WO2023216021A1 - 抗反射层叠结构及其制造方法、显示面板、显示装置 - Google Patents

抗反射层叠结构及其制造方法、显示面板、显示装置 Download PDF

Info

Publication number
WO2023216021A1
WO2023216021A1 PCT/CN2022/091418 CN2022091418W WO2023216021A1 WO 2023216021 A1 WO2023216021 A1 WO 2023216021A1 CN 2022091418 W CN2022091418 W CN 2022091418W WO 2023216021 A1 WO2023216021 A1 WO 2023216021A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
refractive index
reflective
substrate
laminated structure
Prior art date
Application number
PCT/CN2022/091418
Other languages
English (en)
French (fr)
Inventor
朱飞飞
张新霞
张然
贾文斌
詹成勇
唐文浩
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/091418 priority Critical patent/WO2023216021A1/zh
Priority to CN202280001116.XA priority patent/CN117377571A/zh
Publication of WO2023216021A1 publication Critical patent/WO2023216021A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Definitions

  • the present disclosure relates to the field of display technology, and specifically, to an anti-reflective laminated structure and a manufacturing method thereof, a display panel, and a display device.
  • display devices are used in various aspects of life, such as cars, notebooks, mobile phones and other products.
  • Different display devices have different requirements for different environments. For example, for display devices such as vehicle-mounted display equipment that need to be used outdoors, they need to have good readability outdoors with sufficient light.
  • the resistance of the display panel in the related art The reflective performance is poor and cannot meet the anti-reflective performance of outdoor light.
  • the manufacturing cost of other anti-reflective laminated structures is high, the manufacturing time is long, and the production efficiency of the product cannot be effectively improved.
  • an anti-reflective laminate structure including:
  • a substrate having a first refractive index and a first surface
  • An antistatic layer disposed on one side of the substrate, the antistatic layer having a second refractive index and a second surface opposite to the first surface;
  • An anti-reflective layer is provided between the substrate and the anti-static layer.
  • the anti-reflective layer includes at least one composite layer.
  • the composite layer includes a first anti-reflective layer and a second anti-reflective layer.
  • the first anti-reflective layer has a third refractive index
  • the second anti-reflective layer has a fourth refractive index
  • At most one first anti-reflective layer is bonded to the first surface of the substrate, and at most one second anti-reflective layer is bonded to the second surface of the anti-static layer,
  • the second refractive index is greater than the first refractive index and the fourth refractive index
  • the third refractive index is greater than the first refractive index and the fourth refractive index
  • the thickness of the first anti-reflective layer is less than or equal to the thickness of the second anti-reflective layer.
  • the material for making the antistatic layer includes at least one of a transparent metal oxide material, a solution-type conductive polymer material, and a sputtering-type inorganic material.
  • the anti-reflective layer includes a plurality of the composite layers, and the thickness of the composite layer close to the substrate is less than or equal to the thickness of the composite layer close to the antistatic layer.
  • the anti-reflective layer includes a first composite layer close to the substrate and a second composite layer close to the antistatic layer; the first anti-reflective layer of the first composite layer The reflective layer is bonded to the first surface of the substrate, and the second anti-reflective layer of the second composite layer is bonded to the second surface.
  • the anti-reflective layer includes a first composite layer close to the substrate, a third composite layer close to the antistatic layer, and a third composite layer located between the first composite layer and the third composite layer.
  • the second composite layer between the three composite layers,
  • the thickness of the first composite layer is less than or equal to the thickness of the second composite layer, and the thickness of the second composite layer is less than or equal to the thickness of the third composite layer.
  • the first refractive index is 1.45 to 1.55; the second refractive index is 1.50 to 1.90; the third refractive index is 1.80 to 2.30; and the fourth refractive index is 1.44 to 1.52.
  • the material used to make the first anti-reflective layer and the material used to make the second anti-reflective layer are different.
  • the material for making the first anti-reflection layer includes SiN x ; the material for making the second anti-reflection layer includes SiO 2 .
  • the anti-reflection laminated structure further includes: a polarizing layer disposed on a side of the anti-static layer away from the substrate.
  • the polarizing layer has a fifth refractive index, and the fifth refractive index is smaller than the second refractive index.
  • the fifth refractive index is 1.45 to 1.55.
  • the first anti-reflective layer has a thickness of 5 nanometers to 65 nanometers; the second anti-reflective layer has a thickness of 40 nanometers to 80 nanometers.
  • the antistatic layer has a thickness of 14 nanometers to 30 nanometers.
  • the transparent metal oxide material includes indium tin oxide; the solution-type conductive polymer material includes Heraeus-polyethylenedioxythiophene; and the sputter-type inorganic material includes Mixture of graphite oxide, tin oxide, zinc oxide, aluminum oxide, antimony oxide with surfactants and cross-linking agents.
  • the substrate includes a color filter.
  • Another aspect of the present disclosure provides a method for manufacturing an anti-reflective laminated structure, which method includes:
  • the antistatic layer forming an antistatic layer on one side of the substrate, the antistatic layer having a second refractive index and a second surface opposite to the first surface;
  • An anti-reflective layer is formed on one side of the substrate.
  • the anti-reflective layer includes at least one composite layer.
  • the composite layer includes a first anti-reflective layer and a second anti-reflective layer.
  • the first anti-reflective layer has a third anti-reflective layer.
  • Refractive index, the second anti-reflective layer has a fourth refractive index;
  • An antistatic layer is formed on a side of the antireflective layer away from the substrate, the antistatic layer having a second refractive index and a second surface opposite to the first surface;
  • At most one first anti-reflective layer is bonded to the first surface of the substrate, and at most one second anti-reflective layer is bonded to the second surface of the anti-static layer,
  • the second refractive index is greater than the first refractive index and the fourth refractive index
  • the third refractive index is greater than the first refractive index and the fourth refractive index
  • a display panel including: an array substrate; a color filter substrate, the color filter substrate is opposite to the array substrate; and is disposed between the array substrate and the color filter substrate.
  • a liquid crystal layer ; an anti-reflective laminated structure, the anti-reflective laminated structure is disposed on a side of the color filter substrate away from the array substrate, wherein the anti-reflective laminated structure is the anti-reflective laminated structure described above.
  • the color filter substrate includes a base substrate
  • the substrate of the anti-reflection laminated structure includes the base substrate of the color filter substrate.
  • Another aspect of the present disclosure provides a display device, including the above-mentioned display panel.
  • Figure 1 is a schematic cross-sectional structural diagram of an anti-reflective laminated structure according to an exemplary embodiment of the present disclosure
  • Figure 2 is a schematic cross-sectional structural diagram of an anti-reflective laminated structure according to another exemplary embodiment of the present disclosure
  • Figure 3 is a schematic cross-sectional structural diagram of an anti-reflective laminated structure according to yet another exemplary embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of the refraction of incident light passing through the anti-reflective layer of the anti-reflective laminate structure according to an exemplary embodiment of the present disclosure
  • FIG. 5 is a flow chart of a method of manufacturing an anti-reflective laminated structure according to an exemplary embodiment of the present disclosure
  • Figure 6 is a schematic cross-sectional view of a display panel according to an exemplary embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a display device according to an exemplary embodiment of the present disclosure.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality” means two or more.
  • connection and its derivatives may be used.
  • electrically connected to indicate that two or more components are in direct physical or electrical contact with each other.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and includes the following combinations of A, B and C: A only, B only, C only, A and B The combination of A and C, the combination of B and C, and the combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • parallel includes absolutely parallel and approximately parallel, and the acceptable deviation range of approximately parallel may be, for example, a deviation within 5°;
  • perpendicular includes absolutely vertical and approximately vertical, and the acceptable deviation range of approximately vertical may also be, for example, Deviation within 5°.
  • equal includes absolute equality and approximate equality, wherein the difference between the two that may be equal within the acceptable deviation range of approximately equal is less than or equal to 5% of either one, for example.
  • “Same layer” in this article refers to a layer structure formed by using the same film formation process to form a film layer for forming a specific pattern, and then using a mask to form a layer structure through a patterning process.
  • a patterning process may include multiple exposure, development or etching processes, and the specific patterns in the formed layer structure may be continuous or discontinuous, and these specific patterns may also be at different heights. Or have different thicknesses.
  • different layers refers to a layer structure formed by using corresponding film-forming processes to form film layers for forming specific patterns, and then using corresponding masks to form a layer structure through a patterning process, for example, "two-layer structure” "Different layer setting" means that two layer structures are formed under corresponding process steps (film forming process and patterning process).
  • Example embodiments are described herein with reference to cross-sectional illustrations and/or plan views that are idealized illustrations.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations from the shapes in the drawings due, for example, to manufacturing techniques and/or tolerances are contemplated.
  • example embodiments should not be construed as limited to the shapes of regions illustrated herein but are to include deviations in shapes that result from, for example, manufacturing. For example, an etched area shown as a rectangle will typically have curved features. Accordingly, the regions shown in the figures are schematic in nature and their shapes are not intended to illustrate the actual shapes of regions of the device and are not intended to limit the scope of the exemplary embodiments.
  • the term “opposite” means facing each other.
  • the first surface and the second surface facing each other may mean that the first surface faces the second surface.
  • antistatic layer refers to a film layer used to resist electrostatic discharge, that is, a film layer that resists ESD (Electro-Static discharge).
  • it can be a film layer made of coated indium tin oxide material, or it can also be a high-resistance film layer made of coated graphene or other materials.
  • the materials used in the anti-reflection laminate structure in the related art are, for example, Nb 2 O 5 , the impedance of touch screen products made by using this material is relatively low and cannot meet the requirements of touch performance. Moreover, the manufacturing cost of this type of material is high and the manufacturing time is long, resulting in low production efficiency.
  • the anti-reflective laminated structure includes: a substrate having a first refractive index and a first surface; an antistatic layer disposed on one side of the substrate and anti-static layer The electrostatic layer has a second refractive index and a second surface opposite to the first surface; an anti-reflective layer is disposed between the substrate and the anti-static layer, the anti-reflective layer includes at least one composite layer, the composite layer includes a first anti-reflective layer and The second anti-reflective layer, the first anti-reflective layer has a third refractive index, and the second anti-reflective layer has a fourth refractive index; wherein, at most one first anti-reflective layer is bonded to the first surface of the substrate, and at most one The second anti-reflective layer is bonded to the second surface of the antistatic layer, the second refractive index is greater than the first refractive index and the fourth refractive
  • the fourth refractive index of the reflective layer makes the third refractive index of the first anti-reflective layer greater than the first refractive index of the substrate and the fourth refractive index of the second anti-reflective layer, realizing the combination of high refractive index materials and low refractive index materials. , thereby eliminating the impact of the antistatic layer on reflectivity, and effectively reducing or eliminating the reflection of natural light in the range of visible light wavelengths from 380 nanometers to 780 nanometers.
  • FIG. 1 is a schematic cross-sectional structural diagram of an anti-reflection laminated structure according to an exemplary embodiment of the present disclosure.
  • FIG. 2 is a schematic cross-sectional structural diagram of an anti-reflection laminated structure according to another exemplary embodiment of the present disclosure.
  • FIG. 3 is a schematic cross-sectional structural diagram of an anti-reflection laminated structure according to yet another exemplary embodiment of the present disclosure.
  • the anti-reflection laminated structure includes a substrate 10 , an anti-static layer 20 , an anti-reflection layer 30 and a polarizing layer 40 .
  • the anti-static layer 20 is provided on one side of the substrate 10, and the anti-reflective layer 30 is provided between the substrate 10 and the anti-static layer 20.
  • the anti-reflective layer 30 includes at least one composite layer, and each composite layer includes a first anti-reflective layer and a third anti-reflective layer.
  • the second anti-reflective layer, the first anti-reflective layer and the second anti-reflective layer have different refractive indexes, including a first anti-reflective layer with a high refractive index and a second anti-reflective layer with a low refractive index.
  • the composite layer uses high refractive index and The low refractive index material is combined with the antistatic layer 20 so that the antireflective layer can eliminate optical interference, thereby eliminating the impact of the antistatic layer 20 on the reflectivity and reducing the reflectivity.
  • the substrate 10 has a first surface
  • the antistatic layer 20 has a second surface
  • the first surface and the second surface are oppositely arranged, that is, the first surface and the second surface are oppositely arranged.
  • the anti-reflective layer 30 is bonded to the first surface of the substrate 10 and the second surface of the anti-static layer 20 respectively.
  • the anti-reflective layer 30 includes at least one composite layer, at least one first anti-reflective layer of the composite layer is bonded to the first surface of the substrate 10 , and at most one second anti-reflective layer of the composite layer is bonded to the second surface of the antistatic layer 20 fit.
  • the substrate 10 has a first refractive index n 1
  • the antistatic layer 20 has a second refractive index n 2
  • the first antireflection layer has a third refractive index n 3
  • the second antireflection layer has a third refractive index n 3 .
  • Four refractive index n 4 .
  • the second refractive index n 2 is greater than the first refractive index n 1 and the fourth refractive index n 4
  • the third refractive index n 3 is greater than the first refractive index n 1 and the fourth refractive index n 4 .
  • the second refractive index n 2 of the antistatic layer 20 is greater than the first refractive index of the substrate 10 n 1 , thus causing the natural light to have a high reflectivity due to optical interference after passing through the antistatic layer 20 and the substrate 10 .
  • a composite layer is provided between the substrate 10 and the antistatic layer 20 to eliminate the optical interference of natural light after passing through the electrostatic layer 20 and the substrate 10, thereby reducing the reflectivity of natural light.
  • the second refractive index n 2 to be greater than the first refractive index n 1 and the fourth refractive index n 4
  • the third refractive index n 3 to be greater than the first refractive index n 1 and the fourth refractive index n 4
  • the refractive index among the antistatic layer 20 , the second antireflective layer, the first antireflective layer and the substrate 10 sequentially takes the form of high refractive index - low refractive index - high refractive index - low refractive index, that is, high refractive index and low refractive index.
  • the material of the antistatic layer 20 includes, for example, one or more of transparent metal oxide materials, solution-type conductive polymer materials, and sputtering-type inorganic materials.
  • the transparent metal oxide material can be, for example, indium tin oxide material
  • the solution-type conductive polymer material can be, for example, Heraeus-polyethylenedioxythiophene (Hereaus-PEDOT)
  • the sputtering-type inorganic material can be, for example, graphite oxide, Mixtures of tin oxide, zinc oxide, aluminum oxide, antimony oxide, etc. with surfactants and cross-linking agents.
  • a high-resistance film can be formed through solution-type conductive polymer materials or sputtering-type inorganic materials. The resistance of the high-resistance film is between 10 8 and 10 9 ohms.
  • the thickness of the first anti-reflective layer of the composite layer is less than or equal to the thickness of the second anti-reflective layer.
  • the thickness of the first anti-reflective layer refers to the dimension in a direction perpendicular to the first surface of the substrate 10 .
  • the material for making the first anti-reflective layer in the composite layer includes SiN x
  • the material for making the second anti-reflective layer in the composite layer includes SiO 2 .
  • the first refractive index n 1 of the substrate 10 is 1.45 to 1.55, the second refractive index is 1.50 to 1.90, the third refractive index is 1.80 to 2.30, and the fourth refractive index is 1.44 to 1.52.
  • the anti-reflective layer includes a plurality of composite layers, and the thickness of the composite layer close to the substrate is less than or equal to the thickness of the composite layer close to the electrostatic layer.
  • two or more composite layers may be provided, and the thickness of the composite layer tends to decrease from the direction closer to the electrostatic layer toward the substrate.
  • the first anti-reflective layer in the composite layer has a thickness of 5 nanometers to 65 nanometers
  • the second anti-reflective layer in the composite layer has a thickness of 40 nanometers to 80 nanometers.
  • the number of composite layers and the thickness of the first anti-reflective layer and the thickness of the second anti-reflective layer are adjusted according to actual needs, for example, determined according to the first refractive index, the second refractive index, the third refractive index and the fourth refractive index.
  • the number of composite layers and the thickness of the first anti-reflective layer and the second anti-reflective layer in the composite layer are adjusted according to actual needs, for example, determined according to the first refractive index, the second refractive index, the third refractive index and the fourth refractive index.
  • the thickness of the antistatic layer 20 is set in the range of 14 nanometers to 30 nanometers.
  • the thickness of the antistatic layer 20 can be adjusted according to actual production needs.
  • Figure 4 is a schematic diagram of the refraction of incident light passing through the anti-reflective layer of the anti-reflective laminate structure according to an exemplary embodiment of the present disclosure.
  • the structural design principle of the anti-reflection laminated structure of the embodiment of the present disclosure will be described in detail below with reference to FIG. 4 .
  • the incident light enters the medium B from the medium A with the refractive index n a .
  • the first reflected light re-enters the medium A and generates a second reflection. and transmission.
  • a projected ray enters medium C and is reflected.
  • the incident angle of the incident light entering from medium A is ⁇ 0
  • the refraction angle after entering medium B is ⁇ 1
  • the refraction angle after entering medium C again is ⁇ 2 .
  • the refractive index of medium A, medium B, medium C and medium D are na, n b , n c and n d respectively.
  • the reflection coefficient of light after passing through medium B and medium C can be calculated by the following formula, where the thicknesses of medium B and medium C are known to be h b and h c respectively:
  • the reflection coefficient for medium B is:
  • the reflectivity of the anti-reflection laminated structure is low enough to meet the requirements. For example, when the actual medium thickness meets the production requirements In this case, the total reflectivity of the final anti-reflective laminated structure is lower than 5.33%, so that the anti-reflective laminated structure still has a good display effect in an outdoor light environment.
  • the anti-reflective layer 30 of the anti-reflective laminated structure 100 includes a composite layer 31 .
  • the composite layer 31 includes a first anti-reflective layer 311 and a second anti-reflective layer 312.
  • the first anti-reflective layer 311 is bonded to the first surface of the substrate 10 (the upper surface of the substrate 10 in FIG. 1), and the second anti-reflective layer 312 It is bonded to the second surface of the antistatic layer 20 (the lower surface of the antistatic layer 20 in FIG. 1 ).
  • the material used to make the first anti-reflective layer is different from the material used to make the second anti-reflective layer.
  • the first anti-reflection layer is made of SiN x material
  • the second anti-reflection layer is made of SiO 2 material.
  • the first refractive index n 1 of the substrate 10 may be 1.5
  • the second refractive index n 2 of the anti-static layer 20 may be 1.9
  • the third refractive index n 3 of the first anti-reflective layer 311 may be 1.8
  • the second anti-reflective layer 20 may have a refractive index n 1.
  • the fourth refractive index n 4 of 312 may be 1.45.
  • the thickness of the first anti-reflective layer 311 and the thickness of the second anti-reflective layer 312 are the same, and the thickness of the first anti-reflective layer 311 is set in the range of 5 nanometers to 65 nanometers.
  • the thickness of the first anti-reflective layer 311 is set to is 50 nanometers
  • the thickness of the second anti-reflective layer 312 is set in the range of 40 nanometers to 80 nanometers.
  • the thickness of the second anti-reflective layer 312 is 50 nanometers.
  • the thickness of the antistatic layer 20 is set in the range of 14 nanometers to 30 nanometers, for example, the thickness of the antistatic layer 20 is 16 nanometers.
  • the anti-reflective laminated structure of this embodiment is simulated and verified based on the design principles of the anti-reflective laminated structure described above, and it is determined that the reflectivity R IM of the film layer composed of the composite layer 31 and the anti-static layer 20 of the anti-reflective laminated structure is: 0.76%.
  • the total reflectance R total of the film layer composed of the composite layer 31, the antistatic layer 20 and the polarizing layer 40 of the anti-reflective laminated structure is 5.07%. Thereby achieving better anti-reflective effect.
  • the first refractive index n 1 of the substrate 10 is determined to be 1.5
  • the second refractive index n 2 of the antistatic layer 20 is determined to be 1.9
  • the third refractive index n 3 of the first anti-reflective layer 311 may be 1.85
  • the fourth refractive index n 4 of the secondary anti-reflective layer 312 may be 1.45, when the thickness of each film layer adopts the same size as the above embodiment.
  • the reflectance R IM of the film layer composed of the composite layer 31 and the antistatic layer 20 of the anti-reflective laminated structure is 1.29%.
  • the total reflectance R total is 5.26%.
  • the third refractive index n 3 of the first anti-reflection layer can be 1.8, with a minimum total reflectance R total of 5.07%, That is, when there is only one composite layer, the minimum total reflectivity can be achieved, thereby improving the anti-reflective effect of the anti-reflective laminated structure.
  • the thickness of the first anti-reflection layer and the second anti-reflection layer can be adjusted according to actual needs.
  • the minimum thickness of the first anti-reflection layer can be 5 nanometers
  • the thickness of the second anti-reflection layer can be adjusted to 5 nanometers.
  • the minimum thickness of the anti-reflective layer can be 40 nanometers.
  • the anti-reflective layer 30 of the anti-reflective laminated structure 200 includes two composite layers, illustratively, including a first composite layer close to the substrate 10 layer 31 and a second composite layer 32 adjacent to the antistatic layer 20 .
  • the first composite layer 31 includes a first anti-reflective layer 311 and a second anti-reflective layer 312
  • the second composite layer 32 includes a first anti-reflective layer 321 and a second anti-reflective layer 322 .
  • the first anti-reflective layer 311 of the first composite layer 31 is bonded to the first surface of the substrate 10
  • the second anti-reflective layer 322 of the second composite layer 32 is bonded to the second surface of the antistatic layer 20 .
  • the second anti-reflective layer 312 of 31 is bonded to the first anti-reflective layer 321 of the second composite layer 32 .
  • the first anti-reflection layer and the second anti-reflection layer in the first composite layer 31 and the second composite layer 32 are made of the same material.
  • the first anti-reflection layer is made of SiN x material
  • the first anti-reflection layer is made of SiN x material.
  • the secondary anti-reflective layer uses SiO 2 material.
  • the first refractive index n 1 of the substrate 10 is determined to be 1.5
  • the second refractive index n 2 of the antistatic layer 20 is determined to be 1.9
  • the first anti-reflective layer 311 of the first composite layer 31 and the first anti-reflective layer 311 of the second composite layer 32 are determined to be 1.5.
  • the third refractive index n 3 of the reflective layer 321 is determined to be 1.8
  • the fourth refractive index n 4 of the second anti-reflective layer 312 of the first composite layer 31 and the second anti-reflective layer 322 of the second composite layer 32 is determined to be 1.45.
  • the minimum thickness of the SiN x material formed by the equipment is 50 nanometers.
  • the thicknesses of the first anti-reflective layer 311 of the first composite layer 31 and the first anti-reflective layer 321 of the second composite layer 32 are both set to a minimum value, that is, 50 nanometers.
  • the thickness of the second anti-reflection layer 322 of the second composite layer 32 is set in the range of 50 to 80 nanometers.
  • the thickness of the second anti-reflection layer 312 of the first composite layer 31 is set to 50 nanometers, and the thickness of the second anti-reflection layer 322 of the second composite layer 32 is set to 80 nanometers.
  • the thickness of the second anti-reflection layer 312 of the first composite layer 31 is set to 50 nanometers, and the thickness of the second anti-reflection layer 322 of the second composite layer 32 is set to 75 nanometers.
  • the anti-reflective laminated structure of this embodiment is simulated and verified through the above-mentioned design principles of the anti-reflective laminated structure.
  • the anti-reflective laminated structure is composed of two composite layers, and the first composite layer 31 is The thickness of the anti-reflective layer 311 is 50 nanometers, the thickness of the second anti-reflective layer 312 of the first composite layer 31 is 50 nanometers, the thickness of the first anti-reflective layer 321 of the second composite layer 32 is 50 nanometers, and the thickness of the second composite layer 32 is 50 nanometers.
  • the thickness of the second anti-reflective layer 322 of 32 is 80 nanometers.
  • the reflectance R IM of the film layer composed of the first composite layer 31 , the second composite layer 32 and the antistatic layer 20 of the anti-reflection laminated structure is 0.08%.
  • the total reflectance R total of the film layer composed of the first composite layer 31, the second composite layer 32, the antistatic layer 20 and the polarizing layer 40 of the anti-reflective laminated structure is 5.15%. Thereby achieving better anti-reflective effect.
  • the anti-reflective laminated structure of this embodiment is simulated and verified through the design principle of the anti-reflective laminated structure described above.
  • the anti-reflective laminated structure is composed of two composite layers, and the first composite layer
  • the thickness of the first anti-reflective layer 311 of 31 is 50 nanometers
  • the thickness of the second anti-reflective layer 312 of the first composite layer 31 is 50 nanometers
  • the thickness of the first anti-reflective layer 321 of the second composite layer 32 is 50 nanometers.
  • the thickness of the second anti-reflective layer 322 of the second composite layer 32 is 75 nanometers, the third refractive index n 3 of the first anti-reflective layer is 1.85, and the refractive index n 4 of the second anti-reflective layer is 1.45. It is determined that the reflectance R IM of the film layer composed of the first composite layer 31 , the second composite layer 32 and the antistatic layer 20 of the anti-reflection laminated structure is 0.32%. The total reflectance R total of the film layer composed of the first composite layer 31, the second composite layer 32, the antistatic layer 20 and the polarizing layer 40 of the anti-reflective laminated structure is 5.23%.
  • the third refractive index n 3 of the first anti-reflection layer is determined to be 1.8
  • the reflective laminated structure has a minimum total reflectance R total of 5.07%, that is, when the anti-reflective laminated structure has two composite layers, the first anti-reflective layer can achieve the minimum total reflectivity when the third refractive index n 3 is 1.8 , thereby improving the anti-reflective effect of the anti-reflective laminated structure.
  • the composite layers by arranging the composite layers into a laminated structure with different refractive indexes, while making the thickness of the composite layer close to the substrate less than or equal to the thickness of the composite layer close to the antistatic layer, it is possible to reduce the incidence of ambient light to The reflectivity of the anti-reflective layer enables a display device with an anti-reflective laminated structure to have a better display effect.
  • the anti-reflective layer 30 of the anti-reflective laminated structure 300 includes three composite layers, illustratively, including a first composite layer close to the substrate 10 layer 31 , a third composite layer 33 adjacent to the antistatic layer 20 and a second composite layer 32 located between the first composite layer 31 and the third composite layer 33 .
  • the first composite layer 31 includes a first anti-reflective layer 311 and a second anti-reflective layer 312
  • the second composite layer 32 includes a first anti-reflective layer 321 and a second anti-reflective layer 322
  • the third composite layer 33 includes a first anti-reflective layer 311 and a second anti-reflective layer 312 .
  • the first anti-reflective layer 311 of the first composite layer 31 is bonded to the first surface of the substrate 10
  • the second anti-reflective layer 332 of the third composite layer 33 is bonded to the second surface of the antistatic layer 20 .
  • the thickness of the first anti-reflective layer and the second anti-reflective layer in each composite layer are set to the same size, for example, the thickness is set to 50 nanometers, where the first anti-reflective layer
  • the third refractive index n 3 of the reflective layer is 1.8.
  • the anti-reflective laminated structure of this embodiment is simulated and verified based on the design principles of the anti-reflective laminated structure described above, when the anti-reflective laminated structure is composed of three composite layers. It is determined that the reflectance R IM of the film layer composed of the first composite layer 31 , the second composite layer 32 , the third composite layer 33 and the antistatic layer 20 of the anti-reflection laminated structure is 0.24%.
  • the total reflectance R total of the film layer composed of the first composite layer 31, the second composite layer 32, the antistatic layer 20 and the polarizing layer 40 of the anti-reflective laminated structure is 5.20%.
  • the anti-reflection laminated structure includes three composite layers.
  • the thickness is 50 nanometers
  • the third refractive index of the first anti-reflection layer is determined to be 1.85, through the above
  • the design principle of the anti-reflective laminated structure is simulated and verified for the anti-reflective laminated structure of this embodiment. It is determined that the reflectance R IM of the film layer composed of the first composite layer 31 , the second composite layer 32 , the third composite layer 33 and the antistatic layer 20 of the anti-reflection laminated structure is 0.37%.
  • the total reflectance R total of the film layer composed of the first composite layer 31, the second composite layer 32, the antistatic layer 20 and the polarizing layer 40 of the anti-reflective laminated structure is 5.24%.
  • the third refractive index n 3 of the first anti-reflection layer is determined to be 1.8
  • the reflective laminated structure has a minimum total reflectance R total of 5.07%, that is, when the anti-reflective laminated structure has three composite layers, the first anti-reflective layer can achieve the minimum total reflectivity when the third refractive index n 3 is 1.8 , thereby improving the anti-reflective effect of the anti-reflective laminated structure.
  • the anti-reflective layer includes a first composite layer close to the substrate, a third composite layer close to the antistatic layer, and a second composite layer located between the first composite layer and the third composite layer,
  • the thickness of the first composite layer is less than or equal to the thickness of the second composite layer
  • the thickness of the second composite layer is less than or equal to the thickness of the third composite layer.
  • the reflectivity of the incident light after entering the anti-reflection layer can be reduced, thereby achieving anti-reflection Reflective laminated structure has good anti-reflective effect.
  • the anti-reflective laminated structure of the embodiment of the present disclosure also includes a polarizing layer 40 disposed on the side of the antistatic layer 20 away from the substrate 10 , and the polarizing layer 40 has The fifth refractive index n 5 , the fifth refractive index n 5 is smaller than the second refractive index n 2 of the antistatic layer 20 , so that the film layer structure in the anti-reflective laminated structure presents a combination of high refractive index and low refractive index, Thereby reducing or eliminating the effect of reflection and achieving minimum reflectivity.
  • the fifth refractive index n 5 is in the range of 1.45 to 1.55, such as 1.52.
  • the first anti-reflective layer is made of SiN x material, which has different refractive index under different manufacturing processes.
  • the first anti-reflective layer containing SiN The refractive index is 1.8
  • the first anti-reflective layer containing SiN x manufactured using a high-temperature film forming process has a refractive index of 1.85.
  • the optimal effect of eliminating reflection can be achieved by determining the refractive index of the first anti-reflection layer to 1.8, and at the same time Manufactured using a low-temperature film-forming process, which effectively reduces manufacturing costs.
  • FIG. 5 is a flowchart of a method of manufacturing an anti-reflective laminated structure according to an exemplary embodiment of the present disclosure.
  • the process S100 of the manufacturing method of the anti-reflection laminated structure includes operations S110 to S130.
  • a substrate is formed having a first refractive index and a first surface.
  • the substrate can be a color filter glass substrate.
  • the substrate has different refractive indexes depending on the manufacturing process and manufacturing materials.
  • the refractive index of the substrate in this embodiment is in the range of 1.45 to 1.55, for example, the refractive index is 1.50. .
  • an anti-reflective layer is formed on one side of the substrate, the anti-reflective layer includes at least one composite layer, the composite layer includes a first anti-reflective layer and a second anti-reflective layer, the first anti-reflective layer has a third refractive index, The second anti-reflective layer has a fourth refractive index.
  • the composite layer of the anti-reflective layer when forming the composite layer of the anti-reflective layer, different formation processes and materials are used, so that the first anti-reflective layer and the second anti-reflective layer of the composite layer have different refractive indexes, thereby achieving different anti-reflective effect.
  • the first anti-reflective layer is made of SiN An anti-reflective layer.
  • SiO 2 material is used to form the second anti-reflection layer.
  • multiple composite layers can be formed through different processes, such as one composite layer, two composite layers, three composite layers, or other numbers of composite layers.
  • the number of composite layers can be based on actual anti-reflection requirements. Performance needs to be tuned.
  • an anti-static layer is formed on a side of the anti-reflective layer away from the substrate, the anti-static layer has a second refractive index and a second surface opposite to the first surface, and at most one first anti-reflective layer is in contact with the substrate.
  • the first surface is bonded, at most one second anti-reflective layer is bonded to the second surface of the antistatic layer, the second refractive index is greater than the first refractive index and the fourth refractive index, and the third refractive index is greater than the first refractive index index and the fourth refractive index.
  • an anti-static layer is formed on a side of the anti-reflective layer away from the substrate. Since the refractive index of the anti-static layer is higher than the refractive index of the substrate, by disposing it between the substrate and the anti-static layer.
  • the anti-reflective layer composed of a composite layer combines high-refractive index and low-refractive index materials to reduce or eliminate the reflection of natural light, thereby reducing reflectivity.
  • the method of manufacturing the anti-reflective layer further includes forming a polarizing layer on a side of the anti-static layer away from the substrate.
  • an anti-reflective laminated structure manufactured by the anti-reflective laminated structure manufacturing method of the embodiment of the present disclosure has a first anti-reflective layer and a second anti-reflective layer of the laminated structure, and a second refraction of the antistatic layer
  • the third refractive index is greater than the first refractive index of the substrate and the fourth refractive index of the second anti-reflective layer.
  • the third refractive index of the first anti-reflective layer is greater than the first refractive index of the substrate and the third refractive index of the second anti-reflective layer.
  • Quad refractive index realizes the combination of high refractive index materials and low refractive index materials, thereby eliminating the impact of the antistatic layer on reflectivity, effectively reducing or eliminating the reflection of natural light in the range of visible light wavelengths from 380 nanometers to 780 nanometers. .
  • FIG. 6 is a schematic cross-sectional view of a display panel according to an exemplary embodiment of the present disclosure.
  • a display panel 400 is also provided.
  • the display panel includes an array substrate 401 , a color filter substrate 403 , a liquid crystal layer 402 , and an anti-reflective stacked structure 100 .
  • the color filter substrate 403 and the array substrate 401 are arranged opposite to each other.
  • the liquid crystal layer 402 is disposed between the array substrate 401 and the color filter substrate 403.
  • the anti-reflective laminated structure 100 is disposed on the side of the color filter substrate 403 away from the array substrate 401 .
  • the display panel 400 includes a rear polarizer 404 on the side of the array substrate 401 away from the anti-reflective laminate structure 100.
  • the liquid crystal layer 402 may include, for example, a liquid crystal material layer (LC layer) and an overcoat layer (OC) covering the liquid crystal material layer.
  • the anti-reflective laminated structure 100 is the anti-reflective laminated structure according to the above.
  • the color filter substrate 403 includes a base substrate, and the substrate of the anti-reflection laminated structure includes the base substrate of the color filter substrate.
  • the anti-reflection laminated structure is disposed on the color filter substrate 403 to achieve an anti-reflection effect.
  • FIG. 7 is a schematic diagram of a display device according to an exemplary embodiment of the present disclosure.
  • the display device 500 includes the display panel 400 described above.
  • the above-described display device 500 may be any device that displays images, whether moving (eg, video) or fixed (eg, still images), and whether text or text. More specifically, it is contemplated that the embodiments may be implemented in or associated with a variety of electronic devices, such as, but not limited to, in-vehicle displays, mobile phones, wireless devices, personal data assistants (PDA), handheld or portable computer, GPS receiver/navigator, camera, MP4 video player, video camera, game console, watch, clock, calculator, TV monitor, flat panel display, computer monitor, automotive monitor (e.g., odometer display, etc.), navigator, cockpit controller and/or display, display of camera view (e.g., display of rear view camera in vehicle), electronic photo, electronic billboard or sign, projector, construction Structure, packaging and aesthetic structure (for example, for the display of an image of a piece of jewelry) etc.
  • PDA personal data assistants
  • GPS receiver/navigator GPS receiver/navigator
  • camera MP4 video player
  • video camera game console

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)

Abstract

提供一种抗反射层叠结构及其制造方法、显示面板、显示装置。该抗反射层叠结构包括:基板,具有第一折射率和第一表面;抗静电层,设置在所述基板的一侧,所述抗静电层具有第二折射率以及与所述第一表面相对的第二表面;抗反射层,设置在所述基板和所述抗静电层之间,所述抗反射层包括至少一个复合层,所述复合层包括第一抗反射层和第二抗反射层,所述第一抗反射层具有第三折射率,所述第二抗反射层具有第四折射率;至多一个第一抗反射层与所述基板的第一表面贴合,至多一个第二抗反射层与所述抗静电层的第二表面贴合,所述第二折射率大于所述第一折射率和所述第四折射率,所述第三折射率大于所述第一折射率和所述第四折射率。

Description

抗反射层叠结构及其制造方法、显示面板、显示装置 技术领域
本公开涉及显示技术领域,具体而言,涉及一种抗反射层叠结构及其制造方法、显示面板、显示装置。
背景技术
随着显示技术的发展,显示器件应用于生活中的各个方面,例如汽车、笔记本、手机等产品。不同的显示器件对于不同的环境要求不一样,例如,对于车载显示设备等需要在户外使用的显示器件,需要在光线充足的室外具有较好的可读性,相关技术中的显示器的面板的抗反射性能较差,无法满足室外光线的抗反射性能,此外,其他的抗反射层叠结构的制造成本较高,制造耗时长,无法有效提高产品的生产效率。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域技术人员已知的现有技术的信息。
发明内容
在一个方面,提供一种抗反射层叠结构,包括:
基板,具有第一折射率和第一表面;
抗静电层,设置在所述基板的一侧,所述抗静电层具有第二折射率以及与所述第一表面相对的第二表面;
抗反射层,设置在所述基板和所述抗静电层之间,所述抗反射层包括至少一个复合层,所述复合层包括第一抗反射层和第二抗反射层,所述第一抗反射层具有第三折射率,所述第二抗反射层具有第四折射率;
其中,至多一个第一抗反射层与所述基板的第一表面贴合,至多一个第二抗反射层与所述抗静电层的第二表面贴合,
所述第二折射率大于所述第一折射率和所述第四折射率,所述第三折射率大于所述第一折射率和所述第四折射率。
在本公开的一些示例性实施例中,所述第一抗反射层的厚度小于或等于所述第二抗反射层的厚度。
在本公开的一些示例性实施例中,制造所述抗静电层的材料包括透明金属氧化物材料、溶液型导电高分子材料、溅射型无机材料中的至少一种。
在本公开的一些示例性实施例中,所述抗反射层包括多个所述复合层,靠近所述基板的复合层的厚度小于或等于靠近所述抗静电层的复合层的厚度。
在本公开的一些示例性实施例中,所述抗反射层包括靠近所述基板的第一复合层和靠近所述抗静电层的第二复合层;所述第一复合层的的第一抗反射层与所述基板的第一表面贴合,所述第二复合层的第二抗反射层与所述第二表面贴合。
在本公开的一些示例性实施例中,所述抗反射层包括靠近所述基板的第一复合层,靠近所述抗静电层的第三复合层以及位于所述第一复合层和所述第三复合层之间的第二复合层,
其中,所述第一复合层的厚度小于或等于所述第二复合层的厚度,所述第二复合层的厚度小于或等于所述第三复合层的厚度。
在本公开的一些示例性实施例中,所述第一折射率为1.45至1.55;所述第二折射率为1.50至1.90;所述第三折射率为1.80至2.30;所述第四折射率为1.44至1.52。
在本公开的一些示例性实施例中,制造所述第一抗反射层的材料和制造所述第二抗反射层的材料不相同。
在本公开的一些示例性实施例中,制造所述第一抗反射层的材料包括SiN x;制造所述第二抗反射层的材料包括SiO 2
在本公开的一些示例性实施例中,所述的抗反射层叠结构还包括:偏光层,设置在所述抗静电层远离所述基板的一侧。
在本公开的一些示例性实施例中,所述偏光层具有第五折射率,所述第五折射率小于所述第二折射率。
在本公开的一些示例性实施例中,所述第五折射率为1.45至1.55。
在本公开的一些示例性实施例中,所述第一抗反射层的厚度为5纳米至65纳米;所述第二抗反射层的厚度为40纳米至80纳米。
在本公开的一些示例性实施例中,所述抗静电层的厚度为14纳米至30纳米。
在本公开的一些示例性实施例中,所述透明金属氧化物材料包括氧化铟锡;所述溶液型导电高分子材料包括贺利氏-聚乙烯二氧噻吩;所述溅射型无机材料包括氧化石墨、氧化锡、氧化锌、氧化铝、氧化锑与表面活性剂和交联剂的混合物。
在本公开的一些示例性实施例中,所述基板包括彩色滤光片。
本公开的另一方面,提供了一种抗反射层叠结构的制造方法,该方法包括:
形成基板,所述基板具有第一折射率和第一表面;
在所述基板的一侧形成抗静电层,所述抗静电层具有第二折射率以及与所述第一表面相对的第二表面;
在所述基板的一侧形成抗反射层,所述抗反射层包括至少一个复合层,所述复合层包括第一抗反射层和第二抗反射层,所述第一抗反射层具有第三折射率,所述第二抗反射层具有第四折射率;
在所述抗反射层的远离所述基板的一侧形成抗静电层,所述抗静电层具有第二折射率以及与所述第一表面相对的第二表面;
其中,至多一个第一抗反射层与所述基板的第一表面贴合,至多一个第二抗反射层与所述抗静电层的第二表面贴合,
所述第二折射率大于所述第一折射率和所述第四折射率,所述第三折射率大于所述第一折射率和所述第四折射率。
本公开的另一方面,提供了一种显示面板,包括:阵列基板;彩膜基板,所述彩膜基板与所述阵列基板相对设置;设置于所述阵列基板与所述彩膜基板之间的液晶层;抗反射层叠结构,所述抗反射层叠结构设置于所述彩膜基板远离所述阵列基板的一侧,其中,所述抗反射层叠结构为上文所述的抗反射层叠结构。
在本公开的一些示例性实施例中,所述彩膜基板包括衬底基板,所述抗反射层叠结构的基板包括所述彩膜基板的衬底基板。
本公开的又一方面,提供了一种显示装置,包括上文所述的显示面板。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外, 以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1是根据本公开的一个示例性实施例的抗反射层叠结构的截面结构示意图;
图2是根据本公开的另一个示例性实施例的抗反射层叠结构的截面结构示意图;
图3是根据本公开的又一个示例性实施例的抗反射层叠结构的截面结构示意图;
图4是根据本公开的示例性实施例的入射光线通过抗反射层叠结构的抗反射层的折射示意图;
图5是根据本公开的示例性实施例的抗反射层叠结构的制造方法的流程图;
图6是根据本公开示例性实施例的一种显示面板的截面示意图;
图7是根据本公开的示例性实施例的一种显示装置示意图。
需要注意的是,为了清晰起见,在用于描述本公开的实施例的附图中,层、结构或区域的尺寸可能被放大或缩小,即这些附图并非按照实际的比例绘制。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征 可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“电连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“约”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
应当理解的是,当层或元件被称为在另一层或基板上时,可以是该层或元件直接在另一层或基板上,或者也可以是该层或元件与另一层或基板之间存在中间层。
本文中“同层”指的是采用同一成膜工艺形成用于形成特定图形的膜层,然后利用掩模板通过一次构图工艺形成的层结构。根据特定图形的不同,一次构图工艺可能包括多次曝光、显影或刻蚀工艺,而形成的层结构中的特定图形可以是连续的也可以 是不连续的,这些特定图形还可能处于不同的高度或者具有不同的厚度。与之相反地,“异层”指的是分别采用相应的成膜工艺形成用于形成特定图形的膜层,然后利用相应的掩模板通过构图工艺形成的层结构,例如,“两个层结构异层设置”是指两个层结构分别在相应的工艺步骤(成膜工艺和构图工艺)下形成。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
在本公开的实施例中,术语“相对”表示相面对,例如第一表面和第二表面相对例如可以表示第一表面与第二表面相面对。
术语“抗静电层”表示用于抵抗静电释放的膜层,即抵抗ESD(Electro-Static discharge)的膜层。例如可以是涂覆氧化铟锡材料制成膜层,或者也可以是涂覆的石墨烯等材料制成的高阻膜层。
相关技术中,由于不同的显示器件的不同膜层之间具有不同的折射率,自然光在通过不同的膜层时,存在较高的反射率,当自然光的反射率较高导致反射的自然光强度高于显示器件亮度时,用户将无法看清显示器件显示的内容,影响显示器件的可读性,此外,为了获得较好的抗反射效果,相关技术中的抗反射层叠结构所采用的材料例如是Nb 2O 5,采用该材料使的触摸屏产品的阻抗相对较低,不能满足触控性能的要求,并且该类材料的制造成本较高,制造时间较长,导致生产效率低。
为了解决上述问题,本公开的实施例提供了一种抗反射层叠结构,该抗反射层叠结构包括:基板,具有第一折射率和第一表面;抗静电层,设置在基板的一侧,抗静电层具有第二折射率以及与第一表面相对的第二表面;抗反射层,设置在基板和抗静电层之间,抗反射层包括至少一个复合层,复合层包括第一抗反射层和第二抗反射层,第一抗反射层具有第三折射率,第二抗反射层具有第四折射率;其中,至多一个第一抗反射层与所述基板的第一表面贴合,至多一个第二抗反射层与抗静电层的第二表面贴合,第二折射率大于第一折射率和第四折射率,第三折射率大于第一折射率和第四折射率。
根据本公开的实施例,通过设置层叠结构的第一抗反射层和第二抗反射层,并且使抗静电层的第二折射率大于第三折射率大于基板的第一折射率和第二抗反射层的第四折射率,使第一抗反射层的第三折射率大于基板的第一折射率和第二抗反射层的第四折射率,实现高折射率材料和低折射率材料相结合,从而消除抗静电层对反射率的影响的目的,在可见光波长380纳米至780纳米的区间内,有效降低或者消除自然光线的反射。
下面结合图1至图4对本公开实施例的抗反射层叠结构的结构进行详细说明。
图1是根据本公开的一个示例性实施例的抗反射层叠结构的截面结构示意图。图2是根据本公开的另一个示例性实施例的抗反射层叠结构的截面结构示意图。图3是根据本公开的又一个示例性实施例的抗反射层叠结构的截面结构示意图。
在本公开的实施例中,如图1至图3所示,抗反射层叠结构包括基板10、抗静电层20、抗反射层30以及偏光层40。抗静电层20设置在基板10的一侧,抗反射层30设置在基板10和抗静电层20之间,抗反射层30包括至少一个复合层,每个复合层包括第一抗反射层和第二抗反射层,第一抗反射层和第二抗反射层的折射率不相同,包括折射率高的第一抗反射层和折射率地的第二抗反射层,复合层通过高折射率和低折射率材料相结合,从而与抗静电层20相匹配,使抗反射层能够消除光学干涉,从而实现消除抗静电层20对反射率的影响,降低反射率。
在本公开的实施例中,基板10具有第一表面,抗静电层20具有第二表面,第一表面和第二表面相对设置,即第一表面和第二表面相面对设置。抗反射层30分别与基板10的第一表面和抗静电层20的第二表面贴合。抗反射层30包括至少一个复合层,复合层的至多一个第一抗反射层与基板10的第一表面贴合,以及复合层的至多一个第二抗反射层与抗静电层20的第二表面贴合。
在本公开的实施例中,基板10具有第一折射率n 1,抗静电层20具有第二折射率n 2,第一抗反射层具有第三折射率n 3,第二抗反射层具有第四折射率n 4。第二折射率n 2大于第一折射率n 1和第四折射率n 4,第三折射率n 3大于第一折射率n 1和第四折射率n 4
由于基板10的第一折射率n 1和抗静电层20的第二折射率n 2之间的折射率相差较大,抗静电层20的第二折射率n 2大于基板10的第一折射率n 1,从而导致自然光通过抗静电层20以及基板10后,由于光学干涉导致反射率较高。在基板10和抗静电层 20之间设置复合层从而实现消除自然光在通过静电层20和基板10后的光学干涉,从而降低自然光的反射率。
示例性地,通过设置第二折射率n 2大于第一折射率n 1和第四折射率n 4,第三折射率n 3大于第一折射率n 1和第四折射率n 4,从而使抗静电层20、第二抗反射层、第一抗反射层、基板10之间的折射率依次呈现高折射率-低折射率-高折射率-低折射率的形式,即高折射率和低折射率相结合的方式,从而实现减弱或消除自然光在进入抗静电层20、复合层、基板10时产生的光学干涉现象。
在本公开的实施例中,抗静电层20的材料例如包括透明金属氧化物材料、溶液型导电高分子材料、溅射型无机材料中的一种或多种。其中,透明金属氧化物材料例如可以是氧化铟锡材料,溶液型导电高分子材料例如可以是贺利氏-聚乙烯二氧噻吩(Hereaus-PEDOT),溅射型无机材料例如可以是氧化石墨、氧化锡、氧化锌、氧化铝、氧化锑等与表面活性剂和交联剂的混合物。通过溶液型导电高分子材料或者溅射型无机材料可以形成高阻膜,该高阻膜的阻抗在10 8至10 9欧姆。
在本公开的实施例中,复合层的第一抗反射层的厚度小于或等于第二抗反射层的厚度。第一抗反射层的厚度是指在垂直于基板10的第一表面所在方向的尺寸。复合层的中制造第一抗反射层的材料包括SiN x,制造复合层中第二抗反射层的材料包括SiO 2
在本公开的实施例中,基板10的第一折射率n 1为1.45至1.55,第二折射率为1.50至1.90,第三折射率为1.80至2.30,第四折射率为1.44至1.52。
在本公开的实施例中,抗反射层包括多个复合层,靠近基板的复合层的厚度小于或等于靠近静电层的复合层的厚度。
示例性地,复合层可以设置为两个或两个以上,复合层的厚度从靠近静电层朝向靠近基板的方向,呈现减小的趋势。
复合层中的第一抗反射层的厚度为5纳米至65纳米,复合层中的第二抗反射层的厚度为40纳米至80纳米。复合层的数目以及第一抗反射层的厚度和第二抗反射层的厚度根据实际的需要进行调整,例如根据第一折射率、第二折射率、第三折射率以及第四折射率来确定复合层的数目以及复合层中第一抗反射层和第二抗反射层的厚度。
在本公开的实施例中,抗静电层20的厚度设置为14纳米至30纳米的范围。抗静电层20的厚度可以根据实际的生产需要进行调整。
图4是根据本公开的示例性实施例的入射光线通过抗反射层叠结构的抗反射层的 折射示意图。下面结合图4对本公开实施例的抗反射层叠结构的结构设计原理进行详细说明。
相关技术中,已知光是一种电磁波,它有波的特征,当一列波与和其频率相同的波相遇时,会发生干涉。根据相干涉的两列波的初始相位不同,会导致干涉出来的波的振幅不同,即发生波的叠加或者波的相长干涉和波的相消干涉,造成波的强度增加或者波的强度减弱的现象。对于薄膜干涉而言,在反射和透射时会出现多列反射、透射波,但他们的强度会逐渐减弱,所以只需要考虑在薄膜间反射一次的反射波和反射了两次的透射波。这两列波与原波之间会产生一定的相位差,通过调整薄膜的厚度来调整这个相位差,从而实现增加波的投射效果或者增加反射效果。
下面结合图4进行说明,如图4所示,入射光线从折射率为n a的介质A中进入介质B中,经过一次反射和一次透射,一次反射光线重新进入介质A中后产生二次反射和透射。一次投射光线进入介质C中,并产生反射。其中,入射光线从介质A进入的入射角度为θ 0,进入介质B中的折射角为θ 1,再次进入介质C后的折射角为θ 2。其中,介质A、介质B、介质C和介质D的折射率分别为n a、n b、n c、n d
可以通过以下公式计算得到光线经过介质B和介质C后的反射系数,其中已知介质B和介质C的厚度分别为h b和h c
对于介质B的反射系数
Figure PCTCN2022091418-appb-000001
其中,
Figure PCTCN2022091418-appb-000002
Figure PCTCN2022091418-appb-000003
Figure PCTCN2022091418-appb-000004
从而得出介质A的反射率为:
Figure PCTCN2022091418-appb-000005
对于介质B的反射系数为:
Figure PCTCN2022091418-appb-000006
Figure PCTCN2022091418-appb-000007
r 2′=r 1
Figure PCTCN2022091418-appb-000008
从而得出介质B和介质C的整体的反射率为:
Figure PCTCN2022091418-appb-000009
即通过确定多个介质干涉后的折射率,并根据每个介质的折射率设计对应的介质的厚度,从而使抗反射层叠结构的反射率低满足要求,例如在根据实际介质厚度满足生产要求的情况下,得到的最终的抗反射层叠结构的总的反射率低于5.33%,使抗反射层叠结构在室外光的环境下仍然具有良好的显示效果。
在本公开的一个实施例中,如图1所示,在本实施例中,抗反射层叠结构100的抗反射层30包括一个复合层31。复合层31包括第一抗反射层311和第二抗反射层312,第一抗反射层311与基板10的第一表面(图1中基板10的上表面)贴合,第二抗反射层312与抗静电层20的第二表面(图1中抗静电层20的下表面)贴合。
在本实施例中,为了满足折射率和制造成本的需求。制造第一抗反射层的材料和制造第二抗反射层的材料不相同。
示例性地,第一抗反射层选用SiN x材料,第二抗反射层选用SiO 2材料。基板10的第一折射率n 1可以为1.5,抗静电层20的第二折射率n 2可以为1.9,第一抗反射层311的第三折射率n 3可以为1.8,第二抗反射层312的第四折射率n 4可以为1.45。其中第一抗反射层311的厚度和第二抗反射层312的厚度相同,第一抗反射层311厚度均设置在5纳米至65纳米的范围,例如,第一抗反射层311的厚度均设置为50纳米,第二抗反射层312的厚度均设置在40纳米至80纳米的范围,例如第二抗反射层312的厚度为50纳米。抗静电层20的厚度设置在14纳米至30纳米的范围,例如抗静电层20的厚度为16纳米。
通过上文所述的抗反射层叠结构的设计原理对本实施例的抗反射层叠结构进行模拟验证,确定该抗反射层叠结构的复合层31以及抗静电层20组成的膜层的反射率R IM 为0.76%。该抗反射层叠结构的复合层31、抗静电层20以及偏光层40组成的膜层的总反射率R total为5.07%。从而实现较好的抗反射的效果。
示例性地,基板10的第一折射率n 1确定为1.5,抗静电层20的第二折射率n 2确定为1.9,第一抗反射层311的第三折射率n 3可以为1.85,第二抗反射层312的第四折射率n 4可以为1.45,当各个膜层的厚度与上述实施例采用相同尺寸。则该抗反射层叠结构的复合层31以及抗静电层20组成的膜层的反射率R IM为1.29%,该抗反射层叠结构的复合层31、抗静电层20以及偏光层40组成的膜层的总反射率R total为5.26%。
根据本实施例,当第一抗反射层的厚度最小值为50纳米时,则第一抗反射层的第三折射率n 3可以为1.8时,具有最小的总反射率R total为5.07%,即在只有一个复合层时,能够实现最小的总反射率,从而提升抗反射层叠结构的抗反射效果。
在本公开的其他实施例中,第一抗反射层和第二抗反射层的厚度可以根据实际的需要进行调整,例如,第一抗反射层的厚度最小值可以取值为5纳米,第二抗反射层的厚度最小值可以取值为40纳米。
在本公开的另一个实施例中,如图2所示,在本实施例中,抗反射层叠结构200的抗反射层30包括两个复合层,示例性地,包括靠近基板10的第一复合层31以及靠近抗静电层20的第二复合层32。第一复合层31包括第一抗反射层311和第二抗反射层312,第二复合层32包括第一抗反射层321和第二抗反射层322。第一复合层31的第一抗反射层311与基板10的第一表面贴合,第二复合层32的第二抗反射层322与抗静电层20的第二表面贴合,第一复合层31的第二抗反射层312与第二复合层32的第一抗反射层321相贴合。
在本实施例中,第一复合层31和第二复合层32中的第一抗反射层和第二抗反射层的制造材料采用相同材料制造,例如第一抗反射层采用SiN x材料,第二抗反射层采用SiO 2材料。基板10的第一折射率n 1确定为1.5,抗静电层20的第二折射率n 2确定为1.9,第一复合层31的第一抗反射层311以及第二复合层32的第一抗反射层321的第三折射率n 3确定为1.8,第一复合层31的第二抗反射层312以及第二复合层32的第二抗反射层322的第四折射率n 4确定为1.45。在实际的生产制造过程中,由于SiN x材料的厚度是根据设备的实际极限值来确定的,例如,在本实施例中,设备形成SiN x材料的厚度的最小值为50纳米,对此,为了满足实际的生产需求,降低制造成本,第一复合层31的第一抗反射层311和第二复合层32的第一抗反射层321的厚度均设置 为最小值,即可以为50纳米。通过进一步调整第二复合层32的第二抗反射层322的厚度,从而实现将抗反射层叠结构的反射率降到最低值。在本实施例中,第二抗反射层的厚度设置在50至80纳米的范围内。例如,第一复合层31的第二抗反射层312的厚度设置为50纳米,第二复合层32的第二抗反射层322的厚度设置为80纳米。又例如,第一复合层31的第二抗反射层312的厚度设置为50纳米,第二复合层32的第二抗反射层322的厚度设置为75纳米。
在一个实施例中,通过上述的抗反射层叠结构的设计原理对本实施例的抗反射层叠结构进行模拟验证,当抗反射层叠结构由两层复合层构成时,并且第一复合层31的第一抗反射层311的厚度为50纳米,第一复合层31的第二抗反射层312的厚度为50纳米,第二复合层32的第一抗反射层321的厚度为50纳米,第二复合层32的第二抗反射层322的厚度为80纳米。确定该抗反射层叠结构的第一复合层31、第二复合层32以及抗静电层20组成的膜层的反射率R IM为0.08%。该抗反射层叠结构的第一复合层31、第二复合层32、抗静电层20以及偏光层40组成的膜层的总反射率R total为5.15%。从而实现较好的抗反射的效果。
在另一实施例中,通过上文所述的抗反射层叠结构的设计原理对本实施例的抗反射层叠结构进行模拟验证,当抗反射层叠结构由两层复合层构成时,并且第一复合层31的第一抗反射层311的厚度为50纳米,第一复合层31的第二抗反射层312的厚度为50纳米,第二复合层32的第一抗反射层321的厚度为50纳米,第二复合层32的第二抗反射层322的厚度为75纳米,第一抗反射层的第三折射率n 3为1.85,第二抗反射层的折射率n 4为1.45。确定该抗反射层叠结构的第一复合层31、第二复合层32以及抗静电层20组成的膜层的反射率R IM为0.32%。该抗反射层叠结构的第一复合层31、第二复合层32、抗静电层20以及偏光层40组成的膜层的总反射率R total为5.23%。
根据本实施例,当抗反射层叠结构由两层复合层构成时,且第一抗反射层的厚度最小值为50纳米时,第一抗反射层的第三折射率n 3确定为1.8时,反射层叠结构具有最小的总反射率R total为5.07%,即在抗反射层叠结构具有两个复合层时,第一抗反射层在第三折射率n 3为1.8时能够实现最小的总反射率,从而提升抗反射层叠结构的抗反射效果。
根据本公开的实施例,通过将复合层设置成具有不同折射率的层叠结构,同时使靠近基板的复合层的厚度小于或等于靠近抗静电层的复合层的厚度,可以实现减少环 境光入射至抗反射层的反射率,从而使具有抗反射层叠结构的显示器件具有更优的显示效果。
在本公开的又一个实施例中,如图3所示,在本实施例中,抗反射层叠结构300的抗反射层30包括三个复合层,示例性地,包括靠近基板10的第一复合层31,靠近抗静电层20的第三复合层33以及位于第一复合层31和第三复合层33之间的第二复合层32。第一复合层31包括第一抗反射层311和第二抗反射层312,第二复合层32包括第一抗反射层321和第二抗反射层322,第三复合层33包括第一抗反射层331和第二抗反射层332。第一复合层31的第一抗反射层311与基板10的第一表面贴合,第三复合层33的第二抗反射层332与抗静电层20的第二表面贴合。
在本实施例中,三个复合层中,每个复合层中的第一抗反射层和第二抗反射层的厚度均设置为相同的尺寸,例如厚度均设置为50纳米,其中第一抗反射层的第三折射率n 3为1.8。通过上文所述的抗反射层叠结构的设计原理对本实施例的抗反射层叠结构进行模拟验证,当抗反射层叠结构由三层复合层构成时。确定该抗反射层叠结构的第一复合层31、第二复合层32、第三复合层33以及抗静电层20组成的膜层的反射率R IM为0.24%。该抗反射层叠结构的第一复合层31、第二复合层32、抗静电层20以及偏光层40组成的膜层的总反射率R total为5.20%。
在另一示例性实施例中,抗反射层叠结构包括三个复合层,当厚度尺寸均相同时例如厚度均为50纳米,第一抗反射层的第三折射率确定为1.85时,通过上文所述的抗反射层叠结构的设计原理对本实施例的抗反射层叠结构进行模拟验证。确定该抗反射层叠结构的第一复合层31、第二复合层32、第三复合层33以及抗静电层20组成的膜层的反射率R IM为0.37%。该抗反射层叠结构的第一复合层31、第二复合层32、抗静电层20以及偏光层40组成的膜层的总反射率R total为5.24%。
根据本实施例,当抗反射层叠结构由三层复合层构成时,且第一抗反射层的厚度最小值为50纳米时,第一抗反射层的第三折射率n 3确定为1.8时,反射层叠结构具有最小的总反射率R total为5.07%,即在抗反射层叠结构具有三个复合层时,第一抗反射层在第三折射率n 3为1.8时能够实现最小的总反射率,从而提升抗反射层叠结构的抗反射效果。
在本公开的示例性实施例中,抗反射层包括靠近基板的第一复合层,靠近抗静电层的第三复合层以及位于第一复合层和第三复合层之间的第二复合层,第一复合层的 厚度小于或等于第二复合层的厚度,第二复合层的厚度小于或等于第三复合层的厚度。
根据本公开的实施例,通过将靠近静电层的复合层至靠近基板的复合层的厚度设置为逐渐减小的层叠结构,能够使入射光线在进入抗反射层后的反射率降低,从而实现抗反射层叠结构良好的抗反射效果。
在本公开的示例性实施例中,如图1至图3所示,本公开实施例的抗反射层叠结构还包括设置在抗静电层20远离基板10一侧的偏光层40,偏光层40具有第五折射率n 5,第五折射率n 5小于抗静电层20的第二折射率n 2,从而使抗反射层叠结构中的膜层结构呈现高折射率和低折射率相结合的形式,从而降低或者消除反射的效果,达到最小的反射率。
示例性地,第五折射率n 5在1.45至1.55的范围,例如1.52。
在本公开的实施例中,第一抗反射层选用SiN x材料制造,在不同的制造工艺下,其具有不同的折射率,例如选用低温成膜工艺制造的包含SiN x的第一抗反射层的折射率为1.8,采用高温成膜工艺制造的包含SiN x的第一抗反射层的折射率为1.85。
根据上文所述,在制造第一抗反射层的过程中,当最小的厚度尺寸为50纳米时,通过确定第一抗反射层的折射率为1.8可以实现最优的消除反射的效果,同时采用低温成膜工艺制造,有效降低制造成本。
图5是根据本公开的示例性实施例的抗反射层叠结构的制造方法的流程图。
下面结合图5对本公开实施例的抗反射层叠结构的制造方法进行详细说明。
如图5所示,抗反射层叠结构的制造方法的流程S100包括操作S110至操作S130。
在操作S110中,形成基板,基板具有第一折射率和第一表面。
示例性地,基板例如可以是彩色滤光片玻璃基板,基板根据制造工艺和制造材料不同具有不同的折射率,本实施例的基板的折射率在1.45至1.55的范围内,例如折射率为1.50。
在操作S120中,在基板的一侧形成抗反射层,抗反射层包括至少一个复合层,复合层包括第一抗反射层和第二抗反射层,第一抗反射层具有第三折射率,第二抗反射层具有第四折射率。
示例性地,在形成抗反射层的复合层时,通过采用不同的形成工艺和形成材料,从而使复合层的第一抗反射层和第二抗反射层的具有不同的折射率,从而实现不同的抗反射效果。
例如,形成第一抗反射层采用SiN x材料,采用低温成膜工艺制造时,可以得到折射率为1.8的第一抗反射层,采用高温成膜工艺制造时,可以得到折射率为1.85的第一抗反射层。
例如,形成第二抗反射层采用SiO 2材料。
在本公开的实施例中,通过不同的工艺可以形成多个复合层,例如一个复合层、两个复合层、三个复合层或者其他数目的复合层,复合层的数目可以根据实际的抗反射性能需要进行调整。
在操作S130中,在抗反射层的远离基板的一侧形成抗静电层,抗静电层具有第二折射率以及与第一表面相对的第二表面,至多一个第一抗反射层与所述基板的第一表面贴合,至多一个第二抗反射层与所述抗静电层的第二表面贴合,第二折射率大于第一折射率和第四折射率,第三折射率大于第一折射率和第四折射率。
示例性地,在形成抗反射层后,在抗反射层的远离基板的一侧形成抗静电层,由于抗静电层的折射率高于基板的折射率,通过在基板和抗静电层之间设置由复合层构成的抗反射层,使高折射率和低折射率材料相结合的方式,实现减少或消除自然光的反射,从而降低反射率。
在本公开的实施例中,抗反射层的制造方法还包括在抗静电层远离基板的一侧形成偏光层。
根据本公开的实施例,通过本公开实施例的抗反射层叠结构制造方法制造的抗反射层叠结构,具有层叠结构的第一抗反射层和第二抗反射层,并且抗静电层的第二折射率大于第三折射率大于基板的第一折射率和第二抗反射层的第四折射率,第一抗反射层的第三折射率大于基板的第一折射率和第二抗反射层的第四折射率,实现高折射率材料和低折射率材料相结合,从而消除抗静电层对反射率的影响的目的,在可见光波长380纳米至780纳米的区间内,有效降低或者消除自然光线的反射。
图6是根据本公开示例性实施例的一种显示面板的截面示意图。
如图6所示,在本公开的一些实施例中,还提供了一种显示面板400,显示面板包括阵列基板401、彩膜基板403、液晶层402、抗反射层叠结构100。其中,彩膜基板403与阵列基板401相对设置。液晶层402设置于阵列基板401与彩膜基板403之间。抗反射层叠结构100设置于彩膜基板403远离阵列基板401的一侧。
在本实施例中,显示面板400包括阵列基板401远离抗反射层叠结构100一侧的 后偏光片404。液晶层402例如可以包括液晶材料层(LC layer)和覆盖液晶材料层的覆盖层(OC)。
在本公开的实施例中,抗反射层叠结构100为根据上文所述的抗反射层叠结构。彩膜基板403包括衬底基板,抗反射层叠结构的基板包括彩膜基板的衬底基板。根据本公开的实施例,抗反射层叠结构设置在彩膜基板403上,从而实现抗反射的效果。
图7是根据本公开的示例性实施例的一种显示装置示意图。
如图7所示,显示装置500包括上文所述的显示面板400。
本公开的上述实施例中的显示装置500所能实现的有益效果,与上述显示面板400以及抗反射层叠结构所能达到的有益效果相同,此处不再赘述。
上述显示装置500可以是显示不论运动(例如,视频)还是固定(例如,静止图像)的且不论文字还是的图像的任何装置。更明确地说,预期所述实施例可实施在多种电子装置中或与多种电子装置关联,所述多种电子装置例如(但不限于)车载显示器、移动电话、无线装置、个人数据助理(PDA)、手持式或便携式计算机、GPS接收器/导航器、相机、MP4视频播放器、摄像机、游戏控制台、手表、时钟、计算器、电视监视器、平板显示器、计算机监视器、汽车显示器(例如,里程表显示器等)、导航仪、座舱控制器和/或显示器、相机视图的显示器(例如,车辆中后视相机的显示器)、电子相片、电子广告牌或指示牌、投影仪、建筑结构、包装和美学结构(例如,对于一件珠宝的图像的显示器)等。
虽然本公开总体构思的一些实施例已被图示和说明,本领域普通技术人员将理解,在不背离本总体发明构思的原则和精神的情况下,可对这些实施例做出改变,本公开的范围以权利要求和它们的等同物限定。

Claims (20)

  1. 一种抗反射层叠结构,包括:
    基板,具有第一折射率和第一表面;
    抗静电层,设置在所述基板的一侧,所述抗静电层具有第二折射率以及与所述第一表面相对的第二表面;
    抗反射层,设置在所述基板和所述抗静电层之间,所述抗反射层包括至少一个复合层,所述复合层包括第一抗反射层和第二抗反射层,所述第一抗反射层具有第三折射率,所述第二抗反射层具有第四折射率;
    其中,至多一个第一抗反射层与所述基板的第一表面贴合,至多一个第二抗反射层与所述抗静电层的第二表面贴合,
    所述第二折射率大于所述第一折射率和所述第四折射率,所述第三折射率大于所述第一折射率和所述第四折射率。
  2. 根据权利要求1所述的抗反射层叠结构,其中,所述第一抗反射层的厚度小于或等于所述第二抗反射层的厚度。
  3. 根据权利要求2所述的抗反射层叠结构,其中,制造所述抗静电层的材料包括透明金属氧化物材料、溶液型导电高分子材料、溅射型无机材料中的至少一种。
  4. 根据权利要求3所述的抗反射层叠结构,其中,所述抗反射层包括多个所述复合层,靠近所述基板的复合层的厚度小于或等于靠近所述抗静电层的复合层的厚度。
  5. 根据权利要求4所述的抗反射层叠结构,其中,所述抗反射层包括靠近所述基板的第一复合层和靠近所述抗静电层的第二复合层;
    所述第一复合层的的第一抗反射层与所述基板的第一表面贴合,所述第二复合层的第二抗反射层与所述第二表面贴合。
  6. 根据权利要求4所述的抗反射层叠结构,所述抗反射层包括:靠近所述基板的第一复合层,靠近所述抗静电层的第三复合层以及位于所述第一复合层和所述第三复合层之间的第二复合层,
    其中,所述第一复合层的厚度小于或等于所述第二复合层的厚度,所述第二复合层的厚度小于或等于所述第三复合层的厚度。
  7. 根据权利要求1至6中任一项所述的抗反射层叠结构,其中,
    所述第一折射率为1.45至1.55;
    所述第二折射率为1.50至1.90;
    所述第三折射率为1.80至2.30;
    所述第四折射率为1.44至1.52。
  8. 根据权利要求1至6中任一项所述的抗反射层叠结构,其中,制造所述第一抗反射层的材料和制造所述第二抗反射层的材料不相同。
  9. 根据权利要求8所述的抗反射层叠结构,其中,制造所述第一抗反射层的材料包括SiN x
    制造所述第二抗反射层的材料包括SiO 2
  10. 根据权利要求1所述的抗反射层叠结构,其中,还包括:偏光层,设置在所述抗静电层远离所述基板的一侧。
  11. 根据权利要求10所述的抗反射层叠结构,其中,所述偏光层具有第五折射率,所述第五折射率小于所述第二折射率。
  12. 根据权利要求11所述的抗反射层叠结构,其中,所述第五折射率为1.45至1.55。
  13. 根据权利要求1至6中任一项所述的抗反射层叠结构,其中,所述第一抗反射层的厚度为5纳米至65纳米;
    所述第二抗反射层的厚度为40纳米至80纳米。
  14. 根据权利要求1至6中任一项所述的抗反射层叠结构,其中,所述抗静电层的厚度为14纳米至30纳米。
  15. 根据权利要求3所述的抗反射层叠结构,其中,所述透明金属氧化物材料包括氧化铟锡;
    所述溶液型导电高分子材料包括贺利氏-聚乙烯二氧噻吩;
    所述溅射型无机材料包括氧化石墨、氧化锡、氧化锌、氧化铝、氧化锑与表面活性剂和交联剂的混合物。
  16. 根据权利要求1所述的抗反射层叠结构,其中,所述基板包括彩色滤光片。
  17. 一种抗反射层叠结构的制造方法,包括:
    形成基板,所述基板具有第一折射率和第一表面;
    在所述基板的一侧形成抗反射层,所述抗反射层包括至少一个复合层,所述复合层包括第一抗反射层和第二抗反射层,所述第一抗反射层具有第三折射率,所述第二抗反射层具有第四折射率;
    在所述抗反射层的远离所述基板的一侧形成抗静电层,所述抗静电层具有第二折射率以及与所述第一表面相对的第二表面;
    其中,至多一个第一抗反射层与所述基板的第一表面贴合,至多一个第二抗反射层与所述抗静电层的第二表面贴合,
    所述第二折射率大于所述第一折射率和所述第四折射率,所述第三折射率大于所述第一折射率和所述第四折射率。
  18. 一种显示面板,包括:
    阵列基板;
    彩膜基板,所述彩膜基板与所述阵列基板相对设置;
    设置于所述阵列基板与所述彩膜基板之间的液晶层;
    抗反射层叠结构,所述抗反射层叠结构设置于所述彩膜基板远离所述阵列基板的一侧,
    其中,所述抗反射层叠结构为根据权利要求1至16中任一项所述的抗反射层叠结构。
  19. 根据权利要求18所述的显示面板,其中,所述彩膜基板包括衬底基板,所述抗反射层叠结构的基板包括所述彩膜基板的衬底基板。
  20. 一种显示装置,包括权利要求18或19所述的显示面板。
PCT/CN2022/091418 2022-05-07 2022-05-07 抗反射层叠结构及其制造方法、显示面板、显示装置 WO2023216021A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/091418 WO2023216021A1 (zh) 2022-05-07 2022-05-07 抗反射层叠结构及其制造方法、显示面板、显示装置
CN202280001116.XA CN117377571A (zh) 2022-05-07 2022-05-07 抗反射层叠结构及其制造方法、显示面板、显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/091418 WO2023216021A1 (zh) 2022-05-07 2022-05-07 抗反射层叠结构及其制造方法、显示面板、显示装置

Publications (1)

Publication Number Publication Date
WO2023216021A1 true WO2023216021A1 (zh) 2023-11-16

Family

ID=88729401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091418 WO2023216021A1 (zh) 2022-05-07 2022-05-07 抗反射层叠结构及其制造方法、显示面板、显示装置

Country Status (2)

Country Link
CN (1) CN117377571A (zh)
WO (1) WO2023216021A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288712A (ja) * 2004-03-31 2005-10-20 Jsr Corp 帯電防止層を有する積層体及び反射防止膜
CN1979222A (zh) * 2006-11-30 2007-06-13 中国乐凯胶片集团公司 一种防反射薄膜
CN102798913A (zh) * 2012-07-19 2012-11-28 四川长虹电器股份有限公司 一种pdp滤光膜及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288712A (ja) * 2004-03-31 2005-10-20 Jsr Corp 帯電防止層を有する積層体及び反射防止膜
CN1979222A (zh) * 2006-11-30 2007-06-13 中国乐凯胶片集团公司 一种防反射薄膜
CN102798913A (zh) * 2012-07-19 2012-11-28 四川长虹电器股份有限公司 一种pdp滤光膜及其制备方法

Also Published As

Publication number Publication date
CN117377571A (zh) 2024-01-09

Similar Documents

Publication Publication Date Title
US9885809B2 (en) Reducing optical effects in a display
US10641937B2 (en) Polarizer and display device including the same
TWI463370B (zh) 導電基板及包含其之觸控螢幕
US11926558B2 (en) Conductive structure, manufacturing method therefor, and electrode comprising conductive structure
WO2011158752A1 (ja) 表示装置およびその製造方法
CN108363235B (zh) 减反膜及其制备方法、阵列基板、显示装置
WO2008072423A1 (ja) 液晶表示装置および液晶表示装置の製造方法
US20150185907A1 (en) Display device
US11536876B2 (en) Composite membrane, touchpad and display device
CN105717694A (zh) 显示装置及电子设备
WO2022007154A1 (zh) 一种液晶显示面板
CN213124489U (zh) 显示面板及显示装置
TWI664435B (zh) 導電性結構體、電極及包含彼之顯示裝置
CN103838029A (zh) 一种显示装置
WO2024001421A1 (zh) 显示装置
WO2023216021A1 (zh) 抗反射层叠结构及其制造方法、显示面板、显示装置
TWI396021B (zh) 影像顯示系統
WO2021008304A1 (zh) 显示屏组件及电子装置
US20220165986A1 (en) Display panel, manufacturing method thereof, and display device
JP4889209B2 (ja) カラーフィルタ基板及びその製造方法、並びに、液晶表示装置
WO2019148820A1 (zh) 光学结构、显示装置及光学结构的制作方法
CN115079463A (zh) 一种液晶显示面板、液晶显示装置和制作方法
WO2012073867A1 (ja) 光拡散部材およびその製造方法、表示装置
WO2016192468A1 (zh) 触摸显示面板及其制造方法和显示装置
WO2022000690A1 (zh) 显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18246329

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940992

Country of ref document: EP

Kind code of ref document: A1