来获取第一支架80三维信息的获取工序,获取系统628根据从视觉传感器631至第一支架80顶部的第十五二维码657的距离,生成第一支架80的三维信息,获取系统628根据由第一摄像机122和第二摄像机126拍摄得到的两个图像的视差,计算从视觉传感器631至第一支架80的距离。
    步骤46:选择系统627实施根据搬运机器人77的三维信息来选择由机器人78放入的搬运机器人77的选择工序,选择系统627根据搬运机器人77的位置和姿势选择搬运机器人77,机械手200把持住搬运机器人77输送到第一支架80上,第一支架充电口658与搬运机器人充电口662连接。
    步骤47:动作控制系统629根据预先生成的动作程序将驱动后车门系统146的动作指令发送到后车门控制系统303的第一可编程控制器188,第一可编程控制器188根据动作指令对第一电动机298供电,第一可编程控制器188控制第一电动机298带动第三螺纹丝杆段295反向转动,第五螺母300带动第一支杆143向第五支架297方向运动,后车门上段130开始闭合,第五螺母300触动第二限位开关296,第一电动机298停止工作,后车门上段130闭合。
    步骤48:监控装置626在判断为在第一支架80放下了由远程操作员7预定的机器人78后,结束该控制。
    步骤49:电能补给车30根据第三充换电柜31的位置坐标,导航到达第三充换电柜31附近的最佳作业位置。
    步骤50:视觉传感器631开始拍摄第三充换电柜31中的电池箱35,获取系统628实施根据视觉传感器631的输出来获取第三充换电柜31中的电池箱35的三维信息的获取工序,获取系统628根据从视觉传感器631至第三充换电柜31中的电池箱35的第一测量点的距离,生成第三充换电柜31的三维信息,获取系统628根据由第一摄像机122和第二摄像机126拍摄得到的两个图像的视差,计算从视觉传感器631至第一测量点的距离。
    步骤51:选择系统627实施根据第三电池箱3的三维信息来选择由机器人78取出的目标第十三电池箱仓357中的充满电的电池箱35的选择工序,选择系统627根据第三充换电柜的位置和姿势从高到低的顺序从第十三电池箱仓357到第十六电池箱仓360中选择充满电的电池箱35。
    步骤52:选择系统627根据目标电池箱35的位置和姿势来设定机器人78的目标位置,动作控制系统629使机器人滑动器系统83带动机器人78行驶到第二作业位置71,此时,机械手200指部124打开。
    步骤53:在机器人78调整好姿势后,机械手200的指部124闭合把持电池箱35。
    步骤54:动作控制系统629根据预先生成的动作程序将驱动第十三电池箱仓控制系统653的动作指令,发送到第十三电池箱仓控制系统653的第二无线可编程控制器361,第二无线可编程控制器361根据动作指令对第五电动机235供电,第二无线可编程控制器361启动第五电动机235,第五电动机235的第二输出轴234带动第二丝杆段253反向转动,第二丝杆段253带动第二连接杆255运动,第二连接杆255带动第五抓持板241和第六抓持板231向第十限位开关257方向运动,第二连接杆25,触动第十限位开关257,第五电动机235停止转动,第五抓持板241和第六抓持板231脱离电池箱35。
    步骤55:机械手200在第十三电池箱仓357中取出电池箱35,机械手200把持住电池箱35。
    步骤56:视觉传感器631开始拍摄第一充换电柜72中电池箱35,获取系统628实施根据视觉传感器631的输出来获取第一充换电柜72中空置的第一电池箱仓305的三维信息的获取工序,获取系统628根据从视觉传感器631到空置的第一电池箱仓305的距离,生成第一充换电柜72的三维信息,获取系统628根据由第一摄像机122和第二摄像机126拍摄得到的两个图像的视差,计算从视觉传感器631至第一电池箱仓305的距离。
    步骤57:选择系统627实施根据第一充换电柜72的三维信息来选择由机器人78把电池箱35放入目标第一电池箱仓305的选择工序,选择系统627根据第一充换电柜72的位置和姿势从高到低的顺序选择空置的电池箱仓。
    步骤58:在机器人78调整好姿势后,机械手200的指部124闭合把持电池箱35,机械手200把持住电池箱35输送到第一充换电柜72的第一电池箱仓305中。
    步骤59:动作控制系统629根据预先生成的动作程序将驱动第一电池箱仓控制系统641的动作指令,发送到第一电池箱仓控制系统641的第一可编程控制器188,第一可编程控制器188根据动作指令对第五电动机235供电,第一可编程控制器188启动第五电动机235,第五电动机235的第二输出轴234带动第二丝杆段253正向转动,第二螺母254带动第二连接杆255向电池箱35方向运动,第二连接杆255带动第五抓持板241和第六抓持板231向电池箱35方向移动,第二连接杆255触动第九限位开关252使第五电动机235停止转动,第五抓持板241和第六抓持板231向第七抓持板245和第八抓持板228方向闭合并夹紧电池箱35,
    步骤60:监控装置626在判断为在第一充换电柜72的第一电池箱仓305放入了由远程操作员7预定个数的充满电的电池箱35后,结束该控制。
    步骤61:选择系统627根据目标搬运机器人77的位置坐标来设定机器人78的目标位置,动作控制系统629使机器人滑动器系统83带动机器人78行驶到第二作业位置71,此时,机械手200指部124打开。
    步骤62:视觉传感器631开始拍摄第一充换电柜72中电池箱35,获取系统628实施根据视觉传感器631的输出来获取第一充换电柜72中亏电的电池箱35的三维信息的获取工序,获取系统628根据从视觉传感器631至第一充换电柜72中亏电的电池箱35的第一测量点的距离,生成第一充换电柜72的三维信息,获取系统628根据由第一摄像机122和第二摄像机126拍摄得到的两个图像的视差,计算从视觉传感器631至第一测量点的距离。
    步骤63:获取系统628实施根据视觉传感器631的输出来获取第一充换电柜72的第一电池箱仓305中亏电的电池箱35的三维信息的获取工序,获取系统628根据从视觉传感器631到亏电的电池箱35的距离,生成第一充换电柜72的三维信息,获取系统628根据由第一摄像机122和第二摄像机126拍摄得到的两个图像的视差,计算从视觉传感器631至亏电的电池箱35的距离。
    步骤64:选择系统627实施根据第一充换电柜72的三维信息来选择由机器人78把亏电的电池箱35取出的选择工序,选择系统627根据第一充换电柜72的位置和姿势从高到低的顺序和电池箱35的二维码信息选择亏电的电池箱35。
    步骤65:机器人78调整好姿势后,机械手200的指部124闭合把持电池箱35。
    步骤66:动作控制系统629根据预先生成的动作程序将驱动第一电池箱仓控制系统641的动作指令,发送到第一电池箱仓控制系统641的第一可编程控制器188,第一可编程控制器188根据动作指令对第五电动机235供电,第一可编程控制器188启动第五电动机235,第五电动机235的第二输出轴234带动第二丝杆段253反向转动,第二螺母254带动第二连接杆255运动,第二连接杆255带动第五抓持板241和第六抓持板231向第十限位开关257运动,第二连接杆255触动第十限位开关257使第五电动机235停止转动,第五抓持板241和第六抓持板231脱离电池箱35。
    步骤67:机械手200在第一电池箱仓305中取出电池箱35,机械手200把持住电池箱35,在机器人78调整好姿势后,机械手200的指部124闭合把持电池箱35。
    步骤68:视觉传感器631开始拍摄第三充换电柜31中电池箱35,获取系统628实施根据视觉传感器631的输出来获取第三充换电柜31中空置的第十三电池箱仓357的三维信息的获取工序,获取系统628根据从视觉传感器631到空置的第十三电池箱仓357的距离,生成第三充换电柜31的三维信息,获取系统628根据由第一摄像机122和第二摄像机126拍摄得到的两个图像的视差,计算从视觉传感器631至空置的第十三电池箱仓357的距离。
    步骤69:选择系统627实施根据第三充换电柜31的三维信息来选择由机器人78把电池箱35放入目标第十三电池箱仓357的选择工序,选择系统627根据第三充换电柜31的位置和姿势从高到低的顺序选择空置的电池箱仓。
    步骤70:在机器人78调整好姿势后,机械手200的指部124闭合把持电池箱35,机械手200把持住电池箱35输送到第三充换电柜31的第十三电池箱仓357中。
    步骤71:动作控制系统629根据预先生成的动作程序将驱动第十三电池箱仓控制系统653的动作指令,发送到第十三电池箱仓控制系统653的第二无线可编程控制器361,第二无线可编程控制器361根据动作指令对第五电动机235供电,第二无线可编程控制器361启动第五电动机235,第五电动机235的第二输出轴234带动第二丝杆段253正向转动,第二丝杆段253推动第二连接杆255向电池箱35方向运动,第二连接杆255带动第三固定板251和第六抓持板231向电池箱35运动,第二连接杆255触动第九限位开关252使第五电动机235停止转动,第三固定板251和第六抓持板231夹紧电池箱35。
    步骤72:重复步骤47的动作。
    步骤73:监控装置626在判断为在第三充换电柜31的第十三电池箱仓357放入了由远程操作员7预定个数的亏电的电池箱35后,结束该控制。
    步骤74:动作控制系统629根据预先生成的动作程序将驱动侧车门系统158的动作指令发送到侧车门控制系统304的第一可编程控制器188,第一可编程控制器188根据动作指令对第二电动机168供电,第一可编程控制器188控制第二电动机168带动螺纹丝杆169正向转动,在螺纹丝杆169上的第一丝杆段161和第二丝杆段164的螺纹旋向相反,第一滑动门132和第二滑动门133同时向两侧移动,第二滑动门133触动第四限位开关180第二电动机168停止工作,侧车门系统158开启。
    步骤75:视觉传感器631开始拍摄搬运机器人77,获取系统628实施根据视觉传感器631的输出来获取搬运机器人77三维信息的获取工序,获取系统628根据从视觉传感器631至搬运机器人77前部的第十四二维码338的距离,生成搬运机器人77的三维信息,获取系统628根据由第一摄像机122和第二摄像机126拍摄得到的两个图像的视差,计算从视觉传感器631至第十四二维码338的距离。
    步骤76:选择系统627实施根据搬运机器人77的三维信息来选择由机器人78取出的搬运机器人77的选择工序,选择系统627根据搬运机器人77的位置和姿势选择搬运机器人77。
    步骤77:重复步骤2、步骤3和步骤4的动作。
    步骤78:在机器人78调整好姿势后,机械手200的指部124闭合把持搬运机器人77,在第一支架80上取出搬运机器人77,机械手200把持住搬运机器人77输送到第一作业区593的第二工作点592。
    步骤79:在第一作业区593中机器人78作业结束,动作控制系统629根据预先生成的动作程序下发控制指令使搬运机器人77视觉导航系统437开始导航,搬运机器人77按照预定的第四路径595行驶到第四作业区594的第六工作点596后,视觉导航系统437采集到待换电电动汽车41的第一二维码456为起始位置,设定在电池箱35上的第十三二维码469为第二位置,控制搬运机器人77由起始位置开始向前行驶到第二位置正下方。
    步骤80:重复步骤13、步骤14和步骤15的动作。
    步骤81:在第四作业区594的第六工作点596中机器人78作业结束,动作控制系统629根据预先生成的动作程序下发控制指令使搬运机器人77视觉导航系统437开始导航,视觉导航系统437采集到待换电电动汽车41的第九二维码464为起始位置,第五二维码465为第二位置,控制搬运机器人77由起始位置开始向前行驶到第二位置,搬运机器人77按照预定的第四路径595为导航路线行驶到第一作业区593的第二工作点592。
    步骤82:重复步骤16到步骤25的动作。
    步骤83:动作控制系统629根据预先生成的动作程序将驱动侧车门系统158的动作指令发送到侧车门控制系统304的第一可编程控制器188,第一可编程控制器188根据动作指令对第二电动机168供电,第一可编程控制器188控制第二电动机168带动螺纹丝 杆169反向转动,在螺纹丝杆169上的第一丝杆段161和第二丝杆段164的螺纹旋向相反,第一滑动门132和第二滑动门133同时向中央并拢,第二滑动门133运动到第三限位开关176位置时第二电动机168停止工作,侧车门系统158关闭,
    步骤84:电能补给车30根据第二待换电电动汽车780的位置坐标,导航到达第二待换电电动汽车780附近的最佳作业位置。
    步骤85:第二待换电电动汽车780的前机舱盖板733打开。
    步骤86:第四调平控制系统696的控制动作指令由远程操作员7通过远程操作台系统13下达通过远程控制系统2上传到第四可编程控制器695,第四可编程控制器695根据传感器反馈的数据及预设的动作指令,发出控制信号完成调平动作,将第二车载电池箱更换系统617顶在更换电池箱35的预设的准备位置734。
    步骤87:视觉传感器631开始拍摄第二车载电池箱更换系统617中的电池箱35,获取系统628实施根据视觉传感器631的输出来获取第二车载电池箱更换系统617中电池箱35的三维信息的获取工序,获取系统628根据从视觉传感器631至第二车载电池箱更换系统617中电池箱35的第一测量点的距离,生成第二车载电池箱更换系统617的三维信息,获取系统628根据由第一摄像机122和第二摄像机126拍摄得到的两个图像的视差,计算从视觉传感器631至第一测量点的距离。
    步骤88:选择系统627实施根据第二车载电池箱更换系统617的三维信息来选择由机器人78取出的目标第二车载电池箱更换系统617中的电池箱35的选择工序,
    步骤89:选择系统627根据目标电池箱35的位置和姿势来设定机器人78的目标位置,动作控制系统629使机器人滑动器系统83带动机器人78行驶到第二作业位置71,此时,机械手200指部124打开。
    步骤90:在机器人78调整好姿势后,机械手200的指部124闭合把持电池箱35。
    步骤91:动作控制系统629根据预先生成的动作程序将驱动第二车载电池箱更换系统617的动作指令,发送到第二电池箱更换控制系统697的第四可编程控制器695,第四可编程控制器695根据动作指令对第七电动机688供电,第四可编程控制器695启动第七电动机688,第七电动机688的第四输出轴687带动第四丝杆段675反向转动,第四丝杆段675带动第六螺母676转动,第六螺母676带动第四连接杆677转动,第四连接杆677带动第十三抓持板667和第十四抓持板685向第二十二限位开关681方向运动,第四连接杆677触动第二十二限位开关681使第七电动机688停止转动,第十三抓持板667和第十四抓持板685脱离电池箱35。
    步骤92:机械手200在第二车载电池箱更换系统617中取出电池箱35,机械手200把持住电池箱35。
    步骤93:重复步骤56到步骤60的动作。
    步骤94:重复步骤26到步骤31的动作。
    步骤95:视觉传感器631开始拍摄第二车载电池箱更换系统617,获取系统628实施根据视觉传感器631的输出来获取第二车载电池箱更换系统617中空置的第十七电池箱仓698的三维信息的获取工序,获取系统628根据从视觉传感器631到空置的第二车载电池箱更换系统617的距离,生成第二车载电池箱更换系统617的三维信息,获取系统628根据由第一摄像机122和第二摄像机126拍摄得到的两个图像的视差,计算从视觉传感器631至第二车载电池箱更换系统617的距离。
    步骤96:选择系统627实施根据第二车载电池箱更换系统617的三维信息来选择由机器人78把电池箱35放入目标第十七电池箱仓698的选择工序。
    步骤97:在机器人78调整好姿势后,机械手200的指部124闭合把持电池箱35,机械手200把持住电池箱35输送到第二车载电池箱更换系统617的第十七电池箱仓698中,步骤94:动作控制系统629根据预先生成的动作程序将驱动第二电池箱更换控制系统697的动作指令,发送到第二电池箱更换控制系统697的第四可编程控制器695,第四可编程控制器695根据动作指令对第七电动机688供电,第四可编程控制器695启动第七电动机688,第七电动机688的第四输出轴687带动第四丝杆段675正向转动,第四丝杆段675带动第六螺母676转动,第六螺母676带动第四连接杆677转动,第四连接杆677带动第十三抓持板667和第十四抓持板685向电池箱35运动,第四连接杆677触动第二十一限位开关680使第七电动机688停止转动,第十三抓持板667和第十四抓持板6851夹紧电池箱35。
    步骤98:监控装置626在判断为在第二车载电池箱更换系统617的第十七电池箱仓698放入了由远程操作员7预定个数的电池箱35后,结束该控制。
    步骤99:视觉传感器631开始拍摄第二搬运机器人79,获取系统628实施根据视觉传感器631的输出来获取第二搬运机器人79三维信息的获取工序,获取系统628根据从视觉传感器631至第二搬运机器人79前部的第十六二维码714的距离,生成第二搬运机器人79的三维信息,获取系统628根据由第一摄像机122和第二摄像机126拍摄得到的两个图像的视差,计算从视觉传感器631至第十六二维码714的距离。
    步骤100:选择系统627实施根据搬运机器人77的三维信息来选择由机器人78取出的第二搬运机器人79的选择工序,选择系统627根据第二搬运机器人79的位置和姿势选择第二搬运机器人79。
    步骤101:动作控制系统629根据预先生成的动作程序将驱动第一压力传感器222和第二压力传感器247的动作指令发送到225的第二可编程控制器224,第二可编程控制器224对第一压力传感器222和第二压力传感器247供电.
    步骤102:在机器人78调整好姿势后,机械手200的指部124闭合把持搬运机器人77第一压力传感器222和第二压力传感器247将压力信息传递给第二可编程控制器224,第二可编程控制器224将接收到的压力信息与预设的信息比对之后,确定已经把握到第二搬运机器人79,第二可编程控制器224关闭第四电动机205,在第二支架81上取出第二搬运机器人79,机械手200把持住第二搬运机器人79输送到第一作业区593的第一工作点591。
    步骤103:监控装置626在判断为取出了由远程操作员7预定的第二搬运机器人79后,结束该控制。
    步骤104:在第一作业区593中机器人78作业结束,动作控制系统629根据预先生成的动作程序下发控制指令使第二搬运机器人79第二视觉导航系统776开始导航,磁导航系统435处于关闭状态,当第二视觉导航系统776发生故障时,第三处理器622将控制指令发送到远程操作台系统13,由远程操作员7控制第二搬运机器人79,第二搬运机器人79按照预定的第三路径589行驶到第三作业区590的第五工作点607后,第二视觉导航系统776采集到待换电电动汽车41的第二二维码455为起始位置,设定在电池箱35的第十三二维码469为第二位置,控制第二搬运机器人79行驶到起始位置。
    步骤105:动作控制系统629根据预先生成的动作程序将驱动终第二终端平台旋转控制系统778的动作指令发送到终第二终端平台旋转控制系统778的第四无线可编程控制器752,第四无线可编程控制器752对第十二电动机745供电,第十二电动机745带动第二终端平台718向第二十四限位开关750旋转,旋转到第二十四限位开关750位置,触动第二十四限位开关750,第十二电动机745 停止转动,第二终端平台718上的第五摄像机728和第六摄像机732对准车载电池箱更换系统564的在亏电的电池箱35的底部的第十三二维码469进行拍摄,获取系统628根据由第五摄像机728和第六摄像机732拍摄得到的两个图像的视差,计算从第五摄像机728和第六摄像机732至第十三二维码469的距离,生成车载电池箱更换系统564的三维信息,获取系统628根据由第五摄像机728和第六摄像机732拍摄得到的两个图像的视差,计算从第五摄像机728和第六摄像机732至电池箱35的底部的第十三二维码469的距离,第二搬运机器人79由起始位置开始向前行驶到第二位置正下方,将第二支板716顶在电池箱35下方外侧的预设位置。
    步骤106:第二搬运机器人调平控制系统751调平到预定的高度。
    步骤107:重复步骤7到步骤48的动作。
    步骤108:电能补给车30根据待换电电动汽车41的位置坐标,导航到达待换电电动汽车41附近的最佳作业位置。
    步骤109:重复步骤3的动作。
    步骤110:重复步骤74的动作。
    步骤111:动作控制系统629根据预先生成的动作程序将驱动护板旋转控制系统798的动作指令发送到护板旋转控制系统798的第三可编程控制器597,第三可编程控制器597对第十三电动机789供电,第十三电动机789带动旋转轴791和护板787向第二十六限位开关796旋转,旋转到第二十六限位开关796位置,触动第二十六限位开关796,第十三电动机789停止转动,此时整个车载电池箱更换系统564的侧面露出。
    步骤109:视觉传感器631开始拍摄车载电池箱更换系统564中的电池箱35,获取系统628实施根据视觉传感器631的输出来获取车载电池箱更换系统564中的电池箱35的三维信息的获取工序,获取系统628根据从视觉传感器631至车载电池箱更换系统564中的电池箱35的第一测量点的距离,生成车载电池箱更换系统564的三维信息,获取系统628根据由第一摄像机122和第二摄像机126拍摄得到的两个图像的视差,计算从视觉传感器631至第一测量点的距离。
    步骤112:选择系统627实施根据车载电池箱更换系统564的三维信息来选择由机器人78取出的目标车载电池箱更换系统564中的电池箱35的选择工序。
    步骤113:选择系统627根据目标电池箱35的位置和姿势来设定机器人78的目标位置,动作控制系统629使机器人滑动器系统83带动机器人78行驶到第一作业位置74,此时,机械手200指部124打开。
    步骤114:在机器人78调整好姿势后,机械手200的指部124闭合把持电池箱35。
    步骤115:动作控制系统629根据预先生成的动作程序将驱动电池箱更换控制系统598的动作指令,发送到电池箱更换控制系统598的第三可编程控制器597,第三可编程控制器597根据动作指令对第六电动机562供电,第六电动机562的第三输出轴561带动第三丝杆段577反向转动,第三丝杆段577带动第三螺母578转动,第三螺母578带动第三连接杆576转动,第三连接杆576带动第九抓持板569和第十抓持板571向第二十限位开关581运动,第三连接杆576触动第二十限位开关581第六电动机562停止转动,第九抓持板569和第十抓持板571脱离电池箱35。
    步骤116:机械手200在车载电池箱更换系统564中取出电池箱35,机械手200把持住电池箱35。
    步骤117:重复步骤56到步骤60的动作。
    步骤118:重复步骤26到步骤31的动作。
    步骤119:视觉传感器631开始拍摄车载电池箱更换系统564,获取系统628实施根据视觉传感器631的输出来获取车载电池箱更换系统564中空置的车载电池箱更换系统564的三维信息的获取工序,获取系统628根据从视觉传感器631到空置的车载电池箱更换系统564的距离,生成车载电池箱更换系统564的三维信息,获取系统628根据由第一摄像机122和第二摄像机126拍摄得到的两个图像的视差,计算从视觉传感器631至车载电池箱更换系统564的距离。
    步骤120:选择系统627实施根据车载电池箱更换系统564的三维信息来选择由机器人78把电池箱35放入目标车载电池箱更换系统564的选择工序。
    步骤121:在机器人78调整好姿势后,机械手200的指部124闭合把持电池箱35,机械手200把持住电池箱35输送到车载电池箱更换系统564中。
    步骤122:动作控制系统629根据预先生成的动作程序将驱动电池箱更换控制系统598的动作指令,发送到电池箱更换控制系统598的第三可编程控制器597,第三可编程控制器597根据动作指令对第六电动机562供电,第六电动机562的第三输出轴561带动第三丝杆段577正向转动,第三丝杆段577推动第三连接杆576向电池箱35方向运动,第三连接杆576带动第九抓持板569和第十抓持板571向电池箱35运动,第三连接杆576运行到第十九限位开关579位置,触动第十九限位开关579使第六电动机562停止转动,第九抓持板569和第十抓持板571向第七抓持板245和第八抓持板228闭合,第九抓持板569和第十抓持板571夹紧电池箱35。
    步骤123:监控装置626在判断为在车载电池箱更换系统564中放入了由远程操作员7预定个数的电池箱35后,结束该控制。
    步骤124:动作控制系统629根据预先生成的动作程序将驱动护板旋转控制系统798的动作指令发送到护板旋转控制系统798的第三可编程控制器597,第三可编程控制器597对第十三电动机789供电,第十三电动机789带动旋转轴791和护板787向第二十五限位开关795旋转,旋转到第二十五限位开关795位置,触动第二十五限位开关795,第十三电动机789停止转动,护板787闭合。
    步骤125:第二待换电电动汽车780根据根据远程客户服务员6提供的位置坐标,导航到达第四充换电柜781附近的最佳作业位置。
    步骤126:重复步骤85和步骤86动作。
    步骤127:远程操作员7激活第二机器人735即机器人78的控制系统,选择系统627根据目标第二待换电电动汽车780的位置坐标来设定机器人78的位置,动作控制系统629使机器人78进入作业位置,此时,机械手200指部124打开。
    步骤128:重复步骤87到步骤92的动作。
    步骤129:重复步骤68到步骤73的动作。
    步骤130:重复步骤50到步骤55的动作。
    步骤131:重复步骤95到步骤98的动作。
PCT/CN2022/117820 2022-05-08 2022-09-08 服务基地电能补给和被补给车通过物联网架构的补给体系 WO2023216480A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210495566.0A CN117068027A (zh) 2022-05-08 2022-05-08 服务基地电能补给和被补给车通过物联网架构的补给体系
CN202210495566.0 2022-05-08

Publications (1)

Publication Number Publication Date
WO2023216480A1 true WO2023216480A1 (zh) 2023-11-16

Family

ID=88715836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117820 WO2023216480A1 (zh) 2022-05-08 2022-09-08 服务基地电能补给和被补给车通过物联网架构的补给体系

Country Status (2)

Country Link
CN (1) CN117068027A (zh)
WO (1) WO2023216480A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117444944A (zh) * 2023-12-26 2024-01-26 江苏骠马智能工业设计研究有限公司 用于配电柜的机械臂驱动操作机器人的门结构
CN117900910A (zh) * 2024-03-18 2024-04-19 昆山台功精密机械有限公司 一种五轴联动机床主轴头姿态角测量装置及测量方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104175898A (zh) * 2014-08-18 2014-12-03 同济大学 一种为电动车提供补电服务的方法以及补电服务系统
CN105000001A (zh) * 2015-07-28 2015-10-28 国网山东省电力公司电力科学研究院 一种电动乘用车底盘电池更换系统及换电方法
CN106064568A (zh) * 2015-04-23 2016-11-02 苏州宝时得电动工具有限公司 电动车辆能量补充系统、方法和设备
JP2021078175A (ja) * 2019-11-05 2021-05-20 本田技研工業株式会社 バッテリ交換システム、管理装置、管理方法、およびプログラム
CN113492714A (zh) * 2020-04-03 2021-10-12 奥动新能源汽车科技有限公司 换电站
CN113978305A (zh) * 2021-10-20 2022-01-28 厦门绿沃电子科技有限公司 助力式标准化电池箱自助充换电系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104175898A (zh) * 2014-08-18 2014-12-03 同济大学 一种为电动车提供补电服务的方法以及补电服务系统
CN106064568A (zh) * 2015-04-23 2016-11-02 苏州宝时得电动工具有限公司 电动车辆能量补充系统、方法和设备
CN105000001A (zh) * 2015-07-28 2015-10-28 国网山东省电力公司电力科学研究院 一种电动乘用车底盘电池更换系统及换电方法
JP2021078175A (ja) * 2019-11-05 2021-05-20 本田技研工業株式会社 バッテリ交換システム、管理装置、管理方法、およびプログラム
CN113492714A (zh) * 2020-04-03 2021-10-12 奥动新能源汽车科技有限公司 换电站
CN113978305A (zh) * 2021-10-20 2022-01-28 厦门绿沃电子科技有限公司 助力式标准化电池箱自助充换电系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117444944A (zh) * 2023-12-26 2024-01-26 江苏骠马智能工业设计研究有限公司 用于配电柜的机械臂驱动操作机器人的门结构
CN117444944B (zh) * 2023-12-26 2024-03-12 江苏骠马智能工业设计研究有限公司 用于配电柜的机械臂驱动操作机器人的门结构
CN117900910A (zh) * 2024-03-18 2024-04-19 昆山台功精密机械有限公司 一种五轴联动机床主轴头姿态角测量装置及测量方法
CN117900910B (zh) * 2024-03-18 2024-05-10 昆山台功精密机械有限公司 一种五轴联动机床主轴头姿态角测量装置及测量方法

Also Published As

Publication number Publication date
CN117068027A (zh) 2023-11-17

Similar Documents

Publication Publication Date Title
WO2023216480A1 (zh) 服务基地电能补给和被补给车通过物联网架构的补给体系
US11332033B2 (en) Systems and methods for UAV battery exchange
US9932019B2 (en) Robot assisted modular battery interchanging system
US11981226B2 (en) Swappable battery system
CN107305372B (zh) 云计算网络架构的远程监控的电动汽车能源监控和补给网
CN106873623B (zh) 一种无人机快速自主续航系统及其方法
KR101973389B1 (ko) 전기차량 충전시스템
CN106185151B (zh) 一种智能仓储系统
CN201907491U (zh) 快速换电池机器人
CN111433073A (zh) 用于对电动车充电的方法和移动式充电站
CN105981258A (zh) 用于无人飞行器电池能源备用的系统及方法
CN106774318B (zh) 多智能体交互式环境感知与路径规划运动系统
CN107140225A (zh) 一种多旋翼无人机的自动充电装置及方法
CN109484214A (zh) 一种新能源车充电机器人
CN106340912A (zh) 一种充电桩系统、控制方法及停车棚
CN109499799A (zh) 一种全向移动式机器人喷涂系统
CN106315096A (zh) 一种仓储系统的智能控制装置
CN104340185A (zh) 一种电动汽车集约型充换电站
CN105619375B (zh) 一种多功能救援机器人及其使用方法
CN202025365U (zh) 变电站巡检机器人的结构设计
CN116215697A (zh) 粮食采样系统
CN109806997B (zh) 一种喷漆装置
CN110259069A (zh) 一种铺砖子母机及子母机框架和运砖机的连接方法
CN111531560B (zh) 应用于变电站室内外环境中的巡检机器人
CN205968985U (zh) 一种基于智能移动终端控制的便携式侦查机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941421

Country of ref document: EP

Kind code of ref document: A1