WO2023100834A1 - Gas production apparatus - Google Patents

Gas production apparatus Download PDF

Info

Publication number
WO2023100834A1
WO2023100834A1 PCT/JP2022/043859 JP2022043859W WO2023100834A1 WO 2023100834 A1 WO2023100834 A1 WO 2023100834A1 JP 2022043859 W JP2022043859 W JP 2022043859W WO 2023100834 A1 WO2023100834 A1 WO 2023100834A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
reducing
production apparatus
reactor
gas production
Prior art date
Application number
PCT/JP2022/043859
Other languages
French (fr)
Japanese (ja)
Inventor
匡貴 中村
侃 戸野
友樹 中間
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Publication of WO2023100834A1 publication Critical patent/WO2023100834A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas

Definitions

  • the present invention relates to gas production equipment.
  • Patent Literature 1 discloses a carbon dioxide reduction system comprising a chemical looping reactor. This chemical looping type reactor has two reactors filled with a metal oxide catalyst, one reactor for the first reaction of reducing carbon dioxide to carbon monoxide, and the other reactor for the reduction of carbon dioxide to carbon monoxide. A second reaction that oxidizes hydrogen to water takes place in the vessel.
  • the present invention provides a gas production apparatus capable of efficiently producing carbon valuables by using an oxidizing gas containing carbon dioxide and a reducing gas containing a reducing substance.
  • a gas production device has a plurality of reactors.
  • Each reactor accommodates a reducing agent and is configured to be capable of switching between an oxidizing gas containing carbon dioxide and a reducing gas containing a reducing substance.
  • the reducing agent contains at least one of a metal and a metal oxide that generate a carbon value by reducing carbon dioxide, is oxidized by contact with carbon dioxide, and is reduced by contact with a reducing substance. .
  • a part or all of at least one of the oxidizing gas and the reducing gas that have passed through each reactor is again returned to the upstream side of the same reactor.
  • FIG. 11 is a schematic diagram showing the configuration of a reaction section of a fifth embodiment
  • FIG. 1 is a schematic diagram showing the overall configuration of a gas production system using the gas production apparatus of the present invention.
  • FIG. 2 is a schematic diagram showing the configuration of the reaction section of the first embodiment.
  • a gas production system 100 shown in FIG. 1 includes a furnace 20 that generates exhaust gas (oxidizing gas) containing carbon dioxide, and a gas production device 1 that is connected to the furnace 20 via a connector 2 .
  • the upstream side with respect to the gas flow direction is also simply referred to as the "upstream side”
  • the downstream side is simply referred to as the "downstream side”.
  • the furnace 20 is not particularly limited, but is, for example, a furnace attached to an ironworks, a refinery, or a thermal power plant, preferably a combustion furnace, a blast furnace, a converter, or the like.
  • exhaust gas is produced (generated) during combustion, melting, refining, and the like of the contents.
  • the contents include, for example, plastic waste, garbage, municipal waste (MSW), waste tires, biomass waste, household waste (bedding , paper), building materials, and the like.
  • these wastes may contain 1 type independently, or may contain 2 or more types.
  • Exhaust gases typically contain, in addition to carbon dioxide, other gas components such as nitrogen, oxygen, carbon monoxide, water vapor, methane, and the like.
  • concentration of carbon dioxide contained in the exhaust gas is not particularly limited, but considering the production cost of the generated gas (conversion efficiency to carbon monoxide), it is preferably 1% by volume or more, more preferably 5% by volume or more.
  • Exhaust gas from a combustion furnace in a garbage incineration plant contains 5-15% by volume of carbon dioxide, 60-70% by volume of nitrogen, 5-10% by volume of oxygen, and 15-25% by volume of water vapor.
  • Exhaust gas from a blast furnace is a gas generated when pig iron is produced in a blast furnace, and contains 10 to 15% by volume of carbon dioxide, 55 to 60% by volume of nitrogen, and 25 to 30% by volume of carbon monoxide. , containing 1 to 5% by volume of hydrogen.
  • the exhaust gas from the converter is a gas generated when steel is produced in the converter, and contains 15 to 20 volume% carbon dioxide, 50 to 60 volume% carbon monoxide, and nitrogen. It contains 15 to 25% by volume and 1 to 5% by volume of hydrogen.
  • the oxidizing gas is not limited to the exhaust gas, and a pure gas containing 100% by volume of carbon dioxide may be used.
  • the exhaust gas is used as the oxidizing gas, the carbon dioxide that has conventionally been discharged into the atmosphere can be effectively used, and the burden on the environment can be reduced.
  • exhaust gas containing carbon dioxide generated in ironworks or smelters is preferable.
  • the untreated gas discharged from the furnace may be used as it is. good.
  • the untreated blast furnace gas and the converter gas have gas compositions as described above, and the treated gas has a gas composition close to that shown for the exhaust gas from the combustion furnace.
  • all of the above gases (the gases before being supplied to the gas production apparatus 1) are called exhaust gas.
  • the exhaust gas (oxidizing gas containing carbon dioxide) discharged from the furnace 20 and supplied via the connecting portion 2 is brought into contact with a reducing agent 4R that reduces the carbon dioxide contained in the exhaust gas. , to produce a product gas (syngas) containing carbon monoxide.
  • a product gas syngas
  • carbon monoxide will be described as a representative example of the carbon valuables.
  • carbon valuables are not limited to carbon monoxide, and include, for example, methane, methanol and the like, and they may be used alone or in combination of two or more.
  • the type of carbon valuables produced will differ.
  • the gas production apparatus 1 mainly includes a connection portion 2, a reducing gas supply portion 3, a reaction portion 4 having two reactors 4a and 4b, and a gas line GL1 connecting the connection portion 2 and the reaction portion 4. , a gas line GL2 connecting the reducing gas supply unit 3 and the reaction unit 4, and a gas line GL4 connected to the reaction unit 4.
  • the connecting portion 2 constitutes an exhaust gas supply portion (oxidizing gas supply portion) that supplies the exhaust gas to the reaction portion 4 .
  • a pump for transferring gas may be arranged at a predetermined position in the middle of the gas line GL1, the gas line GL2, and the gas line GL4. For example, when the pressure of the exhaust gas is adjusted to be relatively low in the compression unit 6, which will be described later, the gas can be smoothly transferred within the gas production apparatus 1 by arranging a pump.
  • Gas line GL1 is connected to connecting portion 2 at one end thereof. On the other hand, the other end of the gas line GL1, as shown in FIG. It is connected. With such a configuration, the exhaust gas supplied from the furnace 20 through the connecting portion 2 passes through the gas line GL1 and is supplied to the reactors 4a and 4b.
  • the gas switching unit 8 can be configured to include, for example, a branch gas line and a channel opening/closing mechanism such as a valve provided in the middle of the branch gas line.
  • Each of the reactors 4a and 4b is a multi-tubular reactor comprising a plurality of tubular bodies 41 each filled with (accommodated) a reducing agent 4R and a housing 42 accommodating the plurality of tubular bodies 41. It consists of an apparatus (fixed bed reactor). According to such a multi-tubular reactor, it is possible to ensure sufficient opportunities for contact between the reducing agent 4R and the exhaust gas and reducing gas. As a result, the production efficiency of the product gas can be enhanced.
  • the reducing agent 4R of the present embodiment is preferably, for example, in the form of particles (granules), scales, pellets, or the like. With such a shape of the reducing agent 4R, the filling efficiency into the tubular body 41 can be enhanced, and the contact area with the gas supplied into the tubular body 41 can be further increased.
  • the reducing agent 4R When the reducing agent 4R is particulate, its volume average particle diameter is not particularly limited, but is preferably 1 to 50 mm, more preferably 3 to 30 mm. In this case, the contact area between the reducing agent 4R and the exhaust gas (carbon dioxide) can be further increased, and the conversion efficiency of carbon dioxide to carbon monoxide can be further improved. Similarly, the regeneration (reduction) of the reducing agent 4R by the reducing gas containing the reducing substance can be performed more efficiently.
  • the particulate reducing agent 4R is preferably a compact produced by tumbling granulation because the sphericity is increased.
  • the reducing agent 4R may be supported on a carrier.
  • the constituent material of the carrier may be any material as long as it is difficult to denature due to contact with exhaust gas (oxidizing gas), reaction conditions, etc. Examples include carbon materials (graphite, graphene, etc.), carbides such as Mo 2 C, zeolite, montmorillonite, Examples include oxides such as ZrO 2 , TiO 2 , V 2 O 5 , MgO, CeO 2 , Al 2 O 3 and SiO 2 and composite oxides containing these.
  • zeolite, montmorillonite, ZrO 2 , TiO 2 , V 2 O 5 , MgO, Al 2 O 3 , SiO 2 and composite oxides containing these are preferable as the constituent material of the carrier.
  • a carrier composed of such a material is preferable in that it does not adversely affect the reaction of the reducing agent 4R and is excellent in the ability to support the reducing agent 4R.
  • the carrier does not participate in the reaction of the reducing agent 4R and merely supports (holds) the reducing agent 4R.
  • An example of such a form includes a configuration in which at least part of the surface of the carrier is coated with the reducing agent 4R.
  • the reducing agent 4R contains at least one of metal and metal oxide (oxygen carrier). At least one of the metal and metal oxide is not particularly limited as long as it can reduce carbon dioxide, but preferably contains at least one selected from metal elements belonging to Groups 3 to 12. It is more preferable to contain at least one selected from metal elements belonging to Groups 4 to 12, and at least one of titanium, vanadium, iron, copper, zinc, nickel, manganese, chromium and cerium. It is more preferable to contain iron, and metal oxides or composite metal oxides containing iron are particularly preferable. These metal oxides are useful because they are particularly efficient in converting carbon dioxide to carbon monoxide.
  • the metal includes an elemental metal consisting of only one of the above metal elements and an alloy consisting of two or more of the above metal elements.
  • iron oxide, cerium oxide, etc. are suitable as metal oxides that convert carbon dioxide into carbon monoxide.
  • metal oxide that converts carbon dioxide to methane for example, zirconia, alumina, titania, silica, etc. that support or contain at least one of nickel and ruthenium are suitable.
  • metal oxide that converts carbon dioxide into methanol for example, zirconia, alumina, silica, etc. that support or contain at least one of copper and zinc are suitable.
  • the tubular body (cylindrical molded body) 41 may be produced from the reducing agent 4R (at least one of metal and metal oxide) itself.
  • a block-like or lattice-like (for example, net-like or honeycomb-like) molded body may be produced from the reducing agent 4R and arranged in the housing 42 .
  • the reducing agent 4R as a filler may be omitted or used together.
  • a configuration in which a net-like body is formed from the reducing agent 4R and arranged in the housing 42 is preferable.
  • the volumes of the two reactors 4a and 4b are set substantially equal to each other, and are appropriately set according to the amount of exhaust gas to be treated (the size of the furnace 20 and the size of the gas production apparatus 1). Also, the volume of at least one of the two reactors 4a and 4b may be varied according to the types of exhaust gas and reducing gas, the performance of the reducing agent 4R, and the like.
  • a concentration adjusting section 5, a compressing section 6, a minor component removing section 7, and an exhaust gas heating section (oxidizing gas heating section) 10 are provided in this order from the connecting section 2 side in the middle of the gas line GL1.
  • the concentration adjustment unit 5 adjusts so as to increase the concentration of carbon dioxide contained in the exhaust gas (in other words, concentrate the carbon dioxide).
  • the exhaust gas also contains unnecessary gas components such as oxygen.
  • the concentration adjustment unit 5 is configured by an oxygen removal device that removes oxygen contained in the exhaust gas.
  • the amount of oxygen brought into the gas production apparatus 1 can be reduced (that is, the concentration of oxygen contained in the exhaust gas can be adjusted to be low).
  • the gas composition of the exhaust gas can be deviated from the explosion range, and ignition of the exhaust gas can be prevented.
  • the oxygen removal apparatus consumes a large amount of electric energy, so it is effective to use electric power as renewable energy as described later.
  • the concentration of oxygen contained in the exhaust gas is preferably adjusted to less than 1% by volume, more preferably less than 0.5% by volume, and less than 0.1% by volume with respect to the entire exhaust gas. Adjusting is even more preferable. As a result, it is possible to reliably prevent the formation of detonation gas due to oxygen and reducing gas in the exhaust gas.
  • Oxygen removal equipment for removing oxygen contained in flue gas includes cryogenic (cryogenic) separators, pressure swing adsorption (PSA) separators, membrane separation separators, and temperature swing adsorption (TSA) separators.
  • the concentration adjustment unit 5 may adjust the concentration of carbon dioxide to a high level by adding carbon dioxide to the exhaust gas.
  • Compressor 6 increases the pressure of the exhaust gas before it is supplied to reactors 4a and 4b. This makes it possible to increase the amount of exhaust gas that can be processed at one time in the reactors 4a and 4b. Therefore, the conversion efficiency of carbon dioxide to carbon monoxide in the reactors 4a and 4b can be further improved.
  • the compression unit 6 includes, for example, a centrifugal compressor, a turbo compressor such as an axial compressor, a reciprocating compressor (reciprocating compressor), a diaphragm compressor, a single screw compressor, a twin screw compressor, It can be composed of a volumetric compressor such as a scroll compressor, a rotary compressor, a rotary piston compressor, a slide vane compressor, a roots blower (two-leaf blower) capable of handling low pressure, a centrifugal blower, or the like.
  • a centrifugal compressor such as an axial compressor, a reciprocating compressor (reciprocating compressor), a diaphragm compressor, a single screw compressor, a twin screw compressor
  • a volumetric compressor such as a scroll compressor, a rotary compressor, a rotary piston compressor, a slide vane compressor, a roots blower (two-leaf blower) capable of handling low pressure, a centrifugal blower, or the like.
  • the compression unit 6 is preferably configured with a centrifugal compressor from the viewpoint of easiness of increasing the scale of the gas production system 100, and from the viewpoint of reducing the production cost of the gas production system 100, A reciprocating compressor is preferred.
  • the pressure of the exhaust gas after passing through the compression section 6 is not particularly limited, but is preferably 0 to 1 MPaG, more preferably 0 to 0.5 MPaG, and 0.01 to 0.5 MPaG. More preferred. In this case, the conversion efficiency of carbon dioxide to carbon monoxide in the reactors 4a and 4b can be further improved without increasing the pressure resistance of the gas production apparatus 1 more than necessary.
  • the minor component removing unit 7 removes minor components (a small amount of unnecessary gas components, etc.) contained in the exhaust gas.
  • the fine component removing section 7 can be composed of, for example, at least one processor selected from a gas-liquid separator, a protector (guard reactor) and a scrubber (absorption tower).
  • a processor selected from a gas-liquid separator, a protector (guard reactor) and a scrubber (absorption tower).
  • the gas-liquid separator separates, for example, condensed water (liquid) generated when the exhaust gas is compressed in the compression section 6 from the exhaust gas.
  • the gas-liquid separator can be composed of, for example, a simple container, a swirling flow separator, a centrifugal separator, a surface tension separator, or the like.
  • the gas-liquid separator is preferably configured with a simple container because of its simple configuration and low cost.
  • a filter may be arranged at the gas-liquid interface in the container to allow passage of gas but block passage of liquid.
  • a liquid line may be connected to the bottom of the container, and a valve may be provided in the middle of the line.
  • the condensed water stored in the container can be discharged to the outside of the gas production apparatus 1 through the liquid line by opening the valve.
  • the liquid line may be connected to a tank 30, which will be described later, so that the discharged condensed water can be reused.
  • the exhaust gas from which the condensed water has been removed by the gas-liquid separator can be configured to be supplied to the protector, for example.
  • a protector preferably includes a substance capable of capturing a component (inactivating component) that is a minor component contained in the exhaust gas and that reduces the activity of the reducing agent 4R upon contact with the reducing agent 4R.
  • the substance in the protector reacts (captures) with the inactivating component, thereby preventing the exhaust gas from reaching the reducing agent 4R in the reactors 4a and 4b. or can be inhibited and protected (ie, prevented from declining in activity). Therefore, it is possible to prevent or suppress an extreme decrease in the conversion efficiency of carbon dioxide to carbon monoxide by the reducing agent 4R due to the adverse effects of the inactivating component.
  • Such substances include substances that are contained in the reducing agent 4R and have a composition that reduces the activity of the reducing agent 4R by contact with the inactivating component, specifically, metals and metals contained in the reducing agent 4R Materials that are the same as or similar to at least one of the oxides can be used.
  • similar metal oxides refer to metal oxides that contain the same metal element but have different compositions, or metal oxides that contain different types of metal elements but belong to the same group in the periodic table. It refers to certain metal oxides.
  • the inactivating component is preferably at least one selected from sulfur, mercury, sulfur compounds, halogen compounds, organic silicones, organic phosphorus and organic metal compounds, and at least one selected from sulfur and sulfur compounds. Seeds are more preferred. By removing such inactivating components in advance, it is possible to effectively prevent the activity of the reducing agent 4R from abruptly decreasing.
  • the above substance may be any substance whose activity is lowered by the same component as the inactivating component of the reducing agent 4R. is preferred.
  • the protector has a structure in which a mesh material is arranged in a housing, and particles of the above substance are placed on the mesh material.
  • a configuration in which a molded body is arranged can be employed.
  • a protector is arranged between the compression unit 6 (gas-liquid separator) and the exhaust gas heating unit 10, it is necessary to improve the removal efficiency of the inactivated components while preventing the above substances from deteriorating due to heat. can be done.
  • the exhaust gas heating section 10 heats the exhaust gas before it is supplied to the reactors 4a and 4b.
  • the exhaust gas heating section 10 can be composed of, for example, an electric heater and a heat exchanger (economizer).
  • the heat exchanger is configured by bending a part of the pipes forming the gas line GL4 for discharging the gas (mixed gas) after passing through the reactors 4a and 4b and bringing it closer to the pipe forming the gas line GL1. be. According to this configuration, the heat of the high-temperature gas (mixed gas) after passing through the reactors 4a and 4b is used to heat the exhaust gas before being supplied to the reactors 4a and 4b by heat exchange. can be used effectively.
  • Such heat exchangers include, for example, jacket heat exchangers, immersion coil heat exchangers, double tube heat exchangers, shell and tube heat exchangers, plate heat exchangers, spiral heat exchangers, and the like. Can be configured. Further, in the exhaust gas heating section 10, either one of the electric heater and the heat exchanger may be omitted. In the exhaust gas heating section 10, a combustion furnace or the like can be used instead of the electric heater. However, if an electric heater is used, electric power (electrical energy) as renewable energy can be used as the power source, so the load on the environment can be reduced. As renewable energy, electric energy using at least one selected from solar power, wind power, hydraulic power, wave power, tidal power, biomass power, geothermal power, solar heat and geothermal heat is used. It is possible.
  • renewable energy electric energy using at least one selected from solar power, wind power, hydraulic power, wave power, tidal power, biomass power, geothermal power, solar heat and geothermal heat is used. It is possible.
  • the exhaust gas line is branched from the gas line GL1, and the gas A vent portion provided outside the manufacturing apparatus 1 may be connected.
  • a valve is preferably provided in the middle of the exhaust gas line. If the pressure in the gas production device 1 (gas line GL1) rises more than necessary, the valve is opened to discharge (release) part of the exhaust gas from the vent through the exhaust gas line. be able to. As a result, it is possible to prevent the gas production device 1 from being damaged due to an increase in pressure.
  • the gas line GL2 is connected to the reducing gas supply section 3 .
  • the gas line GL2 is connected to inlet ports of reactors 4a and 4b provided in the reaction section 4 via a gas switching section 8 and two gas lines GL3a and GL3b, respectively.
  • the reducing gas supply unit 3 supplies a reducing gas containing a reducing substance that reduces the reducing agent 4R oxidized by contact with carbon dioxide.
  • the reducing gas supply unit 3 of the present embodiment is composed of a hydrogen generator that generates hydrogen by electrolysis of water. 30 are connected. With this configuration, the reducing gas containing hydrogen (reducing substance) supplied from the hydrogen generator (reducing gas supply unit 3) passes through the gas line GL2 and is supplied to the reactors 4a and 4b.
  • the hydrogen generator According to the hydrogen generator, a large amount of hydrogen can be generated relatively cheaply and easily. Moreover, there is also an advantage that the condensed water generated in the gas production apparatus 1 can be reused. Among the gas production apparatus 1, the hydrogen generator consumes a large amount of electric energy, so it is effective to use electric power as renewable energy as described above.
  • a device that generates by-product hydrogen can also be used as the hydrogen generator.
  • a reducing gas containing by-product hydrogen is supplied to each reactor 4a, 4b.
  • a device for generating by-product hydrogen for example, a device for electrolyzing an aqueous solution of sodium chloride, a device for steam reforming petroleum, a device for producing ammonia, and the like can be mentioned.
  • the gas line GL2 may be connected to the coke oven outside the gas production apparatus 1 via a connecting portion, and the exhaust gas from the coke oven may be used as the reducing gas.
  • the connecting portion constitutes the reducing gas supply portion. This is because the exhaust gas from the coke oven is mainly composed of hydrogen and methane, and contains 50 to 60% by volume of hydrogen.
  • a reducing gas heating unit 11 is provided in the middle of the gas line GL2. This reducing gas heating unit 11 heats the reducing gas before it is supplied to the reactors 4a and 4b. By preheating the pre-reaction (pre-oxidation) reducing gas in the reducing gas heating unit 11, the reduction (regeneration) reaction of the reducing agent 4R by the reducing gas in the reactors 4a and 4b can be further promoted.
  • the reducing gas heating section 11 can be configured in the same manner as the exhaust gas heating section 10 described above.
  • the reducing gas heating unit 11 is preferably composed of only an electric heater, only a heat exchanger, or a combination of an electric heater and a heat exchanger, and may be composed of only a heat exchanger or a combination of an electric heater and a heat exchanger. is more preferred. If the reducing gas heating unit 11 is equipped with a heat exchanger, the heat of the high-temperature gas (for example, mixed gas) after passing through the reactors 4a and 4b is used to heat the gas before supplying it to the reactors 4a and 4b. Since the reducing gas is heated by heat exchange, effective use of heat can be achieved.
  • the high-temperature gas for example, mixed gas
  • the exhaust gas is supplied to the reactor 4a containing the pre-oxidized reducing agent 4R through the gas line GL3a.
  • a reducing gas can be supplied via a gas line GL3b to the reactor 4b containing the oxidized reducing agent 4R.
  • Equation 1 CO 2 + FeO x-1 ⁇ CO + FeO x Equation 2: H 2 + FeO x ⁇ H 2 O + FeO x ⁇ 1
  • the reducing agent 4R produces carbon monoxide (carbon valuables) by reducing carbon dioxide.
  • the reducing agent 4R is brought into an oxidized state by contact with carbon dioxide, but is then reduced by contact with hydrogen (reducing substance) and returns to its original state.
  • the reducing agent 4R is mainly considered, the side where the reducing agent 4R is oxidized by carbon dioxide is called the "oxidation side”, and the side where the oxidized reducing agent 4R is reduced by hydrogen is called the "reduction side”. ” also says.
  • the gas production device 1 includes a reducing agent heating unit that heats the reducing agent 4R when the reducing agent 4R is brought into contact with the exhaust gas or the reducing gas (that is, when the exhaust gas or the reducing gas reacts with the reducing agent 4R). (not shown in FIG. 1).
  • a reducing agent heating unit that heats the reducing agent 4R when the reducing agent 4R is brought into contact with the exhaust gas or the reducing gas (that is, when the exhaust gas or the reducing gas reacts with the reducing agent 4R).
  • the temperature in the reaction between the exhaust gas or the reducing gas and the reducing agent 4R is maintained at a high temperature, thereby suitably preventing or suppressing a decrease in the conversion efficiency of carbon dioxide to carbon monoxide.
  • the regeneration of the reducing agent 4R by the reducing gas can be further promoted.
  • the gas production device 1 preferably has a reducing agent cooling section for cooling the reducing agent 4R instead of the reducing agent heating section.
  • a reducing agent cooling unit By providing such a reducing agent cooling unit, deterioration of the reducing agent 4R during the reaction between the exhaust gas or the reducing gas and the reducing agent 4R can be suitably prevented, and the conversion efficiency of carbon dioxide to carbon monoxide can be improved. It is possible to suitably prevent or suppress the decrease and further promote the regeneration of the reducing agent 4R by the reducing gas.
  • the conversion rate of carbon dioxide to carbon monoxide in the reactors 4a and 4b is preferably 80% or more, 82.5% or more, 85% or more, 87.5% or more, 90% or more. It is more preferably 92.5% or more, and particularly preferably 95% or more.
  • the upper limit of the conversion of carbon dioxide to carbon monoxide is usually about 98%.
  • Such a conversion rate depends on the type of reducing agent 4R used, the concentration of carbon dioxide contained in the exhaust gas, the type of reducing substance, the concentration of the reducing substance contained in the reducing gas, the temperature of the reactors 4a and 4b, the exhaust gas and the reducing gas.
  • the conversion rate (%) of carbon dioxide to carbon monoxide is a value calculated by the formula: CO out /CO 2in ⁇ 100.
  • CO 2in is the molar amount of carbon dioxide supplied to the reactors 4a and 4b
  • COout is the carbon dioxide converted to carbon monoxide by contact (reaction) with the reducing agent 4R, and from the reactors 4a and 4b It is the molar amount of carbon monoxide emitted.
  • the conversion rate of hydrogen to water in the reactors 4a and 4b is preferably 40% or higher, more preferably 45% or higher, and even more preferably 50% or higher.
  • the upper limit of the conversion rate of hydrogen to water is usually about 85%.
  • Such a conversion rate depends on the type of reducing agent 4R used, the concentration of carbon dioxide contained in the exhaust gas, the type of reducing substance, the concentration of the reducing substance contained in the reducing gas, the temperature of the reactors 4a and 4b, the exhaust gas and the reducing gas. It can be set by adjusting the flow rate (flow velocity) of the gas to the reactors 4a and 4b, the timing of switching between the exhaust gas and the reducing gas, and the like.
  • the conversion rate (%) of hydrogen to water is a value calculated by the formula: (H 2in ⁇ H 2out )/H 2in ⁇ 100.
  • H 2in is the molar amount of hydrogen supplied to the reactors 4a, 4b
  • H 2out is the molar amount of hydrogen discharged through the reactors 4a, 4b in an unreacted state.
  • Gas lines GL4a and GL4b are connected to the outlet ports of the reactors 4a and 4b, respectively, and are merged at a gas junction J4 to form a gas line GL4. Further, valves (not shown) are provided in the middle of the gas lines GL4a and GL4b, respectively, as required. For example, by adjusting the opening of the valves, the passage speed of the exhaust gas and the reducing gas passing through the reactors 4a and 4b (that is, the processing speed of the exhaust gas with the reducing agent 4R and the processing speed of the reducing agent 4R with the reducing gas) can be changed. can be set.
  • the reaction section 4 is mainly composed of the reactors 4 a and 4 b and the gas switching section 8 .
  • a generated gas discharge section 40 for discharging the generated gas to the outside of the gas production apparatus 1 is connected to the end of the gas line GL4 opposite to the reactors 4a and 4b.
  • a gas refining section 9 is provided in the middle of the gas line GL4.
  • the gas purification unit 9 purifies carbon monoxide from the mixed gas and recovers a generated gas containing high-concentration carbon monoxide. Incidentally, if the carbon monoxide concentration in the mixed gas is sufficiently high, the gas refining section 9 may be omitted.
  • the gas purifying section 9 can be composed of, for example, at least one processor selected from coolers, gas-liquid separators, gas separators, separation membranes, and scrubbers (absorption towers).
  • processors selected from coolers, gas-liquid separators, gas separators, separation membranes, and scrubbers (absorption towers).
  • their arrangement order is arbitrary, but when a cooler, a gas-liquid separator and a gas separator are used in combination, they are preferably arranged in this order. In this case, the efficiency of purifying carbon monoxide from the mixed gas can be further enhanced.
  • a cooler cools the mixed gas. This produces condensed water (liquid).
  • a cooler is a jacket-type cooling device in which a jacket for passing a refrigerant is arranged around the pipe, and has the same configuration as the reactors 4a and 4b (see FIG. 2), and the mixed gas is It can be configured to include a multi-pipe type cooling device, an air fin cooler, or the like, in which the refrigerant passes through the space 43 around the tubular body 41 .
  • the gas-liquid separator separates the condensed water generated when the mixed gas is cooled by the cooler from the mixed gas. At this time, the condensed water has the advantage of being able to dissolve and remove unnecessary gas components (particularly carbon dioxide) remaining in the mixed gas.
  • the gas-liquid separator can be configured in the same manner as the gas-liquid separator of the micro component removing section 7, and preferably can be configured as a simple container.
  • a filter may be arranged at the gas-liquid interface in the container to allow passage of gas but block passage of liquid.
  • a liquid line may be connected to the bottom of the container, and a valve may be provided in the middle of the line. According to such a configuration, the condensed water stored in the container can be discharged (released) out of the gas production apparatus 1 through the liquid line by opening the valve.
  • a drain trap downstream of the valve in the liquid line it is preferable to provide a drain trap downstream of the valve in the liquid line.
  • a drain trap downstream of the valve in the liquid line.
  • the liquid line may be connected to the tank 30 described above to reuse the discharged condensed water.
  • Gas separators include, for example, cryogenic (cryogenic) separators, pressure swing adsorption (PSA) separators, membrane separation separators, temperature swing adsorption (TSA) separators, metal ion (e.g., copper ions) and organic ligands (e.g., 5-azidoisophthalic acid) are combined into a separator using a porous coordination polymer (PCP), and separation using amine absorption. It can be configured using one or more of the vessels and the like.
  • a valve may be provided between the gas-liquid separator and the gas separator of the gas line GL4. In this case, the mixed gas processing speed (production gas production speed) can be adjusted by adjusting the opening of the valve.
  • the concentration of carbon monoxide contained in the mixed gas discharged from the gas-liquid separator is 75 to 90% by volume with respect to the entire mixed gas. Therefore, in fields where produced gas containing carbon monoxide at a relatively low concentration (75 to 90% by volume) can be used, carbon monoxide can be directly supplied to the next step without purifying carbon monoxide from the mixed gas. That is, the gas separator can be omitted.
  • Such fields include, for example, the field of synthesizing carbon valuables (e.g., ethanol, etc.) from the generated gas by fermentation with microorganisms (e.g., Clostridium, etc.), and the field of manufacturing steel using the generated gas as fuel or reducing agent. , the field of manufacturing electric devices, and the field of synthesizing chemicals (phosgene, acetic acid, etc.) using carbon monoxide as a synthetic raw material.
  • the field of synthesizing carbon valuables e.g., ethanol, etc.
  • microorganisms e.g
  • the carbon monoxide is purified from the mixed gas to produce a product gas containing high concentrations of carbon monoxide.
  • Such fields include, for example, the field of using generated gas as a reducing agent (blast furnace), the field of thermal power generation using generated gas as fuel, the field of manufacturing chemicals using generated gas as a raw material, and the field of manufacturing chemicals using generated gas as fuel. and the field of fuel cells used as
  • return gas lines GL5a and GL5b are provided that branch from the middle of the gas lines GL4a and GL4b and are connected to the gas lines GL3a and GL3b. That is, the exhaust gas that has passed through the oxidation-side reactor 4a and is discharged from the outlet port is returned to the inlet port (upstream side) of the same oxidation-side reactor 4a, and the reduction-side reaction is performed. It is configured to return the reducing gas that has passed through the reactor 4b and is discharged from the outlet port to the inlet port (upstream side) of the same reactor 4b on the reduction side.
  • the exhaust gas and the reducing gas are supplied from the reactors 4a and 4b at predetermined timings. For this reason, the reactors 4a and 4b alternate between the oxidation side and the reduction side. According to such a configuration, unreacted carbon dioxide (CO 2 ) and unreacted hydrogen (H 2 ) are used again to convert carbon dioxide to carbon monoxide and reduce the oxidation state with hydrogen (reducing substance). Reduction (regeneration) of agent 4R can be performed. Therefore, it is possible to further increase the production efficiency of carbon dioxide (carbon valuables).
  • the reduction efficiency of the reducing agent 4R in the oxidized state by hydrogen (reducing substance) is lower than the conversion efficiency of carbon dioxide to carbon monoxide. Therefore, with the above configuration, the reducing agent 4R can be smoothly regenerated, which is preferable from the viewpoint of further improving the production efficiency of carbon dioxide.
  • the exhaust gas passes through the compression section 6 . This increases the pressure of the exhaust gas.
  • the exhaust gas passes through the minor component removing section 7 .
  • the condensed water generated when the exhaust gas is compressed in the compression unit 6 and the inactivating components that reduce the activity of the reducing agent 4R are removed from the exhaust gas.
  • the exhaust gas passes through the exhaust gas heating section 10 . This heats the exhaust gas.
  • the exhaust gas is supplied to the reactor 4a. In the reactor 4a, the carbon dioxide in the exhaust gas is reduced to carbon monoxide by the reducing agent 4R. At this time, the reducing agent 4R is brought into an oxidized state by contact with carbon dioxide.
  • the temperature (reaction temperature) of the reactor 4a (exhaust gas, reducing agent 4R) in the step [7] is preferably 600°C or higher, more preferably 650 to 1100°C, and more preferably 700 to 1000°C. is more preferred. If the reaction temperature is set within the above range, for example, a rapid temperature drop of the reducing agent 4R due to an endothermic reaction during conversion of carbon dioxide to carbon monoxide can be prevented or suppressed. can proceed more smoothly.
  • Exhaust gas is discharged from the reactor 4a to the gas line GL4a.
  • the exhaust gas is returned via the return gas line GL5a, mixed with the exhaust gas supplied from the gas line GL3a, and supplied to the reactor 4a again.
  • the reducing agent 4R reduces carbon dioxide in the exhaust gas to carbon monoxide.
  • the reducing agent 4R is brought into an oxidized state by contact with carbon dioxide.
  • the conditions of the reactor 42a can be the same as those of the reactor 41a. It should be noted that only part of the exhaust gas discharged from the reactor 4a to the gas line GL4a may be returned via the return gas line GL5a. In this case, the remaining exhaust gas is discharged to the gas line GL4.
  • water (reducing gas raw material) is supplied from the tank 30 to the hydrogen generator (reducing gas supply unit 3) to generate hydrogen from water.
  • the reducing gas containing hydrogen passes through the reducing gas heating section 11 . This heats the reducing gas.
  • the reducing gas is supplied to the reactor 4b. In the reactor 4b, the oxidized reducing agent 4R is reduced (regenerated) by contact with the reducing gas (hydrogen). At this time, water is produced.
  • the temperature (reaction temperature) of the reactor 4b (reducing gas, reducing agent 4R) in the above step [13] is preferably 600°C or higher, more preferably 650 to 1100°C, and more preferably 700 to 1000°C. It is even more preferable to have If the reaction temperature is set within the above range, for example, a rapid temperature drop of the reducing agent 4R due to an endothermic reaction during reduction (regeneration) of the reducing agent 4R in an oxidized state can be prevented or suppressed. The reduction reaction of the reducing agent 4R in can proceed more smoothly.
  • the reducing gas is discharged from the reactor 4b to the gas line GL4b.
  • the reducing gas is returned through the return gas line GL5b, mixed with the reducing gas supplied from the gas line GL3b, and supplied to the reactor 4b.
  • the reducing agent 4R in an oxidized state is reduced (regenerated) by contact with a reducing gas (hydrogen). At this time, water is produced.
  • the conditions of reactor 4b can be similar to reactor 4b.
  • the gases that have passed through the reactors 4a and 4b join together to produce a mixed gas.
  • the temperature of the mixed gas is typically 600-650°C. If the temperature of the mixed gas at this time is within the above range, it means that the temperature in the reactors 4a and 4b is maintained at a sufficiently high temperature, and the conversion of carbon dioxide to carbon monoxide by the reducing agent 4R Also, it can be determined that the reduction of the reducing agent 4R by the reducing gas is progressing efficiently.
  • the mixed gas is cooled to 100 to 300° C. before reaching the gas refining section 9 .
  • the mixed gas passes through the gas refining section 9 .
  • the generated condensed water and carbon dioxide dissolved in the condensed water are removed.
  • carbon monoxide is purified from the mixed gas to obtain a product gas containing a high concentration of carbon monoxide.
  • the temperature of the produced gas obtained is 20 to 50°C.
  • the generated gas is discharged from the generated gas discharge unit 40 to the outside of the gas production apparatus 1 and supplied to the next step.
  • the gas lines GL4a and GL4b do not have to join at the gas junction J4.
  • the exhaust gas and the reducing gas that have passed through the reactors 4a and 4b may be independently supplied to the next step via the gas lines GL4a and GL4b.
  • FIG. 3 is a schematic diagram showing the configuration of the reaction section of the second embodiment.
  • the reaction section 4 of the second embodiment will be described, but the description will focus on the differences from the reaction section 4 of the first embodiment, and the description of the same items will be omitted.
  • a separation section 19 is provided at a branch section (communication section) between the gas lines GL4a and GL4b and the return gas lines GL5a and GL5b.
  • This separation unit 19 is connected to the outlet port of each of the reactors 4a and 4b so as to separate the product from the reaction with the reducing agent 4R contained in the gas (exhaust gas or reducing gas) that has passed through the reactors 4a and 4b.
  • the separation unit 19 on the reduction side is configured to separate water (a product of the reaction with the reducing agent 4R) contained in the reducing gas that has passed through the reactor 4b.
  • the separation unit 19 on the oxidation side may also be configured to separate carbon monoxide (a product of the reaction with the reducing agent 4R) contained in the exhaust gas that has passed through the reactor 4a.
  • the water contained in the reducing gas that has passed through the reactor 4b on the reducing side (the product of the reaction with the reducing agent 4R) is separated.
  • the amount of water contained in the returned reducing gas (separated gas) is reduced, it is possible to prevent the reduction efficiency of the reducing agent 4R from decreasing even when the reducing gas is returned.
  • the amount of water contained in the mixed gas can be reduced.
  • the water separated by the separation unit 19 is discharged from the gas line GL19b.
  • the gas discharged from the gas line GL19b may contain gas components other than water.
  • the exhaust gas that has passed through the oxidation-side reactor 4a is discharged to the gas line GL4 via the gas line GL4a.
  • the separation unit 19 connected to the oxidation-side reactor 4a may also be configured to separate carbon monoxide (a product of the reaction with the reducing agent 4R) contained in the exhaust gas.
  • the separation unit 19 may be composed of a condenser that condenses water (product) by cooling, and is composed of a separation membrane that allows passage of water (product) molecules and blocks passage of other molecules. It may be composed of a capture material that physically or chemically captures water (product), or it may be composed of a combination of any two or more of a cooler, a separation membrane, and a capture material. good.
  • the condenser can be composed of, for example, a cryogenic separation type (cryogenic type) condenser, a temperature swing adsorption (TSA) type condenser, or the like.
  • the separator may be composed of metal, inorganic oxide, or metal organic frameworks (MOF).
  • the separation membrane is preferably a porous body with a porosity of 80% or more.
  • inorganic oxides include silica and zeolite.
  • the metal organic structure include a structure of zinc nitrate hydrate and terephthalate dianion, a structure of copper nitrate hydrate and trimesate trianion, and the like.
  • the separation membrane is preferably composed of a porous material having continuous pores (pores penetrating through the cylinder wall) in which adjacent pores communicate with each other.
  • a separation membrane having such a configuration the permeability of water or carbon monoxide can be increased, and the separation of water and hydrogen and/or the separation of carbon monoxide and carbon dioxide can be performed more smoothly and reliably.
  • the porosity of the separation membrane is not particularly limited, it is preferably 10 to 90%, more preferably 20 to 60%. As a result, it is possible to maintain a sufficiently high water or carbon monoxide permeability while preventing the mechanical strength of the separation membrane from significantly deteriorating.
  • the shape of the separation membrane is not particularly limited, and examples thereof include a cylindrical shape, a rectangular shape, and a rectangular tube shape such as a hexagonal shape.
  • the separation membrane is usually used in a state of being housed in a housing.
  • the space outside the separation membrane in the housing may be depressurized, or may be allowed to pass through the carrier gas (sweep gas).
  • Carrier gases include, for example, inert gases such as helium and argon.
  • the separation membrane preferably has hydrophilicity. If the separation membrane has hydrophilicity, the affinity of water for the separation membrane increases, and water easily permeates the separation membrane more smoothly.
  • Methods of imparting hydrophilicity to the separation membrane include a method of changing the ratio of metal elements in the inorganic oxide (for example, increasing the Al/Si ratio) to improve the polarity of the separation membrane, and a method of improving the polarity of the separation membrane. Examples include a method of coating with a polymer, a method of treating the separation membrane with a coupling agent having a hydrophilic group (polar group), and a method of subjecting the separation membrane to plasma treatment, corona discharge treatment, or the like.
  • the affinity for water may be controlled by adjusting the surface potential of the separation membrane.
  • the separation membrane preferentially separates carbon monoxide and carbon dioxide from the exhaust gas that has passed through the reactor 4a on the oxidation side, the exhaust gas and the reducing gas that have passed through both the reactors 4a and 4b
  • the constituent materials of the separation membrane, the porosity, the average pore size, the hydrophilicity or hydrophobicity , the surface potential, etc. may be appropriately combined.
  • the separation membranes are degraded by heat, so the temperature (reaction temperature) of the reactors 4a and 4b is set to a high temperature. I can't.
  • the temperatures of the reactors 4a and 4b can be set to relatively high temperatures, thereby improving the conversion efficiency of carbon dioxide to carbon monoxide. and the efficiency of regeneration (reduction) of the reducing agent 4R by the reducing gas can be further enhanced.
  • examples of scavengers that physically or chemically capture water include zeolite, silica gel, deciclay (clay-based desiccant), calcium chloride, calcium oxide, and the like.
  • scavengers that physically or chemically scavenge carbon monoxide include, for example, complexes of copper ions and 5-azidoisophthalic acid, copper ammine complexes, copper aluminum chloride complexes, and the like.
  • FIG. 4 is a schematic diagram showing the configuration of the reaction section of the third embodiment.
  • the reaction section 4 of the third embodiment will be described, but the description will focus on the differences from the reaction section 4 of the first or second embodiment, and the description of the same items will be omitted.
  • the return gas lines GL5a and GL5b of the second embodiment are connected to vent lines (vent portions) VL6a and VL6b.
  • the reduction-side vent line VL6b is configured to exhaust a part of the hydrogen (separated gas) separated by the separation unit 19 .
  • the oxidation-side vent line VL6a may also be configured to exhaust part of the carbon dioxide (separated gas) separated by the separation unit 19 .
  • FIG. 5 is a schematic diagram showing the configuration of the reaction section of the fourth embodiment.
  • the reaction section 4 of the fourth embodiment will be described below, but the description will focus on the differences from the reaction section 4 of the first to third embodiments, and the description of the same items will be omitted.
  • the reaction section 4 of the fourth embodiment further has a heat exchanger (economizer) 18 .
  • the heat exchanger 18 is connected between the reactors 4a, 4b and the separation section 19, and bends a part of the pipes constituting the return gas lines GL5a, GL5b to the pipes constituting the gas lines GL4a, GL4b. It is constructed in close proximity. According to such a configuration, the separated gas separated in the separation unit 19 and returned to the inlet port and the gas discharged from the outlet port after passing through the reactors 4a and 4b are heated by heat exchange, Effective use of heat can be achieved.
  • the heat exchanger 18 is, for example, a jacket heat exchanger, an immersion coil heat exchanger, a double tube heat exchanger, a shell and tube heat exchanger, a plate heat exchanger, a spiral heat exchanger, or the like. can be configured as
  • FIG. 6 is a schematic diagram showing the configuration of the reaction section of the fifth embodiment.
  • the reaction section 4 of the fifth embodiment will be described below, but the description will focus on the differences from the reaction section 4 of the first to fourth embodiments, and the description of the same items will be omitted. It should be noted that FIG. 6 does not distinguish between the oxidation side and the reduction side.
  • two or more (at least one) reactors 4a, 4b are provided between the most downstream reactors 4a, 4b and the most upstream location where the oxidizing gas or reducing gas is returned.
  • 4b is provided.
  • a plurality of reactors 4a and 4b are connected in series, and the separation section 19 is connected to the outlet port of the most downstream reactors 4a and 4b.
  • the return gas lines GL5a and GL5b are connected to the inlet ports of the most upstream reactors 4a and 4b, the intermediate reactors 4a and 4b, and the most downstream reactors 4a and 4b.
  • the separated gas can be returned to any place.
  • a plurality of reactors 4a and 4b are connected in series, and the separation section 19 is connected to the outlet port of each reactor 4a and 4b.
  • Each of the return gas lines GL5a and GL5b joins together and is connected to the inlet ports of the most upstream reactors 4a and 4b.
  • the optional return gas lines GL5a, GL5b can be used to return the oxidizing gas or reducing gas from the given reactors 4a, 4b.
  • the configuration shown in FIG. 6(a) and the configuration shown in FIG. 6(b) can also be combined.
  • this line comprises a separation section 19 connected between adjacent reactors 4a, 4b. Then, the separation unit 19 separates carbon monoxide or water (product) generated by the reaction with the reducing agent 4R contained in the exhaust gas (oxidizing gas) or reducing gas that has passed through the reactors 4a and 4b. , a separated gas with increased purity of unreacted carbon dioxide or hydrogen (reduced substance) with the reducing agent 4R is generated and returned to the upstream side of the reactors 4a and 4b. In this case, the separated gas can be partially or wholly returned. When part of the separated gas is returned, a vent line as shown in FIG.
  • gas production apparatus 1 gas production system 100 as described above, it is possible to efficiently produce carbon valuables using an oxidizing gas containing carbon dioxide and a reducing gas containing reducing substances.
  • a gas production apparatus having a plurality of reactors, each of which contains a reducing agent and can switch between an oxidizing gas containing carbon dioxide and a reducing gas containing a reducing substance to be supplied.
  • the reducing agent includes at least one of a metal and a metal oxide that generate a carbon value by reducing the carbon dioxide, and after being brought into an oxidized state by contact with the carbon dioxide, the reducing substance A part or all of at least one of the oxidizing gas and the reducing gas that has passed through each of the reactors is returned to the upstream side of the same reactor again, Gas production equipment.
  • the gas production apparatus further includes a separation unit, the separation unit is connected to each of the reactors, and the reducing agent contained in the gas that has passed through the reactors is separated from the reducing agent.
  • gas production device configured to separate the products of the reaction of
  • the separation unit includes a separation membrane that allows passage of molecules of the product and blocks passage of other molecules. Manufacturing equipment.
  • the gas production apparatus further includes a heat exchanger, and the heat exchanger is located between the reactor and the separation section.
  • a gas production apparatus configured to exchange heat between a separated gas that is connected, separated in the separating section and returned to the upstream side of the reactor, and a gas that has passed through the reactor.
  • the gas production apparatus according to any one of (2) to (6) above, further comprising a vent section, the vent section is separated by the separation section, and is located upstream of the reactor.
  • a gas production unit configured to exhaust a portion of the separated gas that is returned to the gas generator.
  • At least one A gas production apparatus comprising two reactors.
  • the gas production apparatus of the present invention may have any other additional configuration with respect to the above embodiments, and may be replaced with any configuration that exhibits similar functions. may be omitted.
  • any configuration of the first to fifth embodiments may be combined.
  • the reactor is described as a multi-tubular reactor, but the tubular body 41 may be omitted and the housing 42 may be filled directly with the reducing agent 4R.
  • a gas containing hydrogen was described as a representative example of the reducing gas, but the reducing gas includes hydrocarbons (eg, methane, ethane, acetylene, etc.) and ammonia as reducing substances instead of or in addition to hydrogen.
  • a gas containing at least one selected from can also be used.
  • Gas production device 2 Connection part 3: Reducing gas supply part 4: Reaction part 41: Tubular body 42: Housing 43: Space 4R: Reducing agent 4a: Reactor 4b: Reactor 5: Concentration adjustment part 6: Compression part 7: Minor component removing unit 8: Gas switching unit 8a: First gas switching unit 8b: Second gas switching unit 9: Gas refining unit 10: Exhaust gas heating unit 11: Reducing gas heating unit 18: Heat exchanger 19: Separating unit 20: Furnace 30: Tank 40: Generated gas discharge unit 100: Gas production system GL1: Gas line GL2: Gas line GL3a: Gas line GL3b: Gas line GL3c: Gas line GL3d: Gas line GL4: Gas line GL4a: Gas line GL4b : Gas line GL4c : Gas line GL4d : Gas line GL5a : Return gas line GL5b : Return gas line GL19a : Gas line GL19b :

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Treating Waste Gases (AREA)

Abstract

[Problem] To provide a gas production apparatus capable of efficiently producing valuable carbon by using an oxidizing gas that contains carbon dioxide and a reducing gas that contains a reducing substance. [Solution] One aspect of the present invention provides a gas production apparatus. This gas production apparatus has a plurality of reactors. Each reactor accommodates a reducing agent, and is configured to be capable of switching between supplying an oxidizing gas that contains carbon dioxide and supplying a reducing gas that contains a reducing substance. The reducing agent contains a metal and/or metal oxide which generates valuable carbon by reducing carbon dioxide, said reducing agent being brought into an oxidized state through contact with the carbon dioxide and then reduced through contact with the reducing substance. Some or all of the oxidizing gas and/or the reducing gas that has traversed a reactor is returned to the upstream side of the same reactor.

Description

ガス製造装置gas production equipment
 本発明は、ガス製造装置に関する。 The present invention relates to gas production equipment.
 近年、温室効果ガスの一種である二酸化炭素(CO)は、その大気中の濃度が上昇を続けている。大気中の二酸化炭素の濃度の上昇は、地球温暖化を助長する。したがって、大気中に放出される二酸化炭素を回収することは重要であり、さらに回収した二酸化炭素を炭素有価物に変換して再利用できれば、炭素循環社会を実現することができる。
 また、地球規模の施策としても、気候変動に関する国際連合枠組条約の京都議定書にもあるように、地球温暖化の原因となる二酸化炭素について、先進国における削減率を、1990年を基準として各国別に定め、共同で約束期間内に削減目標値を達成することが定められている。
In recent years, the atmospheric concentration of carbon dioxide (CO 2 ), which is a kind of greenhouse gas, continues to rise. Rising concentrations of carbon dioxide in the atmosphere contribute to global warming. Therefore, it is important to recover the carbon dioxide released into the atmosphere, and if the recovered carbon dioxide can be converted into carbon valuables and reused, a carbon recycling society can be realized.
Also, as a global measure, as stated in the Kyoto Protocol of the United Nations Framework Convention on Climate Change, the reduction rate of carbon dioxide, which causes global warming, in developed countries based on 1990 as a standard It is stipulated that we will jointly achieve the reduction target value within the commitment period.
 その削減目標を達成するため、製鉄所、精錬所または火力発電所から発生した二酸化炭素を含む排気ガスも対象となっており、これらの業界における二酸化炭素の削減に関して、様々な技術改良が行われている。かかる技術の一例としては、CO回収・貯留(CCS)が挙げられる。しかしながら、この技術では、貯留という物理的な限界があり、根本的な解決策とはなっていない。
 例えば、特許文献1には、ケミカルルーピング型反応装置を備える二酸化炭素還元システムが開示されている。このケミカルルーピング型反応装置は、金属酸化物触媒が充填された2つの反応器を有しており、一方の反応器にて二酸化炭素を一酸化炭素に還元する第1の反応と、他方の反応器にて水素を水に酸化する第2の反応とを行う。
In order to achieve the reduction target, exhaust gas containing carbon dioxide generated from steel mills, smelters or thermal power plants is also targeted, and various technological improvements have been made regarding the reduction of carbon dioxide in these industries. ing. One example of such technology is CO2 capture and storage (CCS). However, this technique has a physical limit of storage and is not a fundamental solution.
For example, Patent Literature 1 discloses a carbon dioxide reduction system comprising a chemical looping reactor. This chemical looping type reactor has two reactors filled with a metal oxide catalyst, one reactor for the first reaction of reducing carbon dioxide to carbon monoxide, and the other reactor for the reduction of carbon dioxide to carbon monoxide. A second reaction that oxidizes hydrogen to water takes place in the vessel.
国際公開第2019/163968号WO2019/163968
 しかしながら、工業的により効率よく二酸化炭素から一酸化炭素(炭素有価物)を製造するには、更なる改良の余地が残されている。
 本発明では上記事情に鑑み、二酸化炭素を含む酸化ガスと還元物質を含む還元ガスとを使用して、効率よく炭素有価物を生成し得るガス製造装置を提供することとした。
However, there is still room for further improvement in industrially producing carbon monoxide (a carbon valuable product) from carbon dioxide more efficiently.
In view of the above circumstances, the present invention provides a gas production apparatus capable of efficiently producing carbon valuables by using an oxidizing gas containing carbon dioxide and a reducing gas containing a reducing substance.
 本発明の一態様によれば、ガス製造装置が提供される。このガス製造装置は、複数の反応器を有する。各反応器は、還元剤を収容し、二酸化炭素を含む酸化ガスと還元物質を含む還元ガスとを切り換えて供給可能に構成される。還元剤は、二酸化炭素を還元することにより炭素有価物を生成する金属および金属酸化物の少なくとも一方を含み、二酸化炭素との接触により酸化状態とされた後、還元物質との接触により還元される。各反応器を通過した酸化ガスおよび還元ガスの少なくとも一方の一部または全部を、再度、同一の反応器の上流側に返還するように構成される。 According to one aspect of the present invention, a gas production device is provided. This gas production device has a plurality of reactors. Each reactor accommodates a reducing agent and is configured to be capable of switching between an oxidizing gas containing carbon dioxide and a reducing gas containing a reducing substance. The reducing agent contains at least one of a metal and a metal oxide that generate a carbon value by reducing carbon dioxide, is oxidized by contact with carbon dioxide, and is reduced by contact with a reducing substance. . A part or all of at least one of the oxidizing gas and the reducing gas that have passed through each reactor is again returned to the upstream side of the same reactor.
 かかる態様によれば、二酸化炭素を含む酸化ガスと還元物質を含む還元ガスとを使用して、効率よく炭素有価物を生成することができる。 According to this aspect, it is possible to efficiently produce carbon valuables by using an oxidizing gas containing carbon dioxide and a reducing gas containing a reducing substance.
本発明のガス製造装置を使用したガス製造システムの全体構成を示す概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic which shows the whole structure of the gas manufacturing system using the gas manufacturing apparatus of this invention. 第1実施形態の反応部の構成を示す概略図である。It is a schematic diagram showing the configuration of the reaction section of the first embodiment. 第2実施形態の反応部の構成を示す概略図である。It is a schematic diagram showing the configuration of the reaction section of the second embodiment. 第3実施形態の反応部の構成を示す概略図である。It is a schematic diagram showing the configuration of the reaction section of the third embodiment. 第4実施形態の反応部の構成を示す概略図である。It is a schematic diagram showing the configuration of the reaction section of the fourth embodiment. 第5実施形態の反応部の構成を示す概略図である。FIG. 11 is a schematic diagram showing the configuration of a reaction section of a fifth embodiment;
 以下、本発明のガス製造装置について、添付図面に示す好適実施形態に基づいて詳細に説明する。
 まず、ガス製造システムの全体構成について説明する。
 <第1実施形態>
 図1は、本発明のガス製造装置を使用したガス製造システムの全体構成を示す概略図である。図2は、第1実施形態の反応部の構成を示す概略図である。
 図1に示すガス製造システム100は、二酸化炭素を含む排ガス(酸化ガス)を生成する炉20と、接続部2を介して炉20に接続されたガス製造装置1とを備えている。
 なお、本明細書中では、ガスの流れ方向に対して上流側を単に「上流側」、下流側を単に「下流側」とも記載する。
BEST MODE FOR CARRYING OUT THE INVENTION A gas production apparatus of the present invention will be described in detail below based on preferred embodiments shown in the accompanying drawings.
First, the overall configuration of the gas production system will be described.
<First embodiment>
FIG. 1 is a schematic diagram showing the overall configuration of a gas production system using the gas production apparatus of the present invention. FIG. 2 is a schematic diagram showing the configuration of the reaction section of the first embodiment.
A gas production system 100 shown in FIG. 1 includes a furnace 20 that generates exhaust gas (oxidizing gas) containing carbon dioxide, and a gas production device 1 that is connected to the furnace 20 via a connector 2 .
In this specification, the upstream side with respect to the gas flow direction is also simply referred to as the "upstream side", and the downstream side is simply referred to as the "downstream side".
 炉20としては、特に限定されないが、例えば、製鉄所、精錬所または火力発電所に付属する炉であり、好ましくは燃焼炉、高炉、転炉等が挙げられる。炉20では、内容物の燃焼、溶融、精錬等の際に、排ガスが生成(発生)する。
 ゴミ焼却場にける燃焼炉(焼却炉)の場合、内容物(廃棄物)としては、例えば、プラスチック廃棄物、生ゴミ、都市廃棄物(MSW)、廃棄タイヤ、バイオマス廃棄物、家庭ゴミ(布団、紙類)、建築部材等が挙げられる。なお、これらの廃棄物は、1種を単独で含んでいても、2種以上を含んでいてもよい。
The furnace 20 is not particularly limited, but is, for example, a furnace attached to an ironworks, a refinery, or a thermal power plant, preferably a combustion furnace, a blast furnace, a converter, or the like. In the furnace 20, exhaust gas is produced (generated) during combustion, melting, refining, and the like of the contents.
In the case of a combustion furnace (incinerator) in a garbage incineration plant, the contents (waste) include, for example, plastic waste, garbage, municipal waste (MSW), waste tires, biomass waste, household waste (bedding , paper), building materials, and the like. In addition, these wastes may contain 1 type independently, or may contain 2 or more types.
 排ガスは、通常、二酸化炭素に加えて、窒素、酸素、一酸化炭素、水蒸気、メタン等の他のガス成分を含む。排ガス中に含まれる二酸化炭素の濃度は、特に限定されないが、生成ガスの製造コスト(一酸化炭素への変換効率)を考慮すると、1体積%以上が好ましく、5体積%以上がより好ましい。
 ゴミ焼却場にける燃焼炉からの排ガスの場合、二酸化炭素が5~15体積%、窒素が60~70体積%、酸素が5~10体積%、水蒸気が15~25体積%で含まれる。
Exhaust gases typically contain, in addition to carbon dioxide, other gas components such as nitrogen, oxygen, carbon monoxide, water vapor, methane, and the like. The concentration of carbon dioxide contained in the exhaust gas is not particularly limited, but considering the production cost of the generated gas (conversion efficiency to carbon monoxide), it is preferably 1% by volume or more, more preferably 5% by volume or more.
Exhaust gas from a combustion furnace in a garbage incineration plant contains 5-15% by volume of carbon dioxide, 60-70% by volume of nitrogen, 5-10% by volume of oxygen, and 15-25% by volume of water vapor.
 高炉からの排ガス(高炉ガス)は、高炉において銑鉄を製造する際に発生するガスであり、二酸化炭素が10~15体積%、窒素が55~60体積%、一酸化炭素が25~30体積%、水素が1~5体積%で含まれる。
 また、転炉からの排ガス(転炉ガス)は、転炉において鋼を製造する際に発生するガスであり、二酸化炭素が15~20体積%、一酸化炭素が50~60体積%、窒素が15~25体積%、水素が1~5体積%で含まれる。
 なお、酸化ガスとしては、排ガスに限らず、二酸化炭素を100体積%で含む純ガスを使用してもよい。
Exhaust gas from a blast furnace (blast furnace gas) is a gas generated when pig iron is produced in a blast furnace, and contains 10 to 15% by volume of carbon dioxide, 55 to 60% by volume of nitrogen, and 25 to 30% by volume of carbon monoxide. , containing 1 to 5% by volume of hydrogen.
In addition, the exhaust gas from the converter (converter gas) is a gas generated when steel is produced in the converter, and contains 15 to 20 volume% carbon dioxide, 50 to 60 volume% carbon monoxide, and nitrogen. It contains 15 to 25% by volume and 1 to 5% by volume of hydrogen.
The oxidizing gas is not limited to the exhaust gas, and a pure gas containing 100% by volume of carbon dioxide may be used.
 ただし、酸化ガスとして排ガスを使用すれば、従来、大気中に排出していた二酸化炭素を有効利用することができ、環境への負荷を低減することができる。これらの中でも、炭素循環という観点からは、製鉄所または精錬所で発生した二酸化炭素を含む排ガスが好ましい。
 また、高炉ガスや転炉ガスは、炉から排出された未処理のガスをそのまま使用してもよく、例えば、一酸化炭素等を除去する処理を施した後の処理済みガスを使用してもよい。未処理の高炉ガスおよび転炉ガスは、それぞれ上述のようなガス組成であり、処理済みガスは、燃焼炉からの排ガスで示したガス組成に近いガス組成となる。本明細書では、以上のようなガス(ガス製造装置1に供給される前のガス)をいずれも排ガスと呼ぶ。
However, if the exhaust gas is used as the oxidizing gas, the carbon dioxide that has conventionally been discharged into the atmosphere can be effectively used, and the burden on the environment can be reduced. Among these, from the viewpoint of carbon circulation, exhaust gas containing carbon dioxide generated in ironworks or smelters is preferable.
In addition, as the blast furnace gas and the converter gas, the untreated gas discharged from the furnace may be used as it is. good. The untreated blast furnace gas and the converter gas have gas compositions as described above, and the treated gas has a gas composition close to that shown for the exhaust gas from the combustion furnace. In this specification, all of the above gases (the gases before being supplied to the gas production apparatus 1) are called exhaust gas.
 ガス製造装置1は、炉20から排出され、接続部2を介して供給される排ガス(二酸化炭素を含む酸化ガス)と、排ガス中に含まれる二酸化炭素を還元する還元剤4Rとを接触させて、一酸化炭素を含む生成ガス(合成ガス)を製造する。
 なお、本明細書では、炭素有価物の一例として、一酸化炭素を代表に説明する。ただし、炭素有価物としては、一酸化炭素に限定されず、例えば、メタン、メタノール等が挙げられ、これらの単独物であってもよく、2種以上の混合物であってもよい。後述する還元剤の種類に応じて、生成する炭素有価物の種類が異なってくる。
In the gas production apparatus 1, the exhaust gas (oxidizing gas containing carbon dioxide) discharged from the furnace 20 and supplied via the connecting portion 2 is brought into contact with a reducing agent 4R that reduces the carbon dioxide contained in the exhaust gas. , to produce a product gas (syngas) containing carbon monoxide.
In this specification, carbon monoxide will be described as a representative example of the carbon valuables. However, carbon valuables are not limited to carbon monoxide, and include, for example, methane, methanol and the like, and they may be used alone or in combination of two or more. Depending on the type of reducing agent, which will be described later, the type of carbon valuables produced will differ.
 ガス製造装置1は、主に、接続部2と、還元ガス供給部3と、2つの反応器4a、4bを備える反応部4と、接続部2と反応部4とを接続するガスラインGL1と、還元ガス供給部3と反応部4とを接続するガスラインGL2と、反応部4に接続されたガスラインGL4とを有している。
 本実施形態では、接続部2が、排ガスを反応部4に供給する排ガス供給部(酸化ガス供給部)を構成している。
 なお、必要に応じて、ガスラインGL1、ガスラインGL2およびガスラインGL4の途中の所定の箇所には、ガスを移送するためのポンプを配置してもよい。例えば、後述する圧縮部6で排ガスの圧力を比較的低く調整する場合には、ポンプを配置することにより、ガス製造装置1内でガスを円滑に移送することができる。
The gas production apparatus 1 mainly includes a connection portion 2, a reducing gas supply portion 3, a reaction portion 4 having two reactors 4a and 4b, and a gas line GL1 connecting the connection portion 2 and the reaction portion 4. , a gas line GL2 connecting the reducing gas supply unit 3 and the reaction unit 4, and a gas line GL4 connected to the reaction unit 4.
In this embodiment, the connecting portion 2 constitutes an exhaust gas supply portion (oxidizing gas supply portion) that supplies the exhaust gas to the reaction portion 4 .
In addition, if necessary, a pump for transferring gas may be arranged at a predetermined position in the middle of the gas line GL1, the gas line GL2, and the gas line GL4. For example, when the pressure of the exhaust gas is adjusted to be relatively low in the compression unit 6, which will be described later, the gas can be smoothly transferred within the gas production apparatus 1 by arranging a pump.
 ガスラインGL1は、その一端部において接続部2に接続されている。一方、ガスラインGL1は、その他端部において、図2に示すように、ガス切換部8および2つのガスラインGL3a、GL3bを介して、それぞれ反応部4が備える反応器4a、4bの入口ポートに接続されている。
 かかる構成により、炉20から接続部2を介して供給された排ガスは、ガスラインGL1を通過して、各反応器4a、4bに供給される。
 ガス切換部8は、例えば、分岐ガスラインと、この分岐ガスラインの途中に設けられたバルブのような流路開閉機構とを含んで構成することができる。
Gas line GL1 is connected to connecting portion 2 at one end thereof. On the other hand, the other end of the gas line GL1, as shown in FIG. It is connected.
With such a configuration, the exhaust gas supplied from the furnace 20 through the connecting portion 2 passes through the gas line GL1 and is supplied to the reactors 4a and 4b.
The gas switching unit 8 can be configured to include, for example, a branch gas line and a channel opening/closing mechanism such as a valve provided in the middle of the branch gas line.
 各反応器4a、4bは、図2に示すように、還元剤4Rをそれぞれ充填(収容)した複数の管体41と、複数の管体41を収納したハウジング42とを備える多管式の反応装置(固定層式の反応装置)で構成されている。かかる多管式の反応装置によれば、還元剤4Rと排ガスおよび還元ガスとの接触の機会を十分に確保することができる。その結果、生成ガスの製造効率を高めることができる。
 本実施形態の還元剤4Rは、例えば、粒子状(顆粒状)、鱗片状、ペレット状等であることが好ましい。かかる形状の還元剤4Rであれば、管体41への充填効率を高めることができ、管体41内に供給されるガスとの接触面積をより増大させることができる。
Each of the reactors 4a and 4b, as shown in FIG. 2, is a multi-tubular reactor comprising a plurality of tubular bodies 41 each filled with (accommodated) a reducing agent 4R and a housing 42 accommodating the plurality of tubular bodies 41. It consists of an apparatus (fixed bed reactor). According to such a multi-tubular reactor, it is possible to ensure sufficient opportunities for contact between the reducing agent 4R and the exhaust gas and reducing gas. As a result, the production efficiency of the product gas can be enhanced.
The reducing agent 4R of the present embodiment is preferably, for example, in the form of particles (granules), scales, pellets, or the like. With such a shape of the reducing agent 4R, the filling efficiency into the tubular body 41 can be enhanced, and the contact area with the gas supplied into the tubular body 41 can be further increased.
 還元剤4Rが粒子状である場合、その体積平均粒径は、特に限定されないが、1~50mmであることが好ましく、3~30mmであることがより好ましい。この場合、還元剤4Rと排ガス(二酸化炭素)との接触面積をさらに高め、二酸化炭素の一酸化炭素への変換効率をより向上させることができる。同様に、還元物質を含む還元ガスによる還元剤4Rの再生(還元)もより効率よく行うことができる。
 粒子状の還元剤4Rは、より球形度が高まることから、転動造粒により製造された成形体であることが好ましい。
When the reducing agent 4R is particulate, its volume average particle diameter is not particularly limited, but is preferably 1 to 50 mm, more preferably 3 to 30 mm. In this case, the contact area between the reducing agent 4R and the exhaust gas (carbon dioxide) can be further increased, and the conversion efficiency of carbon dioxide to carbon monoxide can be further improved. Similarly, the regeneration (reduction) of the reducing agent 4R by the reducing gas containing the reducing substance can be performed more efficiently.
The particulate reducing agent 4R is preferably a compact produced by tumbling granulation because the sphericity is increased.
 また、還元剤4Rは、担体に担持させるようにしてもよい。
 担体の構成材料としては、排ガス(酸化ガス)との接触や反応条件等により変性し難ければよく、例えば、炭素材料(グラファイト、グラフェン等)、MoCのような炭化物、ゼオライト、モンモリロナイト、ZrO、TiO、V、MgO、CeO、Al、SiOのような酸化物およびこれらを含む複合酸化物等が挙げられる。
Also, the reducing agent 4R may be supported on a carrier.
The constituent material of the carrier may be any material as long as it is difficult to denature due to contact with exhaust gas (oxidizing gas), reaction conditions, etc. Examples include carbon materials (graphite, graphene, etc.), carbides such as Mo 2 C, zeolite, montmorillonite, Examples include oxides such as ZrO 2 , TiO 2 , V 2 O 5 , MgO, CeO 2 , Al 2 O 3 and SiO 2 and composite oxides containing these.
 これらの中でも、担体の構成材料としては、ゼオライト、モンモリロナイト、ZrO、TiO、V、MgO、Al、SiOおよびこれらを含む複合酸化物が好ましい。かかる材料で構成される担体は、還元剤4Rの反応に悪影響を及ぼさず、還元剤4Rの担持能に優れる点で好ましい。ここで、担体は、還元剤4Rの反応には関与せず、還元剤4Rを単に支持(保持)する。
 かかる形態の一例としては、担体の表面の少なくとも一部を還元剤4Rで被覆する構成が挙げられる。
Among these, zeolite, montmorillonite, ZrO 2 , TiO 2 , V 2 O 5 , MgO, Al 2 O 3 , SiO 2 and composite oxides containing these are preferable as the constituent material of the carrier. A carrier composed of such a material is preferable in that it does not adversely affect the reaction of the reducing agent 4R and is excellent in the ability to support the reducing agent 4R. Here, the carrier does not participate in the reaction of the reducing agent 4R and merely supports (holds) the reducing agent 4R.
An example of such a form includes a configuration in which at least part of the surface of the carrier is coated with the reducing agent 4R.
 還元剤4Rは、金属および金属酸化物の少なくとも一方(酸素キャリア)を含む。金属および金属酸化物の少なくとも一方は、二酸化炭素を還元することができれば、特に限定されないが、第3族~第12族に属する金属元素から選択される少なくとも1種を含有することが好ましく、第4族~第12属に属する金属元素から選択される少なくとも1種を含有することがより好ましく、チタン、バナジウム、鉄、銅、亜鉛、ニッケル、マンガン、クロムおよびセリウム等のうちの少なくとも1種を含有することがさらに好ましく、鉄を含有する金属酸化物または複合金属酸化物が特に好ましい。これらの金属酸化物は、二酸化炭素の一酸化炭素への変換効率が特に良好なため有用である。
 ここで、金属には、上記金属元素1種のみからなる金属単体、および上記金属元素2種以上からなる合金が含まれる。
The reducing agent 4R contains at least one of metal and metal oxide (oxygen carrier). At least one of the metal and metal oxide is not particularly limited as long as it can reduce carbon dioxide, but preferably contains at least one selected from metal elements belonging to Groups 3 to 12. It is more preferable to contain at least one selected from metal elements belonging to Groups 4 to 12, and at least one of titanium, vanadium, iron, copper, zinc, nickel, manganese, chromium and cerium. It is more preferable to contain iron, and metal oxides or composite metal oxides containing iron are particularly preferable. These metal oxides are useful because they are particularly efficient in converting carbon dioxide to carbon monoxide.
Here, the metal includes an elemental metal consisting of only one of the above metal elements and an alloy consisting of two or more of the above metal elements.
 特に、二酸化炭素を一酸化炭素に変換する金属酸化物としては、酸化鉄、酸化セリウム等が好適である。二酸化炭素をメタンに変換する金属酸化物としては、例えば、ニッケルおよびルテニウムのうちの少なくとも一方を担持または含有するジルコニア、アルミナ、チタニア、シリカ等が好適である。二酸化炭素をメタノールに変換する金属酸化物としては、例えば、銅および亜鉛のうちの少なくとも一方を担持または含有するジルコニア、アルミナ、シリカ等が好適である。 In particular, iron oxide, cerium oxide, etc. are suitable as metal oxides that convert carbon dioxide into carbon monoxide. As the metal oxide that converts carbon dioxide to methane, for example, zirconia, alumina, titania, silica, etc. that support or contain at least one of nickel and ruthenium are suitable. As the metal oxide that converts carbon dioxide into methanol, for example, zirconia, alumina, silica, etc. that support or contain at least one of copper and zinc are suitable.
 また、各反応器4a、4bにおいて、還元剤4R(金属および金属酸化物のうちの少なくとも一方)自体で管体(円筒状の成形体)41を作製してもよい。さらに、還元剤4Rで、ブロック状、格子状(例えば、網状、ハニカム状)等の成形体を作製し、ハウジング42内に配置するようにしてもよい。これらの場合、充填剤としての還元剤4Rは省略するようにしてもよいし、併用してもよい。 Further, in each of the reactors 4a and 4b, the tubular body (cylindrical molded body) 41 may be produced from the reducing agent 4R (at least one of metal and metal oxide) itself. Furthermore, a block-like or lattice-like (for example, net-like or honeycomb-like) molded body may be produced from the reducing agent 4R and arranged in the housing 42 . In these cases, the reducing agent 4R as a filler may be omitted or used together.
 これらの中では、還元剤4Rで網状体を作製し、ハウジング42内に配置する構成が好ましい。かかる構成の場合、各反応器4a、4b内で排ガスおよび還元ガスの通過抵抗が高まるのを防止しつつ、還元剤4Rと排ガスおよび還元ガスとの接触の機会を十分に確保することもできる。
 なお、2つの反応器4a、4bの容積は、互いにほぼ等しく設定され、処理する排ガスの量(炉20のサイズやガス製造装置1のサイズ)に応じて、適宜設定される。また、2つの反応器4a、4bのうちの少なくとも1つの容積は、排ガスおよび還元ガスの種類、還元剤4Rの性能等に応じて異ならせてもよい。
Among these, a configuration in which a net-like body is formed from the reducing agent 4R and arranged in the housing 42 is preferable. In the case of such a configuration, it is possible to prevent the passage resistance of the exhaust gas and the reducing gas from increasing in each of the reactors 4a and 4b, and also ensure sufficient opportunities for contact between the reducing agent 4R and the exhaust gas and the reducing gas.
The volumes of the two reactors 4a and 4b are set substantially equal to each other, and are appropriately set according to the amount of exhaust gas to be treated (the size of the furnace 20 and the size of the gas production apparatus 1). Also, the volume of at least one of the two reactors 4a and 4b may be varied according to the types of exhaust gas and reducing gas, the performance of the reducing agent 4R, and the like.
 ガスラインGL1の途中には、接続部2側から順に、濃度調整部5と、圧縮部6と、微成分除去部7と、排ガス加熱部(酸化ガス加熱部)10とが設けられている。
 濃度調整部5は、排ガス中に含まれる二酸化炭素の濃度を高める(換言すれば、二酸化炭素を濃縮する)ように調整する。排ガスは、酸素等の不要ガス成分も含む。濃度調整部5で排ガス中に含まれる二酸化炭素の濃度を高めることにより、排ガス中に含まれる不要ガス成分の濃度を相対的に低くすることができる。このため、還元剤4Rによる二酸化炭素の一酸化炭素への変換効率に、不要ガス成分が悪影響を及ぼすのを防止または抑制することができる。
A concentration adjusting section 5, a compressing section 6, a minor component removing section 7, and an exhaust gas heating section (oxidizing gas heating section) 10 are provided in this order from the connecting section 2 side in the middle of the gas line GL1.
The concentration adjustment unit 5 adjusts so as to increase the concentration of carbon dioxide contained in the exhaust gas (in other words, concentrate the carbon dioxide). The exhaust gas also contains unnecessary gas components such as oxygen. By increasing the concentration of carbon dioxide contained in the exhaust gas with the concentration adjustment unit 5, the concentration of unnecessary gas components contained in the exhaust gas can be relatively reduced. Therefore, it is possible to prevent or suppress the adverse effect of the unnecessary gas component on the conversion efficiency of carbon dioxide to carbon monoxide by the reducing agent 4R.
 濃度調整部5は、排ガス中に含まれる酸素を除去する酸素除去装置により構成することが好ましい。これにより、ガス製造装置1に持ち込まれる酸素の量を低減すること(すなわち、排ガス中に含まれる酸素の濃度を低くなるように調整すること)ができる。このため、排ガスのガス組成を爆発範囲から乖離させ、排ガスの引火を未然に防止することができる。なお、ガス製造装置1の中でも、酸素除去装置での電気エネルギーの消費が大きいため、後述するような再生可能エネルギーとしての電力を使用することが有効である。 It is preferable that the concentration adjustment unit 5 is configured by an oxygen removal device that removes oxygen contained in the exhaust gas. As a result, the amount of oxygen brought into the gas production apparatus 1 can be reduced (that is, the concentration of oxygen contained in the exhaust gas can be adjusted to be low). For this reason, the gas composition of the exhaust gas can be deviated from the explosion range, and ignition of the exhaust gas can be prevented. Among the gas producing apparatus 1, the oxygen removal apparatus consumes a large amount of electric energy, so it is effective to use electric power as renewable energy as described later.
 この場合、排ガス中に含まれる酸素の濃度を、排ガス全体に対して1体積%未満に調整することが好ましく、0.5体積%未満に調整することがより好ましく、0.1体積%未満に調整することがさらに好ましい。これにより、排ガス中の酸素と還元ガスによる爆鳴気の形成を確実に防止することができる。
 排ガス中に含まれる酸素を除去する酸素除去装置は、低温分離方式(深冷方式)の分離器、圧力スイング吸着(PSA)方式の分離器、膜分離方式の分離器、温度スイング吸着(TSA)方式の分離器、化学吸収方式の分離器、化学吸着方式の分離器等のうちの1種または2種以上を用いて構成することができる。
 なお、濃度調整部5では、排ガス中に二酸化炭素を追加することにより、二酸化炭素が高濃度になるように調整してもよい。
In this case, the concentration of oxygen contained in the exhaust gas is preferably adjusted to less than 1% by volume, more preferably less than 0.5% by volume, and less than 0.1% by volume with respect to the entire exhaust gas. Adjusting is even more preferable. As a result, it is possible to reliably prevent the formation of detonation gas due to oxygen and reducing gas in the exhaust gas.
Oxygen removal equipment for removing oxygen contained in flue gas includes cryogenic (cryogenic) separators, pressure swing adsorption (PSA) separators, membrane separation separators, and temperature swing adsorption (TSA) separators. It can be configured using one or more of a separator of the type, a separator of the chemical absorption type, a separator of the chemisorption type, and the like.
Note that the concentration adjustment unit 5 may adjust the concentration of carbon dioxide to a high level by adding carbon dioxide to the exhaust gas.
 圧縮部6は、反応器4a、4bに供給する前の排ガスの圧力を上昇させる。これにより、反応器4a、4bで一度に処理可能な排ガスの量を増大させることができる。このため、反応器4a、4bにおける二酸化炭素の一酸化炭素への変換効率をより向上させることができる。
 かかる圧縮部6は、例えば、遠心式圧縮機、軸流式圧縮機のようなターボ圧縮機、往復動圧縮機(レシプロ圧縮機)、ダイアフラム式圧縮機、シングルスクリュー圧縮機、ツインスクリュー圧縮機、スクロール圧縮機、ロータリー圧縮機、ロータリーピストン型圧縮機、スライドベーン型圧縮機のような容積圧縮機、低圧に対応可能なルーツブロワー(二葉送風機)、遠心式のブロワー等で構成することができる。
Compressor 6 increases the pressure of the exhaust gas before it is supplied to reactors 4a and 4b. This makes it possible to increase the amount of exhaust gas that can be processed at one time in the reactors 4a and 4b. Therefore, the conversion efficiency of carbon dioxide to carbon monoxide in the reactors 4a and 4b can be further improved.
The compression unit 6 includes, for example, a centrifugal compressor, a turbo compressor such as an axial compressor, a reciprocating compressor (reciprocating compressor), a diaphragm compressor, a single screw compressor, a twin screw compressor, It can be composed of a volumetric compressor such as a scroll compressor, a rotary compressor, a rotary piston compressor, a slide vane compressor, a roots blower (two-leaf blower) capable of handling low pressure, a centrifugal blower, or the like.
 これらの中でも、圧縮部6は、ガス製造システム100の大規模化の容易性の観点からは、遠心式圧縮機で構成することが好ましく、ガス製造システム100の製造コストを低減する観点からは、往復動圧縮機で構成することが好ましい。
 圧縮部6を通過した後の排ガスの圧力は、特に限定されないが、0~1MPaGであることが好ましく、0~0.5MPaGであることがより好ましく、0.01~0.5MPaGであることがさらに好ましい。この場合、ガス製造装置1の耐圧性を必要以上に高めることなく、反応器4a、4bにおける二酸化炭素の一酸化炭素への変換効率をさらに向上させることができる。
Among these, the compression unit 6 is preferably configured with a centrifugal compressor from the viewpoint of easiness of increasing the scale of the gas production system 100, and from the viewpoint of reducing the production cost of the gas production system 100, A reciprocating compressor is preferred.
The pressure of the exhaust gas after passing through the compression section 6 is not particularly limited, but is preferably 0 to 1 MPaG, more preferably 0 to 0.5 MPaG, and 0.01 to 0.5 MPaG. More preferred. In this case, the conversion efficiency of carbon dioxide to carbon monoxide in the reactors 4a and 4b can be further improved without increasing the pressure resistance of the gas production apparatus 1 more than necessary.
 微成分除去部7は、排ガス中に含まれる微成分(微量な不要ガス成分等)を除去する。
 かかる微成分除去部7は、例えば、気液分離器、保護器(ガードリアクター)およびスクラバー(吸収塔)のうちの少なくとも1種の処理器で構成することができる。
 複数の処理器を使用する場合、それらの配置順序は任意であるが、気液分離器と保護器とを組み合わせて使用する場合、気液分離器を保護器より上流側に配置するのが好ましい。この場合、排ガス中からの微成分の除去効率をより高めることができるとともに、保護器の使用期間(寿命)を延長することができる。
The minor component removing unit 7 removes minor components (a small amount of unnecessary gas components, etc.) contained in the exhaust gas.
The fine component removing section 7 can be composed of, for example, at least one processor selected from a gas-liquid separator, a protector (guard reactor) and a scrubber (absorption tower).
When using a plurality of processors, their arrangement order is arbitrary, but when using a combination of a gas-liquid separator and a protector, it is preferable to arrange the gas-liquid separator upstream of the protector. . In this case, it is possible to further improve the efficiency of removing minor components from the exhaust gas, and extend the period of use (life) of the protector.
 気液分離器は、例えば、圧縮部6で排ガスを圧縮した際に生じる凝縮水(液体)を排ガスから分離する。この場合、凝縮水中には、排ガス中に残存する不要ガス成分等も溶解して除去される。
 気液分離器は、例えば、単なる容器、旋回流式分離器、遠心分離器、表面張力式分離器等で構成することができる。これらの中でも、気液分離器は、構成が単純であり、安価であること等から、単なる容器で構成することが好ましい。この場合、容器内の気液界面には、気体の通過は許容するが、液体の通過を阻止するフィルタを配置するようにしてもよい。
The gas-liquid separator separates, for example, condensed water (liquid) generated when the exhaust gas is compressed in the compression section 6 from the exhaust gas. In this case, unnecessary gas components remaining in the exhaust gas are also dissolved and removed in the condensed water.
The gas-liquid separator can be composed of, for example, a simple container, a swirling flow separator, a centrifugal separator, a surface tension separator, or the like. Among these, the gas-liquid separator is preferably configured with a simple container because of its simple configuration and low cost. In this case, a filter may be arranged at the gas-liquid interface in the container to allow passage of gas but block passage of liquid.
 また、この場合、容器の底部には、液体ラインを接続し、その途中にバルブを設けるようにしてもよい。かかる構成によれば、容器内に貯留された凝縮水は、バルブを開放することにより、液体ラインを介して、ガス製造装置1外に排出することができる。
 なお、液体ラインを後述するタンク30に接続して、排出する凝縮水を再利用するようにしてもよい。
Also, in this case, a liquid line may be connected to the bottom of the container, and a valve may be provided in the middle of the line. According to such a configuration, the condensed water stored in the container can be discharged to the outside of the gas production apparatus 1 through the liquid line by opening the valve.
The liquid line may be connected to a tank 30, which will be described later, so that the discharged condensed water can be reused.
 気液分離器で凝縮水が除去された排ガスは、例えば、保護器に供給するように構成することができる。
 かかる保護器は、排ガス中に含まれる微成分であって、還元剤4Rとの接触により還元剤4Rの活性を低下させる成分(不活化成分)を捕捉可能な物質を備えていることが好ましい。
 かかる構成によれば、排ガスが保護器を通過する際に、保護器内の物質が不活化成分と反応(捕捉)することにより、反応器4a、4b内の還元剤4Rに到達するのを阻止または抑制して保護すること(すなわち、活性の低下を防止すること)ができる。このため、還元剤4Rによる二酸化炭素の一酸化炭素への変換効率が、不活化成分の悪影響により極端に低下するのを防止または抑制することができる。
The exhaust gas from which the condensed water has been removed by the gas-liquid separator can be configured to be supplied to the protector, for example.
Such a protector preferably includes a substance capable of capturing a component (inactivating component) that is a minor component contained in the exhaust gas and that reduces the activity of the reducing agent 4R upon contact with the reducing agent 4R.
According to this configuration, when the exhaust gas passes through the protector, the substance in the protector reacts (captures) with the inactivating component, thereby preventing the exhaust gas from reaching the reducing agent 4R in the reactors 4a and 4b. or can be inhibited and protected (ie, prevented from declining in activity). Therefore, it is possible to prevent or suppress an extreme decrease in the conversion efficiency of carbon dioxide to carbon monoxide by the reducing agent 4R due to the adverse effects of the inactivating component.
 かかる物質には、還元剤4Rに含まれる組成であって、不活化成分との接触により還元剤4Rの活性を低下させる組成を有する物質、具体的には、還元剤4Rに含まれる金属および金属酸化物のうちの少なくとも一方と同一または類似の物質を使用することができる。ここで、類似の金属酸化物とは、それに含まれる金属元素は同一であるが、組成が異なる金属酸化物、またはそれに含まれる金属元素の種類は異なるが、元素周期律表における族が同一である金属酸化物のことを言う。 Such substances include substances that are contained in the reducing agent 4R and have a composition that reduces the activity of the reducing agent 4R by contact with the inactivating component, specifically, metals and metals contained in the reducing agent 4R Materials that are the same as or similar to at least one of the oxides can be used. Here, similar metal oxides refer to metal oxides that contain the same metal element but have different compositions, or metal oxides that contain different types of metal elements but belong to the same group in the periodic table. It refers to certain metal oxides.
 また、不活化成分としては、硫黄、水銀、硫黄化合物、ハロゲン化合物、有機シリコーン、有機リンおよび有機金属化合物から選択される少なくとも1種であることが好ましく、硫黄および硫黄化合物から選択される少なくとも1種であることがより好ましい。かかる不活化成分を予め除去しておけば、還元剤4Rの活性が急激に低下するのを効果的に防止することができる。
 なお、上記物質は、還元剤4Rの不活化成分と同一の成分により活性が低下する物質であればよく、酸化鉄、酸化亜鉛のような金属酸化物が上記不活化成分の捕捉能に優れる点で好ましい。
The inactivating component is preferably at least one selected from sulfur, mercury, sulfur compounds, halogen compounds, organic silicones, organic phosphorus and organic metal compounds, and at least one selected from sulfur and sulfur compounds. Seeds are more preferred. By removing such inactivating components in advance, it is possible to effectively prevent the activity of the reducing agent 4R from abruptly decreasing.
The above substance may be any substance whose activity is lowered by the same component as the inactivating component of the reducing agent 4R. is preferred.
 保護器は、ハウジング内に網材を配置し、上記物質の粒子を網材上に載置する構成、ハウジング内に、上記物質で構成されたハニカム状のフィルタ部材や、円筒状または粒子状の成形体を配置する構成等とすることができる。
 特に、保護器を圧縮部6(気液分離器)と排ガス加熱部10との間に配置する場合には、上記物質の熱による劣化を防止しつつ、不活化成分の除去効率を向上させることができる。
The protector has a structure in which a mesh material is arranged in a housing, and particles of the above substance are placed on the mesh material. A configuration in which a molded body is arranged can be employed.
In particular, when a protector is arranged between the compression unit 6 (gas-liquid separator) and the exhaust gas heating unit 10, it is necessary to improve the removal efficiency of the inactivated components while preventing the above substances from deteriorating due to heat. can be done.
 排ガス加熱部10は、反応器4a、4bに供給する前の排ガスを加熱する。排ガス加熱部10で反応前(還元前)の排ガスを予め加熱しておくことにより、反応器4a、4bにおいて、還元剤4Rによる二酸化炭素の一酸化炭素への変換(還元)反応をより促進することができる。
 排ガス加熱部10は、例えば、電熱器と、熱交換器(エコノマイザ)とで構成することができる。
 熱交換器は、反応器4a、4bを通過した後のガス(混合ガス)を排出するガスラインGL4を構成する一部の配管を屈曲させ、ガスラインGL1を構成する配管に接近させて構成される。かかる構成によれば、反応器4a、4bを通過した後の高温のガス(混合ガス)の熱を利用して、反応器4a、4bに供給する前の排ガスを熱交換により加熱するため、熱の有効利用を図ることができる。
The exhaust gas heating section 10 heats the exhaust gas before it is supplied to the reactors 4a and 4b. By preheating the exhaust gas before reaction (before reduction) in the exhaust gas heating unit 10, the conversion (reduction) reaction of carbon dioxide to carbon monoxide by the reducing agent 4R is further promoted in the reactors 4a and 4b. be able to.
The exhaust gas heating section 10 can be composed of, for example, an electric heater and a heat exchanger (economizer).
The heat exchanger is configured by bending a part of the pipes forming the gas line GL4 for discharging the gas (mixed gas) after passing through the reactors 4a and 4b and bringing it closer to the pipe forming the gas line GL1. be. According to this configuration, the heat of the high-temperature gas (mixed gas) after passing through the reactors 4a and 4b is used to heat the exhaust gas before being supplied to the reactors 4a and 4b by heat exchange. can be used effectively.
 かかる熱交換器は、例えば、ジャケット式熱交換器、浸漬コイル式熱交換器、二重管式熱交換器、シェル&チューブ式熱交換器、プレート式熱交換器、スパイラル式熱交換器等として構成することができる。
 また、排ガス加熱部10では、電熱器および熱交換器のいずれか一方を省略してもよい。
 排ガス加熱部10では、電熱器に代えて、燃焼炉等を使用することもできる。ただし、電熱器を使用すれば、その動力源として、再生可能エネルギーとしての電力(電気エネルギー)を使用できるため、環境への負荷を低減することができる。
 再生可能エネルギーとしては、太陽光発電、風カ発電、水力発電、波力発電、潮力発電、バイオマス発電、地熱発電、太陽熱および地中熱から選択される少なくとも1つを利用した電気エネルギーが使用可能である。
Such heat exchangers include, for example, jacket heat exchangers, immersion coil heat exchangers, double tube heat exchangers, shell and tube heat exchangers, plate heat exchangers, spiral heat exchangers, and the like. Can be configured.
Further, in the exhaust gas heating section 10, either one of the electric heater and the heat exchanger may be omitted.
In the exhaust gas heating section 10, a combustion furnace or the like can be used instead of the electric heater. However, if an electric heater is used, electric power (electrical energy) as renewable energy can be used as the power source, so the load on the environment can be reduced.
As renewable energy, electric energy using at least one selected from solar power, wind power, hydraulic power, wave power, tidal power, biomass power, geothermal power, solar heat and geothermal heat is used. It is possible.
 また、排ガス加熱部10の上流側(例えば、微成分除去部7の途中である気液分離器と保護器との間)において、ガスラインGL1から排気ガスラインを分岐させ、その端部にガス製造装置1外に設けられたベント部を接続してもよい。
 この場合、排気ガスラインの途中には、好ましくはバルブが設けられる。
 仮に、ガス製造装置1(ガスラインGL1)内の圧力が必要以上に上昇した場合には、バルブを開放することにより、排気ガスラインを介してベント部から排ガスの一部を排出(放出)することができる。これにより、ガス製造装置1の圧力の上昇による破損を未然に防止することができる。
Further, on the upstream side of the exhaust gas heating unit 10 (for example, between the gas-liquid separator and the protector in the middle of the minor component removing unit 7), the exhaust gas line is branched from the gas line GL1, and the gas A vent portion provided outside the manufacturing apparatus 1 may be connected.
In this case, a valve is preferably provided in the middle of the exhaust gas line.
If the pressure in the gas production device 1 (gas line GL1) rises more than necessary, the valve is opened to discharge (release) part of the exhaust gas from the vent through the exhaust gas line. be able to. As a result, it is possible to prevent the gas production device 1 from being damaged due to an increase in pressure.
 ガスラインGL2は、その一端部において還元ガス供給部3に接続されている。一方、ガスラインGL2は、ガス切換部8および2つのガスラインGL3a、GL3bを介して、それぞれ反応部4が備える反応器4a、4bの入口ポートに接続されている。
 還元ガス供給部3は、二酸化炭素との接触により酸化された還元剤4Rを還元する還元物質を含む還元ガスを供給する。本実施形態の還元ガス供給部3は、水の電気分解により水素を発生させる水素発生装置で構成され、この水素発生装置に水を貯留したガス製造装置1外のタンク(還元ガス原料貯留部)30が接続されている。かかる構成により、水素発生装置(還元ガス供給部3)から供給された水素(還元物質)を含む還元ガスが、ガスラインGL2を通過して、各反応器4a、4bに供給される。
One end of the gas line GL2 is connected to the reducing gas supply section 3 . On the other hand, the gas line GL2 is connected to inlet ports of reactors 4a and 4b provided in the reaction section 4 via a gas switching section 8 and two gas lines GL3a and GL3b, respectively.
The reducing gas supply unit 3 supplies a reducing gas containing a reducing substance that reduces the reducing agent 4R oxidized by contact with carbon dioxide. The reducing gas supply unit 3 of the present embodiment is composed of a hydrogen generator that generates hydrogen by electrolysis of water. 30 are connected. With this configuration, the reducing gas containing hydrogen (reducing substance) supplied from the hydrogen generator (reducing gas supply unit 3) passes through the gas line GL2 and is supplied to the reactors 4a and 4b.
 水素発生装置によれば、多量の水素を比較的安価かつ簡便に生成することができる。また、ガス製造装置1内で発生する凝縮水を再利用できるという利点もある。なお、ガス製造装置1の中でも、水素発生装置での電気エネルギーの消費が大きいため、上述したような再生可能エネルギーとしての電力を使用することが有効である。 According to the hydrogen generator, a large amount of hydrogen can be generated relatively cheaply and easily. Moreover, there is also an advantage that the condensed water generated in the gas production apparatus 1 can be reused. Among the gas production apparatus 1, the hydrogen generator consumes a large amount of electric energy, so it is effective to use electric power as renewable energy as described above.
 なお、水素発生装置には、副生水素を発生する装置を使用することもできる。この場合、副生水素を含む還元ガスが各反応器4a、4bに供給される。副生水素を発生する装置としては、例えば、塩化ナトリウム水溶液を電気分解する装置、石油を水蒸気改質する装置、アンモニアを製造する装置等が挙げられる。
 また、ガス製造装置1外のコークス炉に接続部を介してガスラインGL2を接続し、コークス炉からの排ガスを還元ガスとして使用するようにしてもよい。この場合、接続部が還元ガス供給部を構成する。コークス炉からの排ガスは、水素およびメタンを主成分とし、水素を50~60体積%で含むためである。
A device that generates by-product hydrogen can also be used as the hydrogen generator. In this case, a reducing gas containing by-product hydrogen is supplied to each reactor 4a, 4b. As a device for generating by-product hydrogen, for example, a device for electrolyzing an aqueous solution of sodium chloride, a device for steam reforming petroleum, a device for producing ammonia, and the like can be mentioned.
Alternatively, the gas line GL2 may be connected to the coke oven outside the gas production apparatus 1 via a connecting portion, and the exhaust gas from the coke oven may be used as the reducing gas. In this case, the connecting portion constitutes the reducing gas supply portion. This is because the exhaust gas from the coke oven is mainly composed of hydrogen and methane, and contains 50 to 60% by volume of hydrogen.
 ガスラインGL2の途中には、還元ガス加熱部11が設けられている。この還元ガス加熱部11は、反応器4a、4bに供給する前の還元ガスを加熱する。還元ガス加熱部11で反応前(酸化前)の還元ガスを予め加熱しておくことにより、反応器4a、4bにおける還元ガスによる還元剤4Rの還元(再生)反応をより促進することができる。 A reducing gas heating unit 11 is provided in the middle of the gas line GL2. This reducing gas heating unit 11 heats the reducing gas before it is supplied to the reactors 4a and 4b. By preheating the pre-reaction (pre-oxidation) reducing gas in the reducing gas heating unit 11, the reduction (regeneration) reaction of the reducing agent 4R by the reducing gas in the reactors 4a and 4b can be further promoted.
 還元ガス加熱部11は、上記排ガス加熱部10と同様にして構成することができる。還元ガス加熱部11は、電熱器のみ、熱交換器のみ、電熱器と熱交換器との組み合わせで構成することが好ましく、熱交換器のみ、電熱器と熱交換器との組み合わせで構成することがより好ましい。
 還元ガス加熱部11が熱交換器を備えれば、反応器4a、4bを通過した後の高温のガス(例えば、混合ガス)の熱を利用して、反応器4a、4bに供給する前の還元ガスを熱交換により加熱するため、熱の有効利用を図ることができる。
The reducing gas heating section 11 can be configured in the same manner as the exhaust gas heating section 10 described above. The reducing gas heating unit 11 is preferably composed of only an electric heater, only a heat exchanger, or a combination of an electric heater and a heat exchanger, and may be composed of only a heat exchanger or a combination of an electric heater and a heat exchanger. is more preferred.
If the reducing gas heating unit 11 is equipped with a heat exchanger, the heat of the high-temperature gas (for example, mixed gas) after passing through the reactors 4a and 4b is used to heat the gas before supplying it to the reactors 4a and 4b. Since the reducing gas is heated by heat exchange, effective use of heat can be achieved.
 以上のような構成によれば、ガス切換部8においてガスライン(流路)を切り換えることにより、例えば、酸化前の還元剤4Rが収容された反応器4aに、ガスラインGL3aを介して排ガスを供給し、酸化後の還元剤4Rが収容された反応器4bに、ガスラインGL3bを介して還元ガスを供給することができる。このとき、反応器4aでは下記式1の反応が進行し、反応器4bでは下記式2の反応が進行する。 According to the above configuration, by switching the gas line (flow path) in the gas switching unit 8, for example, the exhaust gas is supplied to the reactor 4a containing the pre-oxidized reducing agent 4R through the gas line GL3a. A reducing gas can be supplied via a gas line GL3b to the reactor 4b containing the oxidized reducing agent 4R. At this time, the reaction of the following formula 1 proceeds in the reactor 4a, and the reaction of the following formula 2 proceeds in the reactor 4b.
 なお、下記式1および式2では、還元剤4Rに酸化鉄(FeOx-1)が含まれる場合を一例として示している。
  式1: CO + FeOx-1 → CO + FeO
  式2: H + FeO → HO + FeOx-1
 その後、ガス切換部8においてガスラインを上記と反対に切り換えることにより、反応器4aでは上記式2の反応を進行させ、反応器4bでは上記式1の反応を進行させることができる。
Note that the following formulas 1 and 2 show, as an example, the case where the reducing agent 4R contains iron oxide (FeO x-1 ).
Equation 1: CO 2 + FeO x-1 → CO + FeO x
Equation 2: H 2 + FeO x → H 2 O + FeO x−1
Thereafter, by switching the gas line in the opposite direction in the gas switching unit 8, the reaction of the above formula 2 can be allowed to proceed in the reactor 4a, and the reaction of the above formula 1 can be allowed to proceed in the reactor 4b.
 すなわち、還元剤4Rは、二酸化炭素を還元することにより一酸化炭素(炭素有価物)を生成する。このとき、還元剤4Rは、二酸化炭素との接触により酸化状態とされるが、その後、水素(還元物質)との接触により還元され、元の状態に戻る。
 本明細書中では、還元剤4Rを中心に考え、還元剤4Rが二酸化炭素により酸化される側を「酸化側」と言い、酸化された還元剤4Rが水素により還元される側を「還元側」とも言う。
That is, the reducing agent 4R produces carbon monoxide (carbon valuables) by reducing carbon dioxide. At this time, the reducing agent 4R is brought into an oxidized state by contact with carbon dioxide, but is then reduced by contact with hydrogen (reducing substance) and returns to its original state.
In this specification, the reducing agent 4R is mainly considered, the side where the reducing agent 4R is oxidized by carbon dioxide is called the "oxidation side", and the side where the oxidized reducing agent 4R is reduced by hydrogen is called the "reduction side". ” also says.
 なお、上記式1および式2に示す反応は、いずれも吸熱反応である。このため、ガス製造装置1は、還元剤4Rに排ガスまたは還元ガスを接触させる際(すなわち、排ガスまたは還元ガスと還元剤4Rとの反応の際)に、還元剤4Rを加熱する還元剤加熱部(図1中、図示せず。)をさらに有することが好ましい。
 かかる還元剤加熱部を設けることにより、排ガスまたは還元ガスと還元剤4Rとの反応における温度を高温に維持して、二酸化炭素の一酸化炭素への変換効率の低下を好適に防止または抑制するとともに、還元ガスによる還元剤4Rの再生をさらに促進することができる。
Note that the reactions represented by the above formulas 1 and 2 are both endothermic reactions. Therefore, the gas production device 1 includes a reducing agent heating unit that heats the reducing agent 4R when the reducing agent 4R is brought into contact with the exhaust gas or the reducing gas (that is, when the exhaust gas or the reducing gas reacts with the reducing agent 4R). (not shown in FIG. 1).
By providing such a reducing agent heating unit, the temperature in the reaction between the exhaust gas or the reducing gas and the reducing agent 4R is maintained at a high temperature, thereby suitably preventing or suppressing a decrease in the conversion efficiency of carbon dioxide to carbon monoxide. , the regeneration of the reducing agent 4R by the reducing gas can be further promoted.
 ただし、還元剤4Rの種類によっては、上記式1および式2に示す反応が発熱反応となる場合がある。この場合、ガス製造装置1は、還元剤加熱部に代えて、還元剤4Rを冷却する還元剤冷却部を有することが好ましい。かかる還元剤冷却部を設けることにより、排ガスまたは還元ガスと還元剤4Rとの反応の際に、還元剤4Rが劣化するのを好適に阻止して、二酸化炭素の一酸化炭素への変換効率の低下を好適に防止または抑制するとともに、還元ガスによる還元剤4Rの再生をさらに促進することができる。
 つまり、ガス製造装置1には、還元剤4Rの種類(発熱反応または吸熱反応)の違いによって、還元剤4Rの温度を調整する還元剤温調部を設けることが好ましい。
However, depending on the type of the reducing agent 4R, the reactions shown in the above formulas 1 and 2 may be exothermic reactions. In this case, the gas production device 1 preferably has a reducing agent cooling section for cooling the reducing agent 4R instead of the reducing agent heating section. By providing such a reducing agent cooling unit, deterioration of the reducing agent 4R during the reaction between the exhaust gas or the reducing gas and the reducing agent 4R can be suitably prevented, and the conversion efficiency of carbon dioxide to carbon monoxide can be improved. It is possible to suitably prevent or suppress the decrease and further promote the regeneration of the reducing agent 4R by the reducing gas.
In other words, it is preferable to provide the gas production device 1 with a reducing agent temperature control unit that adjusts the temperature of the reducing agent 4R depending on the type of the reducing agent 4R (exothermic reaction or endothermic reaction).
 ここで、反応器4a、4bにおける二酸化炭素の一酸化炭素への転化率は、80%以上であることが好ましく、82.5%以上、85%以上、87.5%以上、90%以上であることがより好ましく、92.5%以上であることがさらに好ましく、95%以上であることが特に好ましい。二酸化炭素の前記一酸化炭素への転化率の上限は、通常、98%程度である。
 このような転化率は、使用する還元剤4Rの種類、排ガスに含まれる二酸化炭素の濃度、還元物質の種類、還元ガスに含まれる還元物質の濃度、反応器4a、4bの温度、排ガスおよび還元ガスの反応器4a、4bへの流量(流速)、排ガスと還元ガスとの切り換えのタイミング等を調整することにより設定可能である。
 なお、二酸化炭素の一酸化炭素への転化率(%)は、式:COout/CO2in×100で計算される値である。CO2inは、反応器4a、4bに供給した二酸化炭素のモル量であり、COoutは、二酸化炭素が還元剤4Rとの接触(反応)により一酸化炭素に変換され、反応器4a、4bから排出される一酸化炭素のモル量である。
Here, the conversion rate of carbon dioxide to carbon monoxide in the reactors 4a and 4b is preferably 80% or more, 82.5% or more, 85% or more, 87.5% or more, 90% or more. It is more preferably 92.5% or more, and particularly preferably 95% or more. The upper limit of the conversion of carbon dioxide to carbon monoxide is usually about 98%.
Such a conversion rate depends on the type of reducing agent 4R used, the concentration of carbon dioxide contained in the exhaust gas, the type of reducing substance, the concentration of the reducing substance contained in the reducing gas, the temperature of the reactors 4a and 4b, the exhaust gas and the reducing gas. It can be set by adjusting the flow rate (flow velocity) of the gas to the reactors 4a and 4b, the timing of switching between the exhaust gas and the reducing gas, and the like.
The conversion rate (%) of carbon dioxide to carbon monoxide is a value calculated by the formula: CO out /CO 2in ×100. CO 2in is the molar amount of carbon dioxide supplied to the reactors 4a and 4b, and COout is the carbon dioxide converted to carbon monoxide by contact (reaction) with the reducing agent 4R, and from the reactors 4a and 4b It is the molar amount of carbon monoxide emitted.
 一方、反応器4a、4bにおける水素の水への転化率は、40%以上であることが好ましく、45%以上であることがより好ましく、50%以上であることがさらに好ましい。水素の水への転化率の上限は、通常、85%程度である。
 このような転化率は、使用する還元剤4Rの種類、排ガスに含まれる二酸化炭素の濃度、還元物質の種類、還元ガスに含まれる還元物質の濃度、反応器4a、4bの温度、排ガスおよび還元ガスの反応器4a、4bへの流量(流速)、排ガスと還元ガスとの切り換えのタイミング等を調整することにより設定可能である。
 なお、水素の水への転化率(%)は、式:(H2in-H2out)/H2in×100で計算される値である。H2inは、反応器4a、4bに供給した水素のモル量であり、H2outは、未反応の状態で反応器4a、4bを通過して排出される水素のモル量である。
On the other hand, the conversion rate of hydrogen to water in the reactors 4a and 4b is preferably 40% or higher, more preferably 45% or higher, and even more preferably 50% or higher. The upper limit of the conversion rate of hydrogen to water is usually about 85%.
Such a conversion rate depends on the type of reducing agent 4R used, the concentration of carbon dioxide contained in the exhaust gas, the type of reducing substance, the concentration of the reducing substance contained in the reducing gas, the temperature of the reactors 4a and 4b, the exhaust gas and the reducing gas. It can be set by adjusting the flow rate (flow velocity) of the gas to the reactors 4a and 4b, the timing of switching between the exhaust gas and the reducing gas, and the like.
The conversion rate (%) of hydrogen to water is a value calculated by the formula: (H 2in −H 2out )/H 2in ×100. H 2in is the molar amount of hydrogen supplied to the reactors 4a, 4b, and H 2out is the molar amount of hydrogen discharged through the reactors 4a, 4b in an unreacted state.
 反応器4a、4bの出口ポートには、それぞれガスラインGL4a、GL4bが接続され、これらがガス合流部J4において合流して、ガスラインGL4を構成している。また、ガスラインGL4a、GL4bの途中には、必要に応じて、それぞれバルブ(図示せず。)が設けられる。
 例えば、バルブの開度を調整することにより、反応器4a、4bを通過する排ガスおよび還元ガスの通過速度(すなわち、還元剤4Rによる排ガスの処理速度および還元ガスによる還元剤4Rの処理速度)を設定することができる。
 本実施形態では、主に、反応器4a、4bおよびガス切換部8により、反応部4が構成されている。
Gas lines GL4a and GL4b are connected to the outlet ports of the reactors 4a and 4b, respectively, and are merged at a gas junction J4 to form a gas line GL4. Further, valves (not shown) are provided in the middle of the gas lines GL4a and GL4b, respectively, as required.
For example, by adjusting the opening of the valves, the passage speed of the exhaust gas and the reducing gas passing through the reactors 4a and 4b (that is, the processing speed of the exhaust gas with the reducing agent 4R and the processing speed of the reducing agent 4R with the reducing gas) can be changed. can be set.
In this embodiment, the reaction section 4 is mainly composed of the reactors 4 a and 4 b and the gas switching section 8 .
 ガスラインGL4の反応器4a、4bの反対側の端部には、生成ガスをガス製造装置1外に排出する生成ガス排出部40が接続されている。
 また、ガスラインGL4の途中には、ガス精製部9が設けられている。
 ガス精製部9では、混合ガスから一酸化炭素を精製して、高濃度の一酸化炭素を含む生成ガスを回収する。なお、混合ガス中の一酸化炭素濃度が十分に高い場合には、ガス精製部9を省略してもよい。
A generated gas discharge section 40 for discharging the generated gas to the outside of the gas production apparatus 1 is connected to the end of the gas line GL4 opposite to the reactors 4a and 4b.
A gas refining section 9 is provided in the middle of the gas line GL4.
The gas purification unit 9 purifies carbon monoxide from the mixed gas and recovers a generated gas containing high-concentration carbon monoxide. Incidentally, if the carbon monoxide concentration in the mixed gas is sufficiently high, the gas refining section 9 may be omitted.
 かかるガス精製部9は、例えば、冷却器、気液分離器、ガス分離器、分離膜およびスクラバー(吸収塔)のうちの少なくとも1種の処理器で構成することができる。
 複数の処理器を使用する場合、それらの配置順序は任意であるが、冷却器と気液分離器とガス分離器とを組み合わせて使用する場合、この順で配置するのが好ましい。この場合、混合ガスからの一酸化炭素の精製効率をより高めることができる。
The gas purifying section 9 can be composed of, for example, at least one processor selected from coolers, gas-liquid separators, gas separators, separation membranes, and scrubbers (absorption towers).
When a plurality of processors are used, their arrangement order is arbitrary, but when a cooler, a gas-liquid separator and a gas separator are used in combination, they are preferably arranged in this order. In this case, the efficiency of purifying carbon monoxide from the mixed gas can be further enhanced.
 冷却器は、混合ガスを冷却する。これにより、凝縮水(液体)が生成する。
 かかる冷却器は、配管の周囲に冷媒を通過させるためのジャケットを配置したジャケット式の冷却装置、反応器4a、4bと同様の構成(図2参照)とし、管体41内に混合ガスを、管体41の周囲の空間43に冷媒をそれぞれ通過させる多管式の冷却装置、エアフィンクーラー等を含んで構成することができる。
A cooler cools the mixed gas. This produces condensed water (liquid).
Such a cooler is a jacket-type cooling device in which a jacket for passing a refrigerant is arranged around the pipe, and has the same configuration as the reactors 4a and 4b (see FIG. 2), and the mixed gas is It can be configured to include a multi-pipe type cooling device, an air fin cooler, or the like, in which the refrigerant passes through the space 43 around the tubular body 41 .
 気液分離器は、冷却器で混合ガスを冷却する際に生じる凝縮水を混合ガスから分離する。このとき、凝縮水には、混合ガス中に残存する不要ガス成分(特に、二酸化炭素)を溶解して除去することができるという利点がある。 The gas-liquid separator separates the condensed water generated when the mixed gas is cooled by the cooler from the mixed gas. At this time, the condensed water has the advantage of being able to dissolve and remove unnecessary gas components (particularly carbon dioxide) remaining in the mixed gas.
 気液分離器は、微成分除去部7の気液分離器と同様に構成することができ、好ましくは単なる容器で構成することができる。この場合、容器内の気液界面には、気体の通過は許容するが、液体の通過を阻止するフィルタを配置するようにしてもよい。
 また、この場合、容器の底部には、液体ラインを接続し、その途中にバルブを設けるようにしてもよい。かかる構成によれば、容器内に貯留された凝縮水は、バルブを開放することにより、液体ラインを介して、ガス製造装置1外に排出(放出)することができる。
The gas-liquid separator can be configured in the same manner as the gas-liquid separator of the micro component removing section 7, and preferably can be configured as a simple container. In this case, a filter may be arranged at the gas-liquid interface in the container to allow passage of gas but block passage of liquid.
Also, in this case, a liquid line may be connected to the bottom of the container, and a valve may be provided in the middle of the line. According to such a configuration, the condensed water stored in the container can be discharged (released) out of the gas production apparatus 1 through the liquid line by opening the valve.
 さらに、液体ラインの途中のバルブより下流側には、ドレイントラップを設けることが好ましい。これにより、仮に、バルブが誤作動して、液体ラインに一酸化炭素や水素が流出しても、ドレイントラップに貯留され、ガス製造装置1外に排出されるのを未然に防止することができる。このドレイントラップに代えて、あるいは、ドレイントラップとともに、バルブの誤作動検知機能、バルブが誤作動した際の冗長化対策を施してもよい。
 なお、液体ラインを上述したタンク30に接続して、排出する凝縮水を再利用するようにしてもよい。
Furthermore, it is preferable to provide a drain trap downstream of the valve in the liquid line. As a result, even if the valve malfunctions and carbon monoxide or hydrogen flows out into the liquid line, it can be prevented from being stored in the drain trap and discharged outside the gas production apparatus 1 . . In place of this drain trap, or together with the drain trap, a malfunction detection function of the valve and a redundancy measure when the valve malfunctions may be provided.
Alternatively, the liquid line may be connected to the tank 30 described above to reuse the discharged condensed water.
 ガス分離器は、例えば、低温分離方式(深冷方式)の分離器、圧力スイング吸着(PSA)方式の分離器、膜分離方式の分離器、温度スイング吸着(TSA)方式の分離器、金属イオン(例えば、銅イオン)と有機配位子(例えば、5-アジドイソフタル酸)とを複合化した多孔性配位高分子(Porous Coordination Polymer:PCP)を用いた分離器、アミン吸収を利用した分離器等のうちの1種または2種以上を用いて構成することができる。
 また、ガスラインGL4の気液分離器とガス分離器との間には、バルブを設けるようにしてもよい。この場合、バルブの開度を調整することにより、混合ガスの処理速度(生成ガスの製造速度)を調節することができる。
Gas separators include, for example, cryogenic (cryogenic) separators, pressure swing adsorption (PSA) separators, membrane separation separators, temperature swing adsorption (TSA) separators, metal ion (e.g., copper ions) and organic ligands (e.g., 5-azidoisophthalic acid) are combined into a separator using a porous coordination polymer (PCP), and separation using amine absorption. It can be configured using one or more of the vessels and the like.
A valve may be provided between the gas-liquid separator and the gas separator of the gas line GL4. In this case, the mixed gas processing speed (production gas production speed) can be adjusted by adjusting the opening of the valve.
 本実施形態では、気液分離器から排出される混合ガス中に含まれる一酸化炭素の濃度は、混合ガス全体に対して75~90体積%となっている。
 したがって、比較的低い濃度(75~90体積%)で一酸化炭素を含む生成ガスを利用可能な分野では、混合ガスから一酸化炭素を精製することなく、そのまま次工程に供給することができる。すなわち、ガス分離器を省略することができる。
 かかる分野としては、例えば、生成ガスから微生物(例えば、クロストリジウム等)による発酵により炭素有価物(例えば、エタノール等)を合成する分野、生成ガスを燃料または還元剤として使用して鉄鋼を製造する分野、電気デバイスを製造する分野、一酸化炭素を合成原料とする化学品(ホスゲン、酢酸等)を合成する分野等が挙げられる。
In this embodiment, the concentration of carbon monoxide contained in the mixed gas discharged from the gas-liquid separator is 75 to 90% by volume with respect to the entire mixed gas.
Therefore, in fields where produced gas containing carbon monoxide at a relatively low concentration (75 to 90% by volume) can be used, carbon monoxide can be directly supplied to the next step without purifying carbon monoxide from the mixed gas. That is, the gas separator can be omitted.
Such fields include, for example, the field of synthesizing carbon valuables (e.g., ethanol, etc.) from the generated gas by fermentation with microorganisms (e.g., Clostridium, etc.), and the field of manufacturing steel using the generated gas as fuel or reducing agent. , the field of manufacturing electric devices, and the field of synthesizing chemicals (phosgene, acetic acid, etc.) using carbon monoxide as a synthetic raw material.
 一方、比較的高い濃度(90体積%超)で一酸化炭素を含む生成ガスを利用する必要がある分野では、混合ガスから一酸化炭素を精製して、高濃度で一酸化炭素を含む生成ガスを得る。
 かかる分野としては、例えば、生成ガスを還元剤として使用する分野(高炉)、生成ガスを燃料として使用して火力により発電する分野、生成ガスを原料として化学品を製造する分野、生成ガスを燃料として使用する燃料電池の分野等が挙げられる。
On the other hand, in fields where it is necessary to utilize a product gas containing relatively high concentrations (greater than 90% by volume) of carbon monoxide, the carbon monoxide is purified from the mixed gas to produce a product gas containing high concentrations of carbon monoxide. get
Such fields include, for example, the field of using generated gas as a reducing agent (blast furnace), the field of thermal power generation using generated gas as fuel, the field of manufacturing chemicals using generated gas as a raw material, and the field of manufacturing chemicals using generated gas as fuel. and the field of fuel cells used as
 本実刑形態では、図2に示すように、ガスラインGL4a、GL4bの途中から分岐し、ガスラインGL3a、GL3bに接続される返還ガスラインGL5a、GL5bが設けられている。すなわち、酸化側の反応器4aを通過して出口ポートから排出された排ガスを、再度、同一の酸化側の反応器4aの入口ポート(上流側)に返還するように構成され、還元側の反応器4bを通過して出口ポートから排出された還元ガスを、再度、同一の還元側の反応器4bの入口ポート(上流側)に返還するように構成されている。 In this prison form, as shown in FIG. 2, return gas lines GL5a and GL5b are provided that branch from the middle of the gas lines GL4a and GL4b and are connected to the gas lines GL3a and GL3b. That is, the exhaust gas that has passed through the oxidation-side reactor 4a and is discharged from the outlet port is returned to the inlet port (upstream side) of the same oxidation-side reactor 4a, and the reduction-side reaction is performed. It is configured to return the reducing gas that has passed through the reactor 4b and is discharged from the outlet port to the inlet port (upstream side) of the same reactor 4b on the reduction side.
 なお、上述したように、排ガスと還元ガスとは、所定のタイミングで、供給する反応器4a、4bを切り替える。このため、反応器4a、4bは、酸化側と還元側とに入れ替わる。
 かかる構成によれば、未反応の二酸化炭素(CO)および未反応の水素(H)を再度使用して、二酸化炭素の一酸化炭素への変換および水素(還元物質)による酸化状態の還元剤4Rの還元(再生)を行うことができる。このため、二酸化炭素(炭素有価物)の生成効率をより高めることができる。
In addition, as described above, the exhaust gas and the reducing gas are supplied from the reactors 4a and 4b at predetermined timings. For this reason, the reactors 4a and 4b alternate between the oxidation side and the reduction side.
According to such a configuration, unreacted carbon dioxide (CO 2 ) and unreacted hydrogen (H 2 ) are used again to convert carbon dioxide to carbon monoxide and reduce the oxidation state with hydrogen (reducing substance). Reduction (regeneration) of agent 4R can be performed. Therefore, it is possible to further increase the production efficiency of carbon dioxide (carbon valuables).
 ただし、排ガスおよび還元ガスの双方を同一の反応器4a、4bに返還する必要はなく、還元剤4Rとの反応率が低い方のガスのみを同一の反応器4a、4bに返還するようにしてもよい。この場合、出口ポートから排出された酸化ガスを入口ポートに(酸化側の反応器4a、4bで排ガスを)返還せず、出口ポートから排出された還元ガスを入口ポートに(還元側の反応器4a、4bで還元ガスを)返還するように構成するのが好ましい。
 一般に、二酸化炭素の一酸化炭素への変換効率より、水素(還元物質)による酸化状態の還元剤4Rの還元効率(換言すれば、水素の利用効率)の方が低い。このため、上記構成とすれば、還元剤4Rの再生を円滑に行うことができるので、二酸化炭素の生成効率をより向上させる観点から好ましい。
However, it is not necessary to return both the exhaust gas and the reducing gas to the same reactors 4a and 4b, and only the gas having a lower reaction rate with the reducing agent 4R is returned to the same reactors 4a and 4b. good too. In this case, the oxidizing gas discharged from the outlet port is not returned to the inlet port (exhaust gas from the reactors 4a and 4b on the oxidation side), and the reducing gas discharged from the outlet port is returned to the inlet port (reactor on the reduction side). 4a, 4b are preferably configured to return the reducing gas).
In general, the reduction efficiency of the reducing agent 4R in the oxidized state by hydrogen (reducing substance) (in other words, the utilization efficiency of hydrogen) is lower than the conversion efficiency of carbon dioxide to carbon monoxide. Therefore, with the above configuration, the reducing agent 4R can be smoothly regenerated, which is preferable from the viewpoint of further improving the production efficiency of carbon dioxide.
 次に、ガス製造システム100の使用方法(作用)について説明する。
 [1]まず、ガス切換部8においてガスライン(流路)を切り換えることにより、接続部2と反応器4aとを連通し、還元ガス供給部3と反応器4bとを連通する。
 [2]次に、この状態で、炉20から接続部2を介して排ガスの供給を開始する。
 [3]次に、排ガスは、酸素除去装置(濃度調整部5)を通過する。これにより、排ガスから酸素が除去され、排ガス中に含まれる二酸化炭素の濃度が上昇する。
Next, a usage method (action) of the gas production system 100 will be described.
[1] First, by switching the gas line (flow path) in the gas switching unit 8, the connection unit 2 and the reactor 4a are communicated, and the reducing gas supply unit 3 and the reactor 4b are communicated.
[2] Next, in this state, the supply of exhaust gas from the furnace 20 through the connecting portion 2 is started.
[3] Next, the exhaust gas passes through the oxygen removing device (concentration adjusting section 5). Oxygen is thereby removed from the exhaust gas, and the concentration of carbon dioxide contained in the exhaust gas increases.
 [4]次に、排ガスは、圧縮部6を通過する。これにより、排ガスの圧力が上昇する。
 [5]次に、排ガスは、微成分除去部7を通過する。これにより、圧縮部6で排ガスを圧縮した際に生じる凝縮水や、還元剤4Rの活性を低下させる不活化成分が排ガスから除去される。
 [6]次に、排ガスは、排ガス加熱部10を通過する。これにより、排ガスが加熱される。
 [7]次に、排ガスは、反応器4aに供給される。反応器4aでは、還元剤4Rにより排ガス中の二酸化炭素が一酸化炭素に還元される。このとき、還元剤4Rは、二酸化炭素との接触により酸化状態とされる。
[4] Next, the exhaust gas passes through the compression section 6 . This increases the pressure of the exhaust gas.
[5] Next, the exhaust gas passes through the minor component removing section 7 . As a result, the condensed water generated when the exhaust gas is compressed in the compression unit 6 and the inactivating components that reduce the activity of the reducing agent 4R are removed from the exhaust gas.
[6] Next, the exhaust gas passes through the exhaust gas heating section 10 . This heats the exhaust gas.
[7] Next, the exhaust gas is supplied to the reactor 4a. In the reactor 4a, the carbon dioxide in the exhaust gas is reduced to carbon monoxide by the reducing agent 4R. At this time, the reducing agent 4R is brought into an oxidized state by contact with carbon dioxide.
 上記工程[7]における反応器4a(排ガス、還元剤4R)の温度(反応温度)は、600℃以上であることが好ましく、650~1100℃であることがより好ましく、700~1000℃であることがさらに好ましい。反応温度を上記範囲に設定すれば、例えば、二酸化炭素を一酸化炭素へ変換する際の吸熱反応による還元剤4Rの急激な温度低下を防止または抑制することができるため、反応器4aにおける二酸化炭素の還元反応をより円滑に進行させることができる。 The temperature (reaction temperature) of the reactor 4a (exhaust gas, reducing agent 4R) in the step [7] is preferably 600°C or higher, more preferably 650 to 1100°C, and more preferably 700 to 1000°C. is more preferred. If the reaction temperature is set within the above range, for example, a rapid temperature drop of the reducing agent 4R due to an endothermic reaction during conversion of carbon dioxide to carbon monoxide can be prevented or suppressed. can proceed more smoothly.
 [9]排ガスは、反応器4aからガスラインGL4aに排出される。
 [10]次に、排ガスは、返還ガスラインGL5aを介して返還され、ガスラインGL3aから供給される排ガスと混合され、再度、反応器4aに供給される。上記と同様に、反応器4aでは、還元剤4Rにより排ガス中の二酸化炭素が一酸化炭素に還元される。このとき、還元剤4Rは、二酸化炭素との接触により酸化状態とされる。
 反応器42aの条件は、反応器41aと同様にすることができる。
 なお、反応器4aからガスラインGL4aに排出された排ガスは、その一部のみを返還ガスラインGL5aを介して返還するようにしてもよい。この場合、残部の排ガスは、ガスラインGL4に排出される。
[9] Exhaust gas is discharged from the reactor 4a to the gas line GL4a.
[10] Next, the exhaust gas is returned via the return gas line GL5a, mixed with the exhaust gas supplied from the gas line GL3a, and supplied to the reactor 4a again. Similarly to the above, in the reactor 4a, the reducing agent 4R reduces carbon dioxide in the exhaust gas to carbon monoxide. At this time, the reducing agent 4R is brought into an oxidized state by contact with carbon dioxide.
The conditions of the reactor 42a can be the same as those of the reactor 41a.
It should be noted that only part of the exhaust gas discharged from the reactor 4a to the gas line GL4a may be returned via the return gas line GL5a. In this case, the remaining exhaust gas is discharged to the gas line GL4.
 [11]上記工程[2]~[10]と並行して、タンク30から水(還元ガス原料)を水素発生装置(還元ガス供給部3)に供給し、水から水素を生成する。
 [12]次に、水素を含む還元ガスは、還元ガス加熱部11を通過する。これにより、還元ガスが加熱される。
 [13]次に、還元ガスは、反応器4bに供給される。反応器4bでは、還元ガス(水素)との接触により酸化状態の還元剤4Rが還元(再生)される。このとき、水が生成される。
[11] In parallel with the above steps [2] to [10], water (reducing gas raw material) is supplied from the tank 30 to the hydrogen generator (reducing gas supply unit 3) to generate hydrogen from water.
[12] Next, the reducing gas containing hydrogen passes through the reducing gas heating section 11 . This heats the reducing gas.
[13] Next, the reducing gas is supplied to the reactor 4b. In the reactor 4b, the oxidized reducing agent 4R is reduced (regenerated) by contact with the reducing gas (hydrogen). At this time, water is produced.
 上記工程[13]における反応器4b(還元ガス、還元剤4R)の温度(反応温度)は、600℃以上であることが好ましく、650~1100℃であることがより好ましく、700~1000℃であることがさらに好ましい。反応温度を上記範囲に設定すれば、例えば、酸化状態の還元剤4Rを還元(再生)する際の吸熱反応による還元剤4Rの急激な温度低下を防止または抑制することができるため、反応器4bにおける還元剤4Rの還元反応をより円滑に進行させることができる。 The temperature (reaction temperature) of the reactor 4b (reducing gas, reducing agent 4R) in the above step [13] is preferably 600°C or higher, more preferably 650 to 1100°C, and more preferably 700 to 1000°C. It is even more preferable to have If the reaction temperature is set within the above range, for example, a rapid temperature drop of the reducing agent 4R due to an endothermic reaction during reduction (regeneration) of the reducing agent 4R in an oxidized state can be prevented or suppressed. The reduction reaction of the reducing agent 4R in can proceed more smoothly.
 [14]還元ガスは、反応器4bからガスラインGL4bに排出される。
 [15]次に、還元ガスは、返還ガスラインGL5bを介して返還され、ガスラインGL3bから供給される還元ガスと混合され、反応器4bに供給される。上記と同様に、反応器4bでは、還元ガス(水素)との接触により酸化状態の還元剤4Rが還元(再生)される。このとき、水が生成される。
 反応器4bの条件は、反応器4bと同様にすることができる。
[14] The reducing gas is discharged from the reactor 4b to the gas line GL4b.
[15] Next, the reducing gas is returned through the return gas line GL5b, mixed with the reducing gas supplied from the gas line GL3b, and supplied to the reactor 4b. In the same manner as described above, in the reactor 4b, the reducing agent 4R in an oxidized state is reduced (regenerated) by contact with a reducing gas (hydrogen). At this time, water is produced.
The conditions of reactor 4b can be similar to reactor 4b.
 [16]次に、反応器4a、4bを通過したガスは、合流して混合ガスが生成される。この時点で、混合ガスの温度は、通常、600~650℃である。この時点での混合ガスの温度が上記範囲であれば、反応器4a、4b内の温度が十分に高温に維持されていることを意味し、還元剤4Rによる二酸化炭素の一酸化炭素への変換や、還元ガスによる還元剤4Rの還元が効率よく進行していると判断することができる。
 [17]次に、混合ガスは、ガス精製部9に至るまでに、100~300℃にまで冷却される。
[16] Next, the gases that have passed through the reactors 4a and 4b join together to produce a mixed gas. At this point, the temperature of the mixed gas is typically 600-650°C. If the temperature of the mixed gas at this time is within the above range, it means that the temperature in the reactors 4a and 4b is maintained at a sufficiently high temperature, and the conversion of carbon dioxide to carbon monoxide by the reducing agent 4R Also, it can be determined that the reduction of the reducing agent 4R by the reducing gas is progressing efficiently.
[17] Next, the mixed gas is cooled to 100 to 300° C. before reaching the gas refining section 9 .
 [18]次に、混合ガスは、ガス精製部9を通過する。これにより、例えば、生成された凝縮水および凝縮水に溶解する二酸化炭素等が除去される。その結果、混合ガスから一酸化炭素が精製され、一酸化炭素を高濃度で含む生成ガスが得られる。
 なお、得られる生成ガスの温度は、20~50℃である。
 [19]次に、生成ガスは、生成ガス排出部40からガス製造装置1外に排出され、次工程に供される。
 なお、ガスラインGL4a、GL4bは、ガス合流部J4において合流させなくてもよい。この場合、ガスラインGL4a、GL4bを介して、反応器4a、4bを通過した排ガスおよび還元ガスを独立して、次工程に供するようにしてもよい。
[18] Next, the mixed gas passes through the gas refining section 9 . As a result, for example, the generated condensed water and carbon dioxide dissolved in the condensed water are removed. As a result, carbon monoxide is purified from the mixed gas to obtain a product gas containing a high concentration of carbon monoxide.
The temperature of the produced gas obtained is 20 to 50°C.
[19] Next, the generated gas is discharged from the generated gas discharge unit 40 to the outside of the gas production apparatus 1 and supplied to the next step.
Note that the gas lines GL4a and GL4b do not have to join at the gas junction J4. In this case, the exhaust gas and the reducing gas that have passed through the reactors 4a and 4b may be independently supplied to the next step via the gas lines GL4a and GL4b.
 <第2実施形態>
 反応部4は、次のような構成とすることもできる。
 図3は、第2実施形態の反応部の構成を示す概略図である。
 以下、第2実施形態の反応部4について説明するが、第1実施形態の反応部4との相違点を中心に説明し、同様の事項については、その説明を省略する。
<Second embodiment>
The reaction section 4 can also be configured as follows.
FIG. 3 is a schematic diagram showing the configuration of the reaction section of the second embodiment.
Hereinafter, the reaction section 4 of the second embodiment will be described, but the description will focus on the differences from the reaction section 4 of the first embodiment, and the description of the same items will be omitted.
 第2実施形態の反応部4では、ガスラインGL4a、GL4bと返還ガスラインGL5a、GL5bとの分岐部(連絡部)に、分離部19が設けられている。この分離部19は、各反応器4a、4bの出口ポートに接続され、反応器4a、4bを通過したガス(排ガスまたは還元ガス)に含まれる還元剤4Rとの反応による生成物を分離するように構成される。
 本実施形態では、例えば、還元側の分離部19は、反応器4bを通過した還元ガスに含まれる水(還元剤4Rとの反応による生成物)を分離するように構成されている。なお、酸化側の分離部19も、反応器4aを通過した排ガスに含まれる一酸化炭素(還元剤4Rとの反応による生成物)を分離するように構成されてもよい。
In the reaction section 4 of the second embodiment, a separation section 19 is provided at a branch section (communication section) between the gas lines GL4a and GL4b and the return gas lines GL5a and GL5b. This separation unit 19 is connected to the outlet port of each of the reactors 4a and 4b so as to separate the product from the reaction with the reducing agent 4R contained in the gas (exhaust gas or reducing gas) that has passed through the reactors 4a and 4b. configured to
In the present embodiment, for example, the separation unit 19 on the reduction side is configured to separate water (a product of the reaction with the reducing agent 4R) contained in the reducing gas that has passed through the reactor 4b. Note that the separation unit 19 on the oxidation side may also be configured to separate carbon monoxide (a product of the reaction with the reducing agent 4R) contained in the exhaust gas that has passed through the reactor 4a.
 本実施形態では、例えば、還元側の反応器4bを通過した還元ガスに含まれる水(還元剤4Rとの反応による生成物)分離するように構成されている。この場合、返還される還元ガス(分離ガス)に含まれる水の量が少なくなるため、還元ガスを返還した場合でも、還元剤4Rの還元効率が低下するのを防止することができる。また、混合ガス中に含まれる水の量も低減することができる。
 分離部19で分離された水は、ガスラインGL19bから排出される。なお、ガスラインGL19bから排出されるガスには、水以外の他のガス成分が含まれていてもよい。
In this embodiment, for example, the water contained in the reducing gas that has passed through the reactor 4b on the reducing side (the product of the reaction with the reducing agent 4R) is separated. In this case, since the amount of water contained in the returned reducing gas (separated gas) is reduced, it is possible to prevent the reduction efficiency of the reducing agent 4R from decreasing even when the reducing gas is returned. Also, the amount of water contained in the mixed gas can be reduced.
The water separated by the separation unit 19 is discharged from the gas line GL19b. The gas discharged from the gas line GL19b may contain gas components other than water.
 一方、本実施形態では、酸化側の反応器4aを通過した排ガスは、ガスラインGL4aを介してガスラインGL4に排出される。
 なお、酸化側の反応器4aに接続された分離部19においても、排ガスに含まれる一酸化炭素(還元剤4Rとの反応による生成物)分離するように構成してもよい。
On the other hand, in the present embodiment, the exhaust gas that has passed through the oxidation-side reactor 4a is discharged to the gas line GL4 via the gas line GL4a.
The separation unit 19 connected to the oxidation-side reactor 4a may also be configured to separate carbon monoxide (a product of the reaction with the reducing agent 4R) contained in the exhaust gas.
 分離部19は、水(生成物)を冷却により凝縮する凝縮器で構成してもよく、水(生成物)の分子の通過を許容し、それ以外の分子の通過を阻止する分離膜で構成してもよく、水(生成物)を物理的または化学的に捕捉する捕捉材で構成してもよく、冷却器と分離膜と捕捉材のうちの任意の2以上の組み合わせで構成してもよい。
 凝縮器は、例えば、低温分離方式(深冷方式)の凝縮器、温度スイング吸着(TSA)方式の凝縮器等で構成することができる。
 また、分離膜は、金属、無機酸化物または金属有機構造体(Metal Organic Frameworks:MOF)で構成することができる。
The separation unit 19 may be composed of a condenser that condenses water (product) by cooling, and is composed of a separation membrane that allows passage of water (product) molecules and blocks passage of other molecules. It may be composed of a capture material that physically or chemically captures water (product), or it may be composed of a combination of any two or more of a cooler, a separation membrane, and a capture material. good.
The condenser can be composed of, for example, a cryogenic separation type (cryogenic type) condenser, a temperature swing adsorption (TSA) type condenser, or the like.
In addition, the separator may be composed of metal, inorganic oxide, or metal organic frameworks (MOF).
 ここで、金属としては、例えば、チタン、アルミニウム、銅、ニッケル、クロム、コバルトまたはこれらを含む合金等が挙げられる。金属を用いる場合、分離膜は、好ましくは、空孔率が80%以上の多孔質体とされる。
 無機酸化物としては、例えば、シリカ、ゼオライト等が挙げられる。
 また、金属有機構造体としては、例えば、硝酸亜鉛水和物とテレフタル酸ジアニオンとの構造体、硝酸銅水和物とトリメシン酸トリアニオンとの構造体等が挙げられる。
Examples of metals include titanium, aluminum, copper, nickel, chromium, cobalt, and alloys containing these. When using a metal, the separation membrane is preferably a porous body with a porosity of 80% or more.
Examples of inorganic oxides include silica and zeolite.
Examples of the metal organic structure include a structure of zinc nitrate hydrate and terephthalate dianion, a structure of copper nitrate hydrate and trimesate trianion, and the like.
 分離膜は、隣接する空孔同士が連通する連続空孔(筒壁を貫通する細孔)を備える多孔質体で構成されていることが好ましい。かかる構成の分離膜であれば、水または一酸化炭素の透過率を高めて、水と水素との分離および/または一酸化炭素と二酸化炭素との分離をより円滑かつ確実に行うことができる。
 分離膜の空孔率は、特に限定されないが、10~90%であることが好ましく、20~60%であることがより好ましい。これにより、分離膜の機械的強度が極端に低下するのを防止しつつ、水または一酸化炭素の透過率を十分に高く維持することができる。
 なお、分離膜の形状は、特に限定されず、円筒状、四角形、六角形のような角筒状等が挙げられる。
The separation membrane is preferably composed of a porous material having continuous pores (pores penetrating through the cylinder wall) in which adjacent pores communicate with each other. With a separation membrane having such a configuration, the permeability of water or carbon monoxide can be increased, and the separation of water and hydrogen and/or the separation of carbon monoxide and carbon dioxide can be performed more smoothly and reliably.
Although the porosity of the separation membrane is not particularly limited, it is preferably 10 to 90%, more preferably 20 to 60%. As a result, it is possible to maintain a sufficiently high water or carbon monoxide permeability while preventing the mechanical strength of the separation membrane from significantly deteriorating.
The shape of the separation membrane is not particularly limited, and examples thereof include a cylindrical shape, a rectangular shape, and a rectangular tube shape such as a hexagonal shape.
 二酸化炭素の一酸化炭素への変換効率をより高める観点からは、酸化状態の還元剤4Rの還元(再生)効率を高めることが有効である。
 この場合、分離膜の平均空孔径は、600pm以下であるのが好ましく、400~500pmであるのがより好ましい。これにより、水と水素との分離効率をより向上させることができる。
 なお、分離膜は、通常、ハウジングに収容した状態で使用される。この場合、ハウジング内の分離膜の外側の空間は、減圧してもよいし、キャリアガス(スウィープガス)を通過させるようにしてもよい。キャリアガスとしては、例えば、ヘリウム、アルゴンのような不活性ガス等が挙げられる。
From the viewpoint of further increasing the conversion efficiency of carbon dioxide to carbon monoxide, it is effective to increase the reduction (regeneration) efficiency of the reducing agent 4R in an oxidized state.
In this case, the average pore size of the separation membrane is preferably 600 pm or less, more preferably 400 to 500 pm. Thereby, the separation efficiency between water and hydrogen can be further improved.
Incidentally, the separation membrane is usually used in a state of being housed in a housing. In this case, the space outside the separation membrane in the housing may be depressurized, or may be allowed to pass through the carrier gas (sweep gas). Carrier gases include, for example, inert gases such as helium and argon.
 また、分離膜は、親水性を備えることが好ましい。分離膜が親水性を有すれば、水の分離膜に対する親和性が高まり、水が分離膜をより円滑に透過し易くなる。
 分離膜に親水性を付与する方法としては、無機酸化物中の金属元素の比率を変更(例えば、Al/Si比を高める等)して分離膜の極性を向上させる方法、分離膜を親水性ポリマーで被覆する方法、分離膜を親水性基(極性基)を有するカップリング剤で処理する方法、分離膜に対してプラズマ処理、コロナ放電処理等を行う方法等が挙げられる。
 さらに、分離膜の表面電位を調整することにより、水に対する親和性を制御するようにしてもよい。
Also, the separation membrane preferably has hydrophilicity. If the separation membrane has hydrophilicity, the affinity of water for the separation membrane increases, and water easily permeates the separation membrane more smoothly.
Methods of imparting hydrophilicity to the separation membrane include a method of changing the ratio of metal elements in the inorganic oxide (for example, increasing the Al/Si ratio) to improve the polarity of the separation membrane, and a method of improving the polarity of the separation membrane. Examples include a method of coating with a polymer, a method of treating the separation membrane with a coupling agent having a hydrophilic group (polar group), and a method of subjecting the separation membrane to plasma treatment, corona discharge treatment, or the like.
Furthermore, the affinity for water may be controlled by adjusting the surface potential of the separation membrane.
 一方、酸化側の反応器4aを通過した排ガスに対して分離膜において、一酸化炭素と二酸化炭素との分離を優先させて行う場合、反応器4a、4bの双方を通過した排ガスおよび還元ガスに対して分離膜において、水と水素との分離および一酸化炭素と二酸化炭素との分離の双方を同時に行う場合には、分離膜の構成材料、空孔率、平均空孔径、親水性または疎水性の程度、表面電位等を適宜組み合わせて設定するようにすればよい。
 かかる分離膜で反応器4a、4bの管体41を構成することも考えられるが、この場合、分離膜が熱により劣化するため、反応器4a、4bの温度(反応温度)を高温に設定することができない。
 これに対して、分離膜を反応器4a、4b外に配置することにより、反応器4a、4bの温度を比較的高温に設定することができ、よって、二酸化炭素の一酸化炭素への変換効率および還元ガスによる還元剤4Rの再生(還元)効率をより高めることができる。
On the other hand, when the separation membrane preferentially separates carbon monoxide and carbon dioxide from the exhaust gas that has passed through the reactor 4a on the oxidation side, the exhaust gas and the reducing gas that have passed through both the reactors 4a and 4b On the other hand, when the separation of water and hydrogen and the separation of carbon monoxide and carbon dioxide are performed simultaneously in the separation membrane, the constituent materials of the separation membrane, the porosity, the average pore size, the hydrophilicity or hydrophobicity , the surface potential, etc. may be appropriately combined.
Although it is conceivable to configure the tubular bodies 41 of the reactors 4a and 4b with such separation membranes, in this case, the separation membranes are degraded by heat, so the temperature (reaction temperature) of the reactors 4a and 4b is set to a high temperature. I can't.
On the other hand, by arranging the separation membranes outside the reactors 4a and 4b, the temperatures of the reactors 4a and 4b can be set to relatively high temperatures, thereby improving the conversion efficiency of carbon dioxide to carbon monoxide. and the efficiency of regeneration (reduction) of the reducing agent 4R by the reducing gas can be further enhanced.
 さらに、水を物理的または化学的に捕捉する捕捉材としては、例えば、ゼオライト、シリカゲル、デシクレイ(クレイ系乾燥剤)、塩化カルシウム、酸化カルシウム等が挙げられる。
 一方、一酸化炭素を物理的または化学的に捕捉する捕捉材としては、例えば、銅イオンと5-アジドイソフタル酸との錯体、銅アンミン錯体、塩化銅アルミニウム錯体等が挙げられる。
Furthermore, examples of scavengers that physically or chemically capture water include zeolite, silica gel, deciclay (clay-based desiccant), calcium chloride, calcium oxide, and the like.
On the other hand, scavengers that physically or chemically scavenge carbon monoxide include, for example, complexes of copper ions and 5-azidoisophthalic acid, copper ammine complexes, copper aluminum chloride complexes, and the like.
 <第3実施形態>
 反応部4は、次のような構成とすることもできる。
 図4は、第3実施形態の反応部の構成を示す概略図である。
 以下、第3実施形態の反応部4について説明するが、第1または第2実施形態の反応部4との相違点を中心に説明し、同様の事項については、その説明を省略する。
<Third embodiment>
The reaction section 4 can also be configured as follows.
FIG. 4 is a schematic diagram showing the configuration of the reaction section of the third embodiment.
Hereinafter, the reaction section 4 of the third embodiment will be described, but the description will focus on the differences from the reaction section 4 of the first or second embodiment, and the description of the same items will be omitted.
 第3実施形態の反応部4では、第2実施形態の返還ガスラインGL5a、GL5bにベントライン(ベント部)VL6a、6bが接続されている。
 本実施形態では、例えば、還元側のベントラインVL6bは、分離部19で分離された水素(分離ガス)の一部を排気するように構成されている。なお、酸化側のベントラインVL6aも、分離部19で分離された二酸化炭素(分離ガス)の一部を排気するように構成されてもよい。
 かかるベントラインVL6a、VL6bを接続し、還元側で分離ガスの一部を排気することにより、一酸化炭素、二酸化炭素、副生物であるメタン等のリサイクル系内における存在量を低減することができる。このため、加熱および/または冷却に要するコストを低減して、水素転化率の評価を正確に行うことができる。その結果、ガス製造装置1(ガス製造システム100)のオペレーションが容易となる。
In the reaction section 4 of the third embodiment, the return gas lines GL5a and GL5b of the second embodiment are connected to vent lines (vent portions) VL6a and VL6b.
In the present embodiment, for example, the reduction-side vent line VL6b is configured to exhaust a part of the hydrogen (separated gas) separated by the separation unit 19 . Note that the oxidation-side vent line VL6a may also be configured to exhaust part of the carbon dioxide (separated gas) separated by the separation unit 19 .
By connecting the vent lines VL6a and VL6b and exhausting part of the separated gas on the reduction side, the amount of carbon monoxide, carbon dioxide, by-product methane, etc. in the recycling system can be reduced. . Therefore, the cost required for heating and/or cooling can be reduced, and the hydrogen conversion rate can be evaluated accurately. As a result, the operation of the gas production device 1 (gas production system 100) is facilitated.
 <第4実施形態>
 反応部4は、次のような構成とすることもできる。
 図5は、第4実施形態の反応部の構成を示す概略図である。
 以下、第4実施形態の反応部4について説明するが、第1~第3実施形態の反応部4との相違点を中心に説明し、同様の事項については、その説明を省略する。
<Fourth embodiment>
The reaction section 4 can also be configured as follows.
FIG. 5 is a schematic diagram showing the configuration of the reaction section of the fourth embodiment.
The reaction section 4 of the fourth embodiment will be described below, but the description will focus on the differences from the reaction section 4 of the first to third embodiments, and the description of the same items will be omitted.
 第4実施形態の反応部4は、さらに、熱交換器(エコノマイザ)18を有している。
 この熱交換器18は、反応器4a、4bと分離部19との間に接続され、返還ガスラインGL5a、GL5bを構成する一部の配管を屈曲させ、ガスラインGL4a、GL4bを構成する配管に接近させて構成されている。
 かかる構成によれば、分離部19で分離され、入口ポートに返還される分離ガスと、反応器4a、4bを通過して出口ポートから排出されるガスとの間で熱交換により加熱するため、熱の有効利用を図ることができる。
 かかる熱交換器18は、例えば、ジャケット式熱交換器、浸漬コイル式熱交換器、二重管式熱交換器、シェル&チューブ式熱交換器、プレート式熱交換器、スパイラル式熱交換器等として構成することができる。
The reaction section 4 of the fourth embodiment further has a heat exchanger (economizer) 18 .
The heat exchanger 18 is connected between the reactors 4a, 4b and the separation section 19, and bends a part of the pipes constituting the return gas lines GL5a, GL5b to the pipes constituting the gas lines GL4a, GL4b. It is constructed in close proximity.
According to such a configuration, the separated gas separated in the separation unit 19 and returned to the inlet port and the gas discharged from the outlet port after passing through the reactors 4a and 4b are heated by heat exchange, Effective use of heat can be achieved.
The heat exchanger 18 is, for example, a jacket heat exchanger, an immersion coil heat exchanger, a double tube heat exchanger, a shell and tube heat exchanger, a plate heat exchanger, a spiral heat exchanger, or the like. can be configured as
 <第5実施形態>
 反応部4は、次のような構成とすることもできる。
 図6は、第5実施形態の反応部の構成を示す概略図である。
 以下、第5実施形態の反応部4について説明するが、第1~第4実施形態の反応部4との相違点を中心に説明し、同様の事項については、その説明を省略する。
 なお、図6には、酸化側および還元側を区別することなく、示してある。
<Fifth embodiment>
The reaction section 4 can also be configured as follows.
FIG. 6 is a schematic diagram showing the configuration of the reaction section of the fifth embodiment.
The reaction section 4 of the fifth embodiment will be described below, but the description will focus on the differences from the reaction section 4 of the first to fourth embodiments, and the description of the same items will be omitted.
It should be noted that FIG. 6 does not distinguish between the oxidation side and the reduction side.
 第5実施形態の反応部4では、最下流の反応器4a,4bと、酸化ガスまたは還元ガスを返還する最上流の箇所との間に、2つ以上(少なくとも1つ)の反応器4a,4bが設けられている。
 具体的に、図6(a)に示す構成では、複数の反応器4a,4bが直列に接続され、最下流の反応器4a,4bの出口ポートに分離部19が接続されている。また、返還ガスラインGL5a、GL5bは、最上流の反応器4a,4bの入口ポート、中間の反応器4a,4bの入口ポート、最下流の反応器4a,4bの入口ポートに接続されている。なお、分離ガスは、任意の箇所に返還することができる。
In the reaction section 4 of the fifth embodiment, two or more (at least one) reactors 4a, 4b are provided between the most downstream reactors 4a, 4b and the most upstream location where the oxidizing gas or reducing gas is returned. 4b is provided.
Specifically, in the configuration shown in FIG. 6(a), a plurality of reactors 4a and 4b are connected in series, and the separation section 19 is connected to the outlet port of the most downstream reactors 4a and 4b. The return gas lines GL5a and GL5b are connected to the inlet ports of the most upstream reactors 4a and 4b, the intermediate reactors 4a and 4b, and the most downstream reactors 4a and 4b. Incidentally, the separated gas can be returned to any place.
 一方、図6(b)に示す構成では、複数の反応器4a,4bが直列に接続され、各反応器4a,4bの出口ポートに分離部19が接続されている。また、各返還ガスラインGL5a、GL5bは、1つの合流し、最上流の反応器4a,4bの入口ポートに接続されている。
 また、任意の返還ガスラインGL5a、GL5bを使用して、所定の反応器4a,4bからの酸化ガスまたは還元ガスを返還することができる。
 なお、図6(a)に示す構成と図6(b)に示す構成とを組み合わせることもできる。
On the other hand, in the configuration shown in FIG. 6(b), a plurality of reactors 4a and 4b are connected in series, and the separation section 19 is connected to the outlet port of each reactor 4a and 4b. Each of the return gas lines GL5a and GL5b joins together and is connected to the inlet ports of the most upstream reactors 4a and 4b.
Also, the optional return gas lines GL5a, GL5b can be used to return the oxidizing gas or reducing gas from the given reactors 4a, 4b.
The configuration shown in FIG. 6(a) and the configuration shown in FIG. 6(b) can also be combined.
 図6(a)および図6(b)に示す構成では、このラインは、隣り合う反応器4a,4b同士の間に接続された分離部19を備える。そして、分離部19は、各反応器4a,4bを通過した排ガス(酸化ガス)または還元ガスに含まれる還元剤4Rとの反応による生成する一酸化炭素または水(生成物)を分離することにより、還元剤4Rとの未反応の二酸化炭素または水素(還元物質)の純度が高まった分離ガスが生成され、反応器4a,4bの上流側に返還されるようになる。この場合、分離ガスは、その一部または全部を返還することができる。分離ガスの一部を返還する場合、返還ガスラインGL5a、GL5bの途中に、図4に示すようなベントラインが接続され、このベントラインを介して分離ガスの一部が排気される。
 以上説明したようなガス製造装置1(ガス製造システム100)によれば、二酸化炭素を含む酸化ガスと還元物質を含む還元ガスとを使用して、効率よく炭素有価物を生成することができる。
In the configuration shown in Figures 6a and 6b, this line comprises a separation section 19 connected between adjacent reactors 4a, 4b. Then, the separation unit 19 separates carbon monoxide or water (product) generated by the reaction with the reducing agent 4R contained in the exhaust gas (oxidizing gas) or reducing gas that has passed through the reactors 4a and 4b. , a separated gas with increased purity of unreacted carbon dioxide or hydrogen (reduced substance) with the reducing agent 4R is generated and returned to the upstream side of the reactors 4a and 4b. In this case, the separated gas can be partially or wholly returned. When part of the separated gas is returned, a vent line as shown in FIG. 4 is connected in the middle of the return gas lines GL5a and GL5b, and part of the separated gas is exhausted through this vent line.
According to the gas production apparatus 1 (gas production system 100) as described above, it is possible to efficiently produce carbon valuables using an oxidizing gas containing carbon dioxide and a reducing gas containing reducing substances.
 さらに、次に記載の各態様で提供されてもよい。 In addition, it may be provided in each of the following aspects.
(1)ガス製造装置であって、複数の反応器を有し、各前記反応器は、還元剤を収容し、二酸化炭素を含む酸化ガスと還元物質を含む還元ガスとを切り換えて供給可能に構成され、前記還元剤は、前記二酸化炭素を還元することにより炭素有価物を生成する金属および金属酸化物の少なくとも一方を含み、前記二酸化炭素との接触により酸化状態とされた後、前記還元物質との接触により還元され、各前記反応器を通過した前記酸化ガスおよび前記還元ガスの少なくとも一方の一部または全部を、再度、同一の前記反応器の上流側に返還するように構成される、ガス製造装置。 (1) A gas production apparatus having a plurality of reactors, each of which contains a reducing agent and can switch between an oxidizing gas containing carbon dioxide and a reducing gas containing a reducing substance to be supplied. wherein the reducing agent includes at least one of a metal and a metal oxide that generate a carbon value by reducing the carbon dioxide, and after being brought into an oxidized state by contact with the carbon dioxide, the reducing substance A part or all of at least one of the oxidizing gas and the reducing gas that has passed through each of the reactors is returned to the upstream side of the same reactor again, Gas production equipment.
(2)上記(1)に記載のガス製造装置において、さらに、分離部を有し、前記分離部は、各前記反応器に接続され、前記反応器を通過したガスに含まれる前記還元剤との反応による生成物を分離するように構成される、ガス製造装置。 (2) The gas production apparatus according to (1) above further includes a separation unit, the separation unit is connected to each of the reactors, and the reducing agent contained in the gas that has passed through the reactors is separated from the reducing agent. gas production device configured to separate the products of the reaction of
(3)上記(2)に記載のガス製造装置において、前記分離部は、前記生成物を冷却により凝縮する凝縮器を備える、ガス製造装置。 (3) The gas production apparatus according to (2) above, wherein the separation unit includes a condenser that condenses the product by cooling.
(4)上記(2)または(3)に記載のガス製造装置において、前記分離部は、前記生成物の分子の通過を許容し、それ以外の分子の通過を阻止する分離膜を備える、ガス製造装置。 (4) In the gas production apparatus according to (2) or (3) above, the separation unit includes a separation membrane that allows passage of molecules of the product and blocks passage of other molecules. Manufacturing equipment.
(5)上記(2)~(4)のいずれか1つに記載のガス製造装置において、前記分離部は、前記生成物を物理的または化学的に捕捉する捕捉材を備える、ガス製造装置。 (5) The gas producing apparatus according to any one of (2) to (4) above, wherein the separation unit includes a capturing material that physically or chemically captures the product.
(6)上記(2)~(5)のいずれか1つに記載のガス製造装置において、さらに、熱交換器を有し、前記熱交換器は、前記反応器と前記分離部との間に接続され、前記分離部で分離され、前記反応器の上流側に返還される分離ガスと、前記反応器を通過したガスとの間で熱交換するように構成される、ガス製造装置。 (6) The gas production apparatus according to any one of (2) to (5) above further includes a heat exchanger, and the heat exchanger is located between the reactor and the separation section. A gas production apparatus configured to exchange heat between a separated gas that is connected, separated in the separating section and returned to the upstream side of the reactor, and a gas that has passed through the reactor.
(7)上記(2)~(6)のいずれか1つに記載のガス製造装置において、さらに、ベント部を有し、前記ベント部は、前記分離部で分離され、前記反応器の上流側に返還される分離ガスの一部を排気するように構成される、ガス製造装置。 (7) The gas production apparatus according to any one of (2) to (6) above, further comprising a vent section, the vent section is separated by the separation section, and is located upstream of the reactor. A gas production unit configured to exhaust a portion of the separated gas that is returned to the gas generator.
(8)上記(1)~(7)のいずれか1つに記載のガス製造装置において、前記反応器と、前記酸化ガスまたは前記還元ガスを返還する上流側の箇所との間に、少なくとも1つの前記反応器が設けられている、ガス製造装置。 (8) In the gas production apparatus according to any one of (1) to (7) above, at least one A gas production apparatus comprising two reactors.
(9)上記(8)に記載のガス製造装置において、さらに、隣り合う前記反応器同士の間に接続された分離部を有し、前記分離部は、各前記反応器を通過した前記酸化ガスまたは前記還元ガスに含まれる前記還元剤との反応による生成物を分離することにより、前記還元剤との未反応の前記二酸化炭素または前記還元物質の純度が高まった分離ガスの一部または全部を前記反応器の上流側に返還するように構成される、ガス製造装置。 (9) The gas production apparatus according to (8) above, further comprising a separation unit connected between the adjacent reactors, wherein the separation unit includes the oxidizing gas that has passed through each of the reactors. Alternatively, by separating the product of the reaction with the reducing agent contained in the reducing gas, part or all of the separated gas in which the purity of the carbon dioxide or the reducing substance that has not reacted with the reducing agent is increased A gas production apparatus configured for return upstream of said reactor.
(10)上記(1)~(9)のいずれか1つに記載のガス製造装置において、前記反応器を通過した前記酸化ガスを返還せず、前記反応器を通過した前記還元ガスを返還するように構成される、ガス製造装置。
 もちろん、この限りではない。
(10) In the gas production apparatus according to any one of (1) to (9) above, the reducing gas that has passed through the reactor is returned without returning the oxidizing gas that has passed through the reactor. A gas production device, configured to:
Of course, this is not the only case.
 既述のとおり、本発明に係る種々の実施形態を説明したが、これらは、例として提示したものであり、発明の範囲を何ら限定するものではない。当該新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。当該実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 As described above, various embodiments of the present invention have been described, but these are presented as examples and do not limit the scope of the invention in any way. The novel embodiment can be embodied in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. The embodiment and its modifications are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and equivalents thereof.
 例えば、本発明のガス製造装置は、上記実施形態に対して、他の任意の追加の構成を有していてもよく、同様の機能を発揮する任意の構成と置換されていてよく、一部の構成が省略されていてもよい。
 また、上記第1~第5実施形態の任意の構成を組み合わせるようにしてもよい。
 上記実施形態では、反応器を多管式の反応装置として説明したが、管体41を省略して、ハウジング42に、直接、還元剤4Rを充填して構成してもよい。
 上記実施形態では、還元ガスとして水素を含むガスを代表に説明したが、還元ガスには、還元物質として、水素に代えてまたは水素とともに、炭化水素(例えば、メタン、エタン、アセチレン等)およびアンモニアから選択される少なくとも1種を含むガスを使用することもできる。
For example, the gas production apparatus of the present invention may have any other additional configuration with respect to the above embodiments, and may be replaced with any configuration that exhibits similar functions. may be omitted.
Also, any configuration of the first to fifth embodiments may be combined.
In the above embodiment, the reactor is described as a multi-tubular reactor, but the tubular body 41 may be omitted and the housing 42 may be filled directly with the reducing agent 4R.
In the above embodiments, a gas containing hydrogen was described as a representative example of the reducing gas, but the reducing gas includes hydrocarbons (eg, methane, ethane, acetylene, etc.) and ammonia as reducing substances instead of or in addition to hydrogen. A gas containing at least one selected from can also be used.
1     :ガス製造装置
2     :接続部
3     :還元ガス供給部
4     :反応部
41    :管体
42    :ハウジング
43    :空間
4R    :還元剤
4a    :反応器
4b    :反応器
5     :濃度調整部
6     :圧縮部
7     :微成分除去部
8     :ガス切換部
8a    :第1ガス切換部
8b    :第2ガス切換部
9     :ガス精製部
10    :排ガス加熱部
11    :還元ガス加熱部
18    :熱交換器
19    :分離部
20    :炉
30    :タンク
40    :生成ガス排出部
100   :ガス製造システム
GL1   :ガスライン
GL2   :ガスライン
GL3a  :ガスライン
GL3b  :ガスライン
GL3c  :ガスライン
GL3d  :ガスライン
GL4   :ガスライン
GL4a  :ガスライン
GL4b  :ガスライン
GL4c  :ガスライン
GL4d  :ガスライン
GL5a  :返還ガスライン
GL5b  :返還ガスライン
GL19a :ガスライン
GL19b :ガスライン
VL6a  :ベントライン
VL6b  :ベントライン
J4    :ガス合流部
Reference Signs List 1: Gas production device 2: Connection part 3: Reducing gas supply part 4: Reaction part 41: Tubular body 42: Housing 43: Space 4R: Reducing agent 4a: Reactor 4b: Reactor 5: Concentration adjustment part 6: Compression part 7: Minor component removing unit 8: Gas switching unit 8a: First gas switching unit 8b: Second gas switching unit 9: Gas refining unit 10: Exhaust gas heating unit 11: Reducing gas heating unit 18: Heat exchanger 19: Separating unit 20: Furnace 30: Tank 40: Generated gas discharge unit 100: Gas production system GL1: Gas line GL2: Gas line GL3a: Gas line GL3b: Gas line GL3c: Gas line GL3d: Gas line GL4: Gas line GL4a: Gas line GL4b : Gas line GL4c : Gas line GL4d : Gas line GL5a : Return gas line GL5b : Return gas line GL19a : Gas line GL19b : Gas line VL6a : Vent line VL6b : Vent line J4 : Gas junction

Claims (10)

  1. ガス製造装置であって、
     複数の反応器を有し、
     各前記反応器は、還元剤を収容し、二酸化炭素を含む酸化ガスと還元物質を含む還元ガスとを切り換えて供給可能に構成され、
     前記還元剤は、前記二酸化炭素を還元することにより炭素有価物を生成する金属および金属酸化物の少なくとも一方を含み、前記二酸化炭素との接触により酸化状態とされた後、前記還元物質との接触により還元され、
     各前記反応器を通過した前記酸化ガスおよび前記還元ガスの少なくとも一方の一部または全部を、再度、同一の前記反応器の上流側に返還するように構成される、ガス製造装置。
    A gas production device,
    having multiple reactors,
    Each of the reactors accommodates a reducing agent and is configured to be capable of switching between an oxidizing gas containing carbon dioxide and a reducing gas containing a reducing substance, and
    The reducing agent contains at least one of a metal and a metal oxide that generate a carbon value by reducing the carbon dioxide, and is brought into an oxidized state by contact with the carbon dioxide, and then contacted with the reducing substance. is reduced by
    A gas production apparatus configured to return part or all of at least one of the oxidizing gas and the reducing gas that have passed through each of the reactors to the upstream side of the same reactor.
  2. 請求項1に記載のガス製造装置において、
     さらに、分離部を有し、
     前記分離部は、各前記反応器に接続され、前記反応器を通過したガスに含まれる前記還元剤との反応による生成物を分離するように構成される、ガス製造装置。
    In the gas production apparatus according to claim 1,
    Furthermore, it has a separation part,
    The gas production apparatus, wherein the separation unit is connected to each of the reactors and is configured to separate a product from the reaction with the reducing agent contained in the gas that has passed through the reactors.
  3. 請求項2に記載のガス製造装置において、
     前記分離部は、前記生成物を冷却により凝縮する凝縮器を備える、ガス製造装置。
    In the gas production apparatus according to claim 2,
    The gas production apparatus, wherein the separation unit includes a condenser that condenses the product by cooling.
  4. 請求項2または請求項3に記載のガス製造装置において、
     前記分離部は、前記生成物の分子の通過を許容し、それ以外の分子の通過を阻止する分離膜を備える、ガス製造装置。
    In the gas production apparatus according to claim 2 or 3,
    The gas production apparatus, wherein the separation unit includes a separation membrane that allows passage of molecules of the product and blocks passage of other molecules.
  5. 請求項2~請求項4のいずれか1項に記載のガス製造装置において、
     前記分離部は、前記生成物を物理的または化学的に捕捉する捕捉材を備える、ガス製造装置。
    In the gas production apparatus according to any one of claims 2 to 4,
    The gas production apparatus, wherein the separation unit includes a capture material that physically or chemically captures the product.
  6. 請求項2~請求項5のいずれか1項に記載のガス製造装置において、
     さらに、熱交換器を有し、
     前記熱交換器は、前記反応器と前記分離部との間に接続され、前記分離部で分離され、前記反応器の上流側に返還される分離ガスと、前記反応器を通過したガスとの間で熱交換するように構成される、ガス製造装置。
    In the gas production apparatus according to any one of claims 2 to 5,
    Furthermore, having a heat exchanger,
    The heat exchanger is connected between the reactor and the separation section, separates the separated gas in the separation section and returns to the upstream side of the reactor, and the gas that has passed through the reactor. A gas-producing device configured to exchange heat therebetween.
  7. 請求項2~請求項6のいずれか1項に記載のガス製造装置において、
     さらに、ベント部を有し、
     前記ベント部は、前記分離部で分離され、前記反応器の上流側に返還される分離ガスの一部を排気するように構成される、ガス製造装置。
    In the gas production apparatus according to any one of claims 2 to 6,
    Furthermore, it has a vent part,
    The gas production apparatus, wherein the vent section is configured to exhaust part of the separated gas that is separated in the separation section and returned to the upstream side of the reactor.
  8. 請求項1~請求項7のいずれか1項に記載のガス製造装置において、
     前記反応器と、前記酸化ガスまたは前記還元ガスを返還する上流側の箇所との間に、少なくとも1つの前記反応器が設けられている、ガス製造装置。
    In the gas production apparatus according to any one of claims 1 to 7,
    A gas production apparatus, wherein at least one reactor is provided between the reactor and an upstream location where the oxidizing gas or the reducing gas is returned.
  9. 請求項8に記載のガス製造装置において、
     さらに、隣り合う前記反応器同士の間に接続された分離部を有し、
     前記分離部は、各前記反応器を通過した前記酸化ガスまたは前記還元ガスに含まれる前記還元剤との反応による生成物を分離することにより、前記還元剤との未反応の前記二酸化炭素または前記還元物質の純度が高まった分離ガスの一部または全部を前記反応器の上流側に返還するように構成される、ガス製造装置。
    In the gas production apparatus according to claim 8,
    Furthermore, having a separation unit connected between the adjacent reactors,
    The separation unit separates a product of the reaction with the reducing agent contained in the oxidizing gas or the reducing gas that has passed through each of the reactors, so that the carbon dioxide that has not reacted with the reducing agent or the A gas production apparatus configured to return part or all of the separated gas with increased purity of reducing substances to the upstream side of the reactor.
  10. 請求項1~請求項9のいずれか1項に記載のガス製造装置において、
     前記反応器を通過した前記酸化ガスを返還せず、前記反応器を通過した前記還元ガスを返還するように構成される、ガス製造装置。
    In the gas production apparatus according to any one of claims 1 to 9,
    A gas production apparatus configured to return the reducing gas that has passed through the reactor without returning the oxidizing gas that has passed through the reactor.
PCT/JP2022/043859 2021-11-30 2022-11-29 Gas production apparatus WO2023100834A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-194827 2021-11-30
JP2021194827 2021-11-30

Publications (1)

Publication Number Publication Date
WO2023100834A1 true WO2023100834A1 (en) 2023-06-08

Family

ID=86612275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043859 WO2023100834A1 (en) 2021-11-30 2022-11-29 Gas production apparatus

Country Status (1)

Country Link
WO (1) WO2023100834A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012057162A1 (en) * 2010-10-26 2012-05-03 三井金属鉱業株式会社 Method for producing carbon monoxide and production apparatus
JP2021054706A (en) * 2019-09-24 2021-04-08 積水化学工業株式会社 Gas production apparatus, gas production system and gas production method
JP2021152211A (en) * 2020-03-23 2021-09-30 Jfeスチール株式会社 Blast furnace operation method and blast furnace incidental facility

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012057162A1 (en) * 2010-10-26 2012-05-03 三井金属鉱業株式会社 Method for producing carbon monoxide and production apparatus
JP2021054706A (en) * 2019-09-24 2021-04-08 積水化学工業株式会社 Gas production apparatus, gas production system and gas production method
JP2021152211A (en) * 2020-03-23 2021-09-30 Jfeスチール株式会社 Blast furnace operation method and blast furnace incidental facility

Similar Documents

Publication Publication Date Title
WO2022029886A1 (en) Gas production device, gas production system, iron production system, chemical product production system, and gas production method
JP7497243B2 (en) Gas production device, gas production system, and gas production method
WO2022029887A1 (en) Ironmaking system and ironmaking method
JP2021054704A (en) Gas production apparatus, gas production system and gas production method
JP6843489B1 (en) Ironmaking system and ironmaking method
WO2023100834A1 (en) Gas production apparatus
WO2022029881A1 (en) Gas production device, gas production system and gas production method
WO2023100833A1 (en) Gas production device
JP7497242B2 (en) Gas production device, gas production system, and gas production method
EP4194401A1 (en) Gas manufacturing apparatus, gas manufacturing system, and gas manufacturing method
WO2022149536A1 (en) Gas production device and gas production method
WO2022029888A1 (en) Gas production device, gas production system, and gas production method
EP4194399A1 (en) Gas production apparatus, gas production system, and gas production method
WO2023120504A1 (en) Oxygen carrier, method for producing oxygen carrier, method for producing gas, and gas production device
WO2022029880A1 (en) Gas manufacturing device, gas manufacturing system, and gas manufacturing method
WO2023286721A1 (en) Gas production device, gas production system, and gas production method
EP4194398A1 (en) Gas production device, gas production system, and gas production method
JP2023091958A (en) Gas production device
WO2023286722A1 (en) Reaction vessel, gas production device, gas production system, and gas production method
JP2021054707A (en) Gas production apparatus, gas production system and gas production method
WO2022029883A1 (en) Gas production device, gas production system, and gas production method
WO2023100835A1 (en) Apparatus for producing olefin compound
JP2023091959A (en) Gas composition regulator, and device of producing carbonaceous valuable material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901266

Country of ref document: EP

Kind code of ref document: A1