WO2023216008A1 - Proceso electrolítico de oxidación avanzada para estabilización de efluentes mineros - Google Patents

Proceso electrolítico de oxidación avanzada para estabilización de efluentes mineros Download PDF

Info

Publication number
WO2023216008A1
WO2023216008A1 PCT/CL2023/050039 CL2023050039W WO2023216008A1 WO 2023216008 A1 WO2023216008 A1 WO 2023216008A1 CL 2023050039 W CL2023050039 W CL 2023050039W WO 2023216008 A1 WO2023216008 A1 WO 2023216008A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxidation
cell
industrial unit
arsenical
effluent
Prior art date
Application number
PCT/CL2023/050039
Other languages
English (en)
French (fr)
Inventor
Álvaro Rodrigo VIDELA LEIVA
Juan Carlos SALAS MORALES
Mario Andrés VERA VÉLIZ
Enrique ROMÁN ESPINOZA
Marjorie Meryann SEGOVIA MONRROY
Paulo César MOLINA ORTEGA
Original Assignee
Pontificia Universidad Católica De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pontificia Universidad Católica De Chile filed Critical Pontificia Universidad Católica De Chile
Publication of WO2023216008A1 publication Critical patent/WO2023216008A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G28/00Compounds of arsenic
    • C01G28/02Arsenates; Arsenites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells

Definitions

  • the invention refers in general terms to an advanced oxidation electrolytic process for stabilization of mining effluents whose arsenic concentrations are high. Furthermore, an industrial photoelectrochemical oxidation unit is described for the stabilization of arsenic that operates in a continuous regime, a modular system comprising one, two or more of the industrial oxidation unit, and the use of said industrial unit. Extensively this invention can be applied in industrial water and wastewater treatment plants in any circuit that requires the advanced oxidation of species that are difficult to oxidize and degrade, under a thermodynamic and kinetic model that ensures total degradation of chemical and bio-refractory species. .
  • the arsenic contained in copper ores is concentrated together with the copper in the flotation and transferred to the subsequent Smelting and Electrolytic Refinery (FURE) processes.
  • FURE effluents with high concentrations of arsenic are generated, which in the case of acid effluents reach concentrations of 6 to 17 g/l, and a pH of 0.5 to 3, such as Acid Plant effluents (EPAS ), leach solution or PLS from foundry dust (PF) treatment plants and discard from electrolytic refineries.
  • EPAS Acid Plant effluents
  • PF foundry dust
  • Arsenic in these effluents is mostly in the 3+ oxidation state [Sharma & Sohn 2009; Nazah et al., 2016; Reddy et al., 1987],
  • the elimination of arsenic from waste and effluents from the FURE is decisive in the sustainability of the industry, due to the risks associated with the environmental management of this element [Singh et al., 2015; Sharma & Sohn 2009].
  • There are currently strict legal regulations for the long-term stable treatment, stabilization and confinement of treated arsenical waste that guarantee the greatest possible stability of the waste.
  • document CL201600178 describes an electrolytic process for the treatment of arsenical solutions for the production of metals that contain As and H2SO4 as essential elements, performing a continuous transformation of ions containing arsenic in their +3 oxidation state to obtain species containing arsenic in their oxidation state +5, an apparatus is described that consists of an electrolytic cell in which oxidation reactions occur.
  • the cathode can be made of titanium and the anode can be made of Ti-Ir.
  • document CN204281385U a type of apparatus for electrochemical processing wastewater containing arsenic that comprises a power source with electrodes.
  • Document CN203513332U teaches discloses an electrolytic process to treat residual water or waste that, among others, contains arsenic. It is an electrolysis with 2 electrodes of different polarity in which each one of them forms a plurality of facing anodes and cathodes. In this process, the The result of the interaction of several ionic processes transforms arsenic in wastewater into solid particulates in more stable forms, precipitating into the water.
  • Document CN101492199 discloses a method to remove arsenic by photo-electrocatalytic oxidation in which anodes and cathodes are used and an oxidation of As (III) to As (V) occurs.
  • Document CN1 13336400 teaches a process and device for treating wastewater with high salt content based on an electrolysis process with BDD electrodes, which comprises a concentrated brine tank, an evaporation chamber and a condensation chamber, characterized in that the Electrolysis process with BDD electrodes comprises an electrolytic cell and the built-in BDD electrode plate.
  • the electrolytic oxidation process of arsenic-(lll) in acid effluents can operate in situ or on site advantageously if an electrolytic operational unit is inserted in a Comprehensive Effluent Treatment Plant, where the total costs and benefits for recovery of elements of value (Cu, Sb, Ge, Mo, Ag), should deliver attractive economic indicators.
  • a process is described for the treatment of acid plant effluents from copper concentrate smelters or similar, applying a process that seeks to achieve an efficient oxidation of As 3+ to As 5+ through the combination of two technological approaches: photocatalysis and electrocatalysis.
  • an industrial photoelectrochemical oxidation unit is described for the stabilization of arsenic that operates in a continuous regime, a modular system comprising one, two or more of the industrial oxidation unit, and the use of said industrial unit.
  • the present invention can also be applied in industrial water and wastewater treatment plants in some circuit that requires the advanced oxidation of species that are difficult to oxidize and degrade, under a thermodynamic and kinetic model that ensures total degradation of chemical and bio-species. refractory.
  • Figure 1 shows the location of the processes claimed to eliminate hydrogen peroxide consumption.
  • Figure 2 shows the location of the photo-electrochemical stage and the following stages in the general process of stabilization and immobilization of arsenic.
  • Figure 3 shows a comparative graph of the existing processes, according to the operating parameters used. Electro and photo-electro oxidation would have a positive gap with a reduction of up to 50% in operational cost as shown in the following graph.
  • Figure 4 shows the design of a cell without a membrane.
  • Figure 5 schematically shows the electro-photocatalytic reaction of the Oxidation of As(lll) to As(V) in a photoelectrochemical cell.
  • Figure 6 shows an operation flow diagram for an industrial photoelectrochemical oxidation unit for the stabilization of arsenic, according to one embodiment of the present invention.
  • Figure 7 shows a frontal isometric view of a partial exploded view of an electrolytic oxidation cell of the industrial photoelectrochemical oxidation unit for the stabilization of arsenic, according to one embodiment of the present invention.
  • Figure 8 shows a frontal isometric view of a partial exploded view of the body of the electrolytic oxidation cell of the industrial photoelectrochemical oxidation unit for the stabilization of arsenic, according to one embodiment of the present invention.
  • Figure 9A shows a side view of the cover and body of the electrolytic oxidation cell, according to one embodiment of the present invention.
  • Figure 9B shows a front view of the cover and body of the electrolytic oxidation cell, according to one embodiment of the present invention.
  • Figure 10 shows the hydraulic circuit for the industrial photoelectrochemical oxidation unit for the stabilization of arsenic, according to one embodiment of the present invention.
  • Figure 1 1 shows an isometric view for an alternative modality of the industrial photoelectrochemical oxidation unit for the stabilization of arsenic.
  • Figure 12 shows a modular system with 1, 2 or more industrial photoelectrochemical oxidation units.
  • Figure 13 shows a side view (A) and a front view (B) of a physical model of the cover and body of a constructed prototype electrolytic oxidation cell.
  • Figure 14 shows a top view of a physical model of the cover and body of the constructed prototype electrolytic oxidation cell.
  • Figure 15 shows a side view (A) and a front view (B) of the prototype electrolytic oxidation cell cover.
  • Figure 16 shows the perforated plate at the bottom of the prototype electrolytic oxidation cell body.
  • Figure 17 shows the effluent or electrolyte inlets, which are located at the bottom of the body of the prototype electrolytic oxidation cell.
  • Figure 18 shows the outlet of the effluent or electrolyte, which is located in the upper part of the body of the prototype electrolytic oxidation cell.
  • Figure 19 shows a recirculation pump used in a prototype of the industrial photoelectrochemical oxidation unit for the stabilization of arsenic.
  • Figure 20 shows the support bars mounted on the top of the prototype electrolytic oxidation cell body.
  • Figure 21 shows a side view of a support bar, where the contact rails can be seen.
  • Figure 22 shows the electrical connection, using cables between a support bar and an electrode bar.
  • Figure 23 shows an electrical contact of an electrode bar for connection to a support bar.
  • Figure 24 shows a power source used in a prototype of the industrial photoelectrochemical oxidation unit for the stabilization of arsenic.
  • Figure 25 shows an assembly of electrodes inside the prototype electrolytic oxidation cell.
  • An advanced oxidation electrolytic process is described for stabilization of mining effluents whose arsenic concentrations are high.
  • an industrial unit (1) of photoelectrochemical oxidation for the stabilization of arsenic that operates in a continuous regime is described, a system modular (2) comprising one, two or more of the industrial unit (1) of oxidation, and the use of said industrial unit (1).
  • the proposed process is also capable of carrying out the oxidation of Fe 2+ to Fe 3+ present in the PLS from magnetite leaching and/or the PLS generated in the leaching of foundry powders, required to form scorodite.
  • the photo-electrooxidation system is conceptualized to be installed in the scorodite arsenic immobilization process, in order to condition the solution before precipitation.
  • Figure 2 illustrates the location of the photo-electrochemical stage, which seeks to vindicate the present invention and the following steps in the general process of stabilization and immobilization of As.
  • the invention represents a new process where modified BBD electrodes are applied to arsenical acid effluents from Copper Mining and its synergies between photocatalysis and catalyzed electrolytic oxidation of water are observed, with the objective of eliminating oxygenated water.
  • an industrial oxidation unit (1) has been designed that combines two oxidation methods: electrolytic and photocatalytic, generating an innovative, optimized design with defined operational conditions, which presents a continuous photocatalytic process that is based on the use of a T ⁇ 02 type coating. Electrodes with different coatings were also used.
  • the industrial oxidation unit (1) with a cell design for stabilization of arsenical mining effluents uses a BDD anode coupled with a Titanium cathode to catalyze an electro-photocatalytic reaction of the Oxidation of As(III) to As(V) in effluent solutions from mining processes whose Arsenic concentrations are high (+15 g/L) and very low pH ( ⁇ 1).
  • the electrodes are coupled to a power source that provides the necessary overpotential to generate the reaction and optimal operating conditions (current density) are selected to avoid the effects of interferents.
  • Chloride is added in low quantities to avoid passivation of the cathode, generating complexes with potential interferences, and allowing the recovery of Copper in solution as a byproduct. at the cathode.
  • the cell can use titanium-Platinum or titanium-iridium anodes instead of BDD and 316L or 304 stainless steel cathodes instead of titanium, the current densities used are between 10 mA/cm 2 up to 200 mA /cm 2 .
  • the photo-electrochemical oxidation process for the stabilization of arsenic waste from mining effluents comprises the following stages:
  • the electrolytic oxidation cell (3) that comprises an arrangement of cathodes (31) and anodes (32);
  • the electrolytic oxidation cell (3) In one of the embodiments of the present invention, during the photo-electrochemical oxidation process, simulated sunlight irradiation is applied to the electrolytic oxidation cell (3).
  • the above allows the in situ generation of hydrogen peroxide and its free radicals hydroxyl OH* and peroxydryl HÜ2*, in addition to free radicals derived from the oxidation of the acid H2SO4:SO4 - *, and HSOs - • via the in situ formation of H2S2O8 .
  • the anodes (32) of the electrolytic oxidation cell (3) are made of a material chosen from boron-doped diamond (BDD), Titanium, TiC Pt or TiC>2lr.
  • the cathodes (31) are chosen from Titanium or stainless steel.
  • the concentration of chloride ions added to the electrolytic oxidation cell (3) is 5 g/L.
  • the controlled potential is at least 2 V.
  • the controlled current is in the range of 0.25-0.75 A.
  • the simulated sunlight irradiation is 1850 W/m 2 .
  • the temperature of the arsenical mining effluent is maintained at 40°C.
  • the Arsenic concentrations are greater than 15 g/L and the pH of the solution is less than 1.
  • the industrial unit (1) of photoelectrochemical oxidation for the stabilization of arsenic that operates in a continuous regime comprises: • an electrolytic oxidation cell (3) that comprises an arrangement of cathodes (31) and anodes (32);
  • a power source (6) coupled to the cathodes (31) and anodes (32) to supply controlled direct current and a controlled potential to generate the oxidation reaction.
  • the industrial unit (1) for photoelectrochemical oxidation further comprises at least one simulated sunlight irradiation means (not shown), to apply simulated solar irradiation to the electrolytic oxidation cell ( 3).
  • the electrolytic oxidation cell (3) may be at least partially transparent so that it can receive natural or simulated sunlight irradiation.
  • the industrial photoelectrochemical oxidation unit (1) also comprises at least one heat exchanger (7) configured to regulate the temperature of the effluent. miner.
  • the at least one heat exchanger (7) is configured to maintain the temperature of the mining effluent at 40°C.
  • the at least one heat exchanger (7) can be arranged between the outlet of the electrolytic oxidation cell (3) and the tank (4) or between the inlet of the electrolytic oxidation cell ( 3) and the recirculation pump (5).
  • the electrolytic oxidation cell (3) comprises:
  • a body (33) that comprises an interior space that contains an arrangement of cathodes (31) and anodes (32) arranged alternately and allows the passage of the arsenical mining effluent to generate the oxidation reaction; an effluent inlet (34) that receives the arsenical mining effluent from the pond (4); and an outlet (35) that leads the arsenical mining effluent back to the pond (4); and
  • a cover (36) that covers and is fixed to the upper part of the body (33) to contain the arsenical mining effluent inside the electrolytic oxidation cell (3).
  • the cover (36) is fixed to the upper part of the body (33) by means of a plurality of screws (37).
  • the cover (36) is a hood for the continuous accumulation and extraction of acid vapors and gases that are given off in the electrolysis operation of oxidation of arsenic, comprising at least one outlet of acid vapors and gases (361).
  • the industrial photoelectrochemical oxidation unit (1) also comprises an emissions purification system (8) in communication with the cover (36) to neutralize the acid vapors and gases released; and a vacuum pump (9) that conveys the acid vapors and gases from the electrolytic oxidation cell (3) to the emissions purification system (8).
  • the emissions purification system (8) comprises at least one alkaline scrubber.
  • the effluent inlet (34) of the electrolytic oxidation cell (3) is located in the lower part of the body (33), as seen in Figures 9A and 9B, comprising a plurality of holes (341) in the lower part of the body (33); an inlet compartment (342), which covers the plurality of orifices (341) and regulates the flow of the arsenical mining effluent; and at least one inlet valve (343), connected to the inlet compartment (342) that connects to the recirculation pump (5).
  • the effluent inlet (34) in the lower part of the body (33) of the electrolytic oxidation cell (3) allows ensuring an upward flow through the electrolytic oxidation cell (3), so that the arsenical mining effluent passes through the arrangement of cathodes (31) and anodes (32) so that oxidation occurs.
  • the body (33) of the electrolytic oxidation cell (3) comprises a plate (331) with a plurality of holes (332), as seen in Figures 9A and 9B, of the same dimensions of the bottom of the body (33), located at a distance from the bottom of the body, preferably at least 2.5 cm from the bottom, so that the body (33) has a double bottom, where the space generated between the plate (331) and the bottom of the body (33) allows regulating the upward flow of arsenical mining effluent that enters from the effluent inlet (34) of the electrolytic oxidation cell (3), forcing the passage of arsenical mining effluent through the plurality of holes (332) of the plate (331).
  • the plate (331) comprises a plurality of holes (332) arranged in an orthogonal arrangement of rows and columns, where the number of rows corresponds to the number of anodes (32) in the arrangement of cathodes (31) and anodes (32). .
  • the position of the rows of holes (332) in the plate (331) is such that a vertical plane passing through a row of holes (332) faces a respective anode (32) so that the upward flow is ensured. of mining effluent that passes through said row of holes (332) will pass through the front of the respective anode (32), ensuring that oxidation occurs.
  • the effluent outlet (35) of the electrolytic oxidation cell (3) is located in the upper part of the body (33), being in an opposite position with respect to the inlet (34). ) of effluent, comprising an outlet compartment (351), which regulates the flow of the arsenical mining effluent, and at least one outlet valve (352), communicated with the outlet compartment (351) that connects with the pond (4 ).
  • the electrolytic oxidation cell (3), the tank (4) and the recirculation pump are connected through hoses or pipes that resist the operating conditions of the industrial unit (1) of photoelectrochemical oxidation and the arsenical mining effluent.
  • the arrangement of cathodes (31) and anodes (32) are mounted on the upper part of the body (33) by means of two support bars (38), made of copper, with an elongated rectangular toothed shape. comprising slits or transverse cuts, separated by a regular distance, where the cathodes (31) and anodes (32) are placed alternately, where said support bars (38) allow the electrical connection between the power source (6 ) and the cathodes (31) and anodes (32).
  • the arrangement of cathodes (31) and anodes (32) comprises an odd number of cathodes (31) and an even number of anodes (32) so that each anode (32) is arranged between two cathodes (31).
  • the cathodes (31) and anodes (32) comprise holding bars (311, 321) that allow the electrodes to be placed or arranged in the slits or cross sections of the support bars (38).
  • the slits or transverse cuts of the support bars (38) allow the electrodes to be arranged with a separation distance of 1 cm.
  • the support bars (38) comprise perforations (381) to make electrical connections between each electrode and the support bars (38).
  • the electrical connection between each electrode and support bar (38) is made by means of bolts placed in a hole (381) of the support bar (38) and in the electrode, said bolts being connected by a cable to form the electrical connection, ensuring a good electrical connection with 0 Ohm resistance.
  • the bolts have the same diameter as the perforations (381) in the copper bars (38).
  • the perforations (381) have a diameter of 3 mm.
  • the electrical connection between the copper bars (38) and the power source (6) is through a bolt that is fixed to the inside of the copper bar (38), the which is connected to a cable that is connected, in turn, to the power source (6), where said electrical connection ensures that the resistance measured between the cable and the support bar (38) is 0 Ohm.
  • the at least one simulated sunlight irradiation means is arranged to emit irradiation on the electrolytic oxidation cell (3) and directed on the arsenical mining effluent inside the electrolytic oxidation cell (3).
  • the industrial unit (1) of photoelectrochemical oxidation constitutes a closed hydraulic circuit where the recirculation pump (5) drives the arsenical mining effluent to the electrolytic oxidation cell (3), which is connected to the power source (6) to supply controlled direct current and a controlled potential to generate the oxidation reaction, where then the arsenical mining effluent leaves the oxidation cell to recirculate through the circuit until the entire volume is treated, decreasing the concentration of arsenic.
  • the electrolytic oxidation cell (3) can be connected to the waste purification system. emissions (8) in communication with the cover (36) to neutralize the acid vapors and gases released during the process, which are conveyed by the vacuum pump (9).
  • the electrolytic oxidation cell (3) has a vertical arrangement, with an elongated body (33a) that comprises at least one arrangement of cathodes (31). and anodes (32); an effluent inlet (34a), in the lower part of the body (33a) that receives the arsenical mining effluent from the pond (4); and an outlet (35a), in the upper part of the body (33a) that conducts the arsenical mining effluent back to the pond (5), so that the flow circulates in the electrolytic oxidation cell (3) from bottom to top.
  • the anodes (32) of the electrolytic oxidation cell (3) are made of a material selected from boron-doped diamond (BDD), Titanium, TiC Pt or TiC>2lr.
  • the cathodes (31) of the electrolytic oxidation cell (3) are made of a material selected from Titanium or stainless steel.
  • a modular system (2) which comprises at least one industrial unit (1) for photoelectrochemical oxidation, as shown in Figure 12.
  • Two or more industrial units (1) Photoelectrochemical oxidation systems can be arranged in series to ensure effluent treatment.
  • the industrial photoelectrochemical oxidation unit (1) is used to replace hydrogen peroxide in the production of scorodite as a stable arsenical residue.
  • a modality that derives from the present invention consists of applying the electrolytic continuous cell that uses BDD anodes doped with IrC -RuC and using sulfuric acid, ferrous sulfate, sodium chloride and potassium sulfate as electrolyte, operating at 10°C, to generate a Fenton oxidizing solution with a high concentration of peroxidic free radicals.
  • Such an electrolytic cell can be connected to wastewater treatment circuits, industrial waters that contain species refractory to conventional oxidation. In general to achieve mineralization of chemical or bio-refractory species, petrochemical effluents, wastewater, derivatives from agro-industry.
  • the proposed electrolytic oxidation cell (3) required special attention in its design in the choice of electrodes (anodes and cathodes) to experimentally achieve a uniform current and a distribution of cell potentials such as to provide the design parameters and criteria and of operation that produce the maximum oxidation of trivalent arsenic, As-I 11, to As-V with acceptable energy consumption and maximum oxidation electrolytic efficiency.
  • Basic cell design elements :
  • Anodes Boron-doped diamond planes 12cm X 9cm X 0.5cm.
  • This planar geometry and the surface of flat electrodes arranged in parallel made it possible to achieve a uniform current and cell potential distribution.
  • This particular design allowed easy control of inter-electrode distances and high mass transport rates in this continuous flow cell.
  • anode material selection criterion and the designed geometry were based on the oxidative selectivity in the framework of OER (Oxygen Evolution Reaction) anodes with high oxygen discharge overvoltage.
  • BDD (Boron Doped Diamond) electrodes and lrO2-RuO2 doped Titanium electrodes, as anodes, were selected for the present invention.
  • PLS effluents corresponding to solutions rich in copper (40 g/l) with arsenic-III of 3 to 5 g/l), which must be previously oxidized before precipitation of environmentally stable scorodite.
  • this case corresponds strictly to a Copper Electrowining process with simultaneous oxidation of As-III to As-V.
  • LME copper-foil
  • As-lll is oxidized to As-V. This process is operated up to a limiting concentration of Cu 2+ ions in the electrolyte as the end point of this electrowining process.
  • the final electrolyte passes to another cell, generally called an “electroreleasing” cell, where the residual copper and arsenic are deposited on the titanium cathode as a solid composite of CuaAs and As 0 .
  • This solid is filtered and sent to a joint waste treatment operation with economic value.
  • a prototype of an industrial photoelectrochemical oxidation unit for the stabilization of arsenic that operates in a continuous regime is built, which includes:
  • an electrolytic oxidation cell comprising an arrangement of cathodes and anodes
  • the prototype of the industrial photo-electrochemical oxidation unit can incorporate a simulated sunlight irradiation medium, to apply simulated solar irradiation to the electrolytic oxidation cell.
  • the prototype of the industrial photoelectrochemical oxidation unit for the stabilization of arsenic that operates in a continuous regime was operated systematically to validate a model of advanced electrolytic oxidation of arsenic present in metallurgical acid effluents with high concentrations of arsenic As-lll.
  • the dimensions of the electrolytic cell of the present invention are defined and Figures 13 to 18 show the design and the prototype cell built.
  • the electrolytic cell design is shown in Figure 13, where in a preferred embodiment of the invention, the prototype has a nominal capacity of 3,146 L constructed of acrylic with a dome, also made of acrylic, provided with a capture outlet. vapors and gases connected to an alkaline scrubber.
  • Figure 13 (A) shows a side view, highlighting the electrolyte inlet holes on the floor of the cell and three electrolyte outlet holes on the top.
  • Figure 13 (B) shows a front view of the design where the position of the bars and electrode fixing system can be seen.
  • Figure 13 shows a physical model of the prototype cell built, with a nominal capacity of 3,146 L, provided with a hood for accumulation and discharge of vapors and gases that are released in the electrolysis and oxidation of arsenic operation.
  • Figure 14 shows the Top view of the prototype cell, showing the clamping bar and electrical contact system required for installation of the electrode plates.
  • the prototype cell built is provided with a continuous accumulation and extraction hood of acid vapors and gases built in acrylic showing its connections to the vacuum pump that conduct vapors and gases to the alkaline scrubber.
  • the dimensions of the hood are the following:
  • the constructed prototype cell is provided with a perforated plate located on the floor of the cell, comprising 5 runs each with 7 perforations of 3 mm in diameter.
  • the constructed cell is provided with electrolyte inlets, which is located at the bottom of the cell.
  • the built prototype cell is provided with the electrolyte outlet, which is located at the top of the cell.
  • the prototype cell built is provided with a recirculation pump, for illustrative purposes of the present invention and without the intention of limiting the content of the application, the pump can be selected from a Watson Marlow qdos 30 model: Capacity from 0.1 to 500 mL/min, capacity to operate with a pressure of up to 7 bar, and also has IP66 protection, which is shown in figure 19.
  • the constructed prototype cell is provided with electrical connections, more particularly, the electrical connection through copper support bars, mounted on the upper part of the cell, as shown in figures 20 and 21.
  • These support bars have slits or transverse cuts that ensure a distance of 1 cm between the electrodes; terminals: metal 2 x 16 mm; Electrode distance: 1 cm.
  • the constructed prototype cell operates in recirculation and is provided with a cylindrical container with the following dimensions:
  • the dimensions of the electrical system are as follows:
  • the support bars have 3 mm diameter perforations to make electrical connections between each electrode and the support bars, as shown in Figure 21.
  • the electrical connection cables from the support bar to the electrode bar are characterized by comprising: Each electrode is connected by 3 mm bolts with grommets, which ensures a good electrical connection with measured resistance of 0 Ohm, as shown in figures 22 and 23.
  • the electrical connection between the support bar and the power source is through a 5 mm bolt which is fixed to the bottom of the bar.
  • the resistance measured between the power source cables and the copper bar was 0 Ohm.
  • the prototype cell built is provided with a power source, for illustrative purposes of the present invention and without the intention of limiting the content of the application, the power source can be selected from a Sorensen DCS10-100E model with a voltage range between 0 and 10 V, and operating current range between 0 and 100 A, which is shown in figure 24.
  • the assembly of electrodes inside the cell is configured as follows:
  • Each electrode is mounted on a copper support plate or bar, which ensures a good electrical connection with the power source, as well as a distance of 1 cm between each anode and cathode.
  • Anodes 6 units of BDD (Boron Doped Diamond) plates, measuring 12 cm x 9 cm x 0.3 cm.
  • the parameters and conditions of operations that can be applied in This prototype cell may comprise operating ranges and different current densities for the PLS and the EPAS, for example and by way of illustration:
  • Table 1 Controlled current electrolysis tests for BBD anode.
  • Table N° 2 Tests with and without cathode cleaning.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

Se describe un proceso electrolítico de oxidación avanzada para estabilización de efluentes mineros cuyas concentraciones de arsénico son altas. Además, se describe una unidad industrial de oxidación fotoelectroquímica para la estabilización del arsénico que opera en régimen continuo, un sistema modular que comprende una, dos o más de la unidad industrial de oxidación, y el uso de dicha unidad industrial.

Description

PROCESO ELECTROLÍTICO DE OXIDACIÓN AVANZADA PARA ESTABILIZACIÓN DE EFLUENTES MINEROS
MEMORIA DESCRIPTIVA
CAMPO DE LA INVENCIÓN
La invención se refiere en términos generales, a un proceso electrolítico de oxidación avanzada para estabilización de efluentes mineros cuyas concentraciones de arsénico son altas. Además, se describe una unidad industrial de oxidación fotoelectroquímica para la estabilización del arsénico que opera en régimen continuo, un sistema modular que comprende una, dos o más de la unidad industrial de oxidación, y el uso de dicha unidad industrial. Extensivamente esta invención puede ser aplicada en Plantas de Tratamientos de aguas industriales y aguas servidas en algún circuito que requiera la oxidación avanzada de especies difícil de oxidar y de degradar, bajo un modelo termodinámico y cinético que asegura total degradación de especies químicas y bio-refractarias.
ANTECEDENTES DE LA INVENCIÓN
La evolución del desarrollo tecnológico mundial en torno al manejo de las emisiones de arsénico y antimonio, además de otros elementos contaminantes en los procesos minero-metalúrgicos en la Minería del Cobre, y en paralelo con la creciente y exigentes legislaciones y normativas ambientales respecto a estas emisiones, obligan a las Compañías Mineras a lograr una sustentabilidad económica y ambiental razonable y con protección del ecosistema en el corto y mediano plazo.
El análisis de los procesos de manejo actual y futuro del arsénico en la Minería del Cobre bajo las optimizaciones que se han implementado y potenciales aplicaciones de nuevos procesos de oxidación de As3+ a As5+ y su precipitación y estabilización como escorodita, permite establecer que una mayor sustentabilidad económica y ambiental del manejo de arsénico puede conseguirse a través de cambios tecnológicos que logren que el arsénico y otros elementos contaminantes deben ser inmovilizados en una matriz que encapsule irreversiblemente las partículas de escorodita y especies químicas de otros elementos contaminantes que lo acompañan, (Sb, B¡, Hg, Cd, Se). Esto consigue de manera real y efectiva una estabilidad ambiental en el largo plazo, representando esta afirmación una actual tendencia internacional en este ámbito de desarrollo tecnológico.
El arsénico contenido en los minerales de cobre se concentra junto con el cobre en la flotación y se traslada a los procesos posteriores de Fundición y Refinería Electrolítica (FURE). Como resultado, en la FURE se generan efluentes con altas concentraciones de arsénico, que en el caso de los efluentes ácidos alcanzan concentraciones de 6 a 17 g/l, y de pH de 0.5 a 3, tales como efluentes de Planta de Ácido (EPAS), solución de lixiviación o PLS de plantas de tratamiento de polvos de fundición (PF) y el descarte de refinerías electrolíticas. El arsénico en estos efluentes se encuentra mayoritariamente en estado de oxidación 3+ [Sharma & Sohn 2009; Nazah et al., 2016; Reddy et al., 1987], La eliminación del arsénico desde los residuos y efluentes provenientes de la FURE es determinante en la sustentabilidad de la industria, debido a los riesgos asociados con el manejo medioambiental de este elemento [Singh et al., 2015; Sharma & Sohn 2009]. Existen actualmente estrictas normativas legales de tratamiento, estabilización y confinamiento de manera estable en el largo plazo de residuos arsenicales tratados que garanticen la mayor estabilidad posible del residuo. En este respecto, diversos estudios han comprobado que las especies químicas que contienen arsénico en estado de oxidación 5+ tales como sales de arseniatos férricos FeAsC o de aluminio AlAsC , son termodinámica y cinéticamente más estables. Por el contrario, el arsenito de calcio Ca3(AsO3)2, compuesto precipitado que presenta el arsénico en estado de oxidación 3+, es lixiviadle en un rango de pH muy amplio, además de ser susceptible a ser carbonatado por el CO2 atmosférico, liberando el ion arsenito AsOs3' a las soluciones de drenaje e incrementando significativamente el riesgo de contaminación del ecosistema, [Reddy et al., 1987; Riveros et al., 2001 ; Twidwell, 2018, Yang et al., 2017; Sun et al., 2019].
En el estado del arte se han descrito algunos procesos electrolíticos de oxidación Avanzada, por ejemplo, el documento CL201600178 describe un proceso electrolítico para el tratamiento de soluciones arsenicales de la producción de metales que contienen como elementos esenciales As y H2SO4, realiza una transformación continua de iones que contienen arsénico en su estado de oxidación +3 para obtener especies que contienen arsénico en su estado de oxidación +5, se describe un aparato que consiste en una celda electrolítica en la que ocurren reacciones de oxidación. El cátodo puede ser de titanio y el ánodo de Ti- Ir.
También, el documento CN204281385U un tipo de aparato para el procesamiento electroquímico aguas residuales con contenido de arsénico que comprende una fuente de poder con electrodos. El documento CN203513332U enseña divulga un proceso electrolítico para tratar aguas residuales o de desecho que entre otros contiene arsénico, Es una electrólisis con 2 electrodos de polaridad distinta en que cada uno de ellos conforma una pluralidad de ánodos y cátodos enfrentados, En este proceso, el resultado de la interacción de varios procesos iónicos transforma el arsénico en las aguas residuales a particulado sólido de formas más estable, precipitándose en el agua. El documento CN101492199 divulga un método para remover arsénico por oxidación foto electro catalítica en que se emplean ánodos y cátodos y se produce una oxidación de As (III) a As(V). El documento CN1 13336400 enseña un proceso y dispositivo de tratamiento de aguas residuales con alto contenido de sal basado en un proceso de electrólisis con electrodos BDD, que comprende un tanque de salmuera concentrada, una cámara de evaporación y una cámara de condensación, caracterizado porque el proceso de electrólisis con electrodos BDD comprende una celda electrolítica y la placa de electrodos BDD incorporada.
En este sentido, encontrar otras formas de que la tecnología de producción de escorodita sustituya a la de Arsenito de Calcio resulta de vital importancia pues exhibe una estabilidad comparativamente más alta que otros compuestos de arsénico. Sin embargo, no se ha transformado en la tecnología estándar producto de su mayor costo. Es entonces de relevancia desarrollar esfuerzos en disminuir drásticamente los costos de operación principalmente en: (1 ) Reducción del costo de oxidación mediante el reemplazo del peróxido de hidrogeno por alternativas más baratas; (2) Disminución de los tiempos de residencia en la etapa oxidación.; y (3) consecuentemente con lo anterior, disminución de los costos de energía, aplicando procesos de oxidación basado en procesos catalíticos, foto catalíticos y/o electrocatalíticos.
Debido a la mayor facilidad de la remoción del arsénico en su estado de oxidación +5, se han desarrollado diversos métodos de oxidación del arsénico en su estado de oxidación +3 para usarlos en una etapa de tratamiento previo a la precipitación del arsénico desde soluciones acuosas para el tratamiento de aguas y soluciones mineras. Entre estos métodos se encuentra la oxidación del arsénico junto con una fuente de hierro en autoclave, la oxidación del arsénico con H2O2 o CIO2, la oxidación bacteriana y la oxidación fotoquímica con rayos UV.
El análisis de los procesos de manejo actual y futuro del arsénico en la Minería del Cobre bajo las optimizaciones que se han implementado y potenciales aplicaciones de nuevos procesos de oxidación de As-(lll) a As-(V) y su precipitación y estabilización como escorodita, permite establecer que una mayor sustentabilidad económica y ambiental del manejo de arsénico puede conseguirse a través de cambios tecnológicos que logren los siguientes resultados: a. El arsénico y otros elementos contaminantes deben ser inmovilizados en una matriz que encapsule irreversiblemente las partículas de escorodita y especies químicas de otros elementos contaminantes que lo acompañan, (Sb, B¡, Hg, Cd, Se). Esto consigue de manera real y efectiva una estabilidad ambiental en el largo plazo, representando esta afirmación una actual tendencia internacional en este ámbito de desarrollo tecnológico. b. Para obtener estos logros finales, el proceso debe presentar costos razonables y competitivos en lo posible con índices económicos positivos (VAN, TIR). Para ello, se determinó que los factores críticos que impactan en el costo especifico de tratamiento de arsénico, son los siguientes: (1 ) Los altos costos operacionales de los actuales procesos analizados provienen por una parte por el costo total de energía que resulta de operar procesos a alta temperatura, con largas tiempos de residencia y alta agitación. (2) El costo de reactivos químicos oxidantes como el agua oxigenada, tal que por su sobreconsumo representa un ítem importante en los costos operacionales totales. (3) El uso excesivo de cal impacta en los costos de equipos de gran tamaño y en los costos de transporte y de confinamiento del residuo voluminoso final. c. El proceso de oxidación electrolítica del arsénico-(lll) en efluentes ácidos puede operar in situ u on site ventajosamente si se inserta una unidad operativa electrolítica en una Planta de Tratamiento Integral de Efluentes, donde los costos totales y beneficios por recuperación de elementos de valor (Cu, Sb, Ge, Mo, Ag), deberían entregar indicadores económicos atractivos.
Efluentes ácidos a tratar en procesos de Oxidación del As3+ a As5+ contenido en los efluentes y soluciones siguientes aplicando H2O2 como oxidante:
• PLS de lixiviación de los polvos de fundición
• PLS de lixiviación de Polvos de horno tostador de concentrados con altos contenidos de arsénico
• Efluente EPAS de Plantas de Ácido Sulfúrico
• Descartes de Electrorefinerías
Todo esto, lleva a buscar la mejora de los procesos existentes, como reemplazar el uso de agua oxigenada en la oxidación de arsénico, factibilizando el proceso de producción de escorodita como la tecnología más conveniente para la disposición segura de residuos de arsénico.
BREVE DESCRIPCIÓN DE LA INVENCIÓN
Se describe un proceso para el tratamiento de efluentes de plantas de ácido de fundiciones de concentrados de cobre o similares, aplicando un proceso donde se busca alcanzar una oxidación eficiente del As3+ a As5+ mediante la combinación de dos aproximaciones tecnológicas: fotocatálisis y electrocatálisis. Además, se describe una unidad industrial de oxidación fotoelectroquímica para la estabilización del arsénico que opera en régimen continuo, un sistema modular que comprende una, dos o más de la unidad industrial de oxidación, y el uso de dicha unidad industrial.
La presente invención puede ser aplicada también en Plantas de Tratamientos de aguas industriales y aguas servidas en algún circuito que requiera la oxidación avanzada de especies difícil de oxidar y de degradar, bajo un modelo termodinámico y cinético que asegura total degradación de especies químicas y bio-refractarias.
BREVE DESCRIPCIÓN DE LAS FIGURAS
La Figura 1 muestra la ubicación de los procesos reivindicados para eliminar consumo de peróxido de hidrógeno.
La Figura 2 muestra la ubicación de la etapa foto-electroquímica y de las etapas siguientes en el proceso general de estabilización y de inmovilización de arsénico.
La Figura 3 muestra un gráfico comparativo de los procesos existentes, de acuerdo con los parámetros de operación utilizados. Las electro y foto-electro oxidación tendrían un gap positivo con una reducción de hasta 50% en el costo operacional como se muestra en el siguiente gráfico.
La Figura 4 muestra el diseño de una celda sin membrana. La Figura 5 muestra de forma esquemática la reacción electro-foto catalítica de la Oxidación de As(lll) a As(V) en una celda fotoelectroquímica.
La figura 6 muestra un diagrama de flujo de operación para una unidad industrial de oxidación fotoelectroquímica para la estabilización del arsénico, de acuerdo con una modalidad de la presente invención.
La figura 7 muestra una vista isométhca frontal de un despiece parcial de una celda de oxidación electrolítica de la unidad industrial de oxidación fotoelectroquímica para la estabilización del arsénico, de acuerdo con una modalidad de la presente invención.
La figura 8 muestra una vista isométhca frontal de un despiece parcial del cuerpo de la celda de oxidación electrolítica de la unidad industrial de oxidación fotoelectroquímica para la estabilización del arsénico, de acuerdo con una modalidad de la presente invención.
La figura 9A muestra una vista lateral de la cubierta y cuerpo de la celda de oxidación electrolítica, de acuerdo con una modalidad de la presente invención. La Figura 9B muestra una vista frontal de la cubierta y cuerpo de la celda de oxidación electrolítica, de acuerdo con una modalidad de la presente invención.
La figura 10 muestra el circuito hidráulico para la unidad industrial de oxidación fotoelectroquímica para la estabilización del arsénico, de acuerdo con una modalidad de la presente invención. La figura 1 1 muestra una vista isométrica para una modalidad alternativa de la unidad industrial de oxidación fotoelectroquímica para la estabilización del arsénico.
La Figura 12 muestra un sistema modular con 1 , 2 o más unidades industriales de oxidación fotoelectroquímica.
La Figura 13 muestra una vista lateral (A) y una vista frontal (B) de un modelo físico de la cubierta y cuerpo de una celda de oxidación electrolítica prototipo construida.
La Figura 14 muestra una vista superior de un modelo físico de la cubierta y cuerpo de la celda de oxidación electrolítica prototipo construida.
La Figura 15 muestra una vista lateral (A) y una vista frontal (B) de la cubierta de la celda de oxidación electrolítica prototipo.
La Figura 16 muestra la placa perforada en la parte inferior del cuerpo de la celda de oxidación electrolítica prototipo.
La Figura 17 muestra las entradas de efluente o electrolito, que se encuentra en la parte inferior del cuerpo de la celda de oxidación electrolítica prototipo.
La Figura 18 muestra la salida del efluente o electrolito, que se encuentra ubicado en la parte superior del cuerpo la celda de oxidación electrolítica prototipo.
La Figura 19 muestra una bomba de recirculación utilizada en un prototipo de la unidad industrial de oxidación fotoelectroquímica para la estabilización del arsénico.
La Figura 20 muestra las barras de soporte montados en la parte superior del cuerpo de la celda de oxidación electrolítica prototipo.
La Figura 21 muestra una vista lateral de una barra de soporte, en donde se aprecian los rieles de contacto.
La Figura 22 muestra la conexión eléctrica, mediante cables entre un una barra de soporte y una barra de un electrodo.
La Figura 23 muestra un contacto eléctrico de una barra de un electrodo para su conexión con una barra de soporte.
La Figura 24 muestra una fuente de poder utilizada en un prototipo de la unidad industrial de oxidación fotoelectroquímica para la estabilización del arsénico.
La Figura 25 muestra un montaje de electrodos al interior de la celda de oxidación electrolítica prototipo.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Se describe un proceso electrolítico de oxidación avanzada para estabilización de efluentes mineros cuyas concentraciones de arsénico son altas. Además, se describe una unidad industrial (1 ) de oxidación fotoelectroquímica para la estabilización del arsénico que opera en régimen continuo, un sistema modular (2) que comprende una, dos o más de la unidad industrial (1 ) de oxidación, y el uso de dicha unidad industrial (1 ).
Con el objetivo de reducir el costo de producción de escorodita, mediante la eliminación del consumo de H2O2 en el proceso de oxidación de arsénico, se propone dos métodos alternativos usados sinérgicamente, en una combinación novedosa de procesos, para ser usados específicamente con efluentes mineros ácidos y de alto tenor en arsénico, sistema que además permitiría el uso de energía limpia y renovable como la proveniente desde fuentes solares. En particular, se propone el tratamiento de efluentes de plantas de ácido de fundiciones de concentrados de cobre o similares, aplicando un proceso donde se buscaría alcanzar una oxidación eficiente del As3+ a As5+ mediante la combinación de dos aproximaciones tecnológicas: fotocatál ¡si s y electrocatálisis. El efecto sinérgico de la fotocatálisis y electrocatálisis se realiza mediante la generación in situ de agua oxigenada y de sus radicales libres oxidrilos OH» y peroxidril HÜ2», además de radicales libres derivados de la oxidación del ácido H2SO4:SO4 - », y HSOs - • vía la formación in situ de H2S2O8.
El proceso propuesto también es capaz de realizar la oxidación del Fe2+ a Fe3+ presente en el PLS de lixiviación de la magnetita y/o del PLS generado en la lixiviación de los polvos de fundición, requerido para formar escorodita.
El sistema de foto-electro oxidación está conceptualizado para ser instalado en el proceso de inmovilización de arsénico de escorodita, de manera de acondicionar la solución antes de la precipitación. La Figura 2 ¡lustra la ubicación de la etapa foto-electroquímica, que busca reivindicar la presente invención y de las etapas siguientes en el proceso general de estabilización y de inmovilización de As.
La invención representa un nuevo proceso donde se aplican electrodos BBD modificados a efluentes ácidos arsenicales de la Minería del Cobre y se observa sus sinergias entre fotocatálisis y oxidación electrolítica catalizada del agua, con el objetivo de eliminar agua oxigenada.
Para resolver el problema planteado, se ha diseñado una unidad industrial (1 ) de oxidación que combina dos métodos de oxidación: electrolítico y fotocatalítico, generando un diseño innovador, optimizado y con condiciones operacionales definidas, el que presenta un proceso foto-catalítico continuo que se base en el uso de un recubrimiento del tipo T¡02. También se utilizaron electrodos de diferente recubrimiento.
La unidad industrial (1 ) de oxidación con un diseño de celda para estabilización de efluentes mineros arsenicales utiliza un ánodo BDD acoplado con un cátodo de Titanio para catalizar una reacción electro-foto catalítica de la Oxidación de As(lll) a As(V) en soluciones efluentes de procesos mineros cuyas concentraciones de Arsénico son altas (+15 g/L) y pH muy bajos (<1 ).
Los electrodos van acoplados a una fuente de poder que proporciona el sobrepotencial necesario para generar la reacción y se seleccionan condiciones operacionales óptimas (densidad de corriente) que permite evitar los efectos de los interferentes. Adicionalmente se agrega Cloruro en bajas cantidades para evitar la pasivación del cátodo, generando complejos con potenciales interferentes, y permitiendo recuperar el Cobre en solución como subproducto en el cátodo. En forma alternativa la celda puede utilizar ánodos de titanio- Plati no o titanio-iridio en vez de BDD y cátodos de acero inoxidable 316L o 304 en vez de titanio, las densidades de corriente utilizadas son de entre 10 mA/cm2 hasta 200 mA/cm2.
En una de las modalidades de la presente invención, el proceso de oxidación foto-electroquímica para la estabilización de residuos de arsénico provenientes de efluentes mineros, comprende las siguientes etapas:
- suministrar un efluente minero arsenical a una celda de oxidación electrolítica (3);
- agregar a la celda de oxidación electrolítica (3) una solución de cloruro de sodio;
- aplicar una corriente controlada a través de la celda de oxidación electrolítica (3) que comprende un arreglo de cátodos (31 ) y ánodos (32);
- mantener un potencial controlado en la celda de oxidación electrolítica (3); y
- recolectar los electrodos desde la celda de oxidación electrolítica (3).
En una de las modalidades de le presente invención, durante el proceso de oxidación foto-electroquímica se aplica irradiación de luz solar simulada a la celda de oxidación electrolítica (3). Lo anterior permite la generación in situ de agua oxigenada y de sus radicales libres oxidrilos OH* y peroxidril HÜ2*, además de radicales libres derivados de la oxidación del ácido H2SO4:SO4 - *, y HSOs - • vía la formación in situ de H2S2O8. En una de las modalidades de la presente invención, los ánodos (32) de la celda de oxidación electrolítica (3) son de un material que se escogen entre diamante dopado con boro (BDD), Titanio, TiC Pt o TiC>2lr.
En una de las modalidades de la presente invención, los cátodos (31 ) son elegidos entre Titanio o acero inoxidable.
En una de las modalidades de la presente invención, la concentración de iones cloruros agregada a la celda de oxidación electrolítica (3) es de 5 g/L.
En una de las modalidades de la presente invención, el potencial controlado es de al menos 2 V.
En una de las modalidades de la presente invención, la corriente controlada está en el rango de 0,25-0,75 A.
En una de las modalidades de la presente invención, la irradiación de luz solar simulada es de 1850 W/m2.
En una de las modalidades de la presente invención, la temperatura del efluente minero arsenical se mantiene en 40°C.
En una de las modalidades de la presente invención, las concentraciones de Arsénico son mayores a 15 g/L y pH de la solución es menor que 1 .
En una de las modalidades de la presente invención, como se muestra en la figura 6, la unidad industrial (1 ) de oxidación fotoelectroquímica para la estabilización del arsénico que opera en régimen continuo, comprende: • una celda de oxidación electrolítica (3) que comprende un arreglo de cátodos (31 ) y ánodos (32);
• un estanque (4) para suministrar un efluente minero arsenical a la celda de oxidación electrolítica (3);
• medios para suministrar una solución de cloruro de sodio (no mostrado) al efluente minero arsenical en la celda de oxidación electrolítica (3) para evitar la pasivación de los cátodos (31 );
• una bomba de recirculación (5) para conducir el efluente minero arsenical desde el estanque (4) a la celda de oxidación electrolítica (3) en un circuito cerrado; y
• una fuente de poder (6) acoplada a los cátodos (31 ) y ánodos (32) para suministrar corriente continua controlada y un potencial controlado para generar la reacción de oxidación.
En una de las modalidades de la presente invención, la unidad industrial (1 ) de oxidación fotoelectroquímica comprende, además, al menos un medio de irradiación de luz solar simulada (no mostrado), para aplicar irradiación solar simulada a la celda de oxidación electrolítica (3). La celda de oxidación electrolítica (3) puede ser al menos parcialmente transparente de manera que pueda recibir la irradiación de luz solar natural o simulada.
En una de las modalidades de la presente invención, la unidad industrial (1 ) de oxidación fotoelectroquímica comprende, además, al menos un intercambiador de calor (7) configurado para regular la temperatura del efluente minero. En una modalidad de la presente invención, el al menos un intercambiador de calor (7) está configurado para mantener la temperatura del efluente minero en 40°C. En una modalidad de la presente invención, el al menos un intercambiador de calor (7) puede estar dispuesto entre la salida de la celda de oxidación electrolítica (3) y el estanque (4) o entre la entrada de la celda de oxidación electrolítica (3) y la bomba de recirculación (5).
En una de las modalidades de la presente invención, como muestran las figuras 7, 8, 9A y 9B, la celda de oxidación electrolítica (3) comprende:
• un cuerpo (33) que comprende un espacio interior que contiene un arreglo de cátodos (31 ) y ánodos (32) dispuestos de forma intercalada y permite el paso del efluente minero arsenical para generar la reacción de oxidación; una entrada (34) de efluente que recibe el efluente minero arsenical desde el estanque (4); y una salida (35) que conduce el efluente minero arsenical nuevamente hacia el estanque (4); y
• una cubierta (36) que cubre y está fijada a la parte superior del cuerpo (33) para contener el efluente minero arsenical en el interior de la celda de oxidación electrolítica (3).
En una de las modalidades de la presente invención, la cubierta (36) está fijada a la parte superior del cuerpo (33) por medio de una pluralidad de tornillos (37).
En una de las modalidades de la presente invención, la cubierta (36) es una campana para la acumulación y extracción continua de vapores ácidos y gases que se desprenden en la operación de electrólisis de oxidación de arsénico, comprendiendo al menos una salida de vapores ácidos y gases (361 ). En una de las modalidades de la presente invención, la unidad industrial (1 ) de oxidación fotoelectroquímica comprende, además, un sistema de depuración de emisiones (8) en comunicación con la cubierta (36) para neutralizar los vapores ácidos y gases desprendidos; y una bomba de vacío (9) que conduce los vapores ácidos y gases desde la celda de oxidación electrolítica (3) al sistema de depuración de emisiones (8). En una de las modalidades de la presente invención, el sistema de depuración de emisiones (8) comprende al menos un scrubber alcalino.
En una de las modalidades de la presente invención, la entrada (34) de efluente de la celda de oxidación electrolítica (3) se ubica en la parte inferior del cuerpo (33), como se aprecia en las figuras 9A y 9B, comprendiendo una pluralidad de orificios (341 ) en la parte inferior del cuerpo (33); un compartimiento de entrada (342), que cubre la pluralidad de orificios (341 ) y regula el flujo del efluente minero arsenical; y al menos una válvula de entrada (343), comunicada con el compartimiento de entrada (342) que se conecta con la bomba de recirculación (5). La entrada (34) de efluente en la parte inferior del cuerpo (33) de la celda de oxidación electrolítica (3) permite asegurar un flujo ascendente a través de la celda de oxidación electrolítica (3), de manera que el efluente minero arsenical pase a través del arreglo de cátodos (31 ) y ánodos (32) para que se produzca la oxidación.
En una de las modalidades de la presente invención, el cuerpo (33) de la celda de oxidación electrolítica (3) comprende una placa (331 ) con una pluralidad de orificios (332), como se aprecia en las figuras 9A y 9B, de las mismas dimensiones del fondo del cuerpo (33), ubicada a una distancia del fondo del cuerpo, preferentemente a al menos 2,5 cm del fondo, de manera que el cuerpo (33) presenta un doble fondo, en donde el espacio generado entre la placa (331 ) y el fondo del cuerpo (33) permite regular el flujo ascendente de efluente minero arsenical que ingresa desde la entrada (34) de efluente de la celda de oxidación electrolítica (3), forzando el paso de efluente minero arsenical a través de la pluralidad de orificios (332) de la placa (331 ). La placa (331 ) comprende una pluralidad de orificios (332) dispuestos en un arreglo ortogonal de filas y columnas, en donde la cantidad de filas corresponde al número de ánodos (32) en el arreglo de cátodos (31 ) y ánodos (32). La posición de las filas de orificios (332) en la placa (331 ) es tal que un plano vertical que pasa por una fila de orificios (332) queda frente a un respectivo ánodo (32) de manera que se asegura que el flujo ascendente de efluente minero que pasa a través de dicha fila de orificios (332) pasará por la parte frontal del respectivo ánodo (32), asegurando que se produzca la oxidación.
En una de las modalidades de la presente invención, la salida (35) de efluente de la celda de oxidación electrolítica (3) se ubica en la parte superior del cuerpo (33), estando en una posición opuesta con respecto a la entrada (34) de efluente, comprendiendo un compartimiento de salida (351 ), que regula el flujo del efluente minero arsenical, y al menos una válvula de salida (352), comunicada con el compartimiento de salida (351 ) que se conecta con el estanque (4).
En una de las modalidades de la presente invención, la celda de oxidación electrolítica (3), el estanque (4) y la bomba de recirculación están conectadas mediante mangueras o tuberías que resistan las condiciones de operación de la unidad industrial (1 ) de oxidación fotoelectroquímica y el efluente minero arsenical.
En una de las modalidades de la presente invención, el arreglo de cátodos (31 ) y ánodos (32) están montados en la parte superior del cuerpo (33) mediante dos barras de soporte (38), de cobre, de forma dentada rectangular alargada comprendiendo hendiduras o cortes transversales, separadas por una distancia regular, en donde se colocan los cátodos (31 ) y ánodos (32) de forma intercalada, en donde dichas barras de soporte (38) permiten la conexión eléctrica entre la fuente de poder (6) y los cátodos (31 ) y ánodos (32). El arreglo de cátodos (31 ) y ánodos (32) comprende un número impar de cátodos (31 ) y un número par de ánodos (32) de manera que cada ánodo (32) queda dispuesto entre dos cátodos (31 ). Los cátodos (31 ) y ánodos (32) comprenden barras de sujeción (311 , 321 ) que permiten colocar o disponer los electrodos en las hendiduras o cortes transversales de las barras de soporte (38). En una de las modalidades de la presente invención, las hendiduras o cortes transversales de las barras de soporte (38) permiten disponer los electrodos con una distancia de separación de 1 cm.
En una de las modalidades de la presente invención, las barras de soporte (38) comprenden perforaciones (381 ) para realizar las conexiones eléctricas entre cada electro y las barras de soporte (38). La conexión eléctrica entre cada electro y barra de soporte (38) se realiza mediante pernos colocados en una perforación (381 ) de la barra de soporte (38) y en el electrodo, estando dichos pernos conectados mediante un cable para formar la conexión eléctrica, asegurando una buena conexión eléctrica con resistencia de 0 Ohm. Para asegurar la correcta conexión eléctrica entre cada electrodo y las barras de cobre (38), los pernos tienen el mismo diámetro de las perforaciones (381 ) en las barras de cobre (38). En una de las modalidades de la presente invención, las perforaciones (381 ) tienen un diámetro de 3 mm.
En una de las modalidades de la presente invención, la conexión eléctrica entre las barras de cobre (38) y la fuente de poder (6) es mediante un perno que se fija en la parte interior de la barra de cobre (38), el cual se conecta a un cable que está conectado, a su vez, con la fuente de poder (6), en donde dicha conexión eléctrica asegura que la resistencia medida entre el cable y la barra de soporte (38) es de 0 Ohm.
El al menos un medio de irradiación de luz solar simulada se dispone para emitir irradiación sobre la celda de oxidación electrolítica (3) y dirigida sobre el efluente minero arsenical en el interior de la celda de oxidación electrolítica (3).
Como se indica en la figura 10, la unidad industrial (1 ) de oxidación fotoelectroquímica constituye un circuito hidráulico cerrado en donde la bomba de recirculación (5) conduce el efluente minero arsenical a la celda de oxidación electrolítica (3), la cual está conecta a la fuente de poder (6) para suministrar corriente continua controlada y un potencial controlado para generar la reacción de oxidación, en donde luego el efluente minero arsenical sale de la celda de oxidación para recircular por el circuito hasta que todo el volumen es tratado, disminuyendo la concentración de arsénico. Como se describió, la celda de oxidación electrolítica (3) puede estar conectada al sistema de depuración de emisiones (8) en comunicación con la cubierta (36) para neutralizar los vapores ácidos y gases desprendidos durante el proceso, los cuales son conducido mediante la bomba de vacío (9).
En una de las modalidades de la presente invención, como se muestra en la figura 1 1 , la celda de oxidación electrolítica (3) tiene una disposición vertical, con un cuerpo (33a) alargado que comprende al menos un arreglo de cátodos (31 ) y ánodos (32); una entrada (34a) de efluente, en la parte inferior del cuerpo (33a) que recibe el efluente minero arsenical desde el estanque (4); y una salida (35a), en la parte superior del cuerpo (33a) que conduce el efluente minero arsenical nuevamente hacia el estanque (5), de manera que el flujo circula en la celda de oxidación electrolítica (3) desde abajo hacia arriba.
En una de las modalidades de la presente invención, los ánodos (32) de la celda de oxidación electrolítica (3) son de un material que se selecciona entre diamante dopado con boro (BDD), Titanio, TiC Pt o TiC>2lr.
En una de las modalidades de la presente invención, los cátodos (31 ) de la celda de oxidación electrolítica (3) son de un material que se selecciona entre Titanio o acero inoxidable.
En una de las modalidades de la presente invención, se proporciona un un sistema modular (2), que comprende al menos una unidad industrial (1 ) de oxidación fotoelectroquímica, como se muestra en la figura 12. Dos o mas unidades industriales (1 ) de oxidación fotoelectroquímica pueden disponerse en serie para asegurar el tratamiento de efluentes. En una de las modalidades de la presente invención, la unidad industrial (1 ) de oxidación fotoelectroquímica es utilizada para reemplazar el agua oxigenada en la producción de escorodita como residuo arsenical estable.
Una modalidad que deriva de la presente invención consiste en aplicar la celda continua electrolítica que emplea ánodos de BDD dopado con IrC -RuC y empleando como electrolito ácido sulfúrico, sulfato ferroso, cloruro de sodio y sulfato de potasio, operando a 10°C, para generar una solución oxidante Fenton con alta concentración de radicales libres del tipo peroxídicos. Tal celda electrolítica puede ser conectada a los circuitos de tratamiento de aguas servidas, aguas industriales que contienen especies refractarias a la oxidación convencional. En general para lograr una mineralización de especies químicas o bio-refractarias, efluentes petroquímicos, aguas servidas, derivaos de la agro- industria.
EJEMPLOS:
La celda de oxidación electrolítica (3) propuesta, requirió especial atención en su diseño en la elección de electrodos (ánodos y cátodos) como para lograr expeñmentalmente una corriente uniforme y una distribución de potenciales de celda tal de proveer los parámetros y criterios de diseño y de operación que producen la máxima oxidación de arsénico trivalente, As-I 11 , a As- V con un consumo de energía aceptable y una eficiencia electrolítica de oxidación máxima. Elementos básicos de diseño de la celda:
El diseño de la celda de oxidación electrolítica seleccionó previamente los siguientes elementos:
• Naturaleza, geometría y dimensiones de los electrodos:
• Ánodos: planos de diamante dopado en Boro 12cm X 9cm X 0,5cm.
• Superficie total: 216 cm2
• Titanio pulido: planos 12cm X 9cm X 0,5cm. Superficie total: 216 cm2
Esta geometría planar y la superficie de electrodos planos en disposición paralelas permitió lograr una corriente y una distribución de potenciales de celda también uniformes. Este diseño particular permitió un control fácil de las distancias ¡nter-electrodos y altas velocidades de trasporte de masa en esta celda de flujo continuo.
Además, el criterio de selección de material del ánodo y la geometría diseñada se basó en la selectividad oxidativa en el marco de los ánodos OER (Oxygen Evolution Reaction) con alto sobre voltaje de descarga de oxígeno. Electrodos de BDD (Boron Doped Diamond) y electrodos de Titanio dopado en lrO2-RuO2, como ánodos, fueron seleccionados para la presente invención. Aplicaciones de la celda a efluentes metalúrgicos con altas concentraciones de arsénico-lll:
La celda diseñada según los criterios recién señalados fue aplicada para electrolitos de dos tipos fundamentalmente:
• Efluentes metalúrgicos de Plantas de Ácido Sulfúrico, (efluentes EPAS), los cuales son generados en Plantas de Fundiciones de Cobre. A un flujo de EPAS y densidad de corriente definida en los criterios y condiciones operación de diseño, se logran los siguientes productos:
(1 ) Un electrolito final totalmente oxidado con una concentración final de As- 111 bajo los 100 ppm en un tiempo de operación definido; siendo enviada esta solución oxidada a precipitación de escorodita, FeAsC x2H2O, donde ya el 100 % del arsénico es precipitado como escorodita.
(2) Un film de un depósito arsenical y cobre, con una masa total muy pequeña, la cual, en una operación química o electroquímica posterior se recupera el As-V y el cobre correspondiente, enviándose finalmente esta solución tratada a proceso “aguas abajo” de precipitación del arsénico como escorodita.
Efluentes PLS, correspondientes a soluciones ricas en cobre (40 g/l) con arsénico-lll de 3 a 5 g/l) , las cuales deben ser previamente oxidadas antes de precipitación de escorodita, ambientalmente estable. En este caso corresponde estrictamente a un proceso de Electrowining de Cobre con simultánea oxidación del As-lll a As-V. Proceso que considera como producto catódico principal un copper-foil de alta pureza (LME) obtenido en el cátodo de titanio; por su parte en el ánodo de BDD se oxida el As-lll a As-V. Este proceso se opera hasta una concentración límite de iones Cu2+ en el electrolito como punto final de este proceso de electrowining. El electrolito final pasa a otra celda, denominada generalmente como celda “electroliberadora”, donde el cobre y arsénico residual se depositan en el cátodo de titanio como un sólido compósito de CuaAs y As0. Este sólido se filtra enviándose a una operación conjunta de tratamiento de residuos con valor económico.
Dimensiones de celda y conexiones eléctricas e hidráulicas:
Se construye un prototipo de la una unidad industrial de oxidación fotoelectroquímica para la estabilización del arsénico que opera en régimen continuo, la cual comprende:
• una celda de oxidación electrolítica que comprende un arreglo de cátodos y ánodos;
• un estanque para suministrar un efluente minero arsenical a la celda de oxidación electrolítica; • medios para suministrar una solución de cloruro de sodio al efluente minero arsenical en la celda de oxidación electrolítica para evitar la pasivación de los cátodos;
• una bomba de recirculación para conducir el efluente minero arsenical desde el estanque a la celda de oxidación electrolítica en un circuito cerrado.
• una fuente de poder acoplada a los cátodos y ánodos para suministrar corriente continua controlada y un potencial controlado para generar la reacción de oxidación; y
El prototipo de la unidad industrial de oxidación foto-electroquímica puede incorporar un medio de irradiación de luz solar simulada, para aplicar irradiación solar simulada a la celda de oxidación electrolítica.
El prototipo de la unidad industrial de oxidación fotoelectroquímica para la estabilización del arsénico que opera en régimen continuo, se operó de manera sistemática para validar un modelo de oxidación electrolítica avanzada del arsénico presentes en efluentes ácidos metalúrgicos con altas concentraciones de arsénico As-lll. A continuación, se definen las dimensiones de celda electrolítica de la presente invención y las figuras 13 a 18 que muestran el diseño y la celda prototipo construida.
- Largo: 6 cm
- Ancho: 14 cm Alto: 14 cm
Volumen total: 3,146 L
- Volumen electrolito en operación: 2,4 L
- Material de construcción de esta celda: acrílico entre 0,5 cm y 1 cm de espesor
En particular, el diseño de celda electrolítica se muestra en la Figura 13, en donde en una realización preferente de la invención, el prototipo posee una capacidad nominal de 3,146 L construida en acrílico con cúpula, también en acrílico, provista de salida de captura de vapores y gases conectadas a un scrubber alcalino. En la Figura 13 (A) se muestra una vista lateral destacándose los orificios de entrada del electrolito en el piso de la celda y tres orificios de la salida del electrolito en parte superior. En la Figura 13 (B) se muestra una vista frontal del diseño en donde se aprecia la posición de las barras y sistema de fijación de los electrodos. Adicionalmente, la figura 13 muestra un modelo físico de celda prototipo construida, de capacidad nominal de 3,146 L provista de campana para acumulación y descarga de vapores y gases que se desprenden en la operación de electrólisis e oxidación de arsénico.. La Figura 14 muestra la vista superior de la celda prototipo, mostrando el sistema de barra de sujeción y contacto eléctrico requerido para instalación de las placas electrodos.
La celda prototipo construida está provista de campana de acumulación y extracción continua de vapores ácidos y gases construida en acrílico mostrando sus conexiones a la bomba de vacío que conducen vapores y gases al scrubber alcalino. En una modalidad preferida de la invención, las dimensiones de la campana son las siguientes:
- Largo: 29 cm
- Alto: 9,5 cm
- Ancho: 16 cm
- Uniones y absorbedores (scrubber) de gases y vapores ácidos: 3 unidades de 500 mL de volumen con conexión a bomba de vacío
La celda prototipo construida está provista de una placa perforada ubicada en el piso de la celda, comprendiendo 5 corridas cada una con 7 perforaciones de 3 mm de diámetro. En una modalidad preferida de la invención, la celda construida está provista de entradas de electrolito, que se encuentra en la parte inferior de la celda. Además, la celda prototipo construida está provista de la salida del electrolito, que se encuentra ubicado en la parte superior de la celda.
La celda prototipo construida está provista de una bomba de recirculación, para efectos ilustrativos de la presente invención y sin el ánimo de limitar el contenido de la solicitud, la bomba puede ser seleccionada de un modelo Watson Marlow qdos 30: Capacidad de 0,1 a 500 mL/min, capacidad para operar con una presión de hasta 7 bar, además cuenta con protección IP66, la cual se muestra en la figura 19.
La celda prototipo construida está provista de conexiones eléctricas, más particularmente, la conexión eléctrica mediante barras de soporte, de cobre, montadas en la parte superior de la celda, como muestran las figuras 20 y 21 . Estas barras de soporte presentan hendiduras o cortes transversales que permiten asegurar una distancia de 1 cm entre los electrodos; bornes: metálicos 2 x 16 mm; distancia de electrodos: 1 cm.
La celda prototipo construida opera en recirculación y está provista de un recipiente cilindrico con las siguientes dimensiones:
- Alto: 32 cm
- Diámetro: 22,5 cm
- Capacidad nominal: 10 L
Las dimensiones del sistema eléctrico son las siguientes:
- Largo ancho alto de rieles de contacto, material y soportes plásticos:
- Largo 19,5 cm y ancho de 1 ,2 cm.
En una modalidad preferida de la invención, las barras de soporte tienen perforaciones de 3 mm de diámetro para realizar las conexiones eléctricas entre cada electrodo y las barras de soporte, como se muestra en la figura 21 .
Los cables de conexión eléctrica de la barra de soporte a la barra de los electrodos se caracterizan por comprender: Cada electrodo se conecta mediante pernos de 3 mm con golilla, lo cual asegura una buena conexión eléctrica con resistencia medida de 0 Ohm, como se muestra en las figuras 22 y 23.
La conexión eléctrica entre la barra de soporte y la fuente de poder es mediante de un perno de 5 mm el cual se fija en la parte inferior de la barra. Al igual que en la conexión de los electrodos, la resistencia medida entre los cables de la fuente de poder y la barra de cobre fue de 0 Ohm.
La celda prototipo construida está provista de una fuente de poder, para efectos ilustrativos de la presente invención y sin el ánimo de limitar el contenido de la solicitud, la fuente de poder puede ser seleccionada de un modelo Sorensen DCS10-100E de rango de voltaje entre 0 y 10 V, y rango de corriente de operación entre 0 y 100 A, la cual se muestra en la figura 24.
El montaje de electrodos al interior de la celda es configurado de la siguiente manera:
- Cada electrodo está montado sobre una platina o barra de soporte, de cobre, que asegura una buena conexión eléctrica con la fuente de poder, así como también una distancia de 1 cm entre cada ánodo y cátodo.
- Cátodos: 7 unidades de titanio pulido, de dimensiones de 12 cm x 9 cm x 0,3 cm.
- Área catódica expuesta a electrolito: 1260 cm2.
- Ánodos: 6 unidades de placas de BDD (Boron Doped Diamond), de dimensiones 12 cm x 9 cm x 0,3 cm.
- Área anódica expuesta a electrolito: 1080 cm2.
- Platinas o barras de soporte, de cobre: 2 unidades, 3x1 cm para distribución eléctrica.
Los parámetros y condiciones de operaciones que se puede aplicar en esta celda prototipo puede comprender rangos de operación y distintas densidades de corrientes para el PLS y el EPAS, por ejemplo y a modo ilustrativo:
- densidad de corriente: 500 a/m2 - tensión de celda: 4 a 4,15 volt a 40°c
- eficiencia de corriente (%): variable %
- densidad de corriente: 750 a/m2
- tensión de celda: 4 a 4,7 volt a 40°c
- eficiencia de corriente: variable %
ENSAYOS REALIZADOS:
Tabla 1 : Ensayos de electrólisis a corriente controlada para ánodo de BBD.
Figure imgf000034_0001
Tabla N° 2: Ensayos con y sin limpieza de cátodos.
Figure imgf000035_0001
Figure imgf000036_0001
Mientras esta invención ha sido descrita bajo las modalidades señaladas anteriormente, podría parecer evidente que otras alternativas, modificaciones o variaciones entregarían los mismos resultados, sin embargo, hemos podido establecer que la materia descrita en la presente solicitud es fundamental para el éxito de la invención que se describe. Consecuentemente, las modalidades de la invención pretenden ser ilustrativas, no limitantes. Varios cambios pueden ser realizados sin alejarse del espíritu y alcance de la invención como se define en las siguientes reivindicaciones. Todas las patentes, solicitudes de patentes, artículos científicos y otros documentos públicos que en conocimiento del solicitante constituyen el estado del arte, han sido adecuadamente citados en la presente solicitud.

Claims

REIVINDICACIONES Proceso de oxidación foto-electroquímica para la estabilización de residuos de arsénico provenientes de efluentes mineros, CARACTERIZADO porque el proceso comprende los pasos de:
- suministrar un efluente minero a un reactor de oxidación;
- agregar al reactor una solución de cloruro de sodio;
- aplicar una corriente controlada a través de la celda de oxidación que comprende un cátodo y un ánodo;
- mantener un potencial controlado; y
- recolección de los electrodos. El proceso de oxidación de acuerdo con la reivindicación 1 , CARACTERIZADO porque el ánodo de la celda de oxidación es de un material que se escoge entre diamante dopado con boro (BDD), Titanio, T¡O2Pt o T¡O2lr. El proceso de oxidación de acuerdo con la reivindicación 1 o 2, CARACTERIZADO porque el cátodo es elegido entre Titanio o acero inoxidable.
4. El proceso de acuerdo con las reivindicaciones anteriores, CARACTERIZADO porque la concentración de iones cloruros es de 5 g/L.
5. El proceso de acuerdo con las reivindicaciones anteriores,
CARACTERIZADO porque el potencial controlado de al menos 2 V.
6. El proceso de acuerdo con las reivindicaciones anteriores,
CARACTERIZADO porque la corriente controlada está en el rango de 0,25- 0,75 A.
7. El proceso de acuerdo con las reivindicaciones anteriores, CARACTERIZADO porque durante el proceso se aplica irradiación de luz solar simulada a la celda de oxidación electrolítica (3).
8. El proceso de acuerdo con la reivindicación 7, CARACTERIZADO porque la luz solar simulada es de 1850 W/m2.
9. El proceso de oxidación de acuerdo con las reivindicaciones anteriores, CARACTERIZADO porque la temperatura se mantiene en 40°C.
10. El proceso de oxidación de acuerdo con las reivindicaciones anteriores, CARACTERIZADO porque las concentraciones de Arsénico son mayores a 15 g/L y pH de la solución es menor que 1 .
1 1. Una unidad industrial (1 ) de oxidación fotoelectroquímica para la estabilización del arsénico que opera en régimen continuo, CARACTERIZADA porque comprende:
• una celda de oxidación electrolítica (3) que comprende un arreglo de cátodos (31 ) y ánodos (32);
• un estanque (4) para suministrar un efluente minero arsenical a la celda de oxidación electrolítica (3);
• medios para suministrar una solución de cloruro de sodio al efluente minero arsenical en la celda de oxidación electrolítica (3) para evitar la pasivación de los cátodos (31 );
• una bomba de recirculación (5) para conducir el efluente minero arsenical desde el estanque (4) a la celda de oxidación electrolítica (3) en un circuito cerrado; y
• una fuente de poder (6) acoplada a los cátodos (31 ) y ánodos (32) para suministrar corriente continua controlada y un potencial controlado para generar la reacción de oxidación.
12. La unidad industrial (1 ) descrita en la reivindicación 1 1 , CARACTERIZADA porque comprende al menos un medio de irradiación de luz solar simulada, para aplicar irradiación solar simulada a la celda de oxidación electrolítica (1 ).
13. La unidad industrial (1 ) descrita en las reivindicaciones 11 o 12, CARACTERIZADA porque comprende además al menos un intercambiador de calor (7) configurado para regular la temperatura del efluente minero.
14. La unidad industrial (1 ) descrita en la reivindicación 13, CARACTERIZADA porque el al menos un intercambiador de calor (7) está configurado para mantener la temperatura del efluente minero en 40°C.
15. La unidad industrial (1 ) descrita en las reivindicaciones 13 o 14, CARACTERIZADA porque el al menos un intercambiador de calor (7) puede estar dispuesto entre la salida de la celda de oxidación electrolítica (3) y el estanque (4) o entre la entrada de la celda de oxidación electrolítica (3) y la bomba de recirculación (5).
16. La unidad industrial (1 ) descrita en la reivindicación 1 1 , CARACTERIZADA porque la celda de oxidación electrolítica (3) comprende: • un cuerpo (33) que comprende un espacio interior que contiene un arreglo de cátodos (31 ) y ánodos (32) dispuestos de forma intercalada y permite el paso del efluente minero arsenical para generar la reacción de oxidación; una entrada (34) de efluente que recibe el efluente minero arsenical desde el estanque (4); y una salida (35) que conduce el efluente minero arsenical nuevamente hacia el estanque (4); y
• una cubierta (36) que cubre y está fijada a la parte superior del cuerpo (33) para contener el efluente minero arsenical en el interior de la celda de oxidación electrolítica (3).
17. La unidad industrial (1 ) descrita en la reivindicación 16, CARACTERIZADA porque la cubierta (36) está fijada a la parte superior del cuerpo (33) por medio de una pluralidad de tornillos (37).
18. La unidad industrial (1 ) descrita en la reivindicación 16, CARACTERIZADA porque la cubierta (36) es una campana para la acumulación y extracción continua de vapores ácidos y gases que se desprenden en la operación de electrólisis de oxidación de arsénico, comprendiendo al menos una salida de vapores ácidos y gases (361 ).
19. La unidad industrial (1 ) descrita en la reivindicación 18, CARACTERIZADA porque comprende además un sistema de depuración de emisiones (8) en comunicación con la cubierta (36) para neutralizar los vapores ácidos y gases desprendidos; y una bomba de vacío (9) que conduce los vapores ácidos y gases desde la celda de oxidación electrolítica (3) al sistema de depuración de emisiones (8). La unidad industrial (1 ) descrita en la reivindicación 19, CARACTERIZADA porque el sistema de depuración de emisiones (8) comprende al menos un scrubber alcalino. La unidad industrial (1 ) descrita en la reivindicación 16, CARACTERIZADA porque la entrada (34) de efluente de la celda de oxidación electrolítica (3) se ubica en la parte inferior del cuerpo (33), comprendiendo una pluralidad de orificios (341 ) en la parte inferior del cuerpo (33); un compartimiento de entrada (342), que cubre la pluralidad de orificios (341 ) y regula el flujo del efluente minero arsenical, y al menos una válvula de entrada (343), comunicada con el compartimiento de entrada (342) que se conecta con la bomba de recirculación (5), de manera que el efluente minero arsenical que ingresa a la celda de oxidación electrolítica (3) presenta una flujo ascendente desde la parte inferior del cuerpo (33). La unidad industrial (1 ) descrita en la reivindicación 21 , CARACTERIZADA porque el cuerpo (33) comprende una placa (331 ) de las mismas dimensiones del fondo del cuerpo (33), ubicada a una distancia de dicho fondo, formando un espacio entre dicha placa (331 ) y el fondo del cuerpo (33), en donde dicha placa (331 ) comprende una pluralidad de orificios (332) a través del cual pasa el efluente minero arsenical que ingresa al cuerpo (33) para regular el flujo ascendente. La unidad industrial (1 ) descrita en la reivindicación 22, CARACTERIZADA porque la placa (331 ) está a una distancia a al menos 2,5 cm del fondo del cuerpo (33). La unidad industrial (1 ) descrita en las reivindicaciones 22 o 23, CARACTERIZADA porque la pluralidad de orificios (332) de la placa (331 ) están dispuestos en un arreglo ortogonal de filas y columnas, en donde la cantidad de filas corresponde al número de ánodos (32) en el arreglo de cátodos (31 ) y ánodos (32) y la posición de dichas filas de orificios (332) es tal que un plano vertical que pasa por una fila de orificios (332) está frente a un respectivo ánodo (32) de manera que el flujo ascendente de efluente minero arsenical que pasa a través de dicha fila de orificios (332) pasa por la parte frontal del respectivo ánodo (32). La unidad industrial (1 ) descrita en la reivindicación 16, CARACTERIZADA porque la salida (35) de efluente de la celda de oxidación electrolítica (3) se ubica en la parte superior del cuerpo (33), estando en una posición opuesta con respecto a la entrada (34) de efluente, comprendiendo un compartimiento de salida (351 ), que regula el flujo del efluente minero arsenical, y al menos una válvula de salida (352), comunicada con el compartimiento de salida (351 ) que se conecta con el estanque (4). La unidad industrial (1 ) descrita en la reivindicación 1 1 , CARACTERIZADA porque la celda de oxidación electrolítica (3), el estanque (4) y la bomba de recirculación están conectadas mediante mangueras o tuberías que resistan las condiciones de operación de la unidad industrial (1 ) de oxidación fotoelectroquímica y el efluente minero arsenical. La unidad industrial (1 ) descrita en la reivindicación 16, CARACTERIZADA porque el arreglo de cátodos (31 ) y ánodos (32) están montados en la parte superior del cuerpo (33) mediante dos barras de soporte (38), de cobre, de forma dentada rectangular alargada comprendiendo hendiduras o cortes transversales, separadas por una distancia regular, en donde se colocan los cátodos (31 ) y ánodos (32) de forma intercalada, en donde dichas barras de soporte (38) permiten la conexión eléctrica entre la fuente de poder (6) y los cátodos (31 ) y ánodos (32).
28. La unidad industrial (1) descrita en la reivindicación 27, CARACTERIZADA porque los cátodos (31) y ánodos (32) comprenden barras de sujeción (311 , 321 ) que permiten colocar o disponer los electrodos en las hendiduras o cortes transversales de las barras de soporte (38).
29. La unidad industrial (1) descrita en la reivindicación 27, CARACTERIZADA porque las hendiduras o cortes transversales de las barras de soporte (38) separan los electrodos a una distancia de separación de 1 cm.
30. La unidad industrial (1) descrita en la reivindicación 27, CARACTERIZADA porque las barras de soporte (38) comprenden perforaciones (381 ) para realizar las conexiones eléctricas entre cada electro y las barras de soporte (38).
31. La unidad industrial (1) descrita en la reivindicación 30, CARACTERIZADA porque la conexión eléctrica entre cada electro y barra de soporte (38) se realiza mediante pernos colocados en una perforación (381 ) de la barra de soporte (38) y en el electrodo, estando dichos pernos conectados mediante un cable para formar la conexión eléctrica. La unidad industrial (1 ) descrita en la reivindicación 27, CARACTERIZADA porque la conexión eléctrica entre las barras de cobre (38) y la fuente de poder (6) es mediante un perno que se fija en la parte interior de la barra de cobre (38), el cual se conecta a un cable que está conectado, a su vez, con la fuente de poder (6). La unidad industrial (1 ) descrita en la reivindicación 11 , CARACTERIZADA porque los ánodos (32) de la celda de oxidación electrolítca (3) son de un material que se escoge entre diamante dopado con boro (BDD), Titanio, TiC Pt o T¡O2lr. La unidad industrial (1 ) descrita en la reivindicación 11 , CARACTERIZADA porque los cátodos de la celda de oxidación electrolítica (3) son de un material que se escoge entre Titanio o acero inoxidable. Sistema modular (2), CARACTERIZADO porque comprende una o vahas de la unidad industrial de oxidación descrita en la reivindicación 1 1 . El uso de la unidad industrial de oxidación fotoelectroquímica descrita en la reivindicación 1 1 , CARACTERIZADO porque sirve para reemplazar el agua oxigenada en la producción de escorodita como residuo arsenical estable.
PCT/CL2023/050039 2022-05-09 2023-05-09 Proceso electrolítico de oxidación avanzada para estabilización de efluentes mineros WO2023216008A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2022001209 2022-05-09
CL1209-2022 2022-05-09

Publications (1)

Publication Number Publication Date
WO2023216008A1 true WO2023216008A1 (es) 2023-11-16

Family

ID=88729280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2023/050039 WO2023216008A1 (es) 2022-05-09 2023-05-09 Proceso electrolítico de oxidación avanzada para estabilización de efluentes mineros

Country Status (1)

Country Link
WO (1) WO2023216008A1 (es)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008150541A1 (en) * 2007-06-04 2008-12-11 Schwartzel David T Aqueous treatment apparatus utilizing precursor materials and ultrasonics to generate customized oxidation-reduction-reactant chemistry environments in electrochemical cells and/or similar devices
WO2012087427A1 (en) * 2010-12-23 2012-06-28 Wisconsin Alumni Research Foundation Methods for removing contaminants from aqueous solutions using photoelectrocatalytic oxidization
WO2020223824A1 (en) * 2019-05-08 2020-11-12 University Of Guelph Water treatment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008150541A1 (en) * 2007-06-04 2008-12-11 Schwartzel David T Aqueous treatment apparatus utilizing precursor materials and ultrasonics to generate customized oxidation-reduction-reactant chemistry environments in electrochemical cells and/or similar devices
WO2012087427A1 (en) * 2010-12-23 2012-06-28 Wisconsin Alumni Research Foundation Methods for removing contaminants from aqueous solutions using photoelectrocatalytic oxidization
WO2020223824A1 (en) * 2019-05-08 2020-11-12 University Of Guelph Water treatment

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MONGE SARAI BES, ANDRÉ TORRES-PINTO, RUI S. RIBEIRO, ADRIAN M.T. SILVA, CHRISTOPHE BENGOA: "Manual tecnico sobre procesos de oxidacion avanzada aplicados al tratamiento de aguas residuales industriales", RED TRITON 316RT0508, PROGRAMA CYTED, 1 January 2018 (2018-01-01), XP093110954, ISBN: 978-84-090-8637-5, Retrieved from the Internet <URL:https://www.researchgate.net/publication/349737485_Manual_Tecnico_sobre_Procesos_de_Oxidacion_Avanzada_aplicados_al_Tratamiento_de_Aguas_Residuales_Industriales/link/603fc9fea6fdcc9c780f5d7f/download?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19> [retrieved on 20231211] *
MUDDEMANN THORBEN, NEUBER RIEKE, HAUPT DENNIS, GRASSL TOBIAS, ISSA MOHAMMAD, BIENEN FABIAN, ENSTRUP MARIUS, MÖLLER JONATAN, MATTHÉ: "Improving the Treatment Efficiency and Lowering the Operating Costs of Electrochemical Advanced Oxidation Processes", PROCESSES, M D P I AG, CH, vol. 9, no. 9, CH , pages 1482, XP093110956, ISSN: 2227-9717, DOI: 10.3390/pr9091482 *
NIDHEESH P. V., SYAM BABU D., DASGUPTA BAISHAKHI, BEHARA PRIYANKA, RAMASAMY BOOPATHY, SURESH KUMAR M.: "Treatment of Arsenite‐Contaminated Water by Electrochemical Advanced Oxidation Processes", CHEMELECTROCHEM, WILEY, CHICHESTER, vol. 7, no. 11, 2 June 2020 (2020-06-02), Chichester , pages 2418 - 2423, XP093110949, ISSN: 2196-0216, DOI: 10.1002/celc.202000549 *

Similar Documents

Publication Publication Date Title
Brillas Recent development of electrochemical advanced oxidation of herbicides. A review on its application to wastewater treatment and soil remediation
US9688550B2 (en) Electrolytic apparatus and method for treating water to remove nitrates, phosphates, arsenates, and molecules of high molecular weight
AU2007257247B2 (en) Electrolytic activation of water
US6328875B1 (en) Electrolytic apparatus, methods for purification of aqueous solutions and synthesis of chemicals
CN110759437B (zh) 电化学-uv复合处理难降解有机物的方法
US8287702B2 (en) Electrolytic activation of water
US20090008267A1 (en) Process and method for the removal of arsenic from water
US20230129237A1 (en) Water-processing electrochemical reactor
CN204824475U (zh) 一种多金属络合废水处理装置
OA11806A (en) Electrolytic apparatus, methods for purification of aqueous solutions and synthesis of chemicals.
CN110980895B (zh) 一种从水中电吸附并降解去除抗生素的方法及装置
CN101863548A (zh) 一种去除水中有机物的装置及方法
CN113184960A (zh) 三维电催化氧化设备
EP2675758B1 (en) An improved electrochemical coagulation process for the removal of nitrate from drinking water
US20020036172A1 (en) Process and apparatus for the removal of heavy metals, particularly arsenic, from water
CN101362610A (zh) 一种电解去除水或废水中甲烷氯化物的方法
WO2014165998A1 (en) Treatment of a waste stream through production and utilization of oxyhydrogen gas
WO2023216008A1 (es) Proceso electrolítico de oxidación avanzada para estabilización de efluentes mineros
KR20200081001A (ko) 수소 생산 하수 처리 시스템
JP4394941B2 (ja) 電解式オゾナイザ
KR101036834B1 (ko) 물 정화용 전해조
KR20040057008A (ko) 전기화학적 폐수처리장치
KR100293311B1 (ko) 오수처리장치
JP3796032B2 (ja) 汚水処理装置
CN211497267U (zh) 水处理电解杀菌系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802416

Country of ref document: EP

Kind code of ref document: A1