WO2023216097A1 - 热电转换装置、电子设备及余热再利用系统 - Google Patents

热电转换装置、电子设备及余热再利用系统 Download PDF

Info

Publication number
WO2023216097A1
WO2023216097A1 PCT/CN2022/091941 CN2022091941W WO2023216097A1 WO 2023216097 A1 WO2023216097 A1 WO 2023216097A1 CN 2022091941 W CN2022091941 W CN 2022091941W WO 2023216097 A1 WO2023216097 A1 WO 2023216097A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
thermoelectric conversion
conversion device
end surface
generation body
Prior art date
Application number
PCT/CN2022/091941
Other languages
English (en)
French (fr)
Inventor
李园园
王光长
张楠赓
Original Assignee
北京嘉楠捷思信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210495241.2A external-priority patent/CN117055696A/zh
Priority claimed from CN202221090353.1U external-priority patent/CN217388565U/zh
Priority claimed from CN202210493596.8A external-priority patent/CN117060781A/zh
Priority claimed from CN202221088120.8U external-priority patent/CN217238754U/zh
Application filed by 北京嘉楠捷思信息技术有限公司 filed Critical 北京嘉楠捷思信息技术有限公司
Publication of WO2023216097A1 publication Critical patent/WO2023216097A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means

Definitions

  • thermoelectric conversion device electronic equipment
  • waste heat reuse system waste heat reuse system
  • waste heat or waste heat
  • thermoelectric conversion device electronic equipment and waste heat reuse system.
  • thermoelectric conversion device including:
  • the power generation body includes an opposite first end surface and a second end surface
  • Lead terminals, the first end surface and the second end surface of the power generation body are both provided with the lead terminals;
  • the power generation body When there is a temperature difference between the first end surface and the second end surface of the power generation body, the power generation body outputs electrical energy through the lead terminals provided on the first end surface and the second end surface of the power generation body;
  • a support body is used to support and fix the power generation body.
  • the power generating body has a hollow columnar structure.
  • the support body includes a first hollow columnar structure, and the power generation body is located on the surface of the first hollow columnar structure.
  • the support body includes a first hollow columnar structure and a second hollow columnar structure, the first hollow columnar structure and the second hollow columnar structure are coaxially arranged, the first hollow columnar structure and the second hollow columnar structure have different radii, and the power generating body is located between the first hollow columnar structure and the second hollow columnar structure.
  • the support body is provided with a plurality of through holes extending through its wall thickness.
  • the chassis plate is provided with a plurality of through holes through the wall thickness, which helps the second end surface of the power generation body to be close to the ambient temperature outside the box and increases the first temperature of the power generation body.
  • the temperature difference between the end face and the second end face improves the power generation efficiency of the power generation body.
  • the chassis plate is provided with an embedding hole that runs through its thickness, and the power generating body is embedded in the embedding hole.
  • thermoelectric conversion device provided by the embodiment of the present application embeds the power generation body in the embedding hole, which is beneficial to fixing the power generation body and at the same time makes the first end face and the second end face of the power generation body closer to the temperature of the accommodation space and the temperature outside the chassis. Thereby improving the power generation efficiency of the power generation body.
  • the support body is a chassis, and a receiving space is formed in the chassis; and the power generating body is arranged on the surface of the chassis.
  • thermoelectric conversion device provided in the embodiment of the present application can use the power generation body provided in the accommodation space of the chassis to recover the heat generated by the computing board, thereby improving the energy efficiency ratio of super computing equipment and reducing energy waste and environmental pollution.
  • the chassis includes multiple sides, and the power generation body is arranged on at least one side of the chassis.
  • the power generation body is arranged on at least one side of the chassis, which can increase the flexibility of the power generation body design and reduce the cost of super computing power equipment.
  • the power generation body is attached to the inner side or the outer side of the chassis.
  • thermoelectric conversion device attaches the power generation body to the inner or outer side of the chassis, so that the power generation body is close to the accommodation space, thereby improving the efficiency of heat recovery by the power generation body.
  • the chassis is an integrally formed structure.
  • thermoelectric conversion device provided by the embodiments of the present application and the integrated chassis can simplify the assembly procedure and improve the assembly efficiency of super-computing equipment, thereby reducing the production cost of super-computing equipment.
  • the integrated power generation body can reduce the installation difficulty of the power generation body and the chassis and improve the installation efficiency.
  • the first end face of the power generation body is a hot end face
  • the second end face is a cold end face.
  • the first end face of the power generation body is arranged toward the accommodation space, and the second end face is arranged away from the accommodation space.
  • thermoelectric conversion device provided by the embodiment of the present application has the hot end face of the power generation body facing the accommodation space and the cold end face facing away from the accommodation space, which helps to improve the power generation efficiency of the power generation body.
  • a heat sink which is attached to the heating element and used to discharge the heat generated by the heating element
  • a control panel which is arranged on the outside of the chassis and is used to control the heating element
  • the power supply is arranged outside the chassis.
  • the lead terminals provided on the first end surface and the second end surface are electrically connected to the electrical components to provide electrical signals to the electrical components.
  • the lead terminals are electrically connected to the electrical components in the super computing power equipment.
  • the electrical components in the super computing power equipment directly utilize the electric energy generated by the power generator to improve the energy efficiency ratio of the super computing power equipment. .
  • the power generating body is a hollow columnar integrated structure.
  • the power generation body includes a plurality of sub-power generation bodies, the plurality of sub-power generation bodies are arranged at intervals along the circumferential direction of the support body, and the plurality of sub-power generation bodies are connected in parallel or in series through conductors.
  • the power generation body is configured as a plurality of sub-power generation bodies, and the plurality of sub-power generation bodies are spaced apart or arranged side by side adjacent to the chassis.
  • the sub-power generation bodies can be flexibly arranged according to the size of the chassis, effectively utilizing The space of the chassis improves the efficiency of heat recovery by the power generation body.
  • the material of the power generation body is a semiconductor material, and the semiconductor material includes bismuth telluride;
  • the lead terminal is made of conductive metal.
  • thermoelectric conversion device uses bismuth telluride as a power generation material, and utilizes the good electrical conductivity of bismuth telluride to improve the power generation efficiency and operation stability of supercomputing power equipment.
  • a plating layer is provided on the surface of the power generator and the lead terminal, and the material of the plating layer is nickel or tin.
  • thermoelectric conversion device provided in the embodiment of the present application can improve the electrical connection performance of the power generation body and the lead terminal by utilizing the good electrical conductivity of nickel or tin.
  • an packaging layer covering the power generation body is provided on the outer surface of the power generation body, one end of the lead terminal is located outside the packaging layer, and the material of the packaging layer is ceramic.
  • thermoelectric conversion device provided by the embodiment of the present application, ceramic is used as the material of the packaging layer, which not only has low material cost, but also has mature technology and superior performance.
  • the device further includes an energy storage module, two input terminals of the energy storage module are electrically connected to lead terminals provided on the second end face and the first end face respectively, for storing the output of the power generator. of electrical energy.
  • thermoelectric conversion device uses an energy storage module to store electric energy, thereby improving the flexibility of electric energy use.
  • the device further includes a voltage stabilizer, two input terminals of the voltage stabilizer are electrically connected to lead terminals provided on the first end surface and the second end surface respectively, and the two input terminals of the voltage stabilizer One output terminal is electrically connected to the two input terminals of the energy storage module.
  • thermoelectric conversion device and voltage regulator provided by the embodiments of this application can improve the stability of the power input to the energy storage module and extend the service life of the energy storage module.
  • the device further includes a transformer, two input terminals of the voltage regulator are electrically connected to lead terminals provided on the first end surface and the second end surface respectively, and two output terminals of the voltage regulator terminals are respectively electrically connected to the two input terminals of the transformer, and the two output terminals of the transformer are respectively electrically connected to the two input terminals of the energy storage module.
  • thermoelectric conversion device provided by the embodiment of the present application has a transformer between the voltage regulator and the energy storage module.
  • the transformer can be used to improve the charging efficiency and store the electric energy generated by the power generator in a timely manner.
  • the support body includes a casing of a fan.
  • thermoelectric conversion device provided in the embodiment of the present application can increase the heat dissipation efficiency of super computing power equipment through heat sinks and fans, and prevent the temperature of the accommodation space from being too high and affecting the performance of the super computing power equipment.
  • the device further includes a media drive module.
  • the media drive module includes a rotating shaft, a blade and a driving device.
  • the rotating shaft is arranged along the central axis direction of the support body.
  • the blade is fixed to one end of the rotating shaft.
  • the output end of the driving device is connected to the other end of the rotating shaft, and the rotating shaft transmits the driving force of the driving device to the blades, and the blades are used to provide power for the flow of the heat transfer medium.
  • the side of the power generating body close to the blade is the first end face
  • the side of the power generating body away from the blade is the second end face
  • a sub-equipment including an electronic device and a thermoelectric conversion device.
  • the thermoelectric conversion device is used to recycle the heat generated by the electronic device.
  • the thermoelectric conversion device is an embodiment of the present application.
  • the thermoelectric conversion device is provided.
  • thermoelectric conversion device the lead terminals of the thermoelectric conversion device are used to provide electrical signals to devices in the electronic device.
  • the electronic device is a super computing device.
  • a waste heat reuse system including: an electronic device, a thermoelectric conversion device, and an electrical device.
  • the lead terminal of the thermoelectric conversion device is electrically connected to the electrical device for supplying electricity to the device.
  • the electrical device provides electrical signals.
  • the power generation body is fixed to the support body, and the second end face and the first end face of the power generation body are both provided with lead terminals.
  • the power generation body When there is a temperature difference between the second end face and the first end face, the power generation body generates The electric potential is outputted through the lead terminals provided on the second end face of the power generation body and the lead terminals on the first end face, thereby converting waste heat into electrical energy, reducing energy consumption and reducing pollution; allowing the medium with higher temperature to flow inside the support body , can increase the temperature difference between the inside and outside of the support body, improve waste heat utilization efficiency, and at the same time improve the energy efficiency ratio of electronic equipment.
  • Figure 1 is a schematic structural diagram of a super computing device provided by an embodiment of the present application.
  • Figure 2 is a side view of a power generation body provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a chassis and a power generation body provided by an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of another chassis and power generation body provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another chassis and power generation body provided by the embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of yet another chassis and power generation body provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another chassis and power generation body provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram of the parallel connection of some sub-generators of the power generator in the embodiment of the present application.
  • Figure 9 is a schematic diagram of the series connection of some sub-power generating bodies of the power generating body in the embodiment of the present application.
  • Figure 10 is a schematic structural diagram of another power generation body provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of another super computing device provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of yet another super-computing power device provided by an embodiment of the present application.
  • Figure 13 is a schematic structural diagram of yet another super computing device provided by an embodiment of the present application.
  • Figure 14 is a schematic structural diagram of a super computing device provided by an embodiment of the present invention.
  • Figure 15 is a side view of a power generation body provided by an embodiment of the present utility model
  • Figure 16 is a schematic structural diagram of a chassis and a power generation body provided by an embodiment of the present invention.
  • FIG. 17 is a schematic structural diagram of another chassis and power generation body provided by an embodiment of the present invention.
  • FIG. 18 is a schematic structural diagram of another chassis and power generation body provided by an embodiment of the present invention.
  • FIG. 19 is a schematic structural diagram of yet another chassis and power generation body provided by an embodiment of the present invention.
  • FIG. 20 is a schematic structural diagram of another chassis and power generation body provided by an embodiment of the present invention.
  • Figure 21 is a schematic structural diagram of another super computing device provided by an embodiment of the present invention.
  • Figure 22 is a schematic structural diagram of another super computing power device provided by an embodiment of the present invention.
  • Figure 23 is a schematic structural diagram of yet another super computing device provided by an embodiment of the present invention.
  • Figure 24 is a schematic structural diagram of a super computing device provided by an embodiment of the present invention.
  • Figure 25 is a schematic structural diagram of a super computing device provided by an embodiment of the present application.
  • 1-chassis 10-electronic equipment; 11-computing board; 12-network card; 14-media drive module; 15-accommodation space, 16-chassis frame, 17-chassis board, 171-blind hole, 172-through hole, 173-embedded hole, 5-energy storage module; 6-heat sink, 7-control board; 8-fan; 9-power supply;
  • FIG. 1 is a schematic structural diagram of an electronic device used in an embodiment of the present application.
  • the electronic device 10 includes a hash board 11, a network card 12, a power supply 9 and a media drive module 14.
  • the output end of the power supply 9 is electrically connected to the hash board 11, the network card 12 and the media drive module 14 respectively. Electrical energy is provided for the normal operation of the computing board 11, the network card 12 and the media drive module 14.
  • the computing board 11 is used to run specific algorithms to calculate the data to be processed.
  • the network card 12 is used for network connection with other external electronic devices.
  • the computing board 11 is connected to the network card 12 for signals.
  • the computing board 11 can obtain the data to be processed through the network card 12
  • the data is processed, and the processing results can also be transmitted to other electronic devices through the network card 12 .
  • the media drive module 14 is used to discharge the heat generated during the operation of the computing board 11, the network card 12 and the power supply 9, so that the electronic device can operate within an ideal temperature range.
  • the computing board 11 is the main board of the electronic device 10, which includes electronic components such as substrates, chips, and heat sinks.
  • the computing power of the computing power board 11 is an index to measure the computing power and computing performance of the electronic device 10, and can be expressed by the number of hash algorithm operations per second.
  • the chip can be a central processing unit (Central Processing Unit, referred to as CPU), a graphics processing unit (Graphic Processing Unit, referred to as GPU), or an application specific integrated circuit (Application Specific Integrated Circuit, referred to as ASIC) chip.
  • CPU Central Processing Unit
  • GPU Graphic Processing Unit
  • ASIC Application Specific Integrated Circuit
  • Electronic devices such as the computing board 11 , the network card 12 , and the power supply 9 in the electronic equipment consume a large amount of power during operation and generate a large amount of waste heat, resulting in relatively low energy efficiency of the electronic equipment, wasting energy, and polluting the environment.
  • thermoelectric conversion device that can recover waste heat generated by electronic devices, thereby improving the energy efficiency ratio of electronic equipment and reducing energy waste and environmental pollution.
  • FIG. 2 is a schematic structural diagram of a thermoelectric conversion device provided by an embodiment of the present application.
  • the thermoelectric conversion device includes a power generation body 21 , a lead terminal 4 and a support body 23 .
  • the support body 23 is used to support and fix the power generation body 21 .
  • the lead terminal 4 is electrically connected to the power generation body 21 .
  • the power generation body 21 includes an opposite first end face 31 and a second end face 32.
  • an electric potential will be generated in the power generation body 21. That is to generate electrical energy.
  • the power generation body 21 has a hollow columnar structure, and a heating body can be disposed inside the power generation body 21 of the hollow columnar structure, so that the power generation body 21 is arranged on the periphery of the heating body, which can improve the waste heat recovery and utilization rate.
  • the first end surface 31 may be a hot end surface, and the second end surface 32 may be a cold end surface; or, the first end surface 31 may be a cold end surface, and the second end surface 32 may be a hot end surface.
  • a lead terminal 4 is respectively provided on the first end surface 31 and the second end surface 32 of the power generation body 21 for outputting the electric energy generated in the power generation body 21 .
  • the lead terminal 4 includes a first lead terminal 41 and a second lead terminal 42.
  • the first lead terminal 41 is provided on the first end surface 31 of the power generation body 21, and the second lead terminal 42 is provided on the second end surface 32 of the power generation body 21.
  • the first lead terminal 41 and the second lead terminal 42 can output electric energy.
  • the first lead terminal 41 and the second lead terminal 42 are connected to electrical equipment, electric energy can be recycled.
  • the first lead terminal 41 and the second lead terminal 42 are connected to the energy storage module, electrical energy can be stored.
  • the support body 23 is a hollow columnar structure.
  • the support body 23 includes a first hollow columnar structure 23a and a second hollow columnar structure 23b.
  • the first hollow columnar structure 23a and the second hollow columnar structure 23b are coaxially arranged.
  • the first hollow columnar structure 23a and the second hollow columnar structure 23b are arranged coaxially.
  • the two hollow cylindrical structures 23b have different radii, and a receiving cavity is formed between the first hollow cylindrical structure 23a and the second hollow cylindrical structure 23b, and the power generation body 21 is located in the receiving cavity between the first hollow cylindrical structure and the second hollow cylindrical structure. , that is, the first hollow columnar structure 23a, the power generation body 21 and the second hollow columnar structure 23b are nested in sequence from the inside to the outside.
  • the support body 23 includes a first hollow columnar structure, and the power generation body 21 is disposed on the surface of the first hollow columnar structure.
  • the power generation body 21 can be disposed on the inner surface of the support body 23 or on the outer surface of the support body 23 .
  • the support body 23 is provided with a plurality of through holes through its wall thickness.
  • the through holes are conducive to increasing the temperature difference between the first end surface 31 and the second end surface 32 of the power generation body 21, thereby improving heat recovery efficiency.
  • the support body 23 has a hollow cylindrical structure.
  • the projection shape of the support body 23 on the cross section perpendicular to the axis can also be a square ring, a diamond ring or other shapes of rings. This application does not limit the projection shape of the support body 23 on the cross section perpendicular to the axis.
  • the medium can flow inside and outside the support body 23 along the axial direction of the support body 23 .
  • the medium can be air or liquid, and the liquid can be a cooling liquid.
  • the support body 23 in this embodiment has a hollow columnar structure, and the support body 23 can divide the space into two spaces: an inner and outer space, that is, a closed or semi-closed space and an open space.
  • the inner side of the support body 23 means the support body 23 is located on the closed or semi-enclosed space side
  • the outer side of the support body 23 means the support body 23 is located on the open space side.
  • Mediums with different temperatures flow inside and outside the support body 23 respectively.
  • a medium with a higher temperature flows inside the support body 23
  • a medium with a lower temperature flows outside the support body 23 .
  • the medium with a lower temperature flows inside the support body 23
  • the medium with a higher temperature flows outside the support body 23 .
  • the media flowing inside and outside the support body 23 may be two types of media, or may be the same type of media, which is not limited in this application.
  • the medium flowing inside the support body 23 is air
  • the medium flowing outside the support body 23 is water.
  • the power generation body 21 is a hollow columnar integrated structure.
  • the power generation body 21 has a hollow cylindrical structure, and the two lead terminals 4 are respectively provided on the first end face 31 (inner wall of the power generation body 21) and the second end face 32 (the outer wall of the power generation body 21) of the hollow circular power generation body 21.
  • the integrated structure of the power generation body 21 facilitates assembly, simplifies the assembly difficulty of the thermoelectric conversion device, and improves assembly efficiency.
  • a gap 214 is provided in the circumferential direction of the power generation body 21 , that is, the power generation body 21 is not a closed hollow columnar structure.
  • the gap 214 makes the projection shape of the power generating body 21 perpendicular to the axis into a "C" shape.
  • the two lead terminals 4 are both provided at the notch 214 , but are respectively provided on the inner wall and the outer wall of the power generation body 21 .
  • the leads connected to the lead terminals 4 provided on the inner wall can extend to the outside of the power generation body 21 through the notch 214 .
  • the support body 23 includes a support outer wall 231 and a support inner wall 232.
  • An accommodation space 15 is formed between the support outer wall 231 and the support inner wall 232.
  • the power generation body 21 is embedded in the accommodation space of the support body 23.
  • Within space 15 Since the support outer wall 231 and the support inner wall 232 isolate the power generation body 21 from the medium, there is a temperature difference between the first end surface 31 and the second end face 32 of the power generation body 21 and the medium, which affects the power generation efficiency of the power generation body 21 .
  • a plurality of through holes 234 are provided on the outer wall 231 of the support and the inner wall 232 of the support. Through the through holes 234, the temperatures of the first end surface 31 and the second end surface 32 of the power generation body 21 can be adjusted to the temperatures inside and outside the support body 23 respectively.
  • the medium temperature on the outside is as uniform as possible.
  • the power generator 21 includes a plurality of sub-power generators 33 , which are spaced apart along the circumferential direction of the support body 23 , and are connected in parallel or in series through wires.
  • a plurality of sub-power generators 33 are electrically connected in parallel, the current value output by the power generator can be increased.
  • a plurality of electronic power generators 33 are electrically connected in series, the voltage value output by the power generator can be increased.
  • the power generation body 21 includes four sub-power generation bodies 33 .
  • Each sub-power generation body 33 includes a first end face 31 and a second end face 32 arranged oppositely.
  • a first lead terminal 41 is provided on the first end face 31
  • a first lead terminal 41 is provided on the first end face 31 .
  • the second end surface 32 is provided with a second lead terminal 42.
  • Figure 6 is a schematic diagram of the parallel connection of molecular power generating bodies in the power generating body.
  • the power generator 21 includes three sub-power generators 33a, 33b, and 33c. Among them, the first lead terminal 41 of the sub-power generator 33a, the first lead terminal 41 of the sub-power generator 33b, and the first lead terminal 41 of the sub-power generator 33c.
  • the lead terminal 41 is electrically connected to the second lead terminal 42 of the electronic power generator 33a, the second lead terminal 42 of the electronic power generator 33b, and the second lead terminal 42 of the electronic power generator 33c, thereby connecting the three electronic power generators 33a, 33b, 33c is connected in parallel and outputs the electric energy generated by the three sub-generators 33a, 33b and 33c.
  • FIG. 7 is a schematic diagram of the series connection of molecular power generating bodies in the power generating body.
  • the power generator 21 includes three sub-power generators 33a, 33b, and 33c.
  • the second lead terminal 42 of the sub-power generator 33a is electrically connected to the first lead terminal 41 of the sub-power generator 33b.
  • the second lead terminal 42 of the electronic power generator 33c is electrically connected to the first lead terminal 41 of the electronic power generator 33c.
  • the first lead terminal 41 of the electronic power generator 33a and the second lead terminal 42 of the electronic power generator 33c connect the three electronic power generators 33a, 33b, 33c. The electrical energy output produced.
  • the support body 23 includes a support body 235 and a plurality of embedding spaces 236 spaced apart in the circumferential direction of the support body 235 .
  • the embedding spaces 236 correspond to the number of sub-power generating bodies 33 , and each sub-power generating body corresponds to It is embedded in an embedding space 236.
  • the embedding space 236 can be used to quickly fix the electronic power generation body to the support body 23, thereby improving assembly efficiency.
  • the material of the power generating body 21 is a semiconductor material.
  • the semiconductor material includes bismuth telluride or other semiconductor materials.
  • Bismuth telluride has good electrical conductivity but poor thermal conductivity. Used in thermoelectric conversion devices, it can improve the efficiency of thermoelectric conversion device power generation and the stability of operation.
  • the lead terminal material is a conductive metal, such as copper. Copper conducts electricity well and is low cost.
  • the leads connected to the lead terminals 4 may be Teflon leads or other high-temperature resistant leads.
  • the surfaces of the power generation body 21 and the lead terminal 4 are provided with a plating layer (not shown in the figure).
  • the plating layer can improve the welding performance of the power generation body 21 .
  • the plating layer is made of nickel or tin.
  • the material of the power generating body 21 is bismuth telluride and the solder is a tin-bismuth alloy
  • the bismuth telluride will melt into the solder, and copper impurities will easily diffuse into the bismuth telluride at a lower temperature, reducing the thermoelectric performance of the bismuth telluride.
  • the plating layer of nickel or tin material can act as a barrier to prevent copper impurities from diffusing into bismuth telluride and avoid the degradation of the thermoelectric properties of bismuth telluride. Placing a nickel or tin plating layer on the surface of the lead terminal 4 is also beneficial to improving the welding performance of the lead terminal 4 .
  • the thickness of the plating layer ranges from 0.1 to 0.3 mm.
  • FIG. 9 is a partial structural diagram of a thermoelectric conversion device in an embodiment of the present application.
  • a packaging layer 33 is provided on the outer surface of the power generation body 21 .
  • the packaging layer 33 covers the power generation body 21 .
  • One end of the lead terminal 4 is located outside the packaging layer 33 , that is, one end of the lead terminal 4 extends from the packaging layer 33 exposed to facilitate electrical connections.
  • the material of the encapsulation layer 33 is ceramic or other suitable materials.
  • ceramic not only has low material cost, but also has mature technology and superior performance.
  • the thermoelectric conversion device also includes an energy storage module 5.
  • the two input ends of the energy storage module 5 are electrically connected to the lead terminals 4 provided on the second end surface 32 and the first end surface 31 of the power generation body 21, so that The electric energy generated by the power generator 21 is obtained and stored.
  • the energy storage module 5 may be a battery or other module capable of storing electrical energy. This application does not limit the form of the energy storage module 5 .
  • the energy storage module 5 can also be connected to other electrical equipment to provide electric energy to other electrical equipment.
  • thermoelectric conversion device further includes a voltage regulator 47.
  • Two input terminals of the voltage regulator 47 are electrically connected to the lead terminals 4 provided on the first end face 31 and the second end face 32 respectively.
  • the voltage regulator 47 The two output terminals are electrically connected to the two input terminals of the energy storage module 5. That is, a voltage stabilizer 47 is provided between the output terminal of the power generation body 21 and the energy storage module 5. That is, the power generation body 21 converts the electric energy through the voltage stabilizer 47. stored in energy storage module 5.
  • the first end surface 31 of the power generation body 21 is electrically connected to the first input terminal of the voltage regulator 47 through the first lead terminal 41
  • the second end surface 32 of the power generation body 21 is electrically connected to the voltage regulator through the second lead terminal 42 .
  • the second input terminal of the voltage regulator 47 is electrically connected
  • the first output terminal of the voltage regulator 47 is electrically connected to the first input terminal of the energy storage module 5
  • the second output terminal of the voltage regulator 47 is electrically connected to the second input terminal of the energy storage module 5. terminal electrical connection.
  • the thermoelectric conversion device further includes a transformer 48.
  • Two input terminals of the voltage regulator 47 are electrically connected to the lead terminals 4 provided on the first end surface 31 and the second end surface 32 respectively.
  • the two input terminals of the voltage regulator 47 The two output terminals are respectively electrically connected to the two input terminals of the transformer 48 , and the two output terminals of the transformer 48 are respectively electrically connected to the two input terminals of the energy storage module 5 , that is, the output terminal of the power generation body 21 is electrically connected to the energy storage module 5
  • a voltage regulator 47 and a transformer 48 are arranged in sequence, and the electric energy is stored in the energy storage module 5 through the voltage regulator 47 and the transformer 48 .
  • the first end surface 31 of the power generation body 21 is electrically connected to the first input terminal of the voltage regulator 47 through the first lead terminal 41
  • the second end surface 32 of the power generation body 21 is electrically connected to the voltage regulator through the second lead terminal 42 .
  • the second input terminal of the voltage regulator 47 is electrically connected
  • the first output terminal of the voltage regulator 47 is electrically connected to the first input terminal of the transformer 48
  • the second output terminal of the voltage regulator 47 is electrically connected to the second input terminal of the transformer 48
  • the first output end of the transformer 48 is electrically connected to the first input end of the energy storage module 5
  • the second output end of the transformer 48 is electrically connected to the second input end of the energy storage module 5 .
  • the thermoelectric conversion device further includes a media driving module 26 for driving the media flow.
  • the medium may be air, or other gases or liquids capable of carrying heat.
  • the media drive module 26 includes a rotating shaft 261 , a blade 262 and a driving device (not shown in the figure).
  • the rotating shaft 261 is disposed along the central axis of the supporting body 23 .
  • the rotating shaft 261 coincides with the central axis of the supporting body 23 .
  • the central axis of the support body 23 refers to the symmetry center of the hollow columnar support body 23 .
  • the blade 262 is fixed to one end of the rotating shaft 261, and the output end of the driving device is connected to the other end of the rotating shaft 261.
  • the rotating shaft 261 transmits the driving force of the driving device to the blade 262.
  • the rotation of the blade 262 can provide power for the flow of hot medium and cold medium.
  • the number of blades 262 may be two blades, three blades, or other numbers.
  • the number of blades 262 is not limited in this application.
  • the plurality of blades 262 are evenly distributed along the circumferential direction of the rotating shaft 261 so that the medium can obtain uniform power.
  • the media drive module 26 may be a blade
  • the thermoelectric conversion device may be a casing of the fan or a part of the casing
  • the support body 23 may be a casing of the fan.
  • FIG 12 is a schematic structural diagram of the thermoelectric conversion device provided by the present application being installed on a fan.
  • the fan includes a casing 27 and blades 262.
  • the blades 262 are arranged inside the casing 27.
  • the casing 27 adopts the structure of the thermoelectric conversion device provided by this application.
  • the inside of the casing 27 is the first part of the power generation body 21.
  • the end surface 31 and the outer side of the casing 27 are the second end surface 32 of the power generation body 21 .
  • the blades 262 are used to collect the gas with higher temperature (the gas temperature increases due to the heating of electronic devices) and flow inside the casing 27 , which is beneficial to increasing the temperature difference between the inside and the outside of the casing 27 , that is, increasing the first end surface 31 of the power generating body 21 and the second end face 32, thereby improving the efficiency of converting waste heat into electrical energy, reducing energy consumption, and reducing pollution; at the same time, the energy efficiency ratio of the electronic equipment is improved, and the utilization rate of electrical energy is improved.
  • the side of the power generation body 21 close to the blades 262 is the first end face 31
  • the side of the power generation body 21 away from the blades 262 is the second end face 32 .
  • the medium driving module 26 drives the flow of medium with a higher temperature, so that the temperature of the medium flowing inside the support body 23 is higher than the temperature of the medium flowing outside.
  • the first end surface 31 of the power generation body 21 is disposed facing the blade 262 side.
  • the second end surface 32 of the power generating body 21 is disposed on the side facing away from the blades 262 .
  • the side of the power generation body 21 close to the blades 262 is the first end face 31, and the side of the power generation body 21 away from the blades 262 is the second end face 32.
  • the temperature difference between the first end surface 31 and the second end surface 32 is thereby improved to improve the efficiency of waste heat recovery.
  • the power generation body 21 is fixed to the support body 23 of a hollow columnar structure, and the second end face 32 and the first end face 31 of the power generation body 21 are both provided with lead terminals 4.
  • lead terminals 4 When there is a temperature difference on one end face 31, an electric potential is generated in the power generation body 21, and electrical energy is output through the lead terminals 4 provided on the second end face 32 and the first end face 31 of the power generation body 21, thereby converting the waste heat into electrical energy.
  • An embodiment of the present application also provides an electronic device, including an electronic device and a thermoelectric conversion device.
  • the thermoelectric conversion device is used to recycle heat generated by the electronic device, wherein the thermoelectric conversion device is the thermoelectric conversion device provided by the embodiment of the present application.
  • the electronic device may be a super computing device 5 , which includes at least one of a computing board 11 , a control board 7 , a network card 12 , and a power supply 9 .
  • the computing power board 11 is the main board of the electronic device, which includes an ASIC chip, CPU or GPU, and provides computing power for super computing power equipment.
  • the control board 7 is used to control the computing power board 11, the control board 7, and the power supply 9.
  • the network card 12 is provided with standard network ports.
  • the power supply provides electrical energy to the super computing power equipment and ensures the normal operation of each electronic device in the super computing power equipment.
  • the electronic device may also include memory, hard disk, etc., for storing and installing mining programs.
  • the lead terminal 4 of the thermoelectric conversion device 44 is used to provide electrical signals to the components in the electronic device, that is, the lead terminal 4 of the thermoelectric conversion device 44 is used to provide the computing board 11, the control board 7, The network card 12, the power supply 9, etc. provide electrical signals.
  • the thermoelectric conversion device can simultaneously provide electrical signals to the computing board 11, control board 7, network card 12, and power supply 9 of the super computing power device 5, or can also provide electrical signals to at least one device in the super computing power device.
  • thermoelectric conversion device provided by the embodiments of this application is introduced below, taking supercomputing power equipment as an example.
  • Figure 14 is a schematic structural diagram of a super computing device provided by an embodiment of the present invention
  • Figure 15 is a schematic structural diagram of a side view of a power generation body provided by an embodiment of the present invention.
  • the super computing device provided by the embodiment of the present invention includes a chassis 1, a computing board 11, a power generation body 21 and a lead terminal 4.
  • the chassis 1 is provided with an accommodation space 15 .
  • the accommodating space 15 is used to carry key components of the super computing power equipment, and its shape may be square or other shapes.
  • the embodiment of the present invention does not limit the shape of the accommodating space 15 .
  • the material selected for the chassis 1 may be metal or plastic.
  • the hash board 11 is arranged in the accommodation space 15, and the hash board 11 generates heat during operation.
  • the computing board 11 is the mainboard of a super computing device, and its computing power is an indicator of the computing power and computing performance of the super computing device.
  • the computing power of the computing board 11 can be expressed by the number of hash algorithm operations per second.
  • the computing board 11 includes a chip, and the chip can be a central processing unit (Central Processing Unit, referred to as CPU), a graphics processing unit (Graphic Processing Unit, referred to as GPU), or an application specific integrated circuit (Application Specific Integrated Circuit, referred to as ASIC) chip.
  • CPU Central Processing Unit
  • GPU Graphic Processing Unit
  • ASIC Application Specific Integrated Circuit
  • the computing board 11 is used to run specific algorithms to calculate the data to be processed.
  • the network card (not shown in the figure) is used to connect to other external electronic devices.
  • the computing board 11 is connected to the network card signal.
  • the computing board 11 can The data to be processed is obtained through the network card, and the processing results can also be transmitted to other electronic devices through the network card.
  • the waste heat discharged during the operation of the computing power board 11 can make the temperature of the accommodation space 15 higher than the temperature outside the accommodation space 15.
  • the temperature of the accommodation space 15 can reach more than 70 degrees. Therefore, if it is not correct, Cooling the accommodation space will affect the performance of the hash board 11.
  • the power generation body 21 is provided in the chassis 1 .
  • the power generation body 21 includes opposite first end faces 31 and second end faces 32 .
  • the power generation body 21 is disposed on the surface of the chassis 1 , the first end face 31 of the power generation body 21 faces the accommodation space 15 , and the second end face 32 faces away from the accommodation space 15 , that is, the first end face 31 of the power generation body 21 faces the accommodation space 15 .
  • the second end surface 32 is disposed on the side close to the accommodating space 15 , and the second end surface 32 is disposed on the side far away from the accommodating space 15 . Since the temperature of the accommodation space 15 is relatively high, there is a temperature difference between the inside and the outside of the chassis 1.
  • the generator 21 is placed on the surface of the chassis 1, and a temperature difference is generated between the first end surface 31 and the second end surface 32 of the generator 21, thereby causing Electric energy is generated in the power generating body 21 .
  • the first end surface 31 and the second end surface 32 are both provided with lead terminals 4.
  • the lead terminals 4 connect the power generation body 21 to the power generation body 21. 21 generates electrical energy output.
  • the first end surface 31 is provided with a first lead terminal 41
  • the second end surface 32 is provided with a second lead terminal 42.
  • the first lead terminal 41 and the second lead terminal 42 can output the electric energy generated in the power generating body 21 .
  • the first end face 31 can be a hot end face, and the second end face 32 can be a cold end face; or, the first end face 31 can be a cold end face, and the second end face 32 can be a hot end face.
  • the utility model provides a super-computing power device, which utilizes a power generator arranged in a housing space of a chassis to recover heat generated by a computing board, thereby improving the energy efficiency ratio of the super-computing power device and reducing energy waste and environmental pollution.
  • the chassis 1 includes multiple sides, and the power generating body 21 is disposed on at least one side of the chassis frame.
  • a chassis frame 16 is provided on the side of the chassis 1 , and the generator 21 is arranged on the chassis frame 16 .
  • the embodiment of the present invention does not limit the number of sides of the chassis 1, as long as it can form a receiving space for placing the computing board 11.
  • the chassis 1 can be a hexahedron, an octahedron or other shapes.
  • the embodiment of the utility model does not limit the shape of the chassis 1 .
  • the chassis 1 includes six sides, namely the top side, the bottom side, the left side, the right side, the front side and the rear side.
  • the power generation body 21 may be provided on any one or more of the six sides.
  • the generator 21 is provided on the top, left and right sides of the chassis 1, or the generator 21 is provided only on the left and right sides of the chassis 1, or the generator 21 is provided on all six sides of the chassis 1.
  • a power generator 21 is provided.
  • the power generation body 21 is arranged on the side of the chassis 1, and the power generation body 21 is directly used as a part of the chassis 1, which can save the cost of super computing power equipment.
  • the chassis 1 includes a chassis frame 16 and a chassis plate 17.
  • the chassis frame 16 includes multiple sides.
  • the chassis plate 17 is fixed to at least one side of the chassis frame 16.
  • At least one chassis plate 17 A power generating body 21 is provided on it.
  • the generator 21 is not directly fixed to the chassis frame 16, but is fixed to the chassis frame 16 with the help of the chassis plate 17. That is, the generator 21 is first fixed to the chassis plate 17, and then the chassis plate 17 is fixed to the chassis. Rack 16.
  • chassis frame 16 includes multiple sides, and a chassis plate 17 can be provided on each side, or a chassis plate 17 can be provided on one or several sides. It should also be noted that the number of chassis boards 17 and the number of generators 21 may not be consistent. The generators 21 may be selectively provided on the chassis board 17 . For example, the generators 21 may be provided on all chassis boards 17 , or on all chassis boards 17 . One or several chassis panels 17 are provided with power generating bodies 21 .
  • the generator 21 can be disposed on the chassis plate 17 , or can be directly disposed on the chassis frame 16 .
  • the power generation body is arranged on any side of the chassis 1, which can increase the flexibility of the design of the power generation body 21 and reduce the cost of the super-computing power equipment.
  • the power generator 21 is attached to the inner or outer side of the chassis 1 .
  • a chassis plate 17 is provided on the side wall of the chassis 1 , and the generator 21 is disposed on the chassis plate 17 .
  • the first end surface 31 of the power generation body 21 is in contact with the chassis board 17
  • the second end surface 32 of the power generation body 21 is adjacent to the environment.
  • FIG. 19 when the generator 21 is attached to the inner side of the chassis board 17 , the first end surface 31 of the generator 21 is adjacent to the accommodation space 15 , and the second end surface 32 of the generator 21 is attached to the chassis board 17 . .
  • a blind hole 171 is provided on the chassis board 17 .
  • the blind hole 171 may be provided on the inside or outside of the chassis board 17 .
  • the power generator 21 is correspondingly disposed on the inner side of the chassis board 17 .
  • the power generator 21 is correspondingly positioned on the outside of the chassis board 17 .
  • the power generation body is attached to the inner or outer side of the chassis, so that the power generation body is close to the accommodation space, thereby improving the efficiency of heat recovery by the power generation body.
  • the embodiment of the present invention uses the chassis plate 17 to carry the power generation body 21, so that the size of the power generation body 21 can be flexibly adjusted and is no longer limited by the size of the chassis frame 16.
  • the chassis plate 17 is provided with a plurality of through holes 172 extending through its wall thickness, and the positions of the plurality of through holes 172 are consistent with the position of the power generation body 21 relatively.
  • the embodiment of the present invention does not limit the arrangement and size of the plurality of through holes 172.
  • the plurality of through holes 172 can be arranged in an array in a rectangular, circular or other shape.
  • the embodiment of the present invention can use the through hole 172 to make the surface temperature of the power generation body 21 close to the temperature of the accommodation space 15 or the environment, thereby increasing the power generation capacity of the power generation body 21 and thereby improving the recovery and utilization rate of waste heat.
  • the through hole 172 helps the second end surface 32 of the power generation body 21 to be close to the ambient temperature outside the box 1 .
  • the through hole 172 helps the first end surface 31 of the power generation body 21 to approach the temperature in the accommodation space 15 .
  • the power generation body 21 in addition to fitting the power generation body 21 to the inner or outer side of the chassis board 17 , the power generation body 21 can also be embedded in the chassis board 17 so that the first end surface 31 of the power generation body 21 is in contact with the chassis board 17 .
  • the contact area of the accommodation space 15 and the contact area of the second end surface 32 of the power generation body 21 and the environment outside the chassis 1 are maximized.
  • an embedding hole 173 is provided on the chassis plate 17 , and the generator 21 is embedded in the embedding hole 131 .
  • the inner diameter of the embedding hole 173 matches the outer diameter of the power generation body 21 , that is, within the tolerance range, the inner diameter of the embedding hole 173 is consistent with the outer diameter of the power generation body 21 , so that the power generation body 21 can be embedded in the embedding hole 173 Inside.
  • the chassis plate 17 no longer blocks the first end face 31 and the second end face 32 of the power generation body 21.
  • the first end face 31 of the power generation body 21 and the second end surface 32 can be fully exposed to the environment outside the accommodation space 15 and the chassis 1 respectively, increasing the temperature difference between the first end surface 31 and the second end surface 32 of the power generation body 21, thereby improving the power generation efficiency of the power generation body 21. This improves the efficiency of waste heat recovery.
  • the power generation body 21 is an integral structure. It should be noted that the integrated structure of the generator 21 is relative to the side of the chassis frame 16 , that is, one generator 13 is provided on the side of the chassis frame 16 . When the generator 21 is directly fixed to the chassis frame 16, the size of the generator 13 can occupy the entire side of the chassis frame 16 according to the size of the chassis frame 16. When the generator 21 is attached to the chassis plate 17 or embedded in the embedding hole 173 , the size of the generator 13 is slightly smaller than the chassis plate 17 , that is, the generator 21 is installed on the chassis frame 16 with the help of the chassis plate 17 and is not directly fixed. On the chassis frame 16, a power generator 21 is provided on each chassis plate 17.
  • the integrated structure of the power generation body 21 can reduce the installation difficulty of the power generation body 21 and the chassis and improve the installation efficiency.
  • the power generator 21 includes a plurality of sub-power generators 33 , which are spaced apart or arranged adjacently and side by side on the chassis frame 16 , and the plurality of sub-power generators 33 are connected in parallel or in series through conductors.
  • the plurality of electronic power generators 33 are arranged at intervals means that there is a gap between two adjacent electronic power generators 33 , and the width of the gap can be set as needed.
  • the arrangement of multiple sub-generators 33 adjacent to each other means that there is no gap between two adjacent sub-generators 33 , or the gap is only required for assembly and is not designed to have a certain width.
  • the power generation body 21 includes two sub-power generation bodies 33 , and the two sub-power generation bodies 33 are arranged adjacent to each other.
  • the multiple sub-generators 33 are directly fixed to the chassis frame 16, the multiple sub-generators 33 are arranged side by side on the chassis frame 16, and the gap between two adjacent sub-generators 33 is minimized to avoid accommodation space 15
  • the internal heat is discharged from the gap between two adjacent electron-generating bodies 33, reducing the efficiency of waste heat recovery.
  • the plurality of electronic power generators 33 can be arranged at intervals or side by side.
  • multiple blind holes 171 are provided at intervals on the chassis board 17
  • multiple sub-generators 33 are arranged one-to-one in the multiple blind holes 171
  • one blind hole 171 is provided on the chassis board 17 to connect multiple sub-generators 33 .
  • the bodies 33 are arranged side by side in the blind hole 171 .
  • the multiple sub-generators 33 are fixed in the embedding holes 173 of the chassis plate 17, the multiple sub-generators 33 are arranged side by side on the chassis frame 16, and the gap between the two adjacent sub-generators 33 is minimized to avoid The heat inside the accommodating space 15 is discharged from the gap between the two adjacent electron-generating bodies 33 , thereby reducing the efficiency of waste heat recovery.
  • the number of the embedding holes 173 is consistent with the number of the electronic power generators 33 , and each electronic power generator 33 is correspondingly embedded in one embedding hole 173 .
  • the embedding hole 173 can be used to quickly fix the electronic generator 33 to the chassis board 17 , thereby improving assembly efficiency.
  • the power generating bodies 21 can be arranged on each side of the chassis 1 in the same manner, or the power generating bodies 21 can be arranged in different ways.
  • the power generator 21 is directly fixed on the chassis frame 16 .
  • the generator 21 is directly fixed on the chassis frame 16, and on the top and front sides of the chassis 1, the generator 21 is fixed on the chassis plate 17.
  • the chassis 1 can be a one-piece structure or other suitable structure, which is not specifically limited here.
  • the integrated structure of the chassis 1 can simplify the assembly procedure and improve the assembly efficiency of the super-computing power equipment, thereby reducing the production cost of the super-computing power equipment.
  • the current value output by the power generator 21 can be increased.
  • the voltage value output by the power generator can be increased.
  • the power generation body 21 includes three sub-power generation bodies 33.
  • Each sub-power generation body 33 includes a first end face 31 and a second end face 22 arranged oppositely.
  • the first end face 31 is provided with a first lead terminal 41
  • the second end face 32 is provided with a third lead terminal 41.
  • the two lead terminals 42 when there is a temperature difference between the first end surface 41 and the second end surface 32 of the electronic power generating body 33, the electronic power generating body 33 can generate electric energy through the first lead terminal 41 and the second lead terminal 42. Wires carry electrical energy out.
  • the power generating body is configured as a plurality of sub-power generating bodies, and the plurality of sub-power generating bodies are spaced apart or arranged side by side in the chassis.
  • the sub-power generating bodies can be flexibly arranged according to the size of the chassis, effectively utilizing the space of the chassis, and improving the efficiency of the chassis. The efficiency of the power generation body in recovering heat.
  • FIG. 6 is a schematic diagram of the parallel connection of some sub-generators of the power generator in the embodiment of the present invention.
  • the power generator 21 includes three sub-power generators 33a, 33b, and 33c. Among them, the first lead terminal 41 of the sub-power generator 33a, the first lead terminal 41 of the sub-power generator 33b, and the first lead terminal 41 of the sub-power generator 33c.
  • the lead terminal 41 is electrically connected to the second lead terminal 42 of the electronic power generator 33a, the second lead terminal 42 of the electronic power generator 33b, and the second lead terminal 42 of the electronic power generator 33c, thereby connecting the three electronic power generators 33a, 33b, 33c is connected in parallel and outputs the electric energy generated by the three sub-generators 33a, 33b and 33c.
  • FIG. 7 is a schematic diagram of the series connection of some sub-power generating bodies of the power generating body in the embodiment of the present invention.
  • the power generator 21 includes three sub-power generators 33a, 33b, and 33c.
  • the second lead terminal 42 of the sub-power generator 33a is electrically connected to the first lead terminal 41 of the sub-power generator 33b.
  • the sub-power generator 33b The second lead terminal 42 of the electronic power generator 33c is electrically connected to the first lead terminal 41 of the electronic power generator 33c.
  • the first lead terminal 41 of the electronic power generator 33a and the second lead terminal 42 of the electronic power generator 33c connect the three electronic power generators 33a, 33b, 33c.
  • the power generator 21 shown in FIGS. 6 and 7 only shows three sub-power generators 33 , this does not represent a limitation on the number of sub-power generators 33 .
  • the embodiments of the present invention limit the number of sub-power generators 33 .
  • the quantity is not limited.
  • the material of the power generating body 21 is a semiconductor material.
  • the semiconductor material includes bismuth telluride or other semiconductor materials.
  • bismuth telluride is used as a power generation material, and the good electrical conductivity of bismuth telluride can be used to improve the power generation efficiency and operation stability of the super computing power equipment.
  • the lead terminal 4 is made of conductive metal, such as copper. Copper conducts electricity well and is low cost.
  • the leads connected to the lead terminals 4 may be Teflon leads or other high-temperature resistant leads.
  • the surfaces of the power generation body 21 and the lead terminal 4 are provided with a plating layer (not shown in the figure).
  • the plating layer can improve the welding performance of the power generation body 21 .
  • the plating layer is made of nickel or tin.
  • the material of the power generating body 21 is bismuth telluride and the solder is a tin-bismuth alloy
  • the bismuth telluride will melt into the solder, and copper impurities will easily diffuse into the bismuth telluride at a lower temperature, reducing the thermoelectric performance of the bismuth telluride.
  • the plating layer of nickel or tin material can act as a barrier to prevent copper impurities from diffusing into bismuth telluride and avoid the degradation of the thermoelectric properties of bismuth telluride. Placing a nickel or tin plating layer on the surface of the lead terminal 4 is also beneficial to improving the welding performance of the lead terminal 4 .
  • the thickness of the plating layer ranges from 0.1 to 0.3 mm.
  • the super-computing power equipment provided by the embodiment of the present invention utilizes the good conductivity of nickel or tin to improve the electrical connection performance of the power generation body and the lead terminals.
  • an encapsulation layer 33 is provided on the outer surface of the power generation body 21 .
  • the encapsulation layer 33 covers the power generation body 21 .
  • One end of the lead terminal 4 is provided on the power generation body 21 and the other end is provided on the packaging layer.
  • the outer side of 33, that is, one end of the lead terminal 4 is exposed from the packaging layer 33 to facilitate electrical connection.
  • the material of the encapsulation layer 33 is ceramic or other suitable materials.
  • ceramic not only has low material cost, but also has mature technology and superior performance.
  • the first end face 31 of the power generation body 21 is a hot end face, and the second end face 32 is a cold end face. Furthermore, the first end face 31 of the power generation body 21 is disposed toward the accommodating space, and the second end face 32 is disposed away from the accommodating space 15 .
  • the hash board 11 Since the hash board 11 is arranged in the accommodation space 1, and the hash board 11 dissipates a large amount of heat during operation, resulting in a higher temperature in the accommodation space 1, therefore, the temperature inside the chassis 1 is higher than the temperature outside, which will
  • the hot end surface of the power generator 21 faces the inside of the chassis 1 and the cold end surface faces the outside of the chassis 1, which helps to improve the power generation efficiency of the power generator 21.
  • the hot end surface of the power generation body 21 is arranged toward the accommodation space, and the cold end face is arranged away from the accommodation space, which helps to improve the power generation efficiency of the power generation body 21 .
  • the lead terminals 4 provided on the first end face 31 and the second end face 32 are electrically connected to electrical devices in the supercomputing device to provide electrical signals to the electrical devices.
  • the electrical device can be a computing board, or other devices such as fans and controllers.
  • the lead terminals are electrically connected to the electrical components in the super-computing power equipment.
  • the electrical components in the super-computing power equipment directly utilize the electric energy generated by the power generator to improve the performance of the super-computing power equipment. Energy efficiency ratio.
  • the lead terminal 4 of the power generation body 1 is electrically connected to the device in the computing power equipment, and the electric energy generated by the power generation body 1 is directly supplied to the super computing power equipment, thereby improving the energy efficiency ratio of the super computing power equipment.
  • the super computing device includes, in addition to the chassis 1, the computing board 11, and the power generation body 21, an energy storage module 5.
  • the two input terminals of the energy storage module 5 are respectively connected to
  • the first lead terminal 41 provided on the first end surface 31 and the second lead terminal 42 provided on the second end surface 32 are electrically connected and used to store the electric energy output by the power generating body 21 .
  • the energy storage module 5 can be a battery or other module capable of storing electrical energy.
  • the form of the energy storage module 5 is not limited in the present invention.
  • the energy storage module 5 can also be connected to other electrical equipment to provide electric energy to other electrical equipment.
  • other power-consuming equipment may be power-consuming equipment in super-computing power equipment, or may be power-consuming equipment other than super-computing power equipment.
  • the super computing power device further includes a voltage regulator 47.
  • the two input terminals of the voltage regulator 47 are electrically connected to lead terminals provided on the first end surface 31 and the second end surface 32 respectively.
  • the voltage regulator 47 The two output terminals are electrically connected to the two input terminals of the energy storage module 5, that is, a voltage stabilizer 47 is provided between the output terminal of the power generation body 21 and the energy storage module 5, and the electric energy is stored in the storage module through the voltage stabilizer 47. Capable module 5.
  • the first end surface 31 of the power generation body 21 is electrically connected to the first input terminal of the voltage regulator 47 through the first lead terminal 41
  • the second end surface 32 of the power generation body 21 is connected to the voltage regulator through the second lead terminal 42 .
  • the second input terminal of the voltage regulator 47 is electrically connected
  • the first output terminal of the voltage regulator 47 is electrically connected to the first input terminal of the energy storage module 5
  • the second output terminal of the voltage regulator 47 is electrically connected to the second input terminal of the energy storage module 5. terminal electrical connection.
  • the super computing device and voltage regulator provided by the embodiment of the present invention can improve the stability of the power input to the energy storage module and extend the service life of the energy storage module.
  • the super computing power device further includes a transformer 48.
  • the two input terminals of the voltage regulator 47 are electrically connected to the lead terminals provided on the first end face 31 and the second end face 32 respectively.
  • the two input terminals of the voltage regulator 47 The two output terminals are respectively electrically connected to the two input terminals of the transformer 48 , and the two output terminals of the transformer 48 are respectively electrically connected to the two input terminals of the energy storage module 5 , that is, the output terminal of the power generation body 21 is electrically connected to the energy storage module 5
  • a voltage regulator 47 and a transformer 48 are arranged in sequence, and the electric energy is stored in the energy storage module 5 through the voltage regulator 47 and the transformer 48 .
  • the first end surface 31 of the power generation body 21 is electrically connected to the first input terminal of the voltage regulator 47 through the first lead terminal 41 , and the second end surface 32 of the power generation body 21 is connected to the voltage regulator through the second lead terminal 42 .
  • the second input terminal of the voltage regulator 47 is electrically connected, the first output terminal of the voltage regulator 47 is electrically connected to the first input terminal of the transformer 48, and the second output terminal of the voltage regulator 47 is electrically connected to the second input terminal of the transformer 48;
  • the first output end of the transformer 48 is electrically connected to the first input end of the energy storage module 5 , and the second output end of the transformer 48 is electrically connected to the second input end of the energy storage module 5 .
  • the super-computing power equipment provided by the embodiment of the present invention has a transformer between the voltage regulator and the energy storage module.
  • the transformer can be used to improve charging efficiency and store the electric energy generated by the power generator in a timely manner.
  • the super computing device also includes one or more of the following: a heat sink 6, a control board 7, a fan 8, and a power supply 9.
  • the heat sink 6 is attached to the hash board 11 for dissipating the heat generated by the hash board.
  • the heat sink 6 can be made of materials with high thermal conductivity, such as metal aluminum.
  • the heat sink 6 includes a heat dissipation body and a plurality of fins. The plurality of fins are spaced on the surface of the heat dissipation body.
  • the heat dissipation body is attached to the hashrate board 11, and a thermally conductive adhesive is provided between the heat dissipation body and the hashrate board 6. Improve the heat dissipation efficiency of heat sink 6.
  • the control board 7 is arranged outside the chassis 1 and is used to control the hash board 1 .
  • the control board 7 is connected to the computing power board 11 through cables, and the control board 7 and the computing power board 11 realize information exchange through cables.
  • the control panel 7 can be disposed on the top side of the chassis 1, or can be disposed on the left or right side according to circumstances.
  • control board 7 is connected to the fan 8 through a signal line and is used to control the switch and output power of the fan 8 .
  • the control board 7 can increase the power of the fan 8, thereby speeding up the heat dissipation efficiency.
  • the control board 7 can also be connected through a cable power supply 9, which is used to obtain the power required for the operation of the control board 7 and to control the power supply 9.
  • the fan 8 is arranged on the outside of the chassis and is used to discharge heat from the accommodation space.
  • the fan 8 is used to drive the flow of air in the accommodation space 15 , thereby speeding up the discharge of heat in the accommodation space 1 .
  • the fan 8 can be started to reduce the temperature in the accommodation space 1 .
  • the output power of the fan 8 can be increased to speed up the reduction of the temperature in the accommodation space 1 .
  • the fan 8 is disposed on the side of the chassis 1 , for example, the fan 8 is disposed on the rear side of the chassis 1 , or the fan 8 is disposed on other sides of the chassis 1 according to design requirements.
  • the relative position of the fan 8 and the chassis 1 is not limited to the above description, and can also be arranged in other suitable ways.
  • the fan 8 includes a rotating shaft, blades and a driving device.
  • the blades are fixed to one end of the rotating shaft.
  • the output end of the driving device is connected to the other end of the rotating shaft.
  • the rotating shaft transmits the driving force of the driving device to the blades.
  • the rotation of the blades can Provide power for the flow of air in the accommodation space 15 .
  • the number of blades can be two blades, three blades or other numbers.
  • the utility model does not limit the number of blades.
  • the plurality of blades are evenly distributed along the circumferential direction of the rotating shaft, so that the air in the accommodation space 15 obtains uniform power.
  • the power supply 9 is arranged on the outside of the chassis and is used to provide the power required for the operation of the super computing power equipment and ensure the normal operation of each electronic device in the super computing power equipment.
  • electronic devices can also include memory and hard disks, etc.
  • the hard disk is used to store and install applications. It should be noted that the embodiments of the present invention do not limit the power and model of the power supply.
  • the super-computing power equipment provided by the embodiments of the present invention can increase the heat dissipation efficiency of the super-computing power equipment through heat sinks and fans, and prevent the temperature of the accommodation space from being too high and affecting the performance of the super-computing power equipment.
  • the super-computing power device also includes a network card, and the network card is provided with a standard network port for realizing information exchange between super-computing power devices and between the super-computing power device and other network devices.
  • the super computing device provided by the embodiment of the present invention has the computing board set in the accommodation space of the chassis, and the power generation body is placed on the chassis.
  • the hashing board generates heat during operation, so that the opposite first end surface of the power generation body and the third The two end faces generate electric energy, and output the electric energy through the lead terminals provided on the first end face and the second end face, and recycle the electric energy, thereby improving the energy efficiency ratio of the super computing power equipment, while reducing energy consumption and pollution.
  • Embodiments of the present invention also provide a server, including at least one super-computing power device.
  • the super-computing power device adopts the super-computing power device provided by the embodiment of the present utility model, and uses a power generator arranged in the chassis to run the computing power board.
  • the discharged heat is recycled and utilized to reduce energy consumption, reduce pollution, and at the same time improve the energy efficiency ratio of super computing power equipment.
  • FIG 25 is an application scenario diagram of the thermoelectric conversion device applied to electronic equipment according to the embodiment of the present application.
  • the air inlet fan 81 provides cooling medium for the electronic equipment 42.
  • the cooling medium can absorb the waste heat released by the portable electronic equipment 42.
  • the air outlet fan 43 is used to gather the cooling medium that has absorbed the waste heat.
  • the thermoelectric conversion device 44 uses cooling The waste heat in the medium generates electrical energy, and the cooling medium after recovering the waste heat enters the atmosphere.
  • the energy storage device 5 is used to store the electrical energy generated by the thermoelectric conversion device 44.
  • the lighting equipment 46 and the energy storage device 5, the lighting equipment 46 can use the energy storage device 5 to store of electrical energy.
  • the electrical energy stored in the energy storage device 5 can also be used to drive the air inlet fan 81 and/or the air outlet fan 43 to operate.
  • the electronic device can also be replaced by an electronic device group, that is, an electronic device group composed of multiple electronic devices is used to replace a single electronic device.
  • Embodiments of the present application also provide a waste heat reuse system, including: electronic devices, thermoelectric conversion devices and electrical devices.
  • the electronic devices are used to implement corresponding functions, and the thermoelectric conversion devices are used to use waste heat generated when the electronic devices perform corresponding functions. Converted into electrical energy.
  • the lead terminals of the thermoelectric conversion device are electrically connected to the electrical device, and the thermoelectric conversion device provides electrical signals to the electrical device through the lead terminals.
  • the electronic device and the electrical device belong to two independent devices.
  • electronic devices are components in super-computing equipment, such as computing boards, control boards, network cards, and power supplies.
  • Electrical devices are devices other than super-computing equipment. Thermoelectric conversion devices recycle waste heat generated by super-computing equipment. And converted into electrical energy, and then provided to power-consuming devices other than super-computing equipment.
  • Example embodiments have been claimed herein, and although specific terms are employed, they are used and should be interpreted in a general illustrative sense only and not for purpose of limitation. In some instances, it will be apparent to those skilled in the art that features, characteristics and/or elements described in connection with a particular embodiment may be used alone, or may be used in conjunction with other embodiments, unless expressly stated otherwise. Features and/or components are used in combination. Accordingly, it will be understood by those skilled in the art that various changes in form and details may be made without departing from the scope of the present application as set forth in the appended claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromechanical Clocks (AREA)

Abstract

本申请提供了一种热电转换装置、电子设备及余热再利用系统,该热电转换装置包括:发电体包括相对的第一端面和第二端面;引线端子,发电体的第二端面和第一端面均设置有引线端子;在发电体的第二端面和第一端面存在温差的情况下,发电体内产生电势,并通过设置在发电体的第二端面和第一端面的引线端子输出电能;支撑体,用于支持和固定发电体,支撑体为空心柱状结构。根据本申请的实施例能够将余热转换为电能,降低能耗,减少污染。

Description

热电转换装置、电子设备及余热再利用系统 技术领域
本申请涉及能源技术领域,特别涉及一种热电转换装置、电子设备及余热再利用系统。
背景技术
电子设备内设置有大量的大规模集成电路,运行时会消耗大量的电力,同时会释放大量的余热(或废热),增加了能耗,降低电子设备的能效比,如果能够充分利用余热的话将变相提高电子设备的能效比。因此,如何回收利用电子设备运行中产生的余热成为了亟待解决的问题。
发明内容
本申请提供一种热电转换装置、电子设备及余热再利用系统。
第一方面,本申请提供了一种热电转换装置,包括:
发电体,包括相对的第一端面和第二端面;
引线端子,所述发电体的第一端面和第二端面均设置有所述引线端子;
在所述发电体的第一端面和第二端面存在温差的情况下,所述发电体通过设置在所述发电体的第一端面和第二端面的引线端子输出电能;
支撑体,用于支撑和固定所述发电体。
其中,所述发电体呈空心柱状结构。
其中,所述支撑体包括第一空心柱状结构,所述发电体位于所述第一空心柱状结构的表面。
其中,所述支撑体包括第一空心柱状结构和第二空心柱状结构,所述第一空心柱状结构和第二空心柱状结构为同轴设置,所述第一空心柱状结构和第二空心柱状结构的半径不同,所述发电体位于所述第一空心柱状结构与所述第二空心柱状结构之间。
其中,所述支撑体设有贯穿其壁厚的多个通孔。
本申请提供的热电转换装置,在所述机箱板上设置有贯穿其壁厚的多个通孔,有助于发电体的第二端面与箱体外的环境温度接近,增加发电体的第一端面和第二端面的温差,从而提高发电体的发电效率。
其中,在所述机箱板设置有贯穿其厚度的嵌置孔,所述发电体嵌置于所述嵌置孔内。
本申请实施例提供的热电转换装置,将发电体嵌置于嵌置孔,有利于固定发电体,同时使发电体的第一端面与第二端面更接近容纳空间的温度和机箱外侧的温度,从而提高发电体的发电效率。
其中,所述支撑体为机箱,所述机箱内形成有容纳空间;所述发电体设置于所述机箱的表面。
本申请实施例提供的热电转换装置,利用设置在机箱的容纳空间的发电体,可以将算力板产生的热量回收,从而提高超算力设备的能效比,减少能源浪费和环境污染。
其中,所述机箱包括多个侧面,所述机箱的至少一个侧面设置所述发电体。
本申请实施例提供的热电转换装置,将发电体设置在机箱的至少一个侧面,可以增加发电体设计的灵活性,降低超算力设备的成本。
其中,所述发电体贴合于所述机箱的内侧面或外侧面。
本申请实施例提供的热电转换装置,将发电体贴合于机箱的内侧面或外侧面,使发电体贴近容纳空间,提高发电体回收热量的效率。
其中,所述机箱为一体成型结构。
本申请实施例提供的热电转换装置,一体结构的机箱可以简化装配的程序,提高超算力设备的装配效率,从而降低超算力设备的生产成本。
本申请实施例提供的热电转换装置,一体结构的发电体可以降低发电体与机箱的安装难度,提高安装效率。
其中,所述发电体的第一端面为热端面,所述第二端面为冷端面,所述发电体的第一端面朝向所述容纳空间设置,所述第二端面背离所述容纳空间设置。
本申请实施例提供的热电转换装置,将发电体的热端面朝向容纳空间,冷端面背向容纳空间,有助于提高发电体的发电效率。
其中,还包括以下一项或多项:
散热片,其贴合于发热体,用于将所述发热体产生的热量排出;
控制板,其设置于所述机箱的外侧,用于控制所述发热体;
电源,其设置在所述机箱的外侧。
其中,设置于所述第一端面和所述第二端面的引线端子与用电器件电连接,用以向所述用电器件提供电信号。
本申请实施例提供的热电转换装置,引线端子与超算力设备中的用电器件电连接,超算力设备中的用电器件直接利用发电体产生的电能,提高超算力设备的能效比。
其中,所述发电体为空心柱状的一体结构。
其中,所述发电体包括多个子发电体,所述多个子发电体沿所述支撑体的周向间隔设置,且所述多个子发电体通过导体并联或串联。
本申请实施例提供的热电转换装置,将发电体设置为多个子发电体,而且多个子发电体间隔或相邻并排设置于所述机箱,可以根据机箱的尺寸灵活设置子发电体,有效地利用机箱的空间,提高发电体回收热量的效率。
其中,所述发电体的材料为半导体材料,所述半导体材料包括碲化铋;
所述引线端子的材料为导电金属。
本申请实施例提供的热电转换装置,碲化铋作为发电材料,利用碲化铋所具有的良好的导电性,可以提高超算力设备的发电效率及运行的稳定性。
其中,所述发电体和所述引线端子的表面设置有镀层,所述镀层的材料为镍或锡。
本申请实施例提供的热电转换装置,利用镍或锡良好的导电性,可以提高发电体和引线端子的电连接性能。
其中,所述发电体的外表面设置有包覆所述发电体的封装层,所述引线端子的一端设于所述封装层的外侧,所述封装层的材料为陶瓷。
本申请实施例提供的热电转换装置,陶瓷作为封装层的材料,不仅材料成本低,而且工艺成熟,性能优越。
其中,所述装置还包括储能模块,所述储能模块的两个输入端分别与设置在所述第二端面和所述第一端面的引线端子电连接,用于存储所述发电体输出的电能。
本申请实施例提供的热电转换装置,利用储能模块存储电能,提高电能使用的灵活性。
其中,所述装置还包括稳压器,所述稳压器的两个输入端分别与设置在所述第一端面和所述第二端面上的引线端子电连接,所述稳压器的两个输出端与所述储能模块的两个输入端对应电连接。
本申请实施例提供的热电转换装置,稳压器可以提高输入储能模块电量的稳定性,提高储能模块的使用寿命。
其中,所述装置还包括变压器,所述稳压器的两个输入端分别与设置在所述第一端面和所述第二端面上的引线端子电连接,所述稳压器的两个输出 端分别与所述变压器的两个输入端电连接,所述变压器的两个输出端分别与所述储能模块的两个输入端对应电连接。
本申请实施例提供的热电转换装置,在稳压器和储能模块之间设置变压器,利用变压器可以提高充电效率,将发电体产生的电能及时存储。
其中,所述支撑体包括风扇的外壳。
本申请实施例提供的热电转换装置,通过散热片和风扇可以增加超算力设备的散热效率,避免容纳空间的温度过高而影响超算力设备的性能。
其中,所述装置还包括介质驱动模块,所述介质驱动模块包括转轴、叶片和驱动装置,所述转轴沿所述支撑体的中心轴方向设置,所述叶片固定于所述转轴的一端,所述驱动装置的输出端与所述转轴的另一端连接,所述转轴将所述驱动装置的驱动力传递给所述叶片,所述叶片用于为传热介质流动提供动力。
其中,所述发电体靠近所述叶片的一侧为第一端面,所述发电体远离所述叶片的一侧为第二端面。
根据本申请的第二方面,提供了一种子设备,包括电子器件和热电转换装置,所述热电转换装置用于将所述电子器件产生的热量回收利用,所述热电转换装置为本申请实施例提供的所述的热电转换装置。
其中,所述热电转换装置的引线端子用于向所述电子器件中的器件提供电信号。
其中,所述电子器件为超算力设备。
根据本申请的第三方面,提供了一种余热再利用系统,包括:电子器件、热电转换装置以及用电装置,所述热电转换装置的引线端子与所述用电装置电连接,用于向所述用电装置提供电信号。
本申请所提供的实施例,将发电体固定于支撑体,且发电体的第二端面和第一端面均设置有引线端子,在第二端面和第一端面存在温差的情况下,发电体内产生电势,通过设置在发电体的第二端面的引线端子和第一端面的引线端子输出电能,从而将余热转换为电能,降低能耗,减少污染;使温度较高的介质在支撑体的内侧流动,可以提高支撑体内侧和外侧的温差,可以提高余热利用效率,同时提高电子设备的能效比。
应当理解,本部分所描述的内容并非旨在标识本申请的实施例的关键或重要特征,也不用于限制本申请的范围。本申请的其它特征将通过以下的说明书而变得容易理解。
附图说明
附图用来提供对本申请的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请,并不构成对本申请的限制。通过参考附图对详细示例实施例进行描述,以上和其他特征和优点对本领域技术人员将变得更加显而易见。
图1为本申请实施例提供的一种超算力设备的结构示意图;
图2为本申请实施例提供的一种发电体的侧视图;
图3为本申请实施例提供的一种机箱和发电体的结构示意图;
图4为本申请实施例提供的另一种机箱和发电体的结构示意图;
图5为本申请实施例提供的又一种机箱和发电体的结构示意图;
图6为本申请实施例提供的再一种机箱和发电体的结构示意图;
图7为本申请实施例提供的另一种机箱和发电体的结构示意图;
图8为本申请实施例中发电体的部分子发电体并联的示意图;
图9为本申请实施例中发电体的部分子发电体串联的示意图;
图10为本申请实施例提供的另一种发电体的结构示意图;
图11为本申请实施例提供的另一种超算力设备的结构示意图;
图12为本申请实施例提供的又一种超算力设备的结构示意图;
图13为本申请实施例提供的再一种超算力设备的结构示意图;
图14为本实用新型实施例提供的一种超算力设备的结构示意图;
图15为本实用新型实施例提供的一种发电体的侧视图;
图16为本实用新型实施例提供的一种机箱和发电体的结构示意图;
图17为本实用新型实施例提供的另一种机箱和发电体的结构示意图;
图18为本实用新型实施例提供的又一种机箱和发电体的结构示意图;
图19为本实用新型实施例提供的再一种机箱和发电体的结构示意图;
图20为本实用新型实施例提供的另一种机箱和发电体的结构示意图;
图21为本实用新型实施例提供的另一种超算力设备的结构示意图;
图22为本实用新型实施例提供的又一种超算力设备的结构示意图;
图23为本实用新型实施例提供的再一种超算力设备的结构示意图;
图24为本实用新型实施例提供的一种超算力设备的结构示意图;
图25为本申请实施例提供的一种超算力设备的结构示意图。
在附图中:
1-机箱,10-电子设备;11-算力板;12-网卡;14-介质驱动模块;15-容纳空间,16-机箱架,17-机箱板,171-盲孔,172-通孔,173-嵌置孔,5-储能 模块;6-散热片,7-控制板;8-风扇;9-电源;
21-发电体;31-第一端面;32-第二端面;33-子发电体;33a、33b、33c-子发电体;214-豁口;4-引线端子;41-第一引线端子;42-第二引线端子;23-支撑体;23a-第一空心柱状结构,23b-第二空心柱状结构,231-支撑体外壁;232-支撑体内壁;233-容纳空间;234-通孔;235-支撑体本体;236-嵌置空间;33-封装层;26-介质驱动模块;261-转轴;262-叶片;外壳-27;
81-进气风扇;43-出气风扇;44-热电转换装置;46-照明设备;47-稳压器,48-变压器。
具体实施方式
为使本领域的技术人员更好地理解本申请的技术方案,以下结合附图对本申请的示范性实施例做出说明,其中包括本申请实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本申请的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。
在不冲突的情况下,本申请各实施例及实施例中的各特征可相互组合。
如本文所使用的,术语“和/或”包括一个或多个相关列举条目的任何和所有组合。
本文所使用的术语仅用于描述特定实施例,且不意欲限制本申请。如本文所使用的,单数形式“一个”和“该”也意欲包括复数形式,除非上下文另外清楚指出。还将理解的是,当本说明书中使用术语“包括”和/或“由……制成”时,指定存在所述特征、整体、步骤、操作、元件和/或组件,但不排除存在或添加一个或多个其它特征、整体、步骤、操作、元件、组件和/或其群组。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
除非另外限定,否则本文所用的所有术语(包括技术和科学术语)的含义与本领域普通技术人员通常理解的含义相同。还将理解,诸如那些在常用字典中限定的那些术语应当被解释为具有与其在相关技术以及本申请的背景下的含义一致的含义,且将不解释为具有理想化或过度形式上的含义,除非本文明确如此限定。
图1为本申请实施例中采用的电子设备的结构示意图。如图1所示,电子设备10包括算力板11、网卡12、电源9和介质驱动模块14,电源9的 输出端分别与算力板11、网卡12和介质驱动模块14电连接,用于提供电能,以供算力板11、网卡12和介质驱动模块14正常运行。算力板11用于运行特定算法,以对待处理数据进行计算,网卡12用于与外部其它电子设备进行网络连接,算力板11与网卡12信号连接,算力板11可以通过网卡12获得待处理数据,也可以通过网卡12将处理结果传送至其它电子设备。介质驱动模块14用于将算力板11、网卡12和电源9运行过程中产生的热量排出,使电子设备在理想的温度范围内运行。
算力板11是电子设备10的主板,其包括基板、芯片、散热片等电子器件。算力板11的算力是衡量电子设备10的计算能力、计算性能的指标,可以利用每秒哈希(hash)算法的运算次数来表示。芯片可以是中央处理器(Central Processing Unit,简称CPU)、图形处理单元(Graphic Processing Unit,简称GPU)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)芯片。
电子设备内的算力板11、网卡12、电源9等电子器件在运行时耗电量较大,产生的余热较多,导致电子设备能效比较低,同时浪费了能源,污染了环境。
本申请提供一种热电转换装置,可以将电子器件产生的余热回收,从而提高电子设备的能效比,减少能源浪费和环境污染。
图2为本申请实施例提供的一种热电转换装置的结构示意图。如图2所示,热电转换装置包括发电体21、引线端子4和支撑体23,支撑体23用于支持和固定发电体21,引线端子4与发电体21电连接。
在一些实施例中,发电体21包括相对的第一端面31和第二端面32,在发电体21的第一端面31和第二端面32存在温差的情况下,发电体21内会产生电势,即产生电能。
在一些实施例中,发电体21呈空心柱状结构,空心柱状结构的发电体21内可以设置发热体,使发电体21设置在发热体的外围,可以提高余热回收利用率。
在本实施例中,第一端面31可以为热端面,第二端面32可以为冷端面;或者,第一端面31可以为冷端面,第二端面32可以为热端面。
在一些实施例中,在发电体21的第一端面31和第二端面32分别设置一引线端子4,用于将发电体21内产生的电能输出。
示例性,引线端子4包括第一引线端子41和第二引线端子42,第一引线端子41设置在发电体21的第一端面31,第二引线端子42设置在发电体 21的第二端面32,在发电体21内产生电势时,第一引线端子41和第二引线端子42可以将电能输出。将第一引线端子41和第二引线端子42与用电设备连接时,可以循环利用电能。将第一引线端子41和第二引线端子42与储能模块连接时,可以将电能储存。
在一些实施例中,支撑体23为空心柱状结构。
在一些实施例中,支撑体23包括第一空心柱状结构23a和第二空心柱状结构23b,第一空心柱状结构23a和第二空心柱状结构23b为同轴设置,第一空心柱状结构23a和第二空心柱状结构23b的半径不同,在第一空心柱状结构23a和第二空心柱状结构23b之间形成容纳腔,发电体21位于第一空心柱状结构与第二空心柱状结构之间的容纳腔内,即第一空心柱状结构23a、发电体21和第二空心柱状结构23b由内向外依次嵌套。
在一些实施例中,支撑体23包括第一空心柱状结构,发电体21设置于第一空心柱状结构的表面。在本申请实施例中,发电体21可以设置在支撑体23的内表面,也可以设置在支撑体23的外表面。
在一些实施例中,支撑体23设有贯穿其壁厚的多个通孔,通孔有利于增加发电体21的第一端面31和第二端面32之间的温差,从而提高热回收效率。
如支撑体23为空心圆柱结构。支撑体23在垂直于轴线的截面上的投影形状也可以为方形环、菱形环或其它形状的环形,本申请对支撑体23在垂直于轴线的截面上的投影形状不作限定。介质可以沿着支撑体23的轴向在支撑体23的内侧和外侧流动,该介质可以是空气或者液体,该液体可以为冷却液。
需要说明的是,本实施例支撑体23为空心柱状结构,支撑体23可将空间分为内外两个空间,即处于封闭或半封闭的空间和开放空间。支撑体23的内侧为支撑体23位于封闭或半封闭空间一侧,支撑体23的外侧为支撑体23位于开放空间一侧。
温度不同的介质分别在支撑体23的内侧和外侧流动。如,温度较高的介质在支撑体23的内侧流动,温度较低的介质在支撑体23的外侧流动。或者,温度较低的介质在支撑体23的内侧流动,温度较高的介质在支撑体23的外侧流动。需要说明的是,在支撑体23的内侧和外侧流动的介质可以是两种类型的介质,也可以是同种类型的介质,本申请对此不作限定。例如,支撑体23的内侧流动的介质为空气,在支撑体23的外侧流动的介质为水。
在一些实施例中,发电体21为空心柱状的一体结构。如,发电体21 为空心圆柱状结构,两个引线端子4分别设置于空心圆状的发电体21的第一端面31(发电体21的内壁)和第二端面32(发电体21的外壁)。一体结构的发电体21便于组装,简化热电转换装置的装配难度,提高装配效率。
在一些实施例中,如图3所示,为了便于加工发电体21及方便引线端子4与引线连接,在发电体21的圆周向上设置有豁口214,即发电体21不是封闭的空心柱状结构。示例地,发电体21的形状为空心圆柱时,豁口214使得发电体21在垂直于轴线的投影形状为“C”形。两个引线端子4均设置于豁口214位置,但分别设置于发电体21的内壁和外壁,与设置于内壁的引线端子4连接的引线可以通过豁口214延伸至发电体21的外侧。
如图2和图4所示,支撑体23包括支撑体外壁231和支撑体内壁232,支撑体外壁231和支撑体内壁232之间形成容纳空间15,发电体21嵌置于支撑体23的容纳空间15内。由于支撑体外壁231和支撑体内壁232将发电体21与介质隔离,发电体21的第一端面31和第二端面32与介质的温度存在差异,影响发电体21的发电效率。为此,在支撑体外壁231和支撑体内壁232上设置有多个通孔234,通过通孔234可以使发电体21的第一端面31和第二端面32的温度分别与支撑体23内侧和外侧的介质温度尽可能一致。
在一些实施例中,发电体21包括多个子发电体33,多个子发电体33沿支撑体23的周向间隔设置,且多个子发电体33通过导线并联或串联。在多个子发电体33以并联方式电连接时,可以提高发电体输出的电流值。在多个子发电体33以串联方式电连接时,可以提高发电体输出的电压值。
如图5所示,发电体21包括四个子发电体33,每个子发电体33包括相对设置的第一端面31和第二端面32,在第一端面31设置有第一引线端子41,在第二端面32设置有第二引线端子42,当子发电体33的第一端面31和第二端面32存在温差的情况下,子发电体33内能产生电能,通过与第一引线端子41和第二引线端子42连接的引线可以将电能输出。
图6为发电体中部分子发电体并联的示意图。如图6所示,发电体21包括三个子发电体33a、33b、33c,其中,子发电体33a的第一引线端子41、子发电体33b的第一引线端子41和子发电体33c的第一引线端子41电连接,子发电体33a的第二引线端子42、子发电体33b的第二引线端子42和子发电体33c的第二引线端子42电连接,从而将三个子发电体33a、33b、33c并联,并将三个子发电体33a、33b、33c产生的电能输出。
图7为发电体中部分子发电体串联的示意图。如图7所示,发电体21 包括三个子发电体33a、33b、33c,其中,子发电体33a的第二引线端子42与子发电体33b的第一引线端子41电连接,子发电体33b的第二引线端子42与子发电体33c的第一引线端子41电连接,子发电体33a的第一引线端子41和子发电体33c的第二引线端子42将三个子发电体33a、33b、33c产生的电能输出。
需要说明的是,虽然图6和图7所示的发电体21仅示出三个子发电体33,但这并不表示对子发电体33数量的限定。
如图8所述,支撑体23包括支撑体本体235和在支撑体本体235的周向上间隔设置多个嵌置空间236,嵌置空间236与子发电体33的数量对应,每个子发电体对应地嵌置在一个嵌置空间236内,在装配时,利用嵌置空间236可以快速地将子发电体固定于支撑体23,从而提高装配效率。
在一些实施例中,发电体21的材料为半导体材料。示例地,半导体材料包括碲化铋或其它半导体材料。碲化铋具有良好的导电性,但导热性较差,用于热电转换装置可以提高热电转换装置发电的效率,以及运行的稳定性。
在一些实施例中,引线端子的材料为导电金属,如铜。铜的导电性良好,而且成本低。在一些实施例中,与引线端子4连接的引线可以采用铁氟龙引线或其它耐高温引线。
在一些实施例中,发电体21和引线端子4的表面设置有镀层(图中未示出)。在发电体21采用的材料不利于焊接时,如浸挂焊料不易时,镀层可以改善发电体21的焊接性能。
在一些实施例中,镀层的材料为镍或锡。在发电体21的材料为碲化铋,焊料为锡-铋合金时,碲化铋会熔入焊料中,铜杂质在较低温度下容易扩散至碲化铋中,降低碲化铋的热电性能,镍或锡材料的镀层可以作为屏障,阻止铜杂质扩散至碲化铋,避免碲化铋的热电性能降低。引线端子4的表面设置镍或锡材料的镀层,同样有利于改善引线端子4的焊接性能。在一些实施例中,镀层的厚度为0.1~0.3mm。
图9为本申请实施例中热电转换装置的部分结构示意图。如图9所示,发电体21的外表面设置有封装层33,封装层33包覆发电体21,引线端子4的一端设于封装层33的外侧,即引线端子4的一端从封装层33露出,以方便电连接。
在一些实施例中,封装层33的材料为陶瓷或其它合适的材料。陶瓷作为封装层33的材料,不仅材料成本低,而且工艺成熟,性能优越。
如图2所示,热电转换装置还包括储能模块5,储能模块5的两个输入端分别与设置在发电体21的第二端面32和第一端面31的引线端子4电连接,以便获得发电体21产生的电能并存储。储能模块5可以是蓄电池,也可以是其它能够储存电能的模块,本申请对储能模块5的形式不作限定。储能模块5还可以与其它用电设备连接,以为其它用电设备提供电能。
在一些实施例中,热电转换装置还包括稳压器47,稳压器47的两个输入端分别与设置在第一端面31和第二端面32上的引线端子4电连接,稳压器47的两个输出端与储能模块5的两个输入端对应电连接,即发电体21的输出端与储能模块5之间设置稳压器47,即发电体21通过稳压器47将电能存储在储能模块5。
如图10所示,发电体21的第一端面31通过第一引线端子41与稳压器47的第一输入端电连接,发电体21的第二端面32通过第二引线端子42与稳压器47的第二输入端电连接,稳压器47的第一输出端与储能模块5的第一输入端电连接,稳压器47的第二输出端与储能模块5的第二输入端电连接。
在一些实施例中,热电转换装置还包括变压器48,稳压器47的两个输入端分别与设置在第一端面31和第二端面32上的引线端子4电连接,稳压器47的两个输出端分别与变压器48的两个输入端电连接,变压器48的两个输出端分别与储能模块5的两个输入端对应电连接,即,发电体21的输出端与储能模块5之间依次设置稳压器47和变压器48,并通过稳压器47和变压器48将电能存储在储能模块5。
如图11所示,发电体21的第一端面31通过第一引线端子41与稳压器47的第一输入端电连接,发电体21的第二端面32通过第二引线端子42与稳压器47的第二输入端电连接,稳压器47的第一输出端与变压器48的第一输入端电连接,稳压器47的第二输出端与变压器48的第二输入端电连接;变压器48的第一输出端与储能模块5的第一输入端电连接,变压器48的第二输出端与储能模块5的第二输入端电连接。
在一些实施例中,如图4、图10和图11所示,热电转换装置还包括介质驱动模块26,用于驱动介质流动。其中,介质可以是空气,也可以采用其它能够携带热量的气体或液体。在一些实施例中,介质驱动模块26包括转轴261、叶片262和驱动装置(图中未示出),转轴261沿支撑体23的中心轴方向设置,如转轴261与支撑体23的中心轴重合或者平行。其中,支撑体23的中心轴是指空心柱状的支撑体23对称中心。叶片262固定于转轴 261的一端,驱动装置的输出端与转轴261的另一端连接,转轴261将驱动装置的驱动力传递给叶片262,叶片262的旋转可以为热介质、冷介质的流动提供动力。其中,叶片262的数量可以为二叶、三叶或其它数量,本申请对叶片262的数量不作限定。多个叶片262沿转轴261的周向均匀分布,使得介质能够获得均匀的动力。
在一些实施例中,介质驱动模块26可以是叶片,热电转换装置作为风扇的外壳或者作为外壳的一部分,支撑体23可以是风扇的外壳。
图12为将本申请提供的热电转换装置设置于风扇的结构示意图。如图2和图12所示,风扇包括外壳27和叶片262,叶片262设置于外壳27的内侧,外壳27采用本申请提供的热电转换装置的结构,外壳27的内侧为发电体21的第一端面31,外壳27的外侧为发电体21的第二端面32。
利用叶片262将温度较高的气体(电子器件发热导致气体温度升高)聚拢在外壳27的内侧流动,有利于提高外壳27的内侧与外侧的温度差,即提高发电体21的第一端面31和第二端面32的温差,从而提高余热转化为电能的效率,降低能耗,减少污染;同时提高电子设备的能效比,提高电能的利用率。
在一些实施例中,发电体21靠近叶片262的一侧为第一端面31,发电体21远离叶片262的一侧为第二端面32。为了提高特定空间散热效率,介质驱动模块26驱动温度较高的介质流动,使得支撑体23内部流动的介质温度高于外部流动的介质温度,发电体21的第一端面31面向叶片262一侧设置,发电体21的第二端面32背对叶片262一侧设置。发电体21靠近叶片262的一侧为第一端面31,发电体21远离叶片262的一侧为第二端面32,使温度较高的介质在支撑体23的内侧流动,有利于提高发电体21的第一端面31和第二端面32的温差,从而提高余热回收的效率。
本申请所提供的实施例,将发电体21固定于空心柱状结构的支撑体23,且发电体21的第二端面32和第一端面31均设置有引线端子4,在第二端面32和第一端面31存在温差的情况下,发电体21内产生电势,通过设置在发电体21的第二端面32的引线端子4和第一端面31的引线端子4输出电能,从而将余热转换为电能,降低能耗,减少污染;同时提高电子设备的能效比,提高电能的利用率。
本申请实施例还提供一种电子设备,包括电子器件和热电转换装置,热电转换装置用于将电子器件产生的热量回收利用,其中,热电转换装置为本申请实施例提供的热电转换装置。
在一些实施例中,如图13所示,电子设备可以为超算力设备5,其至少包括算力板11、控制板7、网卡12、电源9中的至少一种。其中,算力板11是电子设备的主板,其包括ASIC芯片、CPU或GPU,为超算力设备提供算力。控制板7用于控制算力板11、控制板7、电源9。网卡12设置有标准网络端口。电源为超算力设备提供电能,保障超算力设备内各电子器件正常运行。在一些实施例中,电子器件还可以包括内存和硬盘等,用于存储、安装挖矿程序。
其中,热电转换装置44的引线端子4用于向所述电子器件中的器件提供电信号,即热电转换装置44的引线端子4用于向超算力设备的算力板11、控制板7、网卡12、电源9等提供电信号。具体的,热电转换装置可向超算力设备5的算力板11、控制板7、网卡12、电源9同时提供电信号,也可向超算力设备的中的至少一个器件提供电信号。
下面以超算力设备为例,介绍本申请实施例提供的热电转换装置。
图14为本实用新型实施例提供的一种超算力设备的结构示意图,图15为本实用新型实施例提供的发电体的侧视图的结构示意图。如图14和图15所示,本实用新型实施例提供的超算力设备包括机箱1、算力板11、发电体21和引线端子4。
其中,机箱1内设有容纳空间15。容纳空间15用于承载超算力设备的关键器件,其形状可以是方形或其它形状,本实用新型实施例对容纳空间15的形状不作限定。机箱1选用材质可以是金属,也可以是塑料。
算力板11设置于容纳空间15,算力板11在运行过程中产生热量。
在一些实施例中,算力板11是超算力设备的主板,其算力是衡量超算力设备的计算能力、计算性能的指标。算力板11的计算能力可利用每秒哈希(hash)算法的运算次数来表示。
在一些实施例中,算力板11包括芯片,芯片可以是中央处理器(Central Processing Unit,简称CPU)、图形处理单元(Graphic Processing Unit,简称GPU)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)芯片。
算力板11用于运行特定算法,以对待处理数据进行计算,网卡(图中未示出)用于与外部其它电子设备进行网络连接,算力板11与网卡信号连接,算力板11可以通过网卡获得待处理数据,也可以通过网卡将处理结果传送至其它电子设备。
在本实用新型实施例中,算力板11运行过程中排出的余热可以使容纳 空间15的温度高于容纳空间15外部的温度,容纳空间15的温度可以达到七十度以上,因此,如果不对容纳空间进行降温,会对算力板11的性能造成影响。
发电体21设置于机箱1,发电体21包括相对的第一端面31和第二端面32。
在一些实施例中,发电体21设置在机箱1的表面,发电体21的第一端面31正对容纳空间15,第二端面32背对容纳空间15,即,发电体21的第一端面31设置在靠近容纳空间15一侧,第二端面32设置在远离容纳空间15一侧。由于容纳空间15的温度较高,机箱1的内侧和外侧存在温差,将发电体21设置在机箱1的表面,在发电体21的第一端面31和第二端面32之间产生温差,从而使发电体21内产生电能。
在本实用新型实施例中,第一端面31和第二端面32均设置有引线端子4,在发电体21的第一端面31和第二端面32存在温差的情况下,引线端子4将发电体21产生的电能输出。
示例地,如图15所示,第一端面31设置有第一引线端子41,第二端面32设置有第二引线端子42,在发电体21的第一端面31和第二端面32存在温差的情况下,第一引线端子41和第二引线端子42可以将发电体21内产生的电能输出。
在本实用新型实施例中,第一端面31可以为热端面,第二端面32可以为冷端面;或者,第一端面31为冷端面,第二端面32为热端面。
本实用新型提供一种超算力设备,利用设置在机箱的容纳空间的发电体,可以将算力板产生的热量回收,从而提高超算力设备的能效比,减少能源浪费和环境污染。
在一些实施例中,机箱1包括多个侧面,在机箱架的至少一个侧面设置发电体21。
在机箱1的侧面设置机箱架16,发电体21设置在机箱架16上。
需要说明的是,本实用新型实施例对机箱1的侧面的数量不作限定,只要能够形成放置算力板11的容纳空间即可,机箱1可以是六面体,也可以是八面体或其它形状,本实用新型实施例对机箱1的形状不作限定。
示例地,如图16和图17所示,机箱1包括六个侧面,分别为顶侧面、底侧面、左侧面、右侧面、前侧面和后侧面。发电体21可以设置在六个侧面中的任意一个或多个侧面。如,在机箱1的顶侧面、左侧面和右侧面设置发电体21,或者,仅在机箱1的左侧面和右侧面设置发电体21,或者,在 机箱1的六个侧面均设置发电体21。
在本实用新型实施例中,将发电体21设置在机箱1的侧面,发电体21直接作为机箱1的一部分,可以节约超算力设备的成本。
在一些实施例中,如图18所示,机箱1包括机箱架16和机箱板17,机箱架16包括多个侧面,机箱板17固定于机箱架16的至少一个侧面,在至少一个机箱板17上设置有发电体21。
在本实用新型实施例中,发电体21不直接固定于机箱架16,而是借助机箱板17固定在机箱架16,即发电体21先固定在机箱板17,再将机箱板17固定在机箱架16。
需要说明的是,机箱架16包括多个侧面,在每个侧面均可以设置机箱板17,也可以在一个或几个侧面设置机箱板17。还需要说明的是,机箱板17的数量与发电体21的数量可以不一致,发电体21可以选择性地设置在机箱板17上,例如,在所有的机箱板17设置发电体21,也可以在一个或几个机箱板17设置发电体21。
在一些实施例中,当部分机箱架16的侧面上设置机箱板17,发电体21可以选择设置机箱板17上,也可以直接设置在机箱架16上。
本申请实施例提供的超算力设备,将发电体设置在机箱1的任意一个侧面,可以增加发电体21设计的灵活性,降低超算力设备的成本。
在一些实施例中,如图18和图19所示,发电体21贴合于机箱1的内侧面或外侧面。
在一些实施例中,在机箱1的侧壁设置机箱板17,发电体21设置于机箱板17上。如图18所示,在发电体21贴合于机箱板17的外侧面时,发电体21的第一端面31与机箱板17贴合,发电体21的第二端面32与环境相邻。如图19所示,在发电体21贴合于机箱板17的内侧面时,发电体21的第一端面31与容纳空间15相邻,发电体21的第二端面32与机箱板17贴合。
在本实用新型实施例中,在机箱板17上设置有盲孔171。盲孔171可以设置在机箱板17的内侧或外侧。当盲孔171设置在机箱板17的内侧时,发电体21对应地设置在机箱板17的内侧面。当盲孔171设置在机箱板17的外侧时,发电体21对应地设置在机箱板17的外侧面。
本实用新型实施例将发电体贴合于机箱的内侧面或外侧面,使发电体贴近容纳空间,提高发电体回收热量的效率。
本实用新型实施例利用机箱板17承载发电体21,使得发电体21的尺 寸可以灵活调整,不再受机箱架16尺寸的限制。
在一些实施例中,其中,如图18和图19所示,在机箱板17上设置有贯穿其壁厚的多个通孔172,而且,多个通孔172的位置与发电体21的位置相对。
本实用新型实施例对多个通孔172的排列方式和尺寸不作限定,例如,多个通孔172可以按照阵列方式排列为矩形、圆形等形状。
本实用新型实施例借助通孔172可以使发电体21的表面温度与容纳空间15或环境温度接近,从而提高发电体21的发电量,进而提高余热的回收利用率。示例地,当发电体21贴合于机箱板17的内侧面时,通孔172有助于发电体21的第二端面32与箱体1外的环境温度接近。当发电体21贴合于机箱板17的外侧面时,通孔172有助于发电体21的第一端面31与容纳空间15内的温度接近。
在本实用新型实施例中,除将发电体21贴合于机箱板17的内侧面或外侧面之外,发电体21还可以嵌置于机箱板17,使得发电体21的第一端面31与容纳空间15的接触面积,以及发电体21的第二端面32与机箱1外的环境的接触面积最大化。
在一些实施例中,如图20所示,在机箱板17上设置有嵌置孔173,发电体21嵌置于嵌置孔131内。其中,嵌置孔173的内径与发电体21的外径匹配,即在公差范围内,嵌置孔173的内径与发电体21的外径一致,使得发电体21可以嵌置于嵌置孔173内。
在本实用新型实施例中,由于发电体21以嵌置方式与机箱板17连接,机箱板17不再遮挡发电体21的第一端面31和第二端面32,发电体21的第一端面31和第二端面32可以分别充分暴露于容纳空间15和机箱1外的环境中,增大发电体21的第一端面31与第二端面32之间的温差,从而提高发电体21的发电效率,进而提高余热回收的效率。
在一些实施例中,发电体21为一体结构。需要说明的是,一体结构的发电体21是相对于机箱架16的侧面而言,即一个机箱架16的侧面设置一个发电体13。当发电体21直接固定于机箱架16时,发电体13的尺寸可以根据机箱架16尺寸的需要,占据整个机箱架16的侧面。当发电体21贴合于机箱板17或者嵌置于嵌置孔173时,发电体13的尺寸略小于机箱板17,即发电体21是借助机箱板17设置于机箱架16上,不是直接固定于机箱架16,而且,在每个机箱板17上设置一个发电体21。
在本实用新型实施例中,一体结构的发电体21可以降低发电体21与机 箱的安装难度,提高安装效率。
在一些实施例中,发电体21包括多个子发电体33,多个子发电体33在机箱架16上间隔设置或相邻并排设置,且多个子发电体33通过导体并联或串联。
其中,多个子发电体33间隔设置是指相邻的两个子发电体33之间存在间隙,间隙的宽度可以根据需要设定。多个子发电体33相邻并排设置是指相邻的两个子发电体33之间不存在间隙,或者,间隙只是装配的需要,并不是设计一定宽度的间隙。
如图14所示,发电体21包括两个子发电体33,两个子发电体33相邻并排设置。
当多个子发电体33直接固定于机箱架16时,则多个子发电体33并排设置在机箱架16上,而且尽量减小相邻的两个子发电体33之间的缝隙,以避免容纳空间15内热量从相邻的两个子发电体33之间的缝隙排出,降低余热回收的效率。
当多个子发电体33固定于机箱板17的盲孔171时,多个子发电体33既可以间隔设置,也可以并排设置。如,在机箱板17上间隔设置多个盲孔171,将多个子发电体33一对一设置在多个盲孔171内,或者,在机箱板17上设置一个盲孔171,将多个子发电体33并排设置在该盲孔171内。
当多个子发电体33固定于机箱板17的嵌置孔173时,多个子发电体33并排设置在机箱架16上,而且尽量减小相邻的两个子发电体33之间的缝隙,以避免容纳空间15内部的热量从相邻的两个子发电体33之间的缝隙排出,从而降低余热回收的效率。
在将多个子发电体33固定于机箱板17的嵌置孔173时,嵌置孔173的数量与子发电体33的数量一致,每个子发电体33对应地嵌置在一个嵌置孔173内。在装配时,利用嵌置孔173可以快速地将子发电体33固定于机箱板17,从而提高装配效率。
需要说明的是,在机箱1的各个侧面上,可以按照同一种方式设置发电体21,也可以按照不同的方式设置发电体21。示例地,在机箱1的各个侧面上,发电体21直接固定于机箱架16上。示例地,在机箱1的左侧面和右侧面,发电体21直接固定于机箱架16上,而在机箱1的顶侧面和前侧面,发电体21固定于机箱板17上。机箱1可以是一体成型结构,也可以是其他适合的结构,此处不做具体限定。
本实用新型实施例提供的超算力设备,一体结构的机箱1可以简化装配 的程序,提高超算力设备的装配效率,从而降低超算力设备的生产成本。
在本实用新型实施例中,当多个子发电体33以并联方式电连接时,可以提高发电体21输出的电流值。当多个子发电体33以串联方式电连接时,可以提高发电体输出的电压值。
发电体21包括三个子发电体33,每个子发电体33包括相对设置的第一端面31和第二端面22,在第一端面31设置有第一引线端子41,在第二端面32设置有第二引线端子42,当子发电体33的第一端面41和第二端面32存在温差的情况下,子发电体33内能产生电能,通过与第一引线端子41和第二引线端子42连接的导线可以将电能输出。
本实用新型实施例将发电体设置为多个子发电体,而且多个子发电体间隔或相邻并排设置于所述机箱,可以根据机箱的尺寸灵活设置子发电体,有效地利用机箱的空间,提高发电体回收热量的效率。
图6为本实用新型实施例中发电体的部分子发电体并联的示意图。如图6所示,发电体21包括三个子发电体33a、33b、33c,其中,子发电体33a的第一引线端子41、子发电体33b的第一引线端子41和子发电体33c的第一引线端子41电连接,子发电体33a的第二引线端子42、子发电体33b的第二引线端子42和子发电体33c的第二引线端子42电连接,从而将三个子发电体33a、33b、33c并联,并将三个子发电体33a、33b、33c产生的电能输出。
图7为本实用新型实施例中发电体的部分子发电体串联的示意图。如图7所示,发电体21包括三个子发电体33a、33b、33c,其中,子发电体33a的第二引线端子42与子发电体33b的第一引线端子41电连接,子发电体33b的第二引线端子42与子发电体33c的第一引线端子41电连接,子发电体33a的第一引线端子41和子发电体33c的第二引线端子42将三个子发电体33a、33b、33c产生的电能输出。
需要说明的是,虽然图6和图7所示的发电体21仅示出三个子发电体33,但这并不表示对子发电体33数量的限定,本实用新型实施例对子发电体33的数量不作限定。
在一些实施例中,发电体21的材料为半导体材料。示例地,半导体材料包括碲化铋或其它半导体材料。
本实用新型实施例提供的超算力设备,碲化铋作为发电材料,利用碲化铋所具有的良好的导电性,可以提高超算力设备的发电效率及运行的稳定性。
在一些实施例中,引线端子4的材料为导电金属,如铜。铜的导电性良好,而且成本低。在一些实施例中,与引线端子4连接的引线可以采用铁氟龙引线或其它耐高温引线。
在一些实施例中,发电体21和引线端子4的表面设置有镀层(图中未示出)。在发电体21采用的材料不利于焊接时,如浸挂焊料不易时,镀层可以改善发电体21的焊接性能。
在一些实施例中,镀层的材料为镍或锡。在发电体21的材料为碲化铋,焊料为锡-铋合金时,碲化铋会熔入焊料中,铜杂质在较低温度下容易扩散至碲化铋中,降低碲化铋的热电性能,镍或锡材料的镀层可以作为屏障,阻止铜杂质扩散至碲化铋,避免碲化铋的热电性能降低。引线端子4的表面设置镍或锡材料的镀层,同样有利于改善引线端子4的焊接性能。在一些实施例中,镀层的厚度为0.1~0.3mm。
本实用新型实施例提供的超算力设备,利用镍或锡良好的导电性,可以提高发电体和引线端子的电连接性能。
在一些实施例中,如图9所示,发电体21的外表面设置有封装层33,封装层33包覆发电体21,引线端子4的一端设置于发电体21,另一端设于封装层33的外侧,即引线端子4的一端从封装层33露出,以方便实现电连接。
在一些实施例中,封装层33的材料为陶瓷或其它合适的材料。陶瓷作为封装层33的材料,不仅材料成本低,而且工艺成熟,性能优越。
在一些实施例中,发电体21的第一端面31为热端面,第二端面32为冷端面,而且,发电体21的第一端面31朝向容纳空间设置,第二端面32背离容纳空间15设置。
由于算力板11设置在容纳空间1,而且,算力板11在运行过程中排出大量的热量,导致容纳空间1的温度较高,因此,机箱1的内侧温度相对于外侧温度较高,将发电体21的热端面朝向机箱1的内侧,冷端面朝向机箱1的外侧,有助于提高发电体21的发电效率。
本实用新型实施例提供的超算力设备,将发电体21的热端面朝向容纳空间设置,冷端面背向容纳空间设置,有助于提高发电体21的发电效率。
在一些实施例中,设置于第一端面31和第二端面32的引线端子4与超算力设备中的用电器件电连接,用以向用电器件提供电信号。其中,用电器件可以是算力板,也可以是风扇、控制器等其它器件。
本实用新型实施例提供的超算力设备,引线端子与超算力设备中的用电 器件电连接,超算力设备中的用电器件直接利用发电体产生的电能,提高超算力设备的能效比。
将发电体1的引线端子4与算力设备中的器件电连接,将发电体1产生的电能直接向超算力设备供电,提高超算力设备的能效比。
在一些实施例中,如图11所示,超算力设备除包括机箱1、算力板11、发电体21之外,还包括储能模块5,储能模块5的两个输入端分别与设置在第一端面31的第一引线端子41和设置在第二端面32的第二引线端子42电连接,用于存储发电体21输出的电能。
其中,储能模块5可以是蓄电池,也可以是其它能够储存电能的模块,本实用新型对储能模块5的形式不作限定。储能模块5还可以与其它用电设备连接,以向其它用电设备提供电能。其中,其它用电设备既可以是超算力设备中的用电设备,也可以是超算力设备之外的用电设备。
在一些实施例中,超算力设备还包括稳压器47,稳压器47的两个输入端分别与设置在第一端面31和第二端面32上的引线端子电连接,稳压器47的两个输出端与储能模块5的两个输入端对应电连接,即发电体21的输出端与储能模块5之间设置稳压器47,并通过稳压器47将电能存储在储能模块5。
如图22所示,发电体21的第一端面31通过第一引线端子41与稳压器47的第一输入端电连接,发电体21的第二端面32通过第二引线端子42与稳压器47的第二输入端电连接,稳压器47的第一输出端与储能模块5的第一输入端电连接,稳压器47的第二输出端与储能模块5的第二输入端电连接。
本实用新型实施例提供的超算力设备,稳压器可以提高输入储能模块电量的稳定性,提高储能模块的使用寿命。
在一些实施例中,超算力设备还包括变压器48,稳压器47的两个输入端分别与设置在第一端面31和第二端面32上的引线端子电连接,稳压器47的两个输出端分别与变压器48的两个输入端电连接,变压器48的两个输出端分别与储能模块5的两个输入端对应电连接,即,发电体21的输出端与储能模块5之间依次设置稳压器47和变压器48,并通过稳压器47和变压器48将电能存储在储能模块5。
如图23所示,发电体21的第一端面31通过第一引线端子41与稳压器47的第一输入端电连接,发电体21的第二端面32通过第二引线端子42与稳压器47的第二输入端电连接,稳压器47的第一输出端与变压器48的第 一输入端电连接,稳压器47的第二输出端与变压器48的第二输入端电连接;变压器48的第一输出端与储能模块5的第一输入端电连接,变压器48的第二输出端与储能模块5的第二输入端电连接。
本实用新型实施例提供的超算力设备,在稳压器和储能模块之间设置变压器,利用变压器可以提高充电效率,将发电体产生的电能及时存储。
在一些实施例中,如图14和图24所示,超算力设备还包括以下一项或多项:散热片6、控制板7、风扇8和电源9。
其中,散热片6贴合于算力板11,用于将算力板产生的热量排出。散热片6可以采用热导率高的材料制作,如金属铝等。散热片6包括散热本体和多个翅片,多个翅片间隔设置在散热本体的表面,散热本体与算力板11贴合,并在散热本体与算力板6之间设置导热胶,以提高散热片6的散热效率。
控制板7设置于机箱1的外侧,用于控制算力板1。控制板7通过线缆与算力板11连接,控制板7与算力板11通过线缆实现信息交互。控制板7可以设置于机箱1的顶侧面,也可以根据情况设置在左侧面或右侧面。
在一些实施例中,控制板7通过信号线与风扇8连接,用于控制风扇8的开关和输出功率。当机箱1内的温度较高时,控制板7可以提高风扇8的功率,从而加快散热效率。控制板7还可以通过线缆电源9连接,即用于获得控制板7运行所需的电能,又可以对电源9进行控制。
风扇8设置在机箱的外侧,用于将容纳空间的热量排出。风扇8用于驱动容纳空间15内空气的流动,从而加快容纳空间1内热量的排出。当容纳空间1的温度超过预先设定的第一温度阈值时,可以启动风扇8,以降低容纳空间1内的温度。当容纳空间1的温度超过预先设定的第二温度阈值(第二温度阈值大于第一温度阈值)时,可以增大风扇8的输出功率,以加快降低容纳空间1内的温度。
在一些实施例中,风扇8设置在机箱1的侧面,例如,风扇8设置在机箱1的后侧面,或者根据设计需要,将风扇8设置在机箱1的其它侧面。
需要说明的是,风扇8与机箱1的设置相对位置不仅限于上述的所描述的,还可以是其他适合的设置方式。
在一些实施例中,风扇8包括转轴、叶片和驱动装置,叶片固定于转轴的一端,驱动装置的输出端与转轴的另一端连接,转轴将驱动装置的驱动力传递给叶片,叶片的旋转可以为容纳空间15内空气的流动提供动力。其中,叶片的数量可以为二叶、三叶或其它数量,本实用新型对叶片的数量不作限 定。多个叶片沿转轴的周向均匀分布,使得容纳空间15内的空气获得均匀的动力。
电源9设置在机箱的外侧,用于向超算力设备提供运行所需的电能,保障超算力设备内各电子器件正常运行。其中,电子器件还可以包括内存和硬盘等,硬盘用于存储、安装应用程序。需要说明的是,本实用新型实施例对电源的功率、型号不作限定。
本实用新型实施例提供的超算力设备,通过散热片和风扇可以增加超算力设备的散热效率,避免容纳空间的温度过高而影响超算力设备的性能。
在一些实施例中,超算力设备还包括网卡,网卡设置有标准网络端口,用于实现超算力设备之间以及超算力设备与其它网络设备之间的信息交互。
本实用新型实施例提供的超算力设备将算力板设置在机箱的容纳空间,将发电体设置于机箱上,算力板在运行过程中产生热量,使得发电体相对的第一端面和第二端面产生电能,并通过设置在第一端面和第二端面的引线端子输出电能,并回收利用,从而提高超算力设备的能效比,同时降低能耗,减少污染。
本实用新型实施例还提供一种服务器,包括至少一个超算力设备,超算力设备采用本实用新型实施例提供的超算力设备,利用设置在机箱的发电体,将算力板运行时排出的热量回收利用,降低能耗,减少污染,同时提高超算力设备的能效比。
图25为本申请实施例热电转换装置应用于电子设备的应用场景图。如图25所示,进气风扇81为电子设备42提供冷却介质,冷却介质可以吸收携带电子设备42释放的余热,出气风扇43用于将吸收了余热的冷却介质聚拢,热电转换装置44利用冷却介质内的余热产生电能,回收余热后的冷却介质进入大气,储能装置5用于存储热电转换装置44产生的电能,照明设备46与储能装置5,照明设备46可使用储能装置5储存的电能。储能装置5存储的电能也可以用于驱动进气风扇81和/或出气风扇43运行。
在一些实施例中,电子设备也可以用电子设备组替代,即利用多个电子设备组成的电子设备组替代单个电子设备。
本申请实施例还提供一种余热再利用系统,包括:电子器件、热电转换装置以及用电装置,电子器件用于实现相应的功能,热电转换装置用于将电子器件执行相应功能时产生的废热转换为电能。热电转换装置的引线端子与用电装置电连接,热电转换装置通过引线端子向用电装置提供电信号。
在一些实施例中,电子器件与用电装置属于两个独立的装置。例如,电 子器件是超算力设备中的器件,如算力板、控制板、网卡、电源,用电装置是超算力设备之外的装置,热电转换装置将超算力设备产生的废热回收并转换为电能,再提供给超算力设备之外的用电装置使用。
本领域普通技术人员可以理解,上文中所申请方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。
本文已经申请了示例实施例,并且虽然采用了具体术语,但它们仅用于并仅应当被解释为一般说明性含义,并且不用于限制的目的。在一些实例中,对本领域技术人员显而易见的是,除非另外明确指出,否则可单独使用与特定实施例相结合描述的特征、特性和/或元素,或可与其他实施例相结合描述的特征、特性和/或元件组合使用。因此,本领域技术人员将理解,在不脱离由所附的权利要求阐明的本申请的范围的情况下,可进行各种形式和细节上的改变。

Claims (27)

  1. 一种热电转换装置,其特征在于,包括:
    发电体,包括相对的第一端面和第二端面;
    引线端子,所述发电体的第一端面和第二端面均设置有所述引线端子;
    在所述发电体的第一端面和第二端面存在温差的情况下,所述发电体通过设置在所述发电体的第一端面和第二端面的引线端子输出电能;
    支撑体,用于支撑和固定所述发电体。
  2. 根据权利要求1所述的热电转换装置,其特征在于,所述发电体呈空心柱状结构。
  3. 根据权利要求2所述的热电转换装置,其特征在于,所述支撑体包括第一空心柱状结构,所述发电体位于所述第一空心柱状结构的表面。
  4. 根据权利要求2所述的热电转换装置,其特征在于,所述支撑体包括第一空心柱状结构和第二空心柱状结构,所述第一空心柱状结构和第二空心柱状结构为同轴设置,所述第一空心柱状结构和第二空心柱状结构的半径不同,所述发电体位于所述第一空心柱状结构与所述第二空心柱状结构之间。
  5. 根据权利要求2所述的热电转换装置,其特征在于,所述支撑体设有贯穿其壁厚的多个通孔。
  6. 根据权利要求2所述的热电转换装置,其特征在于,所述支撑体为机箱,所述机箱内形成有容纳空间;
    所述发电体设置于所述机箱的表面。
  7. 根据权利要求6所述的热电转换装置,其特征在于,所述机箱包括多个侧面,所述机箱的至少一个侧面设置所述发电体。
  8. 根据权利要求7所述的热电转换装置,其特征在于,所述发电体贴合于所述机箱的内侧面或外侧面。
  9. 根据权利要求6所述的热电转换装置,其特征在于,所述机箱为一体成型结构。
  10. 根据权利要求6所述的热电转换装置,其特征在于,所述发电体的第一端面为热端面,所述第二端面为冷端面,所述发电体的第一端面朝向所述容纳空间设置,所述第二端面背离所述容纳空间设置。
  11. 根据权利要求6所述的热电转换装置,其特征在于,还包括以下一项或多项:
    散热片,其贴合于发热体,用于将所述发热体产生的热量排出;
    控制板,其设置于所述机箱的外侧,用于控制所述发热体;
    电源,其设置在所述机箱的外侧。
  12. 根据权利要求11所述的热电转换装置,其特征在于,设置于所述第一端面和所述第二端面的引线端子与用电器件电连接,用以向所述用电器件提供电信号。
  13. 根据权利要求1所述的热电转换装置,其特征在于,所述发电体为空心柱状的一体结构。
  14. 根据权利要求1所述的热电转换装置,其特征在于,所述发电体包括多个子发电体,所述多个子发电体沿所述支撑体的周向间隔设置,且所述多个子发电体通过导体并联或串联。
  15. 根据权利要求1所述的热电转换装置,其特征在于,所述发电体的材料为半导体材料,所述半导体材料包括碲化铋;
    所述引线端子的材料为导电金属。
  16. 根据权利要求1所述的热电转换装置,其特征在于,所述发电体和所述引线端子的表面设置有镀层,所述镀层的材料为镍或锡。
  17. 根据权利要求1所述的热电转换装置,其特征在于,所述发电体的外表面设置有包覆所述发电体的封装层,所述引线端子的一端设于所述封装层的外侧,所述封装层的材料为陶瓷。
  18. 根据权利要求1所述的热电转换装置,其特征在于,所述装置还包括储能模块,所述储能模块的两个输入端分别与设置在所述第二端面和所述第一端面的引线端子电连接,用于存储所述发电体输出的电能。
  19. 根据权利要求18所述的热电转换装置,其特征在于,所述装置还包括稳压器,所述稳压器的两个输入端分别与设置在所述第一端面和所述第二端面上的引线端子电连接,所述稳压器的两个输出端与所述储能模块的两个输入端对应电连接。
  20. 根据权利要求19所述的热电转换装置,其特征在于,所述装置还包括变压器,所述稳压器的两个输入端分别与设置在所述第一端面和所述第二端面上的引线端子电连接,所述稳压器的两个输出端分别与所述变压器的两个输入端电连接,所述变压器的两个输出端分别与所述储能模块的两个输入端对应电连接。
  21. 根据权利要求1所述的热电转换装置,其特征在于,所述支撑体包括风扇的外壳。
  22. 根据权利要求21所述的热电转换装置,其特征在于,所述装置还包括介质驱动模块,所述介质驱动模块包括转轴、叶片和驱动装置,所述转轴沿所述支撑体的中心轴方向设置,所述叶片固定于所述转轴的一端,所述驱动装置的输出端与所述转轴的另一端连接,所述转轴将所述驱动装置的驱动力传递给所述叶片,所述叶片用于为传热介质流动提供动力。
  23. 根据权利要求22所述的热电转换装置,其特征在于,所述发电体靠近所述叶片的一侧为第一端面,所述发电体远离所述叶片的一侧为第二端面。
  24. 一种电子设备,其特征在于,包括电子器件和热电转换装置,所述热电转换装置用于将所述电子器件产生的热量回收利用,所述热电转换装置为权利要求1-23任意一项所述的热电转换装置。
  25. 根据权利要求24所述的电子设备,其特征在于,所述热电转换装置 的引线端子用于向所述电子器件中的器件提供电信号。
  26. 根据权利要求24所述的电子设备,其特征在于,所述电子器件为超算力设备。
  27. 一种余热再利用系统,其特征在于,包括:电子器件、热电转换装置以及用电装置,所述热电转换装置的引线端子与所述用电装置电连接,用于向所述用电装置提供电信号。
PCT/CN2022/091941 2022-05-07 2022-05-10 热电转换装置、电子设备及余热再利用系统 WO2023216097A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202210495241.2A CN117055696A (zh) 2022-05-07 2022-05-07 超算力设备及服务器
CN202221088120.8 2022-05-07
CN202210495241.2 2022-05-07
CN202221090353.1 2022-05-07
CN202221090353.1U CN217388565U (zh) 2022-05-07 2022-05-07 热电转换装置、电子设备及余热再利用系统
CN202210493596.8A CN117060781A (zh) 2022-05-07 2022-05-07 热电转换装置、电子设备及余热再利用系统
CN202221088120.8U CN217238754U (zh) 2022-05-07 2022-05-07 超算力设备及服务器
CN202210493596.8 2022-05-07

Publications (1)

Publication Number Publication Date
WO2023216097A1 true WO2023216097A1 (zh) 2023-11-16

Family

ID=88729455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091941 WO2023216097A1 (zh) 2022-05-07 2022-05-10 热电转换装置、电子设备及余热再利用系统

Country Status (1)

Country Link
WO (1) WO2023216097A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206602470U (zh) * 2016-11-16 2017-10-31 同方工业信息技术有限公司 一种具有温差发电功能的笔记本电脑
CN208063069U (zh) * 2018-04-25 2018-11-06 北京嘉楠捷思信息技术有限公司 计算设备的余热利用系统及包括该系统的计算设备、矿场
CN110752785A (zh) * 2019-10-25 2020-02-04 珠海格力电器股份有限公司 温差发电装置、电控箱、空调及散热控制方法
CN210349878U (zh) * 2019-11-15 2020-04-17 刘小江 套管式半导体组件、空调及温差发电装置
CN211653594U (zh) * 2020-04-16 2020-10-09 深圳市思创优技术有限公司 一种专用集成电路芯片的服务器
WO2022105205A1 (zh) * 2020-11-20 2022-05-27 深圳比特微电子科技有限公司 超算服务器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206602470U (zh) * 2016-11-16 2017-10-31 同方工业信息技术有限公司 一种具有温差发电功能的笔记本电脑
CN208063069U (zh) * 2018-04-25 2018-11-06 北京嘉楠捷思信息技术有限公司 计算设备的余热利用系统及包括该系统的计算设备、矿场
CN110752785A (zh) * 2019-10-25 2020-02-04 珠海格力电器股份有限公司 温差发电装置、电控箱、空调及散热控制方法
CN210349878U (zh) * 2019-11-15 2020-04-17 刘小江 套管式半导体组件、空调及温差发电装置
CN211653594U (zh) * 2020-04-16 2020-10-09 深圳市思创优技术有限公司 一种专用集成电路芯片的服务器
WO2022105205A1 (zh) * 2020-11-20 2022-05-27 深圳比特微电子科技有限公司 超算服务器

Similar Documents

Publication Publication Date Title
CN102150101A (zh) 嵌入式电池单元和热管理的方法和设备
US11570931B2 (en) VR integrated machine and running method thereof
CN104503556A (zh) 基于风冷及液冷结合的冗余备份服务器散热体系
CN211480101U (zh) 一种基于微热管阵列的可移动储电箱
KR20130104165A (ko) 열전소자를 이용한 배터리 냉각시스템
WO2023216097A1 (zh) 热电转换装置、电子设备及余热再利用系统
CN108874082A (zh) 一种计算机机箱内部废热回收装置
CN217589100U (zh) 一种电池模组
CN206865363U (zh) 一种电力转换装置
JP2007072846A (ja) 熱電気変換機能を有するコンピューター
CN202474078U (zh) 一种软包装锂离子动力电池组
CN217238754U (zh) 超算力设备及服务器
CN217388565U (zh) 热电转换装置、电子设备及余热再利用系统
CN117060781A (zh) 热电转换装置、电子设备及余热再利用系统
CN210246617U (zh) 一种外接式散热的太阳能逆变器
CN206505994U (zh) 一种电池及载体装置
CN214316025U (zh) 散热结构
CN117055696A (zh) 超算力设备及服务器
CN205901568U (zh) 水冷集成式转换器的外壳结构
CN218472787U (zh) 风力发电机变桨超级电容快速放电装置
CN113346793B (zh) 一种电路废热回收利用的多级制冷系统
CN220934199U (zh) 用于电芯的散热装置、电池组和电池包
CN218482307U (zh) 一种电池模组及电池包
CN219163443U (zh) 氢燃料电池模块安装台架
CN213906815U (zh) 散热结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941061

Country of ref document: EP

Kind code of ref document: A1