WO2023214478A1 - Conveyance system - Google Patents

Conveyance system Download PDF

Info

Publication number
WO2023214478A1
WO2023214478A1 PCT/JP2023/009682 JP2023009682W WO2023214478A1 WO 2023214478 A1 WO2023214478 A1 WO 2023214478A1 JP 2023009682 W JP2023009682 W JP 2023009682W WO 2023214478 A1 WO2023214478 A1 WO 2023214478A1
Authority
WO
WIPO (PCT)
Prior art keywords
timing
counter value
communication
counter
transport vehicle
Prior art date
Application number
PCT/JP2023/009682
Other languages
French (fr)
Japanese (ja)
Inventor
耕太郎 柴田
Original Assignee
村田機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 村田機械株式会社 filed Critical 村田機械株式会社
Publication of WO2023214478A1 publication Critical patent/WO2023214478A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0811Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking connectivity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom

Definitions

  • the present disclosure relates to a conveyance system.
  • a transport system having a transport device for automatically transporting manufactured objects to semiconductor manufacturing equipment and the like is used.
  • signals are exchanged between a transport device that transports a product to be manufactured, and a semiconductor manufacturing device or the like. If this signal exchange is not performed normally for a predetermined period of time, a timeout error occurs.
  • Patent Document 1 listed below discloses a communication device connected to manufacturing equipment that can store data for analyzing the cause of error occurrence. In this communication device, time data including the time when predetermined packet data received by the communication section was transmitted and the time when the predetermined port state was detected by the IO monitor section is accumulated in the storage section. By using this time data, it is determined whether or not the transport control needs to be corrected.
  • An object of one aspect of the present disclosure is to provide a transport system that can support determination of the cause of a timeout abnormality.
  • a conveyance system is a conveyance system that conveys an article to a passive device and includes a conveyance vehicle having a communication unit that wirelessly communicates with the passive device, wherein the conveyance vehicle wirelessly communicates with the passive device.
  • the counter has a counter that generates a counter value according to the elapsed time from the timing when reception is no longer possible due to a communication failure during communication, and an output section that outputs the counter value when a timeout abnormality occurs in the guided vehicle. always resets the counter value when reception is possible.
  • the operator can check the cause of the timeout abnormality by simply checking the counter value output from the output unit (that is, checking whether the counter value has been reset). It becomes possible to estimate whether it is a communication abnormality or a passive device abnormality. If the counter value is 0 at the time when the timeout abnormality occurs in the transport vehicle, the operator can understand that wireless communication was being performed normally, and it can therefore be assumed that the cause of the timeout abnormality is in the passive device. On the other hand, if a counter value equal to or higher than a certain value is output at the time when a timeout abnormality occurs in the transport vehicle, the operator can know that wireless communication has not been performed for a certain period of time.
  • the cause of the timeout abnormality is a communication failure. According to such a transport system that can generate and output the above-mentioned counter value, it is possible to support determination of the cause of occurrence of a timeout abnormality.
  • the wireless communication between the guided vehicle and the passive device is E84 signal wireless communication specified by the international standard for semiconductor manufacturing equipment, and the output section outputs the counter value only when a timeout error occurs due to the E84 signal. It's okay. In this case, generation and output of counter values during unnecessary periods can be prevented. Thereby, it is possible to reliably output a counter value useful for determining the cause of occurrence of a timeout abnormality.
  • FIG. 1 is a plan view of a conveyance system according to an embodiment.
  • FIG. 2 is a front view of a portion of the transport system.
  • FIG. 3 is a schematic diagram showing communication between the overhead transport vehicle and the semiconductor processing equipment.
  • FIGS. 4A and 4B is a timing chart for explaining a normal example of wireless communication between the overhead transport vehicle and the semiconductor processing device.
  • FIGS. 5A and 5B is a timing chart for explaining a normal example of wireless communication between the overhead transport vehicle and the semiconductor processing device.
  • FIGS. 6A and 6B is a timing chart for explaining an abnormal example of wireless communication between the overhead transport vehicle and the semiconductor processing device.
  • FIGS. 7A and 7B is a timing chart for explaining an abnormal example of wireless communication between the overhead transport vehicle and the semiconductor processing device.
  • FIG. 1 is a plan view of a conveyance system according to this embodiment.
  • FIG. 2 is a front view of a portion of the transport system.
  • a transport system 1 is installed, for example, in a semiconductor manufacturing factory equipped with a semiconductor processing device 100, which is one of passive devices, and is used for transporting articles such as FOUPs (objects to be transported) 200. It is a system.
  • the FOUP 200 is a container (FOUP: Front Opening Unified Pod) that stores semiconductor wafers.
  • the semiconductor processing apparatus 100 is a processing apparatus for the semiconductor wafers (for example, a cleaning apparatus, an etching apparatus, a film forming apparatus, etc.), and includes an apparatus port 110 for loading and unloading the FOUP 200.
  • the transport system 1 includes a first track 10, a second track 20, a storage shelf 30, and a plurality of ceiling transport vehicles 40 (transport vehicles).
  • the FOUP 200 is transferred to the device port 110 of the semiconductor processing device 100 by the overhead carrier 40 that moves along the first track 10 or the second track 20, for example.
  • the transport system 1 further includes, for example, a HOST and an MCS (Material Control System) as control devices.
  • HOST and MCS are an electronic control unit configured with, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory).
  • HOST is a higher level controller.
  • HOST may be an MES (Manufacturing Execution System).
  • the HOST outputs a signal (hereinafter simply referred to as a "command") including various commands such as a transport command and a travel command to the MCS.
  • a command a signal including various commands such as a transport command and a travel command to the MCS.
  • the MCS Upon acquiring the command from the HOST, the MCS outputs the command to the ceiling transport vehicle 40 or the like at a predetermined timing via the transport vehicle controller.
  • the first track 10 is a member (traveling path) on which the ceiling transport vehicle 40 travels, and is suspended from the ceiling.
  • the transport system 1 includes a plurality of systems (bays).
  • the transport system 1 includes a plurality of intra-bail routes that are travel routes within a bay, and inter-bail routes that are travel routes that connect different bays. Intra bay routes are located along a plurality of device ports 110.
  • the first track 10 includes an intrabay track 11 arranged in a plurality of intrabay routes, and an interbay track 12 arranged in an interbay route.
  • the intrabay track 11 is a track that passes near the storage shelves 30, the semiconductor processing equipment 100, etc., and is set so that the overhead transport vehicle 40 travels one-way clockwise.
  • the interbay track 12 is also set so that the overhead transport vehicle 40 travels one-way clockwise.
  • the ceiling conveyance vehicle 40 may be set so that it may pass in one direction counterclockwise.
  • the second track 20 is a member (traveling path) on which the ceiling transport vehicle 40 travels, and is suspended from the ceiling.
  • the second track 20 includes an intrabay track 21 arranged in a part of a plurality of intrabay routes, and an interbay track 22 arranged in an interbay route.
  • the intrabay track 21 is a track that passes near the storage shelves 30, the semiconductor processing equipment 100, etc., and is set so that the overhead transport vehicle 40 travels one-way clockwise.
  • the interbay track 22 is also set so that the overhead transport vehicle 40 travels one-way clockwise.
  • the ceiling transport vehicle 40 may be set to travel in one direction counterclockwise.
  • the first track 10 and the second track 20 are arranged side by side in the vertical (vertical) direction.
  • the first track 10 is located below the second track 20.
  • the second orbit 20 is located above the first orbit 10.
  • the first trajectory 10 is shown by a broken line
  • the second trajectory 20 is shown by a solid line.
  • each semiconductor processing device 100 are arranged outside Intra-Beirut along the direction in which the first track 10 and the second track 20 extend. There is.
  • Each device port 110 is provided so as to be located on one side and below the first track 10 and second track 20 that are arranged vertically in parallel.
  • the FOUPs 200 transferred from the ceiling transport vehicle 40 are placed on the plurality of device ports 110, and the FOUPs 200 are transferred to the semiconductor processing device 100. Furthermore, when the semiconductor wafers housed in the FOUPs 200 are processed in the semiconductor processing equipment 100, the plurality of device ports 110 transfer the FOUPs 200 from the semiconductor processing equipment 100 and set the FOUPs 200 thereon. Become.
  • the storage shelf 30 is a member that stores the FOUPs 200.
  • a plurality of storage shelves 30 support FOUPs 200.
  • the storage shelf 30 is suspended from the ceiling.
  • the storage shelf 30 may be an OHB (Overhead Buffer).
  • a FOUP 200 can be placed in the area on the storage shelf 30.
  • the area of the storage shelf 30 is a temporary storage area where the ceiling transport vehicle 40 that has stopped on the first track 10 and the second track 20 can transfer the FOUP 200.
  • the plurality of storage shelves 30 are provided on the other side and below the first track 10 and the second track 20, the one in which the plurality of device ports 110 are provided. ing. That is, the plurality of storage shelves 30 are provided on the side facing the plurality of device ports 110 via the first track 10 and the second track 20 when viewed from the vertical direction.
  • the storage shelf 30 is provided inside the loop-shaped intrabeirut.
  • the ceiling transport vehicle 40 is a device that transports the FOUP 200 in areas where it may interfere with passive devices such as the storage shelves 30 and the semiconductor processing equipment 100, and moves along the first track 10 or the second track 20.
  • the overhead transport vehicle 40 includes, for example, a ceiling-suspended crane, an OHT (Overhead Hoist Transfer), and the like.
  • the ceiling transport vehicle 40 includes a grip section 41, a lifting mechanism 42, a moving mechanism 43, a controller 44, and a communication section 45.
  • the gripping unit 41 is a device that grips and releases the FOUP 200.
  • the grip part 41 can grip the flange part 210 of the FOUP 200.
  • the gripping portion 41 grips the flange portion 210 of the FOUP 200 when the ceiling transport vehicle 40 acquires the FOUP 200 from the device port 110 or the storage shelf 30.
  • the grip part 41 releases the flange part 210 of the FOUP 200 when the ceiling transport vehicle 40 places the FOUP 200 on the device port 110 or the storage shelf 30.
  • the lifting mechanism 42 is a device (such as a hoist) that raises and lowers the grip portion 41 in the vertical direction.
  • the elevating mechanism 42 is capable of elevating and lowering the grip portion 41 in the vertical direction.
  • the lifting mechanism 42 includes a winding mechanism 42a and a belt 42b.
  • the hoisting mechanism 42a is held by a moving mechanism 43.
  • the winding mechanism 42a is a device that winds up and unwinds the belt 42b in the vertical direction.
  • the winding mechanism 42a is capable of winding up and down the belt 42b in the vertical direction.
  • the belt 42b is suspended from the winding mechanism 42a.
  • the belt 42b holds the grip portion 41 at its lower end.
  • the elevating mechanism 42 is capable of lifting and lowering the FOUP 200 held by the gripping part 41 a distance sufficient to reach at least the device port 110 and the storage shelf 30.
  • the moving mechanism 43 is a device that moves the grip part 41 and the lifting mechanism 42 along the side of the ceiling transport vehicle. That is, the moving mechanism 43 can move the grip portion 41 and the lifting mechanism 42 from the ceiling carrier 40 in a horizontal direction perpendicular to the traveling direction of the ceiling carrier 40.
  • the moving mechanism 43 is capable of moving the grip portion 41 and the lifting mechanism 42 above the device port 110 and the storage shelf 30, respectively.
  • the moving mechanism 43 can move the FOUP 200 vertically above the device port 110 and the storage shelf 30.
  • Each of the plurality of overhead transport vehicles 40 that has stopped at the same position in the traveling direction on each of the first track 10 and the second track 20 is located to the side and below the first track 10 and the second track 20.
  • the FOUP 200 can be transferred to both the device port 110 and the storage shelf 30.
  • each ceiling carrier 40 can transfer the FOUP 200 to the same device port 110 and the same storage shelf 30. That is, the FOUP 200 can be delivered (transferred) to and from the device port 110 in both the ceiling carrier 40 on the first track 10 and the ceiling carrier 40 on the second track 20.
  • the FOUP 200 can be transferred to and from the storage shelf 30 in both the ceiling transport vehicle 40 on the first track 10 and the ceiling transport vehicle 40 on the second track 20.
  • the ceiling transport vehicle 40 operates the moving mechanism 43 from a state where the grip part 41 grips the flange part 210 of the FOUP 200 directly below the first track 10 and the second track 20 to move the FOUP 200 to the device port 110 and the storage shelf. 30 above each. Subsequently, the ceiling transport vehicle 40 operates the hoisting mechanism 42a to unwind the belt 42b, lowers the FOUP 200, and places it on the device port 110 or the storage shelf 30. As described above, the ceiling transport vehicle 40 transfers (places) the FOUP 200 onto the device port 110 and the storage shelf 30.
  • the ceiling transport vehicle 40 grips the flange portion 210 of the FOUP 200 placed on the device port 110 or the storage shelf 30 with the grip portion 41 . Subsequently, the ceiling conveyance vehicle 40 operates the hoisting mechanism 42a to hoist the belt 42b and raise the FOUP 200. Subsequently, the ceiling transport vehicle 40 operates the moving mechanism 43 to move the FOUP 200 directly below the first track 10 and the second track 20. As described above, the ceiling transport vehicle 40 transfers (acquires) the FOUP 200 from the device port 110 or the storage shelf 30.
  • the controller 44 is a device that controls the operation of the overhead transport vehicle 40.
  • the controller 44 is an electronic control unit including, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory).
  • the controller 44 communicates with the target semiconductor processing device 100 in response to commands from the control device, and controls the traveling of the ceiling transport vehicle 40, the operation of the gripping section 41, the operation of the lifting mechanism 42, the operation of the moving mechanism 43, etc. Control.
  • the communication unit 45 is a device that can communicate with the control device, the semiconductor processing device 100, etc., and is arranged at a predetermined position of the overhead transport vehicle 40.
  • FIG. 3 is a schematic diagram showing communication between the overhead transport vehicle and the semiconductor processing equipment.
  • the semiconductor processing apparatus 100 includes a communication section 101 capable of communicating with the transport system 1, and a controller 102 connected to the communication section 101.
  • the controller 44 and the communication section 45 transmit and receive data to and from each other.
  • the communication unit 101 and the controller 102 also transmit and receive data to and from each other.
  • the communication unit 45 transmits and receives signals to and from the semiconductor processing device 100 via wireless communication.
  • the communication section 45 of the overhead transport vehicle 40 and the communication section 101 of the semiconductor processing apparatus 100 communicate with each other wirelessly.
  • the wireless communication between the overhead transport vehicle 40 and the semiconductor processing device 100 is, for example, the transmission and reception of wireless signals performed when the FOUP 200 is transferred.
  • the transfer of the FOUP 200 includes both the transfer of the FOUP 200 from the overhead carrier 40 to the semiconductor processing equipment 100 and the transfer of the FOUP 200 from the semiconductor processing equipment 100 to the ceiling carrier 40.
  • the wireless signals transmitted and received by the communication units 45 and 101 limit the operation of the semiconductor processing device 100 (in particular, the operation of the device port 110), for example.
  • the interlock signal is, for example, a signal (E84 signal) exchanged according to a procedure defined by E84 of the international standard for semiconductor manufacturing equipment (SEMI standard: Semiconductor Equipment and Materials International standards).
  • E84 signal the international standard for semiconductor manufacturing equipment
  • SEMI standard Semiconductor Equipment and Materials International standards.
  • the wireless communication between the overhead transport vehicle 40 and the semiconductor processing device 100 is, for example, ANT communication using frequencies in the 2.4 GHz band and 5.8 GHz band, but is not limited thereto.
  • the signal that the semiconductor processing device 100 transmits to the ceiling transport vehicle 40 changes, and the ceiling transport vehicle 40 receives the changed signal via the communication unit 45.
  • a signal transmitted from the semiconductor processing device 100 to the ceiling transport vehicle 40 will be referred to as an output signal
  • a signal input from the semiconductor processing device 100 to the ceiling transport vehicle 40 will be referred to as an input signal.
  • the communication unit 101 and the communication unit 45 constantly transmit and receive received signal strengths to and from each other in addition to the E84 signal.
  • the received signal strength is an index that can confirm the state of the communication environment.
  • a timeout abnormality occurs due to, for example, a communication abnormality, a device abnormality, or the like.
  • a communication abnormality occurs, for example, due to a communication failure (an abnormality in the communication environment) due to interference from signals generated from other devices.
  • the received signal strength at the time of communication abnormality is considered to be 0.
  • the device abnormality occurs due to, for example, a failure of the semiconductor processing device 100.
  • the overhead transport vehicle 40 includes a counter 46 and an output section 47 in addition to a controller 44 and a communication section 45.
  • the counter 46 and the output section 47 may be part of the controller 44.
  • the counter 46 starts counting (generates a counter value) from the timing when a communication abnormality occurs during wireless communication between the overhead transport vehicle 40 and the semiconductor processing device 100.
  • the value counted according to the elapsed time corresponds to the counter value.
  • the counter value may be a value that changes according to a predetermined rule according to the elapsed time.
  • the counter value is the elapsed time itself.
  • the counter 46 resets the counter value when the communication abnormality is resolved after the counter value is generated (that is, when the received signal strength indicates a value other than 0). Thereby, the counter value indicates the period during which the communication is in the latest abnormal state. In addition, the operator can easily identify the time at which the abnormal communication state occurred from the output counter value. Note that the counter 46 always resets the counter value when reception is possible (for example, when the communication state is normal and the overhead transport vehicle 40 is able to receive the wireless signal from the semiconductor processing device 100).
  • the output unit 47 outputs the counter value generated by the counter 46 to the controller 44 or the like when a timeout abnormality occurs.
  • a timeout abnormality is defined as a state in which the overhead transport vehicle 40 is unable to recognize a change in the output signal of the semiconductor processing device 100 within a predetermined period.
  • a state in which the overhead transport vehicle 40 cannot recognize a change in the output signal of the semiconductor processing device 100 corresponds to a state in which the input signal does not change.
  • the output unit 47 outputs the counter value only when a timeout abnormality occurs. As a result, for example, when the overhead transport vehicle 40 and the semiconductor processing device 100 are not exchanging E84 signals, the output unit 47 will not output the counter value even if the counter value is generated.
  • FIGS. 4A and 4B and FIGS. 5A and 5B an example ( Normal cases) will be explained.
  • (a), (b) of FIG. 4 and (a), (b) of FIG. 5 are timing charts for explaining a normal example of wireless communication between the overhead transport vehicle 40 and the semiconductor processing device 100. .
  • (b) of FIG. 4 and (a), (b) of FIG. 5 are timing charts for explaining a normal example of wireless communication between the overhead transport vehicle 40 and the semiconductor processing device 100. .
  • timing T0 indicates the start timing of the timeout determination period
  • timing T1 indicates the end timing of the timeout determination period
  • timing Each of Ts, Ts 1 and Ts 2 indicates the timing at which a communication abnormality occurs
  • the timing Te indicates the end timing of the communication abnormality
  • the broken line arrow indicates a normal communication state
  • the area surrounded by the broken line indicates a communication abnormality state.
  • the initial value of the output signal is the value PL
  • the initial value of the input signal is the value CL.
  • the value PL of the output signal changes to the value PH at timing Tp between timing T0 and timing T1.
  • This change from value PL to value PH is performed, for example, by the controller 102 of the semiconductor processing apparatus 100. Further, the change of the input signal from the value CL to the value CH is performed by receiving the output signal having the value PH. Therefore, unless the ceiling transport vehicle 40 receives an output signal having the value PH, the input signal is not updated.
  • wireless communication between the overhead transport vehicle 40 and the semiconductor processing device 100 is performed normally throughout the timeout determination period.
  • the input signal normally changes from the value CL to the value CH in response to the change of the output signal from the value PL to the value PH.
  • the controller 44 determines that no timeout abnormality has occurred.
  • the normal communication state continues at least from timing T0 to timing Tp. Furthermore, a communication abnormality occurs after timing Tp and before timing T1.
  • the input signal changes from the value CL to the value CH in response to the change of the output signal from the value PL to the value PH, and the input signal changes normally.
  • the controller 44 determines that no timeout abnormality has occurred.
  • the counter 46 generates a counter value from timing Ts after timing Tp.
  • the output unit 47 does not output the counter value. Note that even after timing T1 has passed, the counter 46 may continue counting while the communication abnormality continues.
  • an abnormal communication state occurs between timing T0 and timing Tp.
  • the communication abnormal state continues until timing Te between timing Tp and timing T0.
  • the normal communication state continues from timing Te to timing T1.
  • the input signal does not change from timing Tp to timing Te.
  • the controller 44 determines that no timeout abnormality has occurred.
  • the counter value is generated by the counter 46 between timing Tp and timing Te, but the counter value is reset at timing Te.
  • the counter value may be reset between timing Te and timing T1.
  • a communication abnormality occurs from timing Ts1 , which is between timing T0 and timing Tp. Further, the communication abnormal state continues until timing Te between timing Tp and timing T0. In addition, another abnormal communication state occurs from timing Ts2 to timing T1, which is later than timing Te. In this case, similarly to the third normal example, the input signal is not updated at timing Tp. However, in a normal communication state existing between timing Te and timing Ts2 , an output signal indicating the value PH is received by the overhead carrier 40. This causes the input signal to change normally. Then, similarly to the first to third normal examples, the controller 44 determines that no time-out abnormality has occurred.
  • the counter value is generated by the counter 46 between timing Ts 1 and timing Te, but the counter value is reset at timing Te. However, from timing Ts2 , a new counter value is generated by the counter 46. However, in the fourth normal example, it is determined that no time-out abnormality occurs, so no new counter value is output. Note that generation of the new counter value by the counter 46 may be continued until the communication abnormality that occurred at timing Ts2 is resolved.
  • FIGS. 6A and 6B and FIGS. 7A and 7B an example of when the overhead transport vehicle 40 and the semiconductor processing equipment 100 cannot communicate normally (Abnormal example) will be explained.
  • (a), (b) of FIG. 6 and (a), (b) of FIG. 7 are timing charts for explaining an abnormal example of wireless communication between the overhead transport vehicle 40 and the semiconductor processing device 100. .
  • the counter value of the counter 46 does not change from 0.
  • the value of the output signal remains PL from timing T0 to timing T1. Therefore, the input signal does not indicate the value CH by timing T1, and the controller 44 determines that a timeout abnormality has occurred.
  • the output unit 47 outputs a counter value of 0. For example, the controller 44 outputs the counter value as log information.
  • the communication is in an abnormal state throughout the timeout determination period.
  • the counter 46 generates a counter value from the time when reception is no longer performed until reception is performed again.
  • the value of the output signal changes to the value PH at timing Tp, but the value of the input signal remains at the value CL from timing T0 to timing T1. Therefore, similarly to the first abnormality example, the controller 44 determines that a timeout abnormality has occurred.
  • the output unit 47 outputs the counter value at timing T1.
  • the minimum counter value assumed in the second abnormal example corresponds to the elapsed time from timing T0 to timing T1. If the communication abnormality occurs before timing T0, the counter value is larger than the elapsed time from timing T0 to timing T1. Even when both a device abnormality and a communication abnormality occur, generation of the counter value starts from the time when the communication abnormality occurs.
  • the communication abnormal state continues from before timing Tp until timing T1.
  • the counter 46 generates a counter value from timing Ts between timing T0 and timing Tp.
  • the value of the input signal remains at the value CL from timing T0 to timing T1. Therefore, similarly to the first abnormal example and the second abnormal example, the controller 44 determines that a timeout abnormality has occurred.
  • the output unit 47 outputs the counter value at timing T1.
  • the counter value output in the third abnormal example corresponds to the elapsed time from timing Ts to timing T1. Note that even when a device abnormality occurs after timing Ts, the output counter value corresponds to the elapsed time from the time when the communication abnormality occurs (timing Ts) to timing T1.
  • a plurality of communication abnormal states occur intermittently between timing T0 and timing T1.
  • the first abnormal communication state continues from timing Ts 1 to timing Te
  • the second abnormal communication state continues from timing Ts 2 after timing Te to timing T1.
  • the counter value generated by the counter 46 in the first abnormal communication state is reset at timing Te.
  • the counter 46 generates a new counter value from timing Ts2 .
  • the value of the input signal remains at the value CL from timing T0 to timing T1, similarly to the first to third abnormal examples. Therefore, similarly to the first to third abnormal examples, the controller 44 determines that a timeout abnormality has occurred.
  • the output unit 47 outputs the new counter value at timing T1.
  • the counter value output in the fourth abnormality example corresponds to, for example, the elapsed time from timing Ts2 to timing T1.
  • the counter value output when a timeout abnormality occurs in each abnormality example can be used as an index for estimating the cause of the timeout abnormality. For example, if the counter value output by the output unit 47 is 0 (i.e., in the case of the first abnormality), the worker can determine that there is no problem in the communication environment between the overhead transport vehicle 40 and the semiconductor processing device 100. can be easily understood. Thereby, the operator can infer that the timeout abnormality has occurred due to a device abnormality.
  • the operator can determine the cause of the timeout abnormality by checking the output counter value. can be estimated. For example, by checking the output counter value, the operator can easily estimate whether a normal communication state existed between timing T0 and timing T1. Based on such estimation, the operator can estimate whether the cause or main cause of the timeout abnormality in each of the second to fourth abnormal cases is a communication abnormality or a device abnormality.
  • the operator determines the length of the timeout determination period (from timing T0 to timing T1), the output counter value, and the signal state of the overhead carrier 40 at the time the timeout abnormality occurs. (value CL, value CH). Note that although the timing Tp is illustrated for convenience in FIGS. 6 and 7, the timing Tp cannot be grasped by the operator.
  • the output counter value is 0 (first abnormality example)
  • the operator can estimate that no communication abnormality has occurred and that a device abnormality has occurred.
  • the output counter value is greater than or equal to the timeout judgment period (second abnormality example)
  • the worker is informed that a communication error has always occurred during the timeout judgment period, or that a communication error has occurred before the timeout judgment started. can be estimated.
  • the output counter value is smaller than the timeout judgment time (third abnormality example, fourth abnormality example)
  • the length of the period during which the communication abnormality occurred can be determined from the size of the output counter value, and the device The degree of possibility of an abnormality can be estimated.
  • the operator can check whether the cause of the timeout abnormality is a communication abnormality or not by simply checking the counter value output from the output unit 47. It becomes possible to estimate whether there is a device abnormality. Therefore, according to the transport system 1, it is possible to support determination of the cause of occurrence of the timeout abnormality.
  • the wireless communication between the overhead transport vehicle 40 and the semiconductor processing equipment 100 is E84 signal wireless communication specified by the international standard for semiconductor manufacturing equipment, and the output unit 47 detects a timeout error of the E84 signal.
  • the counter value may be output only when it occurs. In this case, generation and output of counter values during unnecessary periods can be prevented. Thereby, it is possible to reliably output a counter value useful for determining the cause of occurrence of a timeout abnormality.
  • a transport system that transports articles to a passive device and includes a transport vehicle having a communication unit that wirelessly communicates with the passive device,
  • the transport vehicle is a counter that generates a counter value according to the elapsed time from the timing when reception became impossible due to a communication failure during wireless communication with the passive device; an output unit that outputs the counter value when a timeout abnormality occurs in the guided vehicle; the counter always resets the counter value when reception is possible;
  • Conveyance system Conveyance system.
  • the wireless communication between the transport vehicle and the passive device is E84 signal wireless communication specified in the international standard for semiconductor manufacturing equipment, The conveyance system according to [1], wherein the output unit outputs the counter value only when a timeout abnormality due to the E84 signal occurs.
  • the conveyance system according to [1] or [2], wherein the counter value is the elapsed time itself.
  • the timeout abnormality occurs when the transport vehicle fails to recognize a change in the output signal of the passive device within a predetermined period. .
  • the transport system is installed in a semiconductor processing factory, but the system is not limited thereto, and may be installed in other facilities.
  • a processing device that performs some kind of processing on articles is installed in another facility as a passive device.
  • the interlock signal is not limited to the E84 signal. Therefore, in the above embodiments, the passive device is a semiconductor processing device, but is not limited thereto.
  • the first track and the second track are arranged side by side in the vertical (vertical) direction, but the invention is not limited thereto.
  • the overhead carrier may have only one track, or three or more tracks may be arranged side by side. Further, only a portion of the plurality of tracks may be arranged to overlap in the vertical (vertical) direction, or a plurality of tracks with different heights do not need to overlap in the vertical (vertical) direction.
  • the plurality of storage shelves are provided on the side facing the plurality of device ports via the first track and the second track when viewed from the vertical direction, but the invention is not limited thereto.
  • the processing port and the storage shelf may be located on the same side of the track. Further, the storage shelf may be provided inside the loop-shaped intrabeirut, or may be provided outside.
  • the transport vehicle is an overhead transport vehicle that runs on a track laid on the ceiling of a semiconductor processing factory, but the present invention is not limited to this.
  • the transport vehicle may be a transport vehicle that travels on a track laid on the floor surface, or it may be a transport vehicle that travels directly on the floor surface.
  • SYMBOLS 1 ...Transportation system, 10...First track, 20...Second track, 30...Storage shelf, 40...Ceiling carrier, 41...Gripping part, 42...Elevating mechanism, 43...Movement mechanism, 44...Controller, 45...Communication Department, 100...Semiconductor processing device, 101...Communication department, 102...Controller, 110...Device port, 200...FOUP (article).

Abstract

This conveyance system comprises a conveyance vehicle that conveys articles with respect to a passive apparatus and that has a communication unit which communicates wirelessly with the passive apparatus. The conveyance vehicle has a counter that generates a counter value according to the amount of time passed since a time at which reception became impossible due to a communication failure during wireless communication with the passive apparatus, and an output unit that outputs the counter value when a time-out malfunction has occurred in the conveyance vehicle. When reception is possible, the counter perpetually resets the counter value.

Description

搬送システムConveyance system
 本開示は、搬送システムに関する。 The present disclosure relates to a conveyance system.
 半導体製造工場などにおいては、被製造物を半導体製造装置などに自動搬送するための搬送装置を有する搬送システムが用いられる。このような搬送システムでは、被製造物を搬送する搬送装置と、半導体製造装置等との間で信号のやり取りが実施される。この信号のやり取りが所定期間正常に実施されない場合、タイムアウト異常が発生する。例えば、下記特許文献1には、エラー発生原因を解析するためのデータを蓄積できる、製造装置と接続される通信デバイスが開示される。この通信デバイスでは、通信部で受信された所定のパケットデータが送信された時刻とIOモニタ部で所定のポート状態が検知された時刻とを含む時間データが記憶部に蓄積される。この時間データを用いることによって、搬送制御の修正の要否が判断される。 In semiconductor manufacturing factories and the like, a transport system having a transport device for automatically transporting manufactured objects to semiconductor manufacturing equipment and the like is used. In such a transport system, signals are exchanged between a transport device that transports a product to be manufactured, and a semiconductor manufacturing device or the like. If this signal exchange is not performed normally for a predetermined period of time, a timeout error occurs. For example, Patent Document 1 listed below discloses a communication device connected to manufacturing equipment that can store data for analyzing the cause of error occurrence. In this communication device, time data including the time when predetermined packet data received by the communication section was transmitted and the time when the predetermined port state was detected by the IO monitor section is accumulated in the storage section. By using this time data, it is determined whether or not the transport control needs to be corrected.
特開2016-118845号公報Japanese Patent Application Publication No. 2016-118845
 上記特許文献1に示されるような時間データだけでは、被製造物を搬送する搬送装置と、半導体製造装置等との信号のやり取りでタイムアウト異常が発生した場合、当該タイムアウト異常の発生原因が通信環境にあるのか、半導体製造装置等による信号の発信にあるのかを判別することが困難であった。 If a timeout error occurs in signal exchange between a transport device that transports a workpiece and semiconductor manufacturing equipment, etc., it is not possible to use only the time data as shown in Patent Document 1 above. It has been difficult to determine whether the problem is caused by the transmission of signals by semiconductor manufacturing equipment or the like.
 本開示の一側面に係る目的は、タイムアウト異常の発生原因の判別を支援可能な搬送システムの提供である。 An object of one aspect of the present disclosure is to provide a transport system that can support determination of the cause of a timeout abnormality.
 本開示の一側面に係る搬送システムは、パッシブ装置に対して物品を搬送し、パッシブ装置と無線通信する通信部を有する搬送車を備える搬送システムであって、搬送車は、パッシブ装置との無線通信中、通信障害によって受信できなくなったタイミングからの経過時間に応じたカウンタ値を生成するカウンタと、搬送車においてタイムアウト異常が発生したとき、カウンタ値を出力する出力部と、を有し、カウンタは、受信が可能なとき、カウンタ値を常にリセットする。 A conveyance system according to one aspect of the present disclosure is a conveyance system that conveys an article to a passive device and includes a conveyance vehicle having a communication unit that wirelessly communicates with the passive device, wherein the conveyance vehicle wirelessly communicates with the passive device. The counter has a counter that generates a counter value according to the elapsed time from the timing when reception is no longer possible due to a communication failure during communication, and an output section that outputs the counter value when a timeout abnormality occurs in the guided vehicle. always resets the counter value when reception is possible.
 本開示の一側面に係る搬送システムでは、作業者は、出力部から出力されるカウンタ値を確認する(すなわち、カウンタ値がリセットされているか否かを確認する)だけで、当該タイムアウト異常の原因が、通信異常であるか、パッシブ装置の異常であるかを推定可能になる。搬送車のタイムアウト異常が発生した時点でカウンタ値が0の場合、作業者は無線通信が正常に行われていたことが把握でき、したがってタイムアウト異常の原因はパッシブ装置にあると推定できる。一方、搬送車のタイムアウト異常が発生した時点で一定以上のカウンタ値が出力された場合、作業者は一定期間無線通信が行われていないことがわかる。したがってタイムアウト異常の原因は通信障害であることが推定できる。このような上記カウンタ値を生成及び出力可能な搬送システムによれば、タイムアウト異常の発生原因の判別を支援可能である。 In the conveyance system according to one aspect of the present disclosure, the operator can check the cause of the timeout abnormality by simply checking the counter value output from the output unit (that is, checking whether the counter value has been reset). It becomes possible to estimate whether it is a communication abnormality or a passive device abnormality. If the counter value is 0 at the time when the timeout abnormality occurs in the transport vehicle, the operator can understand that wireless communication was being performed normally, and it can therefore be assumed that the cause of the timeout abnormality is in the passive device. On the other hand, if a counter value equal to or higher than a certain value is output at the time when a timeout abnormality occurs in the transport vehicle, the operator can know that wireless communication has not been performed for a certain period of time. Therefore, it can be inferred that the cause of the timeout abnormality is a communication failure. According to such a transport system that can generate and output the above-mentioned counter value, it is possible to support determination of the cause of occurrence of a timeout abnormality.
 搬送車とパッシブ装置との無線通信は、半導体製造装置に関する国際規格にて規定されるE84信号の無線通信であり、出力部は、E84信号によるタイムアウト異常が発生したときのみ、カウンタ値を出力してもよい。この場合、不必要な期間におけるカウンタ値の生成及び出力を防止できる。これにより、タイムアウト異常の発生原因の判別に有用なカウンタ値を確実に出力できる。 The wireless communication between the guided vehicle and the passive device is E84 signal wireless communication specified by the international standard for semiconductor manufacturing equipment, and the output section outputs the counter value only when a timeout error occurs due to the E84 signal. It's okay. In this case, generation and output of counter values during unnecessary periods can be prevented. Thereby, it is possible to reliably output a counter value useful for determining the cause of occurrence of a timeout abnormality.
 本開示の一側面によれば、タイムアウト異常の発生原因の判別を支援可能な搬送システムを提供できる。 According to one aspect of the present disclosure, it is possible to provide a transport system that can support determination of the cause of occurrence of a timeout abnormality.
図1は、実施形態に係る搬送システムの平面図である。FIG. 1 is a plan view of a conveyance system according to an embodiment. 図2は、搬送システムの一部の正面図である。FIG. 2 is a front view of a portion of the transport system. 図3は、天井搬送車と半導体処理装置との通信を示す模式図である。FIG. 3 is a schematic diagram showing communication between the overhead transport vehicle and the semiconductor processing equipment. 図4の(a),(b)のそれぞれは、天井搬送車と半導体処理装置との無線通信の正常例を説明するためのタイミングチャートである。Each of FIGS. 4A and 4B is a timing chart for explaining a normal example of wireless communication between the overhead transport vehicle and the semiconductor processing device. 図5の(a),(b)のそれぞれは、天井搬送車と半導体処理装置との無線通信の正常例を説明するためのタイミングチャートである。Each of FIGS. 5A and 5B is a timing chart for explaining a normal example of wireless communication between the overhead transport vehicle and the semiconductor processing device. 図6の(a),(b)のそれぞれは、天井搬送車と半導体処理装置との無線通信の異常例を説明するためのタイミングチャートである。Each of FIGS. 6A and 6B is a timing chart for explaining an abnormal example of wireless communication between the overhead transport vehicle and the semiconductor processing device. 図7の(a),(b)のそれぞれは、天井搬送車と半導体処理装置との無線通信の異常例を説明するためのタイミングチャートである。Each of FIGS. 7A and 7B is a timing chart for explaining an abnormal example of wireless communication between the overhead transport vehicle and the semiconductor processing device.
 以下、添付図面を参照して、本開示の一側面に係る実施形態について詳細に説明する。なお、図面の説明において同一又は相当要素には同一符号を付し、重複する説明は省略する。 Hereinafter, embodiments according to one aspect of the present disclosure will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same or equivalent elements are given the same reference numerals, and redundant description will be omitted.
 まず、図1及び図2を参照しながら、本実施形態に係る搬送システムを説明する。図1は、本実施形態に係る搬送システムの平面図である。図2は、搬送システムの一部の正面図である。図1に示されるように、搬送システム1は、例えば、パッシブ装置の1つである半導体処理装置100を備える半導体製造工場に設置され、FOUP(被搬送物)200などの物品を搬送するためのシステムである。FOUP200は、半導体ウェハを格納する容器(FOUP:Front Opening Unified Pod)である。半導体処理装置100は、上記半導体ウェハ用の処理装置(例えば、洗浄装置、エッチング装置、成膜装置など)であり、FOUP200を搬出入するための装置ポート110を備える。 First, the conveyance system according to this embodiment will be explained with reference to FIGS. 1 and 2. FIG. 1 is a plan view of a conveyance system according to this embodiment. FIG. 2 is a front view of a portion of the transport system. As shown in FIG. 1, a transport system 1 is installed, for example, in a semiconductor manufacturing factory equipped with a semiconductor processing device 100, which is one of passive devices, and is used for transporting articles such as FOUPs (objects to be transported) 200. It is a system. The FOUP 200 is a container (FOUP: Front Opening Unified Pod) that stores semiconductor wafers. The semiconductor processing apparatus 100 is a processing apparatus for the semiconductor wafers (for example, a cleaning apparatus, an etching apparatus, a film forming apparatus, etc.), and includes an apparatus port 110 for loading and unloading the FOUP 200.
 図1及び図2に示されるように、搬送システム1は、第1軌道10と、第2軌道20と、保管棚30と、複数の天井搬送車40(搬送車)とを備える。搬送システム1では、例えば、第1軌道10もしくは第2軌道20に沿って移動する天井搬送車40によって、半導体処理装置100の装置ポート110にFOUP200が移載される。図示しないが、搬送システム1は、例えば、制御装置としてHOSTとMCS(Material Control System)とをさらに備える。HOST及びMCSのそれぞれは、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)等によって構成された電子制御ユニットである。HOSTは、上位コントローラである。HOSTは、MES(Manufacturing Execution System)であり得る。HOSTは、搬送指令、走行指令などの各種指令を含む信号(以下、単に「指令」と称する)をMCSに出力する。MCSは、HOSTから指令を取得すると、搬送車コントローラを介して指令を所定のタイミングで天井搬送車40などに出力する。 As shown in FIGS. 1 and 2, the transport system 1 includes a first track 10, a second track 20, a storage shelf 30, and a plurality of ceiling transport vehicles 40 (transport vehicles). In the transfer system 1, the FOUP 200 is transferred to the device port 110 of the semiconductor processing device 100 by the overhead carrier 40 that moves along the first track 10 or the second track 20, for example. Although not shown, the transport system 1 further includes, for example, a HOST and an MCS (Material Control System) as control devices. Each of the HOST and MCS is an electronic control unit configured with, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory). HOST is a higher level controller. HOST may be an MES (Manufacturing Execution System). The HOST outputs a signal (hereinafter simply referred to as a "command") including various commands such as a transport command and a travel command to the MCS. Upon acquiring the command from the HOST, the MCS outputs the command to the ceiling transport vehicle 40 or the like at a predetermined timing via the transport vehicle controller.
 第1軌道10は、天井搬送車40を走行させる部材(走行路)であり、天井から吊り下げられている。本実施形態では、搬送システム1は、複数の系統(ベイ)を構成している。搬送システム1は、ベイ内の走行路である複数のイントラベイルートと、異なるベイ間を接続する走行路であるインターベイルートと、を含む。イントラベイルートは、複数の装置ポート110に沿って配置されている。第1軌道10は、複数のイントラベイルートに配置されるイントラベイ軌道11と、インターベイルートに配置されるインターベイ軌道12と、を含む。イントラベイ軌道11は、保管棚30、半導体処理装置100等の近傍を通過する軌道であり、天井搬送車40が右回りに一方通行するように設定されている。インターベイ軌道12も、イントラベイ軌道11と同様に、天井搬送車40が右回りに一方通行するように設定されている。なお、第1軌道10において、天井搬送車40が左回りに一方通行するように設定されていてもよい。 The first track 10 is a member (traveling path) on which the ceiling transport vehicle 40 travels, and is suspended from the ceiling. In this embodiment, the transport system 1 includes a plurality of systems (bays). The transport system 1 includes a plurality of intra-bail routes that are travel routes within a bay, and inter-bail routes that are travel routes that connect different bays. Intra bay routes are located along a plurality of device ports 110. The first track 10 includes an intrabay track 11 arranged in a plurality of intrabay routes, and an interbay track 12 arranged in an interbay route. The intrabay track 11 is a track that passes near the storage shelves 30, the semiconductor processing equipment 100, etc., and is set so that the overhead transport vehicle 40 travels one-way clockwise. Similarly to the intrabay track 11, the interbay track 12 is also set so that the overhead transport vehicle 40 travels one-way clockwise. In addition, in the 1st track|orbit 10, the ceiling conveyance vehicle 40 may be set so that it may pass in one direction counterclockwise.
 第2軌道20は、天井搬送車40を走行させる部材(走行路)であり、天井から吊り下げられている。第2軌道20は、複数のイントラベイルートのうちの一部に配置されているイントラベイ軌道21と、インターベイルートに配置されるインターベイ軌道22と、を含む。イントラベイ軌道21は、保管棚30、半導体処理装置100等の近傍を通過する軌道であり、天井搬送車40が右回りに一方通行するように設定されている。インターベイ軌道22も、イントラベイ軌道21と同様に、天井搬送車40が右回りに一方通行するように設定されている。なお、第2軌道20において、天井搬送車40が左回りに一方通行するように設定されていてもよい。 The second track 20 is a member (traveling path) on which the ceiling transport vehicle 40 travels, and is suspended from the ceiling. The second track 20 includes an intrabay track 21 arranged in a part of a plurality of intrabay routes, and an interbay track 22 arranged in an interbay route. The intrabay track 21 is a track that passes near the storage shelves 30, the semiconductor processing equipment 100, etc., and is set so that the overhead transport vehicle 40 travels one-way clockwise. Like the intrabay track 21, the interbay track 22 is also set so that the overhead transport vehicle 40 travels one-way clockwise. In addition, in the second track 20, the ceiling transport vehicle 40 may be set to travel in one direction counterclockwise.
 図2に示されるように、第1軌道10と第2軌道20とは、上下(鉛直)方向において並んで配置されている。第1軌道10は、第2軌道20の下方に位置している。言い換えれば、第2軌道20は、第1軌道10の上方に位置している。図1では、第1軌道10を破線で示し、第2軌道20を実線で示している。 As shown in FIG. 2, the first track 10 and the second track 20 are arranged side by side in the vertical (vertical) direction. The first track 10 is located below the second track 20. In other words, the second orbit 20 is located above the first orbit 10. In FIG. 1, the first trajectory 10 is shown by a broken line, and the second trajectory 20 is shown by a solid line.
 図1に示されるように、搬送システム1では、各半導体処理装置100の装置ポート110は、イントラベイルートの外側において、第1軌道10及び第2軌道20が延在する方向に沿って配置されている。各装置ポート110は、上下に並設された第1軌道10及び第2軌道20の一方の側方且つ下方に位置するように設けられている。 As shown in FIG. 1, in the transport system 1, the device ports 110 of each semiconductor processing device 100 are arranged outside Intra-Beirut along the direction in which the first track 10 and the second track 20 extend. There is. Each device port 110 is provided so as to be located on one side and below the first track 10 and second track 20 that are arranged vertically in parallel.
 複数の装置ポート110は、その上に天井搬送車40から移載されたFOUP200が載置され、FOUP200を半導体処理装置100に移載する。また、複数の装置ポート110は、FOUP200に収容された半導体ウェハが半導体処理装置100にて処理されると、FOUP200を半導体処理装置100から移載し、その上にFOUP200が載置された状態となる。 The FOUPs 200 transferred from the ceiling transport vehicle 40 are placed on the plurality of device ports 110, and the FOUPs 200 are transferred to the semiconductor processing device 100. Furthermore, when the semiconductor wafers housed in the FOUPs 200 are processed in the semiconductor processing equipment 100, the plurality of device ports 110 transfer the FOUPs 200 from the semiconductor processing equipment 100 and set the FOUPs 200 thereon. Become.
 保管棚30は、FOUP200を保管する部材でありる。複数の保管棚30は、FOUP200を支持する。保管棚30は、例えば、天井から吊り下げられている。保管棚30は、OHB(Overhead Buffer)であり得る。保管棚30上の領域は、FOUP200を載置可能である。保管棚30の当該領域は、第1軌道10及び第2軌道20において停止した天井搬送車40がFOUP200を移載可能な一時保管領域である。 The storage shelf 30 is a member that stores the FOUPs 200. A plurality of storage shelves 30 support FOUPs 200. For example, the storage shelf 30 is suspended from the ceiling. The storage shelf 30 may be an OHB (Overhead Buffer). A FOUP 200 can be placed in the area on the storage shelf 30. The area of the storage shelf 30 is a temporary storage area where the ceiling transport vehicle 40 that has stopped on the first track 10 and the second track 20 can transfer the FOUP 200.
 図2に示されるように、複数の保管棚30は、第1軌道10及び第2軌道20に対して、複数の装置ポート110が設けられている一方とは他方の側方且つ下方に設けられている。すなわち、複数の保管棚30は、鉛直方向から見た場合に、第1軌道10及び第2軌道20を介して複数の装置ポート110と対向する側方に設けられている。保管棚30は、ループ状を呈するイントラベイルートの内側に設けられている。 As shown in FIG. 2, the plurality of storage shelves 30 are provided on the other side and below the first track 10 and the second track 20, the one in which the plurality of device ports 110 are provided. ing. That is, the plurality of storage shelves 30 are provided on the side facing the plurality of device ports 110 via the first track 10 and the second track 20 when viewed from the vertical direction. The storage shelf 30 is provided inside the loop-shaped intrabeirut.
 天井搬送車40は、保管棚30、半導体処理装置100などのパッシブ装置に干渉し得るエリアでFOUP200を搬送する装置であり、第1軌道10もしくは第2軌道20に沿って移動する。天井搬送車40は、例えば、天井吊り下げ式のクレーン、OHT(Overhead Hoist Transfer)等を含む。天井搬送車40は、把持部41と、昇降機構42と、移動機構43と、コントローラ44と、通信部45とを有している。 The ceiling transport vehicle 40 is a device that transports the FOUP 200 in areas where it may interfere with passive devices such as the storage shelves 30 and the semiconductor processing equipment 100, and moves along the first track 10 or the second track 20. The overhead transport vehicle 40 includes, for example, a ceiling-suspended crane, an OHT (Overhead Hoist Transfer), and the like. The ceiling transport vehicle 40 includes a grip section 41, a lifting mechanism 42, a moving mechanism 43, a controller 44, and a communication section 45.
 把持部41は、FOUP200を把持及び解放する装置である。把持部41は、FOUP200のフランジ部210を把持可能である。把持部41は、天井搬送車40が装置ポート110もしくは保管棚30からFOUP200を取得する際に、FOUP200のフランジ部210を把持する。把持部41は、天井搬送車40が装置ポート110もしくは保管棚30へFOUP200を載置する際に、FOUP200のフランジ部210を解放する。 The gripping unit 41 is a device that grips and releases the FOUP 200. The grip part 41 can grip the flange part 210 of the FOUP 200. The gripping portion 41 grips the flange portion 210 of the FOUP 200 when the ceiling transport vehicle 40 acquires the FOUP 200 from the device port 110 or the storage shelf 30. The grip part 41 releases the flange part 210 of the FOUP 200 when the ceiling transport vehicle 40 places the FOUP 200 on the device port 110 or the storage shelf 30.
 昇降機構42は、把持部41を鉛直方向に昇降させる装置(ホイストなど)である。昇降機構42は、把持部41を鉛直方向に昇降可能である。昇降機構42は、巻上機構42aと、ベルト42bと、を有している。巻上機構42aは、移動機構43によって保持されている。巻上機構42aは、ベルト42bを鉛直方向に巻上げ及び巻下ろす装置である。巻上機構42aは、ベルト42bを鉛直方向に巻上げ及び巻下ろし可能である。ベルト42bは、巻上機構42aから垂下される。ベルト42bは、その下端にて把持部41を保持している。昇降機構42は、把持部41によって把持されたFOUP200が少なくとも装置ポート110及び保管棚30に達するだけの距離を巻上げ及び巻下ろし可能である。 The lifting mechanism 42 is a device (such as a hoist) that raises and lowers the grip portion 41 in the vertical direction. The elevating mechanism 42 is capable of elevating and lowering the grip portion 41 in the vertical direction. The lifting mechanism 42 includes a winding mechanism 42a and a belt 42b. The hoisting mechanism 42a is held by a moving mechanism 43. The winding mechanism 42a is a device that winds up and unwinds the belt 42b in the vertical direction. The winding mechanism 42a is capable of winding up and down the belt 42b in the vertical direction. The belt 42b is suspended from the winding mechanism 42a. The belt 42b holds the grip portion 41 at its lower end. The elevating mechanism 42 is capable of lifting and lowering the FOUP 200 held by the gripping part 41 a distance sufficient to reach at least the device port 110 and the storage shelf 30.
 移動機構43は、天井搬送車の側方に沿って把持部41及び昇降機構42を移動させる装置である。すなわち、移動機構43は、天井搬送車40から、天井搬送車40の進行方向に対し垂直な水平方向に対して把持部41及び昇降機構42を移動可能である。移動機構43は、把持部41及び昇降機構42を、装置ポート110及び保管棚30のそれぞれの上方に移動可能である。把持部41によってFOUP200が把持されている場合、移動機構43は、当該FOUP200を装置ポート110及び保管棚30の鉛直方向上方に対して移動可能である。 The moving mechanism 43 is a device that moves the grip part 41 and the lifting mechanism 42 along the side of the ceiling transport vehicle. That is, the moving mechanism 43 can move the grip portion 41 and the lifting mechanism 42 from the ceiling carrier 40 in a horizontal direction perpendicular to the traveling direction of the ceiling carrier 40. The moving mechanism 43 is capable of moving the grip portion 41 and the lifting mechanism 42 above the device port 110 and the storage shelf 30, respectively. When the FOUP 200 is gripped by the gripper 41, the moving mechanism 43 can move the FOUP 200 vertically above the device port 110 and the storage shelf 30.
 第1軌道10及び第2軌道20のそれぞれにおいて走行方向における同じ位置に停止した複数の天井搬送車40のそれぞれは、当該第1軌道10及び第2軌道20の側方且つ下方に位置している装置ポート110及び保管棚30の両方に対して、FOUP200を移載することができる。言い換えると、各天井搬送車40は、同一の装置ポート110及び同一の保管棚30に対してFOUP200を移載可能である。すなわち、第1軌道10における天井搬送車40及び第2軌道20における天井搬送車40の何れにおいても、装置ポート110とのFOUP200の受け渡し(移載)が可能とされている。且つ、第1軌道10における天井搬送車40及び第2軌道20における天井搬送車40の何れにおいても、保管棚30とのFOUP200の受け渡しが可能とされている。 Each of the plurality of overhead transport vehicles 40 that has stopped at the same position in the traveling direction on each of the first track 10 and the second track 20 is located to the side and below the first track 10 and the second track 20. The FOUP 200 can be transferred to both the device port 110 and the storage shelf 30. In other words, each ceiling carrier 40 can transfer the FOUP 200 to the same device port 110 and the same storage shelf 30. That is, the FOUP 200 can be delivered (transferred) to and from the device port 110 in both the ceiling carrier 40 on the first track 10 and the ceiling carrier 40 on the second track 20. In addition, the FOUP 200 can be transferred to and from the storage shelf 30 in both the ceiling transport vehicle 40 on the first track 10 and the ceiling transport vehicle 40 on the second track 20.
 天井搬送車40は、第1軌道10及び第2軌道20の直下において把持部41がFOUP200のフランジ部210を把持している状態から、移動機構43を動作させてFOUP200を装置ポート110及び保管棚30のそれぞれの上方に移動させる。続いて、天井搬送車40は、巻上機構42aを動作させてベルト42bを巻下ろし、FOUP200を降下させ装置ポート110上又は保管棚30上に載置する。以上により、天井搬送車40は、装置ポート110及び保管棚30へFOUP200を移載(載置)する。 The ceiling transport vehicle 40 operates the moving mechanism 43 from a state where the grip part 41 grips the flange part 210 of the FOUP 200 directly below the first track 10 and the second track 20 to move the FOUP 200 to the device port 110 and the storage shelf. 30 above each. Subsequently, the ceiling transport vehicle 40 operates the hoisting mechanism 42a to unwind the belt 42b, lowers the FOUP 200, and places it on the device port 110 or the storage shelf 30. As described above, the ceiling transport vehicle 40 transfers (places) the FOUP 200 onto the device port 110 and the storage shelf 30.
 また、天井搬送車40は、装置ポート110上又は保管棚30上に載置された状態のFOUP200のフランジ部210を把持部41により把持する。続いて、天井搬送車40は、巻上機構42aを動作させてベルト42bを巻上げ、FOUP200を上昇させる。続いて、天井搬送車40は、移動機構43を動作させてFOUP200を第1軌道10及び第2軌道20の直下に移動させる。以上により、天井搬送車40は、装置ポート110又は保管棚30からFOUP200を移載(取得)する。 Further, the ceiling transport vehicle 40 grips the flange portion 210 of the FOUP 200 placed on the device port 110 or the storage shelf 30 with the grip portion 41 . Subsequently, the ceiling conveyance vehicle 40 operates the hoisting mechanism 42a to hoist the belt 42b and raise the FOUP 200. Subsequently, the ceiling transport vehicle 40 operates the moving mechanism 43 to move the FOUP 200 directly below the first track 10 and the second track 20. As described above, the ceiling transport vehicle 40 transfers (acquires) the FOUP 200 from the device port 110 or the storage shelf 30.
 コントローラ44は、天井搬送車40の動作を制御する装置である。コントローラ44は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)等によって構成された電子制御ユニットである。コントローラ44は、上記制御装置からの指令に応じて対象となる半導体処理装置100と通信し、天井搬送車40の走行、把持部41の動作、昇降機構42の動作、移動機構43の動作などを制御する。 The controller 44 is a device that controls the operation of the overhead transport vehicle 40. The controller 44 is an electronic control unit including, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory). The controller 44 communicates with the target semiconductor processing device 100 in response to commands from the control device, and controls the traveling of the ceiling transport vehicle 40, the operation of the gripping section 41, the operation of the lifting mechanism 42, the operation of the moving mechanism 43, etc. Control.
 通信部45は、上記制御装置、半導体処理装置100などに通信可能な装置であり、天井搬送車40の所定位置に配置されている。図3は、天井搬送車と半導体処理装置との通信を示す模式図である。図3に示されるように、半導体処理装置100は、搬送システム1と通信可能な通信部101と、通信部101に接続されるコントローラ102とを有する。コントローラ44と通信部45とは、互いにデータを送受信する。同様に、通信部101とコントローラ102も、互いにデータを送受信する。 The communication unit 45 is a device that can communicate with the control device, the semiconductor processing device 100, etc., and is arranged at a predetermined position of the overhead transport vehicle 40. FIG. 3 is a schematic diagram showing communication between the overhead transport vehicle and the semiconductor processing equipment. As shown in FIG. 3, the semiconductor processing apparatus 100 includes a communication section 101 capable of communicating with the transport system 1, and a controller 102 connected to the communication section 101. The controller 44 and the communication section 45 transmit and receive data to and from each other. Similarly, the communication unit 101 and the controller 102 also transmit and receive data to and from each other.
 通信部45は、無線通信を介して半導体処理装置100と信号の送受信をする。本実施形態では、天井搬送車40の通信部45と、半導体処理装置100の通信部101とが互いに無線通信する。天井搬送車40と半導体処理装置100との無線通信は、例えば、FOUP200の移載時に実施される無線信号の送受信である。FOUP200の移載とは、天井搬送車40から半導体処理装置100へのFOUP200の移載と、半導体処理装置100から天井搬送車40へのFOUP200の移載との両方を含む。天井搬送車40と半導体処理装置100との無線通信の実施中、通信部45,101にて送受信される無線信号は、例えば、半導体処理装置100の動作(特に、装置ポート110の動作)を制限するためのインターロック信号である。インターロック信号は、例えば、半導体製造装置に関する国際規格(SEMI規格:Semiconductor Equipment and Materials International standards)のE84で定められる手順でやりとりされる信号(E84信号)である。E84信号が天井搬送車40と半導体処理装置100との間で正常に送受信されることによって、天井搬送車40の把持部41、昇降機構42などと、半導体処理装置100との意図しない箇所での干渉(接触、衝突など)を防止できる。天井搬送車40と半導体処理装置100との無線通信は、例えば、2.4GHz帯、5.8GHz帯の周波数を利用するANT通信であるが、これに限られない。 The communication unit 45 transmits and receives signals to and from the semiconductor processing device 100 via wireless communication. In this embodiment, the communication section 45 of the overhead transport vehicle 40 and the communication section 101 of the semiconductor processing apparatus 100 communicate with each other wirelessly. The wireless communication between the overhead transport vehicle 40 and the semiconductor processing device 100 is, for example, the transmission and reception of wireless signals performed when the FOUP 200 is transferred. The transfer of the FOUP 200 includes both the transfer of the FOUP 200 from the overhead carrier 40 to the semiconductor processing equipment 100 and the transfer of the FOUP 200 from the semiconductor processing equipment 100 to the ceiling carrier 40. During wireless communication between the overhead transport vehicle 40 and the semiconductor processing device 100, the wireless signals transmitted and received by the communication units 45 and 101 limit the operation of the semiconductor processing device 100 (in particular, the operation of the device port 110), for example. This is an interlock signal for The interlock signal is, for example, a signal (E84 signal) exchanged according to a procedure defined by E84 of the international standard for semiconductor manufacturing equipment (SEMI standard: Semiconductor Equipment and Materials International standards). By properly transmitting and receiving the E84 signal between the ceiling transport vehicle 40 and the semiconductor processing device 100, the gripping portion 41, the lifting mechanism 42, etc. of the ceiling transport vehicle 40 and the semiconductor processing device 100 are prevented from coming into contact with each other at an unintended location. Interference (contact, collision, etc.) can be prevented. The wireless communication between the overhead transport vehicle 40 and the semiconductor processing device 100 is, for example, ANT communication using frequencies in the 2.4 GHz band and 5.8 GHz band, but is not limited thereto.
 上述したE84に定められた手順によって、半導体処理装置100が天井搬送車40に送信する信号は変化し、天井搬送車40は通信部45を介して変化した信号を受信する。以下、半導体処理装置100が天井搬送車40へ送信する信号を出力信号、半導体処理装置100から天井搬送車40へ入力される信号を入力信号とする。また、通信部101および通信部45は、E84信号のほかに互いの受信信号強度の送受信を常に行っている。受信信号強度は、通信環境状態を確認可能な指標である。 According to the procedure defined in E84 described above, the signal that the semiconductor processing device 100 transmits to the ceiling transport vehicle 40 changes, and the ceiling transport vehicle 40 receives the changed signal via the communication unit 45. Hereinafter, a signal transmitted from the semiconductor processing device 100 to the ceiling transport vehicle 40 will be referred to as an output signal, and a signal input from the semiconductor processing device 100 to the ceiling transport vehicle 40 will be referred to as an input signal. Furthermore, the communication unit 101 and the communication unit 45 constantly transmit and receive received signal strengths to and from each other in addition to the E84 signal. The received signal strength is an index that can confirm the state of the communication environment.
 天井搬送車40へ入力される入力信号が既定の期間(タイムアウト判定期間)にわたって変化しなかった場合、コントローラ44はタイムアウト異常が発生したと判断する。タイムアウト異常は、例えば、通信異常、装置異常などによって発生する。通信異常は、例えば、他の装置から発生する信号などの干渉による通信障害(通信環境の異常)によって発生する。通信異常のときの受信信号強度は、0とみなされる。装置異常は、例えば、半導体処理装置100の故障などによって発生する。タイムアウト異常が発生すると、天井搬送車40と半導体処理装置100との動作(例えば、FOUP200の移載動作)が停止する。なお、以下では、天井搬送車40と半導体処理装置100とのE84通信中、通信異常が発生していない状態を「正常通信状態」と表記することがある。 If the input signal input to the ceiling transport vehicle 40 does not change over a predetermined period (timeout determination period), the controller 44 determines that a timeout abnormality has occurred. A timeout abnormality occurs due to, for example, a communication abnormality, a device abnormality, or the like. A communication abnormality occurs, for example, due to a communication failure (an abnormality in the communication environment) due to interference from signals generated from other devices. The received signal strength at the time of communication abnormality is considered to be 0. The device abnormality occurs due to, for example, a failure of the semiconductor processing device 100. When a timeout abnormality occurs, the operation between the overhead transport vehicle 40 and the semiconductor processing apparatus 100 (for example, the operation of transferring the FOUP 200) is stopped. Note that, hereinafter, a state in which no communication abnormality occurs during E84 communication between the overhead transport vehicle 40 and the semiconductor processing device 100 may be referred to as a "normal communication state."
 図3に示されるように、天井搬送車40は、コントローラ44及び通信部45に加えて、カウンタ46及び出力部47を有する。カウンタ46及び出力部47は、コントローラ44の一部でもよい。 As shown in FIG. 3, the overhead transport vehicle 40 includes a counter 46 and an output section 47 in addition to a controller 44 and a communication section 45. The counter 46 and the output section 47 may be part of the controller 44.
 カウンタ46は、天井搬送車40と半導体処理装置100との無線通信中、通信異常が発生したタイミングからカウント開始する(カウンタ値を生成する)。本実施形態では、経過時間に応じてカウントされた値が、カウンタ値に相当する。カウンタ値は、上記経過時間に応じて所定の法則に沿って変化する値であればよい。本実施形態では、カウンタ値は、経過時間自体である。カウンタ46は、カウンタ値の生成後に通信異常が解消されたとき(すなわち、受信信号強度が0以外を示したとき)、当該カウンタ値をリセットする。これにより、カウンタ値は、最新の通信異常状態となっている期間を示す。加えて、作業者は、出力されたカウンタ値から、通信異常状態の発生時間を容易に特定できる。なお、カウンタ46は、受信が可能なとき(例えば、正常通信状態であり、天井搬送車40が半導体処理装置100からの無線信号を受信可能であるとき)、カウンタ値を常にリセットする。 The counter 46 starts counting (generates a counter value) from the timing when a communication abnormality occurs during wireless communication between the overhead transport vehicle 40 and the semiconductor processing device 100. In this embodiment, the value counted according to the elapsed time corresponds to the counter value. The counter value may be a value that changes according to a predetermined rule according to the elapsed time. In this embodiment, the counter value is the elapsed time itself. The counter 46 resets the counter value when the communication abnormality is resolved after the counter value is generated (that is, when the received signal strength indicates a value other than 0). Thereby, the counter value indicates the period during which the communication is in the latest abnormal state. In addition, the operator can easily identify the time at which the abnormal communication state occurred from the output counter value. Note that the counter 46 always resets the counter value when reception is possible (for example, when the communication state is normal and the overhead transport vehicle 40 is able to receive the wireless signal from the semiconductor processing device 100).
 出力部47は、タイムアウト異常が発生したとき、カウンタ46にて生成されるカウンタ値をコントローラ44などに出力する。本実施形態では、半導体処理装置100の出力信号の変化を天井搬送車40が既定の期間中に認識できなかった状態をタイムアウト異常とする。天井搬送車40が半導体処理装置100の出力信号の変化をに認識できなかった状態は、上記入力信号が変化しなかった状態に相当する。出力部47は、タイムアウト異常が発生したときのみ、カウンタ値を出力する。これにより、例えば、天井搬送車40と半導体処理装置100とがE84信号のやりとりを行っていないときは、カウンタ値が生成されていても出力部47はカウンタ値を出力しなくなる。 The output unit 47 outputs the counter value generated by the counter 46 to the controller 44 or the like when a timeout abnormality occurs. In this embodiment, a timeout abnormality is defined as a state in which the overhead transport vehicle 40 is unable to recognize a change in the output signal of the semiconductor processing device 100 within a predetermined period. A state in which the overhead transport vehicle 40 cannot recognize a change in the output signal of the semiconductor processing device 100 corresponds to a state in which the input signal does not change. The output unit 47 outputs the counter value only when a timeout abnormality occurs. As a result, for example, when the overhead transport vehicle 40 and the semiconductor processing device 100 are not exchanging E84 signals, the output unit 47 will not output the counter value even if the counter value is generated.
 次に、図4の(a),(b)及び図5の(a),(b)を参照しながら、天井搬送車40と半導体処理装置100とが正常に無線通信できたときの例(正常例)について説明する。図4の(a),(b)及び図5の(a),(b)のそれぞれは、天井搬送車40と半導体処理装置100との無線通信の正常例を説明するためのタイミングチャートである。図4の(a),(b)及び図5の(a),(b)のそれぞれにおいて、タイミングT0はタイムアウト判定期間の開始タイミングを示し、タイミングT1はタイムアウト判定期間の終了タイミングを示し、タイミングTs、Ts,Tsのそれぞれは通信異常の発生タイミングを示し、タイミングTeは通信異常の終了タイミングを示し、破線の矢印は正常通信状態を示し、破線で囲まれる領域では通信異常状態を示す。図4の(a),(b)及び図5の(a),(b)のそれぞれにおいて、出力信号の初期値は値PLであり、入力信号の初期値は値CLである。出力信号の値PLは、タイミングT0とタイミングT1との間のタイミングTpにて、値PHに変化する。この値PLから値PHへの変化は、例えば、半導体処理装置100のコントローラ102によってなされる。また、入力信号の値CLから値CHへの変化は、値PHとなっている出力信号を受信することによって実施される。このため、天井搬送車40は値PHとなっている出力信号を受信しない限り、入力信号の更新は実施されない。 Next, referring to FIGS. 4A and 4B and FIGS. 5A and 5B, an example ( Normal cases) will be explained. (a), (b) of FIG. 4 and (a), (b) of FIG. 5 are timing charts for explaining a normal example of wireless communication between the overhead transport vehicle 40 and the semiconductor processing device 100. . In each of (a), (b) of FIG. 4 and (a), (b) of FIG. 5, timing T0 indicates the start timing of the timeout determination period, timing T1 indicates the end timing of the timeout determination period, and timing Each of Ts, Ts 1 and Ts 2 indicates the timing at which a communication abnormality occurs, the timing Te indicates the end timing of the communication abnormality, the broken line arrow indicates a normal communication state, and the area surrounded by the broken line indicates a communication abnormality state. . In each of FIGS. 4A and 4B and FIGS. 5A and 5B, the initial value of the output signal is the value PL, and the initial value of the input signal is the value CL. The value PL of the output signal changes to the value PH at timing Tp between timing T0 and timing T1. This change from value PL to value PH is performed, for example, by the controller 102 of the semiconductor processing apparatus 100. Further, the change of the input signal from the value CL to the value CH is performed by receiving the output signal having the value PH. Therefore, unless the ceiling transport vehicle 40 receives an output signal having the value PH, the input signal is not updated.
 図4の(a)に示される第1正常例では、タイムアウト判定期間の全体にわたって、天井搬送車40と半導体処理装置100との無線通信が正常に実施されている。この場合、タイミングTpにおいて、出力信号の値PLから値PHへの変化に応じて、入力信号が値CLから値CHへ正常に変化する。この場合、コントローラ44はタイムアウト異常が発生していないと判断する。 In the first normal example shown in FIG. 4(a), wireless communication between the overhead transport vehicle 40 and the semiconductor processing device 100 is performed normally throughout the timeout determination period. In this case, at the timing Tp, the input signal normally changes from the value CL to the value CH in response to the change of the output signal from the value PL to the value PH. In this case, the controller 44 determines that no timeout abnormality has occurred.
 図4の(b)に示される第2正常例では、少なくともタイミングT0からタイミングTpまでは正常通信状態が継続されている。また、タイミングTpよりも後であってタイミングT1よりも前に通信異常状態が発生している。この場合、第1正常例と同様に、出力信号の値PLから値PHへの変化に応じて入力信号が値CLから値CHへ変化し、入力信号が正常に変化する。そして、第1正常例と同様に、コントローラ44はタイムアウト異常が発生していないと判断する。なお、タイミングTpよりも後のタイミングTsから、カウンタ46がカウンタ値を生成する。しかしながら、第2正常例ではタイムアウト異常が発生しないと判断されるため、出力部47は当該カウンタ値を出力しない。なお、タイミングT1を過ぎたあとであっても、カウンタ46は、通信異常の継続中はカウントし続けてもよい。 In the second normal example shown in FIG. 4(b), the normal communication state continues at least from timing T0 to timing Tp. Furthermore, a communication abnormality occurs after timing Tp and before timing T1. In this case, similarly to the first normal example, the input signal changes from the value CL to the value CH in response to the change of the output signal from the value PL to the value PH, and the input signal changes normally. Then, as in the first normal example, the controller 44 determines that no timeout abnormality has occurred. Note that the counter 46 generates a counter value from timing Ts after timing Tp. However, in the second normal example, it is determined that no timeout abnormality occurs, so the output unit 47 does not output the counter value. Note that even after timing T1 has passed, the counter 46 may continue counting while the communication abnormality continues.
 図5の(a)に示される第3正常例では、タイミングT0とタイミングTpとの間から通信異常状態が発生する。当該通信異常状態がタイミングTpとタイミングT0との間のタイミングTeまで継続している。加えて、タイミングTeからタイミングT1までは正常通信状態が継続されている。この場合、タイミングTpからタイミングTeまで入力信号が変化しない。しかしながら、タイミングTe以降における正常通信状態にて、値PHを示す出力信号が天井搬送車40に受信されることによって、入力信号が正常に変化する。そして、第1正常例及び第2正常例と同様に、コントローラ44はタイムアウト異常が発生していないと判断する。なお、タイミングTpからタイミングTeまでの間にカウンタ46によるカウンタ値の生成がなされるが、タイミングTeにて当該カウンタ値はリセットされる。カウンタ値は、タイミングTeからタイミングT1までの間にリセットされてもよい。以下の例でも同様である。 In the third normal example shown in FIG. 5(a), an abnormal communication state occurs between timing T0 and timing Tp. The communication abnormal state continues until timing Te between timing Tp and timing T0. In addition, the normal communication state continues from timing Te to timing T1. In this case, the input signal does not change from timing Tp to timing Te. However, when the output signal indicating the value PH is received by the overhead transport vehicle 40 in a normal communication state after the timing Te, the input signal changes normally. Then, similarly to the first normal example and the second normal example, the controller 44 determines that no timeout abnormality has occurred. Note that the counter value is generated by the counter 46 between timing Tp and timing Te, but the counter value is reset at timing Te. The counter value may be reset between timing Te and timing T1. The same applies to the following examples.
 図5の(b)に示される第4正常例では、第3正常例と同様に、タイミングT0とタイミングTpとの間であるタイミングTsから通信異常状態が発生する。また、当該通信異常状態がタイミングTpとタイミングT0との間のタイミングTeまで継続している。加えて、タイミングTeよりも後のタイミングTsからタイミングT1まで別の通信異常状態が発生する。この場合、第3正常例と同様に、タイミングTpにおいては入力信号の更新が実施されない。しかしながら、タイミングTeとタイミングTsとの間に存在する正常通信状態にて、値PHを示す出力信号が天井搬送車40に受信される。これにより、入力信号が正常に変化する。そして、第1正常例~第3正常例と同様に、コントローラ44はタイムアウト異常が発生していないと判断する。なお、タイミングTsからタイミングTeまでの間にカウンタ46によるカウンタ値の生成がなされるが、タイミングTeにて当該カウンタ値はリセットされる。しかしながら、タイミングTsから、カウンタ46によって新たにカウンタ値が生成される。ただし、第4正常例ではタイムアウト異常が発生しないと判断されるため、新たなカウンタ値は出力されない。なお、カウンタ46による当該新たなカウンタ値の生成は、タイミングTsで発生した通信異常が解消されるまで継続され得る。 In the fourth normal example shown in FIG. 5(b), similarly to the third normal example, a communication abnormality occurs from timing Ts1 , which is between timing T0 and timing Tp. Further, the communication abnormal state continues until timing Te between timing Tp and timing T0. In addition, another abnormal communication state occurs from timing Ts2 to timing T1, which is later than timing Te. In this case, similarly to the third normal example, the input signal is not updated at timing Tp. However, in a normal communication state existing between timing Te and timing Ts2 , an output signal indicating the value PH is received by the overhead carrier 40. This causes the input signal to change normally. Then, similarly to the first to third normal examples, the controller 44 determines that no time-out abnormality has occurred. Note that the counter value is generated by the counter 46 between timing Ts 1 and timing Te, but the counter value is reset at timing Te. However, from timing Ts2 , a new counter value is generated by the counter 46. However, in the fourth normal example, it is determined that no time-out abnormality occurs, so no new counter value is output. Note that generation of the new counter value by the counter 46 may be continued until the communication abnormality that occurred at timing Ts2 is resolved.
 次に、図6の(a),(b)及び図7の(a),(b)を参照しながら、天井搬送車40と半導体処理装置100とが正常に無線通信できなかったときの例(異常例)について説明する。図6の(a),(b)及び図7の(a),(b)のそれぞれは、天井搬送車40と半導体処理装置100との無線通信の異常例を説明するためのタイミングチャートである。 Next, referring to FIGS. 6A and 6B and FIGS. 7A and 7B, an example of when the overhead transport vehicle 40 and the semiconductor processing equipment 100 cannot communicate normally (Abnormal example) will be explained. (a), (b) of FIG. 6 and (a), (b) of FIG. 7 are timing charts for explaining an abnormal example of wireless communication between the overhead transport vehicle 40 and the semiconductor processing device 100. .
 図6の(a)に示される第1異常例では、タイムアウト判定期間の全体にわたって、天井搬送車40と半導体処理装置100との無線通信が正常に実施されている。このため、カウンタ46は、カウンタ値が0から変化しない。一方、タイミングT0からタイミングT1まで、出力信号の値はPLのままである。このため、タイミングT1までに入力信号が値CHを示さず、コントローラ44はタイムアウト異常が発生したと判断する。この場合、出力部47は、カウンタ値0を出力する。コントローラ44は、例えば、当該カウンタ値をログ情報として出力する。 In the first abnormal example shown in FIG. 6(a), wireless communication between the overhead transport vehicle 40 and the semiconductor processing device 100 is performed normally throughout the timeout determination period. Therefore, the counter value of the counter 46 does not change from 0. On the other hand, the value of the output signal remains PL from timing T0 to timing T1. Therefore, the input signal does not indicate the value CH by timing T1, and the controller 44 determines that a timeout abnormality has occurred. In this case, the output unit 47 outputs a counter value of 0. For example, the controller 44 outputs the counter value as log information.
 図6の(b)に示される第2異常例では、タイムアウト判定期間の全体にわたって、通信異常状態となっている。カウンタ46は、受信されなくなった時点から受信が再び実施されるまでカウンタ値を生成する。一方、出力信号の値はタイミングTpにて値PHに変化するが、入力信号の値はタイミングT0からタイミングT1まで値CLのままである。このため、第1異常例と同様に、コントローラ44はタイムアウト異常が発生したと判断する。この場合、出力部47は、タイミングT1時点のカウンタ値を出力する。なお、第2異常例において想定される最小のカウンタ値は、タイミングT0からタイミングT1までの経過時間に相当する。通信異常がタイミングT0より前に発生した場合、カウンタ値はタイミングT0からタイミングT1までの経過時間よりも大きい。装置異常と通信異常とが両方発生した場合についても、カウンタ値の生成は、通信異常の発生時点から開始する。 In the second abnormal example shown in FIG. 6(b), the communication is in an abnormal state throughout the timeout determination period. The counter 46 generates a counter value from the time when reception is no longer performed until reception is performed again. On the other hand, the value of the output signal changes to the value PH at timing Tp, but the value of the input signal remains at the value CL from timing T0 to timing T1. Therefore, similarly to the first abnormality example, the controller 44 determines that a timeout abnormality has occurred. In this case, the output unit 47 outputs the counter value at timing T1. Note that the minimum counter value assumed in the second abnormal example corresponds to the elapsed time from timing T0 to timing T1. If the communication abnormality occurs before timing T0, the counter value is larger than the elapsed time from timing T0 to timing T1. Even when both a device abnormality and a communication abnormality occur, generation of the counter value starts from the time when the communication abnormality occurs.
 図7の(a)に示される第3異常例では、タイミングTpよりも前からタイミングT1まで通信異常状態が継続している。この場合、タイミングT0とタイミングTpとの間におけるタイミングTsから、カウンタ46はカウンタ値を生成する。一方、第1異常例及び第2異常例と同様にタイミングT0からタイミングT1まで、入力信号の値は値CLのままである。このため、第1異常例及び第2異常例と同様に、コントローラ44はタイムアウト異常が発生したと判断する。この場合、出力部47は、タイミングT1時点のカウンタ値を出力する。第3異常例で出力されたカウンタ値は、タイミングTsからタイミングT1までの経過時間に相当する。なお、タイミングTs以降に装置異常が発生した場合についても、出力されるカウンタ値は通信異常が発生した時点(タイミングTs)からタイミングT1までの経過時間に相当する。 In the third abnormal example shown in FIG. 7(a), the communication abnormal state continues from before timing Tp until timing T1. In this case, the counter 46 generates a counter value from timing Ts between timing T0 and timing Tp. On the other hand, similarly to the first abnormal example and the second abnormal example, the value of the input signal remains at the value CL from timing T0 to timing T1. Therefore, similarly to the first abnormal example and the second abnormal example, the controller 44 determines that a timeout abnormality has occurred. In this case, the output unit 47 outputs the counter value at timing T1. The counter value output in the third abnormal example corresponds to the elapsed time from timing Ts to timing T1. Note that even when a device abnormality occurs after timing Ts, the output counter value corresponds to the elapsed time from the time when the communication abnormality occurs (timing Ts) to timing T1.
 図7の(b)に示される第4異常例では、タイミングT0からタイミングT1までの間に複数の通信異常状態が断続的に発生している。第4異常例では、タイミングTsからタイミングTeまで第1の通信異常状態が継続し、タイミングTeよりも後のタイミングTsからタイミングT1まで第2の通信異常状態が継続する。この場合、第1の通信異常状態にてカウンタ46が生成するカウンタ値は、タイミングTeにてリセットされる。また、カウンタ46は、タイミングTsから新たなカウンタ値を生成する。一方、第1異常例~第3異常例と同様にタイミングT0からタイミングT1まで、入力信号の値は値CLのままである。このため、第1異常例~第3異常例と同様に、コントローラ44はタイムアウト異常が発生したと判断する。この場合、出力部47は、タイミングT1時点の上記新たなカウンタ値を出力する。第4異常例で出力されるカウンタ値は、例えば、タイミングTsからタイミングT1までの経過時間に相当する。 In the fourth abnormality example shown in FIG. 7(b), a plurality of communication abnormal states occur intermittently between timing T0 and timing T1. In the fourth abnormality example, the first abnormal communication state continues from timing Ts 1 to timing Te, and the second abnormal communication state continues from timing Ts 2 after timing Te to timing T1. In this case, the counter value generated by the counter 46 in the first abnormal communication state is reset at timing Te. Further, the counter 46 generates a new counter value from timing Ts2 . On the other hand, the value of the input signal remains at the value CL from timing T0 to timing T1, similarly to the first to third abnormal examples. Therefore, similarly to the first to third abnormal examples, the controller 44 determines that a timeout abnormality has occurred. In this case, the output unit 47 outputs the new counter value at timing T1. The counter value output in the fourth abnormality example corresponds to, for example, the elapsed time from timing Ts2 to timing T1.
 各異常例においてタイムアウト異常が発生したときに出力されるカウンタ値は、タイムアウト異常の原因を推定するための指標にできる。例えば、出力部47によって出力されるカウンタ値が0である場合(すなわち、第1異常例の場合)、作業者は、天井搬送車40と半導体処理装置100との通信環境には問題がなかったことを容易に理解できる。これにより、作業者は、タイムアウト異常が装置異常に起因して発生したと推定できる。 The counter value output when a timeout abnormality occurs in each abnormality example can be used as an index for estimating the cause of the timeout abnormality. For example, if the counter value output by the output unit 47 is 0 (i.e., in the case of the first abnormality), the worker can determine that there is no problem in the communication environment between the overhead transport vehicle 40 and the semiconductor processing device 100. can be easily understood. Thereby, the operator can infer that the timeout abnormality has occurred due to a device abnormality.
 出力部47によって出力されるカウンタ値が0以外である場合(すなわち、第2異常例~第4異常例の場合)、作業者は、出力されたカウンタ値を確認することによって、タイムアウト異常の原因を推定できる。例えば、作業者は、出力されたカウンタ値を確認することによって、タイミングT0からタイミングT1までの間に正常通信状態が存在していたかどうかを容易に推定できる。このような推定に基づき、作業者は、第2異常例~第4異常例のそれぞれにおけるタイムアウト異常の原因もしくは主因が、通信異常であるか、装置異常であるかを推定可能である。 When the counter value output by the output unit 47 is other than 0 (that is, in the case of the second to fourth abnormal cases), the operator can determine the cause of the timeout abnormality by checking the output counter value. can be estimated. For example, by checking the output counter value, the operator can easily estimate whether a normal communication state existed between timing T0 and timing T1. Based on such estimation, the operator can estimate whether the cause or main cause of the timeout abnormality in each of the second to fourth abnormal cases is a communication abnormality or a device abnormality.
 具体的には、タイムアウト異常が発生した時点で、作業者はタイムアウト判定期間(タイミングT0からタイミングT1まで)の長さと、出力されたカウンタ値と、タイムアウト異常発生時における天井搬送車40の信号状態(値CL、値CH)とを把握可能である。なお、図6および図7では便宜上タイミングTpを図示しているが、作業者にタイミングTpは把握できない。出力されたカウンタ値が0のとき(第1異常例)、作業者は、通信異常は発生せず、装置異常が発生していたと推定できる。出力されたカウンタ値がタイムアウト判定期間以上のとき(第2異常例)、作業者はタイムアウト判定期間中常に通信異常が発生していた、もしくはタイムアウト判定が始まる前から通信異常が発生していたことが推定できる。この場合、通信異常発生中に装置異常も発生している可能性もある。出力されたカウンタ値がタイムアウト判定時間よりも小さいとき(第3異常例、第4異常例)、出力されたカウンタ値の大きさによって、通信異常が発生していた期間の長さが分かり、装置異常の可能性の程度を推定できる。 Specifically, when a timeout abnormality occurs, the operator determines the length of the timeout determination period (from timing T0 to timing T1), the output counter value, and the signal state of the overhead carrier 40 at the time the timeout abnormality occurs. (value CL, value CH). Note that although the timing Tp is illustrated for convenience in FIGS. 6 and 7, the timing Tp cannot be grasped by the operator. When the output counter value is 0 (first abnormality example), the operator can estimate that no communication abnormality has occurred and that a device abnormality has occurred. When the output counter value is greater than or equal to the timeout judgment period (second abnormality example), the worker is informed that a communication error has always occurred during the timeout judgment period, or that a communication error has occurred before the timeout judgment started. can be estimated. In this case, there is a possibility that a device abnormality also occurs while a communication abnormality occurs. When the output counter value is smaller than the timeout judgment time (third abnormality example, fourth abnormality example), the length of the period during which the communication abnormality occurred can be determined from the size of the output counter value, and the device The degree of possibility of an abnormality can be estimated.
 以上に説明した本実施形態に係る搬送システム1では、作業者は、出力部47から出力されるカウンタ値を確認するだけで、当該タイムアウト異常の原因が、通信異常であるか、半導体処理装置100の装置異常であるかを推定可能になる。したがって、搬送システム1によれば、タイムアウト異常の発生原因の判別を支援可能である。 In the transport system 1 according to the embodiment described above, the operator can check whether the cause of the timeout abnormality is a communication abnormality or not by simply checking the counter value output from the output unit 47. It becomes possible to estimate whether there is a device abnormality. Therefore, according to the transport system 1, it is possible to support determination of the cause of occurrence of the timeout abnormality.
 本実施形態では、天井搬送車40と半導体処理装置100との無線通信は、半導体製造装置に関する国際規格にて規定されるE84信号の無線通信であり、出力部47は、E84信号のタイムアウト異常が発生したときのみ、カウンタ値を出力してもよい。この場合、不必要な期間におけるカウンタ値の生成及び出力を防止できる。これにより、タイムアウト異常の発生原因の判別に有用なカウンタ値を確実に出力できる。 In this embodiment, the wireless communication between the overhead transport vehicle 40 and the semiconductor processing equipment 100 is E84 signal wireless communication specified by the international standard for semiconductor manufacturing equipment, and the output unit 47 detects a timeout error of the E84 signal. The counter value may be output only when it occurs. In this case, generation and output of counter values during unnecessary periods can be prevented. Thereby, it is possible to reliably output a counter value useful for determining the cause of occurrence of a timeout abnormality.
 以上、本開示の一側面に係る搬送システムは、以下の[1]~[6]に記載する通りであり、上記実施形態に基づいてこれらを詳細に説明した。
[1] パッシブ装置に対して物品を搬送し、前記パッシブ装置と無線通信する通信部を有する搬送車を備える搬送システムであって、
 前記搬送車は、
  前記パッシブ装置との無線通信中、通信障害によって受信できなくなったタイミングからの経過時間に応じたカウンタ値を生成するカウンタと、
  前記搬送車においてタイムアウト異常が発生したとき、前記カウンタ値を出力する出力部と、を有し、
 前記カウンタは、受信が可能なとき、前記カウンタ値を常にリセットする、
搬送システム。
[2] 前記搬送車と前記パッシブ装置との無線通信は、半導体製造装置に関する国際規格にて規定されるE84信号の無線通信であり、
 前記出力部は、前記E84信号によるタイムアウト異常が発生したときのみ、前記カウンタ値を出力する、[1]に記載の搬送システム。
[3] 前記カウンタ値は、前記経過時間自体である、[1]または[2]に記載の搬送システム。
[4] 前記タイミングは、前記搬送車と前記パッシブ装置との通信異常が発生したタイミングに相当する、[1]~[3]のいずれかに記載の搬送システム。
[5] 前記タイムアウト異常は、前記パッシブ装置の出力信号の変化を前記搬送車が所定の期間中に認識できなかったときに発生する、[1]~[4]のいずれかに記載の搬送システム。
[6] 前記カウンタは、前記搬送車と前記パッシブ装置との無線通信中、前記カウンタ値を常にリセットする、[1]~[5]のいずれかに記載の搬送システム。
As described above, the conveyance system according to one aspect of the present disclosure is as described in [1] to [6] below, and these have been explained in detail based on the above embodiments.
[1] A transport system that transports articles to a passive device and includes a transport vehicle having a communication unit that wirelessly communicates with the passive device,
The transport vehicle is
a counter that generates a counter value according to the elapsed time from the timing when reception became impossible due to a communication failure during wireless communication with the passive device;
an output unit that outputs the counter value when a timeout abnormality occurs in the guided vehicle;
the counter always resets the counter value when reception is possible;
Conveyance system.
[2] The wireless communication between the transport vehicle and the passive device is E84 signal wireless communication specified in the international standard for semiconductor manufacturing equipment,
The conveyance system according to [1], wherein the output unit outputs the counter value only when a timeout abnormality due to the E84 signal occurs.
[3] The conveyance system according to [1] or [2], wherein the counter value is the elapsed time itself.
[4] The transport system according to any one of [1] to [3], wherein the timing corresponds to a timing at which a communication abnormality occurs between the transport vehicle and the passive device.
[5] The transport system according to any one of [1] to [4], wherein the timeout abnormality occurs when the transport vehicle fails to recognize a change in the output signal of the passive device within a predetermined period. .
[6] The transport system according to any one of [1] to [5], wherein the counter always resets the counter value during wireless communication between the transport vehicle and the passive device.
 しかし、本開示の一側面は、上記実施形態及び上記[1]~[6]に限定されない。本開示の一側面は、その要旨を逸脱しない範囲でさらなる変形が可能である。例えば、上記実施形態では、搬送システムが半導体処理工場に設置されるが、これに限られず、その他の施設に設置されてもよい。この場合、パッシブ装置として物品に対して何らかの処理を実施する処理装置がその他の施設に設けられる。その他の施設においては、インターロック信号は、E84信号に限られない。よって、上記実施形態では、パッシブ装置として半導体処理装置が挙げられるが、これに限られない。 However, one aspect of the present disclosure is not limited to the above embodiments and [1] to [6] above. One aspect of the present disclosure can be further modified without departing from the gist thereof. For example, in the above embodiment, the transport system is installed in a semiconductor processing factory, but the system is not limited thereto, and may be installed in other facilities. In this case, a processing device that performs some kind of processing on articles is installed in another facility as a passive device. In other facilities, the interlock signal is not limited to the E84 signal. Therefore, in the above embodiments, the passive device is a semiconductor processing device, but is not limited thereto.
 上記実施形態では、第1軌道と第2軌道とは、上下(鉛直)方向に並んで配置されているが、これに限られない。天井搬送車の軌道は1軌道のみでもよいし、3軌道以上の複数の軌道が並んで配置されていてもよい。また、複数の軌道の一部のみが上下(鉛直)方向に重なる配置でもよいし、高さの異なる複数の軌道は上下(鉛直)方向に重ならなくてもよい。 In the above embodiment, the first track and the second track are arranged side by side in the vertical (vertical) direction, but the invention is not limited thereto. The overhead carrier may have only one track, or three or more tracks may be arranged side by side. Further, only a portion of the plurality of tracks may be arranged to overlap in the vertical (vertical) direction, or a plurality of tracks with different heights do not need to overlap in the vertical (vertical) direction.
 上記実施形態では、複数の保管棚は、鉛直方向から見た場合に、第1軌道及び第2軌道を介して複数の装置ポートと対向する側方に設けられているが、これに限られない。処理ポートと保管棚は軌道に対して同一の側方に配置されていてもよい。また、保管棚はループ状を呈するイントラベイルートの内側に設けられていてもよいし、外側に設けられていてもよい。 In the above embodiment, the plurality of storage shelves are provided on the side facing the plurality of device ports via the first track and the second track when viewed from the vertical direction, but the invention is not limited thereto. . The processing port and the storage shelf may be located on the same side of the track. Further, the storage shelf may be provided inside the loop-shaped intrabeirut, or may be provided outside.
 上記実施形態では、搬送車は、半導体処理工場の天井に敷設された軌道を走行する天井搬送車としているが、これに限られない。床面に敷設された軌道を走行する搬送車であってもよいし、床面を直接走行する搬送車であってもよい。 In the above embodiment, the transport vehicle is an overhead transport vehicle that runs on a track laid on the ceiling of a semiconductor processing factory, but the present invention is not limited to this. The transport vehicle may be a transport vehicle that travels on a track laid on the floor surface, or it may be a transport vehicle that travels directly on the floor surface.
 1…搬送システム、10…第1軌道、20…第2軌道、30…保管棚、40…天井搬送車、41…把持部、42…昇降機構、43…移動機構、44…コントローラ、45…通信部、100…半導体処理装置、101…通信部、102…コントローラ、110…装置ポート、200…FOUP(物品)。 DESCRIPTION OF SYMBOLS 1...Transportation system, 10...First track, 20...Second track, 30...Storage shelf, 40...Ceiling carrier, 41...Gripping part, 42...Elevating mechanism, 43...Movement mechanism, 44...Controller, 45...Communication Department, 100...Semiconductor processing device, 101...Communication department, 102...Controller, 110...Device port, 200...FOUP (article).

Claims (6)

  1.  パッシブ装置に対して物品を搬送し、前記パッシブ装置と無線通信する通信部を有する搬送車を備える搬送システムであって、
     前記搬送車は、
      前記パッシブ装置との無線通信中、通信障害によって受信できなくなったタイミングからの経過時間に応じたカウンタ値を生成するカウンタと、
      前記搬送車においてタイムアウト異常が発生したとき、前記カウンタ値を出力する出力部と、を有し、
     前記カウンタは、受信が可能なとき、前記カウンタ値を常にリセットする、
    搬送システム。
    A conveyance system comprising a conveyance vehicle that conveys an article to a passive device and has a communication unit that wirelessly communicates with the passive device,
    The transport vehicle is
    a counter that generates a counter value according to the elapsed time from the timing when reception became impossible due to a communication failure during wireless communication with the passive device;
    an output unit that outputs the counter value when a timeout abnormality occurs in the guided vehicle;
    the counter always resets the counter value when reception is possible;
    Conveyance system.
  2.  前記搬送車と前記パッシブ装置との無線通信は、半導体製造装置に関する国際規格にて規定されるE84信号の無線通信であり、
     前記出力部は、前記E84信号によるタイムアウト異常が発生したときのみ、前記カウンタ値を出力する、請求項1に記載の搬送システム。
    The wireless communication between the carrier vehicle and the passive device is E84 signal wireless communication specified in the international standard regarding semiconductor manufacturing equipment,
    The conveyance system according to claim 1, wherein the output unit outputs the counter value only when a timeout abnormality occurs due to the E84 signal.
  3.  前記カウンタ値は、前記経過時間自体である、請求項1または2に記載の搬送システム。 The conveyance system according to claim 1 or 2, wherein the counter value is the elapsed time itself.
  4.  前記タイミングは、前記搬送車と前記パッシブ装置との通信異常が発生したタイミングに相当する、請求項1または2に記載の搬送システム。 The conveyance system according to claim 1 or 2, wherein the timing corresponds to a timing at which a communication abnormality occurs between the conveyance vehicle and the passive device.
  5.  前記タイムアウト異常は、前記パッシブ装置の出力信号の変化を前記搬送車が所定の期間中に認識できなかったときに発生する、請求項1または2に記載の搬送システム。 The conveyance system according to claim 1 or 2, wherein the timeout abnormality occurs when the conveyance vehicle is unable to recognize a change in the output signal of the passive device within a predetermined period.
  6.  前記カウンタは、前記搬送車と前記パッシブ装置との無線通信中、前記カウンタ値を常にリセットする、請求項1または2に記載の搬送システム。 The conveyance system according to claim 1 or 2, wherein the counter always resets the counter value during wireless communication between the conveyance vehicle and the passive device.
PCT/JP2023/009682 2022-05-02 2023-03-13 Conveyance system WO2023214478A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022076009 2022-05-02
JP2022-076009 2022-05-02

Publications (1)

Publication Number Publication Date
WO2023214478A1 true WO2023214478A1 (en) 2023-11-09

Family

ID=88646448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009682 WO2023214478A1 (en) 2022-05-02 2023-03-13 Conveyance system

Country Status (1)

Country Link
WO (1) WO2023214478A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173299A (en) * 2001-12-06 2003-06-20 Mitsubishi Electric Corp Data reception device, data transmission device, method of receiving data, and method of transmitting data
JP2019071692A (en) * 2019-02-13 2019-05-09 Necプラットフォームズ株式会社 Transmission device and delay measuring method
WO2019138802A1 (en) * 2018-01-10 2019-07-18 村田機械株式会社 Method for controlling conveyance system, conveyance system, and management apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173299A (en) * 2001-12-06 2003-06-20 Mitsubishi Electric Corp Data reception device, data transmission device, method of receiving data, and method of transmitting data
WO2019138802A1 (en) * 2018-01-10 2019-07-18 村田機械株式会社 Method for controlling conveyance system, conveyance system, and management apparatus
JP2019071692A (en) * 2019-02-13 2019-05-09 Necプラットフォームズ株式会社 Transmission device and delay measuring method

Similar Documents

Publication Publication Date Title
KR100283596B1 (en) Automatic Carrier Control Method in Semiconductor Wafer Cassette Carrier
JP6686062B2 (en) Access allocation system and operating method for semiconductor manufacturing equipment
TWI573750B (en) Communication devices and communication machines and communication systems
JP5880693B2 (en) Transport system
TWI758765B (en) Automated material handling system for managing carrier internal pollution
US20180358252A1 (en) Conveyance system and conveyance method
TWI777017B (en) Control method of conveying system, conveying system and management device
EP3848769B1 (en) Conveyance vehicle system
KR20120096014A (en) Transfer vehicle system
TWI647928B (en) Communication device and communication device control method
WO2023214478A1 (en) Conveyance system
JP5105246B2 (en) Conveying system and program for conveying system
TW593093B (en) Control system for transfer and buffering
EP3805890B1 (en) Conveyance system
TW202408897A (en) Handling system
JP7168096B2 (en) Ceiling carrier and ceiling carrier system
WO2023203911A1 (en) Transport system
WO2023062960A1 (en) Transfer system
WO2020255577A1 (en) Conveyance vehicle
JP2009071120A (en) Transfer method and transfer system
US20110274521A1 (en) Carrier system and method for handling carried object using the same
US20240025637A1 (en) Transport system
TW202237513A (en) Wireless communication system and control method for wireless communication system
JP2005310112A (en) Method and system for improved operation of carrier handler for substrate
WO2022102254A1 (en) Conveyance vehicle system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23799410

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)