WO2023213202A1 - 通信方法和装置 - Google Patents

通信方法和装置 Download PDF

Info

Publication number
WO2023213202A1
WO2023213202A1 PCT/CN2023/090035 CN2023090035W WO2023213202A1 WO 2023213202 A1 WO2023213202 A1 WO 2023213202A1 CN 2023090035 W CN2023090035 W CN 2023090035W WO 2023213202 A1 WO2023213202 A1 WO 2023213202A1
Authority
WO
WIPO (PCT)
Prior art keywords
data set
pdu
data
user plane
network element
Prior art date
Application number
PCT/CN2023/090035
Other languages
English (en)
French (fr)
Inventor
王丹
周汉
魏鑫鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023213202A1 publication Critical patent/WO2023213202A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0273Traffic management, e.g. flow control or congestion control adapting protocols for flow control or congestion control to wireless environment, e.g. adapting transmission control protocol [TCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0289Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters

Definitions

  • the present application relates to the field of communications, and in particular, to a communications method and device.
  • extended reality (XR) technology In wireless communication networks, extended reality (XR) technology has the advantages of multi-viewing and strong interactivity. It can provide users with a new visual experience and has great application value and commercial potential.
  • XR includes technologies such as virtual reality (VR), augmented reality (AR), and mixed reality (MR), which can be widely used in entertainment, games, medical care, advertising, industry, online education, and engineering and many other fields.
  • VR virtual reality
  • AR augmented reality
  • MR mixed reality
  • UPF user plane network elements
  • RAN access network equipment
  • PDU set data sets
  • This application provides a communication method and device for improving the flexibility of transmitting data sets.
  • the first aspect provides a communication method, including:
  • the user plane network element sends the first data set to the access network device; the user plane network element receives the indication information of the first data set transmission failure from the access network device; the user plane network element transmits the first data set according to the first data set.
  • the transmission failure indication information is used to process the first data set and/or the second data set, and there is an association relationship between the second data set and the first data set.
  • the first data set is a data set in the original stream
  • the second data set is a data set in the error correction stream corresponding to the original stream.
  • the second data set includes error correction information of the first data set.
  • the first data set is a data set in the base layer
  • the second data set is a data set in the enhancement layer corresponding to the base layer.
  • the second data set includes enhanced information of the first data set.
  • the first data set and the second data set are respectively data sets in two data streams that need to be synchronized, and the first data set and the second data set need to be sent at the same time (or within the allowed delay range)
  • the first data set is a data set in a video stream
  • the second data set is a data set in an audio stream.
  • the video stream and the audio stream need to be synchronized.
  • the association relationship between the first data set and the second data set may also be that the parsing of the second data set depends on the first data set.
  • the first data set and the second data set are two frames in the same GoP in the same video stream.
  • the first data set is an I frame
  • the second data set is a P frame that depends on the I frame.
  • the user plane network element can process the first data set and/or the second data set according to the indication information of the transmission failure of the first data set received from the access network device.
  • the method of this application can improve the flexibility of transmitting data sets.
  • the user plane network element processes the first data set according to the indication information of the first data set transmission failure, including: the user plane network element processes the first data set according to the first data set transmission failure indication information.
  • a data set transmission failure indication message is used to retransmit the first data set.
  • the user plane network element when the transmission of the first data set fails, can retransmit the first data set, thereby minimizing the occurrence of lagging.
  • the indication information of the transmission failure of the first data set includes that the reason for the transmission failure of the first data set is non-congestion
  • the user plane network element retransmitting the first data set according to the indication information of the transmission failure of the first data set includes: the user plane network element retransmitting the first data set based on the reason that the transmission failure of the first data set is non-congestion. .
  • the user plane network element when the reason for transmission failure of the first data set is non-congestion, retransmits the first data set.
  • the method further includes:
  • the user plane network element determines that the second data set exists based on the indication information of the transmission failure of the first data set and the correlation between the first data set and the second data set.
  • the user plane network element when the second data set exists, retransmits the first data set so that the second data set can be correctly decoded.
  • the first data set may not be retransmitted, thereby saving transmission resources.
  • the method further includes:
  • the user plane network element determines the importance of the first data set as important.
  • the importance level can be used as a parameter of the data set.
  • the values of the importance parameter can be “high, important”, “medium, medium important” and “low, not important”.
  • the value of the importance parameter can be a value from 0 to 7.
  • the importance of the first data set may be associated with one or more of the following:
  • the type of the first data set whether there is a data set associated with the first data set, or the position of the first data set in a data set group.
  • the user plane network element determines the importance of the first data set as important, including:
  • the user plane network element determines the importance of the first data set as important based on the position of the first data set in the data set group, and the position of the first data set in the data set group is before the preset position, where,
  • the data set group includes multiple data sets, and the first data set is one of the multiple data sets.
  • the position of the first data set in the data set group is before the preset position, the importance of the first data set is important.
  • the priority of the first data set when retransmitted is higher than the priority before retransmission.
  • the first data set is transmitted to the terminal device as quickly as possible.
  • the indication information of the transmission failure of the first data set includes that the reason for the transmission failure of the first data set is congestion; the user plane network element performs the transmission failure according to the first data Collecting the indication information of transmission failure and processing the second data set includes: the user plane network element discards the second data set according to the indication information that the reason for the transmission failure of the first data set is congestion.
  • the second data set when the reason for the transmission failure of the first data set is congestion, the second data set is not sent and the second data set is discarded, thereby saving transmission resources and storage resources.
  • the user plane network element processes the first data set according to the indication information of the first data set transmission failure, including: the user plane network element processes the first data set according to the first data set transmission failure indication information.
  • the first data set is discarded based on the indication message that the reason for transmission failure of a data set is congestion.
  • the first data set when the reason for the transmission failure of the first data set is congestion, the first data set is not retransmitted and the first data set is discarded, thereby saving transmission resources and storage resources.
  • the association between the first data set and the second data set is that the parsing of the second data set depends on the first data set; or, the first data set is The data set in the original stream, the second data set is the data set in the error correction stream corresponding to the original stream, the second data set includes the error correction information of the first data set; or the first data set is A data set in the base layer, the second data set is a data set in the enhancement layer corresponding to the base layer, the second data set includes the enhancement information of the first data set; or, the first data set and the third data set
  • the second data set is a data set that is transmitted synchronously in different data streams.
  • the data packet of the first data set includes identification information of the first data set, and the indication information of transmission failure of the first data set includes the identification information.
  • the method also includes:
  • the user plane network element determines the first data set based on the identification information; the user plane network element determines the second data set based on the association relationship between the second data set and the first data set.
  • the first data set and the second data set are data sets in the same video stream, and the data set group is an image group in the video stream.
  • a communication method including:
  • the access network device receives the first data set from the user plane network element; the access network device determines that the transmission of the first data set fails; and the access network device sends a message indicating that the transmission of the first data set fails to the user plane network element. Instructions.
  • the access network device when the transmission of the first data set fails, the access network device sends indication information indicating the transmission failure of the first data set to the user plane network element, thereby improving the flexibility of transmitting the data set.
  • the indication information of the transmission failure of the first data set includes the reason for the transmission failure of the first data set, and the reason for the transmission failure of the first data set is congestion or Non-congested.
  • the method also includes:
  • the access network device receives the first data set retransmitted by the user plane network element; the access network device retransmits the first data set to the terminal device.
  • the priority of the first data set during retransmission is higher than the priority before retransmission.
  • the first data set is transmitted to the terminal device as quickly as possible.
  • a communication device including: a transceiver unit and a processing unit connected to the transceiver unit.
  • the transceiver unit is used to send the first data set to the access network device; the transceiver unit is used to receive indication information of transmission failure of the first data set from the access network device; the transceiver unit or processing unit is used to perform the transmission according to the Instruction information indicating a transmission failure of the first data set, processing the first data set and/or the second data set, and there is an associated relationship between the second data set and the first data set.
  • the transceiver unit is configured to retransmit the first data set according to the indication information of transmission failure of the first data set.
  • the indication information of the first data set transmission failure includes that the reason for the first data set transmission failure is non-congestion; the transceiver unit is configured to based on the first data set.
  • the reason for the data set transmission failure is non-congestion retransmission of the first data set.
  • the processing unit is configured to perform transmission failure indication information based on the first data set, and the correlation between the first data set and the second data set. , determine that the second data set exists.
  • the processing unit is configured to determine the importance of the first data set as important.
  • the processing unit is configured to determine the importance of the first data set according to the position of the first data set in the data set group, and the first data The position of the set in the data set group is before the preset position, wherein the data set group includes multiple data sets, and the first data set is one of the multiple data sets.
  • the priority of the first data set during retransmission is higher than the priority before retransmission.
  • the indication information of the failure of transmission of the first data set includes that the reason for the failure of transmission of the first data set is congestion; the processing unit is configured to perform the transmission failure according to the first data The second data set is discarded based on the indication information that the reason for the set transmission failure is congestion.
  • the processing unit is configured to discard the first data set according to the indication information that the reason for the transmission failure of the first data set is congestion.
  • the association between the first data set and the second data set is that the parsing of the second data set depends on the first data set; or, the first data set is The data set in the original stream, the second data set is the data set in the error correction stream corresponding to the original stream, the second data set includes the error correction information of the first data set; or the first data set is A data set in the base layer, the second data set is a data set in the enhancement layer corresponding to the base layer, the second data set includes the enhancement information of the first data set; or, the first data set and the third data set
  • the second data set is a data set that is transmitted synchronously in different data streams.
  • the data packet of the first data set includes the identification information of the first data set, and the indication information of the transmission failure of the first data set includes the identification information. ;
  • the processing unit is used to determine the first data set based on the identification information; the processing unit is used to determine the second data set based on the association between the second data set and the first data set.
  • the first data set and the second data set are data sets in the same video stream, and the data set group is an image group in the video stream.
  • a fourth aspect provides a communication device, including: a transceiver unit and a processing unit connected to the transceiver unit.
  • the transceiver unit is used to receive the first data set from the user plane network element; the processing unit is used to determine the transmission failure of the first data set; the transceiver unit is used to send the first data set transmission failure to the user plane network element instructions.
  • the indication information of the transmission failure of the first data set includes the reason for the transmission failure of the first data set, and the reason for the transmission failure of the first data set is congestion or Non-congested.
  • the transceiver unit is configured to receive the first data set retransmitted by the user plane network element; the transceiver unit is configured to retransmit the first data to the terminal device. set.
  • the priority of the first data set during retransmission is higher than the priority before retransmission.
  • a communication device including a communication interface and a processor.
  • the processor executes the computer program or instructions stored in the memory, so that the communication device performs the method in any possible implementation manner of the first aspect to the second aspect.
  • the memory may be located in the processor, or may be implemented in a chip independent of the processor, which is not specifically limited in this application.
  • a computer-readable storage medium including a computer program.
  • the computer program When the computer program is run on a computer, the computer is caused to execute the method in any one of the possible implementations of the first aspect to the second aspect.
  • a chip or chip system in a seventh aspect, includes a processing circuit, and the processing circuit is configured to execute the method in any one of the possible implementations of the first to second aspects.
  • a computer program product includes: a computer program (which may also be called a code, or an instruction).
  • a computer program which may also be called a code, or an instruction.
  • the computer program When the computer program is run, it causes the computer to execute any one of the first aspect to the second aspect. possible implementation methods.
  • a ninth aspect provides a communication system, including user plane network elements and access network equipment.
  • the user plane network element is configured to perform the method in the first aspect or any possible implementation manner of the first aspect.
  • the access network device is configured to perform the method in the second aspect or any possible implementation manner of the second aspect.
  • Figure 1 shows a communication system to which this application is applicable.
  • Figure 2 is an example diagram of dependencies between multiple frames.
  • FIG. 3 is a schematic interaction diagram of the method proposed in this application.
  • Figure 4 is a schematic interaction diagram of the method proposed in this application.
  • Figure 5 is a schematic interaction diagram of the method proposed in this application.
  • Figure 6 is a schematic interaction diagram of the method proposed in this application.
  • FIG. 7 is a schematic block diagram of the communication device provided by this application.
  • Figure 8 is a schematic block diagram of the communication device provided by this application.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • 5G fifth generation
  • NR new wireless
  • 6th Generation 6th Generation
  • FIG. 1 is a schematic diagram of a communication network architecture.
  • the network elements involved in this application are introduced below:
  • User equipment can include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, as well as various forms of terminals, mobile devices Mobile station (MS), terminal or soft terminal, etc. For example, water meters, electricity meters, sensors, etc. It should be understood that user equipment may also be called terminal equipment.
  • MS Mobile station
  • terminal equipment For example, water meters, electricity meters, sensors, etc. It should be understood that user equipment may also be called terminal equipment.
  • (Wireless) access network equipment radio access network, (R)AN: used to provide network access functions for authorized user equipment in a specific area, and can use different quality transmissions according to the level of user equipment, business needs, etc. tunnel.
  • RAN can manage wireless resources, provide access services for user equipment, and then complete the forwarding of control signals and user equipment data between the user equipment and the core network.
  • RAN can also be understood as a base station in a traditional network.
  • User plane function (UPF) network element used for packet routing and forwarding and quality of service (QoS) processing of user plane data.
  • User data can be accessed to the data network (DN) through this network element.
  • DN data network
  • it can be used to implement the functions of user plane network elements.
  • Data network used to provide a network for transmitting data.
  • DN Data network
  • the operator's business network Internet network
  • third-party business network etc.
  • AUSF Authentication server function
  • Access and mobility management function (AMF) network element mainly used for mobility management and access management, etc., and can be used to implement mobility management entity (mobility management entity, MME) functions in addition to Other functions besides session management, such as access authorization/authentication and other functions.
  • MME mobility management entity
  • Session management function (SMF) network element mainly used for session management, Internet protocol (IP) address allocation and management of terminal devices, selection and management of user plane functions, policy control and charging functions The endpoint of the interface and downlink data notification, etc.
  • IP Internet protocol
  • PCF Policy control function
  • Network repository function (NRF) network element used to save network function entities and description information of the services they provide, and to support service discovery, network element entity discovery and other functions.
  • Network exposure function (NEF) network element used to securely open to the outside the services and capabilities provided by the 3rd Generation Partnership Project (3GPP) network functions.
  • 3GPP 3rd Generation Partnership Project
  • Unified data management (UDM) network element used for unified data management, 5G user data management, processing user identification, access authentication, registration, or mobility management, etc.
  • Application function (AF) network element used for data routing affected by applications, access to network open function network elements, and interaction with the policy framework for policy control, etc.
  • NWDAF can have at least one of the following functions:
  • the data collection function refers to collecting data from network elements, third-party servers, terminal devices or network management systems
  • the model training function refers to analyzing and training the model based on relevant input data
  • the model feedback function refers to training the trained
  • the machine learning model is sent to network elements that support the inference function
  • the analysis result inference function performs inference based on the trained machine learning model and inference data to determine the data analysis results
  • the analysis result feedback function can provide terminal equipment to network elements, third-party servers, and Or the network management system provides data analysis results, which can assist the network in selecting service quality parameters for the business, or assist the network in performing traffic routing, or assist the network in selecting background traffic transmission strategies, etc.
  • the N2 interface is the interface between RAN and AMF network elements and is used for sending wireless parameters, non-access stratum (NAS) signaling, etc.
  • the N3 interface is the interface between RAN and UPF network elements. The interface between them is used to transmit user plane data, etc.
  • the N4 interface is the interface between the SMF network element and the UPF network element, and is used to transmit business policies, tunnel identification information of the N3 connection, data cache indication information, and downlink Data notification messages and other information.
  • the N6 interface is the interface between the DN network element and the UPF network element, and is used to transmit user plane data, etc.
  • PDU set protocol data unit set
  • the PDU set in this application can be a PDU set in the original stream or the error correction stream.
  • the original stream corresponds to the error correction stream.
  • the PDU set in this application may be a PDU set in the base layer or enhancement layer.
  • the base layer corresponds to the enhancement layer.
  • the PDU set in this application may be a PDU set in a data stream that needs to be synchronized.
  • the PDU set in a VR scene, can be a PDU set in a video stream or a PDU set in an audio stream. The video stream and audio stream need to be synchronized.
  • the PDU set in this application may be an I frame or a P frame in the same video stream.
  • I-frames are intra-frame coded frames
  • P-frames are intra-frame prediction coded frames.
  • I-frames can be decoded independently.
  • P frames in the same group of pictures GoP
  • frames 1 and 6 are independent I frames
  • frames 2-5 and 7-8 respectively depend on the previous frames
  • frames 4 and 5 also depend on frame 2.
  • the frames in the video stream are I 1 , P 11 , P 12 , P 13 , I 2 , P 21 , P 22 , and P 23 , and the frame numbers corresponding to the eight frames are 1, 2, 3, 4, 5, 6, 7, 8. That is, the frame number of the I 1 frame is "1"; the frame number of the P 11 frame is "2"; the frame number of the P 12 frame is "3", and so on.
  • the frames in the video stream are I 1 , P 11 , P 12 , P 13 , I 2 , P 21 , P 22 , and P 23 , and the frame numbers corresponding to the eight frames are 1, 2, 3, 4, 1, 2, 3, 4, that is, the frame number of the I 1 frame is "1"; the frame number of the P 11 frame is “2"; the frame number of the P 12 frame is "3", and the frame number of the P 13 frame is "4" ”, the frame number of I 2 frame is “1”, and so on.
  • UPF sends and caches the PDU set, and the indication information fed back by the RAN to the UPF includes the reason for the PDU set transmission failure. UPF processes the PDU set according to the instruction information.
  • the method 200 includes:
  • AF/application server sends multiple PDU sets to UPF.
  • UPF receives multiple PDU sets from AF/AS.
  • the multiple PDU sets include PDU set#A and PDU set#B. It should be understood that the meaning of “including” in this application is “at least including”, which will not be described again below.
  • the AF/AS also sends the type of each PDU set in the multiple PDU sets to the UPF.
  • the type of PDU set in a video stream can be I frame or P frame.
  • the type of PDU set can be used to determine the dependencies between PDU sets.
  • UPF obtains the association between PDU set#B (an example of the second data set) and PDU set#A.
  • the PDU set#A and PDU set#B are PDU sets in different data streams respectively.
  • PDU set#A is the PDU set in the original stream
  • PDU se#B is the PDU set in the error correction stream corresponding to the original stream.
  • PDU se#B includes the identification information of PDU set#A and the error correction information of PDU set#A.
  • the error correction stream includes error correction information of the original stream, which is used to improve the reliability of the original stream transmission. Since PDU set#B includes the identification information of PDU set#A, UPF learns that there is an association relationship between PDU set#A and PDU set#B.
  • PDU set #A is the PDU set in the base layer
  • PDU set #B is the PDU set in the enhancement layer corresponding to the base layer.
  • PDU set#B includes the identification information of PDU set#A and the enhanced information of PDU set#A.
  • the enhancement layer includes enhancement information of the base layer and is used to improve the quality of the base layer. Since PDU se#B includes the identification information of PDU set#A, UPF learns that there is an association relationship between PDU set#A and PDU set#B.
  • the PDU set#A and PDU set#B are respectively the PDU sets in the two data streams that need to be synchronized.
  • PDU set#A is the data in the video stream
  • PDU set#B is the data in the audio stream.
  • the video stream and audio stream need to be synchronized
  • PDU set#A and PDU set#B need to be synchronized at the same time. (or within the allowed delay range) is sent to the UE, then there is an association between PDU set#A and PDU set#B.
  • UPF can obtain the association relationship between PDU set#B and PDU set#A from AF/AS.
  • AF/AS sends PDU set#B and PDU set#A to UPF, and PDU set#B and PDU set#A include association identifiers.
  • UPF determines PDU set#B and PDU based on the association identifiers. There is an association between set#A.
  • AF can control the relationship between the data flow to which PDU set #A belongs (denoted as data flow #1) and the data flow to which PDU set #B belongs (denoted as data flow #2) sent to UPF.
  • UPF determines that there is an association between PDU set #B and PDU set #A based on the frame rates of data stream #1 and data stream 2 and the sequence number of the PDU set.
  • UPF gets the frame rate of stream #1 and stream #2.
  • UPF can obtain the frame rate of data stream #1 and data stream #2 from AF.
  • UPF can also detect the time interval between sending data packets of data flow #1 and data flow #2, and obtain data flow # based on the detected time interval of sending data packets of data flow #1 and data flow #2. 1 and the frame rate of stream #2. If the frame rates of data stream #1 and data stream #2 are the same, there is an association relationship between the PDU sets with the same sequence number in data stream #1 and data stream #2. If the sequence number of PDU set#A is "1", the sequence number of PDU set#B The number is also "1", then there is an association relationship between PDU set #B and PDU set #A.
  • the frame rate of data stream #1 and data stream #2 has a 1:2 relationship. If the sequence number of PDU set #A is "1" and the sequence number of PDU set #B is "1" or "2", then the PDU There is an association relationship between set#B and PDU set#A.
  • PDU set#B and PDU set#A The relationship between PDU set#B and PDU set#A is that the parsing of PDU set#B depends on PDU set#A.
  • PDU set #A and PDU set #B are PDU sets in the same PDU set group (for example, the same GoP) in the same video stream of the same service.
  • PDU set #A is the I 1 frame mentioned above
  • PDU set #B is the P 11 frame mentioned above.
  • UPF learns that the parsing (or decoding) of PDU set #B depends on PDU set #A.
  • PDU set group #1 the PDU set group where PDU set #A and PDU set #B are located is recorded as PDU set group #1.
  • AF/AS sends the dependency relationship between PDU sets in PDU set group #1 to UPF, including the dependence relationship between PDU set #B and PDU set #A. Specifically, the following situations may be included:
  • AF/AS directly sends the dependencies between PDU sets in PDU set group #1 to UPF.
  • AF/AS also sends the dependency relationship between PDU sets in PDU set group #1 to UPF.
  • AF/AS indirectly sends the dependencies between PDU sets in PDU set group #1 to UPF through other network elements.
  • the process may include the following steps:
  • Step 1 AF/AS can send the dependencies between PDU sets in PDU set group #1 to PCF.
  • Step 2 PCF sends the dependencies between PDU sets in PDU set group #1 to SMF.
  • PCF can send policy and charging control (PCC) rules to SMF.
  • PCC policy and charging control
  • the PCC rules include dependencies between PDU sets in PDU set group #1.
  • Step 3 SMF sends the dependencies between PDU sets in PDU set group #1 to UPF.
  • SMF can send N4 rules to UPF, which include dependencies between PDU sets in PDU set group #1.
  • UPF determines the dependence of PDU set#B on PDU set#A based on the type of PDU set#A and the type of PDU set#B. That is, UPF can determine the type of PDU set #A and the type of PDU set #B through internal detection and analysis, and then determine that the analysis of PDU set #B depends on PDU set #A.
  • AF/AS also sends the type of each PDU set in the multiple PDU sets to the UPF, such as the type of PDU set #A and the type of PDU set #B.
  • UPF can determine the types of PDU set#A and PDU set#B based on packet length, packet arrival time, etc., and determine that PDU set#A and PDU set#B are in the same PDU set group.
  • UPF can determine PDU set# based on the packet length and packet arrival time of the data packet in PDU set#A.
  • the type of A, and the type of PDU set#B is determined based on the packet length and packet arrival time of the data packet in PDU set#B.
  • UPF can determine the beginning of each PDU set based on the packet arrival time. Since the packet length of I frame is larger than that of P frame, if the sending pattern of PDU set is I frame, P frame, P frame, P frame, when UPF detects When reaching a data packet with a larger packet length, it can be determined that the data packet belongs to an I frame.
  • AF/AS sends indication information of dependencies between PDU sets to UPF.
  • Indication information of dependencies between PDU sets is used to trigger UPF to determine the type of PDU set and the dependencies between PDU sets.
  • the indication information of dependencies between PDU sets is used to instruct UPF to consider the dependencies between PDU sets when transmitting PDU sets.
  • AF/AS sends indication information about dependencies between PDU sets to UPF can refer to method 1 of S202, that is, it can be sent directly or indirectly.
  • UPF can learn all PDU sets associated with PDU set #A, and the PDU set associated with PDU set #A can belong to the same data flow or different data flows as PDU set #A.
  • the PDU sets associated with PDU set#A are PDU set#B1 and PDU set#B2.
  • PDU set#B1 and PDU set#A belong to the same data stream, and PDU set#B2 and PDU set#A belong to different data. flow.
  • UPF sends PDU set#A (an example of the first data set) to the RAN. Accordingly, the RAN receives PDU set#A.
  • PDU set#A corresponds to at least one data packet.
  • PDU set#A includes at least one data packet.
  • UPF sends PDU set#A to RAN, it is sent at the granularity of data packets.
  • each data packet of the at least one data packet includes identification information of PDU set#A.
  • UPF can add the identification information of PDU set#A in the GTP-U header of the data packet.
  • the identification information of PDU set#A can be the sequence number of PDU set#A.
  • the identification information of the I 1 frame can be the frame sequence number of the I 1 frame.
  • the identification information of the PDU set#A includes at least one of the following in addition to the sequence number of PDU set#A:
  • QoS flow quality of service flow
  • timestamp timestamp
  • a PDU set is identified by the sequence number of the PDU set, the identifier of the QoS flow, and the timestamp corresponding to the data packet.
  • the frame with the frame number "1" includes the I 1 frame and the I 2 frame, that is, the I 1 frame cannot be identified only by the frame sequence number.
  • the identification information also includes the identifier of the QoS flow corresponding to the I 1 frame, and/or the timestamp corresponding to the data packet in the I 1 frame.
  • caching methods include but are not limited to the following:
  • the UPF can cache the data packets in PDU set#A for a preset time.
  • the preset duration may be configured in the UPF, or the preset duration may be related to the frame rate. For example, if the frame rate is 60fps, the preset duration is 15ms; if the frame rate is 90fps, the preset duration can be 10ms.
  • the frame rate can be detected by UPF itself or sent to UPF by SMF, AS or AF.
  • the frame rate may be fixed within a period of time; or, the frame rate may also change without limitation.
  • data packet #1 can be cached for a preset time. It should be understood that if the cache duration of data packet #1 exceeds the preset duration, UPF may discard data packet #1.
  • UPF can cache a preset number of PDU sets.
  • UPF maps the data flow to which PDU set #A belongs to QoS flow #1, and UPF can cache 3 PDU sets in QoS flow #1.
  • QoS flow#1 if UPF has cached PDU set#1, PDU set#2 and PDU set#3, in order to cache PDU set#A, UPF can discard PDU set#1, PDU set#2 and PDU set# One of 3, for example, discard the first cached one among PDU set#1, PDU set#2 and PDU set#3.
  • Failure to transmit PDU set#A may be due to RAN scheduling failure, that is, due to poor air interface conditions or congestion, the RAN cannot send PDU set#A to the UE.
  • the failure to transmit PDU set#A may also mean that the RAN sent PDU set#A to the UE, but the RAN received feedback information from the UE indicating that the transmission of PDU set#A failed.
  • PDU set#A transmission failure can also be understood as PDU set#A scheduling failure. That is, the UE did not receive PDU set#A from the RAN.
  • the RAN determines that the transmission of PDU set#A has failed.
  • the threshold can be pre-configured in the RAN, or sent to the RAN by the UPF, without limitation.
  • the threshold is 1, that is, during the transmission of PDU set #A, as long as one data packet fails to be transmitted, the RAN determines that the transmission of PDU set #A fails.
  • the reasons for PDU set#A transmission failure may include the following two situations:
  • PDU set#A transmission failure is non-congestion. For example, due to poor air interface status between the RAN and the UE, the transmission of PDU set#A fails. For another example, PDU set#A transmission fails due to automatic repeat request (ARQ) failure and hybrid automatic retransmission request (HARQ) failure.
  • ARQ automatic repeat request
  • HARQ hybrid automatic retransmission request
  • the reason for PDU set#A transmission failure is congestion. For example, there is a large amount of data that needs to be transmitted by the RAN before PDU set#A, causing wireless channel congestion, and the RAN does not have enough resources to transmit PDU set#A.
  • S206 RAN sends PDU set#A transmission failure indication information to UPF.
  • UPF receives the indication information of PDU set#A transmission failure.
  • the indication information of PDU set#A transmission failure includes identification information of PDU set#A and PDU set#A transmission failure. s reason.
  • identification information of this PDU set#A please refer to the relevant introduction of S203.
  • the reason why the PDU set#A transmission failed please refer to the relevant introduction of S205.
  • UPF processes PDU set#A and/or PDU set#B according to the indication information of PDU set#A transmission failure.
  • UPF can determine that the transmission of PDU set#A has failed based on the identification information of PDU set#A in the indication information of PDU set#A transmission failure.
  • the reason for PDU set#A transmission failure is non-congestion.
  • UPF retransmits PDU set#A based on the indication information of PDU set#A transmission failure.
  • the priority of PDU set#A when retransmitted is higher than the priority before retransmission, for example, higher than the priority of the first transmission. It should be understood that PDU set#A can also be retransmitted multiple times.
  • UPF when retransmitting, UPF can map the data packets in the PDU set#A to a QoS flow with a higher scheduling priority for transmission.
  • UPF when transmitting PDU set#A for the first time, UPF maps the data packets in PDU set#A to QoS flow#1; when retransmitting PDU set#A, UPF obtains the scheduling priority parameters and QoS of QoS flow#1
  • the scheduling priority parameter of flow#2 determines that the scheduling priority of QoS flow#2 is higher than the scheduling priority of QoS flow#1, and maps the data packets in PDU set#A to QoS flow#2. After transmitting PDU set#A through QoS flow#2, this QoS flow#2 can also be used to transmit other data. If the scheduling priority of QoS flow#1 is already the highest, then QoS flow#2 does not exist.
  • UPF when retransmitting, UPF can add indication information to increase the transmission priority of the data packet in the GTP-U header of the data packet of PDU set#A.
  • the RAN may map the data packets in PDU set#A to a higher priority (for example, when retransmitting the data packets of PDU set#A) based on the indication information in the GTP-U packet header to increase the transmission priority of the data packet. Transmission is performed in the QoS flow of the highest level). For details, please refer to the description above.
  • PDU set#A needs to be retransmitted, the transmission priority of PDU set#A can also be increased through the above method. In order to avoid repetition, I will not describe them one by one.
  • PDU set#A transmission failure The reason for PDU set#A transmission failure is non-congestion. Further, UPF determines whether there is PDU set#B associated with PDU set#A based on the indication information of PDU set#A transmission failure.
  • the UPF may determine PDU set#A based on the indication information of PDU set#A transmission failure, and further determine whether PDU set#B exists based on the association relationship between PDU set#B and PDU set#A obtained in S202. The process of UPF determining whether there is PDU set#B associated with PDU set#A will not be described again below.
  • PDU set #A packet delay budget (packet delay budget, PDB)
  • PDB packet delay budget
  • the time interval between two adjacent frames is 16.7ms, so the time interval between a PDU set and its dependent PDU set is N*16.7ms, where N is a positive integer. , "*" means multiply. N is the number of PDU sets between two PDU sets.
  • UPF determines that there is no PDU set#B associated with PDU set#A, UPF does not retransmit PDU set#A. Optionally, UPF may discard PDU set#A.
  • PDU set #A and PDU set #B Take PDU set #A and PDU set #B as two frames in the same video stream as an example. Assume that UPF receives I 1 , P 11 , P 12 , P 13 , I 2 ..., P 13 frames from AF/AS. The parsing depends on P12 frames:
  • the UPF determines that PDU set #B exists and the PDU set #B is a P 13 frame.
  • PDU set #A is a P 12 frame, and the data packets corresponding to the P 13 frame are started to be sent but not all are sent, then UPF determines that PDU set #B exists.
  • PDU set#A transmission failure The reason for PDU set#A transmission failure is non-congestion. Furthermore, UPF determines the importance of PDU set#A (or determines whether to retransmit PDU set#A) based on the indication information of PDU set#A transmission failure. If PDU set#A If the importance level is important, PDU set#A will be retransmitted. If the importance of PDU set#A is unimportant, PDU set#A will not be retransmitted.
  • the importance level can be used as a parameter of the data set.
  • the values of the importance parameter can be “high, important”, “medium, medium important” and “low, not important”.
  • the value of the importance parameter can be a value from 0 to 7.
  • the PDU set sent by AF/AS to UPF includes the importance parameter of the PDU set.
  • the header of the data packet corresponding to PDU set#A includes the importance parameter of PDU set#A.
  • UPF can obtain the importance parameter of PDU set#A from the header of the data packet corresponding to PDU set#A, and then determine whether PDU set#A is important.
  • the rules for UPF to determine the importance of PDU set#A can be configured in UPF in advance.
  • the rules for UPF to determine the importance of PDU set#A can be sent by AF/AS to UPF.
  • AF/AS controls the rules sent to UPF to determine the importance of PDU set #A.
  • PCC rules include rules for determining the importance of a PDU set.
  • the type of PDU set#A can reflect the importance of PDU set#A. For example, if PDU set#A is an I frame, then PDU set#A is important; if PDU set#A is a P frame, then PDU set#A is not important.
  • whether there is a PDU set associated with PDU set #A can also reflect the importance of PDU set #A. For example, if there is a PDU set that depends on PDU set #A, then PDU set #A is important; if there is no PDU set that depends on PDU set #A, then PDU set #A is not important.
  • the position of PDU set#A in the GoP can also reflect the importance of PDU set#A.
  • the preset location may be configured into the UPF.
  • the preset position parameter can be configured in UPF as "3".
  • the meaning of the default position parameter "3" can be understood as: in a GoP, the PDU set before the third to last PDU set is important and needs to be retransmitted; the PDU set after the third to last PDU set is not Important, no need to retransmit. That is, PDU sets close to the last PDU set in a GoP may be unimportant.
  • UPF may retransmit PDU set#A, or UPF may not retransmit PDU set#A.
  • UPF receives I 1 , P 11 , P 12 , P 13 , P 14 , I 2 ... from AF/AS. Assume that UPF determines that the preset position is the position of P 12 frame. If PDU set #A is I 1 frame or P 11 frame, then UPF retransmits PDU set #A; if PDU set #A is P 13 frame or P 14 frame, UPF does not retransmit PDU set #A.
  • the UPF may continue to determine whether there is a PDU set#B associated with PDU set#A (e.g., a PDU set#B that relies on PDU set#A ).
  • the process of UPF determining whether there is PDU set#B associated with PDU set#A can refer to the relevant description in S207 method 2. If UPF determines that there is PDU set#B associated with PDU set#A, UPF prohibits sending PDU set#B. Further, optionally, UPF may discard PDU set#B.
  • PDU set#B1 is the PDU set in the same video stream as PDU set#A
  • PDU set#B2 is the PDU set in the audio stream.
  • the audio stream is synchronized with the video stream where PDU set#A is located, and PDU set#A and PDU set#B2 need to be sent to the UE at the same time.
  • UPF prohibiting sending PDU set#B is: if PDU set#B has not started to be sent, UPF does not send PDU set#B; if PDU set#B has started to be sent, but has not been sent, then UPF Stop sending PDU set#B. Regarding this, we will not go into details below.
  • the UPF may continue to determine whether a PDU set associated with PDU set #B exists, and if so, the UPF inhibits sending the PDU set associated with PDU set #B. Optionally, UPF discards the PDU set associated with PDU set #B. And so on.
  • the reason for PDU set#A transmission failure is congestion.
  • UPF determines not to retransmit PDU set#A based on the reason for transmission failure being congestion.
  • UPF discards PDU set#A.
  • UPF can discard PDU set#A in the buffer.
  • UPF can discard the unsent data packets in PDU set#A.
  • the method further includes: the UPF determines whether there is PDU set #B associated with PDU set #A.
  • the process of UPF determining whether there is PDU set #B associated with PDU set #A can refer to the relevant description in S207 method 2. If the UPF determines that there is a PDU set#B associated with PDU set#A, then UPF prohibits sending PDU set#B. Optionally, UPF may discard PDU set#B.
  • the UPF may continue to determine whether a PDU set associated with PDU set #B exists, and if so, the UPF inhibits sending the PDU set associated with PDU set #B. And so on.
  • the method 300 proposed by this application is introduced below in conjunction with Figure 4.
  • the difference from the method 200 is that in this method 300, the indication information sent by the RAN to the UPF does not include the reason for the PDU set transmission failure.
  • the method 300 includes:
  • AF/AS sends multiple PDU sets to UPF.
  • UPF receives multiple PDU sets from AF/AS.
  • the multiple PDU sets include PDU set#A and PDU set#B.
  • the AF/AS also sends the type of each PDU set in the multiple PDU sets to the UPF.
  • UPF obtains the association between PDU set#B and PDU set#A.
  • UPF sends PDU set#A to RAN. Accordingly, the RAN receives PDU set#A.
  • the data packet of PDU set#A sent by UPF to the RAN includes the identification information of PDU set#A.
  • S306 RAN sends PDU set#A transmission failure indication information to UPF.
  • UPF receives the indication information of PDU set#A transmission failure.
  • the indication information of PDU set#A transmission failure includes the identification information of PDU set#A. Different from S205, in S305, the indication information of PDU set#A transmission failure does not include the reason for PDU set#A transmission failure.
  • UPF processes PDU set#A and/or PDU set#B according to the indication information of PDU set#A transmission failure.
  • UPF can determine that the transmission of PDU set#A has failed based on the identification information of PDU set#A in the indication information of PDU set#A transmission failure.
  • UPF retransmits PDU set#A based on the indication information of PDU set#A transmission failure.
  • UPF determines whether the buffer area contains the PDU set#A based on the indication information of PDU set#A transmission failure.
  • UPF can start the timer after a data packet (for example, the first data packet, or the last data packet, or other data packets) in PDU set #A is sent and enters the buffer area. If the timer Timeout, UPF discards PDU set#A.
  • a data packet for example, the first data packet, or the last data packet, or other data packets
  • the UPF may continue to determine whether there is PDU set #B associated with PDU set #A.
  • the process of UPF determining whether there is PDU set#B associated with PDU set#A can refer to the relevant description in S207 method 2. If UPF determines that there is PDU set#B associated with PDU set#A, UPF prohibits sending PDU set#B. Optionally, UPF may discard PDU set#B.
  • the UPF may continue to determine whether a PDU set associated with PDU set #B exists, and if so, the UPF inhibits sending the PDU set associated with PDU set #B. And so on.
  • UPF determines the importance of PDU set#A based on the indication information of PDU set#A transmission failure. If the importance of PDU set#A is important, it retransmits PDU set#A. If the importance of PDU set#A is unimportant, PDU set#A will not be retransmitted.
  • the UPF can continue to determine whether there is a PDU set #B associated with PDU set #A.
  • the process of UPF determining whether there is PDU set#B associated with PDU set#A can refer to the relevant description in S207 method 2. If UPF determines that there is PDU set#B associated with PDU set#A, UPF prohibits sending PDU set#B. Further, optionally, UPF may discard PDU set#B.
  • the UPF may continue to determine whether a PDU set associated with PDU set #B exists, and if so, the UPF inhibits sending the PDU set associated with PDU set #B. And so on.
  • the method 400 proposed by this application is introduced below in conjunction with Figure 5.
  • the difference from the method 200 and the method 300 is that in the method 400, the UPF sends the PDU set to the RAN but does not cache the PDU set.
  • the method 400 includes:
  • AF/AS sends multiple PDU sets to UPF.
  • UPF receives multiple PDU sets from AF/AS.
  • the multiple PDU sets include PDU set#A and PDU set#B.
  • the AF/AS also sends the type of each PDU set in the multiple PDU sets to the UPF.
  • UPF obtains the association between PDU set#B and PDU set#A.
  • UPF sends PDU set#A to RAN. Accordingly, the RAN receives PDU set#A.
  • the data packet of PDU set#A sent by UPF to the RAN includes the identification information of PDU set#A.
  • RAN sends PDU set#A transmission failure indication information to UPF.
  • UPF receives the indication information of PDU set#A transmission failure.
  • the indication information of PDU set#A transmission failure includes the identification information of PDU set#A.
  • the indication information of PDU set#A transmission failure includes the reason for PDU set#A transmission failure, or does not include the reason for PDU set#A transmission failure, which is not limited.
  • UPF processes PDU set#B according to the indication information of PDU set#A transmission failure.
  • UPF determines whether there is an error message related to PDU set#A based on the indication information of PDU set#A transmission failure. Associated PDU set#B.
  • the process of UPF determining whether there is PDU set #B associated with PDU set #A can refer to the relevant description in S207 method 2.
  • UPF determines that there is PDU set#B associated with PDU set#A, UPF prohibits sending PDU set#B. Further, optionally, UPF may discard PDU set#B.
  • the UPF may continue to determine whether a PDU set associated with PDU set #B exists, and if so, the UPF inhibits sending the PDU set associated with PDU set #B. And so on.
  • PDU set#A and PDU set#B are two frames in the same video stream.
  • the analysis of PDU set#B depends on PDU set#A. Since PDU set#A has failed to transmit, at this time, even if PDU set# B is transmitted successfully, but PDU set#B cannot be decoded correctly.
  • the data packet sent by UPF to RAN includes time #A
  • the instruction information sent by RAN to UPF also includes time #A.
  • UPF uses this time #A and time #B determine whether to retransmit the PDU set.
  • the method 500 includes:
  • AF/AS sends multiple PDU sets to UPF.
  • UPF receives multiple PDU sets from AF/AS.
  • the multiple PDU sets include PDU set#A and PDU set#B.
  • the AF/AS also sends the type of each PDU set in the multiple PDU sets to the UPF.
  • UPF sends data packet #A to RAN. Accordingly, the RAN receives packet #A.
  • Data packet #A is a data packet in PDU set#A.
  • the data packet #A includes the identification information and time #A of PDU set #A.
  • the time #A is the timestamp corresponding to the data packet #A, or the time when the UPF sends the data packet #A.
  • the timestamp corresponding to data packet #A may be added by AF/AS in data packet #A.
  • the UE does not receive the data packet #A from the RAN.
  • RAN sends PDU set#A transmission failure indication information to UPF.
  • UPF receives the indication information of PDU set#A transmission failure.
  • the RAN determines that the PDU set#A fails to be transmitted.
  • the indication information of PDU set #A transmission failure includes identification information of PDU set #A and time #A in S502.
  • UPF determines whether the transmission delay of data packet #A exceeds the PDB based on the indication information of PDU set #A transmission failure.
  • the UPF may determine that the transmission of PDU set #A failed based on the identification information in the indication information of the transmission failure of PDU set #A, and, based on the time #A and time #B in the indication information of the transmission failure of PDU set #A ( example For example, when the judgment is made), it is judged whether the transmission delay of the data packet #A exceeds the PDB.
  • the reason for retransmitting with PDU set as the granularity is that the data packets in the PDU set are in order. If only data packet #A is retransmitted, the RAN side needs to determine the position of data packet #A in PDU set #A, and Sending packet #A sequentially increases the complexity of RAN processing. Therefore, if UPF retransmits PDU set as granularity, the complexity of RAN processing can be reduced.
  • UPF can also discard PDU set#A.
  • the method also includes: UPF can also obtain the association relationship between PDU set#B and PDU set#A. Also, the UPF determines whether there is PDU set#B associated with PDU set#A. The process of UPF determining whether there is PDU set#B associated with PDU set#A can refer to the relevant description in S207 method 2. If UPF determines that there is PDU set#B associated with PDU set#A, UPF prohibits sending PDU set#B. Optionally, UPF may discard PDU set#B.
  • the UPF may continue to determine whether a PDU set associated with PDU set #B exists, and if so, the UPF inhibits sending the PDU set associated with PDU set #B. And so on.
  • method 500 and method 200, method 300 or method 400 is not isolated, and method 500 and method 200, method 300 or method 400 can be combined with each other.
  • method 2 of S307 can be combined with S506. If the transmission delay of data packet #A does not exceed PDB, further, UPF can determine whether the cache area includes PDU set #A. If the buffer contains the PDU set#A, UPF retransmits the PDU set#A. If the buffer does not include the PDU set#A, UPF does not retransmit PDU set#A.
  • FIG. 7 shows a communication device provided by an embodiment of the present application.
  • the communication device includes a transceiver unit 701 and a processing unit 702.
  • the transceiver unit 701 can be used to implement corresponding information transceiver functions.
  • the transceiver unit 701 may also be called a communication interface or communication unit.
  • Processing unit 702 may be used to perform processing operations.
  • the device also includes a storage unit, which can be used to store instructions and/or data.
  • the processing unit 702 can read the instructions and/or data in the storage unit, so that the device implements the foregoing method embodiments. the action of the device.
  • the device may be the RAN network element in the aforementioned embodiment, or may be a component (such as a chip) of the RAN network element.
  • the transceiver unit and the processing unit may be used to implement RAN-related operations in each of the above method embodiments.
  • the transceiver unit is used to implement S206, S306, S405 or S505, etc.
  • the processing unit is used to implement S205, S305, S404 or S504, etc.
  • the device may be the UPF network element in the aforementioned embodiment, or may be a component (such as a chip) of the UPF network element.
  • the transceiver unit and the processing unit can be used to implement the related operations of the UPF in each of the above method embodiments.
  • the transceiver unit is used to implement S203, S303, S403 or S502, etc.
  • the processing unit is used to implement S207, S307, S406 or S506, etc.
  • the device may be the AF/AS in the aforementioned embodiment, or may be a component of the AF/AS (such as a chip).
  • the transceiver unit and the processing unit can be used to implement the AF/AS in each of the above method embodiments. related operations.
  • the transceiver unit is used to implement S201, S301, S401 or S501, etc.
  • unit may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (such as a shared processor, a proprietary processor, or a group of processors) used to execute one or more software or firmware programs. processor, etc.) and memory, merged logic circuitry, and/or other suitable components to support the described functionality.
  • ASIC application specific integrated circuit
  • processor such as a shared processor, a proprietary processor, or a group of processors
  • memory merged logic circuitry, and/or other suitable components to support the described functionality.
  • the device may be specifically the first network element in the above embodiments, and may be used to execute various processes corresponding to the first network element in the above method embodiments and/or Steps, or the device can be specifically the network management network element in the above embodiments, and can be used to execute various processes and/or steps corresponding to the network management network element in the above method embodiments. To avoid duplication, they will not be repeated here. Repeat.
  • the above communication device has the function of realizing the corresponding steps performed by the device in the above method.
  • Functions can be implemented by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the transceiver unit can be replaced by a transceiver (for example, the transmitting unit in the transceiver unit can be replaced by a transmitter, and the receiving unit in the transceiver unit can be replaced by a receiver. ), other units, such as a processing unit, can be replaced by a processor to respectively perform the sending and receiving operations and related processing operations in each method embodiment.
  • transceiver unit 701 may also be a transceiver circuit (for example, it may include a receiving circuit and a transmitting circuit), and the processing unit may be a processing circuit.
  • the device in Figure 7 can be the device in the aforementioned method embodiment, or it can be a chip or a chip system, such as a system on chip (SoC).
  • the transceiver unit may be an input-output circuit or a communication interface; the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip. No limitation is made here.
  • An embodiment of the present application also provides a communication device, as shown in Figure 8 , including: a processor 801 and a communication interface 802.
  • the processor 801 is used to execute computer programs or instructions stored in the memory 803, or read data stored in the memory 803, to execute the methods in each of the above method embodiments.
  • the communication interface 802 is used for receiving and/or transmitting signals.
  • the processor 801 is used to control the communication interface 802 to receive and/or send signals.
  • the communication device further includes a memory 803, which is used to store computer programs or instructions and/or data.
  • the memory 803 may be integrated with the processor 801, or may be provided separately. By way of example, there are one or more memories 803 .
  • the processor 801, the communication interface 802 and the memory 803 are connected to each other through a bus 804;
  • the bus 804 can be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) ) bus, etc.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the above-mentioned bus 804 can be divided into an address bus, a data bus, a control bus, etc. For ease of presentation, only one thick line is used in Figure 8, but it does not mean that there is only one bus or one type of bus.
  • the processor 801 is used to execute computer programs or instructions stored in the memory 803.
  • the device may be the RAN network element in the aforementioned embodiment, or may be a component (such as a chip) of the RAN network element.
  • the communication interface and processor may be used to implement RAN-related operations in each of the above method embodiments.
  • the communication interface is used to implement S206, S306, S405 or S505, etc.
  • the processor is used to implement S205, S305, S404 or S504, etc.
  • the device may be the UPF in the aforementioned embodiment, or may be a component of the UPF (such as a chip).
  • the communication interface and processor can be used to implement the related operations of UPF in each of the above method embodiments.
  • the communication interface is used to implement S203, S303, S403 or S502, etc.
  • the processor is used to implement S207, S307, S406 or S506, etc.
  • the device may be the AF/AS in the aforementioned embodiment, or may be a component of the AF/AS (such as a chip).
  • the communication interface and processor can be used to implement AF/AS related operations in each of the above method embodiments.
  • the communication interface is used to implement S201, S301, S401 or S501, etc.
  • the processor (such as processor 801) mentioned in the embodiment of this application can be a central processing unit (CPU), a network processor (network processor, NP) or a combination of CPU and NP.
  • the processor may further include hardware chips.
  • the above-mentioned hardware chip can be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the above-mentioned PLD can be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL) or any combination thereof.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory. Volatile memory can be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separate.
  • a component shown as a unit may or may not be a physical unit, that is, it may be located in one place, or it may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • Functions may be stored in a location if they are implemented as software functional units and sold or used as independent products.
  • a computer-readable storage medium Based on this understanding, the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods of various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法和装置,该方法包括:用户面网元向接入网设备发送第一数据集;该用户面网元接收来自该接入网设备的该第一数据集传输失败的指示信息;该用户面网元根据该第一数据集传输失败的指示信息,处理该第一数据集和/或第二数据集,该第二数据集与该第一数据集之间具有关联关系。根据本申请的方法,用户面网元可以根据从接入网设备接收的第一数据集传输失败的指示信息,处理第一数据集和/或第二数据集。相比于用户面网元只按照数据集的顺序发送数据集,采用本申请的方法可以提高传输数据集的灵活性。

Description

通信方法和装置
本申请要求于2022年5月5日提交中国专利局、申请号为202210481785.3、申请名称为“通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,具体地,涉及一种通信方法和装置。
背景技术
在无线通信网络中,扩展现实(extended reality,XR)技术具有多视角、交互性强等优点,能够为用户提供了一种全新的视觉体验,具有极大的应用价值和商业潜力。XR包含虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、和混合现实(mix reality,MR)等技术,能够广泛应用于娱乐、游戏、医疗、广告、工业、在线教育、以及工程等诸多领域。
当前,用户面网元(例如,UPF)按照数据集(例如,PDU set)之间的先后顺序向接入网设备(例如,RAN)传输数据集。然而这种传输方式存在着一些问题。具体而言,在XR业务中,一旦某个数据集(例如,PDU set)传输失败,反映到用户体验上很可能会造成秒级的卡顿,而XR业务对时延要求很高,秒级的卡顿会造成用户体验的严重下降。此外,XR业务中的PDU sets之间会存在着关联关系。例如,发送视频的时候往往是I帧、P帧交替发送。P帧需要依赖于I帧或前面的一个P帧进行解码。因此,一旦I帧或前面的P帧传输失败,后面的P帧即使传输成功,也无法进行解码。
因此,如果UPF仅按照PDU set之间的先后顺序进行传输的话,可能会存在资源浪费的问题,或者可能在用户端出现较长时间的卡顿,给用户造成不好的体验。即,当前UPF传输PDU set的方式不够灵活。
发明内容
本申请提供一种通信方法和装置,用于提高传输数据集的灵活性。
第一方面,提供一种通信方法,包括:
用户面网元向接入网设备发送第一数据集;该用户面网元接收来自该接入网设备的该第一数据集传输失败的指示信息;该用户面网元根据该第一数据集传输失败的指示信息,处理该第一数据集和/或第二数据集,该第二数据集与该第一数据集之间具有关联关系。
示例性地,第一数据集为原始流中的数据集,第二数据集为该原始流对应的纠错流中的数据集。其中,第二数据集包括第一数据集的纠错信息。
示例性地,第一数据集为基础层中的数据集,第二数据集为该基础层对应的增强层中的数据集。其中,第二数据集包括第一数据集的增强信息。
示例性地,第一数据集和第二数据集分别为需要同步的两个数据流中的数据集,且第一数据集和第二数据集需要同时(或者在允许的时延范围内)发送给UE,则第二数据集与第一数据集之间具有关联关系。例如,在VR场景中,第一数据集为视频流中的数据集,第二数据集为音频流中的数据集,该视频流和音频流需要同步。
示例性地,第一数据集和第二数据集的关联关系还可以为第二数据集的解析依赖第一数据集。例如,第一数据集和第二数据集为同一视频流中同一GoP中的两个帧,例如,第一数据集为I帧,第二数据集为依赖于该I帧的P帧。
根据本申请的方法,用户面网元可以根据从接入网设备接收的第一数据集传输失败的指示信息,处理第一数据集和/或第二数据集。相比于用户面网元只按照数据集的顺序发送数据集,采用本申请的方法可以提高传输数据集的灵活性。
结合第一方面,在第一方面的某些实现方式中,该用户面网元根据该第一数据集传输失败的指示信息,处理该第一数据集,包括:该用户面网元根据该第一数据集传输失败的指示信息重传该第一数据集。
根据本申请的方法,在第一数据集传输失败的情况下,用户面网元可以重传第一数据集,从而尽可能减少卡顿现象的发生。
结合第一方面,在第一方面的某些实现方式中,该第一数据集传输失败的指示信息中包括该第一数据集传输失败的原因为非拥塞;
该用户面网元根据该第一数据集传输失败的指示信息重传该第一数据集包括:该用户面网元基于该第一数据集传输失败的原因为非拥塞重传该第一数据集。
根据本申请的方法,作为一种优选的实施方式,在第一数据集传输失败的原因为非拥塞的情况下,用户面网元重传第一数据集。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:
该用户面网元根据该第一数据集传输失败的指示信息,以及该第一数据集与该第二数据集之间的关联关系,确定存在该第二数据集。
根据本申请的方法,作为一种优选的实施方式,在存在第二数据集的情况下,用户面网元重传第一数据集,使得第二数据集可以正确解码。
如果不存在该第二数据集,可以不重传第一数据集,从而节省传输资源。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:
该用户面网元确定该第一数据集的重要程度为重要。
应理解,本申请中,重要程度可以作为数据集的一个参数。
例如,重要程度参数的取值可以为“high,重要”、“medium,中等重要”和“low,不重要”。
又例如,重要程度参数的取值可以为0至7中的数值,数值越小代表重要程度越大。例如,取值为0至3表示重要,取值为4至7表示不重要。
示例性地,第一数据集的重要程度可以与以下中的一项或多项相关联:
第一数据集的类型,是否存在与第一数据集相关联的数据集,或第一数据集在数据集组中的位置。
结合第一方面,在第一方面的某些实现方式中,该用户面网元确定该第一数据集的重要程度为重要,包括:
该用户面网元根据该第一数据集在数据集组中的位置确定该第一数据集的重要程度为重要,该第一数据集在数据集组中的位置在预设位置之前,其中,该数据集组中包括多个数据集,该第一数据集为该多个数据集中的一个。
根据本申请的方法,如果第一数据集在数据集组中的位置在预设位置之前,则第一数据集的重要程度为重要。
结合第一方面,在第一方面的某些实现方式中,该第一数据集进行重传时的优先级高于在重传之前的优先级。
根据本申请的方法,通过提高第一数据集重传时的优先级,从而尽可能更快地将第一数据集传输到终端设备。
结合第一方面,在第一方面的某些实现方式中,该第一数据集传输失败的指示信息中包括该第一数据集传输失败的原因为拥塞;该用户面网元根据该第一数据集传输失败的指示信息,处理该第二数据集,包括:该用户面网元根据该第一数据集传输失败的原因为拥塞的指示信息丢弃该第二数据集。
根据本申请的方法,在第一数据集传输失败的原因为拥塞的情况下,不发送第二数据集,丢弃第二数据集,从而可以节省传输资源和存储资源。
结合第一方面,在第一方面的某些实现方式中,该用户面网元根据该第一数据集传输失败的指示信息,处理该第一数据集,包括:该用户面网元根据该第一数据集传输失败的原因为拥塞的指示信息丢弃该第一数据集。
根据本申请的方法,在第一数据集传输失败的原因为拥塞的情况下,不重传第一数据集,丢弃第一数据集,从而可以节省传输资源和存储资源。
结合第一方面,在第一方面的某些实现方式中,第一数据集与第二数据集的关联关系为第二数据集的解析依赖于第一数据集;或者,该第一数据集为原始流中的数据集,该第二数据集为该原始流对应的纠错流中的数据集,该第二数据集包括该第一数据集的纠错信息;或者,该第一数据集为基础层中的数据集,该第二数据集为该基础层对应的增强层中的数据集,该第二数据集包括该第一数据集的增强信息;或者,该第一数据集和该第二数据集为不同的数据流中同步传输的数据集。
结合第一方面,在第一方面的某些实现方式中,该第一数据集的数据包中包括该第一数据集的识别信息,该第一数据集传输失败的指示信息中包括该识别信息;该方法还包括:
该用户面网元根据该识别信息确定该第一数据集;该用户面网元根据该第二数据集与该第一数据集的关联关系确定该第二数据集。
结合第一方面,在第一方面的某些实现方式中,该第一数据集和该第二数据集为同一视频流中的数据集,数据集组为该视频流中的图像组。
第二方面,提供一种通信方法,包括:
接入网设备接收来自用户面网元的第一数据集;该接入网设备确定该第一数据集传输失败;该接入网设备向该用户面网元发送该第一数据集传输失败的指示信息。
根据本申请的方法,在第一数据集传输失败的情况下,接入网设备向该用户面网元发送该第一数据集传输失败的指示信息,从而提高传输数据集的灵活性。
结合第二方面,在第二方面的某些实现方式中,该第一数据集传输失败的指示信息中包括该第一数据集传输失败的原因,该第一数据集传输失败的原因为拥塞或非拥塞。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:
该接入网设备接收该用户面网元重传的该第一数据集;该接入网设备向终端设备重传该第一数据集。
结合第二方面,在第二方面的某些实现方式中,该第一数据集进行重传时的优先级高于在重传之前的优先级。
根据本申请的方法,通过提高第一数据集重传时的优先级,从而尽可能更快地将第一数据集传输到终端设备。
第三方面,提供一种通信装置,包括:收发单元以及与收发单元连接的处理单元。
收发单元,用于向接入网设备发送第一数据集;收发单元,用于接收来自该接入网设备的该第一数据集传输失败的指示信息;收发单元或处理单元,用于根据该第一数据集传输失败的指示信息,处理该第一数据集和/或第二数据集,该第二数据集与该第一数据集之间具有关联关系。
结合第三方面,在第三方面的某些实现方式中,收发单元,用于根据该第一数据集传输失败的指示信息重传该第一数据集。
结合第三方面,在第三方面的某些实现方式中,该第一数据集传输失败的指示信息中包括该第一数据集传输失败的原因为非拥塞;收发单元,用于基于该第一数据集传输失败的原因为非拥塞重传该第一数据集。
结合第三方面,在第三方面的某些实现方式中,处理单元,用于根据该第一数据集传输失败的指示信息,以及该第一数据集与该第二数据集之间的关联关系,确定存在该第二数据集。
结合第三方面,在第三方面的某些实现方式中,处理单元,用于确定该第一数据集的重要程度为重要。
结合第三方面,在第三方面的某些实现方式中,处理单元,用于根据该第一数据集在数据集组中的位置确定该第一数据集的重要程度为重要,该第一数据集在数据集组中的位置在预设位置之前,其中,该数据集组中包括多个数据集,该第一数据集为该多个数据集中的一个。
结合第三方面,在第三方面的某些实现方式中,该第一数据集进行重传时的优先级高于在重传之前的优先级。
结合第三方面,在第三方面的某些实现方式中,该第一数据集传输失败的指示信息中包括该第一数据集传输失败的原因为拥塞;处理单元,用于根据该第一数据集传输失败的原因为拥塞的指示信息丢弃该第二数据集。
结合第三方面,在第三方面的某些实现方式中,处理单元,用于根据该第一数据集传输失败的原因为拥塞的指示信息丢弃该第一数据集。
结合第三方面,在第三方面的某些实现方式中,第一数据集与第二数据集的关联关系为第二数据集的解析依赖于第一数据集;或者,该第一数据集为原始流中的数据集,该第二数据集为该原始流对应的纠错流中的数据集,该第二数据集包括该第一数据集的纠错信息;或者,该第一数据集为基础层中的数据集,该第二数据集为该基础层对应的增强层中的数据集,该第二数据集包括该第一数据集的增强信息;或者,该第一数据集和该第二数据集为不同的数据流中同步传输的数据集。
结合第三方面,在第三方面的某些实现方式中,该第一数据集的数据包中包括该第一数据集的识别信息,该第一数据集传输失败的指示信息中包括该识别信息;处理单元,用于根据该识别信息确定该第一数据集;处理单元,用于根据该第二数据集与该第一数据集的关联关系确定该第二数据集。
结合第三方面,在第三方面的某些实现方式中,该第一数据集和该第二数据集为同一视频流中的数据集,数据集组为该视频流中的图像组。
第四方面,提供一种通信装置,包括:收发单元以及与收发单元连接的处理单元。
收发单元,用于接收来自用户面网元的第一数据集;处理单元,用于确定该第一数据集传输失败;收发单元,用于向该用户面网元发送该第一数据集传输失败的指示信息。
结合第四方面,在第四方面的某些实现方式中,该第一数据集传输失败的指示信息中包括该第一数据集传输失败的原因,该第一数据集传输失败的原因为拥塞或非拥塞。
结合第四方面,在第四方面的某些实现方式中,收发单元,用于接收该用户面网元重传的该第一数据集;收发单元,用于向终端设备重传该第一数据集。
结合第四方面,在第四方面的某些实现方式中,该第一数据集进行重传时的优先级高于在重传之前的优先级。
第五方面,提供一种通信设备,包括通信接口和处理器。当该通信设备运行时,处理器执行存储器存储的计算机程序或指令,使得该通信设备执行第一方面至第二方面中任一种可能实现方式中的方法。该存储器可以位于处理器中,也可以为与处理器通过相互独立的芯片来实现,本申请对此不具体限定。
第六方面,提供一种计算机可读存储介质,包括计算机程序,当计算机程序在计算机上运行时,使得计算机执行第一方面至第二方面中任一种可能实现方式中的方法。
第七方面,提供一种芯片或芯片系统,芯片或芯片系统包括处理电路,处理电路用于执行该第一方面至第二方面中任一种可能实现方式中的方法。
第八方面,提供了一种计算机程序产品,计算机程序产品包括:计算机程序(也可以称为代码,或指令),当计算机程序被运行时,使得计算机执行第一方面至第二方面中任一种可能实现方式中的方法。
第九方面,提供了一种通信系统,包括用户面网元和接入网设备。用户面网元用于执行第一方面或第一方面中任一种可能实现方式中的方法。接入网设备用于执行第二方面或第二方面中任一种可能实现方式中的方法。
附图说明
图1示出了本申请适用的通信系统。
图2为多个帧之间的依赖关系的示例图。
图3为本申请所提出的方法的一例示意性交互图。
图4为本申请所提出的方法的一例示意性交互图。
图5为本申请所提出的方法的一例示意性交互图。
图6为本申请所提出的方法的一例示意性交互图。
图7为本申请提供的通信装置的一种示意性框图。
图8为本申请提供的通信设备的一种示意性框图。
具体实施方式
本申请实施例的技术方案可以应用于各种第三代合作伙伴计划(the 3rd generation partnership project,3GPP)通信系统,例如:长期演进(long term evolution,LTE)系统、例如,LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、第五代(5th Generation,5G)系统又称新无线(new radio,NR)系统、未来第六代(6th Generation,6G)系统等。
图1为一种通信网络架构的示意图。为了方便描述,下面介绍本申请涉及的网元:
1、用户设备(user equipment,UE):可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的终端、移动台(mobile station,MS)、终端(terminal)或软终端等等。例如,水表、电表、传感器等。应理解,用户设备也可以称为终端设备。
2、(无线)接入网设备(radio access network,(R)AN):用于为特定区域的授权用户设备提供入网功能,并能够根据用户设备的级别,业务的需求等使用不同质量的传输隧道。
RAN能够管理无线资源,为用户设备提供接入服务,进而完成控制信号和用户设备数据在用户设备和核心网之间的转发。RAN也可以理解为传统网络中的基站。
3、用户面功能(user plane function,UPF)网元:用于分组路由和转发以及用户面数据的服务质量(quality of service,QoS)处理等。用户数据可通过该网元接入到数据网络(data network,DN)。在本申请实施例中,可用于实现用户面网元的功能。
4、数据网络(data network,DN):用于提供传输数据的网络。例如,运营商业务的网络、因特(Internet)网、第三方的业务网络等。
5、认证服务功能(authentication server function,AUSF)网元:主要用于用户鉴权等。
6、接入和移动管理功能(access and mobility management function,AMF)网元:主要用于移动性管理和接入管理等,可以用于实现移动性管理实体(mobility management entity,MME)功能中除会话管理之外的其它功能,例如,接入授权/鉴权等功能。
7、会话管理功能(session management function,SMF)网元:主要用于会话管理、终端设备的网络互连网协议(internet protocol,IP)地址分配和管理、选择和管理用户平面功能、策略控制和收费功能接口的终结点以及下行数据通知等。
8、策略控制功能(policy control function,PCF)网元:用于指导网络行为的统一策略框架,为网络网元(例如AMF,SMF网元等)或终端设备提供策略规则信息等。
9、网络存储功能(network repository function,NRF)网元:用于保存网络功能实体以及其提供服务的描述信息,以及支持服务发现,网元实体发现等功能。
10、网络开放功能(network exposure function,NEF)网元:用于安全地向外部开放由第三代合作伙伴计划(3GPP)网络功能提供的业务和能力等。
11、统一数据管理(unified data management,UDM)网元:用于统一数据管理、5G用户数据管理、处理用户标识、接入鉴权、注册、或移动性管理等。
12、应用功能(application function,AF)网元:用于进行应用影响的数据路由,接入网络开放功能网元,与策略框架交互进行策略控制等。
13、网络数据分析功能(network data analytics function,NWDAF)网元:NWDAF可以具备以下至少一种功能:
数据收集、模型训练、模型反馈、分析结果推理、分析结果反馈等。其中,数据收集功能是指收集来自网络网元、第三方服务器、终端设备或网管系统中的数据;模型训练功能是指基于相关输入数据做分析训练得到模型;模型反馈功能是指将训练好的机器学习模型发送给支持推理功能的网元;分析结果推理功能基于训练好的机器学习模型以及推理数据做推理确定数据分析结果;分析结果反馈功能可以向网络网元、第三方服务器、提供终端设备或网管系统提供数据分析结果,该数据分析结果可协助网络选择业务的服务质量参数,或协助网络执行流量路由,或协助网络选择背景流量传输策略等。
在上述网络架构中,N2接口为RAN和AMF网元之间的接口,用于无线参数、非接入层(non-access stratum,NAS)信令的发送等;N3接口为RAN和UPF网元之间的接口,用于传输用户面的数据等;N4接口为SMF网元和UPF网元之间的接口,用于传输例如业务策略、N3连接的隧道标识信息,数据缓存指示信息,以及下行数据通知消息等信息。N6接口为DN网元和UPF网元之间的接口,用于传输用户面的数据等。
为了方便描述,下文以数据集为协议数据单元组(protocol data unit set,PDU set)为例进行说明。
示例性地,本申请中的PDU set可以为原始流或纠错流中的PDU set。该原始流与该纠错流对应。
示例性地,本申请中的PDU set可以为基础层或增强层中的PDU set。该基础层与该增强层对应。
示例性地,本申请中的PDU set可以为需要同步的数据流中的PDU set。例如,在VR场景中,PDU set可以为视频流中的PDU set,或者为音频流中的PDU set,该视频流和音频流需要同步。
示例性地,本申请中的PDU set可以为同一视频流中的I帧或者P帧。I帧为帧内编码帧,P帧为帧内预测编码帧。I帧可以独立解码。但是同一个图像组(group of pictures,GoP)中的P帧只显示图像相对于前一帧的变化,除非借助前一帧,否则无法解码。即,如果I帧和前面的P帧没有成功传输,那么后面的P帧即使传输成功UE也无法解码。如图2所示,帧1和帧6是独立的I帧,帧2-5和帧7-8分别依赖于之前的帧,帧4和帧5也依赖于帧2。
在介绍本申请的方法之前,首先通过几个例子介绍同一个视频流中帧序号的可能编排方式:
例1:
视频流中的帧依次为I1、P11、P12、P13、I2、P21、P22、P23,八个帧对应的帧序号依次为1、2、3、4、5、6、7、8。即,I1帧的帧序号为“1”;P11帧的帧序号为“2”;P12帧的帧序号为“3”,以此类推。
例2:
视频流中的帧依次为I1、P11、P12、P13、I2、P21、P22、P23,八个帧对应的帧序号依次为1、2、3、4、1、2、3、4,即,I1帧的帧序号为“1”;P11帧的帧序号为“2”;P12帧的帧序号为“3”,P13帧的帧序号为“4”,I2帧的帧序号为“1”,以此类推。
下面结合图3介绍本申请提出的方法200,在该方法200中,UPF发送并缓存PDU set,RAN向UPF反馈的指示信息中包括PDU set传输失败的原因。UPF根据该指示信息处理PDU set。
具体地,该方法200包括:
S201,AF/应用服务器(application server,AS)向UPF发送多个PDU set。相应地,UPF接收来自AF/AS的多个PDU set。
该多个PDU set中包括PDU set#A和PDU set#B。应理解,本申请中“包括”的含义为“至少包括”,下文不再赘述。
可选地,AF/AS还向UPF发送该多个PDU set中每个PDU set的类型。例如,在视频流中PDU set的类型可以为I帧或者P帧。PDU set的类型可以用于确定PDU set之间的依赖关系。
S202,UPF获取PDU set#B(第二数据集的一例)与PDU set#A的关联关系。
情况A:
该PDU set#A和PDU set#B分别为不同数据流中的PDU set。
例如,PDU set#A为原始流中的PDU set,PDU se#B为该原始流对应的纠错流中的PDU set。其中,PDU se#B包括PDU set#A的识别信息和PDU set#A的纠错信息。应理解,纠错流中包括原始流的纠错信息,用于提升原始流传输的可靠性。由于PDU set#B包括PDU set#A的识别信息,UPF获知PDU set#A和PDU set#B之间具有关联关系。
又例如,PDU set#A为基础层中的PDU set,PDU set#B为该基础层对应的增强层中的PDU set。其中,PDU set#B包括PDU set#A的识别信息和PDU set#A的增强信息。应理解,增强层中包括基础层的增强信息,用于提升基础层的质量。由于PDU se#B包括PDU set#A的识别信息,UPF获知PDU set#A和PDU set#B之间具有关联关系。
又例如,该PDU set#A和PDU set#B分别为需要同步的两个数据流中的PDU set。例如,在VR场景中,PDU set#A为视频流中的数据,PDU set#B为音频流中的数据,该视频流和音频流需要同步,且PDU set#A和PDU set#B需要同时(或者在允许的时延范围内)发送给UE,则PDU set#A与PDU set#B之间具有关联关系。
在此情况A中,UPF可以从AF/AS获取PDU set#B与PDU set#A的关联关系。
例如,在S201中,AF/AS向UPF发送了PDU set#B与PDU set#A,并且PDU set#B与PDU set#A中包括关联标识,UPF根据该关联标识确定PDU set#B与PDU set#A之间具有关联关系。
又例如,AF可以通过控制面向UPF发送PDU set#A所属的数据流(记为,数据流#1)与PDU set#B所属的数据流(记为,数据流#2)之间具有关联关系的信息。进一步地,UPF根据数据流#1和数据流2的帧率、PDU set的序号确定PDU set#B与PDU set#A之间具有关联关系。
例如,UPF获取数据流#1和数据流#2的帧率。比如,UPF可以从AF获取数据流#1和数据流#2的帧率。UPF还可以检测数据流#1和数据流#2各自的数据包的发送的时间间隔,并根据检测到的数据流#1和数据流#2各自的数据包的发送的时间间隔获取数据流#1和数据流#2的帧率。如果数据流#1和数据流#2的帧率相同,则数据流#1和数据流#2中序号相同的PDU set之间具有关联关系。如果PDU set#A的序号为“1”,PDU set#B的序 号也为“1”,则PDU set#B与PDU set#A之间具有关联关系。
例如,数据流#1和数据流#2的帧率为1:2的关系,如果PDU set#A的序号为“1”,PDU set#B的序号为“1”或“2”,则PDU set#B与PDU set#A之间具有关联关系。
情况B:
PDU set#B与PDU set#A的关联关系为PDU set#B的解析依赖PDU set#A。
例如,在此情况#B中,PDU set#A和PDU set#B为同一业务的同一视频流中同一个PDU set组(例如,同一个GoP)中的PDU set。例如,PDU set#A为上文中的I1帧,PDU set#B为上文中的P11帧。换句话说,UPF获知PDU set#B的解析(也可以说解码)依赖于PDU set#A。
下面介绍在此情况B中UPF获取PDU set#B对PDU set#A的依赖关系的几种可能的方式。为了方便描述,将PDU set#A和PDU set#B所在的PDU set组记为PDU set组#1。
方式1:
AF/AS向UPF发送PDU set组#1中PDU set之间的依赖关系,其中包括PDU set#B对PDU set#A的依赖关系。具体可以包括以下情况:
情况1:
AF/AS直接向UPF发送PDU set组#1中PDU set之间的依赖关系。
例如,在S201中,AF/AS还向UPF发送PDU set组#1中PDU set之间的依赖关系。
情况2:
AF/AS通过其他网元间接向UPF发送PDU set组#1中PDU set之间的依赖关系。
示例性地,该过程可以包括如下步骤:
步骤1:AF/AS可以向PCF发送PDU set组#1中PDU set之间的依赖关系。
步骤2:PCF向SMF发送PDU set组#1中PDU set之间的依赖关系。例如,PCF可以向SMF发送策略与计费控制(policy and charging control,PCC)规则,该PCC规则中包括PDU set组#1中PDU set之间的依赖关系。
步骤3:SMF向UPF发送PDU set组#1中PDU set之间的依赖关系。例如,SMF可以向UPF发送N4规则,该N4规则中包括PDU set组#1中PDU set之间的依赖关系。
方式2:
UPF根据PDU set#A的类型和PDU set#B的类型确定PDU set#B对PDU set#A的依赖关系。即,UPF可以通过内部的检测分析确定PDU set#A的类型和PDU set#B的类型,进而确定PDU set#B的解析依赖PDU set#A。
如上文中的例1所示,如果UPF确定PDU set#A为I1帧,PDU set#B为P11帧,且I1帧和P11帧在同一个GoP,则UPF确定PDU set#B对PDU set#A的依赖关系。
下面介绍UPF获取PDU set的类型的可能情况:
情况1:
在S201中,AF/AS还向UPF发送该多个PDU set中每个PDU set的类型,例如PDU set#A的类型和PDU set#B的类型。
情况2:
UPF可以根据包长、包到达时间等确定PDU set#A和PDU set#B的类型,并确定PDU set#A和PDU set#B位于同一个PDU set组。
例如,如果在S201中,AF/AS没有向UPF发送PDU set#A的类型和PDU set#B的类型,则UPF可以根据PDU set#A中数据包的包长和包到达时间确定PDU set#A的类型,并且根据PDU set#B中数据包的包长和包到达时间确定PDU set#B的类型。
UPF可以根据包到达时间判断每个PDU set的开端,由于I帧的包长比P帧的包长大,如果PDU set的发送规律为I帧、P帧、P帧、P帧,当UPF检测到包长较大的数据包时,可以确定该数据包属于I帧。
示例性地,AF/AS向UPF发送PDU sets间具有依赖关系的指示信息。PDU sets间具有依赖关系的指示信息用于触发UPF确定PDU set的类型,以及PDU set之间的依赖关系。换句话说,PDU sets间具有依赖关系的指示信息用于指示UPF在传输PDU set时考虑PDU sets间的依赖关系。
AF/AS向UPF发送PDU sets间具有依赖关系的指示信息的方式可以参考S202的方式1,即,可以直接发送,也可以间接发送。
应理解,UPF可以获知所有与PDU set#A相关联的PDU set,PDU set#A相关联的PDU set可以与PDU set#A属于同一个数据流或者属于不同的数据流。例如,PDU set#A相关联的PDU set为PDU set#B1和PDU set#B2,PDU set#B1与PDU set#A属于同一个数据流,PDU set#B2与PDU set#A属于不同的数据流。
S203,UPF向RAN发送PDU set#A(第一数据集的一例)。相应地,RAN接收PDU set#A。
应理解,PDU set#A对应至少一个数据包。或者说,PDU set#A包括至少一个数据包。UPF向RAN发送PDU set#A时,是以数据包为粒度发送的。
其中,该至少一个数据包的每个数据包中均包括PDU set#A的识别信息。例如,UPF可以在数据包的GTP-U包头中添加PDU set#A的识别信息。
下面分情况对PDU set#A的识别信息进行说明:
情况1:
如果仅通过PDU set#A的序号即可识别PDU set#A,则PDU set#A的识别信息可以为PDU set#A的序号。
与上述例1对应,如果PDU set#A为I1帧,帧序号为“1”的帧只有I1帧,则I1帧的识别信息可以为I1帧的帧序号。
情况2:
如果仅通过PDU set#A的序号不能识别PDU set#A,则该PDU set#A的识别信息除了包括PDU set#A的序号,还包括以下中的至少一项:
该PDU set#A对应的服务质量流(quality of service flow,QoS flow)标识,PDU set#A中数据包对应的时间戳(timestamp)。
例如,通过PDU set的序号、QoS flow的标识以及数据包对应的时间戳来标识一个PDU set。
与上述例2对应,如果PDU set#A为I1帧,帧序号为“1”的帧包括I1帧和I2帧,即仅通过帧序号不能识别I1帧,此时I1帧的识别信息还包括I1帧对应的QoS flow的标识,和/或,I1帧中数据包对应的时间戳。
S204,UPF缓存PDU set#A。
示例性地,缓存的方式包括但不限于以下几种:
方式1:
UPF可以将PDU set#A中的数据包缓存预设时长。其中,该预设时长可以为配置到UPF中的,或者,该预设时长与帧率有关。例如,如果帧率为60fps,则该预设时长为15ms;如果帧率为90fps,该预设时长可以为10ms,帧率可由UPF自行检测或者由SMF、AS或AF向UPF发送。
示例性地,在一段时间内帧率可以是固定的;或者,帧率也可以发生变化,不予限制。
例如,UPF发送了PDU set#A中的数据包#1之后,可以将数据包#1缓存预设时长。应理解,如果数据包#1的缓存时长超过预设时长,则UPF可以将数据包#1丢弃。
方式2:
UPF可以缓存预设个数的PDU set。
例如,UPF将PDU set#A所属的数据流映射到QoS flow#1,UPF可以缓存QoS flow#1中的3个PDU set。针对QoS flow#1,如果UPF已经缓存了PDU set#1、PDU set#2和PDU set#3,为了缓存PDU set#A,则UPF可以丢弃PDU set#1、PDU set#2和PDU set#3中的一个,例如丢弃PDU set#1、PDU set#2和PDU set#3中最先缓存的一个。
S205,RAN确定PDU set#A传输失败。
PDU set#A传输失败可以为RAN调度失败,即,由于空口状况较差或者拥塞,RAN无法向UE发送PDU set#A。
或者,PDU set#A传输失败也可以为RAN向UE发送了PDU set#A,但是RAN接收到UE的反馈信息,该反馈信息指示PDU set#A传输失败。
其中,PDU set#A传输失败也可以理解为PDU set#A调度失败。即,UE并没有接收到来自RAN的PDU set#A。
作为一种方式,如果RAN在传输PDU set#A的过程中,PDU set#A中传输失败的数据包个数达到某一阈值,则RAN确定PDU set#A传输失败。应理解,该阈值可以为预配置到RAN中的,或者由UPF向RAN发送的,不予限制。
例如,该阈值为1,即,在传输PDU set#A的过程中,只要有一个数据包传输失败,则RAN确定PDU set#A传输失败。
PDU set#A传输失败的原因可以包括以下两种情况:
情况1:
PDU set#A传输失败的原因为非拥塞。例如,由于RAN与UE之间的空口状态较差,导致PDU set#A传输失败。又例如,由于自动重传请求(automatic repeat request,ARQ)失败和混合自动重传请求(hybrid automatic retransmission request,HARQ)失败,导致PDU set#A传输失败。
情况2:
PDU set#A传输失败的原因为拥塞。例如,在PDU set#A之前有大量数据需要RAN传输,导致无线信道拥塞,RAN没有足够传输PDU set#A的资源。
S206,RAN向UPF发送PDU set#A传输失败的指示信息。相应地,UPF接收PDU set#A传输失败的指示信息。
PDU set#A传输失败的指示信息中包括PDU set#A的识别信息和PDU set#A传输失败 的原因。关于该PDU set#A的识别信息可以参考S203的相关介绍。关于该PDU set#A传输失败的原因可以参考S205的相关介绍。
S207,UPF根据PDU set#A传输失败的指示信息,处理PDU set#A和/或PDU set#B。
其中,UPF可以根据PDU set#A传输失败的指示信息中PDU set#A的识别信息,确定PDU set#A传输失败。
下面对UPF处理PDU set#A和/或PDU set#B的方式进行说明。
方式1:
PDU set#A传输失败的原因为非拥塞,UPF根据PDU set#A传输失败的指示信息重传PDU set#A。
可选地,PDU set#A进行重传时的优先级高于在重传之前的优先级,例如,高于首次传输时的优先级。应理解,PDU set#A也可以进行多次重传。
作为一种可能的情况,在进行重传时,UPF可以将该PDU set#A中的数据包映射到调度优先级更高的QoS flow中进行传输。
例如,在首次传输PDU set#A时,UPF将PDU set#A中的数据包映射到QoS flow#1;在重传PDU set#A时,UPF获取QoS flow#1的调度优先级参数和QoS flow#2的调度优先级参数,确定QoS flow#2的调度优先级高于QoS flow#1的调度优先级,并将PDU set#A中的数据包映射到QoS flow#2。在通过QoS flow#2传输PDU set#A之后,该QoS flow#2还可以用于传输其他数据。如果QoS flow#1的调度优先级已经是最高的了,则该QoS flow#2不存在。
作为另一种可能的情况,在进行重传时,UPF可在PDU set#A的数据包的GTP-U包头中添加提高数据包的传输优先级的指示信息。RAN可以根据GTP-U包头中提高数据包的传输优先级的指示信息,在重传PDU set#A的数据包时,将该PDU set#A中的数据包映射到更高优先级(例如,最高等级)的QoS flow中进行传输。具体,可以参考上文的描述。
下文中,如果需要重传PDU set#A,也可以通过上述方法提高PDU set#A的传输优先级。为了避免重复,就不再一一描述了。
方式2:
PDU set#A传输失败的原因为非拥塞,进一步地,UPF根据PDU set#A传输失败的指示信息确定是否存在与PDU set#A相关联的PDU set#B。
具体地,UPF可以根据PDU set#A传输失败的指示信息确定PDU set#A,进一步地,根据S202中获取的PDU set#B与PDU set#A的关联关系确定PDU set#B是否存在。关于UPF确定是否存在与PDU set#A相关联的PDU set#B的过程,下文不再赘述。
1:如果UPF确定存在与PDU set#A相关联的PDU set#B,则UPF重传PDU set#A。
应理解,此时即使PDU set#A的传输超过了报文延迟预算(packet delay budget,PDB),重传PDU set#A也是有意义的。即,可以使PDU set#B正确解码。
举例说明:对于一个60fps的XR业务流,两个相邻帧之间的时间间隔为16.7ms,因此一个PDU set与其依赖的PDU set之间的时间间隔为N*16.7ms,其中N为正整数,“*”表示相乘。N为两个PDU set之间间隔的PDU set个数。如图2所示,如果PDU set#2传输失败,PDU set#5传输成功,由于PDU set#5的解析依赖PDU set#2,那么在 3*16.7ms=50.1ms的延迟内重传PDU set#2仍然是有用的。
2:如果UPF确定不存在与PDU set#A相关联的PDU set#B,则UPF不重传PDU set#A。可选地,UPF可以丢弃PDU set#A。
应理解,通过不重传PDU set#A可以达到节省传输资源的技术效果,通过丢弃PDU set#A可以达到节省存储资源的技术效果。关于不重传PDU set#A以及丢弃PDU set#A的技术效果下文不再赘述。
以PDU set#A和PDU set#B为同一视频流中的两个帧为例,假设UPF从AF/AS接收了I1、P11、P12、P13、I2……,P13帧的解析依赖于P12帧:
a:如果该PDU set#A为P12帧,且P13帧未发送,则UPF确定存在PDU set#B,该PDU set#B为P13帧。
b:如果该PDU set#A为P12帧,但P13帧对应的数据包已经全部发送了,则UPF确定不存在PDU set#B。
c:如果该PDU set#A为P12帧,且P13帧对应的数据包开始发送了但未全部发送,则UPF确定存在PDU set#B。
d:如果该PDU set#A为P13帧,则UPF确定不存在PDU set#B。
方式3:
PDU set#A传输失败的原因为非拥塞,进一步地,UPF根据PDU set#A传输失败的指示信息确定PDU set#A的重要程度(或确定是否重传PDU set),如果PDU set#A的重要程度为重要,则重传PDU set#A。如果PDU set#A的重要程度为不重要,则不重传PDU set#A。
应理解,本申请中,重要程度可以作为数据集的一个参数。
例如,重要程度参数的取值可以为“high,重要”、“medium,中等重要”和“low,不重要”。
又例如,重要程度参数的取值可以为0至7中的数值,数值越小代表重要程度越大。例如,取值为0至3表示重要,取值为4至7表示不重要。
作为一种方式,AF/AS向UPF发送的PDU set中包括PDU set的重要程度参数。例如,PDU set#A对应的数据包的包头中包括PDU set#A的重要程度参数。UPF可以从PDU set#A对应的数据包的包头中获取PDU set#A的重要程度参数,进而判断PDU set#A是否重要。
作为另一种方式,UPF确定PDU set#A的重要程度的规则可以是提前配置到UPF中的。
作为另一种方式,UPF确定PDU set#A的重要程度的规则可以是AF/AS向UPF发送的。例如,AF/AS通过控制面向UPF发送确定PDU set#A的重要程度的规则。例如,PCC规则中包括确定PDU set的重要程度的规则。
示例性地,PDU set#A的类型可以体现PDU set#A的重要程度。例如,PDU set#A为I帧,则PDU set#A重要;PDU set#A为P帧,则PDU set#A不重要。
示例性地,是否存在与PDU set#A相关联的PDU set也可以体现PDU set#A的重要程度。例如,存在依赖PDU set#A的PDU set,则PDU set#A重要;不存在依赖PDU set#A的PDU set,则PDU set#A不重要。
示例性地,PDU set#A在GoP中的位置也可以体现PDU set#A的重要程度。
1:如果PDU set#A在GoP中的位置在预设位置之前,则UPF重传PDU set#A。
该预设位置可以是配置到UPF中的。
例如,可以在UPF中配置预设位置参数为“3”。预设位置参数为“3”的含义可以理解为:一个GoP中,在倒数第3个PDU set之前的PDU set是重要的,需要重传;在倒数第3个PDU set之后的PDU set是不重要的,不需要重传。即,在一个GoP中靠近最后一个PDU set的PDU set可能是不重要的。
2:如果PDU set#A在GoP中的位置在该预设位置之后,则UPF不重传PDU set#A。可选地,UPF丢弃PDU set#A。
3:如果PDU set#A在GoP中的位置为该预设位置,则UPF可以重传PDU set#A,或者,UPF可以不重传PDU set#A。
例如,UPF从AF/AS接收了I1、P11、P12、P13、P14、I2……,假设UPF确定该预设位置为P12帧所在的位置,如果PDU set#A为I1帧或者P11帧,则UPF重传PDU set#A;如果PDU set#A为P13帧或者P14帧,则UPF不重传PDU set#A。
可选地,在此方式中,如果UPF不重传PDU set#A,UPF可以继续确定是否存在与PDU set#A相关联的PDU set#B(例如,依赖PDU set#A的PDU set#B)。UPF确定是否存在与PDU set#A相关联的PDU set#B的过程可以参考S207方式2中的相关描述。如果UPF确定存在与PDU set#A相关联的PDU set#B,则UPF禁止发送PDU set#B。进一步,可选地,UPF可以丢弃PDU set#B。
例如,UPF确定存在与PDU set#A相关联的PDU set#B1和PDU set#B2,则UPF禁止发送PDU set#B1和PDU set#B2。其中PDU set#B1为与PDU set#A在同一视频流中的PDU set,PDU set#B2为音频流中的PDU set。该音频流与PDU set#A所在的视频流同步,并且PDU set#A与PDU set#B2需要同时发送到UE。
其中,UPF禁止发送PDU set#B的含义为:如果PDU set#B还未开始发送,则UPF不发送PDU set#B;如果PDU set#B已经开始发送了,但还没有发送完,则UPF停止发送PDU set#B。关于此,下文不再赘述。
应理解,通过禁止发送(或者,不发送)PDU set#B可以达到节省传输资源的技术效果,通过丢弃PDU set#B可以达到节省存储资源的技术效果。关于禁止发送PDU set#B以及丢弃PDU set#B的技术效果下文不再赘述。
此外,UPF可以继续确定是否存在与PDU set#B相关联的PDU set,如果存在,则UPF禁止发送与PDU set#B相关联的PDU set。可选地,UPF丢弃与PDU set#B相关联的PDU set。以此类推。
方式4:
PDU set#A传输失败的原因为拥塞,UPF根据传输失败的原因为拥塞确定不重传PDU set#A。可选地,UPF丢弃PDU set#A。例如,UPF可以丢弃缓存区中的PDU set#A。又例如,UPF可以丢弃PDU set#A中还未发送的数据包。
可选地,在此方式4下,进一步地,该方法还包括:UPF确定是否存在与PDU set#A相关联的PDU set#B。UPF确定是否存在与PDU set#A相关联的PDU set#B的过程可以参考S207方式2中的相关描述。如果UPF确定存在与PDU set#A相关联的PDU set#B,则 UPF禁止发送PDU set#B。可选地,UPF可以丢弃PDU set#B。
此外,UPF可以继续确定是否存在与PDU set#B相关联的PDU set,如果存在,则UPF禁止发送与PDU set#B相关联的PDU set。以此类推。
应理解,在PDU set#A传输失败的原因为拥塞的情况下,通过不重传PDU set#A,以及不发送PDU set#B(可选),一方面可以缓解信道拥塞,另一方面也可以节省传输资源。
下面结合图4介绍本申请提出的方法300,与方法200不同的是,在该方法300中,RAN向UPF发送的指示信息中不包括PDU set传输失败的原因。
具体地,该方法300包括:
S301,AF/AS向UPF发送多个PDU set。相应地,UPF接收来自AF/AS的多个PDU set。
该多个PDU set中包括PDU set#A和PDU set#B。可选地,AF/AS还向UPF发送该多个PDU set中每个PDU set的类型。
具体可以参考S201。
S302,UPF获取PDU set#B与PDU set#A的关联关系。
该过程可以参考S202。
S303,UPF向RAN发送PDU set#A。相应地,RAN接收PDU set#A。
应理解,UPF向RAN发送的PDU set#A的数据包中包括PDU set#A的识别信息。
该过程可以参考S203。
S304,UPF缓存PDU set#A。
该过程可以参考S204。
S305,RAN确定PDU set#A传输失败。
该过程可以参考S205。
S306,RAN向UPF发送PDU set#A传输失败的指示信息。相应地,UPF接收PDU set#A传输失败的指示信息。
PDU set#A传输失败的指示信息中包括PDU set#A的识别信息。与S205不同的是,在S305中PDU set#A传输失败的指示信息不包括PDU set#A传输失败的原因。
S307,UPF根据PDU set#A传输失败的指示信息,处理PDU set#A和/或PDU set#B。
其中,UPF可以根据PDU set#A传输失败的指示信息中PDU set#A的识别信息,确定PDU set#A传输失败。
下面对UPF处理PDU set#A和/或PDU set#B的方式进行说明。
方式1:
UPF根据PDU set#A传输失败的指示信息重传PDU set#A。
方式2:
UPF根据PDU set#A传输失败的指示信息判断缓存区是否包括该PDU set#A。
1:如果缓存区包括该PDU set#A,则UPF重传PDU set#A。
2:如果缓存区不包括该PDU set#A,则UPF不重传PDU set#A。
示例性地,UPF可以在PDU set#A中的一个数据包(例如,第一个数据包,或者最后一个数据包,或者其他数据包)发送完毕并进入缓存区后启动定时器,如果定时器超时,则UPF丢弃PDU set#A。
可选地,UPF可以继续确定是否存在与PDU set#A相关联的PDU set#B。UPF确定是否存在与PDU set#A相关联的PDU set#B的过程可以参考S207方式2中的相关描述。如果UPF确定存在与PDU set#A相关联的PDU set#B,则UPF禁止发送PDU set#B。可选地,UPF可以丢弃PDU set#B。
此外,UPF可以继续确定是否存在与PDU set#B相关联的PDU set,如果存在,则UPF禁止发送与PDU set#B相关联的PDU set。以此类推。
方式3:
UPF根据PDU set#A传输失败的指示信息确定PDU set#A的重要程度,如果PDU set#A的重要程度为重要,则重传PDU set#A。如果PDU set#A的重要程度为不重要,则不重传PDU set#A。
具体可以参考S207中的方式3。
可选地,在此方式中,如果UPF不重传PDU set#A,UPF可以继续确定是否存在与PDU set#A相关联的PDU set#B。UPF确定是否存在与PDU set#A相关联的PDU set#B的过程可以参考S207方式2中的相关描述。如果UPF确定存在与PDU set#A相关联的PDU set#B,则UPF禁止发送PDU set#B。进一步,可选地,UPF可以丢弃PDU set#B。
此外,UPF可以继续确定是否存在与PDU set#B相关联的PDU set,如果存在,则UPF禁止发送与PDU set#B相关联的PDU set。以此类推。
下面结合图5介绍本申请提出的方法400,与方法200和方法300不同的是,在该方法400中,UPF向RAN发送PDU set但不缓存PDU set。
具体地,该方法400包括:
S401,AF/AS向UPF发送多个PDU set。相应地,UPF接收来自AF/AS的多个PDU set。
该多个PDU set中包括PDU set#A和PDU set#B。可选地,AF/AS还向UPF发送该多个PDU set中每个PDU set的类型。
具体可以参考S201。
S402,UPF获取PDU set#B与PDU set#A的关联关系。
该过程可以参考S202。
S403,UPF向RAN发送PDU set#A。相应地,RAN接收PDU set#A。
应理解,UPF向RAN发送的PDU set#A的数据包中包括PDU set#A的识别信息。
该过程可以参考S203。
S404,RAN确定PDU set#A传输失败。
该过程可以参考S205。
S405,RAN向UPF发送PDU set#A传输失败的指示信息。相应地,UPF接收PDU set#A传输失败的指示信息。
PDU set#A传输失败的指示信息中包括PDU set#A的识别信息。
可选地,在S405中PDU set#A传输失败的指示信息包括PDU set#A传输失败的原因,或者不包括PDU set#A传输失败的原因,不予限制。
S406,UPF根据PDU set#A传输失败的指示信息,处理PDU set#B。
具体地,UPF根据PDU set#A传输失败的指示信息,确定是否存在与PDU set#A相 关联的PDU set#B。UPF确定是否存在与PDU set#A相关联的PDU set#B的过程可以参考S207方式2中的相关描述。
如果UPF确定存在与PDU set#A相关联的PDU set#B,则UPF禁止发送PDU set#B。进一步,可选地,UPF可以丢弃PDU set#B。
此外,UPF可以继续确定是否存在与PDU set#B相关联的PDU set,如果存在,则UPF禁止发送与PDU set#B相关联的PDU set。以此类推。
根据本申请的方法,由于PDU set#A已经传输失败了,再传输PDU set#B已经没有意义了。因此,通过禁止发送PDU set#B可以节省传输资源,通过丢弃PDU set#B可以节省存储资源。例如,PDU set#A和PDU set#B为同一视频流中的两个帧,PDU set#B的解析依赖PDU set#A,由于PDU set#A已经传输失败了,此时,即使PDU set#B传输成功,PDU set#B也无法正确解码。
下面结合图6介绍本申请提出的方法500,在该方法500中,UPF向RAN发送的数据包中包括时刻#A,RAN向UPF发送的指示信息中也包括该时刻#A,UPF根据该时刻#A和时刻#B,判断是否重传PDU set。
具体地,该方法500包括:
S501,AF/AS向UPF发送多个PDU set。相应地,UPF接收来自AF/AS的多个PDU set。
该多个PDU set中包括PDU set#A和PDU set#B。可选地,AF/AS还向UPF发送该多个PDU set中每个PDU set的类型。
具体可以参考S201。
S502,UPF向RAN发送数据包#A。相应地,RAN接收数据包#A。
数据包#A为PDU set#A中的一个数据包。
该数据包#A中包括PDU set#A的识别信息和时刻#A。
该PDU set#A的识别信息可以参考S203的相关介绍。
该时刻#A为数据包#A对应的时间戳,或者,UPF发送该数据包#A的时刻。示例性地,数据包#A对应的时间戳可以为AF/AS在数据包#A中添加的。
S503,UPF缓存数据包#A。
具体地UPF缓存数据包#A的方式可以参考上文中的描述。
S504,RAN确定数据包#A传输失败。
即,UE并没有接收到来自RAN的数据包#A。
S505,RAN向UPF发送PDU set#A传输失败的指示信息。相应地,UPF接收PDU set#A传输失败的指示信息。
即,在此方法中,只要PDU set#A中有一个数据包(例如数据包#A)传输失败,RAN确定该PDU set#A传输失败。
PDU set#A传输失败的指示信息中包括PDU set#A的识别信息和S502中的时刻#A。
S506,UPF根据PDU set#A传输失败的指示信息判断该数据包#A的传输时延是否超过PDB。
示例性地,UPF可以根据PDU set#A传输失败的指示信息中的识别信息确定PDU set#A传输失败,并且,根据PDU set#A传输失败的指示信息中的时刻#A以及时刻#B(例 如,进行该判断的时刻),判断该数据包#A的传输时延是否超过PDB。
S507,在数据包#A的传输时延未超过PDB的情况下,UPF重传该PDU set#A。
即,在该方法中,如果数据包#A的传输时延未超过PDB,则UPF以PDU set为粒度,重传该PDU set#A。
以PDU set为粒度重传的原因在于,PDU set中的数据包是有顺序的,如果仅仅重传数据包#A,在RAN侧需要确定数据包#A在PDU set#A中的位置,并按顺序发送数据包#A,增加了RAN处理的复杂度。因此,如果UPF以PDU set为粒度重传,可以降低RAN处理的复杂度。
S508,在数据包#A的传输时延超过PDB的情况下,UPF不重传该PDU set#A。
可选地,UPF还可以将PDU set#A丢弃。
可选地,该方法还包括:UPF也可以获取PDU set#B与PDU set#A的关联关系。并且,UPF确定是否存在与PDU set#A相关联的PDU set#B。UPF确定是否存在与PDU set#A相关联的PDU set#B的过程可以参考S207方式2中的相关描述。如果UPF确定存在与PDU set#A相关联的PDU set#B,则UPF禁止发送PDU set#B。可选地,UPF可以丢弃PDU set#B。
此外,UPF可以继续确定是否存在与PDU set#B相关联的PDU set,如果存在,则UPF禁止发送与PDU set#B相关联的PDU set。以此类推。
应理解,方法500与方法200、方法300或方法400之间并不是孤立的关系,方法500与方法200、方法300或方法400可以相互结合。
例如,可以将S307的方式2与S506结合起来,如果数据包#A的传输时延未超过PDB,进一步地,UPF可以判断缓存区是否包括PDU set#A。如果缓存区包括该PDU set#A,则UPF重传PDU set#A。如果缓存区不包括该PDU set#A,则UPF不重传PDU set#A。
根据前述方法,图7为本申请实施例提供的一种通信装置,该通信装置包括收发单元701和处理单元702。
其中,收发单元701可以用于实现相应的信息收发功能。收发单元701还可以称为通信接口或通信单元。处理单元702可以用于进行处理操作。
示例性地,该装置还包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元702可以读取存储单元中的指令和/或数据,以使得装置实现前述各个方法实施例中的装置的动作。
作为第一种实现方式,该装置可以是前述实施例中的RAN网元,也可以是RAN网元的组成部件(如芯片)。其中,收发单元和处理单元,可以用于实现上文各个方法实施例中RAN的相关操作。示例性地,收发单元用于实现S206、S306、S405或S505等,处理单元用于实现S205、S305、S404或S504等。
作为第二种实现方式,该装置可以是前述实施例中的UPF网元,也可以是UPF网元的组成部件(如芯片)。其中,收发单元和处理单元,可以用于实现上文各个方法实施例中UPF的相关操作。示例性地,收发单元用于实现S203、S303、S403或S502等,处理单元用于实现S207、S307、S406或S506等。
作为第三种实现方式,该装置可以是前述实施例中的AF/AS,也可以是AF/AS的组成部件(如芯片)。其中,收发单元和处理单元,可以用于实现上文各个方法实施例中AF/AS 的相关操作。示例性地,收发单元用于实现S201、S301、S401或S501等。
应理解,各单元执行上述相应步骤的具体过程在上述各方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,这里的装置以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置可以具体为上述实施例中的第一网元,可以用于执行上述各方法实施例中与第一网元对应的各个流程和/或步骤,或者,装置可以具体为上述实施例中的网络管理网元,可以用于执行上述各方法实施例中与网络管理网元对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述通信装置具有实现上述方法中的装置所执行的相应步骤的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块;例如收发单元可以由收发机替代(例如,收发单元中的发送单元可以由发送机替代,收发单元中的接收单元可以由接收机替代),其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
此外,上述收发单元701还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。
需要指出的是,图7中的装置可以是前述方法实施例中的装置,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。
本申请实施例还提供一种通信设备,如图8所示,包括:处理器801和通信接口802。处理器801用于执行存储器803存储的计算机程序或指令,或读取存储器803存储的数据,以执行上文各方法实施例中的方法。示例性地,处理器801为一个或多个。通信接口802用于信号的接收和/或发送。例如,处理器801用于控制通信接口802进行信号的接收和/或发送。
示例性地,如图8所示,该通信设备还包括存储器803,存储器803用于存储计算机程序或指令和/或数据。该存储器803可以与处理器801集成在一起,或者也可以分离设置。示例性地,存储器803为一个或多个。
示例性地,处理器801、通信接口802以及存储器803通过总线804相互连接;总线804可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。上述总线804可以分为地址总线、数据总线和控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
例如,处理器801用于执行存储器803存储的计算机程序或指令。
作为第一种实现方式,该设备可以是前述实施例中的RAN网元,也可以是RAN网元的组成部件(如芯片)。其中,通信接口和处理器,可以用于实现上文各个方法实施例中RAN的相关操作。示例性地,通信接口用于实现S206、S306、S405或S505等,处理器用于实现S205、S305、S404或S504等。
作为第二种实现方式,该设备可以是前述实施例中的UPF,也可以是UPF的组成部件(如芯片)。其中,通信接口和处理器,可以用于实现上文各个方法实施例中UPF的相关操作。示例性地,通信接口用于实现S203、S303、S403或S502等,处理器用于实现S207、S307、S406或S506等。
作为第三种实现方式,该设备可以是前述实施例中的AF/AS,也可以是AF/AS的组成部件(如芯片)。其中,通信接口和处理器,可以用于实现上文各个方法实施例中AF/AS的相关操作。示例性地,通信接口用于实现S201、S301、S401或S501等。
应理解,本申请实施例中提及的处理器(如处理器801)可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
还应理解,本申请实施例中提及的存储器(如存储器803)可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一 个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (22)

  1. 一种通信方法,其特征在于,包括:
    用户面网元向接入网设备发送第一数据集;
    所述用户面网元接收来自所述接入网设备的所述第一数据集传输失败的指示信息;
    所述用户面网元根据所述第一数据集传输失败的指示信息,处理所述第一数据集和/或第二数据集,所述第二数据集与所述第一数据集之间具有关联关系。
  2. 根据权利要求1所述的方法,其特征在于,
    所述用户面网元根据所述第一数据集传输失败的指示信息,处理所述第一数据集,包括:所述用户面网元根据所述第一数据集传输失败的指示信息重传所述第一数据集。
  3. 根据权利要求2所述的方法,其特征在于,
    所述第一数据集传输失败的指示信息中包括所述第一数据集传输失败的原因为非拥塞;
    所述用户面网元根据所述第一数据集传输失败的指示信息重传所述第一数据集包括:所述用户面网元基于所述第一数据集传输失败的原因为非拥塞重传所述第一数据集。
  4. 根据权利要求2或3所述的方法,其特征在于,所述方法还包括:
    所述用户面网元根据所述第一数据集传输失败的指示信息,以及所述第一数据集与所述第二数据集之间的关联关系,确定存在第二数据集。
  5. 根据权利要求2-4中任一项所述的方法,其特征在于,所述方法还包括:
    所述用户面网元确定所述第一数据集的重要程度为重要。
  6. 根据权利要求5所述的方法,其特征在于,
    所述用户面网元确定所述第一数据集的重要程度为重要,包括:
    所述用户面网元根据所述第一数据集在数据集组中的位置确定所述第一数据集的重要程度为重要,所述第一数据集在所述数据集组中的位置在预设位置之前,所述数据集组中包括多个数据集,所述第一数据集为所述多个数据集中的一个。
  7. 根据权利要求2-6中任一项所述的方法,其特征在于,
    所述第一数据集进行重传时的优先级高于在重传之前的优先级。
  8. 根据权利要求1所述的方法,其特征在于,所述第一数据集传输失败的指示信息中包括所述第一数据集传输失败的原因为拥塞;
    所述用户面网元根据所述第一数据集传输失败的指示信息,处理所述第二数据集,包括:
    所述用户面网元根据所述第一数据集传输失败的原因为拥塞的指示信息丢弃所述第二数据集。
  9. 根据权利要求8所述的方法,其特征在于,
    所述用户面网元根据所述第一数据集传输失败的指示信息,处理所述第一数据集,包括:
    所述用户面网元根据所述第一数据集传输失败的原因为拥塞的指示信息丢弃所述第一数据集。
  10. 根据权利要求1-9中任一项所述的方法,其特征在于,
    所述第一数据集与所述第二数据集的关联关系为所述第二数据集的解析依赖于所述第一数据集;
    或者,所述第一数据集为原始流中的数据集,所述第二数据集为所述原始流对应的纠错流中的数据集,所述第二数据集包括所述第一数据集的纠错信息;
    或者,所述第一数据集为基础层中的数据集,所述第二数据集为所述基础层对应的增强层中的数据集,所述第二数据集包括所述第一数据集的增强信息;
    或者,所述第一数据集和所述第二数据集为不同的数据流中同步传输的数据集。
  11. 根据权利要求1-10中的任一项所述的方法,其特征在于,
    所述第一数据集的数据包中包括所述第一数据集的识别信息,所述第一数据集传输失败的指示信息中包括所述识别信息;
    所述方法还包括:
    所述用户面网元根据所述识别信息确定所述第一数据集;
    所述用户面网元根据所述第二数据集与所述第一数据集的关联关系确定所述第二数据集。
  12. 根据权利要求1-11中的任一项所述的方法,其特征在于,
    所述第一数据集和所述第二数据集为同一视频流中的数据集,数据集组为所述视频流中的图像组。
  13. 一种通信方法,其特征在于,包括:
    接入网设备接收来自用户面网元的第一数据集;
    所述接入网设备确定所述第一数据集传输失败;
    所述接入网设备向所述用户面网元发送所述第一数据集传输失败的指示信息。
  14. 根据权利要求13所述的方法,其特征在于,
    所述第一数据集传输失败的指示信息中包括所述第一数据集传输失败的原因,所述第一数据集传输失败的原因为拥塞或非拥塞。
  15. 根据权利要求13或14所述的方法,其特征在于,所述方法还包括:
    所述接入网设备接收所述用户面网元重传的所述第一数据集;
    所述接入网设备向终端设备重传所述第一数据集。
  16. 根据权利要求15所述的方法,其特征在于,
    所述第一数据集进行重传时的优先级高于在重传之前的优先级。
  17. 一种通信系统,其特征在于,包括:
    用户面网元和接入网设备;
    所述用户面网元用于执行如权利要求1-12中任一项所述的方法;
    所述接入网设备用于执行如权利要求13-15中任一项所述的方法。
  18. 一种通信装置,其特征在于,包括用于执行权利要求1-16中任一项方法的单元。
  19. 一种通信设备,其特征在于,包括:通信接口和处理器,所述处理器用于执行计算机程序或指令,使得所述通信设备执行如权利要求1-16中任一项所述的方法。
  20. 一种计算机可读存储介质,其特征在于,包括计算机程序或指令,当所述计算机程序或所述指令在计算机上运行时,使得所述计算机执行如权利要求1-16中任意一项所 述的方法。
  21. 一种计算机程序产品,其特征在于,包含指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1-16中任意一项所述的方法。
  22. 一种通信方法,其特征在于,包括:
    接入网设备接收用户面网元发送的第一数据集;
    所述用户面网元接收来自所述接入网设备的所述第一数据集传输失败的指示信息;
    所述用户面网元根据所述第一数据集传输失败的指示信息,处理所述第一数据集和/或第二数据集,所述第二数据集与所述第一数据集之间具有关联关系。
PCT/CN2023/090035 2022-05-05 2023-04-23 通信方法和装置 WO2023213202A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210481785.3 2022-05-05
CN202210481785.3A CN117062142A (zh) 2022-05-05 2022-05-05 通信方法和装置

Publications (1)

Publication Number Publication Date
WO2023213202A1 true WO2023213202A1 (zh) 2023-11-09

Family

ID=88646243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090035 WO2023213202A1 (zh) 2022-05-05 2023-04-23 通信方法和装置

Country Status (2)

Country Link
CN (1) CN117062142A (zh)
WO (1) WO2023213202A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108419275A (zh) * 2017-02-10 2018-08-17 华为技术有限公司 一种数据传输方法、通信设备、终端和基站
CN109818917A (zh) * 2017-11-21 2019-05-28 华为技术有限公司 一种通信方法及其装置
CN110636535A (zh) * 2018-06-25 2019-12-31 华为技术有限公司 一种数据传输方法及装置
CN113840385A (zh) * 2020-06-24 2021-12-24 华为技术有限公司 一种业务传输方法及装置
WO2022052031A1 (zh) * 2020-09-11 2022-03-17 华为技术有限公司 一种丢包指示方法及相关设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108419275A (zh) * 2017-02-10 2018-08-17 华为技术有限公司 一种数据传输方法、通信设备、终端和基站
CN109818917A (zh) * 2017-11-21 2019-05-28 华为技术有限公司 一种通信方法及其装置
CN110636535A (zh) * 2018-06-25 2019-12-31 华为技术有限公司 一种数据传输方法及装置
CN113840385A (zh) * 2020-06-24 2021-12-24 华为技术有限公司 一种业务传输方法及装置
WO2022052031A1 (zh) * 2020-09-11 2022-03-17 华为技术有限公司 一种丢包指示方法及相关设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "Removal of PPI from N2 SM information", 3GPP DRAFT; 23502_CR0849_5GS_PH1_(REL-15)_S2-1812201_REMOVE PPI FROM N2 SM INFO, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. West Palm Beach, FL, USA; 20181126 - 20181130, 4 December 2018 (2018-12-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051497935 *

Also Published As

Publication number Publication date
CN117062142A (zh) 2023-11-14

Similar Documents

Publication Publication Date Title
US20240098844A1 (en) Communication method and related product
US20200358886A1 (en) Data Transmission Method, Apparatus, And System
US7984492B2 (en) Methods and apparatus for policy enforcement in a wireless communication system
EP3940974B1 (en) Transmission method and device for data stream
WO2022247550A1 (zh) 数据重传处理方法、装置、计算机设备和存储介质
JP2007089174A (ja) 無線通信システムにおける信号の伝送速度を改善する方法及び装置
US20150215224A1 (en) Positive feedback ethernet link flow control for promoting lossless ethernet
WO2018177432A1 (zh) 一种数据处理方法、装置及相关设备
US9876727B2 (en) Physical-layer signaling of flow control updates
Wu et al. Streaming high-definition real-time video to mobile devices with partially reliable transfer
CN109842570B (zh) 聚合速率控制方法、设备以及系统
EP3445059A1 (en) Video service transmission method and device
WO2022127605A1 (zh) 一种网络切换方法及装置
US20230216758A1 (en) Information acquisition method and apparatus, storage medium, and electronic apparatus
CN110602568B (zh) 一种基于rtp的视频流传输丢包重传方法、设备及存储设备
WO2023213202A1 (zh) 通信方法和装置
WO2010054551A1 (zh) 视频流传输的方法、装置和系统
WO2023087145A1 (en) Methods and apparatuses for pdcp reordering management
Ahmedin et al. A survey of multimedia streaming in LTE cellular networks
CN116506697A (zh) 视频流丢包方法、装置和存储介质
WO2014100973A1 (zh) 视频处理方法、设备及系统
CN115250506A (zh) 一种通信方法及设备
Navarro‐Ortiz et al. Removing redundant TCP functionalities in wired‐cum‐wireless networks with IEEE 802.11 e HCCA support
WO2024067640A1 (zh) 一种协议数据单元集合传输方法及装置
WO2023201607A1 (zh) 一种数据传输方法及装置、通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23799189

Country of ref document: EP

Kind code of ref document: A1