WO2023120504A1 - Oxygen carrier, method for producing oxygen carrier, method for producing gas, and gas production device - Google Patents

Oxygen carrier, method for producing oxygen carrier, method for producing gas, and gas production device Download PDF

Info

Publication number
WO2023120504A1
WO2023120504A1 PCT/JP2022/046794 JP2022046794W WO2023120504A1 WO 2023120504 A1 WO2023120504 A1 WO 2023120504A1 JP 2022046794 W JP2022046794 W JP 2022046794W WO 2023120504 A1 WO2023120504 A1 WO 2023120504A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
oxygen carrier
oxygen
reactor
reducing
Prior art date
Application number
PCT/JP2022/046794
Other languages
French (fr)
Japanese (ja)
Inventor
昂嗣 滝沢
理沙 櫻井
圭祐 飯島
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Publication of WO2023120504A1 publication Critical patent/WO2023120504A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium

Definitions

  • the present invention relates to an oxygen carrier, an oxygen carrier manufacturing method, a gas manufacturing method, and a gas manufacturing apparatus.
  • Patent Literature 1 discloses a carbon dioxide reduction system comprising a chemical looping reactor. This chemical looping type reactor has two reactors filled with a metal oxide catalyst, one reactor for the first reaction of reducing carbon dioxide to carbon monoxide, and the other reactor for the reduction of carbon dioxide to carbon monoxide. A second reaction that oxidizes hydrogen to water takes place in the vessel.
  • the present invention provides an oxygen carrier or the like that can efficiently produce carbon valuables by using a raw material gas containing carbon dioxide and a reducing gas containing a reducing substance.
  • an oxygen carrier having a metal compound having a metal compound.
  • the metal compound in this oxygen carrier has a cation portion and an anion portion.
  • the cation part contains at least a metal element.
  • the anion part contains at least an oxygen element.
  • At least one of the cation portion and the anion portion contains an element different from the metal element and the oxygen element.
  • Other elements are elements belonging to groups 14 to 17 and periods 2 to 5.
  • FIG. 4 is a schematic diagram showing a method of switching gases to be passed through the reactor in the second embodiment
  • the oxygen carrier of this embodiment is shown below.
  • An oxygen carrier comprising a metal compound, The metal compound has a cation portion and an anion portion, The cation portion contains at least a metal element, The anion portion contains at least an oxygen element, At least one of the cation part or the anion part contains another element different from the metal element and the oxygen element, The oxygen carrier, wherein the other element is an element belonging to Groups 14 to 17 and Periods 2 to 5.
  • the oxygen carrier of the present embodiment contains a metal compound, and is typically reduced by a reduction reaction of a gas such as carbon dioxide (a carbon dioxide such as carbon monoxide is produced by contacting the reduced oxygen carrier with carbon dioxide). reaction to produce valuable substances) and oxidation reaction of gases such as hydrogen (reaction to produce water by contact with hydrogen). That is, since this metal compound functions as a carrier of oxygen, the above reduction reaction and oxidation reaction can proceed.
  • a gas such as carbon dioxide (a carbon dioxide such as carbon monoxide is produced by contacting the reduced oxygen carrier with carbon dioxide).
  • reaction to produce valuable substances reaction to produce valuable substances
  • oxidation reaction of gases such as hydrogen
  • the metal compound described above has a cation part and an anion part, and the cation part has at least a metal element.
  • This metal element can be selected as appropriate, but as an example, the metal element contained in the cation portion may be a transition metal element.
  • the metal element contained in the cation portion may contain at least one selected from metal elements belonging to Groups 3 to 12, and may be selected from metal elements belonging to Groups 4 to 12. may contain at least one of
  • the metal element contained in the cation portion contains at least one of indium, lanthanum, aluminum, titanium, vanadium, zirconium, iron, copper, zinc, nickel, manganese, chromium, cobalt, niobium and cerium. may
  • this metal element may be appropriately selected according to the process in which the oxygen carrier is applied.
  • the metal element when an oxygen carrier is used in the process of converting carbon dioxide into carbon monoxide, the metal element preferably contains iron, cerium, or the like. If an oxygen carrier is used in the process of converting carbon dioxide to methane, this metallic element preferably contains at least one of nickel and ruthenium. When an oxygen carrier is used in the process of converting carbon dioxide to methanol, this metallic element preferably contains at least one of copper and zinc.
  • the metal compound has at least an oxygen element as an anion portion.
  • the oxygen carrier of the present embodiment is typically used for converting carbon dioxide into carbon monoxide and hydrogen into water. It can be through emission or absorption.
  • the metal compound contained in the oxygen carrier of the present embodiment contains other elements different from the aforementioned metal element and oxygen element.
  • the other elements belong to Groups 14 to 17 and also belong to Periods 2 to 5.
  • Group 14 elements selected from carbon, silicon, germanium and tin;
  • Group 15 elements selected from nitrogen, phosphorus, arsenic and antimony;
  • Group 15 elements selected from sulfur, selenium and tellurium;
  • Group 16 element any Group 17 element selected from fluorine, chlorine, bromine and iodine.
  • the oxygen carrier of the present embodiment contains such other elements in the metal compound, the efficiency of various reactions is improved.
  • the reason for this is not necessarily limited to the following, but the oxygen carrier subjected to the oxidation reaction or the reduction reaction has a non-stoichiometric compound composition (typically, relative to the metal element It can be a composition in which the oxygen element is deficient, or a composition in which the metal element is deficient with respect to the oxygen element).
  • a non-stoichiometric compound composition typically, relative to the metal element It can be a composition in which the oxygen element is deficient, or a composition in which the metal element is deficient with respect to the oxygen element.
  • other elements may be selected according to the reaction to be performed.
  • the other elements may constitute part of the cation part, good too.
  • the other element preferably contains at least one element belonging to Groups 15 and 16, and more preferably contains at least one element belonging to Group 16. .
  • the content of other elements can be appropriately selected depending on the purpose etc.
  • the content of other elements is the content of other elements with respect to the metal compound (all constituent elements of the metal compound) is preferably 0.001% by mass or more and 10% by mass or less, more preferably 0.005% by mass or more and 8% by mass or less, and more preferably 0.01% by mass or more and 5% by mass or less .
  • such a metal compound can be obtained, for example, by heating a metal element, alloy, or metal oxide containing a metal element and a compound containing another element while bringing them into contact with each other.
  • the compound containing other elements may be solid, liquid, or gas when brought into contact.
  • the compound to be brought into contact with the elemental metal, alloy or metal oxide containing the metal element is elemental sulfur, hydrogen sulfide, sulfuric acid, sulfur dioxide, sulfur trioxide, hexafluoride.
  • the heating temperature for obtaining the metal compound can be appropriately set according to the metal compound to be produced.
  • the heating temperature is preferably 200° C. or higher and 1600° C. or lower, more preferably 350° C. or higher and 1400° C. or lower, and even more preferably 500° C. or higher and 1200° C. or lower. By setting such a temperature range, efficient compound conversion can be performed while controlling the energy to be used.
  • the oxygen carrier of the present embodiment may be one in which a metal compound is supported on a carrier.
  • a material that is difficult to be modified by contact with the exhaust gas (raw material gas), reaction conditions, etc. is preferable. Examples include oxides such as ZrO 2 , TiO 2 , V 2 O 5 , MgO, CeO 2 , Al 2 O 3 and SiO 2 and composite oxides containing these.
  • zeolite, montmorillonite, ZrO 2 , TiO 2 , V 2 O 5 , MgO, Al 2 O 3 , SiO 2 and composite oxides containing these are preferable as the constituent material of the carrier.
  • a carrier composed of such a material is preferable because it does not adversely affect the oxidation reaction or the reduction reaction and is excellent in supporting the metal compound.
  • at least a part of the surface of the carrier may be coated with the aforementioned metal compound.
  • FIG. 1 is a schematic diagram showing the overall configuration of a gas production system using a gas production apparatus according to this embodiment.
  • FIG. 2 is a schematic diagram showing the configuration of the reaction section of the first embodiment.
  • a gas production system 100 shown in FIG. 1 includes a furnace 20 that generates an exhaust gas (raw material gas) containing carbon dioxide, and a gas production device 1 connected to the furnace 20 via a connector 2 .
  • the upstream side with respect to the gas flow direction is also simply referred to as the "upstream side”
  • the downstream side is simply referred to as the "downstream side”.
  • each component provided in the present gas production system is not necessarily required to be installed, and may be appropriately omitted or replaced according to the process to be constructed.
  • the furnace 20 is not particularly limited, but is, for example, a furnace attached to an ironworks, a refinery, or a thermal power plant, preferably a combustion furnace, a blast furnace, a converter, or the like.
  • exhaust gas is produced (generated) during combustion, melting, refining, and the like of the contents.
  • the contents include, for example, plastic waste, garbage, municipal waste (MSW), waste tires, biomass waste, household waste (bedding , paper), building materials, and the like.
  • these wastes may contain 1 type independently, or may contain 2 or more types.
  • Exhaust gases typically contain, in addition to carbon dioxide, other gas components such as nitrogen, oxygen, carbon monoxide, water vapor, methane, and the like.
  • concentration of carbon dioxide contained in the exhaust gas is not particularly limited, but considering the production cost of the generated gas (conversion efficiency to carbon monoxide), it is preferably 1% by volume or more, more preferably 5% by volume or more.
  • Exhaust gas from a combustion furnace in a garbage incineration plant contains 5-15% by volume of carbon dioxide, 60-70% by volume of nitrogen, 5-10% by volume of oxygen, and 15-25% by volume of water vapor.
  • Exhaust gas from a blast furnace is a gas generated when pig iron is produced in a blast furnace, and contains 20 to 30% by volume of carbon dioxide, 55 to 60% by volume of nitrogen, and 25 to 30% by volume of carbon monoxide. , containing 1 to 5% by volume of hydrogen.
  • the exhaust gas from the converter is a gas generated when steel is produced in the converter, and contains 15 to 20 volume% carbon dioxide, 50 to 60 volume% carbon monoxide, and nitrogen. It contains 15 to 25% by volume and 1 to 5% by volume of hydrogen.
  • the raw material gas is not limited to the exhaust gas, and a pure gas containing 100% by volume of carbon dioxide may be used.
  • exhaust gas is used as the raw material gas, carbon dioxide, which has conventionally been discharged into the atmosphere, can be effectively used, and the burden on the environment can be reduced.
  • exhaust gas containing carbon dioxide generated in ironworks or smelters is preferable.
  • the untreated gas discharged from the furnace may be used as it is. good.
  • the untreated blast furnace gas and the converter gas have gas compositions as described above, and the treated gas has a gas composition close to that shown for the exhaust gas from the combustion furnace.
  • all of the above gases (the gases before being supplied to the gas production apparatus 1) are called exhaust gas.
  • the exhaust gas (raw material gas containing carbon dioxide) discharged from the furnace 20 and supplied via the connection part 2 is brought into contact with a reducing agent 4R that reduces the carbon dioxide contained in the exhaust gas. , to produce a product gas (syngas) containing carbon monoxide.
  • a reducing agent 4R that reduces the carbon dioxide contained in the exhaust gas.
  • carbon monoxide will be described as a representative example of the carbon valuables.
  • carbon valuables are not limited to carbon monoxide, and include, for example, methane, methanol and the like, and they may be used alone or in combination of two or more.
  • the type of carbon valuables produced will differ.
  • the gas production apparatus 1 mainly includes a connection section 2, a reducing gas supply section 3, and four reactors 41a, 42a, 41b, and 42b (hereinafter collectively referred to as "reactor 4ab").
  • a gas line GL1 connecting the connecting portion 2 and the reaction portion 4
  • a gas line GL2 connecting the reducing gas supply portion 3 and the reaction portion 4
  • the connection part 2 constitutes an exhaust gas supply part (raw material gas supply part) that supplies the exhaust gas to the reaction part 4 .
  • a pump for transferring gas may be arranged at a predetermined position in the middle of the gas line GL1, the gas line GL2, and the gas line GL4. For example, when the pressure of the exhaust gas is adjusted to be relatively low in the compression unit 6, which will be described later, the gas can be smoothly transferred within the gas production apparatus 1 by arranging a pump.
  • Gas line GL1 is connected to connecting portion 2 at one end thereof. On the other hand, the other end of the gas line GL1, as shown in FIG. It is connected. With such a configuration, the exhaust gas supplied from the furnace 20 through the connecting portion 2 passes through the gas line GL1 and is supplied to the reactors 41a and 41b.
  • the gas switching unit 8 can be configured to include, for example, a branch gas line and a channel opening/closing mechanism such as a valve provided in the middle of the branch gas line.
  • each reactor 4ab is a multi-tubular reaction device ( fixed bed type reactor). According to such a multi-tubular reactor, it is possible to ensure sufficient opportunities for contact between the reducing agent 4R and the exhaust gas and reducing gas. As a result, the production efficiency of the product gas can be enhanced.
  • the reducing agent 4R accommodated in each reactor 4ab contains an oxygen carrier containing the metal compound described above. That is, the gas containing carbon dioxide (raw material gas) supplied into the tubular body 41 is reduced by contact with the oxygen carrier and converted into a gas containing carbon monoxide (product gas). At this time, the oxygen carrier is oxidized by contact with the raw material gas (oxidizing gas).
  • the reducing agent 4R of the present embodiment is preferably in the form of particles (granules), scales, pellets, or the like, for example. With such a shape of the reducing agent 4R, the filling efficiency into the tubular body 41 can be enhanced, and the contact area with the gas supplied into the tubular body 41 can be further increased.
  • the reducing agent 4R When the reducing agent 4R is particulate, its volume average particle diameter is not particularly limited, but is preferably 1 to 50 mm, more preferably 3 to 30 mm. In this case, the contact area between the reducing agent 4R and the exhaust gas (carbon dioxide) can be further increased, and the conversion efficiency of carbon dioxide to carbon monoxide can be further improved. Similarly, the regeneration (reduction) of the reducing agent 4R by the reducing gas containing the reducing substance can be performed more efficiently.
  • the particulate reducing agent 4R is preferably a compact produced by tumbling granulation because the sphericity is increased.
  • the tubular body (cylindrical molded body) 41 may be produced from the reducing agent 4R itself. Furthermore, a block-like or lattice-like (for example, net-like or honeycomb-like) molded body may be produced from the reducing agent 4R and arranged in the housing 42 .
  • a configuration in which a net-like body is formed from the reducing agent 4R and arranged in the housing 42 is preferable.
  • the volumes of the four reactors 41a, 42a, 41b, and 42b are set substantially equal to each other, and are appropriately set according to the amount of exhaust gas to be treated (the size of the furnace 20 and the size of the gas production apparatus 1).
  • the volume of at least one of the four reactors 41a, 42a, 41b, 42b may be varied according to the types of exhaust gas and reducing gas.
  • a concentration adjusting section 5, a compressing section 6, a minor component removing section 7, and an exhaust gas heating section (source gas heating section) 10 are provided in this order from the connecting section 2 side in the middle of the gas line GL1.
  • the concentration adjustment unit 5 adjusts so as to increase the concentration of carbon dioxide contained in the exhaust gas (in other words, concentrate the carbon dioxide).
  • the exhaust gas also contains unnecessary gas components such as oxygen.
  • the concentration adjustment unit 5 is configured by an oxygen removal device that removes oxygen contained in the exhaust gas.
  • the amount of oxygen brought into the gas production apparatus 1 can be reduced (that is, the concentration of oxygen contained in the exhaust gas can be adjusted to be low).
  • the gas composition of the exhaust gas can be deviated from the explosion range, and ignition of the exhaust gas can be prevented.
  • the oxygen removal apparatus consumes a large amount of electric energy, so it is effective to use electric power as renewable energy as described later.
  • the concentration of oxygen contained in the exhaust gas is preferably adjusted to less than 1% by volume, more preferably less than 0.5% by volume, and less than 0.1% by volume with respect to the entire exhaust gas. Adjusting is even more preferable. Thereby, ignition of exhaust gas can be prevented more reliably.
  • Oxygen removal equipment for removing oxygen contained in flue gas includes cryogenic (cryogenic) separators, pressure swing adsorption (PSA) separators, membrane separation separators, and temperature swing adsorption (TSA) separators. It can be configured using one or more of a separator of the type, a separator of the chemical absorption type, a separator of the chemisorption type, and the like. Note that the concentration adjustment unit 5 may adjust the concentration of carbon dioxide to a high level by adding carbon dioxide to the exhaust gas.
  • Compressor 6 increases the pressure of the exhaust gas before it is supplied to reactor 4ab. This makes it possible to increase the amount of exhaust gas that can be processed at one time in the reactor 4ab. Therefore, the conversion efficiency of carbon dioxide to carbon monoxide in the reactor 4ab can be further improved.
  • the compression unit 6 includes, for example, a centrifugal compressor, a turbo compressor such as an axial compressor, a reciprocating compressor (reciprocating compressor), a diaphragm compressor, a single screw compressor, a twin screw compressor, It can be composed of a volumetric compressor such as a scroll compressor, a rotary compressor, a rotary piston compressor, a slide vane compressor, a roots blower (two-leaf blower) capable of handling low pressure, a centrifugal blower, or the like.
  • a centrifugal compressor such as an axial compressor, a reciprocating compressor (reciprocating compressor), a diaphragm compressor, a single screw compressor, a twin screw compressor
  • a volumetric compressor such as a scroll compressor, a rotary compressor, a rotary piston compressor, a slide vane compressor, a roots blower (two-leaf blower) capable of handling low pressure, a centrifugal blower, or the like.
  • the compression unit 6 is preferably configured with a centrifugal compressor from the viewpoint of easiness of increasing the scale of the gas production system 100, and from the viewpoint of reducing the production cost of the gas production system 100, A reciprocating compressor is preferred.
  • the pressure of the exhaust gas after passing through the compression section 6 is not particularly limited, but is preferably 0 to 1 MPaG, more preferably 0 to 0.5 MPaG, and 0.01 to 0.5 MPaG. More preferred. In this case, the conversion efficiency of carbon dioxide to carbon monoxide in the reactor 4ab can be further improved without increasing the pressure resistance of the gas production apparatus 1 more than necessary.
  • the minor component removing unit 7 removes minor components (a small amount of unnecessary gas components, etc.) contained in the exhaust gas.
  • the fine component removing section 7 can be composed of, for example, at least one processor selected from a gas-liquid separator, a protector (guard reactor) and a scrubber (absorption tower).
  • a gas-liquid separator When using a plurality of processors, their arrangement order is arbitrary, but when using a combination of a gas-liquid separator and a protector, it is preferable to arrange the gas-liquid separator upstream of the protector. . In this case, it is possible to further improve the efficiency of removing minor components from the exhaust gas, and extend the period of use (life) of the protector.
  • the minor component removing section 7 can be omitted depending on the composition of the material used as the raw material.
  • the gas-liquid separator separates, for example, condensed water (liquid) generated when the exhaust gas is compressed in the compression section 6 from the exhaust gas.
  • the gas-liquid separator can be composed of, for example, a simple container, a swirling flow separator, a centrifugal separator, a surface tension separator, or the like.
  • the gas-liquid separator is preferably configured with a simple container because of its simple configuration and low cost.
  • a filter may be arranged at the gas-liquid interface in the container to allow passage of gas but block passage of liquid.
  • a liquid line may be connected to the bottom of the container, and a valve may be provided in the middle of the line.
  • the condensed water stored in the container can be discharged to the outside of the gas production apparatus 1 through the liquid line by opening the valve.
  • the liquid line may be connected to the tank to reuse the condensed water discharged.
  • the exhaust gas from which the condensed water has been removed by the gas-liquid separator can be configured to be supplied to the protector, for example.
  • a protector is optionally provided with a substance capable of capturing a component (inactivating component), which is a minor component contained in the exhaust gas and which reduces the activity of the reducing agent 4R upon contact with the reducing agent 4R.
  • the substance in the protector reacts (captures) with the inactivating component, thereby preventing or suppressing the exhaust gas from reaching the reducing agent 4R in the reactor 4ab. and protect (ie, prevent loss of activity). Therefore, it is possible to prevent or suppress an extreme decrease in the conversion efficiency of carbon dioxide to carbon monoxide by the reducing agent 4R due to the adverse effects of the inactivating component.
  • Such a substance includes a substance that is contained in the reducing agent 4R and has a composition that reduces the activity of the reducing agent 4R by contact with an inactivating component, specifically, a metal element contained in the reducing agent 4R and Materials that are the same as or similar to at least one of the metal oxides can be used.
  • similar metal oxides refer to metal oxides that contain the same metal element but have different compositions, or metal oxides that contain different types of metal elements but belong to the same group in the periodic table. It refers to certain metal oxides.
  • the above substance may be any substance whose activity is lowered by the same component as the inactivating component of the reducing agent 4R. is preferred.
  • the protector has a structure in which a mesh material is arranged in a housing, and particles of the above substance are placed on the mesh material.
  • a configuration in which a molded body is arranged can be employed.
  • a protector is arranged between the compression unit 6 (gas-liquid separator) and the exhaust gas heating unit 10, it is necessary to improve the removal efficiency of the inactivated components while preventing the above substances from deteriorating due to heat. can be done.
  • the exhaust gas heating section 10 heats the exhaust gas before it is supplied to the reactor 4ab.
  • the exhaust gas heating section 10 can be composed of, for example, an electric heater and a heat exchanger (economizer).
  • the heat exchanger is configured by bending a part of the pipes forming the gas line GL4 for discharging the gas (mixed gas) after passing through the reactor 4ab and bringing the pipes closer to the pipes forming the gas line GL1. According to this configuration, the heat of the high-temperature gas (mixed gas) after passing through the reactor 4ab is used to heat the exhaust gas before being supplied to the reactor 4ab by heat exchange, so that heat can be effectively used. can be planned.
  • Such heat exchangers include, for example, jacket heat exchangers, immersion coil heat exchangers, double tube heat exchangers, shell and tube heat exchangers, plate heat exchangers, spiral heat exchangers, and the like. Can be configured. Further, in the exhaust gas heating section 10, either one of the electric heater and the heat exchanger may be omitted. In the exhaust gas heating section 10, a combustion furnace or the like can be used instead of the electric heater. However, if an electric heater is used, electric power (electrical energy) as renewable energy can be used as the power source, so the load on the environment can be reduced. As renewable energy, electric energy using at least one selected from solar power, wind power, hydraulic power, wave power, tidal power, biomass power, geothermal power, solar heat and geothermal heat is used. It is possible.
  • renewable energy electric energy using at least one selected from solar power, wind power, hydraulic power, wave power, tidal power, biomass power, geothermal power, solar heat and geothermal heat is used. It is possible.
  • the exhaust gas line is branched from the gas line GL1, and the gas A vent portion provided outside the manufacturing apparatus 1 may be connected.
  • a valve is preferably provided in the middle of the exhaust gas line. If the pressure in the gas production device 1 (gas line GL1) rises more than necessary, the valve is opened to discharge (release) part of the exhaust gas from the vent through the exhaust gas line. be able to. As a result, it is possible to prevent the gas production device 1 from being damaged due to an increase in pressure.
  • the gas line GL2 is connected to the reducing gas supply section 3 .
  • the gas line GL2 is connected to inlet ports of reactors 41a and 41b provided in the reaction section 4 via the gas switching section 8 and two gas lines GL3a and GL3b, respectively.
  • the reducing gas supply unit 3 supplies a reducing gas containing a reducing substance that reduces the reducing agent 4R oxidized by contact with carbon dioxide.
  • the reducing gas supply unit 3 of the present embodiment is composed of, for example, a hydrogen generator that generates hydrogen by electrolysis of water. ) 30 are connected. With this configuration, the reducing gas containing hydrogen (reducing substance) supplied from the hydrogen generator (reducing gas supply unit 3) passes through the gas line GL2 and is supplied to each reactor 4ab.
  • the hydrogen generator According to the hydrogen generator, a large amount of hydrogen can be generated relatively cheaply and easily. Moreover, there is also an advantage that the condensed water generated in the gas production apparatus 1 can be reused. Among the gas production apparatus 1, the hydrogen generator consumes a large amount of electric energy, so it is effective to use electric power as renewable energy as described above.
  • a device that generates by-product hydrogen can also be used as the hydrogen generator.
  • a reducing gas containing by-product hydrogen is supplied to each reactor 4ab.
  • a device for generating by-product hydrogen for example, a device for electrolyzing an aqueous solution of sodium chloride, a device for steam reforming petroleum, a device for producing ammonia, and the like can be mentioned.
  • the gas line GL2 may be connected to the coke oven outside the gas production apparatus 1 via a connecting portion, and the exhaust gas from the coke oven may be used as the reducing gas.
  • the connecting portion constitutes the reducing gas supply portion. This is because the exhaust gas from the coke oven is mainly composed of hydrogen and methane, and contains 50 to 60% by volume of hydrogen.
  • a reducing gas heating unit 11 is provided in the middle of the gas line GL2. This reducing gas heating unit 11 heats the reducing gas before it is supplied to the reactor 4ab. By preheating the pre-reaction (pre-oxidation) reducing gas in the reducing gas heating unit 11, the reduction (regeneration) reaction of the reducing agent 4R by the reducing gas in the reactor 4ab can be further promoted.
  • the reducing gas heating section 11 can be configured in the same manner as the exhaust gas heating section 10 described above.
  • the reducing gas heating unit 11 is preferably composed of only an electric heater, only a heat exchanger, or a combination of an electric heater and a heat exchanger, and may be composed of only a heat exchanger or a combination of an electric heater and a heat exchanger. is more preferred. If the reducing gas heating unit 11 includes a heat exchanger, the heat of the high-temperature gas (for example, mixed gas) after passing through the reactor 4ab is used to heat the reducing gas before being supplied to the reactor 4ab. Since heat is generated by exchange, effective use of heat can be achieved.
  • the high-temperature gas for example, mixed gas
  • exhaust gas can be transferred to the reactors 41a and 42a containing the oxygen carrier before oxidation via the gas line GL3a.
  • a reduction reaction can be performed on the exhaust gas.
  • a reducing gas (reducing gas) is supplied through the gas line GL3b to the reactors 41b and 42b containing the oxidized carriers after the generation of the product gas (carbon monoxide, etc.).
  • the step of contacting with a reducing gas (reducing gas) may be provided before generating a product gas (such as carbon monoxide).
  • the oxidation reaction of the reducing gas is allowed to proceed in the reactors 41a and 42a, and the reduction of the exhaust gas is performed in the reactors 41b and 42b. Allow the reaction to proceed.
  • the gas production device 1 includes a reducing agent heating unit (see FIG. 1 inside, not shown).
  • a reducing agent heating unit By providing such a reducing agent heating unit, the temperature in the reaction between the exhaust gas or the reducing gas and the reducing agent 4R is maintained at a high temperature, thereby suitably preventing or suppressing a decrease in the conversion efficiency of carbon dioxide to carbon monoxide. , the regeneration of the reducing agent 4R by the reducing gas can be further promoted.
  • the gas production device 1 When the reaction to be performed is an exothermic reaction, the gas production device 1 preferably has a reducing agent cooling section for cooling the reducing agent 4R instead of the reducing agent heating section.
  • a reducing agent cooling unit By providing such a reducing agent cooling unit, deterioration of the reducing agent 4R during the reaction between the exhaust gas or the reducing gas and the reducing agent 4R can be suitably prevented, and the conversion efficiency of carbon dioxide to carbon monoxide can be improved. It is possible to suitably prevent or suppress the decrease and further promote the regeneration of the reducing agent 4R by the reducing gas.
  • Gas lines GL4a and GL4b are connected to the outlet ports of the reactors 42a and 42b, respectively, and are merged at a gas junction J4 to form a gas line GL4.
  • valves (not shown in FIG. 2) are provided in the middle of the gas lines GL4a and GL4b, respectively, as required.
  • the opening degree of the valve the passage speed of the exhaust gas and the reducing gas passing through the reactor 4ab (that is, the processing speed of the exhaust gas with the reducing agent 4R and the processing speed of the reducing agent 4R with the reducing gas) are set. be able to.
  • the reaction section 4 is mainly configured by the reactor 4ab and the gas switching section 8 .
  • a generated gas discharge section 40 for discharging the generated gas to the outside of the gas production apparatus 1 is connected to the opposite end of the gas line GL4 from the reactors 42a and 42b.
  • a gas refining section 9 is provided in the middle of the gas line GL4.
  • the gas purification unit 9 purifies carbon monoxide from the mixed gas and recovers a generated gas containing high-concentration carbon monoxide. Incidentally, if the carbon monoxide concentration in the mixed gas is sufficiently high, the gas refining section 9 may be omitted.
  • the gas purifying section 9 can be composed of, for example, at least one processor selected from coolers, gas-liquid separators, gas separators, separation membranes, and scrubbers (absorption towers).
  • processors selected from coolers, gas-liquid separators, gas separators, separation membranes, and scrubbers (absorption towers).
  • their arrangement order is arbitrary, but when a cooler, a gas-liquid separator and a gas separator are used in combination, they are preferably arranged in this order. In this case, the efficiency of purifying carbon monoxide from the mixed gas can be further enhanced.
  • a cooler cools the mixed gas. This produces condensed water (liquid).
  • Such a cooler has a structure similar to that of the reactor 4ab (see FIG. 2).
  • a multi-pipe type cooling device, an air fin cooler, or the like, which allows coolant to pass through spaces 43 around 41 can be included.
  • the gas-liquid separator separates the condensed water generated when the mixed gas is cooled by the cooler from the mixed gas. At this time, the condensed water has the advantage of being able to dissolve and remove unnecessary gas components (particularly carbon dioxide) remaining in the mixed gas.
  • the gas-liquid separator can be configured in the same manner as the gas-liquid separator of the micro component removing section 7, and preferably can be configured as a simple container.
  • a filter may be arranged at the gas-liquid interface in the container to allow passage of gas but block passage of liquid.
  • a liquid line may be connected to the bottom of the container, and a valve may be provided in the middle of the line. According to such a configuration, the condensed water stored in the container can be discharged (released) out of the gas production apparatus 1 through the liquid line by opening the valve.
  • a drain trap downstream of the valve in the liquid line it is preferable to provide a drain trap downstream of the valve in the liquid line.
  • a drain trap downstream of the valve in the liquid line.
  • the liquid line may be connected to the tank to reuse the condensed water discharged.
  • Gas separators include, for example, cryogenic (cryogenic) separators, pressure swing adsorption (PSA) separators, membrane separation separators, temperature swing adsorption (TSA) separators, metal ion (e.g., copper ions) and organic ligands (e.g., 5-azidoisophthalic acid) are combined into a separator using a porous coordination polymer (PCP), and separation using amine absorption. It can be configured using one or more of the vessels and the like.
  • a valve may be provided between the gas-liquid separator and the gas separator of the gas line GL4. In this case, the mixed gas processing speed (production gas production speed) can be adjusted by adjusting the opening of the valve.
  • the concentration of carbon monoxide contained in the mixed gas discharged from the gas-liquid separator is 75 to 90% by volume with respect to the entire mixed gas. Therefore, in fields where produced gas containing carbon monoxide at a relatively low concentration (75 to 90% by volume) can be used, carbon monoxide can be directly supplied to the next step without purifying carbon monoxide from the mixed gas. That is, the gas separator can be omitted.
  • Such fields include, for example, the field of synthesizing carbon valuables (e.g., ethanol, etc.) from the generated gas by fermentation with microorganisms (e.g., Clostridium, etc.), and the field of manufacturing steel using the generated gas as fuel or reducing agent. , the field of manufacturing electric devices, and the field of synthesizing chemicals (phosgene, acetic acid, etc.) using carbon monoxide as a synthetic raw material.
  • the field of synthesizing carbon valuables e.g., ethanol, etc.
  • microorganisms e.g
  • the carbon monoxide is purified from the mixed gas to produce a product gas containing high concentrations of carbon monoxide.
  • Such fields include, for example, the field of using generated gas as a reducing agent (blast furnace), the field of thermal power generation using generated gas as fuel, the field of manufacturing chemicals using generated gas as a raw material, and the field of manufacturing chemicals using generated gas as fuel. and the field of fuel cells used as
  • the method of using the gas production system 100 of the present embodiment is not limited to the following, and it is possible to add, replace, or omit steps as appropriate.
  • the supply of exhaust gas from the furnace 20 through the connecting portion 2 is started.
  • the exhaust gas passes through the oxygen removing device (concentration adjusting section 5). Oxygen is thereby removed from the exhaust gas, and the concentration of carbon dioxide contained in the exhaust gas increases.
  • the exhaust gas passes through the compression section 6 . This increases the pressure of the exhaust gas.
  • the exhaust gas is transferred and passed through the fine component removing section 7 as necessary. As a result, the condensed water generated when the exhaust gas is compressed in the compression unit 6 and the inactivating components that reduce the activity of the reducing agent 4R are removed from the exhaust gas.
  • the exhaust gas passes through the exhaust gas heating section 10 . This heats the exhaust gas.
  • the exhaust gas is supplied to the reactor 41a. In the reactor 41a, carbon dioxide in the exhaust gas is reduced to carbon monoxide by the reducing agent 4R. At this time, the reducing agent 4R is brought into an oxidized state by contact with carbon dioxide.
  • the temperature (reaction temperature) of the reactor 41a (exhaust gas, reducing agent 4R) in the above step [7] is preferably 600°C or higher, more preferably 650 to 1100°C, and more preferably 700 to 1000°C. is more preferred. If the reaction temperature is set within the above range, for example, a rapid temperature drop of the reducing agent 4R due to an endothermic reaction during conversion of carbon dioxide to carbon monoxide can be prevented or suppressed. can proceed more smoothly.
  • water (reducing gas raw material) is supplied to the hydrogen generator (reducing gas supply unit 3) to generate hydrogen from water.
  • the reducing gas containing hydrogen passes through the reducing gas heating section 11 . This heats the reducing gas.
  • the reducing gas is supplied to the reactor 41b. In the reactor 41b, the oxidized reducing agent 4R is reduced (regenerated) by contact with the reducing gas (hydrogen). At this time, water is produced.
  • the temperature (reaction temperature) of the reactor 41b (reducing gas, reducing agent 4R) in the above step [12] is preferably 600°C or higher, more preferably 650 to 1100°C, and more preferably 700 to 1000°C. It is even more preferable to have If the reaction temperature is set within the above range, for example, a rapid temperature drop of the reducing agent 4R due to an endothermic reaction during reduction (regeneration) of the reducing agent 4R in an oxidized state can be prevented or suppressed. The reduction reaction of the reducing agent 4R in can proceed more smoothly.
  • the reducing gas is discharged from the reactor 41b to the gas line GL5b.
  • the reducing gas is then supplied to the reactor 42b.
  • the oxidized reducing agent 4R is reduced (regenerated) by contact with the reducing gas (hydrogen). At this time, water is produced.
  • the conditions of reactor 42b can be the same as those of reactor 41b.
  • the gases that have passed through the reactors 42a and 42b join together to produce a mixed gas.
  • the temperature of the mixed gas is typically 600-650°C. If the temperature of the mixed gas at this time is within the above range, it means that the temperature in the reactor 4ab is maintained at a sufficiently high temperature, and the conversion of carbon dioxide to carbon monoxide by the reducing agent 4R, It can be determined that the reduction of the reducing agent 4R by the reducing gas is progressing efficiently.
  • the mixed gas is cooled to 100 to 300° C. before reaching the gas refining section 9 .
  • the mixed gas passes through the gas refining section 9 .
  • the generated condensed water and carbon dioxide dissolved in the condensed water are removed.
  • carbon monoxide is purified from the mixed gas to obtain a product gas containing a high concentration of carbon monoxide.
  • the temperature of the produced gas obtained is 20 to 50°C.
  • the generated gas is discharged from the generated gas discharge unit 40 to the outside of the gas production apparatus 1 and supplied to the next step.
  • the reaction section 4 of the above-described gas production system can also have the following form (second embodiment).
  • FIG. 3 is a schematic diagram showing the configuration of the reaction section of the second embodiment.
  • FIG. 4 is a schematic diagram showing a method of switching the gas to be passed through the reactor in the second embodiment.
  • the reaction section 4 of the second embodiment will be described, but the description will focus on the differences from the reaction section 4 of the first embodiment, and the description of the same items will be omitted.
  • the reaction section 4 of the second embodiment has a first gas switching section 8a, four reactors 4a to 4d, and a second gas switching section 8b.
  • the first gas switching section 8a is connected to inlet ports of the reactors 4a to 4d via gas lines GL3a to GL3d, respectively.
  • Gas lines GL4a to GL4d are connected to the outlet ports of the reactors 4a to 4d, respectively, and join at the second gas switching section 8b to form a gas line GL4.
  • the first gas switching section 8a and the second gas switching section 8b are connected by four gas lines GL5a to GL5d.
  • one reactor of the reactors 4a to 4d can supply exhaust gas (oxidation gas) can be fed through and through, while the remaining three reactors of reactors 4a-4d can be successively fed through with reducing gas, in that order.
  • one reactor to which the exhaust gas is supplied constitutes the first reactor, and when the exhaust gas is supplied to the first reactor, Three reactors fed with reducing gas in series may constitute the second reactor.
  • the exhaust gas (carbon dioxide) is supplied to the reactor (first reactor) 4a through the gas line GL3a, and the exhaust gas (one carbon oxides) can be discharged via gas line GL4a.
  • a reducing gas hydrogen
  • the reduction Gas residual hydrogen
  • a mechanism for removing water may be provided in the middle of the gas line GL5c, and the generated water may be discharged out of the system as appropriate.
  • the reducing gas (residual hydrogen) that passed through the reactor 4c was supplied to the reactor (the third second reactor) 4d via the gas line GL4c, the gas line GL5d, and the gas line GL3d, and passed through it.
  • a reducing gas (water) can be discharged via a gas line GL4d.
  • the generated water may be discharged out of the system by a water removing mechanism provided in the middle of the gas line GL5d as appropriate.
  • the exhaust gas is supplied to and passed through the reactor (first reactor) 4b, while the reactors (second reactors) 4c, 4d, 4a , the reducing gas can be continuously supplied and passed through in this order.
  • the exhaust gas is supplied to and passed through the reactor (first reactor) 4c, while the reactors (second reactors) 4d, 4a, 4b , the reducing gas can be continuously supplied and passed through in this order.
  • the exhaust gas is supplied to and passed through the reactor (first reactor) 4d, while the reactors (second reactors) 4a, 4b, 4c , the reducing gas can be continuously supplied and passed through in this order.
  • a series of operations from the 1st turn to the 4th turn is regarded as one cycle, and by repeating a plurality of cycles, carbon dioxide can be continuously and stably converted into carbon monoxide.
  • the reducing gas when using the reducing agent 4R, which has a lower efficiency of reducing the reducing agent 4R in the oxidized state by hydrogen (reducing substance) than the conversion efficiency of carbon dioxide to carbon monoxide, the reducing gas is supplied to one reactor only once. Passage causes the hydrogen (residual hydrogen) that has not been used to reduce the oxidized reducing agent 4R to be wasted.
  • the reducing gas can be passed through three reactors in succession, in other words, it can be passed through one reactor three times. Therefore, hydrogen (reducing gas) can be prevented from being wasted.
  • the interior of the reactor may be purged with an inert gas (for example, nitrogen gas).
  • an inert gas for example, nitrogen gas
  • the gas production apparatus 1 gas production system 100 as described above, it is possible to efficiently produce carbon valuables using an oxidizing gas containing carbon dioxide and a reducing gas containing reducing substances.
  • the oxygen carrier having the metal compound containing the above-described other element was used as the reducing agent 4R.
  • the process for producing the generated gas in the third embodiment will be described, but the description will focus on the differences from the first and second embodiments, and the description of the same items will be omitted.
  • an oxygen carrier precursor containing a metal element is selected, and this oxygen carrier precursor is added to Groups 14 to 17 and , a mode in which a source gas containing a compound containing an element (another element) other than the oxygen element belonging to the 2nd to 5th periods is brought into contact.
  • the generated gas can be obtained while adding an element (another element) other than the oxygen element belonging to Groups 14 to 17 and Periods 2 to 5 to the oxygen carrier precursor.
  • the oxygen carrier having a metal compound containing other elements is prepared in advance, but in the third embodiment, the other elements are introduced. This is done within the system of the gas production system. With such a configuration as well, the reducing agent 4R with improved reaction efficiency can be realized.
  • the oxygen carrier precursor in the third embodiment may be a metal oxide containing a metal element and an oxygen element.
  • the oxygen carrier precursor may be a metal simple substance or an alloy that does not substantially contain an oxygen element. As described above, even a metal simple substance or an alloy that does not substantially contain an oxygen element can be converted into the desired oxygen carrier because the raw material gas itself has an oxidizing function. be.
  • the raw material gas containing compounds containing other elements may be continuously used throughout the operating time of the gas production system, or may be used only at the beginning of the operation of the gas production system.
  • the type and amount of the compound may be appropriately selected according to the type of source gas and process design.
  • the reducing gas is brought into contact with the oxygen carrier, and then the carbon valuables can be obtained by bringing it into contact with the raw material gas (oxidizing gas),
  • the reducing gas can be brought into contact with the oxygen carrier before obtaining the product gas, as in the above-described embodiments.
  • the oxygen carrier wherein the metal element contained in the cation portion is a transition metal element.
  • the other element contains at least one element belonging to Groups 15 and 16. wherein said oxygen carrier is contacted with hydrogen to produce water and the reduced oxygen carrier is contacted with carbon dioxide to produce carbon values.
  • the oxygen carrier wherein the content of the other element contained in the metal compound is 0.001% by mass or more. In the oxygen carrier, the content of the other element contained in the metal compound is 10% by mass or less.
  • a method for producing the oxygen carrier comprising the step of heating the elemental metal, alloy, or metal oxide containing the metal element and the compound containing the other element while bringing them into contact with each other.
  • the step of heating is a step of heating while contacting the elemental metal, the alloy, or the metal oxide with a gas containing the compound containing the other element.
  • a method for producing a gas comprising the step of contacting the oxygen carrier or the oxygen carrier obtained by the method for producing the oxygen carrier with a raw material gas to obtain a product gas.
  • the method for producing the gas comprising the step of contacting a reducing gas with the oxygen carrier before or after the step of obtaining the product gas.
  • a method for producing a gas, wherein the source gas contains an oxygen carrier precursor containing a metal element and a compound containing an element other than an oxygen element belonging to Groups 14 to 17 and belonging to Periods 2 to 5.
  • a method comprising obtaining a product gas while applying an oxygen carrier precursor.
  • the method for producing the gas comprising the step of contacting a reducing gas with the oxygen carrier before or after the step of obtaining the product gas.
  • a gas production apparatus comprising a reactor, wherein the oxygen carrier is accommodated in the reactor. Of course, this is not the only case.
  • the gas production apparatus of the present invention may have any other additional configuration with respect to the above embodiments, and may be replaced with any configuration that exhibits similar functions. may be omitted.
  • the metal compound functions as a reducing agent that reduces carbon dioxide
  • this metal compound can also function as a catalyst that promotes the reaction between carbon dioxide and a reducing substance.
  • the reverse water gas shift reaction is carried out by housing a catalyst in a reactor and simultaneously supplying the exhaust gas and the reducing gas to the reactor.
  • a gas containing hydrogen was described as a representative of the reducing gas. etc.) and ammonia.
  • the number of reactors connected in series may be 3 or more
  • the series reactor reducing agent
  • the number of reactors on the reduction side for reducing 4R may be two, or four or more.
  • the number of reactors used for gas production may be one without being limited to each of the above embodiments.
  • the oxygen carrier (reducing agent) used in this example section was prepared as follows.
  • Example 1-1 CeO 2 _La 2 S 3 -3 wt%)
  • a reducing agent 1.94 g of cerium oxide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and 0.06 g of lanthanum sulfide (manufactured by Kojundo Chemical Laboratory Co., Ltd.) were weighed and placed in a crucible. Mixed. The mixture was heated to 450° C. over 1 hour, held at 450° C. for 4 hours, then heated to 950° C. over 1 hour and fired at 950° C. for 8 hours. Finally, the fired agglomerates were finely pulverized mechanically to obtain the desired reducing agent.
  • the reducing agent was granular.
  • Example 1-2 CeO 2 _La 2 S 3 -5 wt%)
  • Example 1 except that 1.90 g of cerium oxide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and 0.10 g of lanthanum sulfide (manufactured by Kojundo Chemical Laboratory Co., Ltd.) were weighed as precursors of the reducing agent.
  • a reducing agent was prepared in the same manner as in -1. The reducing agent was granular.
  • Example 2 Ce0.9Zr0.1O2_La2S3-5wt %
  • zirconium (II) oxynitrate dihydrate manufactured by Kishida Chemical Co., Ltd., purity: 99.0%
  • cerium (III) nitrate hexahydrate were used as precursors of the reducing agent.
  • Wako manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., purity: 99.5%
  • citric acid manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., purity: 99.5%
  • the above precursor metal nitrate
  • ethylene glycol manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., purity: 99.5%
  • the mixture was heated to 450° C. over 1 hour, held at 450° C. for 4 hours, then heated to 950° C. over 1 hour and fired at 950° C. for 8 hours. Finally, the fired agglomerates were finely pulverized mechanically to obtain the desired reducing agent.
  • the reducing agent was granular.
  • Example 3 After Ce0.9Zr0.1O2_S gas reaction ) A fixed-bed flow reactor was filled with Ce 0.9 Zr 0.1 O 2 as a precursor of the reducing agent. Thereafter, after heating the reactor to 850° C., H 2 gas was flowed, and then CO 2 gas mixed with 1% H 2 S was flowed. This cycle was performed for 20 or more cycles. After cooling to room temperature, the desired reducing agent was obtained.
  • Comparative Example 3 Ce0.9Zr0.1O2
  • a target metal oxide was obtained in the same manner as in Comparative Example 2.
  • the amount of sulfur (elemental sulfur) contained is quantified by the following apparatus and method. 1: Apparatus ICP-AES: Agilent 5110 VDV type manufactured by Agilent Technologies Microwave thermal decomposition apparatus: MultiWave 3000 manufactured by Anton Paar 2: Method An acid and a sample were placed in a decomposition container, the container was sealed, and then microwaves were applied to thermally decompose. Subsequently, quantitative analysis (standard addition method) of S in the sample was performed by ICP-AES.
  • the sulfur content of each oxygen carrier is shown in Table 1 below.
  • Thermogravimetry was performed under a hydrogen atmosphere for each oxygen carrier (reducing agent). The specific procedure is as follows. First, 50 to 100 mg of each oxygen carrier was filled on the sample table in the reactor. Subsequently, after flowing helium gas at a flow rate of 50 mL/min for 5 minutes, hydrogen gas was flowed at a flow rate of 50 mL/min, and the temperature was raised from room temperature to 900°C. At this time, the mass change rate is measured in the range of 400°C to 900°C. The temperature increase rate during thermogravimetric measurement was 10° C./min. The evaluation is based on the amount of change when the mass at room temperature is taken as 100%. Shown as a relative value. In addition, Example 2 is shown as a relative value when the amount of change in Comparative Example 2 is set to "1". The mass change rate results are shown in Table 2.
  • hydrogen gas (reducing gas) was flowed at a flow rate of 20 mL/min for 5 minutes to carry out a reduction reaction (first process) of the oxygen carrier, thereby reducing the oxygen carrier.
  • the gas discharged from the discharge port contained water vapor.
  • helium gas is flowed at a flow rate of 20 mL/min for 5 minutes
  • carbon dioxide gas is flowed at a flow rate of 20 mL/min for 5 minutes to perform a carbon dioxide reduction reaction (second process).
  • the carbon dioxide gas (source gas) was reduced.
  • carbon monoxide was contained in the generated gas discharged from the discharge port.
  • the following process was performed for this test.
  • helium gas was flowed at a flow rate of 20 mL/min for 5 minutes.
  • hydrogen gas reducing gas
  • the gas discharged from the discharge port contained water vapor.
  • helium gas is flowed at a flow rate of 3 mL/min for 5 minutes, and then carbon dioxide gas is flowed at a flow rate of 3 mL/min for 4 minutes to perform a carbon dioxide reduction reaction (second process).
  • the carbon dioxide gas (source gas) was reduced.
  • Example 3 (Reactivity with hydrogen (2))
  • the oxygen carriers (reducing agents) of Example 3 and Comparative Example 3 were subjected to thermogravimetry (TG) under a hydrogen atmosphere.
  • the specific procedure is as follows. First, 50 to 100 mg of each oxygen carrier was filled on the sample table in the reactor. Subsequently, after flowing helium gas at a flow rate of 50 mL/min for 5 minutes, hydrogen gas was flowed at a flow rate of 50 mL/min, and the temperature was raised from room temperature to 900°C. At this time, the mass change rate is measured in the range of 400°C to 700°C. The temperature increase rate during thermogravimetric measurement was 10° C./min. The evaluation was performed based on the amount of change when the mass at room temperature was taken as 100%, and Example 3 was shown as a relative value when the amount of change in Comparative Example 3 was set to "1".
  • hydrogen gas (reducing gas) was flowed at a flow rate of 20 mL/min for 5 minutes to carry out a reduction reaction (first process) of the oxygen carrier, thereby reducing the oxygen carrier.
  • the gas discharged from the discharge port contained water vapor.
  • helium gas is flowed at a flow rate of 20 mL/min for 5 minutes
  • carbon dioxide gas is flowed at a flow rate of 20 mL/min for 5 minutes to perform a carbon dioxide reduction reaction (second process).
  • the carbon dioxide gas (source gas) was reduced.
  • carbon monoxide was contained in the generated gas discharged from the discharge port.
  • the following process was performed for this test.
  • helium gas was flowed at a flow rate of 20 mL/min for 5 minutes.
  • hydrogen gas reducing gas
  • the gas discharged from the discharge port contained water vapor.
  • helium gas is flowed at a flow rate of 3 mL/min for 5 minutes, and then carbon dioxide gas is flowed at a flow rate of 3 mL/min for 4 minutes to perform a carbon dioxide reduction reaction (second process).
  • the carbon dioxide gas (source gas) was reduced.
  • Gas production device 2 Connection part 3: Reducing gas supply part 4: Reaction part 41: Tubular body 42: Housing 43: Space 4R: Reducing agent 4a: Reactor 4b: Reactor 4c: Reactor 4d: Reactor 41a : Reactor 41b : Reactor 42a : Reactor 42b : Reactor 5 : Concentration adjusting section 6 : Compressing section 7 : Minor component removing section 8 : Gas switching section 8a : First gas switching section 8b : Second gas switching section 9 : Gas purification unit 10 : Exhaust gas heating unit 11 : Reducing gas heating unit 20 : Furnace 40 : Generated gas discharge unit 100 : Gas production system GL1 : Gas line GL2 : Gas line GL3a : Gas line GL3b : Gas line GL3c : Gas line GL3d : Gas line GL4 : Gas line GL4a : Gas line GL4b : Gas line

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Treating Waste Gases (AREA)

Abstract

[Problem] To provide, inter alia, an oxygen carrier capable of efficiently producing a valuable carbon substance using a feedstock gas that contains carbon dioxide and a reducing gas that contains a reducing substance. [Solution] According to one embodiment of the present invention, an oxygen carrier having a metal compound is provided. The metal compound in this oxygen carrier has a cationic moiety and an anionic moiety. The cationic moiety contains at least a metal element. The anionic moiety contains at least an oxygen element. The cationic moiety and/or anionic moiety contain(s) another element different from the metal element and oxygen element. The other element belongs to groups 14-17 and periods 2-5.

Description

酸素キャリア、酸素キャリアの製造方法、ガスの製造方法及びガス製造装置Oxygen carrier, method for producing oxygen carrier, method for producing gas, and gas production apparatus
 本発明は、酸素キャリア、酸素キャリアの製造方法、ガスの製造方法及びガス製造装置に関する。 The present invention relates to an oxygen carrier, an oxygen carrier manufacturing method, a gas manufacturing method, and a gas manufacturing apparatus.
 近年、温室効果ガスの一種である二酸化炭素(CO)は、その大気中の濃度が上昇を続けている。大気中の二酸化炭素の濃度の上昇は、地球温暖化を助長する。したがって、大気中に放出される二酸化炭素を回収することは重要であり、さらに回収した二酸化炭素を炭素有価物に変換して再利用できれば、炭素循環社会を実現することができる。
 また、地球規模の施策としても、気候変動に関する国際連合枠組条約の京都議定書にもあるように、地球温暖化の原因となる二酸化炭素について、先進国における削減率を、1990年を基準として各国別に定め、共同で約束期間内に削減目標値を達成することが定められている。
In recent years, the atmospheric concentration of carbon dioxide (CO 2 ), which is a kind of greenhouse gas, continues to rise. Rising concentrations of carbon dioxide in the atmosphere contribute to global warming. Therefore, it is important to recover the carbon dioxide released into the atmosphere, and if the recovered carbon dioxide can be converted into carbon valuables and reused, a carbon recycling society can be realized.
Also, as a global measure, as stated in the Kyoto Protocol of the United Nations Framework Convention on Climate Change, the reduction rate of carbon dioxide, which causes global warming, in developed countries based on 1990 as a standard It is stipulated that we will jointly achieve the reduction target value within the commitment period.
 その削減目標を達成するため、製鉄所、精錬所または火力発電所から発生した二酸化炭素を含む排気ガスも対象となっており、これらの業界における二酸化炭素の削減に関して、様々な技術改良が行われている。かかる技術の一例としては、CO回収・貯留(CCS)が挙げられる。しかしながら、この技術では、貯留という物理的な限界があり、根本的な解決策とはなっていない。
 例えば、特許文献1には、ケミカルルーピング型反応装置を備える二酸化炭素還元システムが開示されている。このケミカルルーピング型反応装置は、金属酸化物触媒が充填された2つの反応器を有しており、一方の反応器にて二酸化炭素を一酸化炭素に還元する第1の反応と、他方の反応器にて水素を水に酸化する第2の反応とを行う。
In order to achieve the reduction target, exhaust gas containing carbon dioxide generated from steel mills, smelters or thermal power plants is also targeted, and various technological improvements have been made regarding the reduction of carbon dioxide in these industries. ing. One example of such technology is CO2 capture and storage (CCS). However, this technique has a physical limit of storage and is not a fundamental solution.
For example, Patent Literature 1 discloses a carbon dioxide reduction system comprising a chemical looping reactor. This chemical looping type reactor has two reactors filled with a metal oxide catalyst, one reactor for the first reaction of reducing carbon dioxide to carbon monoxide, and the other reactor for the reduction of carbon dioxide to carbon monoxide. A second reaction that oxidizes hydrogen to water takes place in the vessel.
国際公開第2019/163968号パンフレットInternational Publication No. 2019/163968 Pamphlet
 しかしながら、工業的により効率よく二酸化炭素から一酸化炭素(炭素有価物)を製造するには、更なる改良の余地が残されている。
 本発明では上記事情に鑑み、二酸化炭素を含む原料ガスと還元物質を含む還元性を有するガスとを使用して、効率よく炭素有価物を生成し得る酸素キャリア等を提供することとした。
However, there is still room for further improvement in industrially producing carbon monoxide (a carbon valuable product) from carbon dioxide more efficiently.
In view of the above circumstances, the present invention provides an oxygen carrier or the like that can efficiently produce carbon valuables by using a raw material gas containing carbon dioxide and a reducing gas containing a reducing substance.
 本発明の一態様によれば、金属化合物を有する酸素キャリアが提供される。この酸素キャリアにおける金属化合物は、カチオン部と、アニオン部とを有する。カチオン部は、少なくとも金属元素を含む。アニオン部は、少なくとも酸素元素を含む。カチオン部またはアニオン部の少なくとも一方に、金属元素および酸素元素とは異なる他の元素を含む。他の元素は、第14族~第17族、かつ、第2周期~第5周期に属する元素である。 According to one aspect of the present invention, an oxygen carrier having a metal compound is provided. The metal compound in this oxygen carrier has a cation portion and an anion portion. The cation part contains at least a metal element. The anion part contains at least an oxygen element. At least one of the cation portion and the anion portion contains an element different from the metal element and the oxygen element. Other elements are elements belonging to groups 14 to 17 and periods 2 to 5.
 かかる態様によれば、二酸化炭素を含む原料ガスと還元物質を含む還元性を有するガスとを使用して、効率よく炭素有価物を生成することができる。 According to this aspect, it is possible to efficiently produce carbon valuables by using a raw material gas containing carbon dioxide and a reducing gas containing a reducing substance.
本実施形態にかかるガス製造装置を使用したガス製造システムの全体構成を示す概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic which shows the whole structure of the gas manufacturing system using the gas manufacturing apparatus concerning this embodiment. 第1実施形態の反応部の構成を示す概略図である。It is a schematic diagram showing the configuration of the reaction section of the first embodiment. 第2実施形態の反応部の構成を示す概略図である。It is a schematic diagram showing the configuration of the reaction section of the second embodiment. 第2実施形態において反応器に通過させるガスを切り換える方法を示す概略図である。FIG. 4 is a schematic diagram showing a method of switching gases to be passed through the reactor in the second embodiment;
 以下、本発明について、適宜添付図面に示す好適実施形態に基づいて詳細に説明する。 Hereinafter, the present invention will be described in detail based on suitable embodiments shown in the accompanying drawings.
<酸素キャリア>
 まず、本実施形態の酸素キャリアについて説明する。本実施形態の酸素キャリアは以下に示すものである。
 金属化合物を有する酸素キャリアであって、
 前記金属化合物は、カチオン部と、アニオン部とを有し、
 前記カチオン部は、少なくとも金属元素を含み、
 前記アニオン部は、少なくとも酸素元素を含み、
 前記カチオン部または前記アニオン部の少なくとも一方に、前記金属元素および前記酸素元素とは異なる他の元素を含み、
 前記他の元素は、第14族~第17族、かつ、第2周期~第5周期に属する元素である、酸素キャリア。
<Oxygen carrier>
First, the oxygen carrier of this embodiment will be described. The oxygen carrier of this embodiment is shown below.
An oxygen carrier comprising a metal compound,
The metal compound has a cation portion and an anion portion,
The cation portion contains at least a metal element,
The anion portion contains at least an oxygen element,
At least one of the cation part or the anion part contains another element different from the metal element and the oxygen element,
The oxygen carrier, wherein the other element is an element belonging to Groups 14 to 17 and Periods 2 to 5.
 本実施形態の酸素キャリアは、金属化合物を有するものであり、典型的には二酸化炭素等のガスの還元反応(還元された酸素キャリアに対して二酸化炭素と接触させることによって一酸化炭素等の炭素有価物を生成させる反応)や、水素等のガスの酸化反応(水素と接触させることによって水を生成させる反応)に用いられる。すなわち、この金属化合物が酸素の担体(キャリア)として機能することから、上述の還元反応や酸化反応を進行させることができる。 The oxygen carrier of the present embodiment contains a metal compound, and is typically reduced by a reduction reaction of a gas such as carbon dioxide (a carbon dioxide such as carbon monoxide is produced by contacting the reduced oxygen carrier with carbon dioxide). reaction to produce valuable substances) and oxidation reaction of gases such as hydrogen (reaction to produce water by contact with hydrogen). That is, since this metal compound functions as a carrier of oxygen, the above reduction reaction and oxidation reaction can proceed.
 上述の金属化合物は、カチオン部とアニオン部とを有するものであり、カチオン部は少なくとも金属元素を有する。この金属元素は適宜選択することができるが、一例としては、カチオン部に含まれる金属元素は遷移金属元素であってもよい。
 また、カチオン部に含まれる金属元素は、第3族~第12族に属する金属元素から選択される少なくとも1種を含有してもよく、第4族~第12属に属する金属元素から選択される少なくとも1種を含有してもよい。
 また、カチオン部に含まれる金属元素は、インジウム、ランタン、アルミニウム、チタン、バナジウム、ジルコニウム、鉄、銅、亜鉛、ニッケル、マンガン、クロム、コバルト、ニオブおよびセリウム等のうちの少なくとも1種を含有してもよい。
The metal compound described above has a cation part and an anion part, and the cation part has at least a metal element. This metal element can be selected as appropriate, but as an example, the metal element contained in the cation portion may be a transition metal element.
In addition, the metal element contained in the cation portion may contain at least one selected from metal elements belonging to Groups 3 to 12, and may be selected from metal elements belonging to Groups 4 to 12. may contain at least one of
In addition, the metal element contained in the cation portion contains at least one of indium, lanthanum, aluminum, titanium, vanadium, zirconium, iron, copper, zinc, nickel, manganese, chromium, cobalt, niobium and cerium. may
 また、この金属元素は、酸素キャリアを適用するプロセスに応じて適切に選択すればよい。
 特に、二酸化炭素を一酸化炭素に変換するプロセスに酸素キャリアを用いる場合、この金属元素は鉄やセリウム等を含むことが好適である。二酸化炭素をメタンに変換するプロセスに酸素キャリアを用いる場合、この金属元素は、ニッケルおよびルテニウムのうちの少なくとも一方を含むことが好適である。二酸化炭素をメタノールに変換するプロセスに酸素キャリアを用いる場合、この金属元素は、銅および亜鉛のうちの少なくとも一方を含むことが好適である。
Moreover, this metal element may be appropriately selected according to the process in which the oxygen carrier is applied.
In particular, when an oxygen carrier is used in the process of converting carbon dioxide into carbon monoxide, the metal element preferably contains iron, cerium, or the like. If an oxygen carrier is used in the process of converting carbon dioxide to methane, this metallic element preferably contains at least one of nickel and ruthenium. When an oxygen carrier is used in the process of converting carbon dioxide to methanol, this metallic element preferably contains at least one of copper and zinc.
 また、金属化合物はアニオン部として少なくとも酸素元素を有する。前述したように、本実施形態の酸素キャリアは、典型的には二酸化炭素の一酸化炭素への変換や、水素の水への変換に用いられるが、このような各種変換は、この酸素元素の放出や吸収を介して行われ得る。 In addition, the metal compound has at least an oxygen element as an anion portion. As described above, the oxygen carrier of the present embodiment is typically used for converting carbon dioxide into carbon monoxide and hydrogen into water. It can be through emission or absorption.
 また、本実施形態の酸素キャリアに含まれる金属化合物は、前述の金属元素と酸素元素とは異なる他の元素を含む。ここで、この他の元素は、第14族~第17族に属するものであり、かつ、第2周期~第5周期に属するものである。
 すなわち、この他の元素は、炭素、ケイ素、ゲルマニウムおよびスズから選択される第14族元素;窒素、リン、ヒ素およびアンチモンから選択される第15族元素;硫黄、セレンおよびテルルから選択される第16族元素;フッ素、塩素、臭素およびヨウ素から選択される第17族元素のいずれかである。
In addition, the metal compound contained in the oxygen carrier of the present embodiment contains other elements different from the aforementioned metal element and oxygen element. Here, the other elements belong to Groups 14 to 17 and also belong to Periods 2 to 5.
Group 14 elements selected from carbon, silicon, germanium and tin; Group 15 elements selected from nitrogen, phosphorus, arsenic and antimony; Group 15 elements selected from sulfur, selenium and tellurium; Group 16 element; any Group 17 element selected from fluorine, chlorine, bromine and iodine.
 本実施形態の酸素キャリアは、金属化合物中にこのような他の元素を含むことから、各種反応の効率が良化する。この理由は必ずしも以下には限られるものではないが、酸化反応や還元反応に供された酸素キャリアは、反応過程において、非化学量論的化合物の組成(典型的には、金属元素に対して酸素元素が欠損する組成や、酸素元素に対して金属元素が欠損する組成)となり得る。その際、酸素キャリア内に他の元素が存在することによって、非化学量論的化合物の組成における欠損部分を補いやすくなるので、各種反応の効率が良化するものと推察される。 Since the oxygen carrier of the present embodiment contains such other elements in the metal compound, the efficiency of various reactions is improved. The reason for this is not necessarily limited to the following, but the oxygen carrier subjected to the oxidation reaction or the reduction reaction has a non-stoichiometric compound composition (typically, relative to the metal element It can be a composition in which the oxygen element is deficient, or a composition in which the metal element is deficient with respect to the oxygen element). At that time, it is presumed that the presence of other elements in the oxygen carrier makes it easier to compensate for the deficiencies in the composition of the non-stoichiometric compound, thereby improving the efficiency of various reactions.
 なお、行われる反応に応じて、この他の元素を選択すればよく、金属化合物においては、この他の元素はカチオン部の一部を構成してもよく、アニオン部の一部を構成してもよい。 In addition, other elements may be selected according to the reaction to be performed. In the metal compound, the other elements may constitute part of the cation part, good too.
 上記の中でも、この他の元素は、第15族および第16族に属する元素のうち少なくとも1種を含有することが好ましく、第16族に属する元素のうち少なくとも1種を含有することがより好ましい。 Among the above, the other element preferably contains at least one element belonging to Groups 15 and 16, and more preferably contains at least one element belonging to Group 16. .
 他の元素の含有量は目的などに応じて適宜選択することができるが、一例として、他の元素の含有量は、金属化合物(金属化合物の全構成要素)に対して他の元素の含有量が0.001質量%以上10質量%以下であることが好ましく、0.005質量%以上8質量%以下であることがより好ましく、0.01質量%以上5質量%以下であることがさらに好ましい。他の元素の含有量をかかる範囲に設定することによって、目的とする反応効率の向上に寄与しやすくなる。 The content of other elements can be appropriately selected depending on the purpose etc. As an example, the content of other elements is the content of other elements with respect to the metal compound (all constituent elements of the metal compound) is preferably 0.001% by mass or more and 10% by mass or less, more preferably 0.005% by mass or more and 8% by mass or less, and more preferably 0.01% by mass or more and 5% by mass or less . By setting the content of other elements within such a range, it becomes easier to contribute to the improvement of the intended reaction efficiency.
 また、このような金属化合物は、たとえば金属元素を含む金属単体、合金または金属酸化物と、他の元素を含む化合物とを接触させつつ加熱することで得ることができる。この他の元素を含む化合物は、接触させる際に固体であってもよく、液であってもよく、ガスであってもよい。
 このように金属元素を含む原料と、他の元素を含む化合物とを接触させつつ加熱することにより、他の元素が原料中に取り込まれることとなり、本実施形態の金属化合物が形成され得る。なお、この反応の原料が金属単体や合金である場合は、得られる金属化合物中の酸素元素を取り入れるために、加熱反応を酸素雰囲気下で行ってもよい。
Moreover, such a metal compound can be obtained, for example, by heating a metal element, alloy, or metal oxide containing a metal element and a compound containing another element while bringing them into contact with each other. The compound containing other elements may be solid, liquid, or gas when brought into contact.
By heating the raw material containing the metal element and the compound containing the other element in contact with each other in this way, the other element is taken into the raw material, and the metal compound of the present embodiment can be formed. When the raw material for this reaction is a simple metal or an alloy, the heating reaction may be carried out in an oxygen atmosphere in order to incorporate the oxygen element in the resulting metal compound.
 他の元素が硫黄である場合を例に挙げると、金属元素を含む金属単体、合金または金属酸化物に接触させる化合物は、硫黄単体や、硫化水素、硫酸、二酸化硫黄、三酸化硫黄、六フッ化硫黄、二塩化硫黄、二流化炭素、硫化金属(硫化リチウム、硫化鉄、硫化亜鉛、硫化ランタン等)、硫酸塩(硫酸バリウム、硫酸ナトリウム等)などが挙げられるが、これには限定されず、硫黄を構成原子として含む公知の化合物を適宜用いればよい。 Taking the case where the other element is sulfur as an example, the compound to be brought into contact with the elemental metal, alloy or metal oxide containing the metal element is elemental sulfur, hydrogen sulfide, sulfuric acid, sulfur dioxide, sulfur trioxide, hexafluoride. sulfuric acid, sulfur dichloride, carbon disulfide, metal sulfides (lithium sulfide, iron sulfide, zinc sulfide, lanthanum sulfide, etc.), sulfates (barium sulfate, sodium sulfate, etc.), etc., but not limited thereto , a known compound containing sulfur as a constituent atom may be used as appropriate.
 金属化合物を得る際の加熱温度は、作製する金属化合物に応じて適宜設定することができる。一例としては、この加熱温度は200℃以上1600℃以下であることが好ましく、350℃以上1400℃以下であることがより好ましく、500℃以上1200℃以下であることがさらに好ましい。このような温度範囲を設定することにより、使用するエネルギーを制御しつつ、効率的な化合物変換を行うことができる。 The heating temperature for obtaining the metal compound can be appropriately set according to the metal compound to be produced. For example, the heating temperature is preferably 200° C. or higher and 1600° C. or lower, more preferably 350° C. or higher and 1400° C. or lower, and even more preferably 500° C. or higher and 1200° C. or lower. By setting such a temperature range, efficient compound conversion can be performed while controlling the energy to be used.
 なお、本実施形態の酸素キャリアは、金属化合物を担体に担持させたものであってもよい。
 担体の構成材料としては、排ガス(原料ガス)との接触や反応条件等により変性し難いものが好ましく、例えば、炭素材料(グラファイト、グラフェン等)、MoCのような炭化物、ゼオライト、モンモリロナイト、ZrO、TiO、V、MgO、CeO、Al、SiOのような酸化物およびこれらを含む複合酸化物等が挙げられる。
Note that the oxygen carrier of the present embodiment may be one in which a metal compound is supported on a carrier.
As a constituent material of the carrier, a material that is difficult to be modified by contact with the exhaust gas (raw material gas), reaction conditions, etc. is preferable. Examples include oxides such as ZrO 2 , TiO 2 , V 2 O 5 , MgO, CeO 2 , Al 2 O 3 and SiO 2 and composite oxides containing these.
 これらの中でも、担体の構成材料としては、ゼオライト、モンモリロナイト、ZrO、TiO、V、MgO、Al、SiOおよびこれらを含む複合酸化物が好ましい。かかる材料で構成される担体は、酸化反応や還元反応に悪影響を及ぼさず、金属化合物の担持能に優れる点で好ましい。
 なお本実施形態の酸素キャリアにおいては、担体の表面の少なくとも一部を前述の金属化合物で被覆する構成が挙げられる。
Among these, zeolite, montmorillonite, ZrO 2 , TiO 2 , V 2 O 5 , MgO, Al 2 O 3 , SiO 2 and composite oxides containing these are preferable as the constituent material of the carrier. A carrier composed of such a material is preferable because it does not adversely affect the oxidation reaction or the reduction reaction and is excellent in supporting the metal compound.
In addition, in the oxygen carrier of the present embodiment, at least a part of the surface of the carrier may be coated with the aforementioned metal compound.
<ガス製造システム>
 続いて、本実施形態の酸素キャリアが適用され得るガス製造システムの全体構成について説明する。
<Gas production system>
Next, the overall configuration of a gas production system to which the oxygen carrier of this embodiment can be applied will be described.
(ガス製造システムの第1実施形態)
 図1は、本実施形態にかかるガス製造装置を使用したガス製造システムの全体構成を示す概略図である。図2は、第1実施形態の反応部の構成を示す概略図である。
 図1に示すガス製造システム100は、二酸化炭素を含む排ガス(原料ガス)を生成する炉20と、接続部2を介して炉20に接続されたガス製造装置1とを備えている。
 なお、本明細書中では、ガスの流れ方向に対して上流側を単に「上流側」、下流側を単に「下流側」とも記載する。また、本ガス製造システムに備えられる各構成は必ずしも設置することが求められるものではなく、構築すべきプロセスに応じて、適宜、省略や置換などされてよい。
(First Embodiment of Gas Production System)
FIG. 1 is a schematic diagram showing the overall configuration of a gas production system using a gas production apparatus according to this embodiment. FIG. 2 is a schematic diagram showing the configuration of the reaction section of the first embodiment.
A gas production system 100 shown in FIG. 1 includes a furnace 20 that generates an exhaust gas (raw material gas) containing carbon dioxide, and a gas production device 1 connected to the furnace 20 via a connector 2 .
In this specification, the upstream side with respect to the gas flow direction is also simply referred to as the "upstream side", and the downstream side is simply referred to as the "downstream side". Moreover, each component provided in the present gas production system is not necessarily required to be installed, and may be appropriately omitted or replaced according to the process to be constructed.
 炉20としては、特に限定されないが、例えば、製鉄所、精錬所または火力発電所に付属する炉であり、好ましくは燃焼炉、高炉、転炉等が挙げられる。炉20では、内容物の燃焼、溶融、精錬等の際に、排ガスが生成(発生)する。
 ゴミ焼却場にける燃焼炉(焼却炉)の場合、内容物(廃棄物)としては、例えば、プラスチック廃棄物、生ゴミ、都市廃棄物(MSW)、廃棄タイヤ、バイオマス廃棄物、家庭ゴミ(布団、紙類)、建築部材等が挙げられる。なお、これらの廃棄物は、1種を単独で含んでいても、2種以上を含んでいてもよい。
The furnace 20 is not particularly limited, but is, for example, a furnace attached to an ironworks, a refinery, or a thermal power plant, preferably a combustion furnace, a blast furnace, a converter, or the like. In the furnace 20, exhaust gas is produced (generated) during combustion, melting, refining, and the like of the contents.
In the case of a combustion furnace (incinerator) in a garbage incineration plant, the contents (waste) include, for example, plastic waste, garbage, municipal waste (MSW), waste tires, biomass waste, household waste (bedding , paper), building materials, and the like. In addition, these wastes may contain 1 type independently, or may contain 2 or more types.
 排ガスは、通常、二酸化炭素に加えて、窒素、酸素、一酸化炭素、水蒸気、メタン等の他のガス成分を含む。排ガス中に含まれる二酸化炭素の濃度は、特に限定されないが、生成ガスの製造コスト(一酸化炭素への変換効率)を考慮すると、1体積%以上が好ましく、5体積%以上がより好ましい。
 ゴミ焼却場にける燃焼炉からの排ガスの場合、二酸化炭素が5~15体積%、窒素が60~70体積%、酸素が5~10体積%、水蒸気が15~25体積%で含まれる。
Exhaust gases typically contain, in addition to carbon dioxide, other gas components such as nitrogen, oxygen, carbon monoxide, water vapor, methane, and the like. The concentration of carbon dioxide contained in the exhaust gas is not particularly limited, but considering the production cost of the generated gas (conversion efficiency to carbon monoxide), it is preferably 1% by volume or more, more preferably 5% by volume or more.
Exhaust gas from a combustion furnace in a garbage incineration plant contains 5-15% by volume of carbon dioxide, 60-70% by volume of nitrogen, 5-10% by volume of oxygen, and 15-25% by volume of water vapor.
 高炉からの排ガス(高炉ガス)は、高炉において銑鉄を製造する際に発生するガスであり、二酸化炭素が20~30体積%、窒素が55~60体積%、一酸化炭素が25~30体積%、水素が1~5体積%で含まれる。
 また、転炉からの排ガス(転炉ガス)は、転炉において鋼を製造する際に発生するガスであり、二酸化炭素が15~20体積%、一酸化炭素が50~60体積%、窒素が15~25体積%、水素が1~5体積%で含まれる。
 なお、原料ガスとしては、排ガスに限らず、二酸化炭素を100体積%で含む純ガスを使用してもよい。
Exhaust gas from a blast furnace (blast furnace gas) is a gas generated when pig iron is produced in a blast furnace, and contains 20 to 30% by volume of carbon dioxide, 55 to 60% by volume of nitrogen, and 25 to 30% by volume of carbon monoxide. , containing 1 to 5% by volume of hydrogen.
In addition, the exhaust gas from the converter (converter gas) is a gas generated when steel is produced in the converter, and contains 15 to 20 volume% carbon dioxide, 50 to 60 volume% carbon monoxide, and nitrogen. It contains 15 to 25% by volume and 1 to 5% by volume of hydrogen.
The raw material gas is not limited to the exhaust gas, and a pure gas containing 100% by volume of carbon dioxide may be used.
 ただし、原料ガスとして排ガスを使用すれば、従来、大気中に排出していた二酸化炭素を有効利用することができ、環境への負荷を低減することができる。これらの中でも、炭素循環という観点からは、製鉄所または精錬所で発生した二酸化炭素を含む排ガスが好ましい。
 また、高炉ガスや転炉ガスは、炉から排出された未処理のガスをそのまま使用してもよく、例えば、一酸化炭素等を除去する処理を施した後の処理済みガスを使用してもよい。未処理の高炉ガスおよび転炉ガスは、それぞれ上述のようなガス組成であり、処理済みガスは、燃焼炉からの排ガスで示したガス組成に近いガス組成となる。本明細書では、以上のようなガス(ガス製造装置1に供給される前のガス)をいずれも排ガスと呼ぶ。
However, if exhaust gas is used as the raw material gas, carbon dioxide, which has conventionally been discharged into the atmosphere, can be effectively used, and the burden on the environment can be reduced. Among these, from the viewpoint of carbon circulation, exhaust gas containing carbon dioxide generated in ironworks or smelters is preferable.
In addition, as the blast furnace gas and the converter gas, the untreated gas discharged from the furnace may be used as it is. good. The untreated blast furnace gas and the converter gas have gas compositions as described above, and the treated gas has a gas composition close to that shown for the exhaust gas from the combustion furnace. In this specification, all of the above gases (the gases before being supplied to the gas production apparatus 1) are called exhaust gas.
 ガス製造装置1は、炉20から排出され、接続部2を介して供給される排ガス(二酸化炭素を含む原料ガス)と、排ガス中に含まれる二酸化炭素を還元する還元剤4Rとを接触させて、一酸化炭素を含む生成ガス(合成ガス)を製造する。
 なお、本明細書では、炭素有価物の一例として、一酸化炭素を代表に説明する。ただし、炭素有価物としては、一酸化炭素に限定されず、例えば、メタン、メタノール等が挙げられ、これらの単独物であってもよく、2種以上の混合物であってもよい。後述する還元剤の種類に応じて、生成する炭素有価物の種類が異なってくる。
In the gas production apparatus 1, the exhaust gas (raw material gas containing carbon dioxide) discharged from the furnace 20 and supplied via the connection part 2 is brought into contact with a reducing agent 4R that reduces the carbon dioxide contained in the exhaust gas. , to produce a product gas (syngas) containing carbon monoxide.
In this specification, carbon monoxide will be described as a representative example of the carbon valuables. However, carbon valuables are not limited to carbon monoxide, and include, for example, methane, methanol and the like, and they may be used alone or in combination of two or more. Depending on the type of reducing agent, which will be described later, the type of carbon valuables produced will differ.
 ガス製造装置1は、主に、接続部2と、還元ガス供給部3と、4つの反応器41a、42a、41b、42b(以下、これを総称して「反応器4ab」とも記載する。)を備える反応部4と、接続部2と反応部4とを接続するガスラインGL1と、還元ガス供給部3と反応部4とを接続するガスラインGL2と、反応部4に接続されたガスラインGL4とを有している。
 本実施形態では、接続部2が、排ガスを反応部4に供給する排ガス供給部(原料ガス供給部)を構成している。
 なお、必要に応じて、ガスラインGL1、ガスラインGL2およびガスラインGL4の途中の所定の箇所には、ガスを移送するためのポンプを配置してもよい。例えば、後述する圧縮部6で排ガスの圧力を比較的低く調整する場合には、ポンプを配置することにより、ガス製造装置1内でガスを円滑に移送することができる。
The gas production apparatus 1 mainly includes a connection section 2, a reducing gas supply section 3, and four reactors 41a, 42a, 41b, and 42b (hereinafter collectively referred to as "reactor 4ab"). a gas line GL1 connecting the connecting portion 2 and the reaction portion 4; a gas line GL2 connecting the reducing gas supply portion 3 and the reaction portion 4; and a gas line connected to the reaction portion 4. GL4.
In this embodiment, the connection part 2 constitutes an exhaust gas supply part (raw material gas supply part) that supplies the exhaust gas to the reaction part 4 .
In addition, if necessary, a pump for transferring gas may be arranged at a predetermined position in the middle of the gas line GL1, the gas line GL2, and the gas line GL4. For example, when the pressure of the exhaust gas is adjusted to be relatively low in the compression unit 6, which will be described later, the gas can be smoothly transferred within the gas production apparatus 1 by arranging a pump.
 ガスラインGL1は、その一端部において接続部2に接続されている。一方、ガスラインGL1は、その他端部において、図2に示すように、ガス切換部8および2つのガスラインGL3a、GL3bを介して、それぞれ反応部4が備える反応器41a、41bの入口ポートに接続されている。
 かかる構成により、炉20から接続部2を介して供給された排ガスは、ガスラインGL1を通過して、各反応器41a、41bに供給される。
 ガス切換部8は、例えば、分岐ガスラインと、この分岐ガスラインの途中に設けられたバルブのような流路開閉機構とを含んで構成することができる。
Gas line GL1 is connected to connecting portion 2 at one end thereof. On the other hand, the other end of the gas line GL1, as shown in FIG. It is connected.
With such a configuration, the exhaust gas supplied from the furnace 20 through the connecting portion 2 passes through the gas line GL1 and is supplied to the reactors 41a and 41b.
The gas switching unit 8 can be configured to include, for example, a branch gas line and a channel opening/closing mechanism such as a valve provided in the middle of the branch gas line.
 各反応器4abは、図2に示すように、還元剤4Rをそれぞれ充填(収容)した複数の管体41と、複数の管体41を収納したハウジング42とを備える多管式の反応装置(固定層式の反応装置)で構成されている。かかる多管式の反応装置によれば、還元剤4Rと排ガスおよび還元ガスとの接触の機会を十分に確保することができる。その結果、生成ガスの製造効率を高めることができる。 As shown in FIG. 2, each reactor 4ab is a multi-tubular reaction device ( fixed bed type reactor). According to such a multi-tubular reactor, it is possible to ensure sufficient opportunities for contact between the reducing agent 4R and the exhaust gas and reducing gas. As a result, the production efficiency of the product gas can be enhanced.
 ここで、この各反応器4abに収容された還元剤4Rは、上述した金属化合物を含む酸素キャリアを含む。すなわち、管体41内に供給される二酸化炭素を含むガス(原料ガス)は、この酸素キャリアと接触することにより還元され、一酸化炭素を含むガス(生成ガス)へと変換される。このとき、酸素キャリアは、原料ガス(酸化ガス)との接触により酸化される。 Here, the reducing agent 4R accommodated in each reactor 4ab contains an oxygen carrier containing the metal compound described above. That is, the gas containing carbon dioxide (raw material gas) supplied into the tubular body 41 is reduced by contact with the oxygen carrier and converted into a gas containing carbon monoxide (product gas). At this time, the oxygen carrier is oxidized by contact with the raw material gas (oxidizing gas).
 本実施形態の還元剤4Rは、例えば、粒子状(顆粒状)、鱗片状、ペレット状等であることが好ましい。かかる形状の還元剤4Rであれば、管体41への充填効率を高めることができ、管体41内に供給されるガスとの接触面積をより増大させることができる。 The reducing agent 4R of the present embodiment is preferably in the form of particles (granules), scales, pellets, or the like, for example. With such a shape of the reducing agent 4R, the filling efficiency into the tubular body 41 can be enhanced, and the contact area with the gas supplied into the tubular body 41 can be further increased.
 還元剤4Rが粒子状である場合、その体積平均粒径は、特に限定されないが、1~50mmであることが好ましく、3~30mmであることがより好ましい。この場合、還元剤4Rと排ガス(二酸化炭素)との接触面積をさらに高め、二酸化炭素の一酸化炭素への変換効率をより向上させることができる。同様に、還元物質を含む還元ガスによる還元剤4Rの再生(還元)もより効率よく行うことができる。
 粒子状の還元剤4Rは、より球形度が高まることから、転動造粒により製造された成形体であることが好ましい。
When the reducing agent 4R is particulate, its volume average particle diameter is not particularly limited, but is preferably 1 to 50 mm, more preferably 3 to 30 mm. In this case, the contact area between the reducing agent 4R and the exhaust gas (carbon dioxide) can be further increased, and the conversion efficiency of carbon dioxide to carbon monoxide can be further improved. Similarly, the regeneration (reduction) of the reducing agent 4R by the reducing gas containing the reducing substance can be performed more efficiently.
The particulate reducing agent 4R is preferably a compact produced by tumbling granulation because the sphericity is increased.
 ここで、各反応器4abにおいて、還元剤4R自体で管体(円筒状の成形体)41を作製してもよい。さらに、還元剤4Rで、ブロック状、格子状(例えば、網状、ハニカム状)等の成形体を作製し、ハウジング42内に配置するようにしてもよい。 Here, in each reactor 4ab, the tubular body (cylindrical molded body) 41 may be produced from the reducing agent 4R itself. Furthermore, a block-like or lattice-like (for example, net-like or honeycomb-like) molded body may be produced from the reducing agent 4R and arranged in the housing 42 .
 これらの中では、還元剤4Rで網状体を作製し、ハウジング42内に配置する構成が好ましい。かかる構成の場合、各反応器4ab内で排ガスおよび還元ガスの通過抵抗が高まるのを防止しつつ、還元剤4Rと排ガスおよび還元ガスとの接触の機会を十分に確保することもできる。
 なお、4つの反応器41a、42a、41b、42bの容積は、互いにほぼ等しく設定され、処理する排ガスの量(炉20のサイズやガス製造装置1のサイズ)に応じて、適宜設定される。また、4つの反応器41a、42a、41b、42bのうちの少なくとも1つの容積は、排ガスおよび還元ガスの種類等に応じて異ならせてもよい。
Among these, a configuration in which a net-like body is formed from the reducing agent 4R and arranged in the housing 42 is preferable. In the case of such a configuration, it is possible to prevent the passage resistance of the exhaust gas and the reducing gas from increasing in each reactor 4ab, and to ensure sufficient opportunities for contact between the reducing agent 4R and the exhaust gas and the reducing gas.
The volumes of the four reactors 41a, 42a, 41b, and 42b are set substantially equal to each other, and are appropriately set according to the amount of exhaust gas to be treated (the size of the furnace 20 and the size of the gas production apparatus 1). Also, the volume of at least one of the four reactors 41a, 42a, 41b, 42b may be varied according to the types of exhaust gas and reducing gas.
 ガスラインGL1の途中には、接続部2側から順に、濃度調整部5と、圧縮部6と、微成分除去部7と、排ガス加熱部(原料ガス加熱部)10とが設けられている。
 濃度調整部5は、排ガス中に含まれる二酸化炭素の濃度を高める(換言すれば、二酸化炭素を濃縮する)ように調整する。排ガスは、酸素等の不要ガス成分も含む。濃度調整部5で排ガス中に含まれる二酸化炭素の濃度を高めることにより、排ガス中に含まれる不要ガス成分の濃度を相対的に低くすることができる。このため、還元剤4Rによる二酸化炭素の一酸化炭素への変換効率に、不要ガス成分が悪影響を及ぼすのを防止または抑制することができる。
A concentration adjusting section 5, a compressing section 6, a minor component removing section 7, and an exhaust gas heating section (source gas heating section) 10 are provided in this order from the connecting section 2 side in the middle of the gas line GL1.
The concentration adjustment unit 5 adjusts so as to increase the concentration of carbon dioxide contained in the exhaust gas (in other words, concentrate the carbon dioxide). The exhaust gas also contains unnecessary gas components such as oxygen. By increasing the concentration of carbon dioxide contained in the exhaust gas with the concentration adjustment unit 5, the concentration of unnecessary gas components contained in the exhaust gas can be relatively reduced. Therefore, it is possible to prevent or suppress the adverse effect of the unnecessary gas component on the conversion efficiency of carbon dioxide to carbon monoxide by the reducing agent 4R.
 濃度調整部5は、排ガス中に含まれる酸素を除去する酸素除去装置により構成することが好ましい。これにより、ガス製造装置1に持ち込まれる酸素の量を低減すること(すなわち、排ガス中に含まれる酸素の濃度を低くなるように調整すること)ができる。このため、排ガスのガス組成を爆発範囲から乖離させ、排ガスの引火を未然に防止することができる。なお、ガス製造装置1の中でも、酸素除去装置での電気エネルギーの消費が大きいため、後述するような再生可能エネルギーとしての電力を使用することが有効である。 It is preferable that the concentration adjustment unit 5 is configured by an oxygen removal device that removes oxygen contained in the exhaust gas. As a result, the amount of oxygen brought into the gas production apparatus 1 can be reduced (that is, the concentration of oxygen contained in the exhaust gas can be adjusted to be low). For this reason, the gas composition of the exhaust gas can be deviated from the explosion range, and ignition of the exhaust gas can be prevented. Among the gas producing apparatus 1, the oxygen removal apparatus consumes a large amount of electric energy, so it is effective to use electric power as renewable energy as described later.
 この場合、排ガス中に含まれる酸素の濃度を、排ガス全体に対して1体積%未満に調整することが好ましく、0.5体積%未満に調整することがより好ましく、0.1体積%未満に調整することがさらに好ましい。これにより、排ガスの引火をより確実に防止することができる。
 排ガス中に含まれる酸素を除去する酸素除去装置は、低温分離方式(深冷方式)の分離器、圧力スイング吸着(PSA)方式の分離器、膜分離方式の分離器、温度スイング吸着(TSA)方式の分離器、化学吸収方式の分離器、化学吸着方式の分離器等のうちの1種または2種以上を用いて構成することができる。
 なお、濃度調整部5では、排ガス中に二酸化炭素を追加することにより、二酸化炭素が高濃度になるように調整してもよい。
In this case, the concentration of oxygen contained in the exhaust gas is preferably adjusted to less than 1% by volume, more preferably less than 0.5% by volume, and less than 0.1% by volume with respect to the entire exhaust gas. Adjusting is even more preferable. Thereby, ignition of exhaust gas can be prevented more reliably.
Oxygen removal equipment for removing oxygen contained in flue gas includes cryogenic (cryogenic) separators, pressure swing adsorption (PSA) separators, membrane separation separators, and temperature swing adsorption (TSA) separators. It can be configured using one or more of a separator of the type, a separator of the chemical absorption type, a separator of the chemisorption type, and the like.
Note that the concentration adjustment unit 5 may adjust the concentration of carbon dioxide to a high level by adding carbon dioxide to the exhaust gas.
 圧縮部6は、反応器4abに供給する前の排ガスの圧力を上昇させる。これにより、反応器4abで一度に処理可能な排ガスの量を増大させることができる。このため、反応器4abにおける二酸化炭素の一酸化炭素への変換効率をより向上させることができる。
 かかる圧縮部6は、例えば、遠心式圧縮機、軸流式圧縮機のようなターボ圧縮機、往復動圧縮機(レシプロ圧縮機)、ダイアフラム式圧縮機、シングルスクリュー圧縮機、ツインスクリュー圧縮機、スクロール圧縮機、ロータリー圧縮機、ロータリーピストン型圧縮機、スライドベーン型圧縮機のような容積圧縮機、低圧に対応可能なルーツブロワー(二葉送風機)、遠心式のブロワー等で構成することができる。
Compressor 6 increases the pressure of the exhaust gas before it is supplied to reactor 4ab. This makes it possible to increase the amount of exhaust gas that can be processed at one time in the reactor 4ab. Therefore, the conversion efficiency of carbon dioxide to carbon monoxide in the reactor 4ab can be further improved.
The compression unit 6 includes, for example, a centrifugal compressor, a turbo compressor such as an axial compressor, a reciprocating compressor (reciprocating compressor), a diaphragm compressor, a single screw compressor, a twin screw compressor, It can be composed of a volumetric compressor such as a scroll compressor, a rotary compressor, a rotary piston compressor, a slide vane compressor, a roots blower (two-leaf blower) capable of handling low pressure, a centrifugal blower, or the like.
 これらの中でも、圧縮部6は、ガス製造システム100の大規模化の容易性の観点からは、遠心式圧縮機で構成することが好ましく、ガス製造システム100の製造コストを低減する観点からは、往復動圧縮機で構成することが好ましい。
 圧縮部6を通過した後の排ガスの圧力は、特に限定されないが、0~1MPaGであることが好ましく、0~0.5MPaGであることがより好ましく、0.01~0.5MPaGであることがさらに好ましい。この場合、ガス製造装置1の耐圧性を必要以上に高めることなく、反応器4abにおける二酸化炭素の一酸化炭素への変換効率をさらに向上させることができる。
Among these, the compression unit 6 is preferably configured with a centrifugal compressor from the viewpoint of easiness of increasing the scale of the gas production system 100, and from the viewpoint of reducing the production cost of the gas production system 100, A reciprocating compressor is preferred.
The pressure of the exhaust gas after passing through the compression section 6 is not particularly limited, but is preferably 0 to 1 MPaG, more preferably 0 to 0.5 MPaG, and 0.01 to 0.5 MPaG. More preferred. In this case, the conversion efficiency of carbon dioxide to carbon monoxide in the reactor 4ab can be further improved without increasing the pressure resistance of the gas production apparatus 1 more than necessary.
 微成分除去部7は、排ガス中に含まれる微成分(微量な不要ガス成分等)を除去する。
 かかる微成分除去部7は、例えば、気液分離器、保護器(ガードリアクター)およびスクラバー(吸収塔)のうちの少なくとも1種の処理器で構成することができる。
 複数の処理器を使用する場合、それらの配置順序は任意であるが、気液分離器と保護器とを組み合わせて使用する場合、気液分離器を保護器より上流側に配置するのが好ましい。この場合、排ガス中からの微成分の除去効率をより高めることができるとともに、保護器の使用期間(寿命)を延長することができる。
 なお、図1のガス製造システム100においては、係る構成が設けられているが、原料として用いる材料の組成などに応じて、この微成分除去部7を省略することもできる。
The minor component removing unit 7 removes minor components (a small amount of unnecessary gas components, etc.) contained in the exhaust gas.
The fine component removing section 7 can be composed of, for example, at least one processor selected from a gas-liquid separator, a protector (guard reactor) and a scrubber (absorption tower).
When using a plurality of processors, their arrangement order is arbitrary, but when using a combination of a gas-liquid separator and a protector, it is preferable to arrange the gas-liquid separator upstream of the protector. . In this case, it is possible to further improve the efficiency of removing minor components from the exhaust gas, and extend the period of use (life) of the protector.
Although such a configuration is provided in the gas production system 100 of FIG. 1, the minor component removing section 7 can be omitted depending on the composition of the material used as the raw material.
 気液分離器は、例えば、圧縮部6で排ガスを圧縮した際に生じる凝縮水(液体)を排ガスから分離する。この場合、凝縮水中には、排ガス中に残存する不要ガス成分等も溶解して除去される。
 気液分離器は、例えば、単なる容器、旋回流式分離器、遠心分離器、表面張力式分離器等で構成することができる。これらの中でも、気液分離器は、構成が単純であり、安価であること等から、単なる容器で構成することが好ましい。この場合、容器内の気液界面には、気体の通過は許容するが、液体の通過を阻止するフィルタを配置するようにしてもよい。
The gas-liquid separator separates, for example, condensed water (liquid) generated when the exhaust gas is compressed in the compression section 6 from the exhaust gas. In this case, unnecessary gas components remaining in the exhaust gas are also dissolved and removed in the condensed water.
The gas-liquid separator can be composed of, for example, a simple container, a swirling flow separator, a centrifugal separator, a surface tension separator, or the like. Among these, the gas-liquid separator is preferably configured with a simple container because of its simple configuration and low cost. In this case, a filter may be arranged at the gas-liquid interface in the container to allow passage of gas but block passage of liquid.
 また、この場合、容器の底部には、液体ラインを接続し、その途中にバルブを設けるようにしてもよい。かかる構成によれば、容器内に貯留された凝縮水は、バルブを開放することにより、液体ラインを介して、ガス製造装置1外に排出することができる。
 なお、液体ラインをタンクに接続して、排出する凝縮水を再利用するようにしてもよい。
Also, in this case, a liquid line may be connected to the bottom of the container, and a valve may be provided in the middle of the line. According to such a configuration, the condensed water stored in the container can be discharged to the outside of the gas production apparatus 1 through the liquid line by opening the valve.
Alternatively, the liquid line may be connected to the tank to reuse the condensed water discharged.
 気液分離器で凝縮水が除去された排ガスは、例えば、保護器に供給するように構成することができる。
 かかる保護器は、必要に応じて、排ガス中に含まれる微成分であって、還元剤4Rとの接触により還元剤4Rの活性を低下させる成分(不活化成分)を捕捉可能な物質を備えさせることもできる。
 かかる構成によれば、排ガスが保護器を通過する際に、保護器内の物質が不活化成分と反応(捕捉)することにより、反応器4ab内の還元剤4Rに到達するのを阻止または抑制して保護すること(すなわち、活性の低下を防止すること)ができる。このため、還元剤4Rによる二酸化炭素の一酸化炭素への変換効率が、不活化成分の悪影響により極端に低下するのを防止または抑制することができる。
The exhaust gas from which the condensed water has been removed by the gas-liquid separator can be configured to be supplied to the protector, for example.
Such a protector is optionally provided with a substance capable of capturing a component (inactivating component), which is a minor component contained in the exhaust gas and which reduces the activity of the reducing agent 4R upon contact with the reducing agent 4R. can also
According to this configuration, when the exhaust gas passes through the protector, the substance in the protector reacts (captures) with the inactivating component, thereby preventing or suppressing the exhaust gas from reaching the reducing agent 4R in the reactor 4ab. and protect (ie, prevent loss of activity). Therefore, it is possible to prevent or suppress an extreme decrease in the conversion efficiency of carbon dioxide to carbon monoxide by the reducing agent 4R due to the adverse effects of the inactivating component.
 かかる物質には、還元剤4Rに含まれる組成であって、不活化成分との接触により還元剤4Rの活性を低下させる組成を有する物質、具体的には、還元剤4Rに含まれる金属単体および金属酸化物のうちの少なくとも一方と同一または類似の物質を使用することができる。ここで、類似の金属酸化物とは、それに含まれる金属元素は同一であるが、組成が異なる金属酸化物、またはそれに含まれる金属元素の種類は異なるが、元素周期律表における族が同一である金属酸化物のことを言う。
 なお、上記物質は、還元剤4Rの不活化成分と同一の成分により活性が低下する物質であればよく、酸化鉄、酸化亜鉛のような金属酸化物が上記不活化成分の捕捉能に優れる点で好ましい。
Such a substance includes a substance that is contained in the reducing agent 4R and has a composition that reduces the activity of the reducing agent 4R by contact with an inactivating component, specifically, a metal element contained in the reducing agent 4R and Materials that are the same as or similar to at least one of the metal oxides can be used. Here, similar metal oxides refer to metal oxides that contain the same metal element but have different compositions, or metal oxides that contain different types of metal elements but belong to the same group in the periodic table. It refers to certain metal oxides.
The above substance may be any substance whose activity is lowered by the same component as the inactivating component of the reducing agent 4R. is preferred.
 保護器は、ハウジング内に網材を配置し、上記物質の粒子を網材上に載置する構成、ハウジング内に、上記物質で構成されたハニカム状のフィルタ部材や、円筒状または粒子状の成形体を配置する構成等とすることができる。
 特に、保護器を圧縮部6(気液分離器)と排ガス加熱部10との間に配置する場合には、上記物質の熱による劣化を防止しつつ、不活化成分の除去効率を向上させることができる。
The protector has a structure in which a mesh material is arranged in a housing, and particles of the above substance are placed on the mesh material. A configuration in which a molded body is arranged can be employed.
In particular, when a protector is arranged between the compression unit 6 (gas-liquid separator) and the exhaust gas heating unit 10, it is necessary to improve the removal efficiency of the inactivated components while preventing the above substances from deteriorating due to heat. can be done.
 排ガス加熱部10は、反応器4abに供給する前の排ガスを加熱する。排ガス加熱部10で反応前(還元前)の排ガスを予め加熱しておくことにより、反応器4abにおいて、還元剤4Rによる二酸化炭素の一酸化炭素への変換(還元)反応をより促進することができる。
 排ガス加熱部10は、例えば、電熱器と、熱交換器(エコノマイザ)とで構成することができる。
 熱交換器は、反応器4abを通過した後のガス(混合ガス)を排出するガスラインGL4を構成する一部の配管を屈曲させ、ガスラインGL1を構成する配管に接近させて構成される。かかる構成によれば、反応器4abを通過した後の高温のガス(混合ガス)の熱を利用して、反応器4abに供給する前の排ガスを熱交換により加熱するため、熱の有効利用を図ることができる。
The exhaust gas heating section 10 heats the exhaust gas before it is supplied to the reactor 4ab. By preheating the exhaust gas before the reaction (before reduction) in the exhaust gas heating unit 10, the conversion (reduction) reaction of carbon dioxide to carbon monoxide by the reducing agent 4R can be further promoted in the reactor 4ab. can.
The exhaust gas heating section 10 can be composed of, for example, an electric heater and a heat exchanger (economizer).
The heat exchanger is configured by bending a part of the pipes forming the gas line GL4 for discharging the gas (mixed gas) after passing through the reactor 4ab and bringing the pipes closer to the pipes forming the gas line GL1. According to this configuration, the heat of the high-temperature gas (mixed gas) after passing through the reactor 4ab is used to heat the exhaust gas before being supplied to the reactor 4ab by heat exchange, so that heat can be effectively used. can be planned.
 かかる熱交換器は、例えば、ジャケット式熱交換器、浸漬コイル式熱交換器、二重管式熱交換器、シェル&チューブ式熱交換器、プレート式熱交換器、スパイラル式熱交換器等として構成することができる。
 また、排ガス加熱部10では、電熱器および熱交換器のいずれか一方を省略してもよい。
 排ガス加熱部10では、電熱器に代えて、燃焼炉等を使用することもできる。ただし、電熱器を使用すれば、その動力源として、再生可能エネルギーとしての電力(電気エネルギー)を使用できるため、環境への負荷を低減することができる。
 再生可能エネルギーとしては、太陽光発電、風カ発電、水力発電、波力発電、潮力発電、バイオマス発電、地熱発電、太陽熱および地中熱から選択される少なくとも1つを利用した電気エネルギーが使用可能である。
Such heat exchangers include, for example, jacket heat exchangers, immersion coil heat exchangers, double tube heat exchangers, shell and tube heat exchangers, plate heat exchangers, spiral heat exchangers, and the like. Can be configured.
Further, in the exhaust gas heating section 10, either one of the electric heater and the heat exchanger may be omitted.
In the exhaust gas heating section 10, a combustion furnace or the like can be used instead of the electric heater. However, if an electric heater is used, electric power (electrical energy) as renewable energy can be used as the power source, so the load on the environment can be reduced.
As renewable energy, electric energy using at least one selected from solar power, wind power, hydraulic power, wave power, tidal power, biomass power, geothermal power, solar heat and geothermal heat is used. It is possible.
 また、排ガス加熱部10の上流側(例えば、微成分除去部7の途中である気液分離器と保護器との間)において、ガスラインGL1から排気ガスラインを分岐させ、その端部にガス製造装置1外に設けられたベント部を接続してもよい。
 この場合、排気ガスラインの途中には、好ましくはバルブが設けられる。
 仮に、ガス製造装置1(ガスラインGL1)内の圧力が必要以上に上昇した場合には、バルブを開放することにより、排気ガスラインを介してベント部から排ガスの一部を排出(放出)することができる。これにより、ガス製造装置1の圧力の上昇による破損を未然に防止することができる。
Further, on the upstream side of the exhaust gas heating unit 10 (for example, between the gas-liquid separator and the protector in the middle of the minor component removing unit 7), the exhaust gas line is branched from the gas line GL1, and the gas A vent portion provided outside the manufacturing apparatus 1 may be connected.
In this case, a valve is preferably provided in the middle of the exhaust gas line.
If the pressure in the gas production device 1 (gas line GL1) rises more than necessary, the valve is opened to discharge (release) part of the exhaust gas from the vent through the exhaust gas line. be able to. As a result, it is possible to prevent the gas production device 1 from being damaged due to an increase in pressure.
 ガスラインGL2は、その一端部において還元ガス供給部3に接続されている。一方、ガスラインGL2は、ガス切換部8および2つのガスラインGL3a、GL3bを介して、それぞれ反応部4が備える反応器41a、41bの入口ポートに接続されている。
 還元ガス供給部3は、二酸化炭素との接触により酸化された還元剤4Rを還元する還元物質を含む還元ガスを供給する。本実施形態の還元ガス供給部3は、例えば水の電気分解により水素を発生させる水素発生装置で構成され、この水素発生装置に水を貯留したガス製造装置1外のタンク(還元ガス原料貯留部)30が接続されている。かかる構成により、水素発生装置(還元ガス供給部3)から供給された水素(還元物質)を含む還元ガスが、ガスラインGL2を通過して、各反応器4abに供給される。
One end of the gas line GL2 is connected to the reducing gas supply section 3 . On the other hand, the gas line GL2 is connected to inlet ports of reactors 41a and 41b provided in the reaction section 4 via the gas switching section 8 and two gas lines GL3a and GL3b, respectively.
The reducing gas supply unit 3 supplies a reducing gas containing a reducing substance that reduces the reducing agent 4R oxidized by contact with carbon dioxide. The reducing gas supply unit 3 of the present embodiment is composed of, for example, a hydrogen generator that generates hydrogen by electrolysis of water. ) 30 are connected. With this configuration, the reducing gas containing hydrogen (reducing substance) supplied from the hydrogen generator (reducing gas supply unit 3) passes through the gas line GL2 and is supplied to each reactor 4ab.
 水素発生装置によれば、多量の水素を比較的安価かつ簡便に生成することができる。また、ガス製造装置1内で発生する凝縮水を再利用できるという利点もある。なお、ガス製造装置1の中でも、水素発生装置での電気エネルギーの消費が大きいため、上述したような再生可能エネルギーとしての電力を使用することが有効である。 According to the hydrogen generator, a large amount of hydrogen can be generated relatively cheaply and easily. Moreover, there is also an advantage that the condensed water generated in the gas production apparatus 1 can be reused. Among the gas production apparatus 1, the hydrogen generator consumes a large amount of electric energy, so it is effective to use electric power as renewable energy as described above.
 なお、水素発生装置には、副生水素を発生する装置を使用することもできる。この場合、副生水素を含む還元ガスが各反応器4abに供給される。副生水素を発生する装置としては、例えば、塩化ナトリウム水溶液を電気分解する装置、石油を水蒸気改質する装置、アンモニアを製造する装置等が挙げられる。
 また、ガス製造装置1外のコークス炉に接続部を介してガスラインGL2を接続し、コークス炉からの排ガスを還元ガスとして使用するようにしてもよい。この場合、接続部が還元ガス供給部を構成する。コークス炉からの排ガスは、水素およびメタンを主成分とし、水素を50~60体積%で含むためである。
A device that generates by-product hydrogen can also be used as the hydrogen generator. In this case, a reducing gas containing by-product hydrogen is supplied to each reactor 4ab. As a device for generating by-product hydrogen, for example, a device for electrolyzing an aqueous solution of sodium chloride, a device for steam reforming petroleum, a device for producing ammonia, and the like can be mentioned.
Alternatively, the gas line GL2 may be connected to the coke oven outside the gas production apparatus 1 via a connecting portion, and the exhaust gas from the coke oven may be used as the reducing gas. In this case, the connecting portion constitutes the reducing gas supply portion. This is because the exhaust gas from the coke oven is mainly composed of hydrogen and methane, and contains 50 to 60% by volume of hydrogen.
 ガスラインGL2の途中には、還元ガス加熱部11が設けられている。この還元ガス加熱部11は、反応器4abに供給する前の還元ガスを加熱する。還元ガス加熱部11で反応前(酸化前)の還元ガスを予め加熱しておくことにより、反応器4abにおける還元ガスによる還元剤4Rの還元(再生)反応をより促進することができる。 A reducing gas heating unit 11 is provided in the middle of the gas line GL2. This reducing gas heating unit 11 heats the reducing gas before it is supplied to the reactor 4ab. By preheating the pre-reaction (pre-oxidation) reducing gas in the reducing gas heating unit 11, the reduction (regeneration) reaction of the reducing agent 4R by the reducing gas in the reactor 4ab can be further promoted.
 還元ガス加熱部11は、上記排ガス加熱部10と同様にして構成することができる。還元ガス加熱部11は、電熱器のみ、熱交換器のみ、電熱器と熱交換器との組み合わせで構成することが好ましく、熱交換器のみ、電熱器と熱交換器との組み合わせで構成することがより好ましい。
 還元ガス加熱部11が熱交換器を備えれば、反応器4abを通過した後の高温のガス(例えば、混合ガス)の熱を利用して、反応器4abに供給する前の還元ガスを熱交換により加熱するため、熱の有効利用を図ることができる。
The reducing gas heating section 11 can be configured in the same manner as the exhaust gas heating section 10 described above. The reducing gas heating unit 11 is preferably composed of only an electric heater, only a heat exchanger, or a combination of an electric heater and a heat exchanger, and may be composed of only a heat exchanger or a combination of an electric heater and a heat exchanger. is more preferred.
If the reducing gas heating unit 11 includes a heat exchanger, the heat of the high-temperature gas (for example, mixed gas) after passing through the reactor 4ab is used to heat the reducing gas before being supplied to the reactor 4ab. Since heat is generated by exchange, effective use of heat can be achieved.
 以上のような構成によれば、ガス切換部8においてガスライン(流路)を切り換えることにより、例えば、酸化前の酸素キャリアが収容された反応器41a、42aに、ガスラインGL3aを介して排ガス(二酸化炭素など)を供給して、酸素キャリアと排ガスとを接触させることで、排ガスに対しての還元反応を行うことができる。また、生成ガス(一酸化炭素など)を生成し終わった酸化後の酸化キャリアが収容された反応器41b、42bに、ガスラインGL3bを介して還元性を有するガス(還元ガス)を供給して酸素キャリアと還元性を有するガス(還元ガス)とを接触させることで、還元ガスに対しての酸化反応を行うことができる。なお、還元性を有するガス(還元ガス)を接触させる工程は、生成ガス(一酸化炭素など)を生成する前に設けられていても構わない。 According to the above configuration, by switching the gas line (flow path) in the gas switching unit 8, for example, exhaust gas can be transferred to the reactors 41a and 42a containing the oxygen carrier before oxidation via the gas line GL3a. By supplying (such as carbon dioxide) and bringing the oxygen carrier into contact with the exhaust gas, a reduction reaction can be performed on the exhaust gas. In addition, a reducing gas (reducing gas) is supplied through the gas line GL3b to the reactors 41b and 42b containing the oxidized carriers after the generation of the product gas (carbon monoxide, etc.). By bringing the oxygen carrier into contact with a reducing gas (reducing gas), the reducing gas can undergo an oxidation reaction. The step of contacting with a reducing gas (reducing gas) may be provided before generating a product gas (such as carbon monoxide).
 また、その後、ガス切換部8においてガスラインを上記と反対に切り換えることにより、反応器41a、42aでは還元ガスに対しての酸化反応を進行させ、反応器41b、42bでは排ガスに対しての還元反応を進行させることができる。 Further, after that, by switching the gas lines in the opposite direction to the above in the gas switching unit 8, the oxidation reaction of the reducing gas is allowed to proceed in the reactors 41a and 42a, and the reduction of the exhaust gas is performed in the reactors 41b and 42b. Allow the reaction to proceed.
 ガス製造装置1は、還元剤4Rに排ガスまたは還元ガスを接触させる際(すなわち、排ガスまたは還元ガスと還元剤4Rとの反応の際)に、還元剤4Rを加熱する還元剤加熱部(図1中、図示せず。)をさらに有することが好ましい。
 かかる還元剤加熱部を設けることにより、排ガスまたは還元ガスと還元剤4Rとの反応における温度を高温に維持して、二酸化炭素の一酸化炭素への変換効率の低下を好適に防止または抑制するとともに、還元ガスによる還元剤4Rの再生をさらに促進することができる。
The gas production device 1 includes a reducing agent heating unit (see FIG. 1 inside, not shown).
By providing such a reducing agent heating unit, the temperature in the reaction between the exhaust gas or the reducing gas and the reducing agent 4R is maintained at a high temperature, thereby suitably preventing or suppressing a decrease in the conversion efficiency of carbon dioxide to carbon monoxide. , the regeneration of the reducing agent 4R by the reducing gas can be further promoted.
 なお、行う反応が発熱反応となる場合においては、ガス製造装置1は、還元剤加熱部に代えて、還元剤4Rを冷却する還元剤冷却部を有することが好ましい。かかる還元剤冷却部を設けることにより、排ガスまたは還元ガスと還元剤4Rとの反応の際に、還元剤4Rが劣化するのを好適に阻止して、二酸化炭素の一酸化炭素への変換効率の低下を好適に防止または抑制するとともに、還元ガスによる還元剤4Rの再生をさらに促進することができる。
 つまり、ガス製造装置1には、還元剤4Rの種類(発熱反応または吸熱反応)の違いによって、還元剤4Rの温度を調整する還元剤温調部を設けることが好ましい。
When the reaction to be performed is an exothermic reaction, the gas production device 1 preferably has a reducing agent cooling section for cooling the reducing agent 4R instead of the reducing agent heating section. By providing such a reducing agent cooling unit, deterioration of the reducing agent 4R during the reaction between the exhaust gas or the reducing gas and the reducing agent 4R can be suitably prevented, and the conversion efficiency of carbon dioxide to carbon monoxide can be improved. It is possible to suitably prevent or suppress the decrease and further promote the regeneration of the reducing agent 4R by the reducing gas.
In other words, it is preferable to provide the gas production device 1 with a reducing agent temperature control unit that adjusts the temperature of the reducing agent 4R depending on the type of the reducing agent 4R (exothermic reaction or endothermic reaction).
 反応器42a、42bの出口ポートには、それぞれガスラインGL4a、GL4bが接続され、これらがガス合流部J4において合流して、ガスラインGL4を構成している。また、ガスラインGL4a、GL4bの途中には、必要に応じて、それぞれバルブ(図2中、図示せず。)が設けられる。
 例えば、バルブの開度を調整することにより、反応器4abを通過する排ガスおよび還元ガスの通過速度(すなわち、還元剤4Rによる排ガスの処理速度および還元ガスによる還元剤4Rの処理速度)を設定することができる。
 本実施形態では、主に、反応器4abおよびガス切換部8により、反応部4が構成されている。
Gas lines GL4a and GL4b are connected to the outlet ports of the reactors 42a and 42b, respectively, and are merged at a gas junction J4 to form a gas line GL4. In addition, valves (not shown in FIG. 2) are provided in the middle of the gas lines GL4a and GL4b, respectively, as required.
For example, by adjusting the opening degree of the valve, the passage speed of the exhaust gas and the reducing gas passing through the reactor 4ab (that is, the processing speed of the exhaust gas with the reducing agent 4R and the processing speed of the reducing agent 4R with the reducing gas) are set. be able to.
In this embodiment, the reaction section 4 is mainly configured by the reactor 4ab and the gas switching section 8 .
 ガスラインGL4の反応器42a、42bの反対側の端部には、生成ガスをガス製造装置1外に排出する生成ガス排出部40が接続されている。
 また、ガスラインGL4の途中には、ガス精製部9が設けられている。
 ガス精製部9では、混合ガスから一酸化炭素を精製して、高濃度の一酸化炭素を含む生成ガスを回収する。なお、混合ガス中の一酸化炭素濃度が十分に高い場合には、ガス精製部9を省略してもよい。
A generated gas discharge section 40 for discharging the generated gas to the outside of the gas production apparatus 1 is connected to the opposite end of the gas line GL4 from the reactors 42a and 42b.
A gas refining section 9 is provided in the middle of the gas line GL4.
The gas purification unit 9 purifies carbon monoxide from the mixed gas and recovers a generated gas containing high-concentration carbon monoxide. Incidentally, if the carbon monoxide concentration in the mixed gas is sufficiently high, the gas refining section 9 may be omitted.
 かかるガス精製部9は、例えば、冷却器、気液分離器、ガス分離器、分離膜およびスクラバー(吸収塔)のうちの少なくとも1種の処理器で構成することができる。
 複数の処理器を使用する場合、それらの配置順序は任意であるが、冷却器と気液分離器とガス分離器とを組み合わせて使用する場合、この順で配置するのが好ましい。この場合、混合ガスからの一酸化炭素の精製効率をより高めることができる。
The gas purifying section 9 can be composed of, for example, at least one processor selected from coolers, gas-liquid separators, gas separators, separation membranes, and scrubbers (absorption towers).
When a plurality of processors are used, their arrangement order is arbitrary, but when a cooler, a gas-liquid separator and a gas separator are used in combination, they are preferably arranged in this order. In this case, the efficiency of purifying carbon monoxide from the mixed gas can be further enhanced.
 冷却器は、混合ガスを冷却する。これにより、凝縮水(液体)が生成する。
 かかる冷却器は、配管の周囲に冷媒を通過させるためのジャケットを配置したジャケット式の冷却装置、反応器4abと同様の構成(図2参照)とし、管体41内に混合ガスを、管体41の周囲の空間43に冷媒をそれぞれ通過させる多管式の冷却装置、エアフィンクーラー等を含んで構成することができる。
A cooler cools the mixed gas. This produces condensed water (liquid).
Such a cooler has a structure similar to that of the reactor 4ab (see FIG. 2). A multi-pipe type cooling device, an air fin cooler, or the like, which allows coolant to pass through spaces 43 around 41 can be included.
 気液分離器は、冷却器で混合ガスを冷却する際に生じる凝縮水を混合ガスから分離する。このとき、凝縮水には、混合ガス中に残存する不要ガス成分(特に、二酸化炭素)を溶解して除去することができるという利点がある。 The gas-liquid separator separates the condensed water generated when the mixed gas is cooled by the cooler from the mixed gas. At this time, the condensed water has the advantage of being able to dissolve and remove unnecessary gas components (particularly carbon dioxide) remaining in the mixed gas.
 気液分離器は、微成分除去部7の気液分離器と同様に構成することができ、好ましくは単なる容器で構成することができる。この場合、容器内の気液界面には、気体の通過は許容するが、液体の通過を阻止するフィルタを配置するようにしてもよい。
 また、この場合、容器の底部には、液体ラインを接続し、その途中にバルブを設けるようにしてもよい。かかる構成によれば、容器内に貯留された凝縮水は、バルブを開放することにより、液体ラインを介して、ガス製造装置1外に排出(放出)することができる。
The gas-liquid separator can be configured in the same manner as the gas-liquid separator of the micro component removing section 7, and preferably can be configured as a simple container. In this case, a filter may be arranged at the gas-liquid interface in the container to allow passage of gas but block passage of liquid.
Also, in this case, a liquid line may be connected to the bottom of the container, and a valve may be provided in the middle of the line. According to such a configuration, the condensed water stored in the container can be discharged (released) out of the gas production apparatus 1 through the liquid line by opening the valve.
 さらに、液体ラインの途中のバルブより下流側には、ドレイントラップを設けることが好ましい。これにより、仮に、バルブが誤作動して、液体ラインに一酸化炭素や水素が流出しても、ドレイントラップに貯留され、ガス製造装置1外に排出されるのを未然に防止することができる。このドレイントラップに代えて、あるいは、ドレイントラップとともに、バルブの誤作動検知機能、バルブが誤作動した際の冗長化対策を施してもよい。
 なお、液体ラインをタンクに接続して、排出する凝縮水を再利用するようにしてもよい。
Furthermore, it is preferable to provide a drain trap downstream of the valve in the liquid line. As a result, even if the valve malfunctions and carbon monoxide or hydrogen flows out into the liquid line, it can be prevented from being stored in the drain trap and discharged outside the gas production apparatus 1 . . In place of this drain trap, or together with the drain trap, a malfunction detection function of the valve and a redundancy measure when the valve malfunctions may be provided.
Alternatively, the liquid line may be connected to the tank to reuse the condensed water discharged.
 ガス分離器は、例えば、低温分離方式(深冷方式)の分離器、圧力スイング吸着(PSA)方式の分離器、膜分離方式の分離器、温度スイング吸着(TSA)方式の分離器、金属イオン(例えば、銅イオン)と有機配位子(例えば、5-アジドイソフタル酸)とを複合化した多孔性配位高分子(Porous Coordination Polymer:PCP)を用いた分離器、アミン吸収を利用した分離器等のうちの1種または2種以上を用いて構成することができる。
 また、ガスラインGL4の気液分離器とガス分離器との間には、バルブを設けるようにしてもよい。この場合、バルブの開度を調整することにより、混合ガスの処理速度(生成ガスの製造速度)を調節することができる。
Gas separators include, for example, cryogenic (cryogenic) separators, pressure swing adsorption (PSA) separators, membrane separation separators, temperature swing adsorption (TSA) separators, metal ion (e.g., copper ions) and organic ligands (e.g., 5-azidoisophthalic acid) are combined into a separator using a porous coordination polymer (PCP), and separation using amine absorption. It can be configured using one or more of the vessels and the like.
A valve may be provided between the gas-liquid separator and the gas separator of the gas line GL4. In this case, the mixed gas processing speed (production gas production speed) can be adjusted by adjusting the opening of the valve.
 本実施形態では、気液分離器から排出される混合ガス中に含まれる一酸化炭素の濃度は、混合ガス全体に対して75~90体積%となっている。
 したがって、比較的低い濃度(75~90体積%)で一酸化炭素を含む生成ガスを利用可能な分野では、混合ガスから一酸化炭素を精製することなく、そのまま次工程に供給することができる。すなわち、ガス分離器を省略することができる。
 かかる分野としては、例えば、生成ガスから微生物(例えば、クロストリジウム等)による発酵により炭素有価物(例えば、エタノール等)を合成する分野、生成ガスを燃料または還元剤として使用して鉄鋼を製造する分野、電気デバイスを製造する分野、一酸化炭素を合成原料とする化学品(ホスゲン、酢酸等)を合成する分野等が挙げられる。
In this embodiment, the concentration of carbon monoxide contained in the mixed gas discharged from the gas-liquid separator is 75 to 90% by volume with respect to the entire mixed gas.
Therefore, in fields where produced gas containing carbon monoxide at a relatively low concentration (75 to 90% by volume) can be used, carbon monoxide can be directly supplied to the next step without purifying carbon monoxide from the mixed gas. That is, the gas separator can be omitted.
Such fields include, for example, the field of synthesizing carbon valuables (e.g., ethanol, etc.) from the generated gas by fermentation with microorganisms (e.g., Clostridium, etc.), and the field of manufacturing steel using the generated gas as fuel or reducing agent. , the field of manufacturing electric devices, and the field of synthesizing chemicals (phosgene, acetic acid, etc.) using carbon monoxide as a synthetic raw material.
 一方、比較的高い濃度(90体積%超)で一酸化炭素を含む生成ガスを利用する必要がある分野では、混合ガスから一酸化炭素を精製して、高濃度で一酸化炭素を含む生成ガスを得る。
 かかる分野としては、例えば、生成ガスを還元剤として使用する分野(高炉)、生成ガスを燃料として使用して火力により発電する分野、生成ガスを原料として化学品を製造する分野、生成ガスを燃料として使用する燃料電池の分野等が挙げられる。
On the other hand, in fields where it is necessary to utilize a product gas containing relatively high concentrations (greater than 90% by volume) of carbon monoxide, the carbon monoxide is purified from the mixed gas to produce a product gas containing high concentrations of carbon monoxide. get
Such fields include, for example, the field of using generated gas as a reducing agent (blast furnace), the field of thermal power generation using generated gas as fuel, the field of manufacturing chemicals using generated gas as a raw material, and the field of manufacturing chemicals using generated gas as fuel. and the field of fuel cells used as
 次に、ガス製造システム100の使用方法(作用)の例について説明する。なお、本実施形態のガス製造システム100の使用方法は以下に限定されるものでなく、適宜、工程の付加や、置換、省略などを行うことが可能である。
 [1]まず、ガス切換部8においてガスライン(流路)を切り換えることにより、接続部2と反応器41aとを連通し、還元ガス供給部3と反応器41bとを連通する。
 [2]次に、この状態で、炉20から接続部2を介して排ガスの供給を開始する。
 [3]次に、排ガスは、酸素除去装置(濃度調整部5)を通過する。これにより、排ガスから酸素が除去され、排ガス中に含まれる二酸化炭素の濃度が上昇する。
Next, an example of how to use (action) of the gas production system 100 will be described. The method of using the gas production system 100 of the present embodiment is not limited to the following, and it is possible to add, replace, or omit steps as appropriate.
[1] First, by switching the gas line (flow path) in the gas switching section 8, the connection section 2 and the reactor 41a are communicated, and the reducing gas supply section 3 and the reactor 41b are communicated.
[2] Next, in this state, the supply of exhaust gas from the furnace 20 through the connecting portion 2 is started.
[3] Next, the exhaust gas passes through the oxygen removing device (concentration adjusting section 5). Oxygen is thereby removed from the exhaust gas, and the concentration of carbon dioxide contained in the exhaust gas increases.
 [4]次に、排ガスは、圧縮部6を通過する。これにより、排ガスの圧力が上昇する。
 [5]次に、必要に応じて、排ガスを移送し、微成分除去部7を通過させる。これにより、圧縮部6で排ガスを圧縮した際に生じる凝縮水や、還元剤4Rの活性を低下させる不活化成分が排ガスから除去される。
 [6]次に、排ガスは、排ガス加熱部10を通過する。これにより、排ガスが加熱される。
 [7]次に、排ガスは、反応器41aに供給される。反応器41aでは、還元剤4Rにより排ガス中の二酸化炭素が一酸化炭素に還元される。このとき、還元剤4Rは、二酸化炭素との接触により酸化状態とされる。
[4] Next, the exhaust gas passes through the compression section 6 . This increases the pressure of the exhaust gas.
[5] Next, the exhaust gas is transferred and passed through the fine component removing section 7 as necessary. As a result, the condensed water generated when the exhaust gas is compressed in the compression unit 6 and the inactivating components that reduce the activity of the reducing agent 4R are removed from the exhaust gas.
[6] Next, the exhaust gas passes through the exhaust gas heating section 10 . This heats the exhaust gas.
[7] Next, the exhaust gas is supplied to the reactor 41a. In the reactor 41a, carbon dioxide in the exhaust gas is reduced to carbon monoxide by the reducing agent 4R. At this time, the reducing agent 4R is brought into an oxidized state by contact with carbon dioxide.
 上記工程[7]における反応器41a(排ガス、還元剤4R)の温度(反応温度)は、600℃以上であることが好ましく、650~1100℃であることがより好ましく、700~1000℃であることがさらに好ましい。反応温度を上記範囲に設定すれば、例えば、二酸化炭素を一酸化炭素へ変換する際の吸熱反応による還元剤4Rの急激な温度低下を防止または抑制することができるため、反応器41aにおける二酸化炭素の還元反応をより円滑に進行させることができる。 The temperature (reaction temperature) of the reactor 41a (exhaust gas, reducing agent 4R) in the above step [7] is preferably 600°C or higher, more preferably 650 to 1100°C, and more preferably 700 to 1000°C. is more preferred. If the reaction temperature is set within the above range, for example, a rapid temperature drop of the reducing agent 4R due to an endothermic reaction during conversion of carbon dioxide to carbon monoxide can be prevented or suppressed. can proceed more smoothly.
 [8]排ガスは、反応器41aからガスラインGL5aに排出される。
 [9]次に、排ガスは、反応器42aに供給される。反応器42aでも、還元剤4Rにより排ガス中の二酸化炭素が一酸化炭素に還元される。このとき、還元剤4Rは、二酸化炭素との接触により酸化状態とされる。
 反応器42aの条件は、反応器41aと同様にすることができる。
[8] Exhaust gas is discharged from the reactor 41a to the gas line GL5a.
[9] Next, the exhaust gas is supplied to the reactor 42a. Also in the reactor 42a, the carbon dioxide in the exhaust gas is reduced to carbon monoxide by the reducing agent 4R. At this time, the reducing agent 4R is brought into an oxidized state by contact with carbon dioxide.
The conditions of the reactor 42a can be the same as those of the reactor 41a.
 [10]上記工程[2]~[9]と並行して、水(還元ガス原料)を水素発生装置(還元ガス供給部3)に供給し、水から水素を生成する。
 [11]次に、水素を含む還元ガスは、還元ガス加熱部11を通過する。これにより、還元ガスが加熱される。
 [12]次に、還元ガスは、反応器41bに供給される。反応器41bでは、還元ガス(水素)との接触により酸化状態の還元剤4Rが還元(再生)される。このとき、水が生成される。
[10] In parallel with the above steps [2] to [9], water (reducing gas raw material) is supplied to the hydrogen generator (reducing gas supply unit 3) to generate hydrogen from water.
[11] Next, the reducing gas containing hydrogen passes through the reducing gas heating section 11 . This heats the reducing gas.
[12] Next, the reducing gas is supplied to the reactor 41b. In the reactor 41b, the oxidized reducing agent 4R is reduced (regenerated) by contact with the reducing gas (hydrogen). At this time, water is produced.
 上記工程[12]における反応器41b(還元ガス、還元剤4R)の温度(反応温度)は、600℃以上であることが好ましく、650~1100℃であることがより好ましく、700~1000℃であることがさらに好ましい。反応温度を上記範囲に設定すれば、例えば、酸化状態の還元剤4Rを還元(再生)する際の吸熱反応による還元剤4Rの急激な温度低下を防止または抑制することができるため、反応器41bにおける還元剤4Rの還元反応をより円滑に進行させることができる。 The temperature (reaction temperature) of the reactor 41b (reducing gas, reducing agent 4R) in the above step [12] is preferably 600°C or higher, more preferably 650 to 1100°C, and more preferably 700 to 1000°C. It is even more preferable to have If the reaction temperature is set within the above range, for example, a rapid temperature drop of the reducing agent 4R due to an endothermic reaction during reduction (regeneration) of the reducing agent 4R in an oxidized state can be prevented or suppressed. The reduction reaction of the reducing agent 4R in can proceed more smoothly.
 [13]還元ガスは、反応器41bからガスラインGL5bに排出される。
 [14]次に、還元ガスは、反応器42bに供給される。反応器42bでも、還元ガス(水素)との接触により酸化状態の還元剤4Rが還元(再生)される。このとき、水が生成される。
 反応器42bの条件は、反応器41bと同様にすることができる。
[13] The reducing gas is discharged from the reactor 41b to the gas line GL5b.
[14] The reducing gas is then supplied to the reactor 42b. Also in the reactor 42b, the oxidized reducing agent 4R is reduced (regenerated) by contact with the reducing gas (hydrogen). At this time, water is produced.
The conditions of reactor 42b can be the same as those of reactor 41b.
 [15]次に、反応器42a、42bを通過したガスは、合流して混合ガスが生成される。この時点で、混合ガスの温度は、通常、600~650℃である。この時点での混合ガスの温度が上記範囲であれば、反応器4ab内の温度が十分に高温に維持されていることを意味し、還元剤4Rによる二酸化炭素の一酸化炭素への変換や、還元ガスによる還元剤4Rの還元が効率よく進行していると判断することができる。
 [16]次に、混合ガスは、ガス精製部9に至るまでに、100~300℃にまで冷却される。
[15] Next, the gases that have passed through the reactors 42a and 42b join together to produce a mixed gas. At this point, the temperature of the mixed gas is typically 600-650°C. If the temperature of the mixed gas at this time is within the above range, it means that the temperature in the reactor 4ab is maintained at a sufficiently high temperature, and the conversion of carbon dioxide to carbon monoxide by the reducing agent 4R, It can be determined that the reduction of the reducing agent 4R by the reducing gas is progressing efficiently.
[16] Next, the mixed gas is cooled to 100 to 300° C. before reaching the gas refining section 9 .
 [17]次に、混合ガスは、ガス精製部9を通過する。これにより、例えば、生成された凝縮水および凝縮水に溶解する二酸化炭素等が除去される。その結果、混合ガスから一酸化炭素が精製され、一酸化炭素を高濃度で含む生成ガスが得られる。
 なお、得られる生成ガスの温度は、20~50℃である。
 [18]次に、生成ガスは、生成ガス排出部40からガス製造装置1外に排出され、次工程に供される。
[17] Next, the mixed gas passes through the gas refining section 9 . As a result, for example, the generated condensed water and carbon dioxide dissolved in the condensed water are removed. As a result, carbon monoxide is purified from the mixed gas to obtain a product gas containing a high concentration of carbon monoxide.
The temperature of the produced gas obtained is 20 to 50°C.
[18] Next, the generated gas is discharged from the generated gas discharge unit 40 to the outside of the gas production apparatus 1 and supplied to the next step.
(ガス製造システムの第2実施形態)
 なお、上述のガス製造システムの反応部4は、次のような形態(第2実施形態)とすることもできる。
 図3は、第2実施形態の反応部の構成を示す概略図である。図4は、第2実施形態において反応器に通過させるガスを切り換える方法を示す概略図である。
 以下、第2実施形態の反応部4について説明するが、第1実施形態の反応部4との相違点を中心に説明し、同様の事項については、その説明を省略する。
(Second Embodiment of Gas Production System)
The reaction section 4 of the above-described gas production system can also have the following form (second embodiment).
FIG. 3 is a schematic diagram showing the configuration of the reaction section of the second embodiment. FIG. 4 is a schematic diagram showing a method of switching the gas to be passed through the reactor in the second embodiment.
Hereinafter, the reaction section 4 of the second embodiment will be described, but the description will focus on the differences from the reaction section 4 of the first embodiment, and the description of the same items will be omitted.
 第2実施形態の反応部4は、第1ガス切換部8aと、4つの反応器4a~4dと、第2ガス切換部8bとを有する。
 第1ガス切換部8aは、ガスラインGL3a~GL3dを介して、それぞれ反応器4a~4dの入口ポートに接続されている。
 反応器4a~4dの出口ポートには、それぞれガスラインGL4a~GL4dが接続され、第2ガス切換部8bにおいて合流して、ガスラインGL4を構成している。
 また、第1ガス切換部8aと第2ガス切換部8bとの間は、4つのガスラインGL5a~GL5dにより接続されている。
The reaction section 4 of the second embodiment has a first gas switching section 8a, four reactors 4a to 4d, and a second gas switching section 8b.
The first gas switching section 8a is connected to inlet ports of the reactors 4a to 4d via gas lines GL3a to GL3d, respectively.
Gas lines GL4a to GL4d are connected to the outlet ports of the reactors 4a to 4d, respectively, and join at the second gas switching section 8b to form a gas line GL4.
The first gas switching section 8a and the second gas switching section 8b are connected by four gas lines GL5a to GL5d.
 かかる構成により、第1ガス切換部8aと第2ガス切換部8bとにおいてガスライン(流路)の切換を行うことにより、例えば、反応器4a~4dの1つの反応器には、排ガス(酸化ガス)を供給して通過させ、一方、反応器4a~4dの残りの3つの反応器には、この順で還元ガスを連続して供給して通過させることができる。 With such a configuration, by switching the gas line (flow path) in the first gas switching unit 8a and the second gas switching unit 8b, for example, one reactor of the reactors 4a to 4d can supply exhaust gas (oxidation gas) can be fed through and through, while the remaining three reactors of reactors 4a-4d can be successively fed through with reducing gas, in that order.
 すなわち、本第2実施形態では、複数の反応器4a~4dのうち、排ガスが供給される1つの反応器が第1反応器を構成し、第1反応器に排ガスが供給されるときに、還元ガスが連続して供給される3つの反応器が第2反応器を構成し得る。 That is, in the second embodiment, among the plurality of reactors 4a to 4d, one reactor to which the exhaust gas is supplied constitutes the first reactor, and when the exhaust gas is supplied to the first reactor, Three reactors fed with reducing gas in series may constitute the second reactor.
 具体的には、図4(I)に示す1ターン目では、排ガス(二酸化炭素)をガスラインGL3aを介して、反応器(第1反応器)4aに供給し、これを通過した排ガス(一酸化炭素)をガスラインGL4aを介して、排出することができる。 Specifically, in the first turn shown in FIG. 4(I), the exhaust gas (carbon dioxide) is supplied to the reactor (first reactor) 4a through the gas line GL3a, and the exhaust gas (one carbon oxides) can be discharged via gas line GL4a.
 一方、残りの反応器4b~4dには、まず、還元ガス(水素)をガスラインGL3bを介して、反応器(1番目の第2反応器)4bに供給し、次いで、これを通過した還元ガス(残水素)をガスラインGL4b、ガスラインGL5cおよびガスラインGL3cを介して、反応器(2番目の第2反応器)4cに供給することができる。なお、図示はしないが、ガスラインGL5cの途中には水を除去する機構が設けられていてもよく、適宜、生成した水は系外に排出されてもよい。
 その後、反応器4cを通過した還元ガス(残水素)をガスラインGL4c、ガスラインGL5dおよびガスラインGL3dを介して、反応器(3番目の第2反応器)4dに供給し、これを通過した還元ガス(水)をガスラインGL4dを介して、排出することができる。このときも、適宜、ガスラインGL5dの途中に設けられた水が除去する機構により、生成した水を系外に排出してもよい。
On the other hand, in the remaining reactors 4b to 4d, first, a reducing gas (hydrogen) is supplied to the reactor (first second reactor) 4b through the gas line GL3b, and then the reduction Gas (residual hydrogen) can be supplied to reactor (second reactor) 4c via gas line GL4b, gas line GL5c and gas line GL3c. Although not shown, a mechanism for removing water may be provided in the middle of the gas line GL5c, and the generated water may be discharged out of the system as appropriate.
After that, the reducing gas (residual hydrogen) that passed through the reactor 4c was supplied to the reactor (the third second reactor) 4d via the gas line GL4c, the gas line GL5d, and the gas line GL3d, and passed through it. A reducing gas (water) can be discharged via a gas line GL4d. Also at this time, the generated water may be discharged out of the system by a water removing mechanism provided in the middle of the gas line GL5d as appropriate.
 次に、図4(II)に示す2ターン目では、反応器(第1反応器)4bには、排ガスを供給して通過させ、一方、反応器(第2反応器)4c、4d、4aには、この順で還元ガスを連続して供給し、通過させることができる。
 次に、図4(III)に示す3ターン目では、反応器(第1反応器)4cには、排ガスを供給して通過させ、一方、反応器(第2反応器)4d、4a、4bには、この順で還元ガスを連続して供給し、通過させることができる。
 次に、図4(IV)に示す4ターン目では、反応器(第1反応器)4dには、排ガスを供給して通過させ、一方、反応器(第2反応器)4a、4b、4cには、この順で還元ガスを連続して供給し、通過させることができる。
Next, in the second turn shown in FIG. 4(II), the exhaust gas is supplied to and passed through the reactor (first reactor) 4b, while the reactors (second reactors) 4c, 4d, 4a , the reducing gas can be continuously supplied and passed through in this order.
Next, in the third turn shown in FIG. 4(III), the exhaust gas is supplied to and passed through the reactor (first reactor) 4c, while the reactors (second reactors) 4d, 4a, 4b , the reducing gas can be continuously supplied and passed through in this order.
Next, in the fourth turn shown in FIG. 4(IV), the exhaust gas is supplied to and passed through the reactor (first reactor) 4d, while the reactors (second reactors) 4a, 4b, 4c , the reducing gas can be continuously supplied and passed through in this order.
 本第2実施形態では、1ターン目~4ターン目の一連の操作を1サイクルとして、複数サイクル繰り返すことにより、二酸化炭素から一酸化炭素への変換を連続かつ安定して行うことができる。
 例えば、二酸化炭素の一酸化炭素への変換効率より、水素(還元物質)による酸化状態の還元剤4Rの還元効率が低い還元剤4Rを使用する場合、還元ガスを1つの反応器に1回のみ通過させると、酸化状態の還元剤4Rの還元に使用しきれなかった水素(残水素)が無駄になる。これに対して、本実施形態では、還元ガスを連続して3つの反応器に通過させること、換言すれば、1つの反応器に3回通過させるができる。このため、水素(還元ガス)が無駄になるのを防止することができる。
In the second embodiment, a series of operations from the 1st turn to the 4th turn is regarded as one cycle, and by repeating a plurality of cycles, carbon dioxide can be continuously and stably converted into carbon monoxide.
For example, when using the reducing agent 4R, which has a lower efficiency of reducing the reducing agent 4R in the oxidized state by hydrogen (reducing substance) than the conversion efficiency of carbon dioxide to carbon monoxide, the reducing gas is supplied to one reactor only once. Passage causes the hydrogen (residual hydrogen) that has not been used to reduce the oxidized reducing agent 4R to be wasted. In contrast, in the present embodiment, the reducing gas can be passed through three reactors in succession, in other words, it can be passed through one reactor three times. Therefore, hydrogen (reducing gas) can be prevented from being wasted.
 また、3以上の反応器を使用することにより、排ガスおよび還元ガスを通過させない反応器を設けることができる。このため、生成ガス(一酸化炭素)を製造するための通常運転を継続しつつ、通常運転に使用されていない反応器に対して、他の操作を行うことができる。
 例えば、二酸化炭素から一酸化炭素(炭素有価物)に変換する際に、還元剤4Rの表面に炭素が堆積して変換効率が低下する場合がある。このとき、通常運転に使用されていない反応器に酸素を供給する操作を行えば、還元剤4Rの表面に堆積した炭素を燃焼により除去して、還元剤4Rを再生することができる。
Also, by using three or more reactors, it is possible to provide reactors through which the exhaust gas and the reducing gas are not allowed to pass. Therefore, other operations can be performed on reactors not used for normal operation while continuing normal operation for producing product gas (carbon monoxide).
For example, when carbon dioxide is converted to carbon monoxide (carbon valuables), carbon may accumulate on the surface of the reducing agent 4R and the conversion efficiency may decrease. At this time, if oxygen is supplied to a reactor that is not used for normal operation, the carbon deposited on the surface of the reducing agent 4R can be removed by combustion to regenerate the reducing agent 4R.
 この場合、反応器に酸素を供給する前後において、反応器内に不活性ガス(例えば、窒素ガス)をパージするようにしてもよい。これにより、還元ガスと酸素とが不本意に接触して爆発的に反応することを防止することができる。
 以上説明したようなガス製造装置1(ガス製造システム100)によれば、二酸化炭素を含む酸化ガスと還元物質を含む還元ガスとを使用して、効率よく炭素有価物を生成することができる。
In this case, before and after supplying oxygen to the reactor, the interior of the reactor may be purged with an inert gas (for example, nitrogen gas). As a result, it is possible to prevent the reducing gas and oxygen from unintentionally coming into contact with each other and reacting explosively.
According to the gas production apparatus 1 (gas production system 100) as described above, it is possible to efficiently produce carbon valuables using an oxidizing gas containing carbon dioxide and a reducing gas containing reducing substances.
(ガス製造システムの第3実施形態)
 第1実施形態および第2実施形態のガス製造システムにおいては、還元剤4Rについて、前述の他の元素を含む金属化合物を有する酸素キャリアを用いたが、これに代えて、以下の通りの態様を採用することができる。
 以下、第3実施形態における生成ガスの製造プロセスについて説明するが、第1実施形態および第2実施形態との相違点を中心に説明し、同様の事項については、その説明を省略する。
(Third Embodiment of Gas Production System)
In the gas production systems of the first embodiment and the second embodiment, the oxygen carrier having the metal compound containing the above-described other element was used as the reducing agent 4R. can be adopted.
Hereinafter, the process for producing the generated gas in the third embodiment will be described, but the description will focus on the differences from the first and second embodiments, and the description of the same items will be omitted.
 すなわち、各反応器(反応器4ab等)に収容する還元剤4Rとしては、金属元素を含む酸素キャリア前駆体を選択し、この酸素キャリア前駆体に対して、第14族~第17族、かつ、第2周期~第5周期に属する酸素元素以外の元素(他の元素)を含む化合物を含有する原料ガスを接触させる態様を採用し得る。
 この場合、第14族~第17族、かつ、第2周期~第5周期に属する酸素元素以外の元素(他の元素)を酸素キャリア前駆体に付与しつつ生成ガスを得ることができる。
That is, as the reducing agent 4R accommodated in each reactor (reactor 4ab, etc.), an oxygen carrier precursor containing a metal element is selected, and this oxygen carrier precursor is added to Groups 14 to 17 and , a mode in which a source gas containing a compound containing an element (another element) other than the oxygen element belonging to the 2nd to 5th periods is brought into contact.
In this case, the generated gas can be obtained while adding an element (another element) other than the oxygen element belonging to Groups 14 to 17 and Periods 2 to 5 to the oxygen carrier precursor.
 換言すれば、第1実施形態および第2実施形態においては、他の元素を含む金属化合物を有する酸素キャリアとして事前に準備しているが、この第3実施形態においては、他の元素の導入をガス製造システムの系内で行っている。かかる構成によっても反応効率の向上した還元剤4Rを実現することができる。 In other words, in the first and second embodiments, the oxygen carrier having a metal compound containing other elements is prepared in advance, but in the third embodiment, the other elements are introduced. This is done within the system of the gas production system. With such a configuration as well, the reducing agent 4R with improved reaction efficiency can be realized.
 なお、第3実施形態における酸素キャリア前駆体は、金属元素と酸素元素とを含む金属酸化物であってもよい。一方、この酸素キャリア前駆体は、実質的に酸素元素を含まない金属単体や、合金などであっても構わない。このように実質的に酸素元素を含まない金属単体や合金などであっても、接触させる原料ガス自体が酸化機能を有しているため、目的とする酸素キャリアへの変換を行うことが可能である。 Note that the oxygen carrier precursor in the third embodiment may be a metal oxide containing a metal element and an oxygen element. On the other hand, the oxygen carrier precursor may be a metal simple substance or an alloy that does not substantially contain an oxygen element. As described above, even a metal simple substance or an alloy that does not substantially contain an oxygen element can be converted into the desired oxygen carrier because the raw material gas itself has an oxidizing function. be.
 なお、この他の元素を含む化合物を含有する原料ガスは、ガス製造システムの稼働する全時間帯において途切れなく使用し続けてもよいし、ガス製造システムの稼働の初期のみ使用してもよい。その他、生成ガスの組成などをモニタリングしながら、ガス製造システムの稼働中において、断続的にこの他の元素を含む化合物を含有する原料ガスを使用する態様も採用することができる。
 なお、原料ガス中に他の元素を含む化合物を含有させる場合の、化合物の種類と量は、原料ガスの種類やプロセスの設計に応じて適宜選べばよい。
The raw material gas containing compounds containing other elements may be continuously used throughout the operating time of the gas production system, or may be used only at the beginning of the operation of the gas production system. In addition, it is also possible to employ a mode in which the source gas containing the compound containing the other element is intermittently used while the gas production system is in operation while monitoring the composition of the produced gas.
When a compound containing another element is contained in the source gas, the type and amount of the compound may be appropriately selected according to the type of source gas and process design.
 なお、このようにして生成ガスを得た後に、還元性を有するガスを酸素キャリアに接触させ、その更に後に、原料ガス(酸化ガス)と接触させることで炭素有価物を得ることができることや、生成ガスを得る前に還元性を有するガスを酸素キャリアに接触させることができるのは、前述の各実施形態と同様である。 After the generated gas is obtained in this way, the reducing gas is brought into contact with the oxygen carrier, and then the carbon valuables can be obtained by bringing it into contact with the raw material gas (oxidizing gas), The reducing gas can be brought into contact with the oxygen carrier before obtaining the product gas, as in the above-described embodiments.
 さらに、次に記載の各態様で提供されてもよい。
 前記酸素キャリアにおいて、前記カチオン部に含まれる前記金属元素は遷移金属元素である、酸素キャリア。
 前記酸素キャリアにおいて、前記他の元素が、第15族および第16族に属する元素のうち少なくとも1種を含有する、酸素キャリア。
 前記酸素キャリアにおいて、水素と接触することによって水を生成し、還元された酸素キャリアが二酸化炭素と接触することによって炭素有価物を生成する、酸素キャリア。
 前記酸素キャリアにおいて、前記金属化合物に含まれる前記他の元素の含有量が0.001質量%以上である、酸素キャリア。
 前記酸素キャリアにおいて、前記金属化合物に含まれる前記他の元素の含有量が10質量%以下である、酸素キャリア。
 前記酸素キャリアの製造方法であって、前記金属元素を含む金属単体、合金または金属酸化物と前記他の元素を含む化合物とを接触させつつ加熱する工程を含む、方法。
 前記酸素キャリアの製造方法において、加熱する前記工程は、前記金属単体、前記合金または前記金属酸化物と、前記他の元素を含む前記化合物を含むガスとを接触させつつ加熱する工程である、方法。
 ガスの製造方法であって、前記酸素キャリアまたは前記酸素キャリアの製造方法で得られた酸素キャリアと、原料ガスとを接触させることにより、生成ガスを得る工程を備える、方法。
 前記ガスの製造方法において、生成ガスを得る前記工程の前または後に、還元性を有するガスを前記酸素キャリアに接触させる工程を備える、方法。
 ガスの製造方法であって、金属元素を含む酸素キャリア前駆体と、第14族~第17族、かつ、第2周期~第5周期に属する酸素元素以外の元素を含む化合物を含有する原料ガスとを用意する工程と、前記酸素キャリア前駆体と前記原料ガスとを接触させることにより、第14族~第17族、かつ、第2周期~第5周期に属する酸素元素以外の前記元素を前記酸素キャリア前駆体に付与しつつ生成ガスを得る工程を備える、方法。
 前記ガスの製造方法において、生成ガスを得る前記工程の前または後に、還元性を有するガスを前記酸素キャリアに接触させる工程を備える、方法。
 反応器を備えるガス製造装置であって、前記反応器内に、前記酸素キャリアを収容した、ガス製造装置。
 もちろん、この限りではない。
Furthermore, it may be provided in each aspect described below.
The oxygen carrier, wherein the metal element contained in the cation portion is a transition metal element.
In the oxygen carrier, the other element contains at least one element belonging to Groups 15 and 16.
wherein said oxygen carrier is contacted with hydrogen to produce water and the reduced oxygen carrier is contacted with carbon dioxide to produce carbon values.
The oxygen carrier, wherein the content of the other element contained in the metal compound is 0.001% by mass or more.
In the oxygen carrier, the content of the other element contained in the metal compound is 10% by mass or less.
A method for producing the oxygen carrier, comprising the step of heating the elemental metal, alloy, or metal oxide containing the metal element and the compound containing the other element while bringing them into contact with each other.
In the method for producing an oxygen carrier, the step of heating is a step of heating while contacting the elemental metal, the alloy, or the metal oxide with a gas containing the compound containing the other element. .
A method for producing a gas, comprising the step of contacting the oxygen carrier or the oxygen carrier obtained by the method for producing the oxygen carrier with a raw material gas to obtain a product gas.
The method for producing the gas, comprising the step of contacting a reducing gas with the oxygen carrier before or after the step of obtaining the product gas.
A method for producing a gas, wherein the source gas contains an oxygen carrier precursor containing a metal element and a compound containing an element other than an oxygen element belonging to Groups 14 to 17 and belonging to Periods 2 to 5. and bringing the oxygen carrier precursor into contact with the raw material gas, thereby removing the elements other than oxygen elements belonging to Groups 14 to 17 and Periods 2 to 5. A method comprising obtaining a product gas while applying an oxygen carrier precursor.
The method for producing the gas, comprising the step of contacting a reducing gas with the oxygen carrier before or after the step of obtaining the product gas.
A gas production apparatus comprising a reactor, wherein the oxygen carrier is accommodated in the reactor.
Of course, this is not the only case.
 既述のとおり、本発明に係る種々の実施形態を説明したが、これらは、例として提示したものであり、発明の範囲を何ら限定するものではない。当該新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。当該実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 As described above, various embodiments of the present invention have been described, but these are presented as examples and do not limit the scope of the invention in any way. The novel embodiment can be embodied in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. The embodiment and its modifications are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and equivalents thereof.
 例えば、本発明のガス製造装置は、上記実施形態に対して、他の任意の追加の構成を有していてもよく、同様の機能を発揮する任意の構成と置換されていてよく、一部の構成が省略されていてもよい。
 上記の各実施形態では、金属化合物が、二酸化炭素を還元する還元剤として機能する例について説明したが、この金属化合物について、二酸化炭素と還元物質との反応を促進する触媒として機能させることもできる。この場合、反応器内に触媒を収容し、この反応器に排ガスと還元ガスとを同時に供給することにより、逆水性ガスシフト反応が行われる。
For example, the gas production apparatus of the present invention may have any other additional configuration with respect to the above embodiments, and may be replaced with any configuration that exhibits similar functions. may be omitted.
In each of the above-described embodiments, an example in which the metal compound functions as a reducing agent that reduces carbon dioxide has been described, but this metal compound can also function as a catalyst that promotes the reaction between carbon dioxide and a reducing substance. . In this case, the reverse water gas shift reaction is carried out by housing a catalyst in a reactor and simultaneously supplying the exhaust gas and the reducing gas to the reactor.
 また、上記の各実施形態では、還元ガスとして水素を含むガスを代表に説明したが、還元ガスには、還元物質として、水素に代えてまたは水素とともに、炭化水素(例えば、メタン、エタン、アセチレン等)およびアンモニアから選択される少なくとも1種を含むガスを使用することもできる。
 また、上記第1実施形態において、直列に接続される反応器の数は、3以上であってもよく、上記第2実施形態において、第2反応器として使用される直列の反応器(還元剤4Rを還元する還元側の反応器)の数は、2であってもよく、4以上であってもよい。
 また、上記の各実施形態に制限されることなく、ガス製造に用いる反応器は1つであっても構わない。
Further, in each of the above-described embodiments, a gas containing hydrogen was described as a representative of the reducing gas. etc.) and ammonia.
Further, in the first embodiment, the number of reactors connected in series may be 3 or more, and in the second embodiment, the series reactor (reducing agent The number of reactors on the reduction side for reducing 4R may be two, or four or more.
Moreover, the number of reactors used for gas production may be one without being limited to each of the above embodiments.
 以下、実施例および比較例により、本発明をさらに詳しく説明する。なお、本発明は以下の実施例により制限されるものではない。 The present invention will be described in more detail below with reference to examples and comparative examples. In addition, the present invention is not limited to the following examples.
<酸素キャリア(還元剤)の作製>
 本実施例項で用いた酸素キャリア(還元剤)は以下のようにして作製した。
<Preparation of oxygen carrier (reducing agent)>
The oxygen carrier (reducing agent) used in this example section was prepared as follows.
(実施例1-1:CeO_La-3wt%)
 まず、還元剤の前駆体として、1.94gの酸化セリウム(富士フイルム和光純薬工業株式会社製)と0.06gの硫化ランタン(株式会社高純度化学研究所製)を計量し、るつぼ内で混合した。この混合物を450℃まで1時間かけて昇温し、450℃にて4時間保持した後、950℃まで1時間かけて昇温し、950℃にて8時間保持する条件で焼成した。最後に、焼成した塊状物を機械的に細かく粉砕して、目的とする還元剤を得た。なお、還元剤は粒状であった。
(Example 1-1: CeO 2 _La 2 S 3 -3 wt%)
First, as a precursor of a reducing agent, 1.94 g of cerium oxide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and 0.06 g of lanthanum sulfide (manufactured by Kojundo Chemical Laboratory Co., Ltd.) were weighed and placed in a crucible. Mixed. The mixture was heated to 450° C. over 1 hour, held at 450° C. for 4 hours, then heated to 950° C. over 1 hour and fired at 950° C. for 8 hours. Finally, the fired agglomerates were finely pulverized mechanically to obtain the desired reducing agent. The reducing agent was granular.
(実施例1-2:CeO_La-5wt%)
 還元剤の前駆体として、1.90gの酸化セリウム(富士フイルム和光純薬工業株式会社製)と0.10gの硫化ランタン(株式会社高純度化学研究所製)を計量した以外は、実施例1-1と同様にして、還元剤を製造した。なお、還元剤は粒状であった。
(Example 1-2: CeO 2 _La 2 S 3 -5 wt%)
Example 1 except that 1.90 g of cerium oxide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and 0.10 g of lanthanum sulfide (manufactured by Kojundo Chemical Laboratory Co., Ltd.) were weighed as precursors of the reducing agent. A reducing agent was prepared in the same manner as in -1. The reducing agent was granular.
(比較例1:CeO
 まず、還元剤の前駆体として、2.00gの酸化セリウム(富士フイルム和光純薬工業株式会社製)を450℃まで1時間かけて昇温し、450℃にて4時間保持した後、950℃まで1時間かけて昇温し、950℃にて8時間保持する条件で焼成した。最後に、焼成した塊状物を機械的に細かく粉砕して、目的とする還元剤を得た。なお、還元剤は粒状であった。
(Comparative Example 1: CeO 2 )
First, as a precursor of a reducing agent, 2.00 g of cerium oxide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was heated to 450°C over 1 hour, held at 450°C for 4 hours, and then heated to 950°C. The temperature was raised over 1 hour to 950° C., and sintered under the condition of being held at 950° C. for 8 hours. Finally, the fired agglomerates were finely pulverized mechanically to obtain the desired reducing agent. The reducing agent was granular.
(実施例2:Ce0.9Zr0.1_La-5wt%)
 まず、還元剤の前駆体として、0.32gのオキシ硝酸ジルコニウム(II)二水和物(キシダ化学株式会社製、純度:99.0%)と、4.67gの硝酸セリウム(III)六水和物(富士フイルム和光純薬工業株式会社製、純度:99.5%)を、それぞれ計量した。
 次いで、5.03gのクエン酸(富士フイルム和光純薬工業株式会社製、純度:99.5%)を計量し、100mLの脱イオン水に溶解してクエン酸水溶液を得た。その後、上記前駆体(硝酸金属塩)を、攪拌しつつクエン酸水溶液に65℃で添加した。
 30分経過後、1.78gのエチレングリコール(富士フイルム和光純薬工業株式会社製、純度:99.5%)をクエン酸水溶液に添加し、温度を80℃に上昇させた。なお、金属:クエン酸:エチレングリコールのモル比は、1:2:1.2とした。
 粘性のゲルが形成されるまで、連続して撹拌しつつ、80℃の温度を維持した。その後、ゲルを乾燥炉へ移動させた。ゲルの乾燥は、120℃、8時間で行った。生成された有機および無機化合物の膨潤した塊状物を粉砕し、450℃まで1時間かけて昇温し、450℃にて4時間保持した後、950℃まで1時間かけて昇温し、950℃にて8時間保持する条件で焼成した。最後に、焼成した塊状物を機械的に細かく粉砕して、金属酸化物を得た。
 得られた金属酸化物1.90gと、0.10gの硫化ランタン(株式会社高純度化学研究所製)を計量し、るつぼ内で混合した。この混合物を450℃まで1時間かけて昇温し、450℃にて4時間保持した後、950℃まで1時間かけて昇温し、950℃にて8時間保持する条件で焼成した。最後に、焼成した塊状物を機械的に細かく粉砕して、目的とする還元剤を得た。なお、還元剤は粒状であった。
( Example 2 : Ce0.9Zr0.1O2_La2S3-5wt % )
First, 0.32 g of zirconium (II) oxynitrate dihydrate (manufactured by Kishida Chemical Co., Ltd., purity: 99.0%) and 4.67 g of cerium (III) nitrate hexahydrate were used as precursors of the reducing agent. Wako (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., purity: 99.5%) was weighed respectively.
Next, 5.03 g of citric acid (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., purity: 99.5%) was weighed and dissolved in 100 mL of deionized water to obtain an aqueous citric acid solution. After that, the above precursor (metal nitrate) was added to the aqueous citric acid solution at 65° C. while stirring.
After 30 minutes, 1.78 g of ethylene glycol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., purity: 99.5%) was added to the aqueous citric acid solution, and the temperature was raised to 80°C. The molar ratio of metal:citric acid:ethylene glycol was 1:2:1.2.
A temperature of 80° C. was maintained with continuous stirring until a viscous gel was formed. After that, the gel was transferred to a drying oven. Drying of the gel was performed at 120° C. for 8 hours. The resulting swollen lumps of organic and inorganic compounds were pulverized, heated to 450°C over 1 hour, held at 450°C for 4 hours, then heated to 950°C over 1 hour, and heated to 950°C. and sintered for 8 hours. Finally, the fired agglomerates were mechanically finely pulverized to obtain metal oxides.
1.90 g of the obtained metal oxide and 0.10 g of lanthanum sulfide (manufactured by Kojundo Chemical Laboratory Co., Ltd.) were weighed and mixed in a crucible. The mixture was heated to 450° C. over 1 hour, held at 450° C. for 4 hours, then heated to 950° C. over 1 hour and fired at 950° C. for 8 hours. Finally, the fired agglomerates were finely pulverized mechanically to obtain the desired reducing agent. The reducing agent was granular.
(比較例2:Ce0.9Zr0.1
 硫化ランタンを加えない以外は実施例2と同様にして、目的の金属酸化物を得た。
( Comparative Example 2: Ce0.9Zr0.1O2 )
A target metal oxide was obtained in the same manner as in Example 2, except that lanthanum sulfide was not added.
(実施例3:Ce0.9Zr0.1_Sガス反応後)
 固定床流通型反応装置に還元剤の前駆体であるCe0.9Zr0.1を充填した。その後、反応装置を850℃に昇温後、Hガスを流した後、HSが1%混合したCOガスを流した。このサイクルを20サイクル以上行った。室温に放冷後、目的とする還元剤を得た。
(Example 3 : After Ce0.9Zr0.1O2_S gas reaction )
A fixed-bed flow reactor was filled with Ce 0.9 Zr 0.1 O 2 as a precursor of the reducing agent. Thereafter, after heating the reactor to 850° C., H 2 gas was flowed, and then CO 2 gas mixed with 1% H 2 S was flowed. This cycle was performed for 20 or more cycles. After cooling to room temperature, the desired reducing agent was obtained.
(比較例3:Ce0.9Zr0.1
 比較例2と同様にして、目的の金属酸化物を得た。
( Comparative Example 3: Ce0.9Zr0.1O2 )
A target metal oxide was obtained in the same manner as in Comparative Example 2.
 なお、上記で得た各酸素キャリア(還元剤)については、以下の装置と方法により、含有する硫黄(硫黄元素)の量を定量している。
1: 装置
・ICP-AES:アジレント・テクノロジー製 Agilent 5110 VDV型
・マイクロ波加熱分解装置:アントンパール製 MultiWave3000
2: 方法
 分解容器に酸と試料を入れて密栓した後、マイクロ波を照射して加熱分解後、超純水で定容して検液とした。続いて、ICP-AESにより試料中のSの定量分析(標準添加法)を行った。
For each oxygen carrier (reducing agent) obtained above, the amount of sulfur (elemental sulfur) contained is quantified by the following apparatus and method.
1: Apparatus ICP-AES: Agilent 5110 VDV type manufactured by Agilent Technologies Microwave thermal decomposition apparatus: MultiWave 3000 manufactured by Anton Paar
2: Method An acid and a sample were placed in a decomposition container, the container was sealed, and then microwaves were applied to thermally decompose. Subsequently, quantitative analysis (standard addition method) of S in the sample was performed by ICP-AES.
 各酸素キャリアの硫黄含有量は以下の表1に示す通りである。 The sulfur content of each oxygen carrier is shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<酸素キャリア(還元剤)の評価>
 得られた酸素キャリア(還元剤)については、水素との反応性と、二酸化炭素との反応性との項目に沿って、その性能の評価を行った。
<Evaluation of oxygen carrier (reducing agent)>
The performance of the obtained oxygen carrier (reducing agent) was evaluated in terms of reactivity with hydrogen and reactivity with carbon dioxide.
(水素との反応性(1))
 各酸素キャリア(還元剤)について、水素雰囲気下で熱重量測定(TG)を行った。具体的な手順は以下の通りである。
 まず、反応器内の試料台の上に、各酸素キャリアを50~100mg充填した。続いて、ヘリウムガスを流量50mL/分で5分間流した後、水素ガスを流量50mL/分で流し、室温から900℃にかけて昇温した。このときの400℃~900℃の範囲での質量変化率を測定している。なお、熱重量測定を行う際の昇温レートは10℃/分であった。
 なお、評価は、室温時の質量を100%としたときの変化量に基づいて行っており、実施例1-1と1-2は、比較例1の変化量を「1」とした場合の相対値として示した。また、実施例2は、比較例2の変化量を「1」とした場合の相対値として示した。
 質量の変化率の結果は、表2に示す通りである。
(Reactivity with hydrogen (1))
Thermogravimetry (TG) was performed under a hydrogen atmosphere for each oxygen carrier (reducing agent). The specific procedure is as follows.
First, 50 to 100 mg of each oxygen carrier was filled on the sample table in the reactor. Subsequently, after flowing helium gas at a flow rate of 50 mL/min for 5 minutes, hydrogen gas was flowed at a flow rate of 50 mL/min, and the temperature was raised from room temperature to 900°C. At this time, the mass change rate is measured in the range of 400°C to 900°C. The temperature increase rate during thermogravimetric measurement was 10° C./min.
The evaluation is based on the amount of change when the mass at room temperature is taken as 100%. Shown as a relative value. In addition, Example 2 is shown as a relative value when the amount of change in Comparative Example 2 is set to "1".
The mass change rate results are shown in Table 2.
(二酸化炭素との反応性(1))
 固定床流通式反応装置と、反応装置に直結するガスクロマトグラフ質量分析計(GC/MS)とを備える迅速触媒評価システムを用いて測定を行った。
 具体的には、内径4mmの石英反応管を用意し、長径3mmに成型した円柱状の酸素キャリアを積層高さが30mmになるように充填した。その後、20mL/minの流量でヘリウムガスを流しつつ、40℃/minの昇温速度で850℃に昇温させ、同じ温度で20分間加熱した。
 次に、酸素キャリアを賦活化するために、水素ガス(還元ガス)を流量20mL/分で5分間流して酸素キャリアの還元反応(第1プロセス)を実施して、酸素キャリアを還元した。このとき、排出口から排出されるガスには、水蒸気が含まれていた。その後、ガス交換のために、ヘリウムガスを流量20mL/分で5分間流した後、二酸化炭素ガスを流量20mL/分で5分間流して、二酸化炭素の還元反応(第2プロセス)を実施して、二酸化炭素ガス(原料ガス)を還元した。このとき、排出口から排出される生成ガスには、一酸化炭素が含まれていた。
 次に、本試験のため、以下のプロセスを行った。まず、ガス交換のために、ヘリウムガスを流量20mL/分で5分間流した。次に水素ガス(還元ガス)を流量3mL/minで4分間流して還元剤の還元反応(第1プロセス)を実施して、還元剤を還元した。このとき、排出口から排出されるガスには、水蒸気が含まれていた。その後、ガス交換のために、ヘリウムガスを流量3mL/分で5分間流した後、二酸化炭素ガスを流量3mL/分で4分間流して、二酸化炭素の還元反応(第2プロセス)を実施して、二酸化炭素ガス(原料ガス)を還元した。このとき、排出口から排出される生成ガスには、一酸化炭素が含まれていた。
 なお、以上のプロセスでは、いずれのガスを流す際にも、酸素キャリアの温度を850℃に維持するとともに、大気圧条件で行った。
 酸素キャリアによる二酸化炭素の反応率は、二酸化炭素ガスが流通している時に生成した一酸化炭素のモル量(mmol)を充填した酸素キャリアの重量(g)で割った値(mmol/g)で算出した。
 この一酸化炭素の生成量の結果は、表2に示す通りである。なお、各実施例1-1、1-2は、比較例1の生成量を「1」とした場合の相対値として示した。また、実施例2は、比較例2の生成量を「1」とした場合の相対値として示した。
(Reactivity with carbon dioxide (1))
Measurements were performed using a rapid catalyst evaluation system equipped with a fixed-bed flow reactor and a gas chromatograph-mass spectrometer (GC/MS) directly connected to the reactor.
Specifically, a quartz reaction tube with an inner diameter of 4 mm was prepared and filled with a columnar oxygen carrier formed to have a major diameter of 3 mm so that the layer height was 30 mm. Thereafter, while flowing helium gas at a flow rate of 20 mL/min, the temperature was raised to 850° C. at a temperature elevation rate of 40° C./min, and heated at the same temperature for 20 minutes.
Next, in order to activate the oxygen carrier, hydrogen gas (reducing gas) was flowed at a flow rate of 20 mL/min for 5 minutes to carry out a reduction reaction (first process) of the oxygen carrier, thereby reducing the oxygen carrier. At this time, the gas discharged from the discharge port contained water vapor. Thereafter, for gas exchange, helium gas is flowed at a flow rate of 20 mL/min for 5 minutes, and then carbon dioxide gas is flowed at a flow rate of 20 mL/min for 5 minutes to perform a carbon dioxide reduction reaction (second process). , the carbon dioxide gas (source gas) was reduced. At this time, carbon monoxide was contained in the generated gas discharged from the discharge port.
Next, the following process was performed for this test. First, for gas exchange, helium gas was flowed at a flow rate of 20 mL/min for 5 minutes. Next, hydrogen gas (reducing gas) was flowed at a flow rate of 3 mL/min for 4 minutes to carry out a reducing reaction (first process) of the reducing agent, thereby reducing the reducing agent. At this time, the gas discharged from the discharge port contained water vapor. Thereafter, for gas exchange, helium gas is flowed at a flow rate of 3 mL/min for 5 minutes, and then carbon dioxide gas is flowed at a flow rate of 3 mL/min for 4 minutes to perform a carbon dioxide reduction reaction (second process). , the carbon dioxide gas (source gas) was reduced. At this time, carbon monoxide was contained in the generated gas discharged from the discharge port.
In the above process, the temperature of the oxygen carrier was maintained at 850° C. and atmospheric pressure conditions were applied when any gas was flowed.
The reaction rate of carbon dioxide by the oxygen carrier is the value (mmol/g) obtained by dividing the molar amount (mmol) of carbon monoxide generated when the carbon dioxide gas is flowing by the weight (g) of the filled oxygen carrier. Calculated.
Table 2 shows the results of the amount of carbon monoxide produced. In addition, each of Examples 1-1 and 1-2 is shown as a relative value when the production amount of Comparative Example 1 is set to "1". In addition, Example 2 is shown as a relative value when the production amount of Comparative Example 2 is set to "1".
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(水素との反応性(2))
 実施例3と、比較例3の酸素キャリア(還元剤)について、水素雰囲気下で熱重量測定(TG)を行った。具体的な手順は以下の通りである。
 まず、反応器内の試料台の上に、各酸素キャリアを50~100mg充填した。続いて、ヘリウムガスを流量50mL/分で5分間流した後、水素ガスを流量50mL/分で流し、室温から900℃にかけて昇温した。このときの400℃~700℃の範囲での質量変化率を測定している。なお、熱重量測定を行う際の昇温レートは10℃/分であった。
 なお、評価は、室温時の質量を100%としたときの変化量に基づいて行っており、実施例3は、比較例3の変化量を「1」とした場合の相対値として示した。
(Reactivity with hydrogen (2))
The oxygen carriers (reducing agents) of Example 3 and Comparative Example 3 were subjected to thermogravimetry (TG) under a hydrogen atmosphere. The specific procedure is as follows.
First, 50 to 100 mg of each oxygen carrier was filled on the sample table in the reactor. Subsequently, after flowing helium gas at a flow rate of 50 mL/min for 5 minutes, hydrogen gas was flowed at a flow rate of 50 mL/min, and the temperature was raised from room temperature to 900°C. At this time, the mass change rate is measured in the range of 400°C to 700°C. The temperature increase rate during thermogravimetric measurement was 10° C./min.
The evaluation was performed based on the amount of change when the mass at room temperature was taken as 100%, and Example 3 was shown as a relative value when the amount of change in Comparative Example 3 was set to "1".
(二酸化炭素との反応性(2))
 固定床流通式反応装置と、反応装置に直結するガスクロマトグラフ質量分析計(GC/MS)とを備える迅速触媒評価システムを用いて測定を行った。
 具体的には、内径4mmの石英反応管を用意し、長径3mmに成型した円柱状の酸素キャリアを積層高さが30mmになるように充填した。その後、20mL/minの流量でヘリウムガスを流しつつ、40℃/minの昇温速度で700℃に昇温させ、20分間加熱した。
 次に、酸素キャリアを賦活化するために、水素ガス(還元ガス)を流量20mL/分で5分間流して酸素キャリアの還元反応(第1プロセス)を実施して、酸素キャリアを還元した。このとき、排出口から排出されるガスには、水蒸気が含まれていた。その後、ガス交換のために、ヘリウムガスを流量20mL/分で5分間流した後、二酸化炭素ガスを流量20mL/分で5分間流して、二酸化炭素の還元反応(第2プロセス)を実施して、二酸化炭素ガス(原料ガス)を還元した。このとき、排出口から排出される生成ガスには、一酸化炭素が含まれていた。
 次に、本試験のため、以下のプロセスを行った。まず、ガス交換のために、ヘリウムガスを流量20mL/分で5分間流した。次に水素ガス(還元ガス)を流量3mL/minで4分間流して還元剤の還元反応(第1プロセス)を実施して、還元剤を還元した。このとき、排出口から排出されるガスには、水蒸気が含まれていた。その後、ガス交換のために、ヘリウムガスを流量3mL/分で5分間流した後、二酸化炭素ガスを流量3mL/分で4分間流して、二酸化炭素の還元反応(第2プロセス)を実施して、二酸化炭素ガス(原料ガス)を還元した。このとき、排出口から排出される生成ガスには、一酸化炭素が含まれていた。
 なお、以上のプロセスでは、いずれのガスを流す際にも、酸素キャリアの温度を700℃に維持するとともに、大気圧条件で行った。
 酸素キャリアによる二酸化炭素の反応率は、二酸化炭素ガスが流通している時に生成した一酸化炭素のモル量(mmol)を充填した酸素キャリアの重量(g)で割った値(mmol/g)で算出した。
 この一酸化炭素の生成量の結果は、表3に示す通りである。なお、各実施例3は、比較例3の生成量を「1」とした場合の相対値として示した。
(Reactivity with carbon dioxide (2))
Measurements were performed using a rapid catalyst evaluation system equipped with a fixed-bed flow reactor and a gas chromatograph-mass spectrometer (GC/MS) directly connected to the reactor.
Specifically, a quartz reaction tube with an inner diameter of 4 mm was prepared and filled with a columnar oxygen carrier formed to have a major diameter of 3 mm so that the layer height was 30 mm. Thereafter, while flowing helium gas at a flow rate of 20 mL/min, the temperature was raised to 700° C. at a temperature elevation rate of 40° C./min and heated for 20 minutes.
Next, in order to activate the oxygen carrier, hydrogen gas (reducing gas) was flowed at a flow rate of 20 mL/min for 5 minutes to carry out a reduction reaction (first process) of the oxygen carrier, thereby reducing the oxygen carrier. At this time, the gas discharged from the discharge port contained water vapor. Thereafter, for gas exchange, helium gas is flowed at a flow rate of 20 mL/min for 5 minutes, and then carbon dioxide gas is flowed at a flow rate of 20 mL/min for 5 minutes to perform a carbon dioxide reduction reaction (second process). , the carbon dioxide gas (source gas) was reduced. At this time, carbon monoxide was contained in the generated gas discharged from the discharge port.
Next, the following process was performed for this test. First, for gas exchange, helium gas was flowed at a flow rate of 20 mL/min for 5 minutes. Next, hydrogen gas (reducing gas) was flowed at a flow rate of 3 mL/min for 4 minutes to carry out a reducing reaction (first process) of the reducing agent, thereby reducing the reducing agent. At this time, the gas discharged from the discharge port contained water vapor. Thereafter, for gas exchange, helium gas is flowed at a flow rate of 3 mL/min for 5 minutes, and then carbon dioxide gas is flowed at a flow rate of 3 mL/min for 4 minutes to perform a carbon dioxide reduction reaction (second process). , the carbon dioxide gas (source gas) was reduced. At this time, carbon monoxide was contained in the generated gas discharged from the discharge port.
In the above process, the temperature of the oxygen carrier was maintained at 700° C. and atmospheric pressure conditions were maintained when any gas was flowed.
The reaction rate of carbon dioxide by the oxygen carrier is the value (mmol/g) obtained by dividing the molar amount (mmol) of carbon monoxide generated when the carbon dioxide gas is flowing by the weight (g) of the filled oxygen carrier. Calculated.
Table 3 shows the results of the amount of carbon monoxide produced. In addition, each Example 3 is shown as a relative value when the production amount of Comparative Example 3 is set to "1".
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 以上の結果から、酸素キャリア(還元剤)に、硫黄等の他の元素を導入することにより、還元反応や酸化反応を行う際の反応効率が向上することがわかる。 From the above results, it can be seen that the introduction of other elements such as sulfur into the oxygen carrier (reducing agent) improves the reaction efficiency during reduction and oxidation reactions.
1     :ガス製造装置
2     :接続部
3     :還元ガス供給部
4     :反応部
41    :管体
42    :ハウジング
43    :空間
4R    :還元剤
4a    :反応器
4b    :反応器
4c    :反応器
4d    :反応器
41a   :反応器
41b   :反応器
42a   :反応器
42b   :反応器
5     :濃度調整部
6     :圧縮部
7     :微成分除去部
8     :ガス切換部
8a    :第1ガス切換部
8b    :第2ガス切換部
9     :ガス精製部
10    :排ガス加熱部
11    :還元ガス加熱部
20    :炉
40    :生成ガス排出部
100   :ガス製造システム
GL1   :ガスライン
GL2   :ガスライン
GL3a  :ガスライン
GL3b  :ガスライン
GL3c  :ガスライン
GL3d  :ガスライン
GL4   :ガスライン
GL4a  :ガスライン
GL4b  :ガスライン
GL4c  :ガスライン
GL4d  :ガスライン
GL5a  :ガスライン
GL5b  :ガスライン
GL5c  :ガスライン
GL5d  :ガスライン
J4    :ガス合流部
Reference Signs List 1: Gas production device 2: Connection part 3: Reducing gas supply part 4: Reaction part 41: Tubular body 42: Housing 43: Space 4R: Reducing agent 4a: Reactor 4b: Reactor 4c: Reactor 4d: Reactor 41a : Reactor 41b : Reactor 42a : Reactor 42b : Reactor 5 : Concentration adjusting section 6 : Compressing section 7 : Minor component removing section 8 : Gas switching section 8a : First gas switching section 8b : Second gas switching section 9 : Gas purification unit 10 : Exhaust gas heating unit 11 : Reducing gas heating unit 20 : Furnace 40 : Generated gas discharge unit 100 : Gas production system GL1 : Gas line GL2 : Gas line GL3a : Gas line GL3b : Gas line GL3c : Gas line GL3d : Gas line GL4 : Gas line GL4a : Gas line GL4b : Gas line GL4c : Gas line GL4d : Gas line GL5a : Gas line GL5b : Gas line GL5c : Gas line GL5d : Gas line J4 : Gas junction

Claims (13)

  1.  金属化合物を有する酸素キャリアであって、
     前記金属化合物は、カチオン部と、アニオン部とを有し、
     前記カチオン部は、少なくとも金属元素を含み、
     前記アニオン部は、少なくとも酸素元素を含み、
     前記カチオン部または前記アニオン部の少なくとも一方に、前記金属元素および前記酸素元素とは異なる他の元素を含み、
     前記他の元素は、第14族~第17族、かつ、第2周期~第5周期に属する元素である、酸素キャリア。
    An oxygen carrier comprising a metal compound,
    The metal compound has a cation portion and an anion portion,
    The cation portion contains at least a metal element,
    The anion portion contains at least an oxygen element,
    At least one of the cation part or the anion part contains another element different from the metal element and the oxygen element,
    The oxygen carrier, wherein the other element is an element belonging to Groups 14 to 17 and Periods 2 to 5.
  2.  請求項1に記載の酸素キャリアにおいて、
     前記カチオン部に含まれる前記金属元素は遷移金属元素である、酸素キャリア。
    The oxygen carrier of claim 1, wherein
    The oxygen carrier, wherein the metal element contained in the cation moiety is a transition metal element.
  3.  請求項1または請求項2に記載の酸素キャリアにおいて、
     前記他の元素が、第15族および第16族に属する元素のうち少なくとも1種を含有する、酸素キャリア。
    The oxygen carrier according to claim 1 or claim 2,
    The oxygen carrier, wherein the other element comprises at least one element belonging to Groups 15 and 16.
  4.  請求項1ないし請求項3のいずれか1項に記載の酸素キャリアにおいて、
     水素と接触することによって水を生成し、還元された酸素キャリアが二酸化炭素と接触することによって炭素有価物を生成する、酸素キャリア。
    The oxygen carrier according to any one of claims 1 to 3,
    An oxygen carrier that produces water on contact with hydrogen and carbon values on contact of the reduced oxygen carrier with carbon dioxide.
  5.  請求項1ないし請求項4のいずれか1項に記載の酸素キャリアにおいて、
     前記金属化合物に含まれる前記他の元素の含有量が0.001質量%以上である、酸素キャリア。
    The oxygen carrier according to any one of claims 1 to 4,
    The oxygen carrier, wherein the content of the other element contained in the metal compound is 0.001% by mass or more.
  6.  請求項1ないし請求項5のいずれか1項に記載の酸素キャリアにおいて、
     前記金属化合物に含まれる前記他の元素の含有量が10質量%以下である、酸素キャリア。
    The oxygen carrier according to any one of claims 1 to 5,
    The oxygen carrier, wherein the content of the other element contained in the metal compound is 10% by mass or less.
  7.  請求項1ないし請求項6のいずれか1項に記載の酸素キャリアの製造方法であって、
     前記金属元素を含む金属単体、合金または金属酸化物と前記他の元素を含む化合物とを接触させつつ加熱する工程を含む、方法。
    A method for producing an oxygen carrier according to any one of claims 1 to 6,
    A method comprising the step of heating a metal simple substance, alloy or metal oxide containing the metal element and the compound containing the other element while contacting them.
  8.  請求項7に記載の酸素キャリアの製造方法において、
     加熱する前記工程は、前記金属単体、前記合金または前記金属酸化物と、前記他の元素を含む前記化合物を含むガスとを接触させつつ加熱する工程である、方法。
    In the method for producing an oxygen carrier according to claim 7,
    The heating step is a step of heating the elemental metal, the alloy, or the metal oxide and the gas containing the compound containing the other element while bringing them into contact with each other.
  9.  ガスの製造方法であって、
     請求項1ないし請求項6のいずれか1項に記載の酸素キャリアまたは請求項7もしくは請求項8に記載の酸素キャリアの製造方法で得られた酸素キャリアと、原料ガスとを接触させることにより、生成ガスを得る工程を備える、方法。
    A method for producing gas,
    By bringing the oxygen carrier according to any one of claims 1 to 6 or the oxygen carrier obtained by the oxygen carrier production method according to claim 7 or 8 into contact with a raw material gas, A method comprising obtaining a product gas.
  10.  請求項9に記載のガスの製造方法において、
     生成ガスを得る前記工程の前または後に、還元性を有するガスを前記酸素キャリアに接触させる工程を備える、方法。
    In the method for producing gas according to claim 9,
    A method comprising the step of contacting a reducing gas with said oxygen carrier before or after said step of obtaining a product gas.
  11.  ガスの製造方法であって、
     金属元素を含む酸素キャリア前駆体と、第14族~第17族、かつ、第2周期~第5周期に属する酸素元素以外の元素を含む化合物を含有する原料ガスとを用意する工程と、
     前記酸素キャリア前駆体と前記原料ガスとを接触させることにより、第14族~第17族、かつ、第2周期~第5周期に属する酸素元素以外の前記元素を前記酸素キャリア前駆体に付与しつつ生成ガスを得る工程を備える、方法。
    A method for producing gas,
    preparing an oxygen carrier precursor containing a metal element and a raw material gas containing a compound containing an element other than an oxygen element belonging to groups 14 to 17 and belonging to periods 2 to 5;
    By bringing the oxygen carrier precursor into contact with the raw material gas, the element other than the oxygen element belonging to Groups 14 to 17 and Periods 2 to 5 is imparted to the oxygen carrier precursor. and obtaining a product gas.
  12.  請求項11に記載のガスの製造方法において、
     生成ガスを得る前記工程の前または後に、還元性を有するガスを前記酸素キャリアに接触させる工程を備える、方法。
    In the method for producing gas according to claim 11,
    A method comprising the step of contacting a reducing gas with said oxygen carrier before or after said step of obtaining a product gas.
  13.  反応器を備えるガス製造装置であって、
     前記反応器内に、請求項1ないし請求項6のいずれか1項に記載の酸素キャリアを収容した、ガス製造装置。
    A gas production apparatus comprising a reactor,
    A gas production apparatus, wherein the oxygen carrier according to any one of claims 1 to 6 is accommodated in the reactor.
PCT/JP2022/046794 2021-12-21 2022-12-20 Oxygen carrier, method for producing oxygen carrier, method for producing gas, and gas production device WO2023120504A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021206690 2021-12-21
JP2021-206690 2021-12-21

Publications (1)

Publication Number Publication Date
WO2023120504A1 true WO2023120504A1 (en) 2023-06-29

Family

ID=86902482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046794 WO2023120504A1 (en) 2021-12-21 2022-12-20 Oxygen carrier, method for producing oxygen carrier, method for producing gas, and gas production device

Country Status (1)

Country Link
WO (1) WO2023120504A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010063949A (en) * 2008-09-08 2010-03-25 Toyota Motor Corp Oxygen absorbing and desorbing material and catalyst containing the same for cleaning exhaust gas
WO2012057162A1 (en) * 2010-10-26 2012-05-03 三井金属鉱業株式会社 Method for producing carbon monoxide and production apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010063949A (en) * 2008-09-08 2010-03-25 Toyota Motor Corp Oxygen absorbing and desorbing material and catalyst containing the same for cleaning exhaust gas
WO2012057162A1 (en) * 2010-10-26 2012-05-03 三井金属鉱業株式会社 Method for producing carbon monoxide and production apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
R. J. FRUEHAN : "The free energy of formation of Ce2O2S and the nonstoichiometry of cerium oxides", METALLURGICAL AND MATERIALS TRANSACTIONS B - PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, SPRINGER NEW YORK LLC, US, vol. 10B, no. 2, 1 June 1979 (1979-06-01), US , pages 143 - 148, XP009547285, ISSN: 0360-2141, DOI: 10.1007/BF02652457 *

Similar Documents

Publication Publication Date Title
WO2022029886A1 (en) Gas production device, gas production system, iron production system, chemical product production system, and gas production method
CN102630186B (en) The process for purification of CO transformation catalyst, CO transformationreation device and coal gasification gas
TWI523687B (en) Conversion catalyst, gas purification plant gas refining methods and gas refining equipment
JP7497243B2 (en) Gas production device, gas production system, and gas production method
MX2012013555A (en) Process and apparatus for sulphuric acid production.
WO2022029887A1 (en) Ironmaking system and ironmaking method
JP2021054704A (en) Gas production apparatus, gas production system and gas production method
WO2023120504A1 (en) Oxygen carrier, method for producing oxygen carrier, method for producing gas, and gas production device
JP6843489B1 (en) Ironmaking system and ironmaking method
EP4194397A1 (en) Gas production device, gas production system and gas production method
EP4276066A1 (en) Gas production device and gas production method
WO2023286721A1 (en) Gas production device, gas production system, and gas production method
JP2023091958A (en) Gas production device
WO2023100834A1 (en) Gas production apparatus
WO2023286722A1 (en) Reaction vessel, gas production device, gas production system, and gas production method
JP7497242B2 (en) Gas production device, gas production system, and gas production method
WO2023100833A1 (en) Gas production device
EP4194401A1 (en) Gas manufacturing apparatus, gas manufacturing system, and gas manufacturing method
WO2022029888A1 (en) Gas production device, gas production system, and gas production method
WO2022029884A1 (en) Gas production apparatus, gas production system, and gas production method
EP4194400A1 (en) Gas manufacturing device, gas manufacturing system, and gas manufacturing method
JP2020127935A (en) Method for removing sulfur oxide in gas containing carbon dioxide as main component
US20240017233A1 (en) Gas production device, gas production system, and gas production method
JP2023091959A (en) Gas composition regulator, and device of producing carbonaceous valuable material
WO2022029883A1 (en) Gas production device, gas production system, and gas production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911206

Country of ref document: EP

Kind code of ref document: A1