WO2023214564A1 - Device, system, and method for producing carbonous valuable substance and carbonous material - Google Patents

Device, system, and method for producing carbonous valuable substance and carbonous material Download PDF

Info

Publication number
WO2023214564A1
WO2023214564A1 PCT/JP2023/017051 JP2023017051W WO2023214564A1 WO 2023214564 A1 WO2023214564 A1 WO 2023214564A1 JP 2023017051 W JP2023017051 W JP 2023017051W WO 2023214564 A1 WO2023214564 A1 WO 2023214564A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
carbon
reactor
reaction
carbon dioxide
Prior art date
Application number
PCT/JP2023/017051
Other languages
French (fr)
Japanese (ja)
Inventor
アルツゲ ラシカ ダサナヤケ
宣利 柳橋
圭祐 飯島
友樹 中間
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Publication of WO2023214564A1 publication Critical patent/WO2023214564A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/04Ethylene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/06Propene
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/23Carbon monoxide or syngas

Definitions

  • the present invention relates to a manufacturing device, a manufacturing system, and a manufacturing method.
  • Patent Document 1 discloses a carbon dioxide reduction system that produces carbon monoxide from carbon dioxide.
  • This carbon dioxide reduction system includes a combustion furnace that generates exhaust gas containing carbon dioxide, a carbon dioxide separation device that separates carbon dioxide from the exhaust gas, and a reduction device that reduces the separated carbon dioxide to carbon monoxide. We are prepared.
  • the present invention provides a manufacturing device that improves the utilization efficiency of carbon monoxide by converting unreacted carbon monoxide into carbon materials after generating carbon valuables from carbon monoxide. We decided to provide the following.
  • an apparatus for producing carbon valuables and carbon materials includes a first reaction section that produces carbon monoxide from carbon dioxide, a second reaction section that produces carbon valuables from carbon monoxide, and unreacted water discharged from the second reaction section. and a third reaction section that generates a carbon material from carbon oxide.
  • carbon valuables and carbon materials can be produced while improving the utilization efficiency of carbon monoxide.
  • FIG. 1 is a schematic diagram showing the configuration of a first embodiment of a manufacturing system of the present invention.
  • FIG. 2 is a schematic diagram showing the configuration of a first reactor in the first embodiment. It is a schematic diagram showing the composition of a 2nd embodiment of the manufacturing system of the present invention. It is a schematic diagram showing the composition of a 3rd embodiment of the manufacturing system of the present invention. It is a schematic diagram showing the composition of the 1st reaction part in a 4th embodiment.
  • FIG. 1 is a schematic diagram showing the configuration of a first embodiment of the manufacturing system of the present invention.
  • FIG. 2 is a schematic diagram showing the configuration of the first reactor in the first embodiment.
  • the manufacturing system 10 shown in FIG. 1 includes a manufacturing device 100 (hereinafter also simply referred to as the “manufacturing device 100”) that manufactures carbon valuables and carbon materials, and is connected to the manufacturing device 100 and includes exhaust gas (a raw material containing carbon dioxide).
  • the blast furnace (gas supply section) 1 supplies a gas) and a reducing gas supply section 2 supplies a reducing gas.
  • upstream side with respect to the gas flow direction
  • downstream side is also simply referred to as "downstream side.”
  • “smelting” also includes “refining” performed to increase the purity of metal.
  • the gas supply section will be described as a blast furnace (furnace related to a smelter) 1, but the gas supply section may be another furnace related to a smelter.
  • Other preferable furnaces include shaft furnaces, converter furnaces, electric furnaces, and the like.
  • the gas supply unit may be a CO x emission source of at least one business facility selected from a garbage incinerator, a paper factory, a cement factory, a thermal power plant, an oil refinery, an ethylene cracker, an oil refinery, and a chemical factory. .
  • exhaust gas containing carbon dioxide is generated during combustion, melting, refining, etc. of the contents.
  • the contents include, for example, plastic waste, food garbage, municipal waste (MSW), waste tires, biomass waste, household garbage (bedding), etc. , paper), construction materials, etc. Note that these wastes may contain one type alone or two or more types.
  • exhaust gas typically contains other gas components such as nitrogen, oxygen, water vapor, and methane.
  • concentration of carbon dioxide contained in the exhaust gas is not particularly limited, but in consideration of the production cost of the generated gas (conversion efficiency into carbon material), it is preferably 1% by volume or more, more preferably 5% by volume or more.
  • carbon dioxide is 5% to 15% by volume
  • nitrogen is 60% to 70% by volume
  • oxygen is 5% to 10% by volume
  • water vapor is 15% by volume. It is contained in an amount of not less than 25% by volume.
  • the exhaust gas (blast furnace gas) from the blast furnace 1 is, for example, gas generated when producing pig iron in the blast furnace 1, and contains carbon dioxide of 5% to 45% by volume and nitrogen of 55% to 60% by volume.
  • carbon monoxide is contained in an amount of 10 volume % or more and 40 volume % or less
  • hydrogen is contained in an amount of 1 volume % or more and 10 volume % or less.
  • exhaust gas from a converter is a gas generated when manufacturing steel in a converter, and contains carbon dioxide of 15% to 20% by volume and carbon monoxide of 50% to 80% by volume.
  • Nitrogen is contained in an amount of 15% to 25% by volume
  • hydrogen is contained in an amount of 1% to 5% by volume. Note that pure gas containing 100% by volume of carbon dioxide may be used as the exhaust gas.
  • exhaust gas containing carbon dioxide generated in a smelter
  • exhaust gas containing carbon dioxide generated in a smelter is preferable.
  • untreated gas discharged from the furnace may be used as is, for example, treated gas after being subjected to treatment to remove carbon monoxide, etc. (described later).
  • the untreated blast furnace gas and the converter gas each have the gas compositions described above, and the treated gas has a gas composition close to that of the exhaust gas from the combustion furnace.
  • all of the above gases gases before being supplied to the manufacturing apparatus 100
  • exhaust gas all of the above gases (gases before being supplied to the manufacturing apparatus 100) are referred to as exhaust gas.
  • the reducing gas supply unit 2 is configured with, for example, a hydrogen generator that generates hydrogen by electrolyzing water.
  • a tank storing water is connected to this hydrogen generator.
  • the hydrogen generator a large amount of hydrogen can be generated relatively inexpensively and easily.
  • Another advantage is that condensed water generated within the manufacturing apparatus 100 can be reused.
  • the hydrogen generator consumes a large amount of electrical energy, it is effective to use electricity as renewable energy.
  • renewable energy electrical energy using at least one selected from solar power generation, wind power generation, hydropower generation, wave power generation, tidal power generation, biomass power generation, geothermal power generation, solar heat, and geothermal heat is used. It is possible.
  • a device that generates by-product hydrogen can also be used as the hydrogen generator.
  • devices that generate by-product hydrogen include devices that electrolyze an aqueous sodium chloride solution, devices that steam-reform petroleum, and devices that produce ammonia.
  • the reducing gas supply section 2 can also be a coke oven.
  • exhaust gas from the coke oven may be used as the reducing gas. This is because the exhaust gas from the coke oven has hydrogen and methane as its main components, and contains hydrogen in an amount of 50% by volume or more and 60% by volume or less.
  • the manufacturing apparatus 100 of this embodiment is an apparatus for manufacturing carbon valuables and carbon materials, and includes a gas switching section 3, two first reactors 4a and 4b (first reaction section 4), and one It includes a second reactor (second reaction section) 5 and one third reactor (third reaction section) 6.
  • Blast furnace (blast furnace) 1 is connected to gas switching section 3 via gas line GL1
  • reducing gas supply section 2 is connected to gas switching section 3 via gas line GL2.
  • a temperature control section that adjusts the temperature of the gas passing through it
  • a pressurization section that pressurizes the gas
  • an impurity removal section that removes impurities from the gas, etc.
  • the gas switching unit 3 can be configured to include, for example, a branch gas line and a passage opening/closing mechanism such as a valve provided in the middle of the branch gas line.
  • the gas switching unit 3 is connected to the inlet ports of the first reactors 4a, 4b via two gas lines GL3a, GL3b, respectively.
  • the exhaust gas (raw material gas containing carbon dioxide) supplied from the blast furnace 1 passes through the gas line GL1, the gas switching unit 3, and the gas lines GL3a and GL3b, and is then delivered to each of the first reactors 4a and 4b.
  • the reducing gas containing hydrogen (reducing substance) supplied from the reducing gas supply section 2 passes through the gas line GL2, the gas switching section 3, and the gas lines GL3a and GL3b, and is supplied to each of the first reactors 4a and 4b. supplied to
  • the first reactors 4a and 4b are capable of producing carbon monoxide from carbon dioxide (capable of converting carbon dioxide into linear carbon).
  • each of the first reactors 4a and 4b includes a plurality of tube bodies 41 each filled with (accommodating) a reducing agent (reductant) 4R, and a plurality of tube bodies 41 housed in an internal space 43.
  • the reactor is a multi-tubular reactor (fixed bed reactor) having a housing 42 with a cylindrical structure. According to such a multi-tubular reactor, a sufficient opportunity for contact between the reducing agent 4R and the exhaust gas and the reducing gas can be ensured. As a result, the conversion efficiency of carbon dioxide into carbon monoxide can be increased.
  • the first reactors 4a and 4b may be configured by omitting the tube 41 and filling the internal space 43 of the housing 42 with the reducing agent 4R (ie, a simple reactor).
  • the reducing agent 4R of this embodiment is preferably in the form of particles, scales, pellets, etc., for example. If the reducing agent 4R has such a shape, it is possible to increase the filling efficiency into the pipe body 41 and further increase the contact area with the gas supplied into the pipe body 41.
  • the reducing agent 4R When the reducing agent 4R is in the form of particles, its volume average particle diameter is not particularly limited, but is preferably 1 mm or more and 50 mm or less, and more preferably 1 mm or more and 30 mm or less. In this case, the contact area between the reducing agent 4R and the exhaust gas (carbon dioxide) can be further increased, and the conversion efficiency of carbon dioxide into carbon monoxide can be further improved. Similarly, regeneration (reduction) of the reducing agent 4R using a reducing gas containing a reducing substance can be performed more efficiently.
  • the particulate reducing agent 4R is preferably a molded body manufactured by rolling granulation because the sphericity is further increased.
  • the reducing agent 4R may be supported on a carrier.
  • the constituent material of the carrier may be any material that is difficult to modify due to contact with exhaust gas (oxidizing gas) or reaction conditions, such as carbon materials (graphite, graphene, carbon black, carbon nanotubes, activated carbon, etc.), Mo 2 C, etc.
  • Examples include carbides such as zeolite, montmorillonite, oxides such as ZrO 2 , TiO 2 , V 2 O 5 , MgO, CeO 2 , Al 2 O 3 , SiO 2 , and composite oxides containing these.
  • zeolite, montmorillonite, ZrO 2 , TiO 2 , V 2 O 5 , MgO, Al 2 O 3 , SiO 2 and composite oxides containing these are preferable as constituent materials of the carrier.
  • a carrier made of such a material is preferable because it does not adversely affect the reaction of the reducing agent 4R and has an excellent ability to support the reducing agent 4R.
  • the carrier does not participate in the reaction of the reducing agent 4R and simply supports (holds) the reducing agent 4R.
  • An example of such a configuration is a configuration in which at least a portion of the surface of the carrier is coated with the reducing agent 4R.
  • the reducing agent 4R contains at least one of a metal and a metal oxide (oxygen carrier with oxygen ion conductivity). At least one of the metal and the metal oxide preferably contains at least one metal element selected from Groups 3 to 13, although it is not particularly limited as long as it can reduce carbon dioxide. It is more preferable to contain at least one metal element selected from metal elements belonging to Groups 3 to 12, such as lanthanum, titanium, vanadium, iron, copper, zinc, nickel, manganese, chromium, and cerium. It is more preferable to contain seeds, and metal oxides or composite metal oxides containing iron and/or cerium are particularly preferable. These metal oxides are useful because they have particularly good efficiency in converting carbon dioxide to carbon monoxide.
  • the metal includes a simple metal consisting of only one of the above metal elements, and an alloy consisting of two or more of the above metal elements.
  • the tube body (cylindrical molded body) 41 may be made of the reducing agent 4R (at least one of a metal and a metal oxide) itself. Furthermore, a block-shaped, lattice-shaped (for example, net-shaped, honeycomb-shaped) molded body may be produced using the reducing agent 4R, and the molded body may be placed in the housing 42. In these cases, the reducing agent 4R as a filler may be omitted or may be used in combination.
  • the volumes of the two first reactors 4a and 4b are set to be approximately equal to each other, and are appropriately set depending on the amount of exhaust gas to be treated (the size of the blast furnace 1 and the size of the manufacturing apparatus 100). Further, the volumes of the two first reactors 4a and 4b may be varied depending on the types of exhaust gas and reducing gas, the performance of the reducing agent 4R, and the like.
  • the reducing agent 4R before oxidation is connected to the first reactor 4a containing the reducing agent 4R via the gas line GL3a.
  • the exhaust gas can be supplied via the gas line GL3b to the first reactor 4b containing the oxidized reducing agent 4R.
  • a reaction expressed by the following formula 1 proceeds in the first reactor 4a
  • a reaction expressed by the following formula 2 proceeds in the first reactor 4b.
  • the manufacturing system 10 includes a reducing agent heating unit (not shown in FIG. 1).
  • a reducing agent heating unit By providing such a reducing agent heating section, the temperature during the reaction between the exhaust gas or reducing gas and the reducing agent 4R is maintained at a high temperature, and a decrease in the conversion efficiency of carbon dioxide to carbon monoxide is suitably prevented or suppressed. , the regeneration of the reducing agent 4R by the reducing gas can be further promoted.
  • the manufacturing system 10 preferably includes a reducing agent cooling section that cools the reducing agent 4R instead of the reducing agent heating section.
  • a reducing agent cooling section that cools the reducing agent 4R instead of the reducing agent heating section.
  • deterioration of the reducing agent 4R is suitably prevented during the reaction between the exhaust gas or reducing gas and the reducing agent 4R, and the conversion efficiency of carbon dioxide into carbon monoxide is improved. It is possible to suitably prevent or suppress the decrease, and further promote the regeneration of the reducing agent 4R by the reducing gas.
  • the manufacturing system 10 is preferably provided with a reducing agent temperature control section that adjusts the temperature of the reducing agent 4R depending on the type of reducing agent 4R (exothermic reaction or endothermic reaction).
  • the conversion rate of carbon dioxide to carbon monoxide in the first reactors 4a, 4b is preferably 70% or more, more preferably 85% or more, and preferably 95% or more. More preferred.
  • the upper limit of the conversion rate of carbon dioxide to carbon monoxide is usually about 98%.
  • Such a conversion rate depends on the type of reducing agent 4R used, the concentration of carbon dioxide contained in the exhaust gas, the type of reducing substance, the concentration of reducing substance contained in the reducing gas, the temperature of the first reactors 4a and 4b, It can be set by adjusting the flow rate (flow rate) of exhaust gas and reducing gas to the first reactors 4a, 4b, the timing of switching between exhaust gas and reducing gas, etc.
  • Gas lines GL4a and GL4b are connected to the outlet ports of the first reactors 4a and 4b, respectively, and these meet at a gas merging section J to form a gas line GL4. Additionally, valves (not shown) are provided in the middle of the gas lines GL4a and GL4b, as necessary. For example, by adjusting the opening degree of the valve, the passing rate of the exhaust gas and reducing gas passing through the first reactors 4a and 4b (i.e., the processing rate of the exhaust gas by the reducing agent 4R and the processing rate of the reducing agent 4R by the reducing gas) can be adjusted. speed) can be set.
  • Gas line GL4 is connected to the inlet port of second reactor 5. That is, the second reactor (second reaction section) 5 is connected to the first reactors 4a, 4b (first reaction section) via gas lines GL4a, GL4b and gas line GL4. . Thereby, the exhaust gas from the first reactors 4a, 4b can be supplied to the second reactor 5 as a mixed gas.
  • the second reactor 5 is capable of producing carbon valuables from carbon monoxide (capable of converting carbon monoxide into carbon valuables).
  • an olefin compound which is a type of carbon valuable substance, is produced from carbon monoxide and hydrogen contained in the mixed gas. That is, in the second reactor 5, a so-called Fischer-Tropsch reaction is performed.
  • the tube body 41 is filled with a catalyst containing at least one of iron, cobalt, ruthenium, nickel, molybdenum, aluminum, and silicon, for example.
  • examples of the olefin compound include ethylene, propylene, butene, butadiene, etc., and one or more of these may be used. Among these, it is preferable that the olefin compound contains ethylene. This is because olefin compounds containing ethylene are useful as raw materials for various industrial products. Note that by changing the type of catalyst, the second reactor 5 can generate other carbon valuables other than olefin compounds from the carbon monoxide and hydrogen contained in the mixed gas. Examples of other carbon valuables include oxygen-containing compounds, aromatic compounds, and the like.
  • oxygen-containing compound examples include methanol, ethanol, acetaldehyde, acetone, and butanol, and one or more of these may be used.
  • the oxygen-containing compound preferably contains methanol. This is because oxygen-containing compounds containing methanol are useful as raw materials for various industrial products.
  • usable catalysts include, for example, catalysts containing at least one of titanium, copper, silver, zinc, rhodium, manganese, nickel, aluminum, and silicon.
  • examples of the aromatic compound include benzene, toluene, xylene, etc., and one or more of these may be used. Among them, it is preferable that the aromatic compound contains toluene. This is because aromatic compounds containing toluene are useful as raw materials for various industrial products.
  • examples of catalysts that can be used include catalysts containing at least one of molybdenum, tungsten, rhenium, nickel, aluminum, and silicon. Note that the catalyst may be a supported catalyst, a composite oxide such as zeolite, or a composite oxide supporting a metal.
  • a continuous method may be adopted in which the exhaust gas and reducing gas discharged from the first reactors 4a and 4b are continuously supplied to the second reactor 5 at the same timing without being combined. It is also possible to adopt a batch method in which only the exhaust gas is supplied (sealed) with the outlet port of the second reactor 5 closed, then the reducing gas is supplied, and then the outlet port of the second reactor 5 is opened. It is also possible to adopt a method in which two second reactors 5 are provided and exhaust gas and reducing gas are alternately supplied to each of them.
  • the first reaction temperature in the first reactors 4a, 4b is preferably higher than the second reaction temperature in the second reactor (second reaction section) 5.
  • the reaction heat in the first reactors 4a, 4b can be effectively used in the second reactor 5.
  • the difference between the first reaction temperature and the second reaction temperature is preferably 100°C or more, more preferably 150°C or more and 500°C or less, and 200°C or more and 400°C or less. It is even more preferable that there be.
  • the reaction temperature of the second reactor 5 is preferably 100°C or more and 400°C or less, more preferably 150°C or more and 350°C or less, and even more preferably 200°C or more and 300°C or less. .
  • the first reaction pressure in the first reactors 4a, 4b is preferably lower than the second reaction pressure in the second reactor (second reaction section) 5.
  • gas exhaust gas, reducing gas, and mixed gas
  • the second reaction pressure is preferably more than 1 MPaG, more preferably 1.5 MPaG or more and 5 MPaG or less, and even more preferably 2 MPaG or more and 4 MPaG or less. Thereby, the reaction efficiency in the second reactor 5 can be further improved.
  • a gas component removing section 12 is arranged in the middle of the gas line GL4. This gas component removal section 12 removes gas components having a boiling point higher than the boiling point of CO from the exhaust gas from the first reactors 4a, 4b. By removing such gas components (impurity gas components), the components that inhibit the reaction in the second reactor 5 are reduced, and the efficiency can be further improved.
  • gas components include H 2 O, CO 2 , methane, ethane, methanol, ethanol, ethylene oxide, propylene oxide, and the like.
  • the gas component removal unit 12 may be configured with a cooler that cools the exhaust gas (mixed gas) from the first reactors 4a and 4b, and increases the pressure of the exhaust gas to convert it into a gas having a boiling point higher than the boiling point of CO. It may be configured with a condenser that liquefies the components, a separation membrane that allows the passage of molecules to be reacted in the second reactor 5 and blocks the passage of other molecules, or a separation membrane that allows the passage of molecules to be reacted in the second reactor 5, or It may be composed of a separation membrane that blocks the passage of molecules to be reacted and allows the passage of other molecules, or it may be composed of any or all combinations of a cooler, a condenser, and a separation membrane. .
  • the condenser may include a compressor for increasing the pressure and a gas-liquid separator.
  • the separation membrane can be made of a metal, an inorganic oxide, or a metal organic framework (Metal Organic FRAM (registered trademark) eworks: MOF).
  • examples of the metal include titanium, aluminum, copper, nickel, chromium, cobalt, and alloys containing these.
  • the separation membrane is preferably a porous body with a porosity of 80% or more.
  • examples of the inorganic oxide include silica and zeolite.
  • examples of the metal-organic structure include a structure of zinc nitrate hydrate and terephthalate dianion, a structure of copper nitrate hydrate and trimesate trianion, and the like.
  • the separation membrane is composed of a porous body having continuous pores (pores penetrating the cylindrical wall) in which adjacent pores communicate with each other.
  • the porosity of the separation membrane is not particularly limited, but is preferably 10% or more and 90% or less, more preferably 20% or more and 60% or less. This makes it possible to maintain a sufficiently high permeability of H 2 O or CO while preventing the mechanical strength of the separation membrane from decreasing excessively.
  • the shape of the separation membrane is not particularly limited, and examples thereof include a cylindrical shape, a quadrangular shape, a rectangular tube shape such as a hexagonal shape, and the like.
  • the average pore diameter of the separation membrane is preferably 600 pm or less, more preferably 400 pm or more and 500 pm or less. Thereby, the separation efficiency between H 2 O and H 2 can be further improved.
  • the separation membrane is normally used while being housed in a housing. In this case, the pressure in the space outside the separation membrane within the housing may be reduced or a carrier gas (sweep gas) may be allowed to pass therethrough. Examples of the carrier gas include helium, inert gas such as argon, and the like.
  • the separation membrane is preferably hydrophilic. If the separation membrane has hydrophilicity, the affinity of water for the separation membrane will increase, and H 2 O will more easily permeate through the separation membrane.
  • Methods of imparting hydrophilicity to a separation membrane include methods of improving the polarity of the separation membrane by changing the ratio of metal elements in the inorganic oxide (for example, increasing the Al/Si ratio); Examples include a method of coating the separation membrane with a polymer, a method of treating the separation membrane with a coupling agent having a hydrophilic group (polar group), and a method of subjecting the separation membrane to plasma treatment, corona discharge treatment, etc.
  • the affinity for water may be controlled by adjusting the surface potential of the separation membrane.
  • the configuration of the separation membrane is The material, porosity, average pore diameter, degree of hydrophilicity or hydrophobicity, surface potential, etc. may be appropriately combined and set. It is also possible to configure the tube bodies 41 of the first reactors 4a, 4b with such separation membranes, but in this case, the separation membranes deteriorate due to heat, so the temperature of the first reactors 4a, 4b (reaction temperature ) cannot be set to a high temperature.
  • the temperature of the first reactors 4a, 4b can be set to a relatively high temperature, and therefore, the temperature of the first reactors 4a, 4b can be set to a relatively high temperature.
  • the conversion efficiency to carbon oxide and the regeneration (reduction) efficiency of the reducing agent 4R by the reducing gas can be further improved.
  • the mixed gas (exhaust gas) of exhaust gas and reducing gas that has passed through the gas component removal section 12 is supplied to the second reactor 5 . That is, unreacted hydrogen (reducing substance) with the reducing agent 4R (at least one of metal and metal oxide) in the first reactors 4a and 4b is converted into carbon valuables such as carbon monoxide in the second reactor 5. is configured for use in converting to . In this way, by reusing unreacted hydrogen (reducing substance), waste of raw materials can be reduced.
  • a gas line GL5 is connected to the outlet port of the second reactor 5.
  • This gas line GL5 is connected to the inlet port of the third reactor 6. That is, the third reactor (third reaction section) 6 is connected to the second reactor (second reaction section) 4 via the gas line GL5.
  • the third reactor 6 is capable of generating (converting) carbon material from unreacted carbon monoxide discharged from the second reactor 5.
  • a carbon material is generated from carbon monoxide contained in the mixed gas (exhaust gas) by a so-called boudoir reaction shown in the following equation 3.
  • the tube body 41 is filled with, for example, rhodium, nickel, cerium, platinum, or one or more of the following catalysts.
  • the catalyst examples include (1) tungsten, rhenium, osmium, tantalum, molybdenum, niobium, iridium, ruthenium, hafnium, technetium, rhodium, vanadium, chromium, zirconium, platinum, thorium, lutetium, titanium, palladium, protactinium, Thulium, scandium, iron, yttrium, erbium, cobalt, holmium, nickel, dysprosium, terbium, curium, cadrinium, beryllium, manganese, americium, promethium, uranium, copper, samarium, gold, actinium, neodymium, bercurium, silver, germanium, praseodymium, lanthanum, californium, calcium, europium, ytterbium, cerium, strontium, barium, radium, aluminum, magnesium, pluton
  • a first recovery section 7 for recovering carbon valuables and a pressure adjustment section 8 for increasing the pressure of the mixed gas passing through the gas line GL5 are provided in the middle of the gas line GL5.
  • the first recovery section 7 can be composed of, for example, a separation tower, an absorption tower, or the like. Furthermore, by increasing the pressure of the mixed gas (the gas after passing through the first recovery section 7) using the pressure adjustment section 8, the equilibrium of the reaction described in Equation 3 can be shifted (tilted) to the right, Therefore, the production efficiency of carbon material can be further improved.
  • the pressure of the mixed gas after pressurization by the pressure regulator 8 is preferably 0.1 MPaG or more, more preferably 0.1 MPaG or more and 10 MPaG or less, and 0.1 MPaG or more and 5 MPaG or less. It is more preferably 0.1 MPaG or more and 3 MPaG or less, most preferably 0.1 MPaG or more and 2 MPaG or less. Note that the lower limit of the pressure may be 0.2 MPaG or more, or 0.5 MPaG or more. By adjusting the pressure of the mixed gas, the production efficiency of carbon material can be further increased.
  • the pressure adjustment section 8 can be configured to include a valve, a pressure adjustment bubble, and the like. Note that the pressure adjustment section 8 may be provided as necessary, or may be omitted.
  • a cooler and a gas-liquid separator may be provided in the middle of the gas line GL5 to cool the mixed gas.
  • the cooler generates condensed water (liquid) by cooling the mixed gas.
  • This cooler is a jacket-type cooling device in which a jacket is placed around the piping to allow the refrigerant to pass through, and has the same configuration as the first reactors 4a and 4b (see FIG. 2), and has a mixed gas inside the tube.
  • a multi-tubular cooling device that allows refrigerant to pass around each tube body, an air fin cooler, and the like.
  • the gas-liquid separator separates condensed water generated when the mixed gas is cooled by the cooler from the mixed gas. At this time, the condensed water has the advantage of being able to dissolve and remove unnecessary gas components (especially carbon dioxide) remaining in the mixed gas.
  • the gas-liquid separator can be constituted by, for example, a simple container, a swirling flow separator, a centrifugal separator, a surface tension separator, or the like.
  • the gas-liquid separator is preferably constructed from a simple container because it is simple and inexpensive.
  • a filter may be placed at the gas-liquid interface within the container to allow gas to pass through but to block liquid from passing through.
  • a mixed gas with a higher concentration of carbon monoxide can be supplied to the third reactor 6. Therefore, it is possible to prevent or suppress a decrease in the conversion efficiency of carbon monoxide into a carbon material, and to further increase the amount of carbon monoxide produced.
  • the third reaction temperature in the third reactor (third reaction section) 6 is preferably lower than the first reaction temperature in the first reactors 4a, 4b (first reaction section 4).
  • the reaction heat in the first reactors 4a, 4b can be effectively used in the third reactor 6.
  • the third reaction temperature is preferably 850°C or lower, more preferably 800°C or lower, and even more preferably 750°C or lower. Thereby, it is possible to improve the production efficiency of carbon material and also increase the heat utilization efficiency.
  • the lower limit of the third reaction temperature is usually 600°C or higher.
  • a gas line GL7 is connected to the outlet port of the third reactor 6.
  • a second recovery section 9 is connected to the end of the gas line GL7 opposite the third reactor 6.
  • the second recovery unit 9 recovers carbon material from the gas generated in the third reactor 6 (product gas).
  • This second recovery section 9 can be configured by combining one or more of an elutriation device, a centrifugal separator, an electrostatic precipitator, and a filter device, for example.
  • the second recovery unit 9 is connected to the gas line GL1 via the return gas line GL8.
  • a product gas containing not only carbon material but also carbon dioxide is produced from carbon monoxide. Therefore, by passing through the second recovery section 9, the generated gas is separated into a carbon material and a generated gas containing carbon dioxide.
  • the generated gas after the carbon material has been recovered in the second recovery section 9 is returned to the first reactors 4a, 4b via the return gas line GL8 and the gas line GL1.
  • the generated gas after passing through the second recovery section 9 can be effectively used without being discarded.
  • the generated gas after passing through the second recovery section 9 has a sufficiently high concentration of carbon dioxide, so even if it is mixed with the exhaust gas, the generated gas does not contain carbon dioxide or carbon monoxide in the first reactors 4a and 4b. It is possible to suitably prevent the conversion efficiency from decreasing.
  • the content of solid impurities in the carbon material is preferably 1% by mass or less, more preferably 0.1% by mass or less, and even more preferably 0.01% by mass or less. preferable.
  • the lower limit of the content of solid impurities in the carbon material is not particularly limited, but is usually 0.001% by mass or more.
  • Carbon materials with such a low content of solid impurities can prevent deterioration of their properties even when used in various electronic devices, various molded products, and the like.
  • solid impurities include, for example, at least one of copper, zinc, iron, nickel, aluminum, chromium, and alloys containing these.
  • Such carbon materials can be used as reducing agents for smelting, secondary battery materials (e.g. negative electrode active materials, conductive aids for negative electrodes or positive electrodes), fillers for tires, and coloring agents for resin materials or rubber materials. , UV protection/absorbing material, fuel cell electrode material, and heat dissipation agent.
  • secondary battery materials e.g. negative electrode active materials, conductive aids for negative electrodes or positive electrodes
  • fillers for tires e.g. negative electrode active materials, conductive aids for negative electrodes or positive electrodes
  • coloring agents for resin materials or rubber materials e.g. UV protection/absorbing material, fuel cell electrode material, and heat dissipation agent.
  • a carbon material is used as a negative electrode active material of an ion secondary battery, it is possible to prevent short circuits from occurring in the ion secondary battery, deterioration of charge/discharge characteristics, etc. in the ion secondary battery. Furthermore, for example, if a carbon material is used as a filler for a tire, it is possible to more appropriately suppress the deterioration of the elasticity and flexibility of the tire over time.
  • the temperature (first reaction temperature) of the first reactor 4a (exhaust gas, reducing agent 4R) in the above step [2] is preferably 500°C or higher, more preferably 650°C or higher and 1100°C or lower.
  • the temperature is preferably 700°C or more and 1000°C or less.
  • the pressure (first reaction pressure) of the first reactor 4a (exhaust gas, reducing agent 4R) is preferably less than 1 MPaG, more preferably 0.9 MPaG or less, and 0.2 MPaG or more. More preferably, it is .8 MPaG or less. If the reaction conditions are set within the above range, for example, it is possible to prevent or suppress a rapid temperature drop in the reducing agent 4R due to an endothermic reaction when converting carbon dioxide to carbon monoxide. The reduction reaction of carbon dioxide can proceed more smoothly.
  • water (reducing gas raw material) is supplied from the tank to the hydrogen generator (reducing gas supply unit 2) to generate hydrogen from water.
  • a reducing gas containing hydrogen is supplied from the hydrogen generator to the first reactor 4b via the gas line GL2.
  • the reducing agent 4R in an oxidized state is reduced (regenerated) by contact with reducing gas (hydrogen).
  • hydrogen may be produced on-site, or may be purified elsewhere and then supplied from a pipeline or cylinder. As long as the hydrogen is green, there is no need to worry about the production method. Moreover, green hydrogen may be used for only a part of the hydrogen.
  • the temperature (reaction temperature) of the first reactor 4b (reducing gas, reducing agent 4R) in the above step [4] is preferably 500°C or higher, more preferably 650°C or higher and 1100°C or lower, More preferably, the temperature is 700°C or more and 1000°C or less.
  • the pressure (first reaction pressure) of the first reactor 4b (reducing gas, reducing agent 4R) is preferably less than 1 MPaG, more preferably 0.9 MPaG or less, and 0.2 MPaG or more. More preferably, it is 0.8 MPaG or less.
  • reaction conditions are set within the above range, for example, it is possible to prevent or suppress a rapid temperature drop of the reducing agent 4R due to an endothermic reaction when reducing (regenerating) the reducing agent 4R in an oxidized state.
  • the reduction reaction of the reducing agent 4R in the reactor 4b can proceed more smoothly.
  • the above steps [2] to [4] constitute a first generation step of generating carbon monoxide from carbon dioxide.
  • the gases that have passed through the first reactors 4a and 4b are combined to generate a mixed gas.
  • the temperature of the mixed gas is typically 200°C or more and 1000°C or less. If the temperature of the mixed gas at this point is within the above range, it means that the temperature inside the first reactors 4a, 4b is maintained at a sufficiently high temperature, and the carbon monoxide caused by the reducing agent 4R It can be determined that the conversion to 4R and the reduction of the reducing agent 4R by the reducing gas are progressing efficiently.
  • the mixed gas is passed through the gas component removing section 12 via the gas line GL4. At this time, gas components having a boiling point higher than the boiling point of CO are removed from the exhaust gas from the first reactors 4a, 4b. In this embodiment, this step [6] constitutes a removal step for removing a gas component having a boiling point higher than the boiling point of CO from the exhaust gas generated in the first generation step.
  • the mixed gas that has passed through the gas component removal section 12 is supplied to the second reactor 5. In the second reactor 5 carbon monoxide is converted into carbon values. In this embodiment, this step [7] constitutes a second generation step of generating carbon valuables from carbon monoxide.
  • the mixed gas that has passed through the second reactor 5 is passed through the first recovery section 7 via the gas line GL4. As a result, carbon valuables are recovered.
  • the mixed gas containing unreacted carbon monoxide discharged from the second reactor 5 is passed through the pressure adjustment section 8 via the gas line GL5. At this time, the pressure of the mixed gas increases.
  • this step [9] constitutes a pressure adjustment step for increasing the pressure of the gas (mixed gas) generated in the second generation step.
  • the mixed gas that has passed through the pressure regulator 8 is supplied to the third reactor 6. In the third reactor 6 carbon monoxide is converted into carbon material.
  • this step [10] constitutes a third generation step of generating a carbon material from unreacted carbon monoxide discharged from the second reactor 5.
  • the produced gas (mixed gas) containing the carbon material is then discharged to the second recovery section 9 via the gas line GL7.
  • the carbon material is separated and recovered from the generated gas containing the carbon material.
  • the content of solid impurities in the carbon material is preferably 1% by mass or less.
  • the generated gas after the carbon material has been recovered in the second recovery section 9 is returned to the first reactors 4a, 4b via the return gas line GL8 and the gas line GL1. This exhaust gas passes through the above steps [1] to [10] to generate carbon material again.
  • FIG. 3 is a schematic diagram showing the configuration of a second embodiment of the manufacturing system of the present invention.
  • the manufacturing system 10 of the second embodiment will be described, focusing on the differences from the manufacturing system 10 of the first embodiment, and omitting the description of similar matters.
  • gas lines GL6a and GL6b branch from the middle of gas lines GL4a and GL4b, and join together at gas merging portion J1 to form gas line GL6. Further, a switching valve is provided at the branch portion between the gas lines GL4a and GL4b and the gas lines GL6a and GL6b.
  • the exhaust gas discharged from the first reactors 4a, 4b passes through gas lines GL4a, GL4b, GL4 and is supplied to the second reactor 5.
  • the reducing gas discharged from the first reactors 4a, 4b passes through the gas lines GL6a, GL6b, GL6, and is returned to the reducing gas supply unit 2 after, for example, water is removed.
  • the exhaust gas after passing through the first reactors 4a, 4b is separated from the reducing gas after passing through the first reactors 4a, 4b. Then, the exhaust gas that has passed through the first reactors 4a, 4b is supplied to the second reactor 5 without merging with the reducing gas that has passed through the first reactors 4a, 4b. According to this configuration, exhaust gas with reduced water contamination can be supplied to the second reactor 5. Therefore, it is possible to prevent or suppress a decrease in the conversion efficiency of carbon monoxide into a carbon material, and to further increase the amount of carbon monoxide produced.
  • FIG. 4 is a schematic diagram showing the configuration of a third embodiment of the manufacturing system of the present invention.
  • the manufacturing system 10 of the third embodiment will be described below, focusing on the differences from the manufacturing system 10 of the first embodiment, and will omit the description of similar matters.
  • the manufacturing system 10 of the third embodiment includes a separation section 11 that separates carbon dioxide from exhaust gas in the middle of the gas line GL1 (upstream of the first reaction section 4).
  • Methods for separating carbon dioxide from exhaust gas include, for example, a low-temperature separation method (deep cooling method) separator, a pressure swing adsorption (PSA) method separator, a membrane separation method separator, and a temperature swing adsorption (TSA) method. separators, amine absorption type separators, amine adsorption type separators, etc., and one type of these can be used alone or two or more types can be used in combination.
  • a low-temperature separation method deep cooling method
  • PSA pressure swing adsorption
  • TSA temperature swing adsorption
  • the first reactor 4a, 4b when the exhaust gas comes into contact with the reducing agent 4R, carbon monoxide is generated by a reduction reaction of carbon dioxide, and oxygen released from carbon dioxide is generated. At least a portion of the element is captured by the reducing agent 4R, and then when the reducing gas contacts the reducing agent 4R, it is transferred to hydrogen (reducing substance) and water (an oxide of the reducing substance) is generated. That is, in the first reactors 4a and 4b, at least a portion of the oxygen element can be separated within the carbon dioxide reduction reaction system (reaction field).
  • the configuration shown in FIG. 5 can also be adopted as a reactor capable of separating at least a portion of the oxygen element within the carbon dioxide reduction reaction system.
  • FIG. 5 is a schematic diagram showing the configuration of the first reactor in the fourth embodiment.
  • the manufacturing system 10 of the fourth embodiment will be described below, focusing on the differences from the manufacturing system 10 of the first to third embodiments, and will omit descriptions of similar matters.
  • the first reaction section 4 shown in FIG. 5 is composed of a reactor (also called a reaction cell, an electrolytic cell, or an electrochemical cell) that electrochemically (using electrical energy) performs a reduction reaction of carbon dioxide.
  • the first reaction section 4 includes a housing 42, a cathode 45, an anode 46, and a solid electrolyte layer 47 provided within the housing 42, and a power source 48 electrically connected to the cathode 45 and anode 46.
  • the space within the housing 42 is divided into left and right sections by a laminate of a cathode (reductant) 45, an anode 46, and a solid electrolyte layer 47.
  • the housing 42 includes a cathode inlet port 421a, a cathode outlet port 421b, an anode inlet port 422a, and an anode outlet port 422b.
  • the cathode side inlet port 421a and the cathode side outlet port 421b communicate with the cathode chamber in the left side space in the housing 42, and the anode side inlet port 422a and the anode side outlet port 422b communicate with the anode chamber in the right side space in the housing 42. are doing.
  • the cathode 45 and the anode 46 each include a conductive carrier and a catalyst supported on the carrier.
  • the carrier can be made of a carbon material such as carbon fiber fabric (carbon cloth, carbon felt, etc.) or carbon paper.
  • catalysts include platinum group metals such as platinum, ruthenium, rhodium, palladium, osmium, and iridium, transition metals such as gold, alloys of these metals, and alloys of these metals with other metals. can be mentioned.
  • the solid electrolyte layer 47 can be composed of, for example, a fluorine-based polymer membrane having sulfonic acid groups (Nafion (registered trademark), etc.), a sulfo-based ion exchange resin membrane, or the like.
  • the power source 48 it is preferable to use a power source that generates electricity as renewable energy. Thereby, the energy efficiency in producing generated gas containing carbon valuables can be further improved.
  • the first reaction section 4 when exhaust gas (carbon dioxide and water) is supplied from the cathode side inlet port 421a, a reduction reaction of carbon dioxide and water occurs due to the action of the electrons supplied from the power supply 48 and the catalyst. Carbon monoxide and hydrogen are produced, as well as oxygen ions. Carbon monoxide and hydrogen are discharged from the cathode side exit port 421b to the gas line (gas line GL4), and oxygen ions diffuse within the solid electrolyte layer 47 toward the anode 46. The oxygen ions that have reached the anode 46 are converted into oxygen by depriving them of electrons, and are discharged from the anode side exit port 422b. In this configuration, carbon monoxide and hydrogen discharged from the cathode side outlet port 421b are supplied to the second reactor 5. In this case, a removal section for removing hydrogen may be provided in the middle of the gas line GL4.
  • the manufacturing system 10 may be configured such that the first reaction section 4 performs the reaction expressed by the following equation 4, and the third reaction section 6 performs the following reaction expressed by the following equation 5.
  • Formula 4 CO 2 + H 2 ⁇ CO + H 2 O
  • Formula 5 CO + H 2 ⁇ C + H 2 O That is, it can be configured to perform the Bosch reaction through the first reaction section 4 and the third reaction section 6. Note that the reaction of Formula 4 and the reaction of Formula 5 may occur simultaneously.
  • the first reaction section 4 and the third reaction section 6 can use a reaction device (heat exchanger) similar to that described for the first reactors 4a and 4b, respectively, and a plate Type reactors, plate-fin reactors, spiral reactors, etc. can also be used.
  • the usable catalyst preferably contains at least one metal element selected from Groups 2 to 15, and at least one metal element selected from Groups 5 to 10. It is more preferable to contain a species, and it is even more preferable to contain at least one of nickel, molybdenum, chromium, cobalt, tungsten, vanadium, ruthenium, iridium, iron, and the like.
  • the first reaction temperature in the first reaction section 4 is preferably 400°C or more and 1200°C or less, more preferably 500°C or more and 1000°C or less, and even more preferably 600°C or more and 800°C or less.
  • the temperature is preferably 680°C or higher and 700°C or lower, particularly preferably.
  • the first reaction pressure in the first reaction section 4 is preferably 0.1 MPaG or more and 5 MPaG or less, more preferably 0.2 MPaG or more and 4.5 MPaG or less, and 0.25 MPaG or more and 4 MPaG or less. is more preferable, and particularly preferably 0.3 MPaG or more and 3.5 MPaG or less.
  • the third reaction temperature in the third reaction section 6 is preferably 400°C or more and 1000°C or less, more preferably 450°C or more and 900°C or less, and 500°C or more and 800°C or less. is more preferable, and particularly preferably 550°C or more and 700°C or less.
  • the third reaction pressure in the third reaction section 6 is preferably 0.1 MPaG or more and 5 MPaG or less, more preferably 0.2 MPaG or more and 4.5 MPaG or less, and 0.25 MPaG or more and 4 MPaG or less. is more preferable, and particularly preferably 0.3 MPaG or more and 3.5 MPaG or less.
  • the unreacted carbon monoxide is converted into carbon material, thereby improving the utilization efficiency of carbon monoxide. It is possible to improve the In particular, the produced carbon material has a low content of solid impurities, so it can be used for various purposes.
  • An apparatus for producing carbon valuables and carbon materials including a first reaction section that generates carbon monoxide from carbon dioxide, and a second reaction section that generates the carbon valuables from the carbon monoxide. and a third reaction section that generates the carbon material from the unreacted carbon monoxide discharged from the second reaction section.
  • the first reaction section is a reductant that converts the carbon dioxide into the carbon monoxide through a reduction reaction of the carbon dioxide generated by contact with the carbon dioxide-containing raw material gas. and at least one reactor capable of separating at least a portion of the oxygen element released from the carbon dioxide within the reduction reaction system.
  • the reductant is a reducing agent that reduces the carbon dioxide and converts it into the carbon monoxide through contact with the raw material gas and is brought into an oxidized state.
  • the reducing agent in an oxidized state is a reducing agent that is reduced by contact with a reducing gas containing a reducing substance.
  • the first reaction section has a plurality of the reactors, and the raw material gas and the reducing gas are switched and supplied to each of the reactors. manufacturing equipment.
  • the third reaction section generates carbon dioxide in addition to the carbon material from the carbon monoxide
  • the recovery section and the first reaction section The manufacturing apparatus is configured to return the gas after recovering the carbon material in the recovery section to the first reaction section via a return gas line connecting to the first reaction section.
  • the carbon material may be a reducing agent for smelting, a secondary battery material, a filler for tires, a resin material, or A manufacturing device used for at least one of a coloring agent for rubber materials, a UV protection/absorbing material, a fuel cell electrode material, and a heat dissipating agent.
  • a system for producing carbon valuables and carbon materials comprising the production apparatus according to any one of (1) to (9) above, and a source gas containing carbon dioxide connected to the production apparatus.
  • a manufacturing system comprising a gas supply section that supplies.
  • a method for producing carbon valuables and carbon materials comprising a first generation step of generating carbon monoxide from carbon dioxide, and a second generation step of generating the carbon valuables from the carbon monoxide. and a third generation step of generating the carbon material from the unreacted carbon monoxide discharged from the second reaction section.
  • the manufacturing apparatus and manufacturing system of the present invention may each have any other additional configuration with respect to the above embodiment, or may be replaced with any configuration that exhibits a similar function. , some configurations may be omitted.
  • the manufacturing method of the present invention may include any other additional process with respect to the above embodiment, and may be replaced with any process that exhibits a similar function, and some The process may be omitted.
  • a gas containing hydrogen is representatively explained as the reducing gas, but the reducing gas may include hydrocarbons (for example, methane, ethane, acetylene, etc.) instead of or in addition to hydrogen. It is also possible to use a gas containing at least one selected from ammonia and ammonia.
  • the first reactor in the present invention may be a reactor configured such that at least a part of the oxygen element released from carbon dioxide by the reduction reaction is not separated within the reduction reaction system.
  • a reactor is a reverse water gas shift reaction in which carbon dioxide and hydrogen are brought into contact with a reducing agent 4R at the same time to convert carbon dioxide into carbon monoxide and hydrogen (reducing substance) into water.
  • Examples include devices that utilize In this reactor, at least a portion of the oxygen element released from carbon dioxide is not separated from the reduction reaction system (reaction field) and reacts with hydrogen to produce water.
  • reaction field the reaction products carbon monoxide and water can be separated. Since it becomes difficult for these to coexist in the system, it is possible to prevent or suppress a decrease in the conversion efficiency of carbon dioxide to carbon monoxide due to restrictions on chemical equilibrium.
  • first reaction section 4 can be configured with an electrochemical cell as shown in FIG. 5, and the third reaction section 6 can be configured with a reactor that performs the reaction of formula 5 above.
  • Second recovery section 11 Separation section 12: Gas component removal section GL1: Gas line GL2: Gas line GL3a: Gas line GL3b: Gas line GL4: Gas line GL4a : Gas line GL4b : Gas line GL5 : Gas line GL6 : Gas line GL6a : Gas line GL6b : Gas line GL7 : Gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

[Problem] To provide a production device and the like for improving use efficiency of carbon monoxide, by generating a carbonous valuable substance from carbon monoxide and then converting unreacted carbon monoxide into a carbonous material. [Solution] According to one aspect of the present invention, provided is a device for producing a carbonous valuable substance and a carbonous material. The device is provided with: a first reaction unit for generating carbon monoxide from carbon dioxide; a second reaction unit for generating a carbonous valuable substance from carbon monoxide; and a third reaction unit for generating a carbonous material from unreacted carbon monoxide discharged from the second reaction unit.

Description

製造装置、製造システムおよび製造方法Manufacturing equipment, manufacturing system and manufacturing method
 本発明は、製造装置、製造システムおよび製造方法に関する。 The present invention relates to a manufacturing device, a manufacturing system, and a manufacturing method.
 近年、温室効果ガスの一種である二酸化炭素(CO)は、その大気中の濃度が上昇を続けている。大気中の二酸化炭素の濃度の上昇は、地球温暖化を助長する。したがって、大気中に放出される二酸化炭素を回収することは重要であり、さらに回収した二酸化炭素を炭素有価物に変換して再利用できれば、炭素循環社会を実現することができる。
 また、地球規模の施策としても、気候変動に関する国際連合枠組条約の京都議定書にもあるように、地球温暖化の原因となる二酸化炭素について、先進国における削減率を、1990年を基準として各国別に定め、共同で約束期間内に削減目標値を達成することが定められている。
In recent years, the concentration of carbon dioxide (CO 2 ), a type of greenhouse gas, in the atmosphere has continued to rise. Rising concentrations of carbon dioxide in the atmosphere contribute to global warming. Therefore, it is important to recover carbon dioxide released into the atmosphere, and if the recovered carbon dioxide can be converted into valuable carbon materials and reused, a carbon recycling society can be realized.
In addition, as a global measure, as stated in the Kyoto Protocol of the United Nations Framework Convention on Climate Change, the reduction rate of carbon dioxide, which is the cause of global warming, in developed countries is set for each country based on 1990. It is stipulated that the reduction targets will be jointly achieved within the commitment period.
 その削減目標を達成するため、製鉄所、精錬所または火力発電所から発生した二酸化炭素を含む排気ガスも対象となっており、これらの業界における二酸化炭素の削減に関して、様々な技術改良が行われている。かかる技術の一例としては、CO回収・貯留(CCS)が挙げられる。しかしながら、この技術では、貯留という物理的な限界があり、根本的な解決策とはなっていない。
 その他、例えば、特許文献1には、二酸化炭素から一酸化炭素を製造する二酸化炭素還元システムが開示されている。この二酸化炭素還元システムは、二酸化炭素を含む排気ガスを発生する燃焼炉と、排気ガスから二酸化炭素を分離する二酸化炭素分離装置と、分離された二酸化炭素を一酸化炭素に還元する還元装置とを備えている。
In order to achieve this reduction target, exhaust gases containing carbon dioxide generated from steel mills, smelters, and thermal power plants are also targeted, and various technological improvements have been made to reduce carbon dioxide emissions in these industries. ing. An example of such technology is CO 2 capture and storage (CCS). However, this technology has the physical limit of storage and is not a fundamental solution.
In addition, for example, Patent Document 1 discloses a carbon dioxide reduction system that produces carbon monoxide from carbon dioxide. This carbon dioxide reduction system includes a combustion furnace that generates exhaust gas containing carbon dioxide, a carbon dioxide separation device that separates carbon dioxide from the exhaust gas, and a reduction device that reduces the separated carbon dioxide to carbon monoxide. We are prepared.
国際公開第2019/163968号International Publication No. 2019/163968
 しかしながら、一酸化炭素を炭素有価物に変換する際には、一酸化炭素と水素との比率を厳密に制御する必要がある。また、一酸化炭素の炭素有価物への転化率を100%とすることは困難であるため、一酸化炭素の炭素有価物への変換反応後には、未反応の一酸化炭素を廃棄することになる。これに対して、一酸化炭素の炭素材料への変換には、その反応の厳密な制御を要しない。
 本発明では上記事情に鑑み、一酸化炭素から炭素有価物を生成した後に、未反応の一酸化炭素を炭素材料に変換するようにして、一酸化炭素の利用効率の向上を図った製造装置等を提供することとした。
However, when converting carbon monoxide into carbon valuables, it is necessary to strictly control the ratio of carbon monoxide to hydrogen. In addition, since it is difficult to achieve a 100% conversion rate of carbon monoxide to carbon valuables, unreacted carbon monoxide must be disposed of after the conversion reaction of carbon monoxide to carbon valuables. Become. In contrast, the conversion of carbon monoxide to a carbon material does not require strict control of the reaction.
In view of the above-mentioned circumstances, the present invention provides a manufacturing device that improves the utilization efficiency of carbon monoxide by converting unreacted carbon monoxide into carbon materials after generating carbon valuables from carbon monoxide. We decided to provide the following.
 本発明の一態様によれば、炭素有価物および炭素材料を製造する装置が提供される。この装置は、二酸化炭素から一酸化炭素を生成する第1の反応部と、一酸化炭素から炭素有価物を生成する第2の反応部と、第2の反応部から排出される未反応の一酸化炭素から炭素材料を生成する第3の反応部とを備える。 According to one aspect of the present invention, an apparatus for producing carbon valuables and carbon materials is provided. This device includes a first reaction section that produces carbon monoxide from carbon dioxide, a second reaction section that produces carbon valuables from carbon monoxide, and unreacted water discharged from the second reaction section. and a third reaction section that generates a carbon material from carbon oxide.
 かかる態様によれば、一酸化炭素の利用効率の向上を図りつつ、炭素有価物および炭素材料を製造することができる。 According to this embodiment, carbon valuables and carbon materials can be produced while improving the utilization efficiency of carbon monoxide.
本発明の製造システムの第1実施形態の構成を示す概略図である。1 is a schematic diagram showing the configuration of a first embodiment of a manufacturing system of the present invention. 第1実施形態における第1の反応器の構成を示す模式図である。FIG. 2 is a schematic diagram showing the configuration of a first reactor in the first embodiment. 本発明の製造システムの第2実施形態の構成を示す概略図である。It is a schematic diagram showing the composition of a 2nd embodiment of the manufacturing system of the present invention. 本発明の製造システムの第3実施形態の構成を示す概略図である。It is a schematic diagram showing the composition of a 3rd embodiment of the manufacturing system of the present invention. 第4実施形態における第1の反応部の構成を示す模式図である。It is a schematic diagram showing the composition of the 1st reaction part in a 4th embodiment.
 以下、本発明の製造装置、製造システムおよび製造方法について、添付図面に示す好適実施形態に基づいて詳細に説明する。
 <<第1実施形態>>
 まず、本発明の製造システムの第1実施形態について説明する。
 図1は、本発明の製造システムの第1実施形態の構成を示す概略図である。図2は、第1実施形態における第1の反応器の構成を示す模式図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The manufacturing apparatus, manufacturing system, and manufacturing method of the present invention will be described in detail below based on preferred embodiments shown in the accompanying drawings.
<<First embodiment>>
First, a first embodiment of the manufacturing system of the present invention will be described.
FIG. 1 is a schematic diagram showing the configuration of a first embodiment of the manufacturing system of the present invention. FIG. 2 is a schematic diagram showing the configuration of the first reactor in the first embodiment.
 図1に示す製造システム10は、炭素有価物および炭素材料を製造する製造装置100(以下、単に「製造装置100」とも言う。)と、製造装置100に接続され、排ガス(二酸化炭素を含む原料ガス)を供給する高炉(ガス供給部)1および還元ガスを供給する還元ガス供給部2とを備えている。
 なお、本明細書中では、ガスの流れ方向に対して上流側を単に「上流側」、下流側を単に「下流側」とも記載する。また、本明細書中では、金属の純度を高めるために行う「精錬」も、「製錬」に含まれるものとする。
The manufacturing system 10 shown in FIG. 1 includes a manufacturing device 100 (hereinafter also simply referred to as the “manufacturing device 100”) that manufactures carbon valuables and carbon materials, and is connected to the manufacturing device 100 and includes exhaust gas (a raw material containing carbon dioxide). The blast furnace (gas supply section) 1 supplies a gas) and a reducing gas supply section 2 supplies a reducing gas.
Note that, in this specification, the upstream side with respect to the gas flow direction is also simply referred to as "upstream side," and the downstream side is also simply referred to as "downstream side." Furthermore, in this specification, "smelting" also includes "refining" performed to increase the purity of metal.
 本実施形態では、ガス供給部を高炉(製錬所に関連する炉)1として説明するが、ガス供給部は、製錬所に関連する他の炉であってもよい。好ましい他の炉としては、シャフト炉、転炉、電気炉等が挙げられる。また、ガス供給部は、ゴミ焼却場、製紙工場、セメント工場、火力発電所、精油所、エチレンクラッカー、製油所、化学工場から選ばれる少なくとも1つの事業所のCO排出源であってもよい。各炉では、内容物の燃焼、溶融、精錬等の際に、二酸化炭素を含む排ガスが生成(発生)する。
 ゴミ焼却場にける燃焼炉(焼却炉)の場合、内容物(廃棄物)としては、例えば、プラスチック廃棄物、生ゴミ、都市廃棄物(MSW)、廃棄タイヤ、バイオマス廃棄物、家庭ゴミ(布団、紙類)、建築部材等が挙げられる。なお、これらの廃棄物は、1種を単独で含んでいても、2種以上を含んでいてもよい。
In this embodiment, the gas supply section will be described as a blast furnace (furnace related to a smelter) 1, but the gas supply section may be another furnace related to a smelter. Other preferable furnaces include shaft furnaces, converter furnaces, electric furnaces, and the like. Further, the gas supply unit may be a CO x emission source of at least one business facility selected from a garbage incinerator, a paper factory, a cement factory, a thermal power plant, an oil refinery, an ethylene cracker, an oil refinery, and a chemical factory. . In each furnace, exhaust gas containing carbon dioxide is generated during combustion, melting, refining, etc. of the contents.
In the case of a combustion furnace (incinerator) at a garbage incinerator, the contents (waste) include, for example, plastic waste, food garbage, municipal waste (MSW), waste tires, biomass waste, household garbage (bedding), etc. , paper), construction materials, etc. Note that these wastes may contain one type alone or two or more types.
 排ガスは、通常、二酸化炭素および一酸化炭素に加えて、窒素、酸素、水蒸気、メタン等の他のガス成分を含む。排ガス中に含まれる二酸化炭素の濃度は、特に限定されないが、生成ガスの製造コスト(炭素材料への変換効率)を考慮すると、1体積%以上が好ましく、5体積%以上がより好ましい。
 ゴミ焼却場にける燃焼炉からの排ガスの場合、二酸化炭素が5体積%以上15体積%以下、窒素が60体積%以上70体積%以下、酸素が5体積%以上10体積%以下、水蒸気が15体積%以上25体積%以下で含まれる。
In addition to carbon dioxide and carbon monoxide, exhaust gas typically contains other gas components such as nitrogen, oxygen, water vapor, and methane. The concentration of carbon dioxide contained in the exhaust gas is not particularly limited, but in consideration of the production cost of the generated gas (conversion efficiency into carbon material), it is preferably 1% by volume or more, more preferably 5% by volume or more.
In the case of exhaust gas from a combustion furnace at a garbage incinerator, carbon dioxide is 5% to 15% by volume, nitrogen is 60% to 70% by volume, oxygen is 5% to 10% by volume, and water vapor is 15% by volume. It is contained in an amount of not less than 25% by volume.
 高炉1からの排ガス(高炉ガス)は、例えば、高炉1において銑鉄を製造する際に発生するガスであり、二酸化炭素が5体積%以上45体積%以下、窒素が55体積%以上60体積%以下、一酸化炭素が10体積%以上40体積%以下、水素が1体積%以上10体積%以下で含まれる。
 また、転炉からの排ガス(転炉ガス)は、転炉において鋼を製造する際に発生するガスであり、二酸化炭素が15体積%以上20体積%以下、一酸化炭素が50体積%以上80体積%以下、窒素が15体積%以上25体積%以下、水素が1体積%以上5体積%以下で含まれる。
 なお、排ガスには、二酸化炭素を100体積%で含む純ガスを使用してもよい。
The exhaust gas (blast furnace gas) from the blast furnace 1 is, for example, gas generated when producing pig iron in the blast furnace 1, and contains carbon dioxide of 5% to 45% by volume and nitrogen of 55% to 60% by volume. , carbon monoxide is contained in an amount of 10 volume % or more and 40 volume % or less, and hydrogen is contained in an amount of 1 volume % or more and 10 volume % or less.
In addition, exhaust gas from a converter (converter gas) is a gas generated when manufacturing steel in a converter, and contains carbon dioxide of 15% to 20% by volume and carbon monoxide of 50% to 80% by volume. Nitrogen is contained in an amount of 15% to 25% by volume, and hydrogen is contained in an amount of 1% to 5% by volume.
Note that pure gas containing 100% by volume of carbon dioxide may be used as the exhaust gas.
 ただし、排ガスを使用すれば、従来、大気中に排出していた二酸化炭素を有効利用することができ、環境への負荷を低減することができる。これらの中でも、炭素循環という観点からは、製錬所で発生した二酸化炭素を含む排ガスが好ましい。
 また、高炉ガスや転炉ガスは、炉から排出された未処理のガスをそのまま使用してもよく、例えば、一酸化炭素等を除去する処理を施した後の処理済みガス(後述する。)を使用してもよい。未処理の高炉ガスおよび転炉ガスは、それぞれ上述のようなガス組成であり、処理済みガスは、燃焼炉からの排ガスで示したガス組成に近いガス組成となる。本明細書では、以上のようなガス(製造装置100に供給される前のガス)をいずれも排ガスと呼ぶ。
However, if exhaust gas is used, the carbon dioxide that was conventionally emitted into the atmosphere can be effectively used, and the burden on the environment can be reduced. Among these, from the viewpoint of carbon circulation, exhaust gas containing carbon dioxide generated in a smelter is preferable.
Further, as the blast furnace gas and converter gas, untreated gas discharged from the furnace may be used as is, for example, treated gas after being subjected to treatment to remove carbon monoxide, etc. (described later). may be used. The untreated blast furnace gas and the converter gas each have the gas compositions described above, and the treated gas has a gas composition close to that of the exhaust gas from the combustion furnace. In this specification, all of the above gases (gases before being supplied to the manufacturing apparatus 100) are referred to as exhaust gas.
 還元ガス供給部2は、例えば、水の電気分解により水素を発生させる水素発生装置で構成される。この水素発生装置には、水を貯留したタンクが接続されている。
 水素発生装置によれば、多量の水素を比較的安価かつ簡便に生成することができる。また、製造装置100内で発生する凝縮水を再利用できるという利点もある。なお、水素発生装置での電気エネルギーの消費が大きいため、再生可能エネルギーとしての電力を使用することが有効である。
 再生可能エネルギーとしては、太陽光発電、風カ発電、水力発電、波力発電、潮力発電、バイオマス発電、地熱発電、太陽熱および地中熱から選択される少なくとも1つを利用した電気エネルギーが使用可能である。
The reducing gas supply unit 2 is configured with, for example, a hydrogen generator that generates hydrogen by electrolyzing water. A tank storing water is connected to this hydrogen generator.
According to the hydrogen generator, a large amount of hydrogen can be generated relatively inexpensively and easily. Another advantage is that condensed water generated within the manufacturing apparatus 100 can be reused. Note that since the hydrogen generator consumes a large amount of electrical energy, it is effective to use electricity as renewable energy.
As renewable energy, electrical energy using at least one selected from solar power generation, wind power generation, hydropower generation, wave power generation, tidal power generation, biomass power generation, geothermal power generation, solar heat, and geothermal heat is used. It is possible.
 なお、水素発生装置には、副生水素を発生する装置を使用することもできる。副生水素を発生する装置としては、例えば、塩化ナトリウム水溶液を電気分解する装置、石油を水蒸気改質する装置、アンモニアを製造する装置等が挙げられる。
 また、還元ガス供給部2をコークス炉とすることもできる。この場合、コークス炉からの排ガスを還元ガスとして使用するようにしてもよい。コークス炉からの排ガスは、水素およびメタンを主成分とし、水素を50体積%以上60体積%以下で含むためである。
Note that a device that generates by-product hydrogen can also be used as the hydrogen generator. Examples of devices that generate by-product hydrogen include devices that electrolyze an aqueous sodium chloride solution, devices that steam-reform petroleum, and devices that produce ammonia.
Further, the reducing gas supply section 2 can also be a coke oven. In this case, exhaust gas from the coke oven may be used as the reducing gas. This is because the exhaust gas from the coke oven has hydrogen and methane as its main components, and contains hydrogen in an amount of 50% by volume or more and 60% by volume or less.
 本実施形態の製造装置100は、炭素有価物および炭素材料を製造する装置であり、ガス切換部3と、2つの第1の反応器4a、4b(第1の反応部4)と、1つの第2の反応器(第2の反応部)5と、1つの第3の反応器(第3の反応部)6とを備えている。
 高炉(溶鉱炉)1は、ガスラインGL1を介して、ガス切換部3に接続され、還元ガス供給部2は、ガスラインGL2を介して、ガス切換部3に接続されている。
 各ガスラインGL1、GL2の途中には、これを通過するガスの温度を調整する温調部、ガスを加圧する加圧部、ガス中の不純物を除去する不純物除去部等の少なくとも1つを配置するようにしてもよい。
 ガス切換部3は、例えば、分岐ガスラインと、この分岐ガスラインの途中に設けられたバルブのような流路開閉機構とを含んで構成することができる。
The manufacturing apparatus 100 of this embodiment is an apparatus for manufacturing carbon valuables and carbon materials, and includes a gas switching section 3, two first reactors 4a and 4b (first reaction section 4), and one It includes a second reactor (second reaction section) 5 and one third reactor (third reaction section) 6.
Blast furnace (blast furnace) 1 is connected to gas switching section 3 via gas line GL1, and reducing gas supply section 2 is connected to gas switching section 3 via gas line GL2.
In the middle of each gas line GL1, GL2, at least one of a temperature control section that adjusts the temperature of the gas passing through it, a pressurization section that pressurizes the gas, an impurity removal section that removes impurities from the gas, etc. is arranged. You may also do so.
The gas switching unit 3 can be configured to include, for example, a branch gas line and a passage opening/closing mechanism such as a valve provided in the middle of the branch gas line.
 ガス切換部3は、2つのガスラインGL3a、GL3bを介して、それぞれ第1の反応器4a、4bの入口ポートに接続されている。
 かかる構成により、高炉1から供給された排ガス(二酸化炭素を含む原料ガス)は、ガスラインGL1、ガス切換部3およびガスラインGL3a、GL3bを通過して、各第1の反応器4a、4bに供給される。
 一方、還元ガス供給部2から供給された水素(還元物質)を含む還元ガスは、ガスラインGL2、ガス切換部3およびガスラインGL3a、GL3bを通過して、各第1の反応器4a、4bに供給される。
The gas switching unit 3 is connected to the inlet ports of the first reactors 4a, 4b via two gas lines GL3a, GL3b, respectively.
With this configuration, the exhaust gas (raw material gas containing carbon dioxide) supplied from the blast furnace 1 passes through the gas line GL1, the gas switching unit 3, and the gas lines GL3a and GL3b, and is then delivered to each of the first reactors 4a and 4b. Supplied.
On the other hand, the reducing gas containing hydrogen (reducing substance) supplied from the reducing gas supply section 2 passes through the gas line GL2, the gas switching section 3, and the gas lines GL3a and GL3b, and is supplied to each of the first reactors 4a and 4b. supplied to
 第1の反応器4a、4bは、二酸化炭素から一酸化炭素を生成可能(二酸化炭素を一線化炭素に変換可能)である。各第1の反応器4a、4bは、図2に示すように、還元剤(還元体)4Rをそれぞれ充填(収容)した複数の管体41と、複数の管体41を内部空間43に収納したハウジング42とを備える多管式の反応装置(固定層式の反応装置)で構成されている。かかる多管式の反応装置によれば、還元剤4Rと排ガスおよび還元ガスとの接触の機会を十分に確保することができる。その結果、二酸化炭素の一酸化炭素への変換効率を高めることができる。
 なお、第1の反応器4a、4bは、管体41を省略して、ハウジング42の内部空間43に還元剤4Rを充填した反応器(すなわち、単純反応器)で構成することもできる。
 本実施形態の還元剤4Rは、例えば、粒子状(顆粒状)、鱗片状、ペレット状等であることが好ましい。かかる形状の還元剤4Rであれば、管体41への充填効率を高めることができ、管体41内に供給されるガスとの接触面積をより増大させることができる。
The first reactors 4a and 4b are capable of producing carbon monoxide from carbon dioxide (capable of converting carbon dioxide into linear carbon). As shown in FIG. 2, each of the first reactors 4a and 4b includes a plurality of tube bodies 41 each filled with (accommodating) a reducing agent (reductant) 4R, and a plurality of tube bodies 41 housed in an internal space 43. The reactor is a multi-tubular reactor (fixed bed reactor) having a housing 42 with a cylindrical structure. According to such a multi-tubular reactor, a sufficient opportunity for contact between the reducing agent 4R and the exhaust gas and the reducing gas can be ensured. As a result, the conversion efficiency of carbon dioxide into carbon monoxide can be increased.
Note that the first reactors 4a and 4b may be configured by omitting the tube 41 and filling the internal space 43 of the housing 42 with the reducing agent 4R (ie, a simple reactor).
The reducing agent 4R of this embodiment is preferably in the form of particles, scales, pellets, etc., for example. If the reducing agent 4R has such a shape, it is possible to increase the filling efficiency into the pipe body 41 and further increase the contact area with the gas supplied into the pipe body 41.
 還元剤4Rが粒子状である場合、その体積平均粒径は、特に限定されないが、1mm以上50mm以下であることが好ましく、1mm以上30mm以下であることがより好ましい。この場合、還元剤4Rと排ガス(二酸化炭素)との接触面積をさらに高め、二酸化炭素の一酸化炭素への変換効率をより向上させることができる。同様に、還元物質を含む還元ガスによる還元剤4Rの再生(還元)もより効率よく行うことができる。
 粒子状の還元剤4Rは、より球形度が高まることから、転動造粒により製造された成形体であることが好ましい。
When the reducing agent 4R is in the form of particles, its volume average particle diameter is not particularly limited, but is preferably 1 mm or more and 50 mm or less, and more preferably 1 mm or more and 30 mm or less. In this case, the contact area between the reducing agent 4R and the exhaust gas (carbon dioxide) can be further increased, and the conversion efficiency of carbon dioxide into carbon monoxide can be further improved. Similarly, regeneration (reduction) of the reducing agent 4R using a reducing gas containing a reducing substance can be performed more efficiently.
The particulate reducing agent 4R is preferably a molded body manufactured by rolling granulation because the sphericity is further increased.
 また、還元剤4Rは、担体に担持させるようにしてもよい。
 担体の構成材料としては、排ガス(酸化ガス)との接触や反応条件等により変性し難ければよく、例えば、炭素材料(グラファイト、グラフェン、カーボンブラック、カーボンナノチューブ、活性炭等)、MoCのような炭化物、ゼオライト、モンモリロナイト、ZrO、TiO、V、MgO、CeO、Al、SiOのような酸化物およびこれらを含む複合酸化物等が挙げられる。
Further, the reducing agent 4R may be supported on a carrier.
The constituent material of the carrier may be any material that is difficult to modify due to contact with exhaust gas (oxidizing gas) or reaction conditions, such as carbon materials (graphite, graphene, carbon black, carbon nanotubes, activated carbon, etc.), Mo 2 C, etc. Examples include carbides such as zeolite, montmorillonite, oxides such as ZrO 2 , TiO 2 , V 2 O 5 , MgO, CeO 2 , Al 2 O 3 , SiO 2 , and composite oxides containing these.
 これらの中でも、担体の構成材料としては、ゼオライト、モンモリロナイト、ZrO、TiO、V、MgO、Al、SiOおよびこれらを含む複合酸化物が好ましい。かかる材料で構成される担体は、還元剤4Rの反応に悪影響を及ぼさず、還元剤4Rの担持能に優れる点で好ましい。ここで、担体は、還元剤4Rの反応には関与せず、還元剤4Rを単に支持(保持)する。
 かかる形態の一例としては、担体の表面の少なくとも一部を還元剤4Rで被覆する構成が挙げられる。
Among these, zeolite, montmorillonite, ZrO 2 , TiO 2 , V 2 O 5 , MgO, Al 2 O 3 , SiO 2 and composite oxides containing these are preferable as constituent materials of the carrier. A carrier made of such a material is preferable because it does not adversely affect the reaction of the reducing agent 4R and has an excellent ability to support the reducing agent 4R. Here, the carrier does not participate in the reaction of the reducing agent 4R and simply supports (holds) the reducing agent 4R.
An example of such a configuration is a configuration in which at least a portion of the surface of the carrier is coated with the reducing agent 4R.
 還元剤4Rは、金属および金属酸化物の少なくとも一方(酸素イオン伝導性を備える酸素キャリア)を含む。金属および金属酸化物の少なくとも一方は、二酸化炭素を還元することができれば、特に限定されないが、第3族~第13族に属する金属元素から選択される少なくとも1種を含有することが好ましく、第3族~第12属に属する金属元素から選択される少なくとも1種を含有することがより好ましく、ランタン、チタン、バナジウム、鉄、銅、亜鉛、ニッケル、マンガン、クロムおよびセリウム等のうちの少なくとも1種を含有することがさらに好ましく、鉄および/またはセリウムを含有する金属酸化物または複合金属酸化物が特に好ましい。これらの金属酸化物は、二酸化炭素の一酸化炭素への変換効率が特に良好なため有用である。
 ここで、金属には、上記金属元素1種のみからなる金属単体、および上記金属元素2種以上からなる合金が含まれる。
The reducing agent 4R contains at least one of a metal and a metal oxide (oxygen carrier with oxygen ion conductivity). At least one of the metal and the metal oxide preferably contains at least one metal element selected from Groups 3 to 13, although it is not particularly limited as long as it can reduce carbon dioxide. It is more preferable to contain at least one metal element selected from metal elements belonging to Groups 3 to 12, such as lanthanum, titanium, vanadium, iron, copper, zinc, nickel, manganese, chromium, and cerium. It is more preferable to contain seeds, and metal oxides or composite metal oxides containing iron and/or cerium are particularly preferable. These metal oxides are useful because they have particularly good efficiency in converting carbon dioxide to carbon monoxide.
Here, the metal includes a simple metal consisting of only one of the above metal elements, and an alloy consisting of two or more of the above metal elements.
 また、各第1の反応器4a、4bにおいて、還元剤4R(金属および金属酸化物のうちの少なくとも一方)自体で管体(円筒状の成形体)41を作製してもよい。さらに、還元剤4Rで、ブロック状、格子状(例えば、網状、ハニカム状)等の成形体を作製し、ハウジング42内に配置するようにしてもよい。これらの場合、充填剤としての還元剤4Rは省略するようにしてもよいし、併用してもよい。 Furthermore, in each of the first reactors 4a and 4b, the tube body (cylindrical molded body) 41 may be made of the reducing agent 4R (at least one of a metal and a metal oxide) itself. Furthermore, a block-shaped, lattice-shaped (for example, net-shaped, honeycomb-shaped) molded body may be produced using the reducing agent 4R, and the molded body may be placed in the housing 42. In these cases, the reducing agent 4R as a filler may be omitted or may be used in combination.
 これらの中では、還元剤4Rで網状体を作製し、ハウジング42内に配置する構成が好ましい。かかる構成の場合、各第1の反応器4a、4b内で排ガスおよび還元ガスの通過抵抗が高まるのを防止しつつ、還元剤4Rと排ガスおよび還元ガスとの接触の機会を十分に確保することもできる。
 なお、2つの第1の反応器4a、4bの容積は、互いにほぼ等しく設定され、処理する排ガスの量(高炉1のサイズや製造装置100のサイズ)に応じて、適宜設定される。また、2つの第1の反応器4a、4bの容積は、排ガスおよび還元ガスの種類、還元剤4Rの性能等に応じて異ならせてもよい。
Among these, a configuration in which a net-like body is produced using the reducing agent 4R and placed inside the housing 42 is preferable. In the case of such a configuration, sufficient opportunity for contact between the reducing agent 4R and the exhaust gas and reducing gas is ensured while preventing the passage resistance of the exhaust gas and reducing gas from increasing in each of the first reactors 4a and 4b. You can also do it.
The volumes of the two first reactors 4a and 4b are set to be approximately equal to each other, and are appropriately set depending on the amount of exhaust gas to be treated (the size of the blast furnace 1 and the size of the manufacturing apparatus 100). Further, the volumes of the two first reactors 4a and 4b may be varied depending on the types of exhaust gas and reducing gas, the performance of the reducing agent 4R, and the like.
 以上のような構成によれば、ガス切換部3においてガスライン(流路)を切り換えることにより、例えば、酸化前の還元剤4Rが収容された第1の反応器4aに、ガスラインGL3aを介して排ガスを供給し、酸化後の還元剤4Rが収容された第1の反応器4bに、ガスラインGL3bを介して還元ガスを供給することができる。このとき、第1の反応器4aでは下記式1の反応が進行し、第1の反応器4bでは下記式2の反応が進行する。 According to the above configuration, by switching the gas line (flow path) in the gas switching unit 3, for example, the reducing agent 4R before oxidation is connected to the first reactor 4a containing the reducing agent 4R via the gas line GL3a. The exhaust gas can be supplied via the gas line GL3b to the first reactor 4b containing the oxidized reducing agent 4R. At this time, a reaction expressed by the following formula 1 proceeds in the first reactor 4a, and a reaction expressed by the following formula 2 proceeds in the first reactor 4b.
 なお、下記式1および式2では、還元剤4Rに酸化鉄(FeOx-1)が含まれる場合を一例として示している。
  式1: CO + FeOx-1 → CO + FeO
  式2: H + FeO → HO + FeOx-1
 その後、ガス切換部3においてガスラインを上記と反対に切り換えることにより、第1の反応器4aでは上記式2の反応を進行させ、第1の反応器4bでは上記式1の反応を進行させることができる。
 すなわち、第1の反応器4aと第1の反応器4bとに、排ガスと還元ガスとが切り換えて供給される。
Note that in the following formulas 1 and 2, the case where the reducing agent 4R contains iron oxide (FeO x-1 ) is shown as an example.
Formula 1: CO 2 + FeO x−1 → CO + FeO x
Formula 2: H 2 + FeO x → H 2 O + FeO x-1
Thereafter, by switching the gas line in the opposite direction to the above in the gas switching unit 3, the reaction of the above formula 2 is allowed to proceed in the first reactor 4a, and the reaction of the above formula 1 is allowed to proceed in the first reactor 4b. I can do it.
That is, exhaust gas and reducing gas are switched and supplied to the first reactor 4a and the first reactor 4b.
 なお、上記式1および式2に示す反応は、いずれも吸熱反応である。このため、製造システム10は、還元剤4Rに排ガスまたは還元ガスを接触させる際(すなわち、排ガスまたは還元ガスと還元剤4Rとの反応の際)に、還元剤4Rを加熱する還元剤加熱部(図1中、図示せず。)をさらに有することが好ましい。
 かかる還元剤加熱部を設けることにより、排ガスまたは還元ガスと還元剤4Rとの反応における温度を高温に維持して、二酸化炭素の一酸化炭素への変換効率の低下を好適に防止または抑制するとともに、還元ガスによる還元剤4Rの再生をさらに促進することができる。
Note that the reactions shown in Formulas 1 and 2 above are both endothermic reactions. For this reason, the manufacturing system 10 includes a reducing agent heating unit ( (not shown in FIG. 1).
By providing such a reducing agent heating section, the temperature during the reaction between the exhaust gas or reducing gas and the reducing agent 4R is maintained at a high temperature, and a decrease in the conversion efficiency of carbon dioxide to carbon monoxide is suitably prevented or suppressed. , the regeneration of the reducing agent 4R by the reducing gas can be further promoted.
 ただし、還元剤4Rの種類によっては、上記式1および式2に示す反応が発熱反応となる場合がある。この場合、製造システム10は、還元剤加熱部に代えて、還元剤4Rを冷却する還元剤冷却部を有することが好ましい。かかる還元剤冷却部を設けることにより、排ガスまたは還元ガスと還元剤4Rとの反応の際に、還元剤4Rが劣化するのを好適に阻止して、二酸化炭素の一酸化炭素への変換効率の低下を好適に防止または抑制するとともに、還元ガスによる還元剤4Rの再生をさらに促進することができる。
 つまり、製造システム10には、還元剤4Rの種類(発熱反応または吸熱反応)の違いによって、還元剤4Rの温度を調整する還元剤温調部を設けることが好ましい。
However, depending on the type of reducing agent 4R, the reactions shown in Formulas 1 and 2 above may become exothermic reactions. In this case, the manufacturing system 10 preferably includes a reducing agent cooling section that cools the reducing agent 4R instead of the reducing agent heating section. By providing such a reducing agent cooling section, deterioration of the reducing agent 4R is suitably prevented during the reaction between the exhaust gas or reducing gas and the reducing agent 4R, and the conversion efficiency of carbon dioxide into carbon monoxide is improved. It is possible to suitably prevent or suppress the decrease, and further promote the regeneration of the reducing agent 4R by the reducing gas.
That is, the manufacturing system 10 is preferably provided with a reducing agent temperature control section that adjusts the temperature of the reducing agent 4R depending on the type of reducing agent 4R (exothermic reaction or endothermic reaction).
 ここで、第1の反応器4a、4bにおける二酸化炭素の一酸化炭素への転化率は、70%以上であることが好ましく、85%以上であることがより好ましく、95%以上であることがさらに好ましい。二酸化炭素の前記一酸化炭素への転化率の上限は、通常、98%程度である。
 このような転化率は、使用する還元剤4Rの種類、排ガスに含まれる二酸化炭素の濃度、還元物質の種類、還元ガスに含まれる還元物質の濃度、第1の反応器4a、4bの温度、排ガスおよび還元ガスの第1の反応器4a、4bへの流量(流速)、排ガスと還元ガスとの切り換えのタイミング等を調整することにより設定可能である。
Here, the conversion rate of carbon dioxide to carbon monoxide in the first reactors 4a, 4b is preferably 70% or more, more preferably 85% or more, and preferably 95% or more. More preferred. The upper limit of the conversion rate of carbon dioxide to carbon monoxide is usually about 98%.
Such a conversion rate depends on the type of reducing agent 4R used, the concentration of carbon dioxide contained in the exhaust gas, the type of reducing substance, the concentration of reducing substance contained in the reducing gas, the temperature of the first reactors 4a and 4b, It can be set by adjusting the flow rate (flow rate) of exhaust gas and reducing gas to the first reactors 4a, 4b, the timing of switching between exhaust gas and reducing gas, etc.
 第1の反応器4a、4bの出口ポートには、それぞれガスラインGL4a、GL4bが接続され、これらがガス合流部Jにおいて合流して、ガスラインGL4を構成している。また、ガスラインGL4a、GL4bの途中には、必要に応じて、それぞれバルブ(図示せず。)が設けられる。
 例えば、バルブの開度を調整することにより、第1の反応器4a、4bを通過する排ガスおよび還元ガスの通過速度(すなわち、還元剤4Rによる排ガスの処理速度および還元ガスによる還元剤4Rの処理速度)を設定することができる。
Gas lines GL4a and GL4b are connected to the outlet ports of the first reactors 4a and 4b, respectively, and these meet at a gas merging section J to form a gas line GL4. Additionally, valves (not shown) are provided in the middle of the gas lines GL4a and GL4b, as necessary.
For example, by adjusting the opening degree of the valve, the passing rate of the exhaust gas and reducing gas passing through the first reactors 4a and 4b (i.e., the processing rate of the exhaust gas by the reducing agent 4R and the processing rate of the reducing agent 4R by the reducing gas) can be adjusted. speed) can be set.
 ガスラインGL4は、第2の反応器5の入口ポートに接続されている。すなわち、第2の反応器(第2の反応部)5は、ガスラインGL4a、GL4bおよびガスラインGL4を介して、第1の反応器4a、4b(第1の反応部)に接続されている。これにより、第1の反応器4a、4bからの排出ガスを混合ガスとして第2の反応器5に供給することができる。
 第2の反応器5は、一酸化炭素から炭素有価物を生成可能(一酸化炭素を炭素有価物に変換可能)である。具体的には、第2の反応器5では、混合ガスに含まれる一酸化炭素と水素とから、炭素有価物の一種であるオレフィン系化合物を生成する。すなわち、第2の反応器5では、いわゆる、フィッシャー・トロプシュ反応が行われる。
 第2の反応器5には、第1の反応器4a、4bで説明したのと同様の反応器を使用することができる。この場合、管体41には、例えば、鉄、コバルト、ルテニウム、ニッケル、モリブデン、アルミニウム、ケイ素のうちの少なくとも1種を含む触媒が充填される。
Gas line GL4 is connected to the inlet port of second reactor 5. That is, the second reactor (second reaction section) 5 is connected to the first reactors 4a, 4b (first reaction section) via gas lines GL4a, GL4b and gas line GL4. . Thereby, the exhaust gas from the first reactors 4a, 4b can be supplied to the second reactor 5 as a mixed gas.
The second reactor 5 is capable of producing carbon valuables from carbon monoxide (capable of converting carbon monoxide into carbon valuables). Specifically, in the second reactor 5, an olefin compound, which is a type of carbon valuable substance, is produced from carbon monoxide and hydrogen contained in the mixed gas. That is, in the second reactor 5, a so-called Fischer-Tropsch reaction is performed.
As the second reactor 5, a reactor similar to that described for the first reactors 4a, 4b can be used. In this case, the tube body 41 is filled with a catalyst containing at least one of iron, cobalt, ruthenium, nickel, molybdenum, aluminum, and silicon, for example.
 ここで、オレフィン系化合物としては、例えば、エチレン、プロピレン、ブテン、ブタジエン等が挙げられ、これらの1種または2種以上であってもよい。中でも、オレフィン系化合物は、エチレンを含むことが好ましい。エチレンを含むオレフィン系化合物は、各種の工業製品の原料として有用であるためである。
 なお、触媒の種類を変更することにより、第2の反応器5では、混合ガスに含まれる一酸化炭素と水素とから、オレフィン系化合物以外の他の炭素有価物を生成することもできる。他の炭素有価物としては、例えば、含酸素化合物、芳香族化合物等が挙げられる。
Here, examples of the olefin compound include ethylene, propylene, butene, butadiene, etc., and one or more of these may be used. Among these, it is preferable that the olefin compound contains ethylene. This is because olefin compounds containing ethylene are useful as raw materials for various industrial products.
Note that by changing the type of catalyst, the second reactor 5 can generate other carbon valuables other than olefin compounds from the carbon monoxide and hydrogen contained in the mixed gas. Examples of other carbon valuables include oxygen-containing compounds, aromatic compounds, and the like.
 含酸素化合物としては、例えば、メタノール、エタノール、アセトアルデヒド、アセトン、ブタノール等が挙げられ、これらの1種または2種以上であってもよい。中でも、含酸素化合物は、メタノールを含むことが好ましい。メタノールを含む含酸素化合物は、各種の工業製品の原料として有用であるためである。
 この場合、使用可能な触媒としては、例えば、チタン、銅、銀、亜鉛、ロジウム、マンガン、ニッケル、アルミニウム、ケイ素のうちの少なくとも1種を含む触媒が挙げられる。
Examples of the oxygen-containing compound include methanol, ethanol, acetaldehyde, acetone, and butanol, and one or more of these may be used. Among these, the oxygen-containing compound preferably contains methanol. This is because oxygen-containing compounds containing methanol are useful as raw materials for various industrial products.
In this case, usable catalysts include, for example, catalysts containing at least one of titanium, copper, silver, zinc, rhodium, manganese, nickel, aluminum, and silicon.
 一方、芳香族化合物としては、例えば、ベンゼン、トルエン、キシレン等が挙げられ、これらの1種または2種以上であってもよい。中でも、芳香族化合物は、トルエンを含むことが好ましい。トルエンを含む芳香族化合物は、各種の工業製品の原料として有用であるためである。
 この場合、使用可能な触媒としては、例えば、モリブデン、タングステン、レニウム、ニッケル、アルミニウム、ケイ素のうちの少なくとも1種を含む触媒が挙げられる。
 なお、触媒は、担持触媒でもよく、ゼオライトのような複合酸化物でもよく、複合酸化物に金属を担持して構成してもよい。
On the other hand, examples of the aromatic compound include benzene, toluene, xylene, etc., and one or more of these may be used. Among them, it is preferable that the aromatic compound contains toluene. This is because aromatic compounds containing toluene are useful as raw materials for various industrial products.
In this case, examples of catalysts that can be used include catalysts containing at least one of molybdenum, tungsten, rhenium, nickel, aluminum, and silicon.
Note that the catalyst may be a supported catalyst, a composite oxide such as zeolite, or a composite oxide supporting a metal.
 また、第1の反応器4a、4bから排出された排ガスおよび還元ガスは、合流させることなく、別途に同タイミングで第2の反応器5に供給し続ける連続方式を採用することもでき、第2の反応器5の出口ポートを閉じた状態で排ガスのみを供給(封入)した後、還元ガスを供給し、続いて第2の反応器5の出口ポートを開けるバッチ方式を採用することもできる。また、2つの第2の反応器5を設け、それぞれに交互に排ガスと還元ガスとを供給する方式を採用することもできる。 Alternatively, a continuous method may be adopted in which the exhaust gas and reducing gas discharged from the first reactors 4a and 4b are continuously supplied to the second reactor 5 at the same timing without being combined. It is also possible to adopt a batch method in which only the exhaust gas is supplied (sealed) with the outlet port of the second reactor 5 closed, then the reducing gas is supplied, and then the outlet port of the second reactor 5 is opened. . It is also possible to adopt a method in which two second reactors 5 are provided and exhaust gas and reducing gas are alternately supplied to each of them.
 第1の反応器4a、4b(第1の反応部4)における第1の反応温度は、第2の反応器(第2の反応部)5における第2の反応温度より高いことが好ましい。この場合、第1の反応器4a、4bでの反応熱を第2の反応器5で有効利用することができる。
 具体的には、第1の反応温度と第2の反応温度との差は、100℃以上であることが好ましく、150℃以上500℃以下であることがより好ましく、200℃以上400℃以下であることがさらに好ましい。これにより、第1の反応器4a、4bおよび第2の反応器5における反応効率を向上させつつ、熱の利用効率も高めることもできる。
 なお、第2の反応器5の反応温度は、100℃以上400℃以下であることが好ましく、150℃以上350℃以下であることがより好ましく、200℃以上300℃以下であることがさらに好ましい。
The first reaction temperature in the first reactors 4a, 4b (first reaction section 4) is preferably higher than the second reaction temperature in the second reactor (second reaction section) 5. In this case, the reaction heat in the first reactors 4a, 4b can be effectively used in the second reactor 5.
Specifically, the difference between the first reaction temperature and the second reaction temperature is preferably 100°C or more, more preferably 150°C or more and 500°C or less, and 200°C or more and 400°C or less. It is even more preferable that there be. Thereby, while improving the reaction efficiency in the first reactors 4a, 4b and the second reactor 5, it is also possible to improve the heat utilization efficiency.
The reaction temperature of the second reactor 5 is preferably 100°C or more and 400°C or less, more preferably 150°C or more and 350°C or less, and even more preferably 200°C or more and 300°C or less. .
 第1の反応器4a、4b(第1の反応部4)における第1の反応圧力は、第2の反応器(第2の反応部)5における第2の反応圧力より低いことが好ましい。この場合、第1の反応器4a、4bの前段から昇圧減圧を繰り返すことなく、ガス(排ガス、還元ガスおよび混合ガス)を第2の反応器5へ供給できる。すなわち、段階的(効率的)にガスを昇圧できることから、エネルギー利用効率を高めることができる。
 第2の反応圧力は、1MPaG超であることが好ましく、1,5MPaG以上5MPaG以下であることがより好ましく、2MPaG以上4MPaG以下であることがさらに好ましい。これにより、第2の反応器5における反応効率をより向上させることができる。
The first reaction pressure in the first reactors 4a, 4b (first reaction section 4) is preferably lower than the second reaction pressure in the second reactor (second reaction section) 5. In this case, gas (exhaust gas, reducing gas, and mixed gas) can be supplied to the second reactor 5 from the front stage of the first reactors 4a and 4b without repeating pressure increase and decrease. That is, since the pressure of the gas can be increased stepwise (efficiently), energy utilization efficiency can be increased.
The second reaction pressure is preferably more than 1 MPaG, more preferably 1.5 MPaG or more and 5 MPaG or less, and even more preferably 2 MPaG or more and 4 MPaG or less. Thereby, the reaction efficiency in the second reactor 5 can be further improved.
 ガスラインGL4の途中には、ガス成分除去部12が配置されている。このガス成分除去部12は、第1の反応器4a、4bからの排出ガスからCOの沸点より高い沸点を有するガス成分を除去する。かかるガス成分(不純物ガス成分)を除去することにより、第2の反応器5における反応を阻害する成分が少なくなり、その効率をより高めることができる。
 本実施形態では、ガス成分としては、例えば、HO、CO、メタン、エタン、メタノール、エタノール、エチレンオキシド、プロピレンオキシド等を挙げることができる。
A gas component removing section 12 is arranged in the middle of the gas line GL4. This gas component removal section 12 removes gas components having a boiling point higher than the boiling point of CO from the exhaust gas from the first reactors 4a, 4b. By removing such gas components (impurity gas components), the components that inhibit the reaction in the second reactor 5 are reduced, and the efficiency can be further improved.
In this embodiment, examples of gas components include H 2 O, CO 2 , methane, ethane, methanol, ethanol, ethylene oxide, propylene oxide, and the like.
 ガス成分除去部12は、第1の反応器4a、4bからの排出ガス(混合ガス)を冷却する冷却器で構成してもよく、排出ガスを昇圧し、COの沸点より高い沸点を有するガス成分を液化する凝縮器で構成してもよく、第2の反応器5で反応させるべき分子の通過を許容し、それ以外の分子の通過を阻止する分離膜、または第2の反応器5で反応させるべき分子の通過を阻止し、それ以外の分子の通過を許容する分離膜で構成してもよく、冷却器と凝縮器と分離膜との任意のもしくは全ての組み合わせで構成してもよい。
 冷却器は、後述と同様の構成の冷却器を使用することができる。
 一方、凝縮器は、昇圧するためのコンプレッサーと気液分離器とで構成することができる。
 一方、分離膜は、金属、無機酸化物または金属有機構造体(Metal Organic FRAM(登録商標)eworks:MOF)で構成することができる。
The gas component removal unit 12 may be configured with a cooler that cools the exhaust gas (mixed gas) from the first reactors 4a and 4b, and increases the pressure of the exhaust gas to convert it into a gas having a boiling point higher than the boiling point of CO. It may be configured with a condenser that liquefies the components, a separation membrane that allows the passage of molecules to be reacted in the second reactor 5 and blocks the passage of other molecules, or a separation membrane that allows the passage of molecules to be reacted in the second reactor 5, or It may be composed of a separation membrane that blocks the passage of molecules to be reacted and allows the passage of other molecules, or it may be composed of any or all combinations of a cooler, a condenser, and a separation membrane. .
As the cooler, a cooler having a configuration similar to that described below can be used.
On the other hand, the condenser may include a compressor for increasing the pressure and a gas-liquid separator.
On the other hand, the separation membrane can be made of a metal, an inorganic oxide, or a metal organic framework (Metal Organic FRAM (registered trademark) eworks: MOF).
 ここで、金属としては、例えば、チタン、アルミニウム、銅、ニッケル、クロム、コバルトまたはこれらを含む合金等が挙げられる。金属を用いる場合、分離膜は、好ましくは、空孔率が80%以上の多孔質体とされる。
 無機酸化物としては、例えば、シリカ、ゼオライト等が挙げられる。
 また、金属有機構造体としては、例えば、硝酸亜鉛水和物とテレフタル酸ジアニオンとの構造体、硝酸銅水和物とトリメシン酸トリアニオンとの構造体等が挙げられる。
Here, examples of the metal include titanium, aluminum, copper, nickel, chromium, cobalt, and alloys containing these. When using metal, the separation membrane is preferably a porous body with a porosity of 80% or more.
Examples of the inorganic oxide include silica and zeolite.
Further, examples of the metal-organic structure include a structure of zinc nitrate hydrate and terephthalate dianion, a structure of copper nitrate hydrate and trimesate trianion, and the like.
 分離膜は、隣接する空孔同士が連通する連続空孔(筒壁を貫通する細孔)を備える多孔質体で構成されていることが好ましい。かかる構成の分離膜であれば、HOまたはCOの透過率を高めて、HOとHとの分離および/またはCOとCOとの分離をより円滑かつ確実に行うことができる。
 分離膜の空孔率は、特に限定されないが、10%以上90%以下であることが好ましく、20%以上60%以下であることがより好ましい。これにより、分離膜の機械的強度が極端に低下するのを防止しつつ、HOまたはCOの透過率を十分に高く維持することができる。
 なお、分離膜の形状は、特に限定されず、円筒状、四角形、六角形のような角筒状等が挙げられる。
It is preferable that the separation membrane is composed of a porous body having continuous pores (pores penetrating the cylindrical wall) in which adjacent pores communicate with each other. With a separation membrane having such a configuration, the permeability of H 2 O or CO can be increased, and the separation between H 2 O and H 2 and/or the separation between CO and CO 2 can be performed more smoothly and reliably. .
The porosity of the separation membrane is not particularly limited, but is preferably 10% or more and 90% or less, more preferably 20% or more and 60% or less. This makes it possible to maintain a sufficiently high permeability of H 2 O or CO while preventing the mechanical strength of the separation membrane from decreasing excessively.
Note that the shape of the separation membrane is not particularly limited, and examples thereof include a cylindrical shape, a quadrangular shape, a rectangular tube shape such as a hexagonal shape, and the like.
 二酸化炭素の一酸化炭素への変換効率をより高める観点からは、酸化状態の還元剤4Rの還元(再生)効率を高めることが有効である。
 この場合、分離膜の平均空孔径は、600pm以下であるのが好ましく、400pm以上500pm以下であるのがより好ましい。これにより、HOとHとの分離効率をより向上させることができる。
 なお、分離膜は、通常、ハウジングに収容した状態で使用される。この場合、ハウジング内の分離膜の外側の空間は、減圧してもよいし、キャリアガス(スウィープガス)を通過させるようにしてもよい。キャリアガスとしては、例えば、ヘリウム、アルゴンのような不活性ガス等が挙げられる。
From the viewpoint of further increasing the conversion efficiency of carbon dioxide into carbon monoxide, it is effective to increase the reduction (regeneration) efficiency of the reducing agent 4R in an oxidized state.
In this case, the average pore diameter of the separation membrane is preferably 600 pm or less, more preferably 400 pm or more and 500 pm or less. Thereby, the separation efficiency between H 2 O and H 2 can be further improved.
Note that the separation membrane is normally used while being housed in a housing. In this case, the pressure in the space outside the separation membrane within the housing may be reduced or a carrier gas (sweep gas) may be allowed to pass therethrough. Examples of the carrier gas include helium, inert gas such as argon, and the like.
 また、分離膜は、親水性を備えることが好ましい。分離膜が親水性を有すれば、水の分離膜に対する親和性が高まり、HOが分離膜をより円滑に透過し易くなる。
 分離膜に親水性を付与する方法としては、無機酸化物中の金属元素の比率を変更(例えば、Al/Si比を高める等)して分離膜の極性を向上させる方法、分離膜を親水性ポリマーで被覆する方法、分離膜を親水性基(極性基)を有するカップリング剤で処理する方法、分離膜に対してプラズマ処理、コロナ放電処理等を行う方法等が挙げられる。
 さらに、分離膜の表面電位を調整することにより、水に対する親和性を制御するようにしてもよい。
Further, the separation membrane is preferably hydrophilic. If the separation membrane has hydrophilicity, the affinity of water for the separation membrane will increase, and H 2 O will more easily permeate through the separation membrane.
Methods of imparting hydrophilicity to a separation membrane include methods of improving the polarity of the separation membrane by changing the ratio of metal elements in the inorganic oxide (for example, increasing the Al/Si ratio); Examples include a method of coating the separation membrane with a polymer, a method of treating the separation membrane with a coupling agent having a hydrophilic group (polar group), and a method of subjecting the separation membrane to plasma treatment, corona discharge treatment, etc.
Furthermore, the affinity for water may be controlled by adjusting the surface potential of the separation membrane.
 一方、分離膜において、COとCOとの分離を優先させて行う場合、HOとHとの分離およびCOとCOとの分離の双方を同時に行う場合には、分離膜の構成材料、空孔率、平均空孔径、親水性または疎水性の程度、表面電位等を適宜組み合わせて設定するようにすればよい。
 かかる分離膜で第1の反応器4a、4bの管体41を構成することも考えられるが、この場合、分離膜が熱により劣化するため、第1の反応器4a、4bの温度(反応温度)を高温に設定することができない。
 これに対して、分離膜を第1の反応器4a、4b外に配置することにより、第1の反応器4a、4bの温度を比較的高温に設定することができ、よって、二酸化炭素の一酸化炭素への変換効率および還元ガスによる還元剤4Rの再生(還元)効率をより高めることができる。
On the other hand, when separating CO and CO 2 with priority in a separation membrane, or when separating both H 2 O and H 2 and separating CO and CO 2 at the same time, the configuration of the separation membrane is The material, porosity, average pore diameter, degree of hydrophilicity or hydrophobicity, surface potential, etc. may be appropriately combined and set.
It is also possible to configure the tube bodies 41 of the first reactors 4a, 4b with such separation membranes, but in this case, the separation membranes deteriorate due to heat, so the temperature of the first reactors 4a, 4b (reaction temperature ) cannot be set to a high temperature.
On the other hand, by arranging the separation membrane outside the first reactors 4a, 4b, the temperature of the first reactors 4a, 4b can be set to a relatively high temperature, and therefore, the temperature of the first reactors 4a, 4b can be set to a relatively high temperature. The conversion efficiency to carbon oxide and the regeneration (reduction) efficiency of the reducing agent 4R by the reducing gas can be further improved.
 ガス成分除去部12を通過した排ガスおよび還元ガスの混合ガス(排出ガス)が第2の反応器5に供給される。すなわち、第1の反応器4a、4bにおける還元剤4R(金属および金属酸化物の少なくとも一方)との未反応の水素(還元物質)を、第2の反応器5における一酸化炭素の炭素有価物への変換に使用するように構成されている。
 このように、未反応の水素(還元物質)を再利用することにより、原料の無駄を削減することができる。
The mixed gas (exhaust gas) of exhaust gas and reducing gas that has passed through the gas component removal section 12 is supplied to the second reactor 5 . That is, unreacted hydrogen (reducing substance) with the reducing agent 4R (at least one of metal and metal oxide) in the first reactors 4a and 4b is converted into carbon valuables such as carbon monoxide in the second reactor 5. is configured for use in converting to .
In this way, by reusing unreacted hydrogen (reducing substance), waste of raw materials can be reduced.
 第2の反応器5の出口ポートには、ガスラインGL5が接続されている。このガスラインGL5は、第3の反応器6の入口ポートに接続されている。すなわち、第3の反応器(第3の反応部)6は、ガスラインGL5を介して、第2の反応器(第2の反応部)4に接続されている。これにより、第2の反応器5からの排出ガスを第3の反応器6に供給することができる。
 第3の反応器6は、第2の反応器5から排出される未反応の一酸化炭素から炭素材料を生成(変換)可能である。具体的には、第3の反応器6では、混合ガス(排出ガス)に含まれる一酸化炭素から、いわゆる、次の式3に示すブドワール反応により炭素材料を生成する。
  式3: 2CO ⇔ C + CO
 第3の反応器6には、第1の反応器4a、4bで説明したのと同様の反応器を使用することができる。この場合、管体41には、例えば、ロジウム、ニッケル、セリウム、プラチナ、次のような触媒のうちの1種または2種以上が充填される。触媒としては、例えば、(1)タングステン、レニウム、オスミウム、タンタル、モリブデン、ニオブ、イリジウム、ルテニウム、ハフニウム、テクネチウム、ロジウム、バナジウム、クロム、ジルコニウム、白金、トリウム、ルテチウム、チタン、パラジウム、プロトアクチニウム、ツリウム、スカンジウム、鉄、イットリウム、エルビウム、コバルト、ホルミウム、ニッケル、ジスプロシウム、テルビウム、キュリウム、カドリニウム、ベリリウム、マンガン、アメリシウム、プロメチウム、ウラン、銅、サマリウム、金、アクチニウム、ネオジウム、バークリウム、銀、ゲルマニウム、プラセオジウム、ランタン、カリホルニウム、カルシウム、ユウロピウム、イッテルビウム、セリウム、ストロンチウム、バリウム、ラジウム、アルミニウム、マグネシウム、プルトニウム、ネプチニウム、アンチモン、亜鉛、鉛、カドミウム、タリウム、ビスマス、ポロニウム、スズ、リチウム、インジウム、ナトリウム、カリウム、ルビジウム、ガリウム、セシウム、シリコンまたはテルルを含む元素(元素単体または複合体)、(2)上記元素の硫化物、ホウ化物、酸化物、塩化物、水酸化物、窒化物および有機金属化合物、(3)上記(1)または(2)のいずれかと、硫黄および/または硫化物(有機硫黄化合物を含む)との混合物、(4)上記(1)または(2)のいずれかと、ホウ素および/またはホウ化物(有機ホウ素化合物を含む)との混合物等が挙げられる。
A gas line GL5 is connected to the outlet port of the second reactor 5. This gas line GL5 is connected to the inlet port of the third reactor 6. That is, the third reactor (third reaction section) 6 is connected to the second reactor (second reaction section) 4 via the gas line GL5. Thereby, the exhaust gas from the second reactor 5 can be supplied to the third reactor 6.
The third reactor 6 is capable of generating (converting) carbon material from unreacted carbon monoxide discharged from the second reactor 5. Specifically, in the third reactor 6, a carbon material is generated from carbon monoxide contained in the mixed gas (exhaust gas) by a so-called boudoir reaction shown in the following equation 3.
Formula 3: 2CO ⇔ C + CO 2
As the third reactor 6, a reactor similar to that described for the first reactors 4a, 4b can be used. In this case, the tube body 41 is filled with, for example, rhodium, nickel, cerium, platinum, or one or more of the following catalysts. Examples of the catalyst include (1) tungsten, rhenium, osmium, tantalum, molybdenum, niobium, iridium, ruthenium, hafnium, technetium, rhodium, vanadium, chromium, zirconium, platinum, thorium, lutetium, titanium, palladium, protactinium, Thulium, scandium, iron, yttrium, erbium, cobalt, holmium, nickel, dysprosium, terbium, curium, cadrinium, beryllium, manganese, americium, promethium, uranium, copper, samarium, gold, actinium, neodymium, bercurium, silver, germanium, praseodymium, lanthanum, californium, calcium, europium, ytterbium, cerium, strontium, barium, radium, aluminum, magnesium, plutonium, neptinium, antimony, zinc, lead, cadmium, thallium, bismuth, polonium, tin, lithium, indium, sodium, Elements (single elements or complexes) containing potassium, rubidium, gallium, cesium, silicon or tellurium; (2) sulfides, borides, oxides, chlorides, hydroxides, nitrides and organometallic compounds of the above elements; , (3) A mixture of either (1) or (2) above and sulfur and/or sulfide (including organic sulfur compounds), (4) A mixture of either (1) or (2) above and boron and /or a mixture with a boride (including an organic boron compound), etc.
 ガスラインGL5の途中には、炭素有価物を回収する第1の回収部7とガスラインGL5を通過する混合ガスの圧力を高める圧力調整部8とが設けられている。
 第1の回収部7は、例えば、分離塔、吸収塔等で構成することができる。
 また、圧力調整部8により混合ガス(第1の回収部7を通過した後のガス)の圧力を高めることにより、式3に記載の反応の平衡を右側にシフトする(傾ける)ことができ、よって、炭素材料の生成効率をより高めることができる。
 具体的には、圧力調整部8による加圧後の混合ガスの圧力は、0.1MPaG以上であることが好ましく、0.1MPaG以上10MPaG以下であることがより好ましく、0.1MPaG以上5MPaG以下であることがさらに好ましく、0.1MPaG以上3MPaG以下であることが特に好ましく、0.1MPaG以上2MPaG以下であることが最も好ましい。なお、圧力の下限値は、0.2MPaG以上であってもよく、0.5MPaG以上であってもよい。混合ガスの圧力を調整することにより、炭素材料の生成効率をさらに高めることができる。
 かかる圧力調整部8は、バルブ、圧力調整バブル等を含んで構成することができる。なお、圧力調整部8は、必要に応じて設けるようにすればよく、省略してもよい。
A first recovery section 7 for recovering carbon valuables and a pressure adjustment section 8 for increasing the pressure of the mixed gas passing through the gas line GL5 are provided in the middle of the gas line GL5.
The first recovery section 7 can be composed of, for example, a separation tower, an absorption tower, or the like.
Furthermore, by increasing the pressure of the mixed gas (the gas after passing through the first recovery section 7) using the pressure adjustment section 8, the equilibrium of the reaction described in Equation 3 can be shifted (tilted) to the right, Therefore, the production efficiency of carbon material can be further improved.
Specifically, the pressure of the mixed gas after pressurization by the pressure regulator 8 is preferably 0.1 MPaG or more, more preferably 0.1 MPaG or more and 10 MPaG or less, and 0.1 MPaG or more and 5 MPaG or less. It is more preferably 0.1 MPaG or more and 3 MPaG or less, most preferably 0.1 MPaG or more and 2 MPaG or less. Note that the lower limit of the pressure may be 0.2 MPaG or more, or 0.5 MPaG or more. By adjusting the pressure of the mixed gas, the production efficiency of carbon material can be further increased.
The pressure adjustment section 8 can be configured to include a valve, a pressure adjustment bubble, and the like. Note that the pressure adjustment section 8 may be provided as necessary, or may be omitted.
 なお、ガスラインGL5の途中には、混合ガスを冷却する冷却器および気液分離器(図示せず。)を設けるようにしてもよい。
 冷却器は、混合ガスを冷却することにより、凝縮水(液体)を生成させる。
 かかる冷却器は、配管の周囲に冷媒を通過させるためのジャケットを配置したジャケット式の冷却装置、第1の反応器4a、4bと同様の構成(図2参照)とし、管体内に混合ガスを、管体の周囲に冷媒をそれぞれ通過させる多管式の冷却装置、エアフィンクーラー等を含んで構成することができる。
Note that a cooler and a gas-liquid separator (not shown) may be provided in the middle of the gas line GL5 to cool the mixed gas.
The cooler generates condensed water (liquid) by cooling the mixed gas.
This cooler is a jacket-type cooling device in which a jacket is placed around the piping to allow the refrigerant to pass through, and has the same configuration as the first reactors 4a and 4b (see FIG. 2), and has a mixed gas inside the tube. , a multi-tubular cooling device that allows refrigerant to pass around each tube body, an air fin cooler, and the like.
 気液分離器は、冷却器で混合ガスを冷却する際に生じる凝縮水を混合ガスから分離する。このとき、凝縮水には、混合ガス中に残存する不要ガス成分(特に、二酸化炭素)を溶解して除去することができるという利点がある。
 気液分離器は、例えば、単なる容器、旋回流式分離器、遠心分離器、表面張力式分離器等で構成することができる。これらの中でも、気液分離器は、構成が単純であり、安価であること等から、単なる容器で構成することが好ましい。この場合、容器内の気液界面には、気体の通過は許容するが、液体の通過を阻止するフィルタを配置するようにしてもよい。
The gas-liquid separator separates condensed water generated when the mixed gas is cooled by the cooler from the mixed gas. At this time, the condensed water has the advantage of being able to dissolve and remove unnecessary gas components (especially carbon dioxide) remaining in the mixed gas.
The gas-liquid separator can be constituted by, for example, a simple container, a swirling flow separator, a centrifugal separator, a surface tension separator, or the like. Among these, the gas-liquid separator is preferably constructed from a simple container because it is simple and inexpensive. In this case, a filter may be placed at the gas-liquid interface within the container to allow gas to pass through but to block liquid from passing through.
 以上のように、混合ガスから水や不要ガス成分を除去しておけば、一酸化炭素の濃度がより高い混合ガスを第3の反応器6に供給することができる。よって、一酸化炭素の炭素材料への変換効率の低下を防止または抑制して、その生成量をより増大させることができる。 As described above, by removing water and unnecessary gas components from the mixed gas, a mixed gas with a higher concentration of carbon monoxide can be supplied to the third reactor 6. Therefore, it is possible to prevent or suppress a decrease in the conversion efficiency of carbon monoxide into a carbon material, and to further increase the amount of carbon monoxide produced.
 第3の反応器(第3の反応部)6における第3の反応温度は、第1の反応器4a、4b(第1の反応部4)における第1の反応温度より低いことが好ましい。この場合、第1の反応器4a、4bでの反応熱を第3の反応器6で有効利用することができる。
 具体的には、第3の反応温度は、850℃以下であることが好ましく、800℃以下であることがより好ましく、750℃以下であることがさらに好ましい。これにより、炭素材料の生成効率を向上させつつ、熱の利用効率も高めることもできる。なお、第3の反応温度の下限値は、通常、600℃以上である。
The third reaction temperature in the third reactor (third reaction section) 6 is preferably lower than the first reaction temperature in the first reactors 4a, 4b (first reaction section 4). In this case, the reaction heat in the first reactors 4a, 4b can be effectively used in the third reactor 6.
Specifically, the third reaction temperature is preferably 850°C or lower, more preferably 800°C or lower, and even more preferably 750°C or lower. Thereby, it is possible to improve the production efficiency of carbon material and also increase the heat utilization efficiency. Note that the lower limit of the third reaction temperature is usually 600°C or higher.
 第3の反応器6の出口ポートには、ガスラインGL7が接続されている。
 ガスラインGL7の第3の反応器6の反対側の端部には、第2の回収部9が接続されている。
 第2の回収部9は、第3の反応器6で生成されたガス(生成ガス)から炭素材料を回収する。この第2の回収部9は、例えば、エルトリエーション装置、遠心分離装置、電気集塵装置、フィルタ装置のうちの1種または2種以上を組み合わせて構成することができる。
 第2の回収部9は、返還ガスラインGL8を介して、ガスラインGL1に接続されている。上述したように、第3の反応器6では、一酸化炭素から炭素材料以外に、二酸化炭素も含む生成ガスが生成される。
 したがって、生成ガスは、第2の回収部9を通過することにより、炭素材料と二酸化炭素を含む生成ガスとに分離される。
A gas line GL7 is connected to the outlet port of the third reactor 6.
A second recovery section 9 is connected to the end of the gas line GL7 opposite the third reactor 6.
The second recovery unit 9 recovers carbon material from the gas generated in the third reactor 6 (product gas). This second recovery section 9 can be configured by combining one or more of an elutriation device, a centrifugal separator, an electrostatic precipitator, and a filter device, for example.
The second recovery unit 9 is connected to the gas line GL1 via the return gas line GL8. As described above, in the third reactor 6, a product gas containing not only carbon material but also carbon dioxide is produced from carbon monoxide.
Therefore, by passing through the second recovery section 9, the generated gas is separated into a carbon material and a generated gas containing carbon dioxide.
 そして、第2の回収部9で炭素材料が回収された後の生成ガスは、返還ガスラインGL8およびガスラインGL1を介して、第1の反応器4a、4bに返還される。
 かかる構成によれば、第2の回収部9を通過した後の生成ガスを廃棄することなく有効利用することができる。その結果、二酸化炭素の排出量を削減して、サーキュラーエコノミー(物質循環型社会)を実現することができる。特に、第2の回収部9を通過した後の生成ガスは、二酸化炭素の濃度が十分に高いため、排ガスと混合しても、第1の反応器4a、4bにおいて、二酸化炭素の一酸化炭素への変換効率が低下するのを好適に防止することができる。
The generated gas after the carbon material has been recovered in the second recovery section 9 is returned to the first reactors 4a, 4b via the return gas line GL8 and the gas line GL1.
According to this configuration, the generated gas after passing through the second recovery section 9 can be effectively used without being discarded. As a result, it is possible to reduce carbon dioxide emissions and realize a circular economy (material recycling society). In particular, the generated gas after passing through the second recovery section 9 has a sufficiently high concentration of carbon dioxide, so even if it is mixed with the exhaust gas, the generated gas does not contain carbon dioxide or carbon monoxide in the first reactors 4a and 4b. It is possible to suitably prevent the conversion efficiency from decreasing.
 また、上記構成によれば、固形不純物の含有量が極めて少ない炭素材料が生成される。具体的には、炭素材料中の固形不純物の含有量は、1質量%以下であることが好ましく、0.1質量%以下であることがより好ましく、0.01質量%以下であることがさらに好ましい。炭素材料中の固形不純物の含有量の下限値は、特に限定されないが、通常、0.001質量%以上である。このように固形不純物の含有量が少ない炭素材料は、各種電子機器、各種成形品等に使用しても、それらの特性の低下を防止することができる。
 なお、固形不純物としては、例えば、銅、亜鉛、鉄、ニッケル、アルミニウム、クロム、およびこれらを含む合金のうちの少なくとも1種が挙げられる。
Further, according to the above configuration, a carbon material with extremely low content of solid impurities is produced. Specifically, the content of solid impurities in the carbon material is preferably 1% by mass or less, more preferably 0.1% by mass or less, and even more preferably 0.01% by mass or less. preferable. The lower limit of the content of solid impurities in the carbon material is not particularly limited, but is usually 0.001% by mass or more. Carbon materials with such a low content of solid impurities can prevent deterioration of their properties even when used in various electronic devices, various molded products, and the like.
Note that solid impurities include, for example, at least one of copper, zinc, iron, nickel, aluminum, chromium, and alloys containing these.
 このような炭素材料は、製錬用の還元剤、二次電池材料(例えば、負極活物質、負極または正極の導電助剤)、タイヤ用の充填剤、樹脂材料用またはゴム材料用の着色剤、UV保護・吸収材、燃料電池電極材料および放熱剤のうちの少なくとも1つに好適に使用される。
 例えば、炭素材料を鉱石とともに高炉1に供給すれば、炭素材料が製錬用の還元剤として機能し、目的とする金属を製造(製錬)することができる。このため、純度の高い金属が確実に得られる。
 また、例えば、炭素材料をイオン二次電池の負極活物質に使用すれば、イオン二次電池における短期での短絡の発生や、充放電特性の低下等を防止することができる。
 さらに、例えば、炭素材料をタイヤ用の充填剤に使用すれば、タイヤの弾性や柔軟性の経時的低下をより好適に抑制することができる。
Such carbon materials can be used as reducing agents for smelting, secondary battery materials (e.g. negative electrode active materials, conductive aids for negative electrodes or positive electrodes), fillers for tires, and coloring agents for resin materials or rubber materials. , UV protection/absorbing material, fuel cell electrode material, and heat dissipation agent.
For example, if a carbon material is supplied to the blast furnace 1 together with ore, the carbon material functions as a reducing agent for smelting, and the target metal can be manufactured (smelted). Therefore, highly pure metal can be reliably obtained.
Further, for example, if a carbon material is used as a negative electrode active material of an ion secondary battery, it is possible to prevent short circuits from occurring in the ion secondary battery, deterioration of charge/discharge characteristics, etc. in the ion secondary battery.
Furthermore, for example, if a carbon material is used as a filler for a tire, it is possible to more appropriately suppress the deterioration of the elasticity and flexibility of the tire over time.
 次に、製造システム10の使用方法(炭素有価物および炭素材料を製造する方法)について説明する。
 [1]まず、ガス切換部3においてガスライン(流路)を切り換えることにより、高炉1と第1の反応器4aとを連通し、還元ガス供給部2と第1の反応器4bとを連通する。
 [2]次に、この状態で、高炉1からガスラインGL1を介して、排ガスを第1の反応器4aに供給する。第1の反応器4aでは、還元剤4Rは、排ガス(二酸化炭素を含む原料ガス)との接触により二酸化炭素を還元して一酸化炭素に変換する。このとき、還元剤4Rは、二酸化炭素との接触により酸化状態とされる。
Next, a method of using the manufacturing system 10 (a method of manufacturing carbon valuables and carbon materials) will be described.
[1] First, by switching the gas line (flow path) in the gas switching unit 3, the blast furnace 1 and the first reactor 4a are connected, and the reducing gas supply unit 2 and the first reactor 4b are connected. do.
[2] Next, in this state, exhaust gas is supplied from the blast furnace 1 to the first reactor 4a via the gas line GL1. In the first reactor 4a, the reducing agent 4R reduces carbon dioxide and converts it into carbon monoxide by contacting with exhaust gas (source gas containing carbon dioxide). At this time, the reducing agent 4R is brought into an oxidized state by contact with carbon dioxide.
 上記工程[2]における第1の反応器4a(排ガス、還元剤4R)の温度(第1の反応温度)は、500℃以上であることが好ましく、650℃以上1100℃以下であることがより好ましく、700℃以上1000℃以下であることがさらに好ましい。
 また、第1の反応器4a(排ガス、還元剤4R)の圧力(第1の反応圧力)は、1MPaG未満であることが好ましく、0.9MPaG以下であることがより好ましく、0.2MPaG以上0.8MPaG以下であることがさらに好ましい。
 反応条件を上記範囲に設定すれば、例えば、二酸化炭素を一酸化炭素へ変換する際の吸熱反応による還元剤4Rの急激な温度低下を防止または抑制することができるため、第1の反応器4aにおける二酸化炭素の還元反応をより円滑に進行させることができる。
The temperature (first reaction temperature) of the first reactor 4a (exhaust gas, reducing agent 4R) in the above step [2] is preferably 500°C or higher, more preferably 650°C or higher and 1100°C or lower. The temperature is preferably 700°C or more and 1000°C or less.
Further, the pressure (first reaction pressure) of the first reactor 4a (exhaust gas, reducing agent 4R) is preferably less than 1 MPaG, more preferably 0.9 MPaG or less, and 0.2 MPaG or more. More preferably, it is .8 MPaG or less.
If the reaction conditions are set within the above range, for example, it is possible to prevent or suppress a rapid temperature drop in the reducing agent 4R due to an endothermic reaction when converting carbon dioxide to carbon monoxide. The reduction reaction of carbon dioxide can proceed more smoothly.
 [3]上記工程[1]~[2]と並行して、タンクから水(還元ガス原料)を水素発生装置(還元ガス供給部2)に供給し、水から水素を生成する。
 [4]次に、水素発生装置からガスラインGL2を介して、水素を含む還元ガスを第1の反応器4bに供給する。第1の反応器4bでは、還元ガス(水素)との接触により酸化状態の還元剤4Rが還元(再生)される。このとき、水が生成される。この場合、水素は、オンサイト製造してもよいが、別場所で精製した後、パイプラインまたはボンベから供給してもよい。水素は、グリーン水素であれば製造方法はこだわらない。また、水素の一部のみに、グリーン水素を使用してもよい。
[3] In parallel with the above steps [1] and [2], water (reducing gas raw material) is supplied from the tank to the hydrogen generator (reducing gas supply unit 2) to generate hydrogen from water.
[4] Next, a reducing gas containing hydrogen is supplied from the hydrogen generator to the first reactor 4b via the gas line GL2. In the first reactor 4b, the reducing agent 4R in an oxidized state is reduced (regenerated) by contact with reducing gas (hydrogen). At this time, water is produced. In this case, hydrogen may be produced on-site, or may be purified elsewhere and then supplied from a pipeline or cylinder. As long as the hydrogen is green, there is no need to worry about the production method. Moreover, green hydrogen may be used for only a part of the hydrogen.
 上記工程[4]における第1の反応器4b(還元ガス、還元剤4R)の温度(反応温度)は、500℃以上であることが好ましく、650℃以上1100℃以下であることがより好ましく、700℃以上1000℃以下であることがさらに好ましい。
 また、第1の反応器4b(還元ガス、還元剤4R)の圧力(第1の反応圧力)は、1MPaG未満であることが好ましく、0.9MPaG以下であることがより好ましく、0.2MPaG以上0.8MPaG以下であることがさらに好ましい。
 反応条件を上記範囲に設定すれば、例えば、酸化状態の還元剤4Rを還元(再生)する際の吸熱反応による還元剤4Rの急激な温度低下を防止または抑制することができるため、第1の反応器4bにおける還元剤4Rの還元反応をより円滑に進行させることができる。
 実施形態では、上記工程[2]~[4]が二酸化炭素から一酸化炭素を生成する第1の生成工程を構成する。
The temperature (reaction temperature) of the first reactor 4b (reducing gas, reducing agent 4R) in the above step [4] is preferably 500°C or higher, more preferably 650°C or higher and 1100°C or lower, More preferably, the temperature is 700°C or more and 1000°C or less.
Further, the pressure (first reaction pressure) of the first reactor 4b (reducing gas, reducing agent 4R) is preferably less than 1 MPaG, more preferably 0.9 MPaG or less, and 0.2 MPaG or more. More preferably, it is 0.8 MPaG or less.
If the reaction conditions are set within the above range, for example, it is possible to prevent or suppress a rapid temperature drop of the reducing agent 4R due to an endothermic reaction when reducing (regenerating) the reducing agent 4R in an oxidized state. The reduction reaction of the reducing agent 4R in the reactor 4b can proceed more smoothly.
In the embodiment, the above steps [2] to [4] constitute a first generation step of generating carbon monoxide from carbon dioxide.
 [5]次に、第1の反応器4a、4bを通過したガスは、合流して混合ガスが生成される。この時点で、混合ガスの温度は、通常、200℃以上1000℃以下である。この時点での混合ガスの温度が上記範囲であれば、第1の反応器4a、4b内の温度が十分に高温に維持されていることを意味し、還元剤4Rによる二酸化炭素の一酸化炭素への変換や、還元ガスによる還元剤4Rの還元が効率よく進行していると判断することができる。 [5] Next, the gases that have passed through the first reactors 4a and 4b are combined to generate a mixed gas. At this point, the temperature of the mixed gas is typically 200°C or more and 1000°C or less. If the temperature of the mixed gas at this point is within the above range, it means that the temperature inside the first reactors 4a, 4b is maintained at a sufficiently high temperature, and the carbon monoxide caused by the reducing agent 4R It can be determined that the conversion to 4R and the reduction of the reducing agent 4R by the reducing gas are progressing efficiently.
 [6]次に、混合ガスをガスラインGL4を介してガス成分除去部12に通過させる。このとき、第1の反応器4a、4bからの排出ガスからCOの沸点より高い沸点を有するガス成分が除去される。
 本実施形態では、本工程[6]が第1の生成工程で生じた排出ガスから、COの沸点より高い沸点を有するガス成分を除去する除去工程を構成する。
 [7]次に、ガス成分除去部12を通過した混合ガスを第2の反応器5に供給する。第2の反応器5では、一酸化炭素が炭素有価物に変換される。
 本実施形態では、本工程[7]が一酸化炭素から炭素有価物を生成する第2の生成工程を構成する。
[6] Next, the mixed gas is passed through the gas component removing section 12 via the gas line GL4. At this time, gas components having a boiling point higher than the boiling point of CO are removed from the exhaust gas from the first reactors 4a, 4b.
In this embodiment, this step [6] constitutes a removal step for removing a gas component having a boiling point higher than the boiling point of CO from the exhaust gas generated in the first generation step.
[7] Next, the mixed gas that has passed through the gas component removal section 12 is supplied to the second reactor 5. In the second reactor 5 carbon monoxide is converted into carbon values.
In this embodiment, this step [7] constitutes a second generation step of generating carbon valuables from carbon monoxide.
 [8]次に、第2の反応器5を通過した混合ガスを、ガスラインGL4を介して第1の回収部7に通過させる。これにより、炭素有価物が回収される。
 [9]さらに、第2の反応器5から排出される未反応の一酸化炭素を含む混合ガスを、ガスラインGL5を介して圧力調整部8に通過させる。このとき、混合ガスの圧力が上昇する。
 本実施形態では、本工程[9]が第2の生成工程で生じたガス(混合ガス)の圧力を高める圧力調整工程を構成する。
 [10]次に、圧力調整部8を通過した混合ガスを第3の反応器6に供給する。第3の反応器6では、一酸化炭素が炭素材料に変換される。
 本実施形態では、本工程[10]が第2の反応器5から排出される未反応の一酸化炭素から炭素材料を生成する第3の生成工程を構成する。
 そして、炭素材料を含む生成ガス(混合ガス)は、ガスラインGL7を介して第2の回収部9に排出される。
[8] Next, the mixed gas that has passed through the second reactor 5 is passed through the first recovery section 7 via the gas line GL4. As a result, carbon valuables are recovered.
[9] Further, the mixed gas containing unreacted carbon monoxide discharged from the second reactor 5 is passed through the pressure adjustment section 8 via the gas line GL5. At this time, the pressure of the mixed gas increases.
In this embodiment, this step [9] constitutes a pressure adjustment step for increasing the pressure of the gas (mixed gas) generated in the second generation step.
[10] Next, the mixed gas that has passed through the pressure regulator 8 is supplied to the third reactor 6. In the third reactor 6 carbon monoxide is converted into carbon material.
In this embodiment, this step [10] constitutes a third generation step of generating a carbon material from unreacted carbon monoxide discharged from the second reactor 5.
The produced gas (mixed gas) containing the carbon material is then discharged to the second recovery section 9 via the gas line GL7.
 [11]次に、第2の回収部9では、炭素材料を含む生成ガスから炭素材料が分離されて回収される。上述したように、炭素材料中の固形不純物の含有量は、1質量%以下であることが好ましい。
 [12]次に、第2の回収部9で炭素材料が回収された後の生成ガスは、返還ガスラインGL8およびガスラインGL1を介して、第1の反応器4a、4bに返還される。
 この排ガスが上記工程[1]~[10]を経て、再度、炭素材料が生成される。
[11] Next, in the second recovery section 9, the carbon material is separated and recovered from the generated gas containing the carbon material. As mentioned above, the content of solid impurities in the carbon material is preferably 1% by mass or less.
[12] Next, the generated gas after the carbon material has been recovered in the second recovery section 9 is returned to the first reactors 4a, 4b via the return gas line GL8 and the gas line GL1.
This exhaust gas passes through the above steps [1] to [10] to generate carbon material again.
 <<第2実施形態>>
 次に、本発明の製造システムの第2実施形態について説明する。
 図3は、本発明の製造システムの第2実施形態の構成を示す概略図である。
 以下、第2実施形態の製造システム10について説明するが、第1実施形態の製造システム10との相違点を中心に説明し、同様の事項については、その説明を省略する。
<<Second embodiment>>
Next, a second embodiment of the manufacturing system of the present invention will be described.
FIG. 3 is a schematic diagram showing the configuration of a second embodiment of the manufacturing system of the present invention.
Hereinafter, the manufacturing system 10 of the second embodiment will be described, focusing on the differences from the manufacturing system 10 of the first embodiment, and omitting the description of similar matters.
 第2実施形態では、ガスラインGL4a、GL4bの途中からガスラインGL6a、GL6bが分岐し、ガス合流部J1で合流して、ガスラインGL6を構成している。また、ガスラインGL4a、GL4bとガスラインGL6a、GL6bとの分岐部には、切換バルブが設けられている。
 第1の反応器4a、4bから排出された排ガスは、ガスラインGL4a、GL4b、GL4を通過して、第2の反応器5に供給される。第1の反応器4a、4bから排出された還元ガスは、ガスラインGL6a、GL6b、GL6を通過し、例えば、水が除去された後、還元ガス供給部2に返還される。
In the second embodiment, gas lines GL6a and GL6b branch from the middle of gas lines GL4a and GL4b, and join together at gas merging portion J1 to form gas line GL6. Further, a switching valve is provided at the branch portion between the gas lines GL4a and GL4b and the gas lines GL6a and GL6b.
The exhaust gas discharged from the first reactors 4a, 4b passes through gas lines GL4a, GL4b, GL4 and is supplied to the second reactor 5. The reducing gas discharged from the first reactors 4a, 4b passes through the gas lines GL6a, GL6b, GL6, and is returned to the reducing gas supply unit 2 after, for example, water is removed.
 すなわち、本実施形態では、第1の反応器4a、4bを通過した後の排ガスと第1の反応器4a、4bを通過した後の還元ガスとを分離するように構成されている。
 そして、第1の反応器4a、4bを通過した後の排ガスは、第1の反応器4a、4bを通過した後の還元ガスと合流することなく、第2の反応器5に供給される。
 かかる構成によれば、水の混入が低減された排ガスを第2の反応器5に供給することができる。よって、一酸化炭素の炭素材料への変換効率の低下を防止または抑制して、その生成量をより増大させることができる。
That is, in this embodiment, the exhaust gas after passing through the first reactors 4a, 4b is separated from the reducing gas after passing through the first reactors 4a, 4b.
Then, the exhaust gas that has passed through the first reactors 4a, 4b is supplied to the second reactor 5 without merging with the reducing gas that has passed through the first reactors 4a, 4b.
According to this configuration, exhaust gas with reduced water contamination can be supplied to the second reactor 5. Therefore, it is possible to prevent or suppress a decrease in the conversion efficiency of carbon monoxide into a carbon material, and to further increase the amount of carbon monoxide produced.
 <<第3実施形態>>
 次に、本発明の製造システムの第3実施形態について説明する。
 図4は、本発明の製造システムの第3実施形態の構成を示す概略図である。
 以下、第3実施形態の製造システム10について説明するが、第1実施形態の製造システム10との相違点を中心に説明し、同様の事項については、その説明を省略する。
 第3実施形態の製造システム10は、ガスラインGL1の途中(第1の反応部4の上流側)に、排ガスから二酸化炭素を分離する分離部11を備えている。
<<Third embodiment>>
Next, a third embodiment of the manufacturing system of the present invention will be described.
FIG. 4 is a schematic diagram showing the configuration of a third embodiment of the manufacturing system of the present invention.
The manufacturing system 10 of the third embodiment will be described below, focusing on the differences from the manufacturing system 10 of the first embodiment, and will omit the description of similar matters.
The manufacturing system 10 of the third embodiment includes a separation section 11 that separates carbon dioxide from exhaust gas in the middle of the gas line GL1 (upstream of the first reaction section 4).
 分離部11を通過させることにより、排ガス中の二酸化炭素の濃度を高めることができる。これにより、第1の反応器4a、4bにおける二酸化炭素の一酸化炭素への変換効率をより向上させることができる。
 排ガスから二酸化炭素を分離する方法としては、例えば、低温分離方式(深冷方式)の分離器、圧力スイング吸着(PSA)方式の分離器、膜分離方式の分離器、温度スイング吸着(TSA)方式の分離器、アミン吸収式の分離器、アミン吸着式の分離器等が挙げられ、これらのうちの1種を単独でまたは2種以上を組み合わせて使用することができる。
By passing through the separation section 11, the concentration of carbon dioxide in the exhaust gas can be increased. Thereby, the conversion efficiency of carbon dioxide into carbon monoxide in the first reactors 4a, 4b can be further improved.
Methods for separating carbon dioxide from exhaust gas include, for example, a low-temperature separation method (deep cooling method) separator, a pressure swing adsorption (PSA) method separator, a membrane separation method separator, and a temperature swing adsorption (TSA) method. separators, amine absorption type separators, amine adsorption type separators, etc., and one type of these can be used alone or two or more types can be used in combination.
 上述した第1または第2実施形態では、第1の反応器4a、4bでは、還元剤4Rに排ガスが接触すると、二酸化炭素の還元反応により一酸化炭素が生成するとともに、二酸化炭素から離脱した酸素元素の少なくとも一部は、還元剤4Rに捕捉され、その後、還元剤4Rに還元ガスが接触すると、水素(還元物質)に引き渡され、水(還元物質の酸化物)が生成される。すなわち、第1の反応器4a、4bでは、二酸化炭素の還元反応の系(反応場)内で、酸素元素の少なくとも一部が分離可能となっている。
 かかる二酸化炭素の還元反応の系内で酸素元素の少なくとも一部を分離可能な反応器には、図5に示す構成を採用することもできる。
In the first or second embodiment described above, in the first reactor 4a, 4b, when the exhaust gas comes into contact with the reducing agent 4R, carbon monoxide is generated by a reduction reaction of carbon dioxide, and oxygen released from carbon dioxide is generated. At least a portion of the element is captured by the reducing agent 4R, and then when the reducing gas contacts the reducing agent 4R, it is transferred to hydrogen (reducing substance) and water (an oxide of the reducing substance) is generated. That is, in the first reactors 4a and 4b, at least a portion of the oxygen element can be separated within the carbon dioxide reduction reaction system (reaction field).
The configuration shown in FIG. 5 can also be adopted as a reactor capable of separating at least a portion of the oxygen element within the carbon dioxide reduction reaction system.
 <<第4実施形態>>
 次に、本発明の製造システムの第4実施形態について説明する。
 図5は、第4実施形態における第1の反応器の構成を示す模式図である。
 以下、第4実施形態の製造システム10について説明するが、第1~第3実施形態の製造システム10との相違点を中心に説明し、同様の事項については、その説明を省略する。
<<Fourth embodiment>>
Next, a fourth embodiment of the manufacturing system of the present invention will be described.
FIG. 5 is a schematic diagram showing the configuration of the first reactor in the fourth embodiment.
The manufacturing system 10 of the fourth embodiment will be described below, focusing on the differences from the manufacturing system 10 of the first to third embodiments, and will omit descriptions of similar matters.
 図5に示す第1の反応部4は、二酸化炭素の還元反応を電気化学的に(電気エネルギーにより)行う反応器(反応セル、電解槽または電気化学セルとも呼ばれる。)で構成されている。
 第1の反応部4は、ハウジング42と、ハウジング42内に設けられたカソード45、アノード46および固体電解質層47と、カソード45およびアノード46に電気的に接続された電源48とを有している。
 かかる構成において、ハウジング42内の空間は、カソード(還元体)45、アノード46および固体電解質層47の積層体によって、左右に区画されている。
The first reaction section 4 shown in FIG. 5 is composed of a reactor (also called a reaction cell, an electrolytic cell, or an electrochemical cell) that electrochemically (using electrical energy) performs a reduction reaction of carbon dioxide.
The first reaction section 4 includes a housing 42, a cathode 45, an anode 46, and a solid electrolyte layer 47 provided within the housing 42, and a power source 48 electrically connected to the cathode 45 and anode 46. There is.
In this configuration, the space within the housing 42 is divided into left and right sections by a laminate of a cathode (reductant) 45, an anode 46, and a solid electrolyte layer 47.
 ハウジング42は、カソード側入口ポート421aと、カソード側出口ポート421bと、アノード側入口ポート422aと、アノード側出口ポート422bとを備えている。カソード側入口ポート421aおよびカソード側出口ポート421bは、ハウジング42内の左側空間のカソード室に連通し、アノード側入口ポート422aおよびアノード側出口ポート422bは、ハウジング42内の右側空間のアノード室に連通している。 The housing 42 includes a cathode inlet port 421a, a cathode outlet port 421b, an anode inlet port 422a, and an anode outlet port 422b. The cathode side inlet port 421a and the cathode side outlet port 421b communicate with the cathode chamber in the left side space in the housing 42, and the anode side inlet port 422a and the anode side outlet port 422b communicate with the anode chamber in the right side space in the housing 42. are doing.
 カソード45およびアノード46は、それぞれ、導電性を有する担体と、この担体に担持された触媒とで構成されている。
 担体は、例えば、炭素繊維織物(カーボンクロス、カーボンフェルト等)、カーボンペーパーのような炭素材料で構成することができる。
 また、触媒としては、例えば、白金、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウムのような白金族金属、金のような遷移金属、これらの金属の合金、これらの金属と他の金属との合金等が挙げられる。
The cathode 45 and the anode 46 each include a conductive carrier and a catalyst supported on the carrier.
The carrier can be made of a carbon material such as carbon fiber fabric (carbon cloth, carbon felt, etc.) or carbon paper.
Examples of catalysts include platinum group metals such as platinum, ruthenium, rhodium, palladium, osmium, and iridium, transition metals such as gold, alloys of these metals, and alloys of these metals with other metals. can be mentioned.
 固体電解質層47は、例えば、スルホン酸基を有するフッ素系ポリマー膜(ナフィオン(登録商標)等)、スルホ系イオン交換樹脂膜等で構成することができる。
 電源48には、再生可能エネルギーとしての電力を発生する電源を使用することが好ましい。これにより、炭素有価物を含む生成ガスの製造におけるエネルギー効率をより向上させることができる。
The solid electrolyte layer 47 can be composed of, for example, a fluorine-based polymer membrane having sulfonic acid groups (Nafion (registered trademark), etc.), a sulfo-based ion exchange resin membrane, or the like.
As the power source 48, it is preferable to use a power source that generates electricity as renewable energy. Thereby, the energy efficiency in producing generated gas containing carbon valuables can be further improved.
 かかる第1の反応部4では、カソード側入口ポート421aから排ガス(二酸化炭素および水)が供給されると、電源48から供給される電子と触媒との作用により、二酸化炭素および水の還元反応により一酸化炭素および水素が生成されるとともに、酸素イオンが生成される。
 一酸化炭素および水素は、カソード側出口ポート421bからガスライン(ガスラインGL4)に排出され、酸素イオンは、アノード46に向かって固体電解質層47内を拡散する。アノード46に到達した酸素イオンは、電子を奪い取られることにより、酸素に変換され、アノード側出口ポート422bから排出される。
 かかる構成では、カソード側出口ポート421bから排出された一酸化炭素および水素は、第2の反応器5に供給される。この場合、ガスラインGL4の途中には、水素を除去する除去部を設けるようにしてもよい。
In the first reaction section 4, when exhaust gas (carbon dioxide and water) is supplied from the cathode side inlet port 421a, a reduction reaction of carbon dioxide and water occurs due to the action of the electrons supplied from the power supply 48 and the catalyst. Carbon monoxide and hydrogen are produced, as well as oxygen ions.
Carbon monoxide and hydrogen are discharged from the cathode side exit port 421b to the gas line (gas line GL4), and oxygen ions diffuse within the solid electrolyte layer 47 toward the anode 46. The oxygen ions that have reached the anode 46 are converted into oxygen by depriving them of electrons, and are discharged from the anode side exit port 422b.
In this configuration, carbon monoxide and hydrogen discharged from the cathode side outlet port 421b are supplied to the second reactor 5. In this case, a removal section for removing hydrogen may be provided in the middle of the gas line GL4.
 また、製造システム10では、第1の反応部4において次の式4の反応を、第3の反応部6において次の式5の反応を行うように構成してもよい。
  式4:CO + H → CO + H
  式5:CO + H → C + H
 すなわち、第1の反応部4および第3の反応部6を通じて、ボッシュ反応を行うように構成することができる。なお、式4の反応および式5の反応は、同時に生じてもよい。
Further, the manufacturing system 10 may be configured such that the first reaction section 4 performs the reaction expressed by the following equation 4, and the third reaction section 6 performs the following reaction expressed by the following equation 5.
Formula 4: CO 2 + H 2 → CO + H 2 O
Formula 5: CO + H 2 → C + H 2 O
That is, it can be configured to perform the Bosch reaction through the first reaction section 4 and the third reaction section 6. Note that the reaction of Formula 4 and the reaction of Formula 5 may occur simultaneously.
 この場合、第1の反応部4および第3の反応部6は、それぞれ第1の反応器4a、4bで説明したのと同様の反応装置(熱交換器)を使用することができる他、プレート式反応装置、プレートフィン式反応装置、螺旋状反応装置等を使用することもできる。
 また、使用可能な触媒は、第2族~第15族に属する金属元素から選択される少なくとも1種を含有することが好ましく、第5族~第10属に属する金属元素から選択される少なくとも1種を含有することがより好ましく、ニッケル、モリブデン、クロム、コバルト、タングステン、バナジウム、ルテニウム、イリジウム、鉄等のうちの少なくとも1種を含有することがさらに好ましい。
In this case, the first reaction section 4 and the third reaction section 6 can use a reaction device (heat exchanger) similar to that described for the first reactors 4a and 4b, respectively, and a plate Type reactors, plate-fin reactors, spiral reactors, etc. can also be used.
Further, the usable catalyst preferably contains at least one metal element selected from Groups 2 to 15, and at least one metal element selected from Groups 5 to 10. It is more preferable to contain a species, and it is even more preferable to contain at least one of nickel, molybdenum, chromium, cobalt, tungsten, vanadium, ruthenium, iridium, iron, and the like.
 第1の反応部4における第1の反応温度は、400℃以上1200℃以下であることが好ましく、500℃以上1000℃以下であることがより好ましく、600℃以上800℃以下であることがさらに好ましく、680℃以上700℃以下であることが特に好ましい。
 第1の反応部4における第1の反応圧力は、0.1MPaG以上5MPaG以下であることが好ましく、0.2MPaG以上4.5MPaG以下であることがより好ましく、0.25MPaG以上4MPaG以下であることがさらに好ましく、0.3MPaG以上3.5MPaG以下であることが特に好ましい。
The first reaction temperature in the first reaction section 4 is preferably 400°C or more and 1200°C or less, more preferably 500°C or more and 1000°C or less, and even more preferably 600°C or more and 800°C or less. The temperature is preferably 680°C or higher and 700°C or lower, particularly preferably.
The first reaction pressure in the first reaction section 4 is preferably 0.1 MPaG or more and 5 MPaG or less, more preferably 0.2 MPaG or more and 4.5 MPaG or less, and 0.25 MPaG or more and 4 MPaG or less. is more preferable, and particularly preferably 0.3 MPaG or more and 3.5 MPaG or less.
 また、第3の反応部6における第3の反応温度は、400℃以上1000℃以下であることが好ましく、450℃以上900℃以下であることがより好ましく、500℃以上800℃以下であることがさらに好ましく、550℃以上700℃以下であることが特に好ましい。
 第3の反応部6における第3の反応圧力は、0.1MPaG以上5MPaG以下であることが好ましく、0.2MPaG以上4.5MPaG以下であることがより好ましく、0.25MPaG以上4MPaG以下であることがさらに好ましく、0.3MPaG以上3.5MPaG以下であることが特に好ましい。
Further, the third reaction temperature in the third reaction section 6 is preferably 400°C or more and 1000°C or less, more preferably 450°C or more and 900°C or less, and 500°C or more and 800°C or less. is more preferable, and particularly preferably 550°C or more and 700°C or less.
The third reaction pressure in the third reaction section 6 is preferably 0.1 MPaG or more and 5 MPaG or less, more preferably 0.2 MPaG or more and 4.5 MPaG or less, and 0.25 MPaG or more and 4 MPaG or less. is more preferable, and particularly preferably 0.3 MPaG or more and 3.5 MPaG or less.
 以上説明したような製造装置、製造システムおよび製造方法によれば、一酸化炭素から炭素有価物を生成した後に、未反応の一酸化炭素を炭素材料に変換することにより、一酸化炭素の利用効率の向上を図ることができる。
 特に、生成される炭素材料は、固形不純物の含有量が少ないため、各種の用途に使用可能である。
According to the manufacturing apparatus, manufacturing system, and manufacturing method as described above, after generating carbon valuables from carbon monoxide, the unreacted carbon monoxide is converted into carbon material, thereby improving the utilization efficiency of carbon monoxide. It is possible to improve the
In particular, the produced carbon material has a low content of solid impurities, so it can be used for various purposes.
 さらに、次に記載の各態様で提供されてもよい。 Furthermore, it may be provided in each of the following embodiments.
(1)炭素有価物および炭素材料を製造する装置であって、二酸化炭素から一酸化炭素を生成する第1の反応部と、前記一酸化炭素から前記炭素有価物を生成する第2の反応部と、前記第2の反応部から排出される未反応の前記一酸化炭素から前記炭素材料を生成する第3の反応部とを備える、製造装置。 (1) An apparatus for producing carbon valuables and carbon materials, including a first reaction section that generates carbon monoxide from carbon dioxide, and a second reaction section that generates the carbon valuables from the carbon monoxide. and a third reaction section that generates the carbon material from the unreacted carbon monoxide discharged from the second reaction section.
(2)上記(1)に記載の製造装置において、前記第1の反応部は、前記二酸化炭素を含む原料ガスとの接触によって生じる前記二酸化炭素の還元反応により前記一酸化炭素に変換する還元体を収容するとともに、前記二酸化炭素から離脱した酸素元素の少なくとも一部を前記還元反応の系内で分離可能な少なくとも1つの反応器を有する、製造装置。 (2) In the manufacturing apparatus according to (1) above, the first reaction section is a reductant that converts the carbon dioxide into the carbon monoxide through a reduction reaction of the carbon dioxide generated by contact with the carbon dioxide-containing raw material gas. and at least one reactor capable of separating at least a portion of the oxygen element released from the carbon dioxide within the reduction reaction system.
(3)上記(2)に記載の製造装置において、前記還元体は、前記原料ガスとの接触により前記二酸化炭素を還元して前記一酸化炭素に変換するとともに酸化状態とされる還元剤であって、酸化状態の前記還元剤は還元物質を含む還元ガスとの接触により還元される還元剤である、製造装置。 (3) In the manufacturing apparatus according to (2) above, the reductant is a reducing agent that reduces the carbon dioxide and converts it into the carbon monoxide through contact with the raw material gas and is brought into an oxidized state. In the manufacturing apparatus, the reducing agent in an oxidized state is a reducing agent that is reduced by contact with a reducing gas containing a reducing substance.
(4)上記(3)に記載の製造装置において、前記第1の反応部は、複数の前記反応器を有し、各前記反応器には、前記原料ガスと前記還元ガスとが切り換えて供給される、製造装置。 (4) In the manufacturing apparatus according to (3) above, the first reaction section has a plurality of the reactors, and the raw material gas and the reducing gas are switched and supplied to each of the reactors. manufacturing equipment.
(5)上記(4)に記載の製造装置において、前記反応器を通過した後の前記原料ガスと前記反応器を通過した後の前記還元ガスとを分離するように構成されている、製造装置。 (5) The production apparatus according to (4) above, which is configured to separate the raw material gas after passing through the reactor and the reducing gas after passing through the reactor. .
(6)上記(5)に記載の製造装置において、前記反応器を通過した後の前記原料ガスは、前記第2の反応部に供給される、製造装置。 (6) The manufacturing apparatus according to (5) above, wherein the raw material gas after passing through the reactor is supplied to the second reaction section.
(7)上記(1)~(6)のいずれか1項に記載の製造装置において、さらに、前記第3の反応部で生成されたガスから前記炭素材料を回収する回収部を備える、製造装置。 (7) The manufacturing apparatus according to any one of (1) to (6) above, further comprising a recovery section that recovers the carbon material from the gas generated in the third reaction section. .
(8)上記(7)に記載の製造装置において、前記第3の反応部は、前記一酸化炭素から前記炭素材料以外に、二酸化炭素を生成し、前記回収部と前記第1の反応部とを接続する返還ガスラインを介して、前記回収部で前記炭素材料を回収した後のガスを前記第1の反応部に返還するように構成されている、製造装置。 (8) In the manufacturing apparatus according to (7) above, the third reaction section generates carbon dioxide in addition to the carbon material from the carbon monoxide, and the recovery section and the first reaction section The manufacturing apparatus is configured to return the gas after recovering the carbon material in the recovery section to the first reaction section via a return gas line connecting to the first reaction section.
(9)上記(1)~(8)のいずれか1項に記載の製造装置において、前記炭素材料は、製錬用の還元剤、二次電池材料、タイヤ用の充填剤、樹脂材料用またはゴム材料用の着色剤、UV保護・吸収材、燃料電池電極材料および放熱剤のうちの少なくとも1つに使用される、製造装置。 (9) In the manufacturing apparatus according to any one of (1) to (8) above, the carbon material may be a reducing agent for smelting, a secondary battery material, a filler for tires, a resin material, or A manufacturing device used for at least one of a coloring agent for rubber materials, a UV protection/absorbing material, a fuel cell electrode material, and a heat dissipating agent.
(10)炭素有価物および炭素材料を製造するシステムであって、上記(1)~(9)のいずれか1項に記載の製造装置と、前記製造装置に接続され、二酸化炭素を含む原料ガスを供給するガス供給部とを備える、製造システム。 (10) A system for producing carbon valuables and carbon materials, comprising the production apparatus according to any one of (1) to (9) above, and a source gas containing carbon dioxide connected to the production apparatus. A manufacturing system comprising a gas supply section that supplies.
(11)上記(10)に記載の製造システムにおいて、さらに、前記ガス供給部と前記第1の反応部との間に設けられ、前記原料ガスから前記二酸化炭素を分離する分離部を備える、製造システム。 (11) The manufacturing system according to (10) above, further comprising a separation section that is provided between the gas supply section and the first reaction section and separates the carbon dioxide from the raw material gas. system.
(12)上記(11)に記載の製造システムにおいて、前記ガス供給部は、製錬所に関連する炉である、製造システム。 (12) The manufacturing system according to (11) above, wherein the gas supply section is a furnace associated with a smelter.
(13)上記(12)に記載の製造システムにおいて、前記製錬所に関連する炉は、高炉である、製造システム。 (13) The manufacturing system according to (12) above, wherein the furnace associated with the smelter is a blast furnace.
(14)炭素有価物および炭素材料を製造する方法であって、二酸化炭素から一酸化炭素を生成する第1の生成工程と、前記一酸化炭素から前記炭素有価物を生成する第2の生成工程と、前記第2の反応部から排出される未反応の前記一酸化炭素から前記炭素材料を生成する第3の生成工程とを備える、製造方法。
 もちろん、この限りではない。
(14) A method for producing carbon valuables and carbon materials, comprising a first generation step of generating carbon monoxide from carbon dioxide, and a second generation step of generating the carbon valuables from the carbon monoxide. and a third generation step of generating the carbon material from the unreacted carbon monoxide discharged from the second reaction section.
Of course, this is not the case.
 既述のとおり、本発明に係る種々の実施形態を説明したが、これらは、例として提示したものであり、発明の範囲を何ら限定するものではない。当該新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。当該実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 As mentioned above, various embodiments according to the present invention have been described, but these are presented as examples and do not limit the scope of the invention in any way. The new embodiment can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the gist of the invention. The embodiment and its modifications are included within the scope and gist of the invention, and are included within the scope of the invention described in the claims and its equivalents.
 例えば、本発明の製造装置および製造システムは、それぞれ上記実施形態に対して、他の任意の追加の構成を有していてもよく、同様の機能を発揮する任意の構成と置換されていてよく、一部の構成が省略されていてもよい。
 また、本発明の製造方法は、上記実施形態に対して、他の任意の追加の工程を有していてもよく、同様の機能を発揮する任意の工程と置換されていてよく、一部の工程が省略されていてもよい。
 上記実施形態では、還元ガスとして水素を含むガスを代表に説明したが、還元ガスには、還元物質として、水素に代えてまたは水素に加えて、炭化水素(例えば、メタン、エタン、アセチレン等)およびアンモニアから選択される少なくとも1種を含むガスを使用することもできる。
For example, the manufacturing apparatus and manufacturing system of the present invention may each have any other additional configuration with respect to the above embodiment, or may be replaced with any configuration that exhibits a similar function. , some configurations may be omitted.
In addition, the manufacturing method of the present invention may include any other additional process with respect to the above embodiment, and may be replaced with any process that exhibits a similar function, and some The process may be omitted.
In the above embodiment, a gas containing hydrogen is representatively explained as the reducing gas, but the reducing gas may include hydrocarbons (for example, methane, ethane, acetylene, etc.) instead of or in addition to hydrogen. It is also possible to use a gas containing at least one selected from ammonia and ammonia.
 また、本発明における第1の反応器は、還元反応により二酸化炭素から離脱した酸素元素の少なくとも一部が還元反応の系内で分離されない構成の反応装置であってもよい。
 かかる反応器としては、二酸化炭素と水素とを同時に還元剤4Rに接触させて、二酸化炭素の一酸化炭素への変換と、水素(還元物質)の水(への変換とを行う逆水性ガスシフト反応を利用する装置が挙げられる。
 この反応器では、二酸化炭素から離脱した酸素元素の少なくとも一部は、還元反応の系(反応場)内から分離されることなく、水素と反応して水を生成する。
 ただし、上述したような、二酸化炭素から離脱した酸素元素の少なくとも一部を、還元反応の系(反応場)内で分離可能な反応器を使用すれば、反応生成物である一酸化炭素と水とが系内に共存し難くなるため、化学平衡の制約による二酸化炭素の一酸化炭素への変換効率の低下を防止または抑制することができる。
Further, the first reactor in the present invention may be a reactor configured such that at least a part of the oxygen element released from carbon dioxide by the reduction reaction is not separated within the reduction reaction system.
Such a reactor is a reverse water gas shift reaction in which carbon dioxide and hydrogen are brought into contact with a reducing agent 4R at the same time to convert carbon dioxide into carbon monoxide and hydrogen (reducing substance) into water. Examples include devices that utilize
In this reactor, at least a portion of the oxygen element released from carbon dioxide is not separated from the reduction reaction system (reaction field) and reacts with hydrogen to produce water.
However, if a reactor is used that can separate at least a portion of the oxygen element released from carbon dioxide within the reduction reaction system (reaction field) as described above, the reaction products carbon monoxide and water can be separated. Since it becomes difficult for these to coexist in the system, it is possible to prevent or suppress a decrease in the conversion efficiency of carbon dioxide to carbon monoxide due to restrictions on chemical equilibrium.
 また、上記第1~第4実施形態の任意の構成を組み合わせるようにしてもよい。
 例えば、第1の反応部4を図5に示すような電気化学セルで構成し、第3の反応部6を上記式5の反応を行う反応器で構成することができる。
Further, any configurations of the first to fourth embodiments described above may be combined.
For example, the first reaction section 4 can be configured with an electrochemical cell as shown in FIG. 5, and the third reaction section 6 can be configured with a reactor that performs the reaction of formula 5 above.
10   :製造システム
100  :製造装置
1    :高炉
2    :還元ガス供給部
3    :ガス切換部
4    :第1の反応部
4a   :第1の反応器
4b   :第1の反応器
41   :管体
42   :ハウジング
421a :カソード側入口ポート
421b :カソード側出口ポート
422a :アノード側入口ポート
422b :アノード側出口ポート
43   :内部空間
45   :カソード
46   :アノード
47   :固体電解質層
48   :電源
4R   :還元剤
5    :第2の反応器(第2の反応部)
6    :第3の反応器(第3の反応部)
7    :第1の回収部
8    :圧力調整部
9    :第2の回収部
11   :分離部
12   :ガス成分除去部
GL1  :ガスライン
GL2  :ガスライン
GL3a :ガスライン
GL3b :ガスライン
GL4  :ガスライン
GL4a :ガスライン
GL4b :ガスライン
GL5  :ガスライン
GL6  :ガスライン
GL6a :ガスライン
GL6b :ガスライン
GL7  :ガスライン
GL8  :返還ガスライン
J    :ガス合流部
J1   :ガス合流部
10: Manufacturing system 100: Manufacturing apparatus 1: Blast furnace 2: Reducing gas supply section 3: Gas switching section 4: First reaction section 4a: First reactor 4b: First reactor 41: Pipe body 42: Housing 421a: Cathode side inlet port 421b: Cathode side outlet port 422a: Anode side inlet port 422b: Anode side outlet port 43: Internal space 45: Cathode 46: Anode 47: Solid electrolyte layer 48: Power source 4R: Reducing agent 5: Second reactor (second reaction section)
6: Third reactor (third reaction section)
7: First recovery section 8: Pressure adjustment section 9: Second recovery section 11: Separation section 12: Gas component removal section GL1: Gas line GL2: Gas line GL3a: Gas line GL3b: Gas line GL4: Gas line GL4a : Gas line GL4b : Gas line GL5 : Gas line GL6 : Gas line GL6a : Gas line GL6b : Gas line GL7 : Gas line GL8 : Return gas line J : Gas merging section J1 : Gas merging section

Claims (14)

  1. 炭素有価物および炭素材料を製造する装置であって、
     二酸化炭素から一酸化炭素を生成する第1の反応部と、
     前記一酸化炭素から前記炭素有価物を生成する第2の反応部と、
     前記第2の反応部から排出される未反応の前記一酸化炭素から前記炭素材料を生成する第3の反応部とを備える、製造装置。
    An apparatus for producing carbon valuables and carbon materials,
    a first reaction section that generates carbon monoxide from carbon dioxide;
    a second reaction section that generates the carbon valuables from the carbon monoxide;
    and a third reaction section that generates the carbon material from the unreacted carbon monoxide discharged from the second reaction section.
  2. 請求項1に記載の製造装置において、
     前記第1の反応部は、前記二酸化炭素を含む原料ガスとの接触によって生じる前記二酸化炭素の還元反応により前記一酸化炭素に変換する還元体を収容するとともに、前記二酸化炭素から離脱した酸素元素の少なくとも一部を前記還元反応の系内で分離可能な少なくとも1つの反応器を有する、製造装置。
    The manufacturing apparatus according to claim 1,
    The first reaction section accommodates a reductant that converts the carbon dioxide into carbon monoxide through a reduction reaction of the carbon dioxide caused by contact with the carbon dioxide-containing raw material gas, and also stores the oxygen element released from the carbon dioxide. A manufacturing apparatus comprising at least one reactor capable of separating at least a portion of the reduction reaction within the system.
  3. 請求項2に記載の製造装置において、
     前記還元体は、前記原料ガスとの接触により前記二酸化炭素を還元して前記一酸化炭素に変換するとともに酸化状態とされる還元剤であって、酸化状態の前記還元剤は還元物質を含む還元ガスとの接触により還元される還元剤である、製造装置。
    The manufacturing apparatus according to claim 2,
    The reductant is a reducing agent that reduces the carbon dioxide and converts it into the carbon monoxide through contact with the raw material gas and is brought into an oxidized state, and the reducing agent in the oxidized state is a reducing agent containing a reducing substance. A manufacturing device that is a reducing agent that is reduced by contact with a gas.
  4. 請求項3に記載の製造装置において、
     前記第1の反応部は、複数の前記反応器を有し、
     各前記反応器には、前記原料ガスと前記還元ガスとが切り換えて供給される、製造装置。
    The manufacturing apparatus according to claim 3,
    The first reaction section has a plurality of the reactors,
    A manufacturing apparatus in which the raw material gas and the reducing gas are selectively supplied to each of the reactors.
  5. 請求項4に記載の製造装置において、
     前記反応器を通過した後の前記原料ガスと前記反応器を通過した後の前記還元ガスとを分離するように構成されている、製造装置。
    The manufacturing apparatus according to claim 4,
    A manufacturing apparatus configured to separate the raw material gas after passing through the reactor and the reducing gas after passing through the reactor.
  6. 請求項5に記載の製造装置において、
     前記反応器を通過した後の前記原料ガスは、前記第2の反応部に供給される、製造装置。
    The manufacturing apparatus according to claim 5,
    In the manufacturing apparatus, the raw material gas after passing through the reactor is supplied to the second reaction section.
  7. 請求項1~請求項6のいずれか1項に記載の製造装置において、
     さらに、前記第3の反応部で生成されたガスから前記炭素材料を回収する回収部を備える、製造装置。
    In the manufacturing apparatus according to any one of claims 1 to 6,
    The manufacturing apparatus further includes a recovery section that recovers the carbon material from the gas generated in the third reaction section.
  8. 請求項7に記載の製造装置において、
     前記第3の反応部は、前記一酸化炭素から前記炭素材料以外に、二酸化炭素を生成し、
     前記回収部と前記第1の反応部とを接続する返還ガスラインを介して、前記回収部で前記炭素材料を回収した後のガスを前記第1の反応部に返還するように構成されている、製造装置。
    The manufacturing apparatus according to claim 7,
    The third reaction section generates carbon dioxide in addition to the carbon material from the carbon monoxide,
    The gas after recovering the carbon material in the recovery section is configured to be returned to the first reaction section via a return gas line that connects the recovery section and the first reaction section. ,Manufacturing equipment.
  9. 請求項1~請求項8のいずれか1項に記載の製造装置において、
     前記炭素材料は、製錬用の還元剤、二次電池材料、タイヤ用の充填剤、樹脂材料用またはゴム材料用の着色剤、UV保護・吸収材、燃料電池電極材料および放熱剤のうちの少なくとも1つに使用される、製造装置。
    In the manufacturing apparatus according to any one of claims 1 to 8,
    The carbon material is a reducing agent for smelting, a secondary battery material, a filler for tires, a coloring agent for resin materials or rubber materials, a UV protection/absorbing material, a fuel cell electrode material, and a heat dissipating agent. Manufacturing equipment used for at least one.
  10. 炭素有価物および炭素材料を製造するシステムであって、
     請求項1~請求項9のいずれか1項に記載の製造装置と、
     前記製造装置に接続され、二酸化炭素を含む原料ガスを供給するガス供給部とを備える、製造システム。
    A system for producing carbon valuables and carbon materials,
    The manufacturing apparatus according to any one of claims 1 to 9,
    A manufacturing system, comprising: a gas supply unit connected to the manufacturing apparatus and supplying a raw material gas containing carbon dioxide.
  11. 請求項10に記載の製造システムにおいて、
     さらに、前記ガス供給部と前記第1の反応部との間に設けられ、前記原料ガスから前記二酸化炭素を分離する分離部を備える、製造システム。
    The manufacturing system according to claim 10,
    The manufacturing system further includes a separation section that is provided between the gas supply section and the first reaction section and separates the carbon dioxide from the raw material gas.
  12. 請求項11に記載の製造システムにおいて、
     前記ガス供給部は、製錬所に関連する炉である、製造システム。
    The manufacturing system according to claim 11,
    The manufacturing system, wherein the gas supply is a furnace associated with a smelter.
  13. 請求項12に記載の製造システムにおいて、
     前記製錬所に関連する炉は、高炉である、製造システム。
    The manufacturing system according to claim 12,
    A manufacturing system, wherein the furnace associated with the smelter is a blast furnace.
  14. 炭素有価物および炭素材料を製造する方法であって、
     二酸化炭素から一酸化炭素を生成する第1の生成工程と、
     前記一酸化炭素から前記炭素有価物を生成する第2の生成工程と、
     前記第2の反応部から排出される未反応の前記一酸化炭素から前記炭素材料を生成する第3の生成工程とを備える、製造方法。
    A method for producing carbon valuables and carbon materials, the method comprising:
    a first generation step of generating carbon monoxide from carbon dioxide;
    a second generation step of generating the carbon valuables from the carbon monoxide;
    a third generation step of generating the carbon material from the unreacted carbon monoxide discharged from the second reaction section.
PCT/JP2023/017051 2022-05-02 2023-05-01 Device, system, and method for producing carbonous valuable substance and carbonous material WO2023214564A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-075981 2022-05-02
JP2022075981 2022-05-02

Publications (1)

Publication Number Publication Date
WO2023214564A1 true WO2023214564A1 (en) 2023-11-09

Family

ID=88646499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017051 WO2023214564A1 (en) 2022-05-02 2023-05-01 Device, system, and method for producing carbonous valuable substance and carbonous material

Country Status (1)

Country Link
WO (1) WO2023214564A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11127883A (en) * 1997-10-28 1999-05-18 Meidensha Corp Biological production of propane
JP2000152799A (en) * 1998-11-19 2000-06-06 Meidensha Corp Treatment of gas produced by pyrolysis of biomass and apparatus therefor
JP2001354406A (en) * 2000-06-12 2001-12-25 Hirobe:Kk Manufacturing method of material having high surface area
JP2015077120A (en) * 2013-09-13 2015-04-23 積水化学工業株式会社 Production method and production apparatus of organic substance
JP2017533169A (en) * 2014-10-24 2017-11-09 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se High temperature synthesis of aluminate by flame spray pyrolysis
WO2019163968A1 (en) * 2018-02-22 2019-08-29 積水化学工業株式会社 Carbon dioxide reduction system and carbon dioxide reduction method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11127883A (en) * 1997-10-28 1999-05-18 Meidensha Corp Biological production of propane
JP2000152799A (en) * 1998-11-19 2000-06-06 Meidensha Corp Treatment of gas produced by pyrolysis of biomass and apparatus therefor
JP2001354406A (en) * 2000-06-12 2001-12-25 Hirobe:Kk Manufacturing method of material having high surface area
JP2015077120A (en) * 2013-09-13 2015-04-23 積水化学工業株式会社 Production method and production apparatus of organic substance
JP2017533169A (en) * 2014-10-24 2017-11-09 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se High temperature synthesis of aluminate by flame spray pyrolysis
WO2019163968A1 (en) * 2018-02-22 2019-08-29 積水化学工業株式会社 Carbon dioxide reduction system and carbon dioxide reduction method

Similar Documents

Publication Publication Date Title
JP6843490B1 (en) Gas manufacturing equipment, gas manufacturing system, steel manufacturing system, chemical manufacturing system and gas manufacturing method
JP7497243B2 (en) Gas production device, gas production system, and gas production method
WO2023214564A1 (en) Device, system, and method for producing carbonous valuable substance and carbonous material
WO2022029887A1 (en) Ironmaking system and ironmaking method
WO2023214563A1 (en) Production device for carbon material, production system for carbon material, carbon circulation system, production method for carbon material, and carbon circulation method
JP2021054704A (en) Gas production apparatus, gas production system and gas production method
WO2022029881A1 (en) Gas production device, gas production system and gas production method
JP6843489B1 (en) Ironmaking system and ironmaking method
WO2023100835A1 (en) Apparatus for producing olefin compound
EP4442643A1 (en) Gas production device
JP2023141390A (en) Manufacturing apparatus of carbon valuable, manufacturing method of carbon valuable, manufacturing system of carbon valuable and manufacturing system of polymer
WO2022029880A1 (en) Gas manufacturing device, gas manufacturing system, and gas manufacturing method
WO2022149536A1 (en) Gas production device and gas production method
WO2023100834A1 (en) Gas production apparatus
WO2023120504A1 (en) Oxygen carrier, method for producing oxygen carrier, method for producing gas, and gas production device
JP2021054707A (en) Gas production apparatus, gas production system and gas production method
JP7497242B2 (en) Gas production device, gas production system, and gas production method
US20240286101A1 (en) Gas manufacturing apparatus, gas manufacturing system, and gas manufacturing method
EP4194398A1 (en) Gas production device, gas production system, and gas production method
EP4194399A1 (en) Gas production apparatus, gas production system, and gas production method
US20240167170A1 (en) Reactors and Methods for Production of Sustainable Chemicals using Carbon Emissions of Metallurgical Furnaces
WO2022029888A1 (en) Gas production device, gas production system, and gas production method
JP2023091958A (en) Gas production device
JP2024006035A (en) Production system for organic substance, production device for organic substance and production method for organic substance
JP2005127461A (en) Container, adsorption filter, material absorbing and supply device, and fuel battery with material absorbing and supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23799493

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024519223

Country of ref document: JP

Kind code of ref document: A