WO2023216467A1 - 与镓基液态金属配合使用的金属结构件及其制法和应用 - Google Patents

与镓基液态金属配合使用的金属结构件及其制法和应用 Download PDF

Info

Publication number
WO2023216467A1
WO2023216467A1 PCT/CN2022/115492 CN2022115492W WO2023216467A1 WO 2023216467 A1 WO2023216467 A1 WO 2023216467A1 CN 2022115492 W CN2022115492 W CN 2022115492W WO 2023216467 A1 WO2023216467 A1 WO 2023216467A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
gallium
liquid metal
based liquid
structural part
Prior art date
Application number
PCT/CN2022/115492
Other languages
English (en)
French (fr)
Inventor
蔡昌礼
耿成都
陈道通
杨应宝
安健平
杜旺丽
唐会芳
张季
Original Assignee
云南中宣液态金属科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202221152744.1U external-priority patent/CN218042204U/zh
Priority claimed from CN202210524894.9A external-priority patent/CN114959398A/zh
Application filed by 云南中宣液态金属科技有限公司 filed Critical 云南中宣液态金属科技有限公司
Publication of WO2023216467A1 publication Critical patent/WO2023216467A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material

Definitions

  • the invention belongs to the field of thermal conductivity of electronic equipment, and in particular relates to a metal structural component used in conjunction with gallium-based liquid metal and its preparation method and application.
  • thermal silicone grease As a traditional thermal interface material, thermal silicone grease is currently used more frequently. However, with the rise of emerging 5G communications, Internet of Things, new energy automotive electronics, wearable devices, smart cities and other fields, related electronic devices are developing in the direction of miniaturization, high power density, multi-functionality, etc., which will make related The risk of overheating of electronic devices continues to increase.
  • Traditional silicone grease has low thermal conductivity and cannot meet the needs of use.
  • Developing high-performance thermal interface materials is critical to improving heat dissipation in electronic devices and has become the biggest challenge faced by academia and the electronic device application industry. Gallium-based liquid metal thermal interface materials have received more and more attention in recent years due to their high thermal conductivity and their ability to meet modern high-power density applications.
  • gallium-based liquid metal can react with aluminum or its alloys, intermetallic compounds will also be formed with copper or alloys. Most radiator materials are copper, aluminum or their alloys. In this case, a liquid phase will occur. The reactive consumption of gallium eventually dries out the interface, resulting in failure without filling effect. Therefore, avoiding the reaction of gallium-based liquid metal with copper, aluminum or their alloys is an urgent problem to be solved for the widespread application of liquid metal as thermal interface materials.
  • the object of the present invention is to provide a metal structural part for use with gallium-based liquid metal, which will not react with the gallium-based liquid metal when in contact with it, thereby avoiding the gallium-based liquid metal being
  • the reduction in heat dissipation performance caused by consumption solves the technical problem in the prior art that the gallium-based liquid metal reacts with the aluminum or its alloy in the radiator material, causing the liquid phase gallium to react and consume, eventually causing the interface to dry out and lose the filling effect.
  • the present invention provides a metal structural part for use with gallium-based liquid metal, which has a high-phosphorus nickel alloy layer on the surface of the metal structural part that is in contact with the gallium-based liquid metal.
  • the phosphorus content in the high-phosphorus nickel alloy layer is ⁇ 10%.
  • the thickness of the high-phosphorus nickel alloy layer is ⁇ 1 ⁇ m; preferably, the thickness of the high-phosphorus nickel alloy layer is ⁇ 3 ⁇ m; more preferably, the thickness of the high-phosphorus nickel alloy layer is ⁇ 5 ⁇ m; most preferably, the thickness of the high-phosphorus nickel alloy layer is ⁇ 10 ⁇ m.
  • the metal structure is a heat dissipation component in contact with gallium-based liquid metal, a container or cavity containing gallium-based liquid metal, or a gallium-based liquid metal flow pipe; preferably, the metal structure
  • the components are fin radiators, heat pipe radiators, phase change radiators, heat sinks, vapor chambers, micro-channel radiators, liquid metal fluid radiators, liquid metal pressure sensors, liquid metal pressure transmitters, and liquid metal containers. Containers or their parts in contact with gallium-based liquid metal.
  • the surface of the metal structural member in contact with the gallium-based liquid metal is a flat surface or a curved surface.
  • the material of the metal structural component is selected from at least one of copper, aluminum, iron, nickel, stainless steel, titanium, zinc, gold or alloys thereof.
  • a protective layer of composite ceramics is further included on the surface of the metal structural component that is in contact with the gallium-based liquid metal.
  • the gallium-based liquid metal is selected from the group consisting of gallium metal, gallium-containing liquid alloy, gallium-containing metal oxide, gallium-containing thermal interface material, and gallium-containing composite material.
  • Another object of the present invention is to provide a method for preparing the above-mentioned metal structural parts, by performing high-phosphorus electroless nickel plating on the surface of the metal structural parts that is in contact with the gallium-based liquid metal thermal interface material, so that the surface of the metal structural parts is in contact with the metal structural parts.
  • a high-phosphorus nickel alloy layer is formed on the surface in contact with the gallium-based liquid metal.
  • Another object of the present invention is to provide the above-mentioned metal structural parts or the metal structural parts made by the above-mentioned preparation method for use in the heat dissipation of computer chips, mobile phone chips, communication products, high-power LEDs, insulated gate bipolar transistors, and high-power electronic products.
  • the invention prevents the alloying reaction between the gallium-based liquid metal and the metal structural parts by forming a high-phosphorus nickel alloy layer on the surface of the metal structural part that is in contact with the gallium-based liquid metal, thereby making the high thermal conductivity gallium-based liquid metal widely available. It is used in computer chips, mobile phone chips, communication products, high-power LEDs, insulated gate bipolar transistors, aviation or military high-power electronic products and other products.
  • the present invention has the following beneficial effects:
  • the high-phosphorus nickel alloy layer of the present invention on the surface of metal structural parts can effectively protect copper, aluminum and other metals and will not react with gallium-based liquid metal for a long time under extreme conditions.
  • a high-phosphorus nickel coating of more than 1 ⁇ m can prevent the metal sheet from reacting with the gallium-based liquid metal, thereby preventing the gallium-based liquid metal from being gradually consumed through the reaction and avoiding thermal conductivity caused by the consumption of the gallium-based liquid metal thermal interface material. Performance degrades.
  • high-phosphorus nickel coatings above 1 ⁇ m have a good protective effect on metal structural parts, for metal structural parts such as heat sinks and vapor chambers with high-phosphorus nickel coatings exposed on the surface, it is necessary to consider the packaging, transportation and The high-phosphorus nickel coating may be worn or scratched during use, so the thickness of the high-phosphorus nickel coating is preferably above 3 ⁇ m, and more preferably above 5 ⁇ m. In the case of severe wear or special requirements such as high stability requirements and long service life, a high-phosphorus nickel coating of more than 10 ⁇ m can be formed on the surface of metal structural parts to fully ensure adequate protection and avoid unexpected situations.
  • Comparative Example 2 uses a medium-phosphorus nickel coating with a phosphorus content of 9% for protection. However, the experimental results found that although the coating medium-phosphorus nickel coating has no effect on preventing metal The reaction between the gallium-based liquid metal and the gallium-based liquid metal played a certain protective role, but the protective effect was not sufficient. The gallium-based liquid metal eventually reacted with the metal piece.
  • Figure 1 is a schematic cross-sectional view of a fin heat sink according to an embodiment of the present invention
  • Figure 2 is a schematic cross-sectional view of a heat pipe of a heat pipe radiator according to an embodiment of the present invention
  • Figure 3 is a schematic cross-sectional view of a liquid metal container according to an embodiment of the present invention.
  • Figure 4 is a photograph of a metal sheet treated according to the method of Example 3 and Comparative Examples 1-5 of the present invention after the coating protection effect test.
  • a metal structural component 1 specifically a copper fin heat sink, which has a high-phosphorus nickel alloy layer 2 on the bottom surface in contact with the gallium-based liquid metal 3.
  • the preparation method is as follows: clean the bottom surface of the copper fin radiator that is in contact with the gallium-based liquid metal, perform high-phosphorus electroless nickel plating for 5 minutes, and then take it out and dry it.
  • the thickness of the high-phosphorus nickel alloy layer formed on the bottom surface of the copper fin radiator was 1.2 ⁇ m, and the phosphorus content in the high-phosphorus nickel alloy layer was 10%.
  • 2mm copper sheets were simultaneously used for high-phosphorus electroless nickel plating, and then the treated copper sheets were used to replace the copper fin radiators as the test objects in Example 1.
  • a metal structural component 1 specifically a heat pipe of a copper heat pipe radiator, which has a high-phosphorus nickel alloy layer 2 on the inner surface in contact with the gallium-based liquid metal 3.
  • the preparation method is as follows: clean the inner surface of the copper heat pipe radiator where the heat pipe is in contact with the gallium-based liquid metal, perform high-phosphorus electroless nickel plating for 18 minutes, and then take it out and dry it.
  • the thickness of the high-phosphorus nickel alloy layer formed on the surface of the copper vapor chamber was 3 ⁇ m, and the phosphorus content in the high-phosphorus nickel alloy layer was 12%.
  • 2 mm copper sheets were simultaneously used for high-phosphorus electroless nickel plating, and then the treated copper sheets were used to replace the copper heat pipes as the test objects in Example 2.
  • a metal structural component 1 specifically a copper liquid metal container, which has a high-phosphorus nickel alloy layer 2 on the inner surface in contact with the gallium-based liquid metal 3.
  • the preparation method is as follows: clean the inner surface of the copper liquid metal container in contact with the gallium-based liquid metal, perform high-phosphorus electroless nickel plating for 24 minutes, and then take it out and dry it.
  • the thickness of the high-phosphorus nickel alloy layer formed on the inner surface of the copper liquid metal container was 5 ⁇ m, and the phosphorus content in the high-phosphorus nickel alloy layer was 11%.
  • 2 mm copper sheets were simultaneously used for high-phosphorus electroless nickel plating, and then the treated copper sheets were used as the test objects in Example 3 instead of the copper liquid metal container.
  • Copper microfluidic heat sink with high phosphorous nickel alloy layers on the inner and outer surfaces in contact with the gallium-based liquid metal Clean the inner and outer surfaces of the copper microfluidic radiator that are in contact with the gallium-based liquid metal, perform high-phosphorus electroless nickel plating for 40 minutes, then take it out and dry it.
  • the thickness of the high-phosphorus nickel alloy layer formed on the inner and outer surfaces of the copper microfluidic radiator was 10 ⁇ m, and the phosphorus content in the high-phosphorus nickel alloy layer was 10%.
  • a 2 mm copper sheet was simultaneously used for high-phosphorus electroless nickel plating, and then the treated copper sheet was used to replace the copper microfluidic radiator as the test object in Example 4.
  • An aluminum heat sink with a high-phosphorus nickel alloy layer on the underside in contact with the gallium-based liquid metal Clean the bottom surface where the aluminum heat sink is in contact with the gallium-based liquid metal, perform high-phosphorus electroless nickel plating for 20 minutes, then take it out and dry it.
  • the thickness of the high-phosphorus nickel alloy layer formed on the surface of the aluminum heat sink was 5 ⁇ m, and the phosphorus content in the high-phosphorus nickel alloy layer was 10%.
  • 2 mm aluminum sheets were simultaneously used for high-phosphorus electroless nickel plating, and then the treated aluminum sheets were used instead of the aluminum heat sink as the test object in Example 5.
  • Copper alloy heat sink with a high phosphorus nickel alloy layer on the bottom surface in contact with the gallium-based liquid metal Clean the bottom surface where the copper alloy heat sink is in contact with the gallium-based liquid metal, perform high-phosphorus electroless nickel plating for 20 minutes, then take it out and dry it.
  • the thickness of the high-phosphorus nickel alloy layer formed on the surface of the copper alloy heat sink was 5 ⁇ m, and the phosphorus content in the high-phosphorus nickel alloy layer was 10%.
  • a 2mm copper alloy sheet was used instead of the copper alloy heat sink to perform high-phosphorus electroless nickel plating as the test object in Example 6.
  • An aluminum alloy heat sink with a high-phosphorus nickel alloy layer on the bottom surface in contact with the gallium-based liquid metal Clean the bottom surface where the aluminum alloy heat sink is in contact with the gallium-based liquid metal, perform high-phosphorus electroless nickel plating for 29 minutes, then take it out and dry it.
  • the thickness of the high-phosphorus nickel alloy layer formed on the surface of the aluminum alloy heat sink was 5 ⁇ m, and the phosphorus content in the high-phosphorus nickel alloy layer was 10%.
  • a 2mm aluminum alloy sheet was used instead of the aluminum alloy heat sink for high-phosphorus electroless nickel plating treatment, and was used as the test object in Example 7.
  • Stainless steel heat sink with a high phosphorous nickel alloy layer on the bottom surface in contact with the gallium-based liquid metal Clean the bottom surface where the stainless steel heat sink is in contact with the gallium-based liquid metal, perform high-phosphorus electroless nickel plating for 29 minutes, then take it out and dry it.
  • the thickness of the high-phosphorus nickel alloy layer formed on the surface of the stainless steel heat sink was 5 ⁇ m, and the phosphorus content in the high-phosphorus nickel alloy layer was 10%.
  • a 2mm stainless steel piece was used instead of the stainless steel heat sink for high-phosphorus electroless nickel plating treatment, and was used as the test object in Example 8.
  • the metal sheets processed according to the methods of Examples 1-8 and Comparative Examples 1-4 were used as objects to be tested. Take two metal sheets to be tested as a set, coat the middle of one metal sheet with gallium-based liquid metal, and apply sealant around the liquid metal to prevent leakage of the liquid metal. Place the other metal sheet with the aforementioned liquid-coated metal sheet. The metal pieces are buckled together, keeping a distance of about 1mm between the two pieces, and fixed with clips. Place each group of fixed metal pieces into a programmable constant temperature and humidity test chamber. Set the temperature of the constant temperature and humidity test chamber to be stable at -40°C and 80°C for 30 minutes each. This is a cycle for high and low temperature cycle testing. The number of cycle tests is 1000 times. After the test, separate each group of metal pieces, remove the liquid metal, and check the reaction between the metal pieces and the liquid metal. The test results are shown in Table 1 below:
  • test results show that there are no reaction marks on the surface of the metal sheets with high phosphorus nickel alloy layers treated according to Examples 1-8, and the coating surface can be cleaned. Comparative Examples 2 and 5 have very few reaction marks on the surface. Comparative Examples 1, There are large areas of reaction marks on the surfaces of 3 and 4.
  • the high-phosphorus nickel plating may be worn or scratched, so the thickness of the high-phosphorus nickel plating is preferably 3 ⁇ m or more, and more preferably 5 ⁇ m or more.
  • a high-phosphorus nickel coating of more than 10 ⁇ m can be formed on the surface of metal structural parts to fully ensure adequate protection and avoid unexpected situations.
  • the surface of the untreated copper sheet in Comparative Example 1 is not clean, and the imprinted area reaches about 35%, indicating that the metal sheet reacts with the gallium-based liquid metal in large quantities, which will lead to the consumption of the gallium-based liquid metal thermal interface material, resulting in poor thermal conductivity. decline.
  • Comparative Examples 3-5 have similar effects to Comparative Example 2.
  • the surface of the metal sheet coated with the electroplated chromium layer of Comparative Example 3, the electroplated nickel layer of Comparative Example 4, and the ceramic layer coated of Comparative Example 5 all have a few marks.
  • the area of the marks is 15%, 25% and 3% respectively, which are significantly less than Comparative Example 1, indicating that the electroplated chromium layer, electroplated nickel layer and ceramic layer all play a certain protective role in preventing the metal sheet from reacting with the gallium-based liquid metal, but the protection The strength is obviously weaker than that of high-phosphorus nickel plating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemically Coating (AREA)

Abstract

本发明公开了一种用于与镓基液态金属配合使用的金属结构件,其在所述金属结构件的与所述镓基液态金属接触的表面上具有高磷镍合金层。所述金属结构件在与镓基液态金属接触时,不会与镓基液态金属发生反应,从而避免由于镓基液态金属被消耗导致的散热性能下降。本发明还公开了金属结构件的制备方法及其在计算机芯片、手机芯片、通讯产品、大功率LED、绝缘栅双极型晶体管、大功率电子产品的散热中的应用。

Description

与镓基液态金属配合使用的金属结构件及其制法和应用
本申请要求2022年5月13日向中国专利局提交的、申请号为202210524894.9、发明名称“与镓基液态金属配合使用的金属结构件及其制法和应用”和申请号为202221152744.1、发明名称“与镓基液态金属配合使用的金属结构件”的中国专利申请的优先权,并将上述专利申请的全部内容通过引用的方式引入本申请中。
技术领域
本发明是属于电子设备导热领域,特别是关于一种用于与镓基液态金属配合使用的金属结构件及其制备方法和应用。
背景技术
在电子材料表面和散热器之间存在细微的凹凸不平的空隙,如果将他们直接安装在一起,它们间的实际接触面积只有散热器底座面积的10%,其余均为空气间隙。因为空气热导率只有0.024W/(m.K),将导致电子元件与散热器间的接触热阻非常大,严重阻碍了热量的传导,造成散热器的效能低下。所以需要具有高导热性的热界面材料对这些空隙进行填充,排除其中的空气,在电子元件和散热器间建立热传导通道,以便大幅度增加热源与散热器之间的接触面积,减少接触热阻,使散热器的作用良好的发挥。
热硅脂作为传统热界面材料,目前使用较多。但随着新兴的5G通信、物联网、新能源汽车电子、可穿戴设备、智慧城市等领域的兴起,相关电子器件朝着小型化、高功率密度、多功能化等方向发展,这将使得相关电子器件的过热风险持续提升,传统硅脂导热率低,不能满足使用需要。开发高性能热界面材料对改善电子器件散热非常关键,也成为学术界和电子器件应用产业界面临的最大挑战。镓基液态金属热界面材料由于其高导热率,能够满足现代高功率密度应用场合,近年来获得越来越多的关注。
但由于镓基液态金属能够与铝或其合金发生反应,对铜或合金也会形成金属间化合物,而散热器材料绝大多数都是铜、铝或其合金,这种情况下会导致液相 镓反应消耗最终使界面变干,导致没有填充效果而失效。因此,避免镓基液态金属与铜、铝或其合金发生反应是液态金属作为热界面材料广泛应用亟待解决的问题。
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
发明内容
本发明的目的是提供一种用于与镓基液态金属配合使用的金属结构件,其在与镓基液态金属接触时,不会与镓基液态金属发生反应,从而避免由于镓基液态金属被消耗导致的散热性能下降,解决了现有技术中镓基液态金属由于与散热器材料中的铝或其合金发生反应导致液相镓反应消耗最终使界面变干失去填充效果的技术问题。
为实现上述目的,本发明提供了一种用于与镓基液态金属配合使用的金属结构件,在所述金属结构件的与所述镓基液态金属接触的表面上具有高磷镍合金层。
在本发明的一实施方式中,所述高磷镍合金层中磷含量≥10%。
在本发明的一实施方式中,所述高磷镍合金层的厚度≥1μm;优选的,所述高磷镍合金层的厚度≥3μm;更优选的,所述高磷镍合金层的厚度≥5μm;最优选的,所述高磷镍合金层的厚度≥10μm。
在本发明的一实施方式中,所述金属结构件为与镓基液态金属接触的散热组件、盛装镓基液态金属的容器或腔体或镓基液态金属流动管道;优选的,所述金属结构件为翅片散热器、热管散热器、相变散热器、热沉、均热板、微流道散热器、液态金属流体散热器、液态金属压力传感器、液态金属压力变送器、液态金属盛装容器或其与镓基液态金属接触的零部件。
在本发明的一实施方式中,所述金属结构件的与所述镓基液态金属接触的表面为平面或曲面。
在本发明的一实施方式中,所述金属结构件的材料选自铜、铝、铁、镍、不锈钢、钛、锌、金或其合金中的至少一种。
在本发明的一实施方式中,在所述金属结构件的与所述镓基液态金属接触的表面上进一步包括复合陶瓷的保护层。
在本发明的一实施方式中,所述镓基液态金属选自镓金属、含镓液态合金、含镓的金属氧化物、含镓的热界面材料、含镓的复合材料。
本发明的另一目的在于提供上述金属结构件的制备方法,通过在与镓基液态金属热界面材料接触的金属结构件表面进行高磷化学镀镍处理,从而在所述金属结构件的与所述镓基液态金属接触的表面上形成高磷镍合金层。该方法技术成熟稳定,成本低。
本发明的又一目的在于提供上述金属结构件或上述制备方法制成的金属结构件在计算机芯片、手机芯片、通讯产品、大功率LED、绝缘栅双极型晶体管、大功率电子产品的散热中的应用。本发明通过在金属结构件的与镓基液态金属接触的表面上形成高磷镍合金层,来阻止镓基液态金属与金属结构件发生合金化反应,从而使得高导热率镓基液态金属可广泛应用于计算机芯片、手机芯片、通讯产品、大功率LED、绝缘栅双极型晶体管、航空或军用大功率电子产品等产品中。
与现有技术相比,根据本发明具有如下有益效果:
(1)本发明在金属结构件表面的高磷镍合金层,该高磷镍合金层可对铜、铝等金属形成有效防护,在极端条件下长时间不与镓基液态金属反应。根据实验结果,1μm以上的高磷镍镀层就能够阻止金属片与镓基液态金属发生反应,从而避免镓基液态金属通过反应逐渐被消耗,避免由于镓基液态金属热界面材料被消耗导致的导热性能下降。
(2)尽管1μm以上的高磷镍镀层就对金属结构件具有良好的保护作用,但对于热沉、均温板等高磷镍镀层暴露在表面的金属结构件,考虑到在包装、运输以及使用过程中可能对高磷镍镀层产生磨损或造成划伤,所以高磷镍镀层的厚度优选在3μm以上,更优选在5μm以上。在磨损较为严重或者对稳定性要求高、使用周期长等特殊要求情况下,可在金属结构件表面形成10μm以上的高磷镍镀层,以充分保证足够的保护作用,避免出现意外情况。
(3)另外,高磷镍合金层中的磷含量也至关重要,对比例2采用磷含量为9%的中磷镍镀层进行保护,但实验结果发现尽管包覆中磷镍镀层对阻止金属片与镓基液态金属发生反应起到了一定保护作用,但保护作用还不够充分,镓基液态金属最终还是与金属片发生了反应。
附图说明
图1是根据本发明一实施方式的一种翅片散热器的剖面示意图;
图2是根据本发明一实施方式的一种热管散热器的热管的剖面示意图;
图3是根据本发明一实施方式的一种液态金属盛装容器的剖面示意图;
图4是根据本发明实施例3及对比例1-5的方法处理的金属片经镀层保护效果测试后的照片。
主要附图标记说明:
1-金属结构件,2-高磷镍合金层,3-镓基液态金属。
具体实施方式
下面结合说明书附图对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。
除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其它元件或其它组成部分。
实施例1
如图1所示是一种金属结构件1,具体为一种铜制翅片散热器,其在与镓基液态金属3接触的底面上具有高磷镍合金层2。其制备方法为:将铜制翅片散热器的与镓基液态金属接触的底面清洁干净,进行高磷化学镀镍处理5分钟,取出烘干即可。
经测量,在所述铜制翅片散热器底面形成的高磷镍合金层的厚度为1.2μm,高磷镍合金层中磷含量为10%。为后续实验方便,同步使用2mm铜片进行高磷化学镀镍处理,然后用处理后的铜片代替铜制翅片散热器作为实施例1测试对象。
实施例2
如图2所示是一种金属结构件1,具体为一种铜制热管散热器的热管,其在与镓基液态金属3接触的内表面上具有高磷镍合金层2。其制备方法为:将铜制热管散热器的热管与镓基液态金属接触的内表面清洁干净,进行高磷化学镀镍处理18分钟,取出烘干即可。
经测量,在所述铜制均温板表面形成的高磷镍合金层的厚度为3μm,高磷镍合金层中磷含量为12%。为后续实验方便,同步使用2mm铜片进行高磷化学镀镍处理,然后用处理后的铜片代替铜制热管作为实施例2测试对象。
实施例3
如图3所示是一种金属结构件1,具体为一种铜制液态金属盛装容器,其在与镓基液态金属3接触的内表面上具有高磷镍合金层2。其制备方法为:将铜制液态金属盛装容器与镓基液态金属接触的内表面清洁干净,进行高磷化学镀镍处理24分钟,取出烘干即可。
经测量,在所述铜制液态金属盛装容器内表面形成的高磷镍合金层的厚度为5μm,高磷镍合金层中磷含量为11%。为后续实验方便,同步使用2mm铜片进行高磷化学镀镍处理,然后用处理后的铜片代替铜制液态金属盛装容器作为实施例3测试对象。
实施例4
铜制微流道散热器,其在与镓基液态金属接触的内表面和外表面上具有高磷镍合金层。将铜制微流道散热器与镓基液态金属接触的内表面和外表面清洁干净,进行高磷化学镀镍处理40分钟,取出烘干即可。
经测量,在所述铜制微流道散热器内表面和外表面形成的高磷镍合金层的厚度为10μm,高磷镍合金层中磷含量为10%。为后续实验方便,同步使用2mm铜片进行高磷化学镀镍处理,然后用处理后的铜片代替铜制微流道散热器作为实施例4测试对象。
实施例5
铝制热沉,其在与镓基液态金属接触的底面上具有高磷镍合金层。将铝制热沉与镓基液态金属接触的底面清洁干净,进行高磷化学镀镍处理20分钟,取出烘干即可。
经测量,在所述铝制热沉表面形成的高磷镍合金层的厚度为5μm,高磷镍合金层中磷含量为10%。为后续实验方便,同步使用2mm铝片进行高磷化学镀镍处理,然后用处理后的铝片代替铝制热沉作为实施例5测试对象。
实施例6
铜合金热沉,其在与镓基液态金属接触的底面上具有高磷镍合金层。将铜合金热沉与镓基液态金属接触的底面清洁干净,进行高磷化学镀镍处理20分钟,取出烘干即可。
经测量,在所述铜合金热沉表面形成的高磷镍合金层的厚度为5μm,高磷镍合金层中磷含量为10%。为后续实验方便,用2mm铜合金片代替铜合金热沉进 行高磷化学镀镍处理,作为实施例6测试对象。
实施例7
铝合金热沉,其在与镓基液态金属接触的底面上具有高磷镍合金层。将铝合金热沉与镓基液态金属接触的底面清洁干净,进行高磷化学镀镍处理29分钟,取出烘干即可。
经测量,在所述铝合金热沉表面形成的高磷镍合金层的厚度为5μm,高磷镍合金层中磷含量为10%。为后续实验方便,用2mm铝合金片代替铝合金热沉进行高磷化学镀镍处理,作为实施例7测试对象。
实施例8
不锈钢热沉,其在与镓基液态金属接触的底面上具有高磷镍合金层。将不锈钢热沉与镓基液态金属接触的底面清洁干净,进行高磷化学镀镍处理29分钟,取出烘干即可。
经测量,在所述不锈钢热沉表面形成的高磷镍合金层的厚度为5μm,高磷镍合金层中磷含量为10%。为后续实验方便,用2mm不锈钢片代替不锈钢热沉进行高磷化学镀镍处理,作为实施例8测试对象。
对比例1
将2mm铜片表面清洁干净,不进行任何处理。
对比例2
将2mm铜片表面清洁干净,进行中磷化学镀镍处理18分钟,取出烘干即可。经测量,在所述铜片表面形成的中磷镍合金层的厚度为5μm,中磷镍合金层中磷含量为9%。
对比例3
将2mm铜片表面清洁干净,进行电镀铬处理。经测量,在所述铜片表面形成的电镀铬层的厚度为5μm。
对比例4
将2mm铜片表面清洁干净,进行电镀镍处理。经测量,在所述铜片表面形成的电镀镍层的厚度为5μm。
对比例5
将2mm铜片表面清洁干净,进行207E高导热陶瓷涂料进行涂覆处理。经测量,在所述铜片表面形成的高导热陶瓷层的厚度为5μm。
实验例 镀层保护效果测试
将按实施例1-8和对比例1-4的方法处理的金属片作为待测试对象。将待测试的金属片两片作为一组,将其中一片金属片的中间位置涂覆镓基液态金属,液态金属周围涂覆密封胶,防止液态金属泄漏,将另一片金属片与前述涂覆液态金属的金属片扣在一起,两片金属片之间保持约1mm的距离,并用夹子固定。将各组固定好的金属片放入可程式恒温恒湿试验箱中,将恒温恒湿试验箱温度分别设置稳定在-40℃和80℃各30min,以此为一次循环进行高低温循环测试,循环测试次数1000次。测试结束后,将各组金属片分离,去除液态金属,查看金属片与液态金属反应的情况。测试结果如下表1所示:
表1测试结果
样品 金属片与液态金属反应的情况
实施例1 无反应印记
实施例2 无反应印记
实施例3 无反应印记
实施例4 无反应印记
实施例5 无反应印记
实施例6 无反应印记
实施例7 无反应印记
实施例8 无反应印记
对比例1 纯铜金属片表面有少许印记,印记面积约35%
对比例2 金属片镀层表面有少许印记,印记面积约5%
对比例3 金属片镀层表面有少许印记,印记面积约15%
对比例4 金属片镀层表面有少许印记,印记面积约25%
对比例5 金属片镀层表面有少许印记,印记面积约3%
测试结果显示:按实施例1-8处理的具有高磷镍合金层的金属片表面均没有反应印记,镀层表面可清洗干净,对比例2和5表面具有很少的反应印记,对比例1、3和4表面存在较大面积的反应印记。
以上测试结果说明,1μm以上的高磷镍镀层就能够阻止金属片与镓基液态金属发生反应,从而避免镓基液态金属通过反应逐渐被消耗,避免由于镓基液态 金属热界面材料被消耗导致的导热性能下降。尽管1μm以上的高磷镍镀层就对金属结构件具有良好的保护作用,但对于热沉、均温板等高磷镍镀层暴露在表面的金属结构件,考虑到在包装、运输以及使用过程中可能对高磷镍镀层产生磨损或造成划伤,所以高磷镍镀层的厚度优选在3μm以上,更优选在5μm以上。在磨损较为严重或者对稳定性要求高、使用周期长等特殊要求情况下,可在金属结构件表面形成10μm以上的高磷镍镀层,以充分保证足够的保护作用,避免出现意外情况。
对比例1未进行处理的铜片的表面清洗不干净,印记面积达到约35%,说明金属片与镓基液态金属发生大量反应,这会导致镓基液态金属热界面材料被消耗导致的导热性能下降。对比例2包覆中磷镍镀层的金属片镀层表面有少许印记,印记面积约为与镓基液态金属接触面积的5%,明显少于对比例1,说明磷含量为9%的中磷镍镀层对阻止金属片与镓基液态金属发生反应起到了一定保护作用,但保护作用还不够充分,镓基液态金属最终还是与金属片发生了反应。对比例3-5与对比例2具有类似效果,对比例3包覆电镀铬层、对比例4包覆电镀镍层以及对比例5包覆陶瓷层的金属片镀层表面均有少许印记,印记面积分别为15%、25%和3%,均明显少于对比例1,说明电镀铬层、电镀镍层和陶瓷层对阻止金属片与镓基液态金属发生反应均起到了一定保护作用,但保护力度明显弱于高磷镍镀层。
前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。

Claims (14)

  1. 一种用于与镓基液态金属配合使用的金属结构件,其特征在于,在所述金属结构件的与所述镓基液态金属接触的表面上具有高磷镍合金层。
  2. 根据权利要求1所述的金属结构件,其特征在于,所述高磷镍合金层中磷含量≥10%。
  3. 根据权利要求1所述的金属结构件,其特征在于,所述高磷镍合金层的厚度≥1μm。
  4. 根据权利要求3所述的金属结构件,其特征在于,所述高磷镍合金层的厚度≥3μm。
  5. 根据权利要求4所述的金属结构件,其特征在于,所述高磷镍合金层的厚度≥5μm。
  6. 根据权利要求5所述的金属结构件,其特征在于,所述高磷镍合金层的厚度≥10μm。
  7. 根据权利要求1所述的金属结构件,其特征在于,所述金属结构件为与镓基液态金属接触的组件、盛装镓基液态金属的容器或腔体或镓基液态金属流动管道。
  8. 根据权利要求7所述的金属结构件,其特征在于,所述金属结构件为翅片散热器、热管散热器、相变散热器、热沉、均热板、微流道散热器、液态金属流体散热器、液态金属压力传感器、液态金属压力变送器、液态金属盛装容器或与镓基液态金属接触的零部件。
  9. 根据权利要求1所述的金属结构件,其特征在于,所述金属结构件与所述镓基液态金属接触的表面为平面或曲面。
  10. 根据权利要求1所述的金属结构件,其特征在于,所述金属结构件的材料选自铜、铝、铁、镍、不锈钢、钛、锌、金或它们的其合金中的至少一种。
  11. 根据权利要求1所述的金属结构件,其特征在于,在所述金属结构件的与所述镓基液态金属接触的表面上进一步包括纳米复合陶瓷涂层。
  12. 根据权利要求1所述的金属结构件,其特征在于,所述镓基液态金属选自镓金属、含镓液态合金、含镓的金属氧化物、含镓的热界面材料、含镓的复合材料中的任意一种或多种。
  13. 一种根据权利要求1-12任一项所述的金属结构件的制备方法,其特征在于,步骤包括:在与镓基液态金属热界面材料接触的金属结构件表面进行高磷化学镀镍处理,从而在所述金属结构件的与所述镓基液态金属接触的表面上形成高磷镍合金层。
  14. 一种根据权利要求1-12任一项所述的金属结构件或权利要求13所述的制备方法制成的金属结构件在计算机芯片、手机芯片、通讯产品、大功率LED、绝缘栅双极型晶体管、大功率电子产品的散热中的应用。
PCT/CN2022/115492 2022-05-13 2022-08-29 与镓基液态金属配合使用的金属结构件及其制法和应用 WO2023216467A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202221152744.1U CN218042204U (zh) 2022-05-13 2022-05-13 用于与镓基液态金属配合使用的金属结构件
CN202210524894.9A CN114959398A (zh) 2022-05-13 2022-05-13 与镓基液态金属配合使用的金属结构件及其制法和应用
CN202221152744.1 2022-05-13
CN202210524894.9 2022-05-13

Publications (1)

Publication Number Publication Date
WO2023216467A1 true WO2023216467A1 (zh) 2023-11-16

Family

ID=88729577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115492 WO2023216467A1 (zh) 2022-05-13 2022-08-29 与镓基液态金属配合使用的金属结构件及其制法和应用

Country Status (1)

Country Link
WO (1) WO2023216467A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014120086A1 (en) * 2013-01-29 2014-08-07 Nanyang Technological University Method of fabricating semiconductor devices
CN109161869A (zh) * 2018-09-12 2019-01-08 云南科威液态金属谷研发有限公司 一种在金属部件表面形成防腐涂层的方法
CN208538833U (zh) * 2018-08-09 2019-02-22 云南科威液态金属谷研发有限公司 一种耐液态金属腐蚀的传热元件
CN110387217A (zh) * 2019-07-26 2019-10-29 云南中宣液态金属科技有限公司 一种高性能复合型热界面材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014120086A1 (en) * 2013-01-29 2014-08-07 Nanyang Technological University Method of fabricating semiconductor devices
CN208538833U (zh) * 2018-08-09 2019-02-22 云南科威液态金属谷研发有限公司 一种耐液态金属腐蚀的传热元件
CN109161869A (zh) * 2018-09-12 2019-01-08 云南科威液态金属谷研发有限公司 一种在金属部件表面形成防腐涂层的方法
CN110387217A (zh) * 2019-07-26 2019-10-29 云南中宣液态金属科技有限公司 一种高性能复合型热界面材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU I X, GAO JIA-QIANG, HU WEN-BIN: "Application of Electroless Ni-P Alloys in Electronics Industry", PLATING & FINISHING., vol. 28, no. 1, 30 June 2006 (2006-06-30), pages 30 - 34+52, XP093106840, DOI: 1001-3849(2006)01-0030-05 *
YAN HONG, DOU MINGMIN, CHEN YUE, LIU YUQIANG: "Performance Superiority and Applications of Electroless Nickel-Based Alloy Plating", CHINA SURFACE ENGINEERIGN., no. 4, 23 December 2001 (2001-12-23), pages 11 - 14+2, XP093106838 *

Similar Documents

Publication Publication Date Title
CN107557825B (zh) 铜粉金属镀层、金属基板、节能防胀爆散热装置及其制备工艺
US8754437B2 (en) LED module having a heat sink
CN110172249B (zh) 导热硅胶片及其制备方法和应用、导热加热硅胶片及其制备方法和应用
CN110160385B (zh) 一种传热组件内部低温烧结的毛细结构及其制造方法
US20150076685A1 (en) Flow path member, and heat exchanger and semiconductor device using the same
KR20030086610A (ko) 방열 핀 및 이를 사용하는 방열방법
TWI787330B (zh) 熱管及熱管的製造方法
WO2023216467A1 (zh) 与镓基液态金属配合使用的金属结构件及其制法和应用
CN107369660B (zh) 功率模块及其制造方法
US20040200599A1 (en) Amorphous carbon layer for heat exchangers and processes thereof
CN107105605A (zh) 一种散热水冷板及其制作方法
CN218042204U (zh) 用于与镓基液态金属配合使用的金属结构件
CN102012005B (zh) 一种完全金属一体化的照明及背光用led散热结构体
CN112548414A (zh) 一种环保型铜铝焊接工艺
CN114959398A (zh) 与镓基液态金属配合使用的金属结构件及其制法和应用
CN208204226U (zh) 一种新型不锈钢导热管
JP2005133981A (ja) 排気熱交換器
WO2022267080A1 (zh) 一种具有毛细结构的合金及其制备方法
CN216057999U (zh) 金属基材液态金属相变片
CN110944493B (zh) 一种基于气液相变的金属基复合材料器件及其制备方法
TWM629671U (zh) 浸沒式散熱結構
CN102593083A (zh) 一种具有亲水性化合物薄膜的散热单元及亲水性化合物薄膜沉积方法
CN111085768A (zh) 一种铝基金属材料低温扩散连接方法
CN220191301U (zh) 一种易贴合的导热硅胶垫片
CN211824019U (zh) 一种散热型工业铝合金型材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941408

Country of ref document: EP

Kind code of ref document: A1