WO2023213057A1 - 一种双谐振无线充电电路及其控制方法 - Google Patents

一种双谐振无线充电电路及其控制方法 Download PDF

Info

Publication number
WO2023213057A1
WO2023213057A1 PCT/CN2022/127154 CN2022127154W WO2023213057A1 WO 2023213057 A1 WO2023213057 A1 WO 2023213057A1 CN 2022127154 W CN2022127154 W CN 2022127154W WO 2023213057 A1 WO2023213057 A1 WO 2023213057A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
inductor
diode
load
dual
Prior art date
Application number
PCT/CN2022/127154
Other languages
English (en)
French (fr)
Inventor
徐松
王丽娟
陈迅
Original Assignee
江苏科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏科技大学 filed Critical 江苏科技大学
Publication of WO2023213057A1 publication Critical patent/WO2023213057A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode

Definitions

  • the invention relates to a charging circuit, in particular to a multi-channel wireless charging circuit.
  • Wireless charging can meet the deep needs of the public with its characteristics of convenience, freedom and safety. Following wireless communication and wireless networks, wireless charging has become an inevitable trend in the development of science and technology. The free use of electric energy anytime and anywhere is an inevitable trend in the development of electric energy.
  • the purpose of the present invention is to provide a dual-resonance wireless charging circuit to improve the safety of circuit operation and the efficiency of energy transmission.
  • a dual-resonance wireless charging circuit and its control method including a main circuit and a control circuit.
  • the main circuit includes a coupled-connected transmitting end main circuit and a receiving end main circuit.
  • the transmitting end main circuit includes a sequentially connected low-voltage DC power supply, a high-frequency inverter circuit, and a primary side double resonant circuit.
  • the receiving end main circuit Including sequentially connected secondary side double resonant circuits, two half-bridge rectifier circuits and two battery interfaces;
  • the control circuit is the transmitter control circuit.
  • the transmitter control circuit includes a PWM drive circuit and a current sampling circuit connected to the transmitter digital signal processor.
  • the current sampling circuit is connected to the primary side dual resonant circuit and the secondary side dual resonant circuit. On the resonant circuit;
  • the control method includes the following two working states:
  • Detection status Determine whether the first load R1 and the second load R2 are connected by detecting whether there are fluctuations in the current at the second inductor L2 and the fourth inductor L4 in the secondary side double resonant circuit;
  • Working state 1 If the transmitter detects current fluctuations in the second inductor L2 and the fourth inductor L4, that is, after the first load R1 and the second load R2 are both in the connected state, the transmitter digital signal processor issues a charging command.
  • the circuit enters the working state and controls the high-frequency inverter circuit to output alternating current through the PWM drive circuit. At this time, the duty cycle of PWM1 is 50% and the duty cycle of PWM2 is 50%. After passing through the half-bridge rectifier circuit and the power matching conversion circuit, the The load is charged;
  • Working state 2 If the transmitter detects that the current at the fourth inductor L4 fluctuates and the current at the second inductor L2 does not fluctuate, that is, the first load R1 is in the connected state and the second load R2 is in the connected state, the transmitter The digital signal processor issues a phase shift control instruction. At this time, the third inductor loop is selected as the main resonant loop. The duty cycle of PWM1 is 50% and the duty cycle of PWM2 is 20%.
  • Working state 3 If the transmitter detects that the current at the second inductor L2 fluctuates and the current at the fourth inductor L4 has no fluctuation, that is, the first load R1 is in the connected state and the second load R2 is in the unconnected state, the transmitter The terminal digital signal processor issues a phase shift control instruction. At this time, the first inductor loop is selected as the main resonant loop. The duty cycle of PWM1 is 20% and the duty cycle of PWM2 is 50%.
  • the double resonant circuit includes a primary side double resonant circuit and a secondary side double resonant circuit.
  • the primary side double resonant circuit includes a first capacitor C1, a first inductor L1, a third capacitor C3, and a third inductor L3.
  • the secondary side double resonant circuit includes a first capacitor C1, a first inductor L1, a third capacitor C3, and a third inductor L3.
  • the circuit includes a second capacitor C2, a second inductor L2, a fourth capacitor C4, and a fourth inductor L4.
  • the first inductor L1 and the second inductor L2 are a pair of coupled inductors
  • the third inductor L3 and the fourth inductor L4 are a pair. coupled inductor.
  • the high-frequency inverter circuit includes two power MOS switch tubes, and the transmitting end digital signal processor controls the actions of the two power MOS switch tubes through a PWM drive circuit.
  • the digital signal processing circuit is composed of a dsPIC33FJ64GS606 chip and its peripheral circuits.
  • the beneficial effect of the present invention is to timely enter the working state based on the detection of the access status of the two loads in the secondary side double resonant circuit, avoid excessive current, improve the safety performance of the circuit, and avoid excessive Energy loss, the present invention can be used in wireless charging.
  • Figure 1 is a schematic diagram of the main circuit of the present invention.
  • Figure 2 is a schematic diagram of the transmitter control circuit in the present invention.
  • Figure 3 is a flow chart for detecting the connection status of two loads of the secondary side dual resonant circuit in the present invention.
  • a dual-resonance wireless charging circuit as shown in Figure 1 includes a main circuit and a control circuit.
  • the main circuit includes a coupled-connected transmitting end main circuit and a receiving end main circuit.
  • the transmitting end main circuit includes sequentially connected low-voltage DC power supply, high-frequency inverter circuit and primary-side dual resonant circuit.
  • the main circuit of the receiving end includes a sequentially connected secondary-side dual resonant circuit, two half-bridge rectifier circuits and two battery interfaces; the control circuit is the transmitter
  • the end control circuit includes a PWM drive circuit and a current sampling circuit connected to the transmitting end digital signal processor.
  • the current sampling circuit is connected to the primary side double resonant circuit and the secondary side double resonant circuit.
  • the digital signal processing circuit is composed of It is composed of dsPIC33FJ64GS606 chip and its peripheral circuits
  • the high-frequency inverter circuit includes a first power MOS switch tube S1 and a second power MOS switch tube S2; the drain of the first power MOS switch tube S1 is connected to the positive electrode A of the low-voltage DC power supply, and the source of the first power MOS switch tube The drain of the second power MOS switch S2 is connected, and the source of the second power MOS switch S2 is connected to the negative electrode B of the low-voltage DC power supply; the high-frequency inverter circuit inverts the voltage between terminals AB to generate high-frequency alternating current.
  • the high-frequency alternating current passes through the primary-side double resonant circuit.
  • the primary-side double-resonant circuit includes a first capacitor C1 and a primary-side coupling inductor L1 connected in series, and a third capacitor C3 and a primary-side coupling inductor L3 connected in series.
  • the battery receives the electric energy transmitted from the fixed circuit through the secondary side coupling inductor L2, the second capacitor C2, the secondary side coupling inductor L4, and the fourth capacitor C4, and supplies power to the vehicle battery after passing through the half-bridge rectifier circuit and the load power matching conversion circuit.
  • the first half-bridge rectifier circuit includes a first diode VD1 and a second diode VD2; the second half-bridge rectifier circuit includes a third diode VD3 and a fourth diode VD4.
  • the two diode half-bridge rectifier circuits respectively The voltage of the secondary side resonant circuit is rectified; the fifth capacitor and the sixth capacitor are voltage stabilizing capacitors, and the rectified pulsating DC power becomes a stable DC power through the voltage stabilizing capacitor and is connected to the load.
  • the working state of this circuit is divided into two types: detection state and working state.
  • the midpoint of each PWM wave output by the PWM drive circuit at the transmitting end is opposite to the secondary side double inductor (i.e. the second The currents of the inductor L2 and the fourth inductor L4) are sampled, and the connection status of the two inductors is judged by comparing with the previous sampling value. Since when a load is connected, the current in the secondary side inductor coil will fluctuate, so If the current sampling value fluctuates compared with the previous sampling value, it proves that the load is connected. If there is no fluctuation, it proves that the load is not connected. At this time, the corresponding working state is selected based on judging the connection status of the two loads:
  • Working state 1 If the transmitter detects current fluctuations in the second inductor L2 and the fourth inductor L4, that is, after the first load R1 and the second load R2 are both in the connected state, the transmitter digital signal processor issues a charging command.
  • the circuit enters the working state and controls the high-frequency inverter circuit to output alternating current through the PWM drive circuit. At this time, the duty cycle of PWM1 is 50% and the duty cycle of PWM2 is 50%. After passing through the half-bridge rectifier circuit and the power matching conversion circuit, the The load is charged;
  • Working state 2 If the transmitter detects that the current at the fourth inductor L4 fluctuates and the current at the second inductor L2 does not fluctuate, that is, the first load R1 is in the connected state and the second load R2 is in the connected state, the transmitter The digital signal processor issues a phase shift control instruction. At this time, the third inductor loop is selected as the main resonant loop. The duty cycle of PWM1 is 50% and the duty cycle of PWM2 is 20%.
  • Working state 3 If the transmitter detects that the current at the second inductor L2 fluctuates and the current at the fourth inductor L4 has no fluctuation, that is, the first load R1 is in the connected state and the second load R2 is in the unconnected state, the transmitter The terminal digital signal processor issues a phase shift control instruction. At this time, the first inductor loop is selected as the main resonant loop. The duty cycle of PWM1 is 20% and the duty cycle of PWM2 is 50%.
  • the present utility model is not limited to the above embodiments. On the basis of the technical solutions disclosed in the present utility model, those skilled in the art can make some modifications to some of the technical features without creative work according to the disclosed technical contents. Replacement and deformation, these substitutions and deformations are within the protection scope of the present utility model.

Abstract

本发明公开了无线充电领域内的一种双谐振无线充电电路及其控制方法,所述主电路包括耦合连接的发射端主电路和接收端主电路,发射端主电路包括顺序连接的低压直流电源、高频逆变电路以及初次侧谐振电路,接收端主电路包括顺序连接的二次侧双谐振电路、两个半桥整流电路以及两个电池接口;所述控制电路包括连接在数字信号处理器上的PWM驱动电路、电流采样电路,电流采样电路连接在初次侧双谐振电路以及二次侧双谐振电路上,本发明可用于无线充电中。

Description

一种双谐振无线充电电路及其控制方法 技术领域
本发明涉及一种充电电路,特别涉及一种多路无线充电电路。
背景技术
传统的充电方式需要有线连接,在使用的便捷性、安全性、舒适度方面都受到很大的束缚。无线充电以便捷、自由、安全的特性能满足大众的深度要求,并且继无线通信、无线网络后,无线充电成为科技发展的必然趋势,电能随时随地自由使用的是电能发展的必然趋势,
发明内容
本发明的目的是提供一种双谐振无线充电电路,提高电路工作的安全性和能量的传输效率。
本发明的目的是这样实现的:一种双谐振无线充电电路及其控制方法,包括主电路和控制电路。
所述主电路包括耦合连接的发射端主电路和接收端主电路,所述发射端主电路包括顺序连接的低压直流电源、高频逆变电路以及初次侧双谐振电路,所述接收端主电路包括顺序连接的二次侧双谐振电路、两个半桥整流电路以及两个电池接口;
所述控制电路即发射端控制电路,发射端控制电路包括连接在发射端数字信号处理器上的PWM驱动电路、电流采样电路,所述电流采样电路连接在初次侧双谐振电路以及二次侧双谐振电路上;
所述控制方法包括以下两个工作状态:
1)检测状态:通过检测二次侧双谐振电路中第二电感L2和第四电感L4处 电流是否存在波动判断第一负载R1和第二负载R2是否接入;
2)工作状态:
工作状态1:若发射端检测到第二电感L2和第四电感L4处电流存在波动,即第一负载R1和第二负载R2都处于接入状态后,发射端数字信号处理器发出充电指令,电路进入工作状态,通过PWM驱动电路控制高频逆变电路输出交流电,此时,PWM1占空比为50%,PWM2占空比为50%,经过半桥整流电路以及功率匹配变换电路后,对负载进行充电;
工作状态2:若发射端检测到第四电感L4处电流存在波动,第二电感L2处电流无波动,即第一负载R1处于为接入状态,第二负载R2处于接入状态后,发射端数字信号处理器发出移相控制的指令,此时选择第三电感回路为主谐振回路,PWM1占空比为50%,PWM2占空比为20%。
工作状态3:若发射端检测到第二电感L2处电流存在波动,第四电感L4处电流无波动,即第一负载R1处于为接入状态,第二负载R2处于未接入状态后,发射端数字信号处理器发出移相控制的指令,此时选择第一电感回路为主谐振回路,PWM1占空比为20%,PWM2占空比为50%。
作为本发明的改进。所述双谐振电路包括初次侧双谐振电路和二次侧双谐振电路,初次侧双谐振电路包括第一电容C1、第一电感L1以及第三电容C3、第三电感L3,二次侧双谐振电路包括第二电容C2、第二电感L2以及第四电容C4、第四电感L4,其中第一电感L1和第二电感L2为一对耦合电感,第三电感L3和第四电感L4为一对耦合电感。
作为本发明的改进,所述高频逆变电路包括两个功率MOS开关管,发射端数字信号处理器通过PWM驱动电路控制所述两个功率MOS开关管动作。
作为本发明的改进,所述数字信号处理电路是由dsPIC33FJ64GS606芯片及其外围电路组成的。
与现有技术相比,本发明的有益效果在于,根据二次侧双谐振电路中两负载接入状态检测来适时的进入工作状态,避免过大的电流,提高电路的安全性能,避免过多的能量损耗,本发明可用于无线充电中。
附图说明
图1为本发明主电路原理图。
图2为本发明中发射端控制电路原理图。
图3为本发明中二次侧双谐振电路两负载接入状态检测流程图。
具体实施方式
如图1所示的一种双谐振无线充电电路,包括主电路和控制电路,所述主电路包括耦合连接的发射端主电路和接收端主电路,所述发射端主电路包括顺序连接的低压直流电源、高频逆变电路以及初次侧双谐振电路,所述接收端主电路包括顺序连接的二次侧双谐振电路、两个半桥整流电路以及两个电池接口;所述控制电路即发射端控制电路,包括连接在发射端数字信号处理器上的PWM驱动电路、电流采样电路,所述电流采样电路连接在初次侧双谐振电路以及二次侧双谐振电路上,数字信号处理电路是由dsPIC33FJ64GS606芯片及其外围电路组成的
高频逆变电路包括第一功率MOS开关管S1、第二功率MOS开关管S2;第一功率MOS开关管S1的漏极与低压直流电源的正极A相连,第一功率MOS开关管的源极与第二功率MOS开关管S2的漏极相连,第二功率MOS开关管S2的源极与低压直流电源负极B连接;高频逆变电路对端子AB间电压进行逆变,产生高频交流电,高频交流电经过初次侧双谐振电路,初次侧双谐振电路 包括串联连接的第一电容C1和初次侧耦合电感L1以及串联连接的第三电容C3和初次侧耦合电感L3。
电池通过二次侧耦合电感L2、第二电容C2以及二次侧耦合电感L4、第四电容C4接受固定电路传输回来的电能,经过半桥整流电路和负载功率匹配变换电路后给车载电池供电,第一半桥整流电路包括第一二极管VD1、第二二极管VD2;第二半桥整流电路包括第三二极管VD3、第四二极管VD4,两个二极管半桥整流电路分别对二次侧谐振电路的电压进行整流;第五电容和第六电容为稳压电容,整流后的脉动直流电经过稳压电容变为稳定的直流电接入负载。
本电路的工作状态分为两种,分为检测状态和工作状态,当电路处于初始状态时,在发射端PWM驱动电路输出的每个PWM波的中点对二次侧双电感(即第二电感L2和第四电感L4)的电流进行采样,通过和前一次的采样值相比较来判断两电感的接入状态,由于有负载接入时,二次侧电感线圈内电流会产生波动,因此若电流采样值与前一次采样值相比有波动,则证明此负载接入,若无波动,则证明负载未接入,此时根据判断两个负载的接入状态来选择对应的工作状态:
工作状态1:若发射端检测到第二电感L2和第四电感L4处电流存在波动,即第一负载R1和第二负载R2都处于接入状态后,发射端数字信号处理器发出充电指令,电路进入工作状态,通过PWM驱动电路控制高频逆变电路输出交流电,此时,PWM1占空比为50%,PWM2占空比为50%,经过半桥整流电路以及功率匹配变换电路后,对负载进行充电;
工作状态2:若发射端检测到第四电感L4处电流存在波动,第二电感L2处电流无波动,即第一负载R1处于为接入状态,第二负载R2处于接入状态后, 发射端数字信号处理器发出移相控制的指令,此时选择第三电感回路为主谐振回路,PWM1占空比为50%,PWM2占空比为20%。
工作状态3:若发射端检测到第二电感L2处电流存在波动,第四电感L4处电流无波动,即第一负载R1处于为接入状态,第二负载R2处于未接入状态后,发射端数字信号处理器发出移相控制的指令,此时选择第一电感回路为主谐振回路,PWM1占空比为20%,PWM2占空比为50%。
本实用新型并不局限于上述实施例,在本实用新型公开的技术方案的基础上,本领域的技术人员根据所公开的技术内容,不需要创造性的劳动就可以对其中的一些技术特征作出一些替换和变形,这些替换和变形均在本实用新型的保护范围内。

Claims (6)

  1. 一种双谐振无线充电电路,其特征在于,包括主电路和控制电路,所述主电路包括耦合连接的发射端主电路和接收端主电路,所述发射端主电路包括顺序连接的低压直流电源、高频逆变电路以及初次侧谐振电路,所述接收端主电路包括顺序连接的二次侧谐振电路、两个半桥整流电路以及两个电池接口;所述控制电路即发射端控制电路,包括连接在发射端数字信号处理器上的PWM驱动电路、电流采样电路,所述电流采样电路连接在初次侧双谐振电路上。
  2. 根据权利要求1所述的一种双谐振无线充电电路,其双谐振电路包括初次侧双谐振电路和二次侧双谐振电路,初次侧双谐振电路包括第一电容C1、第一电感L1以及第三电容C3、第三电感L3,二次侧双谐振电路包括第二电容C2、第二电感L2以及第四电容C4、第四电感L4,其中第一电感L1和第二电感L2为一对耦合电感,第三电感L3和第四电感L4为一对耦合电感。
  3. 根据权利要求1所述的一种双谐振无线充电电路,其特征在于所述接收端两个半桥整流电路,第一半桥整流电路包括第一二极管VD1、第二二极管VD2;第二半桥整流电路包括第三二极管VD3、第四二极管VD4;第一二极管VD1的阴极与第五电容C5的一端连接交于G点,第二二极管VD2的阴极与第一二极管VD1的阳极相连,第二二极管VD2的阳极与第五电容C5的另一端连接交于H点;第三二极管VD3的阴极与第六电容C6的一端连接交于K点,第四二极管VD4的阴极与第三二极管VD3的阳极相连,第四二极管VD4的阳极与第六电容C6的另一端连接交于L点;
  4. 根据权利要求1所述的一种双谐振无线充电电路,其特征在于,所述高频逆变电路包括两个功率MOS开关管,发射端数字信号处理器通过PWM驱动电路控制所述两个功率MOS开关管动作。
  5. 根据权利要求1所述的双谐振无线充电电路的控制方法,其特征在于:
    首先,通过检测二次侧双谐振电路中第二电感L2和第四电感L4处电流变化判定第一负载R1和第二负载R2是否处于接入状态;
    其次,1)若发射端检测到第二电感L2和第四电感L4处电流存在波动,即第一负载R1和第二负载R2都处于接入状态后,发射端数字信号处理器发出充电指令,电路进入工作状态,通过PWM驱动电路控制高频逆变电路输出交流电,此时,PWM1占空比为50%,PWM2占空比为50%,经过半桥整流电路以及功率匹配变换电路后,对负载进行充电;2)若发射端检测到第四电感L4处电流存在波动,第二电感L2处电流无波动,即第一负载R1处于为接入状态,第二负载R2处于接入状态后,发射端数字信号处理器发出移相控制的指令,此时选择第三电感回路为主谐振回路,PWM1占空比为50%,PWM2占空比为20%。3)若发射端检测到第二电感L2处电流存在波动,第四电感L4处电流无波动,即第一负载R1处于为接入状态,第二负载R2处于未接入状态后,发射端数字信号处理器发出移相控制的指令,此时选择第一电感回路为主谐振回路,PWM1占空比为20%,PWM2占空比为50%。
  6. 根据权利要求1-5所述的一种双谐振无线充电电路,其特征在于,所述数字信号处理电路是由dsPIC33FJ64GS606芯片及其外围电路组成的。
PCT/CN2022/127154 2022-05-05 2022-10-24 一种双谐振无线充电电路及其控制方法 WO2023213057A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210491874.6 2022-05-05
CN202210491874.6A CN114785176A (zh) 2022-05-05 2022-05-05 一种双谐振无线充电电路及其控制方法

Publications (1)

Publication Number Publication Date
WO2023213057A1 true WO2023213057A1 (zh) 2023-11-09

Family

ID=82435116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127154 WO2023213057A1 (zh) 2022-05-05 2022-10-24 一种双谐振无线充电电路及其控制方法

Country Status (2)

Country Link
CN (1) CN114785176A (zh)
WO (1) WO2023213057A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114785176A (zh) * 2022-05-05 2022-07-22 江苏科技大学 一种双谐振无线充电电路及其控制方法
CN117559672B (zh) * 2024-01-11 2024-03-19 闽南理工学院 一种全向局域网微波无线能量传输装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080136343A1 (en) * 2005-08-11 2008-06-12 Yu Chung-Che Resonant DC/AC inverter
CN104734300A (zh) * 2015-04-09 2015-06-24 扬州大学 一种电动车无线充电电路及其控制方法
CN108390471A (zh) * 2018-03-09 2018-08-10 山东大学 一种多频率磁耦合谐振式无线电能传输系统及充电系统
CN109130902A (zh) * 2018-08-22 2019-01-04 广西电网有限责任公司电力科学研究院 一种基于负载检测的电动汽车动态充电系统及其控制方法
CN111669060A (zh) * 2020-07-10 2020-09-15 石家庄通合电子科技股份有限公司 一种利用磁路全耦合解决初级多路并联均流的方法
CN114785176A (zh) * 2022-05-05 2022-07-22 江苏科技大学 一种双谐振无线充电电路及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080136343A1 (en) * 2005-08-11 2008-06-12 Yu Chung-Che Resonant DC/AC inverter
CN104734300A (zh) * 2015-04-09 2015-06-24 扬州大学 一种电动车无线充电电路及其控制方法
CN108390471A (zh) * 2018-03-09 2018-08-10 山东大学 一种多频率磁耦合谐振式无线电能传输系统及充电系统
CN109130902A (zh) * 2018-08-22 2019-01-04 广西电网有限责任公司电力科学研究院 一种基于负载检测的电动汽车动态充电系统及其控制方法
CN111669060A (zh) * 2020-07-10 2020-09-15 石家庄通合电子科技股份有限公司 一种利用磁路全耦合解决初级多路并联均流的方法
CN114785176A (zh) * 2022-05-05 2022-07-22 江苏科技大学 一种双谐振无线充电电路及其控制方法

Also Published As

Publication number Publication date
CN114785176A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
WO2023213057A1 (zh) 一种双谐振无线充电电路及其控制方法
CN106740220B (zh) 一种恒流恒压复合拓扑的无线充电电路
CN108964474B (zh) 一种基于llc谐振变换器的三模态整流拓扑结构
CN111654116B (zh) 一种高增益恒压恒流输出电场耦合无线电能传输系统
CN106961220B (zh) 一种具有均流特性的高效并联llc谐振变换器
CN109742939B (zh) 一种双向pfc软开关及其控制方法
WO2024060728A1 (zh) 双向功率变换装置及其控制方法、计算机设备及计算机可读存储介质
CN110635545A (zh) 一种基于单管电路实现恒流恒压无线充电的装置及方法
CN103825463A (zh) Llc电路
CN112436728A (zh) 一种双向谐振变换器的高效率控制系统及方法
CN112311245B (zh) 一种双向串联谐振变换器的高频间歇控制系统及方法
TW202247587A (zh) 適用於寬範圍輸出電壓的變換器及其控制方法
CN103441690B (zh) 高频交流侧串联实现紧调整输出的组合变流器的控制方法
CN112421734A (zh) 一种单级式高阶补偿恒流恒压无线充电装置及方法
CN112311106A (zh) 一种单级全桥恒流恒压无线充电装置及其控制方法
CN115250013A (zh) 一种单管逆变感应耦合电能传输谐振频率点跟踪控制方法
TWI414135B (zh) 單級返馳式功率因數修正轉換器
CN212627329U (zh) 一种无线充电系统的发射端、接收端及无线充电系统
US11387742B2 (en) Full-bridge resonant conversion circuit
CN208508596U (zh) 一种pfc-llc充电器
CN219535902U (zh) 一种交直流双输入隔离电源及供电系统
CN111371195A (zh) 一种用于lcc-s无线电能传输系统的电力变换电路
CN219611612U (zh) 5g基站供电电路、系统以及电源装置
CN220492705U (zh) 串并补偿的无线电能传输系统
CN218416188U (zh) 一种新型Sepic功率因数校正变换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940751

Country of ref document: EP

Kind code of ref document: A1