WO2023212878A1 - 光学系统、以及具备光学系统的拍摄装置 - Google Patents

光学系统、以及具备光学系统的拍摄装置 Download PDF

Info

Publication number
WO2023212878A1
WO2023212878A1 PCT/CN2022/091050 CN2022091050W WO2023212878A1 WO 2023212878 A1 WO2023212878 A1 WO 2023212878A1 CN 2022091050 W CN2022091050 W CN 2022091050W WO 2023212878 A1 WO2023212878 A1 WO 2023212878A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
lens group
lens
refractive power
focusing
Prior art date
Application number
PCT/CN2022/091050
Other languages
English (en)
French (fr)
Inventor
帯金靖彦
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280001656.8A priority Critical patent/CN117355782A/zh
Priority to KR1020237038274A priority patent/KR20230162717A/ko
Priority to JP2022534448A priority patent/JP2024519623A/ja
Priority to PCT/CN2022/091050 priority patent/WO2023212878A1/zh
Publication of WO2023212878A1 publication Critical patent/WO2023212878A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1431Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being positive
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0065Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • G02B15/167Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
    • G02B15/17Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses arranged +--
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • the present invention relates to an optical system including a plurality of lens groups, and an imaging device including the optical system.
  • a first lens group with positive refractive power, a second lens group with negative refractive power, and a third lens group arranged in order from the object side to the image side have only the second lens group along the optical axis during focusing.
  • optical systems described in Patent Document 1 Japanese Patent Publication No. 5749629
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2021-173847
  • the optical system described in Patent Document 1 is insufficient for close-range photography, and the optical system described in Patent Document 2 has a large ratio of the entire length of the optical system to the focal length, and is not sufficiently compact. .
  • Patent Document 1 Japanese Patent No. 5749629
  • Patent Document 2 Japanese Patent Application Publication No. 2021-173847
  • an object of the present invention is to provide a compact optical system capable of photographing at close range, and an imaging device provided with the optical system.
  • the optical system of the present invention has:
  • a first lens group with positive refractive power, a second lens group with negative refractive power, and a third lens group with negative refractive power are arranged in sequence from the object side to the image side,
  • the above-mentioned second lens group moves along the optical axis
  • the above-mentioned second lens group has:
  • At least one lens with positive refractive power At least one lens with positive refractive power
  • At least one lens with negative refractive power at least one lens with negative refractive power
  • the lens with the strongest positive refractive power is located closer to the image side than the lens with the strongest negative refractive power.
  • the photographing device of the present invention includes:
  • An imaging element is disposed on the image surface side of the optical system and converts an optical image formed by the optical system into an electrical signal.
  • FIG. 1 is a schematic diagram showing the structure of the imaging device according to this embodiment.
  • FIG. 2 is a lens configuration diagram of the optical system of Example 1 in an infinity focusing state.
  • FIG. 3 is a lens configuration diagram of the optical system of Example 1 in the most recently focused state.
  • Example 4 is a longitudinal aberration diagram of the optical system of Example 1 in the infinity focus state.
  • Figure 5 is a longitudinal aberration diagram of the optical system of Example 1 at "-0.5 times" magnification.
  • FIG. 6 is a longitudinal aberration diagram of the optical system of Example 1 at "-1.0 times" magnification.
  • Example 7 is a lens configuration diagram of the optical system of Example 2 in an infinity focusing state.
  • FIG. 8 is a lens configuration diagram of the optical system of Example 2 in the most recently focused state.
  • FIG. 9 is a longitudinal aberration diagram of the optical system of Example 2 in the infinity focus state.
  • Figure 10 is a longitudinal aberration diagram of the optical system of Example 2 at "-0.5 times" magnification.
  • Figure 11 is a longitudinal aberration diagram of the optical system of Example 2 at "-1.0 times" magnification.
  • FIG. 12 is a lens configuration diagram of the optical system of Example 3 in an infinity focusing state.
  • FIG. 13 is a lens configuration diagram of the optical system of Example 3 in the most recently focused state.
  • FIG. 14 is a longitudinal aberration diagram of the optical system of Example 3 in the infinity focus state.
  • Figure 15 is a longitudinal aberration diagram of the optical system of Example 3 at "-0.5 times" magnification.
  • Figure 16 is a longitudinal aberration diagram of the optical system of Example 3 at "-1.0 times" magnification.
  • 17 is a lens configuration diagram of the optical system of Example 4 in an infinity focusing state.
  • FIG. 18 is a lens configuration diagram of the optical system of Example 4 in the most recently focused state.
  • FIG. 19 is a longitudinal aberration diagram of the optical system of Example 4 in the infinity focus state.
  • Figure 20 is a longitudinal aberration diagram of the optical system of Example 4 at "-0.5 times" magnification.
  • Figure 21 is a longitudinal aberration diagram of the optical system of Example 4 at "-1.0 times" magnification.
  • the imaging device 1 of this embodiment includes an optical system 2 , an imaging element 3 arranged at the imaging plane position of the optical system 2 , and a liquid crystal screen 4 that displays imaging (image) data transmitted from the imaging element 3 .
  • the imaging device 1 includes a drive unit (not shown) that drives the optical system 2 .
  • the drive unit is an actuator such as a VCM (Voice Coil Motor), and drives a predetermined lens or lens group included in the optical system 2 in a direction substantially perpendicular to the light-receiving surface of the imaging element 3 (optical axis direction).
  • the imaging element 3 is an element that converts the optical image formed by the optical system 2 into an electrical signal (imaging data), and the imaging element 3 in this embodiment is a CMOS image sensor.
  • the optical system 2 is a so-called inner focusing optical system.
  • the optical system 2 of this embodiment is a so-called periscope telephoto lens in which the optical axis (optical path) C is bent by a reflective optical element such as a prism or a mirror.
  • the optical system 2 includes a prism 20 that bends the optical axis C and a plurality of lens groups G arranged on the optical axis C in order from the object side to the image side.
  • the optical system 2 includes an aperture diaphragm 24 , a filter 25 arranged between the plurality of lens groups G and the imaging element 3 , and a lens barrel 26 holding the plurality of lens groups G.
  • the plurality of lens groups G include at least a first lens group 21 , a second lens group 22 , and a third lens group 23 in order from the object side to the image side along the optical axis C.
  • Each of the above-described lens groups 21, 22, and 23 includes at least one lens (optical element).
  • the lens groups 21 to 23 are names for convenience, and include a lens group composed of only one optical element (lens, etc.). That is, each of the first to third lens groups 21, 22, and 23 includes at least one optical element such as a lens.
  • the optical element (lens, etc.) whose position is fixed on the optical axis C during focusing and the moving optical element are separated from each other, and at least one of the above-mentioned fixed optical elements in the separation area serves as one lens The above-mentioned moved at least one optical element in the separated area is used as another lens group.
  • the second lens group 22 when focusing, moves along the optical axis C, and the first lens group 21 and the third lens group 23 move in the direction of the optical axis C relative to the imaging element 3 (optical system 2).
  • the position of the imaging plane) is fixed. That is, in the optical system 2 of this embodiment, the second lens group 22 constitutes the focus lens group F in each of the lens groups 21, 22, and 23.
  • the first lens group 21 includes a plurality of lenses (four in the example of this embodiment) and has positive refractive power.
  • the second lens group 22 includes a plurality of lenses (two in the example of this embodiment) and has a negative curvature.
  • the third lens group 23 includes a plurality of lenses (two in the example of this embodiment) and has negative refractive power.
  • the optical system 2 satisfies the following formula (1).
  • the first lens group 21 with positive refractive power is arranged closest to the object side, and the second lens group 22 with negative refractive power is arranged on the closest object side.
  • the third lens group 23 with negative refractive power is arranged closest to the image side.
  • the second lens group by movable the second lens group during focusing, the balance of aberration fluctuations with the front and rear lens groups 21 and 23 is adjusted. Compared with the whole-send method, it is possible to suppress field curvature fluctuations during close-range shooting. Therefore, The distance for close-up shooting can be further shortened.
  • the load on the mechanism or actuator can be reduced, thereby, The entire imaging device 1 including the optical system 2 can be miniaturized.
  • the above-mentioned equation (1) stipulates the ratio of the distance from the most object side to the most image side of the second lens group 22 to the distance from the most object side to the imaging surface of the entire optical system 2 (OAL2/OAL ), when the ratio (OAL2/OAL) is lower than the lower limit value (0.06), aberration correction in the entire focus area becomes insufficient, and imaging performance becomes insufficient.
  • the ratio of the distance from the most object side to the most image side of the second lens group 22 is calculated by the ratio of the distance from the most object side to the imaging surface of the entire optical system 2 (OAL2/OAL) is set within the range of equation (1), so that sufficient aberration correction can be performed throughout the entire focus area, thereby ensuring sufficient imaging performance.
  • the above ratio (OAL2/OAL) preferably satisfies:
  • the second lens group 22 has at least one lens with positive refractive power and at least one lens with negative refractive power.
  • the lens 221 with the strongest positive refractive power can be arranged in a larger position than the second lens group 22.
  • the lens 222 with the strongest negative refractive power is located closer to the image side.
  • the axis on the object side of the second lens group 22 that is strongly converged by the first lens group 21 The beam acts as a properly converged beam and requires negative power to jump the peripheral beam and guide it to the image side of the second lens group 22 .
  • positive refractive power is required for converging to obtain a desired F number.
  • the second lens group 22 includes at least one lens with positive refractive power and at least one lens with negative refractive power.
  • the lens 221 with the strongest positive refractive power is located closer to the image side than the lens 222 with the strongest negative refractive power. It is possible to achieve appropriate focusing in the entire focus area from infinity to close range shooting by simply moving the second lens group 22. aberration correction.
  • the optical system 2 when the focal length of the entire optical system when focusing at infinity is f, the optical system 2 may satisfy the following equation (2).
  • the above formula (2) specifies the ratio of the distance from the most object side of the entire optical system to the image plane and the focal length (OAL/f).
  • the ratio (OAL/f) exceeds the upper limit (2.00)
  • the above-mentioned ratio (OAL/f) preferably satisfies:
  • the optical system 2 when the maximum lateral magnification of the entire optical system is B, the optical system 2 may satisfy the following equation (3).
  • the above-mentioned formula (3) stipulates the maximum lateral magnification of the entire optical system.
  • this value is lower than the lower limit value (0.50)
  • the maximum lateral magnification is a numerical value indicating the degree of close-up shooting, and is the ratio of the height of the image on the shooting surface to the height of the subject. For example, when shooting at close range, when
  • the maximum lateral magnification of the entire optical system preferably satisfies:
  • the lateral magnification of the second lens group when focusing at infinity is set to b2
  • the lateral magnification of the third lens group when focusing at infinity is set to b3.
  • the above equation (4) stipulates the ratio of the movement amount of the imaging surface to the movement amount of the second lens group 22 in the direction of the optical axis C ((1-b22) ⁇ b32). In the overall transmission optical system, it corresponds to The numerical value of this equation is 1. However, in the inner focusing optical system of the optical system 2 of this embodiment, by increasing the ratio to a negative value, close-range photography can be achieved with a small amount of movement, and the entire optical system can be 2 miniaturization. When this ratio ((1-b22) ⁇ b32) is less than the lower limit value (-10.00), the movement amount of the imaging plane becomes too large relative to the movement amount of the second lens group 22 in the direction of the optical axis C, making it difficult to pass the actuation.
  • the stop position accuracy of the second lens group 22 can be improved by using a driving device such as a driver.
  • a driving device such as a driver.
  • the ratio ((1-b22) ⁇ b32) exceeds the upper limit value (-2.00)
  • the movement amount of the second lens group 22 used for close-range photography becomes large, so it is difficult to achieve miniaturization of the entire optical system 2 .
  • the ratio of the movement amount of the imaging plane to the movement amount of the second lens group 22 in the direction of the optical axis C ((1-b22) ⁇ b32) is set to the above-mentioned equation ( Within the range of 4), it is possible to achieve a balance between improving the accuracy of the stopping position of the second lens group 22 by the actuator or the like during focusing and miniaturizing the entire optical system 2 .
  • the above ratio ((1-b22) ⁇ b32) preferably satisfies:
  • the optical system 2 may also satisfy the following equation (5 ).
  • the above formula (5) stipulates the ratio (f2/f) of the focal length of the second lens group 22 to the focal length of the entire optical system 2 when focusing at infinity.
  • the ratio (f2/f) is lower than the lower limit value (- 0.70)
  • the refractive power of the second lens group 22 becomes weak and the movement amount of the second lens group 22 used for close-range photography becomes large. Therefore, it is difficult to reduce the size of the entire optical system 2 .
  • the ratio (f2/f) exceeds the upper limit (-0.10), the amount of movement of the imaging plane becomes too large relative to the amount of movement of the second lens group 22 in the direction of the optical axis C, making it difficult to drive it by an actuator or the like.
  • the device improves the accuracy of the stop position of the second lens group 22 . Therefore, in the optical system 2 of this embodiment, the ratio (f2/f) of the focal length of the second lens group 22 to the focal length of the entire optical system 2 when focusing at infinity is set to the equation (5) above. Within this range, a balance can be achieved between downsizing the entire optical system 2 and improving the accuracy of the stop position of the second lens group 22 through the actuator or the like during focusing.
  • the above-mentioned ratio (f2/f) preferably satisfies:
  • the optical system 2 configured as above and the imaging device 1 provided with the optical system 2, compact and close-range imaging can be achieved. That is, the first lens group 21 has positive refractive power, the second lens group 22 has negative refractive power, and the third lens group 23 has negative refractive power, and the second lens group 22 is movable when focusing from infinity to close distance.
  • the optical system 2 of the embodiment by appropriately selecting the configuration, magnification, lens material, etc. of each lens group 21 to 23, it is possible to realize an optical system that is compact overall and fully realizes performance for close-range photography and correction of chromatic aberration. .
  • the optical system 2 and the imaging device 1 provided with the optical system 2 of this embodiment even if it is a so-called internal focus optical system, the optical system 2 and the imaging device 1 provided with the optical system 2 can be miniaturized. wait. Details are as follows.
  • the above-mentioned overall delivery optical system adopts a method of sending the entire optical system to the object side when focusing from infinity to close distance.
  • the entire optical system is fixed as one without dividing into subgroups. Therefore, it is relatively easy to improve the optical performance during design.
  • the position where the lens system of the peripheral image high beam passes is different between infinity and close range, and the variation in field curvature becomes large, and it is difficult to correct the aberration.
  • the distance the entire lens is moved when focusing increases in proportion to the square of the focal length. Therefore, especially for a telephoto lens with a long focal length, the amount of movement of the focus becomes longer in order to achieve close-range photography. As a result, it is difficult to reduce the size of the optical system and the imaging device.
  • the internal focusing optical system adopts a method that allows part of the lens group in the optical system to be moved to the object side or the image side when focusing from infinity to close distance. Since the aberration correction corresponding to the distance of each object is Assigned to each group, aberration correction within the focus range is easier. In addition, the sensitivity of the distance the focus group moves when focusing can be improved, and the amount of movement can be easily shortened.
  • the imaging device 1 of the present embodiment even if an internal focus optical system is used as the optical system 2, an optical system that is compact overall and can fully realize performance in close-range photography and correction of chromatic aberration can be realized.
  • Examples 1 to 4 of the optical system of the present invention will be described.
  • the same reference numerals are used for the components corresponding to the components of the optical system 2 of the above-described embodiment.
  • r represents the radius of curvature
  • d represents the lens thickness or lens spacing
  • nd represents the refractive index of the d line
  • vd represents the Abbe number based on the d line.
  • the aspheric surface is defined by the following formula.
  • each longitudinal aberration diagram shows spherical aberration (SA (mm)), astigmatism (AST (mm)), and distortion (DIS (%)) in order from the left.
  • the vertical axis represents the F number (represented by FNO in the diagram)
  • the solid line is the characteristic of the d-line (d-line)
  • the short dotted line is the characteristic of the F-line (F-line)
  • the long dotted line is C Characteristics of line (C-line).
  • the vertical axis indicates the maximum image height (indicated by Y in the figure)
  • the solid line indicates the characteristics of the sagittal plane (indicated by S in the figure)
  • the dotted line indicates the characteristics of the meridional plane (indicated by M in the figure).
  • the vertical axis represents the maximum image height (indicated by Y in the diagram).
  • FIG. 2 and 3 are lens configuration diagrams of the optical system of the present embodiment 1.
  • FIG. 2 shows the infinity focus state
  • FIG. 3 shows the closest focus state.
  • the reference numerals indicating the respective components of the optical system are the same as the reference numerals corresponding to the components of the optical system 2 of the above-described embodiment.
  • the positions of the first lens group 21 and the third lens group 23 on the optical axis C relative to the imaging element (image plane) 3 are fixed.
  • Figure 4 is a longitudinal aberration diagram in the infinity focus state
  • Figure 5 is a longitudinal aberration diagram under "-0.5x” magnification
  • Figure 6 is a longitudinal aberration diagram under "-1.0x” magnification.
  • Table 1 below shows surface data of each lens
  • Table 2 shows aspherical surface data
  • Table 3 shows various data
  • Table 4 shows lens group data
  • Table 5 shows single lens data.
  • the focal length is 21.999 and the maximum image height is 4.000.
  • FIG. 7 and 8 are lens configuration diagrams of the optical system of the second embodiment.
  • FIG. 7 shows the infinity focus state
  • FIG. 8 shows the closest focus state.
  • the reference numerals indicating the respective components of the optical system are the same as the reference numerals corresponding to the components of the optical system 2 of the above-described embodiment.
  • the positions of the first lens group 21 and the third lens group 23 on the optical axis C relative to the imaging element (image plane) 3 are fixed.
  • Figure 9 is a longitudinal aberration diagram in the infinity focus state
  • Figure 10 is a longitudinal aberration diagram under "-0.5x” magnification
  • Figure 11 is a longitudinal aberration diagram under "-1.0x” magnification.
  • Table 6 shows the surface data of each lens
  • Table 7 shows the aspheric surface data
  • Table 8 shows various data
  • Table 9 shows the lens group data
  • Table 10 shows the single lens data.
  • the focal length is 11.600 and the maximum image height is 2.060.
  • Group starting surface focal length Lens configuration length Lens movement amount magnification 1 1 4.167 3.167 0.000 - 2 7 -3.745 1.990 2.478 2.613 3 13 -58.120 1.376 0.000 1.065
  • FIG. 12 and 13 are lens configuration diagrams of the optical system of the third embodiment.
  • FIG. 12 shows the infinity focus state
  • FIG. 13 shows the closest focus state.
  • the reference numerals indicating the respective components of the optical system are the same as the reference numerals corresponding to the components of the optical system 2 of the above-described embodiment.
  • the positions of the first lens group 21 and the third lens group 23 on the optical axis C relative to the imaging element (image plane) 3 are fixed.
  • Figure 14 is a longitudinal aberration diagram in the infinity focus state
  • Figure 15 is a longitudinal aberration diagram under "-0.5x” magnification
  • Figure 16 is a longitudinal aberration diagram under "-1.0x” magnification.
  • Table 11 below shows surface data of each lens
  • Table 12 shows aspheric surface data
  • Table 13 shows various data
  • Table 14 shows lens group data
  • Table 15 shows single lens data.
  • the focal length is 11.598 and the maximum image height is 2.060.
  • lens starting surface focal length 1 1 5.950 2 3 -5.141 3 5 3.323 4 7 -3.074 5 9 19.127 6 11 25.097 7 13 -15.804
  • FIG. 17 and 18 are lens configuration diagrams of the optical system of the fourth embodiment.
  • FIG. 17 shows the infinity focus state
  • FIG. 18 shows the closest focus state.
  • the reference numerals indicating the respective components of the optical system are the same as the reference numerals corresponding to the components of the optical system 2 of the above-described embodiment.
  • the positions of the first lens group 21 and the third lens group 23 on the optical axis C relative to the imaging element (image plane) 3 are fixed.
  • Figure 19 is a longitudinal aberration diagram in the infinity focus state
  • Figure 20 is a longitudinal aberration diagram under "-0.5x” magnification
  • Figure 21 is a longitudinal aberration diagram under "-1.0x” magnification.
  • Table 16 shows the surface data of each lens
  • Table 17 shows the aspherical surface data
  • Table 18 shows various data
  • Table 19 shows the lens group data
  • Table 20 shows the single lens data.
  • the focal length is 21.999 and the maximum image height is 4.000.
  • conditional expression (1) is OAL2/OAL
  • conditional expression (2) is OAL/f
  • conditional expression (3) is
  • conditional expression (4) is (1-b2 2 ) ⁇ b3 2
  • conditional expression (5) is f2/f.
  • Example 1 Example 2 Example 3
  • Example 4 Conditional expression (1) 0.157 0.184 0.197 0.155 Conditional expression (2) 0.986 0.931 0.931 0.985 Conditional expression (3) 1.000 1.000 1.000 1.000 Conditional expression (4) -5.813 -6.610 -6.916 -5.477
  • Conditional expression (5) -0.482 -0.323 -0.349 -0.523
  • OAL2 3.408 1.990 2.124 3.350
  • 1...shooting device 2...optical system, 20...prism (reflective optical element), 21...first lens group, 22...second lens group, 221...the lens with the strongest positive refractive power in the second lens group 22, 222... The lens with the strongest negative refractive power in the second lens group 22, 23...the third lens group, 25...filter, 26...lens tube, 3...photo element, 4...LCD screen, C...optical axis, F...focus Lens group, G... lens group.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lenses (AREA)

Abstract

提供一种光学系统、以及具备光学系统的拍摄装置,上述光学系统具备:从物体侧依次排列的、具有正屈光力的第一透镜组、具有负屈光力的第二透镜组、以及具有负屈光力的第三透镜组,在对焦时,第二透镜组沿着光轴移动,第一透镜组以及第三透镜组相对于成像面固定,在将从第二透镜组的最靠物体侧面到最靠像侧面的距离设为OAL2,将从整个光学系统的最靠物体侧面到像面的距离设为OAL时,满足0.06≤OAL2/OAL。

Description

光学系统、以及具备光学系统的拍摄装置 技术领域
本发明涉及具备多个透镜组的光学系统、以及具备该光学系统的拍摄装置。
背景技术
以往,作为具备从物体侧到像侧依次排列的、具有正屈光力的第一透镜组、具有负屈光力的第二透镜组、以及第三透镜组,在对焦时仅第二透镜组沿着光轴移动的光学系统,已知专利文献1(日本专利5749629号公报)以及专利文献2(日本特开2021-173847号公报)记载的光学系统。
然而,在专利文献1所述的光学系统中,对于近距离拍摄来讲是不充分的,在专利文献2所述的光学系统中,光学系统与焦距的全长之比较大,小型化不充分。
现有技术文献
专利文献
专利文献1:日本专利5749629号公报
专利文献2:日本特开2021-173847号公报
发明内容
发明要解决的问题
因此,本发明的目的在于提供一种小型且可以近距离拍摄的光学系统、以及具备上述光学系统的拍摄装置。
用于解决问题的方案
本发明的光学系统具备:
从物体侧到像侧依次排列的、具有正屈光力的第一透镜组、具有负屈光力的第二透镜组、以及具有负屈光力的第三透镜组,
在对焦时,
上述第二透镜组沿着光轴移动,
上述第一透镜组以及上述第三透镜组在光轴方向上相对于成像面的位置是固定的,
在将从上述第二透镜组的最靠物体侧面到最靠像侧面的距离设为OAL2,将从整个光学系统的最靠物体侧面到成像面的距离设为OAL时,满足:
0.06≤OAL2/OAL。
在上述光学系统中,也可以是,
上述第二透镜组具有:
至少一片具有正屈光力的透镜;以及
至少一片具有负屈光力的透镜,
在上述第二透镜组中,正屈光力最强的透镜位于比负屈光力最强的透镜更靠像侧的位置。
另外,在上述光学系统中,也可以是,
在将整个光学系统的无限远对焦时的焦距设为f时,满足:
OAL/f≤2.00。
另外,在上述光学系统中,也可以是,
在将整个光学系统的最大横向倍率设为B时,满足:
0.50≤|B|。
另外,在上述光学系统中,也可以是,
在将上述第二透镜组的无限远对焦时的横向倍率设为b2,将上述第三透镜组的无限远对焦时的横向倍率设为b3时,满足:
[根据细则91更正 19.07.2022]
-10.00≤(1-b22)×b32≤-2.00。
另外,在上述光学系统中,也可以是,
在将整个光学系统的无限远对焦时的焦距设为f,将上述第二透镜组的焦距设为f2时,满足:
-0.70≤f2/f≤-0.10。
另外,本发明的拍摄装置具备:
上述任一光学系统;以及
拍摄元件,其配置于上述光学系统的像面侧,将由该光学系统形成的光学像转换为电信号。
附图说明
图1是示出本实施方式的拍摄装置的构成的示意图。
图2是实施例1的光学系统的无限远对焦状态下的透镜构成图。
图3是实施例1的光学系统的最近对焦状态下的透镜构成图。
图4是实施例1的光学系统的无限远对焦状态下的纵向像差图。
图5是实施例1的光学系统在“-0.5倍”放大倍率下的纵向像差图。
图6是实施例1的光学系统在“-1.0倍”放大倍率下的纵向像差图。
图7是实施例2的光学系统的无限远对焦状态下的透镜构成图。
图8是实施例2的光学系统的最近对焦状态下的透镜构成图。
图9是实施例2的光学系统的无限远对焦状态下的纵向像差图。
图10是实施例2的光学系统在“-0.5倍”放大倍率下的纵向像差图。
图11是实施例2的光学系统在“-1.0倍”放大倍率下的纵向像差图。
图12是实施例3的光学系统的无限远对焦状态下的透镜构成图。
图13是实施例3的光学系统的最近对焦状态下的透镜构成图。
图14是实施例3的光学系统的无限远对焦状态下的纵向像差图。
图15是实施例3的光学系统在“-0.5倍”放大倍率下的纵向像差图。
图16是实施例3的光学系统在“-1.0倍”放大倍率下的纵向像差图。
图17是实施例4的光学系统的无限远对焦状态下的透镜构成图。
图18是实施例4的光学系统的最近对焦状态下的透镜构成图。
图19是实施例4的光学系统的无限远对焦状态下的纵向像差图。
图20是实施例4的光学系统在“-0.5倍”放大倍率下的纵向像差图。
图21是实施例4的光学系统在“-1.0倍”放大倍率下的纵向像差图。
具体实施方式
以下,参照附图说明本发明的一个实施方式。
如图1所示,本实施方式的拍摄装置1具备光学系统2、配置在光学系统2的成像面位置的拍摄元件3、以及显示从拍摄元件3发送的拍摄(图像)数据的液晶屏幕4。另外,拍摄装置1具备驱动光学系统2的驱动部(省略图示)。该驱动部是VCM(音圈马达)等致动器,将光学系统2中包含的规定的透镜或透镜组等向与拍摄元件3的受光面大致垂直的方向(光轴方向)驱动。另外,拍摄元件3是将由光学系统2形成的光学像转换为电信号(拍摄数据)的元件,本实施方式的拍摄元件3是CMOS图像传感器。
光学系统2是所谓的内对焦光学系统,本实施方式的光学系统2是通过棱镜或反射镜等反射光学元件使光轴(光路)C弯曲的所谓的潜望式长焦透镜。具体地说,光学系统2沿着光轴C从物体侧到像侧依次具备使光轴C弯曲的棱镜20、以及在光轴C上排列的多个透镜组G。另外,光学系统2具备孔径光圈24、配置在多个透镜组G与拍摄元件3之间的滤光片25、以及保持多个透镜组G的镜筒26。
多个透镜组G沿着光轴C从物体侧到像侧依次至少包含第一透镜组21、第二透镜组22、以及第三透镜组23。上述各透镜组21、22、23分别包含至少一片透镜(光学元件)。
另外,在本实施方式的光学系统2中,透镜组21~23是为了方便起见的名称,包含仅由一个光学元件(透镜等)构成的透镜组。即,第一~第三透镜组21、22、23分别具有至少一片透镜等的光学元件。另外,在光学系统2中,在对焦时其在光轴C上的位置固定的光学元件(透镜等)与移动的光学元件彼此分离,将分离区域内的上述固定的至少一片光学元件作为一个透镜组,将分离的区域内的上述移动的至少一片光学元件作为另一透镜组。
在上述光学系统2中,在对焦时,第二透镜组22沿着光轴C移动,第一透镜组21以及第三透镜组23在光轴C方向上相对于拍摄元件3(光学系统2的成像面)的位置是固定的。即,在本实施方式的光学系统2中,在各透镜组21、22、23中,第二透镜组22构成对焦透镜组F。
以下,详细说明光学系统2中的各透镜组21~23。
第一透镜组21包含多个(在本实施方式的例子中为四个)透镜,具有正屈光力。另外,第二透镜组22包含多个(在本实施方式的例子中为二个)透镜,具有负的弯曲率。另外,第三透镜组23包含多个(在本实施方式的例子中为二个)透镜,具有负屈光力。
在此,在将从第二透镜组22的最靠物体侧面到最靠像侧面的距离设为OAL2,将从整个光学系统2的最靠物体侧面到成像面的距离设为OAL时,光学系统2满足下述的式(1)。
0.06≤OAL2/OAL···(1)
在上述光学系统2中,在沿着光轴C配置的多个透镜组G中,具有正屈光力的第一透镜组21配置在最靠物体侧,具有负屈光力的第二透镜组22配置在第一透镜组21的像侧,具有负屈光力的第三透镜组23配置在最靠像侧。由此,在光学系统2中容易获得长焦(telephoto)的光焦度布置,因此能够缩短第一透镜组21的焦距,其结果是,能够实现光学系统2的小型化(详细地说,光轴C方向上的小型化)。
并且,通过在对焦时使第二透镜组可动,调整与前后的透镜组21、23的像差变动平衡,与整体送出方式相比,能够抑制近距离拍摄时的像面弯曲变动,因此,可以进一步缩短近距离拍摄距离。
而且,通过使第一透镜组21和第三透镜组23相对于成像面固定,仅将第二透镜组22设为可动的透镜组,能够减轻对机构或致动器的负荷,由此,可以实现包含光学系统2的拍摄装置1整体的小型化。
另外,上述的式(1)规定了从第二透镜组22的最靠物体侧面到最靠像侧面的距离与从整个光学系统2的最靠物体侧面到成像面的距离之比(OAL2/OAL),当该比例(OAL2/OAL)低于下限值(0.06)时,整个对焦区域中的像差校正变得不充分,成像性能变得不充分。因此,在本实施方式的光学系统2中,通过将从第二透镜组22的最靠物体侧面到最靠像侧面的距离与从整个光学系统2的最靠物体侧面到成像面的距离之比(OAL2/OAL)设定在式(1)的范围内,从而可以在整个对焦区域中进行充分的像差校正,由此,确保了充分的成像性能。
另外,在本实施方式的在光学系统2中,上述比例(OAL2/OAL)优选满足:
0.11≤OAL2/OAL≤0.30,
更优选满足:
0.15≤OAL2/OAL≤0.22。
另外,在光学系统2中,第二透镜组22具有至少一片具有正屈光力的透镜、以及至少一片具有负屈光力的透镜,在第二透镜组22中,正屈光力最强的透镜221可以配置在比负屈光力最强的透镜222更靠像侧的位置。
根据该构成,能够仅通过移动第二透镜组22来实现从无限远到近距离拍摄的整个对焦区域内的像差校正。详细内容如下。
为了仅通过移动第二透镜组22来实现从无限远到近距离拍摄的整个对焦区域内的像差校正,则将在第二透镜组22的物体侧由第一透镜组21强会聚的轴上光束作为适当会聚的光束,并需要负的光焦度使周边光束跳起并将其引导至第二透镜组22的像侧。另外,在第二透镜组22的像侧,需要用于会聚以获得所希望的F数的正的光焦度。
因此,在本实施方式的光学系统2中,如上述构成那样,第二透镜组22具备具有正屈光力的至少一片透镜、以及具有负屈光力的至少一片透镜,通过采用在第二透镜组22中,正屈光力最强的透镜221位于比负屈光力最强的透镜222更靠像侧的位置的构成,可以仅通过移动第二透镜组22来实现从无限远到近距离拍摄的整个对焦区域内的适当的像差校正。
另外,在光学系统2中,在将整个光学系统的无限远对焦时的焦距设为f时,该光学系统2也可以满足下述的式(2)。
OAL/f≤2.00···(2)
上述的式(2)规定了从整个光学系统的最靠物体侧面到像面的距离与焦距之比(OAL/f),当该比例(OAL/f)超过上限值(2.00)时,不能说充分缩短了光学总长,不仅是光学系统2,具备该光学系统2的拍摄装置1整体也无法实现小型化。因此,在本实施方式的光学系统2中,通过将从整个光学系统的最靠物体侧面到像面的距离与焦距之比(OAL/f)设定在式(2)的范围内,可以充分缩短光学总长,由此,不仅可以实现光学系统2的小型化还可以实现具备该光学系统2的拍摄装置1整体的小型化。
另外,在本实施方式的在光学系统2中,上述比例(OAL/f)优选满足:
0.80≤OAL/f≤1.50,
更优选满足:
0.90≤OAL/f≤1.00。
另外,在光学系统2中在将整个光学系统的最大横向倍率设为B时,该光学系统2也可以满足下述的式(3)。
0.50≤|B|···(3)
上述的式(3)规定了整个光学系统的最大横向倍率,当该数值低于下限值(0.50)时,不能说充分实现了近距离拍摄,无法缩短可拍摄的物体距离。因此,在本实施方式的光学系统2中,通过将整个光学系统的最大横向倍率设定在式(3)的范围内,可以缩短可拍摄的物体距离,由此,可以实现小型且可近距离拍摄的光学系统2、以及具备该光学系统2的拍摄装置1。
在此,最大横向倍率是表示近距离拍摄程度的数值,是拍摄面的像的高度与被摄体的物体的高度之 比。例如,在近距离拍摄时,当|B|为1.00时,被摄体与拍摄面的大小相等。另外,在远距离拍摄时,|B|接近于0.00。
另外,在本实施方式的在光学系统2中,整个光学系统的最大横向倍率优选满足:
0.75≤|B|,
更优选满足:
1.00≤|B|。
另外,在光学系统2中,在将第二透镜组的无限远对焦时的横向倍率设为b2,将第三透镜组的无限远对焦时的横向倍率设为b3时,该光学系统2也可以满足下述的式(4)。
[根据细则91更正 19.07.2022]
-10.00≤(1-b22)×b32≤-2.00···(4)
上述的式(4)规定了成像面的移动量与第二透镜组22在光轴C方向上的移动量之比((1-b22)×b32),在整体送出的光学系统中,对应于该数式的数值为1,但在本实施方式的光学系统2的内对焦光学系统中,通过使该比例以负值变大,可以以少的移动量实现近距离拍摄,并且实现了整个光学系统2的小型化。当该比例((1-b22)×b32)小于下限值(-10.00)时,成像面的移动量相对于第二透镜组22的光轴C方向的移动量变得过大,难以通过致动器等驱动装置提高在第二透镜组22的停止位置精度。而当该比例((1-b22)×b32)超过上限值(-2.00)时,用于近距离拍摄的第二透镜组22的移动量变大,因此,难以实现整个光学系统2的小型化。因此,在本实施方式的光学系统2中,通过将成像面的移动量与第二透镜组22在光轴C方向的移动量之比((1-b22)×b32)设在上述的式(4)的范围内,能够实现在对焦时通过致动器等提高在第二透镜组22的停止位置精度与整个光学系统2的小型化的平衡。
另外,在本实施方式的在光学系统2中,上述比例((1-b22)×b32)优选满足:
[根据细则91更正 19.07.2022]
-9.00≤(1-b22)×b32≤-2.50,
更优选满足:
[根据细则91更正 19.07.2022]
-8.00≤(1-b22)×b32≤-5.00。
另外,在光学系统2中,在将整个光学系统的无限远对焦时的焦距设为f,将上述第二透镜组的焦距设为f2时,该光学系统2也可以满足下述的式(5)。
-0.70≤f2/f≤-0.10···(5)
上述的式(5)规定了第二透镜组22的焦距与整个光学系统2的无限远对焦时的焦距之比(f2/f),当该比例(f2/f)低于下限值(-0.70)时,第二透镜组22的光焦度变弱,用于近距离拍摄的第二透镜组22的移动量变大,因此,难以实现整个光学系统2的小型化。而当该比例(f2/f)超过上限值(-0.10)时,成像面的移动量相对于第二透镜组22的光轴C方向的移动量变得过大,难以通过致动器等驱动装置提高在第二透镜组22的停止位置精度。因此,在本实施方式的光学系统2中,通过将第二透镜组22的焦距与整个光学系统2的无限远对焦时的焦距之比(f2/f)设定在上述的式(5)的范围内,能够实现整个光学系统2的小型化与在对焦时通过致动器等提高在第二透镜组22的停止位置精度的平衡。
另外,在本实施方式的在光学系统2中,上述比例(f2/f)优选满足:
-0.65≤f2/f≤-0.15,
更优选满足:
-0.60≤f2/f≤-0.20。
根据以上构成的光学系统2、以及具备光学系统2的拍摄装置1,可以实现小型且近距离拍摄。即,在第一透镜组21具有正屈光力,第二透镜组22具有负屈光力,第三透镜组23具有负屈光力,在从无限远到近距离的对焦时使第二透镜组22可动的本实施方式的光学系统2中,通过适当地选择各透镜组21~23的构成、倍率、透镜材料等,可以实现整体小型,且充分实现近距离拍摄时的性能、色像差的校正的光学系统。
另外,在本实施方式的光学系统2、以及具备光学系统2的拍摄装置1中,即使是所谓的内对焦光学系统,也可以实现光学系统2、以及具备光学系统2的拍摄装置1的小型化等。详细内容如下。
作为以往透镜的对焦方法,已知整体送出光学系统。上述整体送出光学系统采用在从无限远到近距离的对焦时将整个光学系统送出到物体侧的方式,整个光学系统固定为一个而不划分子组,因此,在设计时提高光学性能相对容易。然而,当对整个透镜进行对焦时,周边像高光束的透镜系统通过的位置在无限远和近距离之间存在差异,像面弯曲的变动变大,并且难以校正其像差。另外,在对焦时使整个透镜移动的距离与焦距的平方成比例地增加。因此,特别是长焦距的长焦镜头,为了实现近距离拍摄,对焦的移动量变长,其结果是,难以实现光学系统以及拍摄装置的小型化。
另一方面,内对焦光学系统采用在从无限远到近距离的对焦时,使光学系统内的部分透镜组可移动到物体侧或像侧的方式,由于与各物体距离相应的像差校正被分配到各组,因此对焦范围内的像差校正 比较容易。另外,可以提高在对焦时对焦组移动的距离的灵敏度,并且容易地缩短移动量。
因此,因此,在本实施方式的拍摄装置1中,即使采用内对焦光学系统作为光学系统2,也可以实现整体小型且充分实现近距离拍摄时的性能、色像差的校正的光学系统。
接着,说明本发明的光学系统的实施例1~4。在以下的各实施例中,对于与上述实施方式的光学系统2的各构成对应的构成使用相同的附图标记。另外,在以下的各实施例的表中,r为曲率半径,d为透镜厚或透镜间隔,nd为d线的折射率,vd表示以d线为基准的阿贝数。另外,非球面由下式定义。
[根据细则91更正 19.07.2022]
z=ch2/[1+{1-(1+k)c2h2}1/2]+A4h4+A6h6+A8h8+A10h10···
(其中,c为曲率(1/r),h为距离光轴的高度,k为圆锥系数,A4、A6、A8、A10···为各阶的非球面系数)
另外,各纵向像差图从左侧依次表示球面像差(SA(mm))、像散(AST(mm))、畸变(DIS(%))。在球面像差图中,纵轴表示F数(图中由FNO表示),实线为d线(d-line)的特性,短虚线为F线(F-line)的特性,长虚线为C线(C-line)的特性。在像散图中,纵轴表示最大像高(图中由Y表示),实线为矢状面(图中由S表示)的特性,虚线为子午面(图中由M表示)的特性。在畸变图中,纵轴表示最大像高(图中由Y表示)。
[实施例1]
图2以及图3是本实施例1的光学系统的透镜构成图,图2示出无限远对焦状态,图3示出最近对焦状态。另外,表示光学系统的各构成的附图标记与上述实施方式的光学系统2的对应的构成的附图标记相同。另外,在该光学系统中,在对焦时,第一透镜组21以及第三透镜组23在光轴C上相对于拍摄元件(像面)3的位置是固定的。
图4是无限远对焦状态下的纵向像差图,图5是在“-0.5倍”放大倍率下的纵向像差图,图6是在“-1.0倍”放大倍率下的纵向像差图。另外,下述的表1示出各透镜的面数据,表2示出非球面数据,表3示出各种数据,表4示出透镜组数据,表5示出单透镜数据。
表1
(表1)面数据
面编号 r d nd vd  
1* 10.837 0.889 1.5731 37.65  
2* -20.302 1.869      
3* -11.842 0.400 1.6422 22.40  
4* 8.631 0.400      
5* 7.439 0.701 1.5445 55.96  
6* -1016.183 0.459      
7* -244.855 1.007 1.5445 55.96  
8* -4.791 d8     (孔径光圈)
9* -23.864 0.400 1.5445 55.96  
10* 3.953 2.049      
11* 7.996 0.959 1.6714 19.27  
12* 20.258 d12      
13* -26.885 0.600 1.6714 19.27  
14* -127.054 1.443      
15* -14.148 1.060 1.5731 37.65  
16* -18.241 1.822      
17 0.210 1.5168 64.20  
18 0.390      
*为非球面
表2
(表2)非球面数据(未显示的非球面系数为0.00。)
面编号 k A4 A6 A8 A10
1 0.0000E+00 -1.1639E-05 6.0054E-05 8.6396E-06 -2.2041E-07
2 0.0000E+00 5.8633E-04 7.3252E-05 7.4744E-06 -5.8661E-07
3 0.0000E+00 -7.0037E-04 -1.9898E-04 -1.8774E-05 2.9685E-07
4 0.0000E+00 -1.1742E-03 -1.9647E-04 -2.4243E-05 5.3635E-06
5 0.0000E+00 -1.2977E-03 -9.0202E-05 -2.2704E-06 9.5701E-07
6 0.0000E+00 1.0370E-03 1.7134E-05 2.3536E-06 -1.7400E-06
7 0.0000E+00 -5.1023E-04 -4.7470E-06 -9.8158E-06 3.7361E-07
8 0.0000E+00 -2.8113E-04 -5.1933E-05 -6.3363E-06 3.6540E-07
9 0.0000E+00 8.8416E-03 -1.4970E-03 1.9667E-04 -1.3207E-05
10 0.0000E+00 7.6657E-03 -7.8779E-04 1.2420E-04 -4.5422E-06
11 0.0000E+00 -6.0882E-03 3.6197E-04 -4.1107E-05 2.7115E-06
12 0.0000E+00 -6.6253E-03 2.4105E-04 -3.3557E-05 1.3859E-06
13 0.0000E+00 2.0583E-04 2.7586E-04 -2.5465E-05 -2.7532E-07
14 0.0000E+00 1.4314E-03 3.1864E-04 -8.5224E-06 -1.1200E-06
15 0.0000E+00 -4.2498E-04 1.1331E-04 1.8972E-05 -8.9160E-07
16 0.0000E+00 -1.8677E-03 9.7671E-05 -1.7520E-07 2.0773E-07
表3
(表3)各种数据
物体距离 44.617 21.900
横向倍率 - -0.5倍 -1.0倍
F数 4.100 4.604 4.983
透镜全长 21.680 21.680 21.680
d8 1.000 3.112 6.036
d12 6.022 3.910 0.986
焦距为21.999,最大像高为4.000。
表4
(表4)透镜组数据
起始面 焦距 透镜配置长度 透镜移动量 倍率
1 1 8.242 5.725 0.000 -
2 9 -10.613 3.408 5.036 2.331
3 13 -35.740 3.103 0.000 1.145
表5
(表5)单透镜数据
透镜 起始面 焦距
1 1 12.458
2 3 -7.715
3 5 13.566
4 7 8.961
5 9 -6.197
6 11 19.077
7 13 -50.915
8 15 -121.484
[实施例2]
图7以及图8是本实施例2的光学系统的透镜构成图,图7示出无限远对焦状态,图8示出最近对焦状态。另外,表示光学系统的各构成的附图标记与上述实施方式的光学系统2的对应的构成的附图标记相同。另外,在该光学系统中,同样地,在对焦时,第一透镜组21以及第三透镜组23在光轴C上相对于拍摄元件(像面)3的位置是固定的。
图9是无限远对焦状态下的纵向像差图,图10是在“-0.5倍”放大倍率下的纵向像差图,图11是在“-1.0倍”放大倍率下的纵向像差图。另外,下述的表6示出各透镜的面数据,表7示出非球面数据,表8示出各种数据,表9示出透镜组数据,表10示出单透镜数据。
表6
(表6)面数据
面编号 r d nd vd  
1* 5.000 0.693 1.5731 37.65  
2* -10.734 0.966      
3* -8.150 0.300 1.6714 19.27  
4* 5.654 0.300      
5* 4.317 0.907 1.5445 55.96  
6* -2.867 d6     (孔径光圈)
7* -5.422 0.300 1.5445 55.96  
8* 2.824 0.685      
9* 27.713 0.405 1.6714 19.27  
10* -8.501 0.300      
11* -10.352 0.300 1.5445 55.96  
12* 24.347 d12      
13* -13.515 0.600 1.5445 55.96  
14* -25.363 0.368      
15* -6.612 0.407 1.6714 19.27  
16* -6.720 0.500      
17 0.105 1.5168 64.20  
18 0.195      
*为非球面
表7
(表7)非球面数据(未显示的非球面系数为0.00。)
面编号 k A4 A6 A8 A10
1 0.0000E+00 -2.3666E-03 2.0426E-05 6.8914E-04 -6.1516E-05
2 0.0000E+00 1.6713E-03 8.7447E-04 7.9219E-04 -1.5080E-04
3 0.0000E+00 -1.9033E-03 -1.1546E-03 -4.6620E-04 -4.3690E-04
4 0.0000E+00 -3.2511E-03 -3.0497E-03 -6.7443E-04 1.5675E-04
5 0.0000E+00 -1.1837E-02 -2.7722E-03 -7.9426E-04 4.8106E-04
6 0.0000E+00 4.1623E-04 -4.6327E-04 -1.2627E-03 3.9072E-04
7 0.0000E+00 1.4546E-01 -1.0408E-01 4.7577E-02 -9.9469E-03
8 0.0000E+00 1.6352E-01 -6.6907E-02 2.2009E-02 -1.6217E-04
9 0.0000E+00 9.3001E-03 3.1386E-02 -3.5351E-03 -2.5583E-03
10 0.0000E+00 4.5596E-03 1.5161E-02 2.1792E-02 -1.1358E-02
11 0.0000E+00 -1.2992E-01 2.1642E-02 2.9409E-02 -2.0420E-02
12 0.0000E+00 -1.3818E-01 3.8975E-02 -5.9382E-03 -4.1109E-03
13 0.0000E+00 -2.9073E-02 -8.7698E-03 2.5602E-04 -1.9794E-05
14 0.0000E+00 -2.6118E-02 -6.2895E-03 9.2413E-04 -6.0528E-05
15 0.0000E+00 -1.7191E-02 9.6305E-03 -3.2638E-04 -1.8985E-04
16 0.0000E+00 -1.7921E-02 6.5500E-03 1.1147E-03 -3.4194E-04
表8
(表8)各种数据
物体距离 23.135 10.954
横向倍率 - -0.5倍 -1.0倍
F数 3.400 3.744 3.931
透镜全长 10.800 10.800 10.800
d6 0.500 1.492 2.978
d12 2.968 1.976 0.490
焦距为11.600,最大像高为2.060。
表9
(表9)透镜组数据
起始面 焦距 透镜配置长度 透镜移动量 倍率
1 1 4.167 3.167 0.000 -
2 7 -3.745 1.990 2.478 2.613
3 13 -58.120 1.376 0.000 1.065
表10
(表10)单透镜数据
透镜 起始面 焦距
1 1 6.049
2 3 -4.929
3 5 3.311
4 7 -3.367
5 9 9.733
6 11 -13.299
7 13 -54.100
8 15 1192.695
[实施例3]
图12以及图13是本实施例3的光学系统的透镜构成图,图12示出无限远对焦状态,图13示出最近对焦状态。另外,表示光学系统的各构成的附图标记与上述实施方式的光学系统2的对应的构成的附图标记相同。另外,在该光学系统中,同样地,在对焦时,第一透镜组21以及第三透镜组23在光轴C上相对于拍摄元件(像面)3的位置是固定的。
图14是无限远对焦状态下的纵向像差图,图15是在“-0.5倍”放大倍率下的纵向像差图,图16是在“-1.0倍”放大倍率下的纵向像差图。另外,下述的表11示出各透镜的面数据,表12示出非球面数据,表13示出各种数据,表14示出透镜组数据,表15示出单透镜数据。
表11
(表11)面数据
面编号 r d nd vd  
1* 5.000 0.706 1.5731 37.65  
2* -10.173 0.993      
3* -8.056 0.300 1.6714 19.27  
4* 6.129 0.300      
5* 4.306 0.860 1.5445 55.96  
6* -2.901 d6     (孔径光圈)
7* -4.269 0.388 1.5445 55.96  
8* 2.842 1.255      
9* 33.107 0.481 1.6714 19.27  
10* -20.856 d10      
11* -8.636 0.600 1.6714 19.27  
12* -5.869 0.397      
13* -2.388 0.432 1.5445 55.96  
14* -3.516 0.500      
15 0.105 1.5168 64.20  
16 0.195      
*为非球面
表12
(表12)非球面数据(未显示的非球面系数为0.00。)
面编号 k A4 A6 A8 A10
1 0.0000E+00 -1.9112E-03 -1.5546E-05 6.7772E-04 -6.1390E-05
2 0.0000E+00 1.8475E-03 7.8046E-04 7.4538E-04 -1.4350E-04
3 0.0000E+00 -2.4046E-03 -1.4414E-03 -5.4986E-04 -4.4954E-04
4 0.0000E+00 -3.2006E-03 -3.1773E-03 -7.5860E-04 1.7843E-04
5 0.0000E+00 -1.2499E-02 -2.9279E-03 -8.2432E-04 5.1155E-04
6 0.0000E+00 -2.6964E-04 -7.1603E-04 -1.2165E-03 3.9514E-04
7 0.0000E+00 1.4553E-01 -1.0374E-01 5.0677E-02 -1.1549E-02
8 0.0000E+00 1.6999E-01 -7.8555E-02 3.6428E-02 -3.2533E-03
9 0.0000E+00 -3.2310E-02 7.0395E-03 -3.1606E-03 9.0266E-04
10 0.0000E+00 -4.4445E-02 4.4951E-03 -2.4390E-03 1.8147E-04
11 0.0000E+00 -2.7469E-02 -6.6085E-03 2.3747E-04 3.3901E-04
12 0.0000E+00 -2.1601E-02 -6.6923E-04 5.7099E-04 -1.0567E-05
13 0.0000E+00 3.5570E-02 6.5430E-03 -7.4509E-04 -6.9896E-05
14 0.0000E+00 2.5797E-02 -3.5508E-03 2.0065E-03 -3.3999E-04
表13
(表13)各种数据
物体距离 23.360 11.411
横向倍率 - -0.5倍 -1.0倍
F数 3.400 3.797 4.101
透镜全长 10.800 10.800 10.800
d6 0.500 1.433 2.700
d10 2.787 1.854 0.587
焦距为11.598,最大像高为2.060。
表14
(表14)透镜组数据
起始面 焦距 透镜配置长度 透镜移动量 倍率
1 1 4.076 3.159 0.000 -
2 7 -4.044 2.124 2.200 2.622
3 11 -38.871 1.429 0.000 1.085
表15
(表15)单透镜数据
透镜 起始面 焦距
1 1 5.950
2 3 -5.141
3 5 3.323
4 7 -3.074
5 9 19.127
6 11 25.097
7 13 -15.804
[实施例4]
图17以及图18是本实施例4的光学系统的透镜构成图,图17示出无限远对焦状态,图18示出最近对焦状态。另外,表示光学系统的各构成的附图标记与上述实施方式的光学系统2的对应的构成的附图标记相同。另外,在该光学系统中,同样地,在对焦时,第一透镜组21以及第三透镜组23在光轴C上相对于拍摄元件(像面)3的位置是固定的。
图19是无限远对焦状态下的纵向像差图,图20是在“-0.5倍”放大倍率下的纵向像差图,图21是在“-1.0倍”放大倍率下的纵向像差图。另外,下述的表16示出各透镜的面数据,表17示出非球面数据,表18示出各种数据,表19示出透镜组数据,表20示出单透镜数据。
表16
(表16)面数据
面编号 r d nd vd  
1* 11.363 0.891 1.5445 55.96  
2* -16.648 2.105      
3* -11.791 0.483 1.6161 25.78  
4* 8.889 0.508      
5* 9.425 1.316 1.5445 55.96  
6* -4.732 d6     (孔径光圈)
7* -18.298 0.400 1.5445 55.96  
8* 4.125 1.654      
9* 9.133 1.296 1.6560 21.25  
10* 54.302 d10      
11* -24.402 0.600 1.6714 19.27  
12* -292.433 0.788      
13* -39.540 0.790 1.5880 28.42  
14* -52.998 2.870      
15 0.210 1.5168 64.20  
16 0.390      
*为非球面
表17
(表17)非球面数据(未显示的非球面系数为0.00。)
面编号 k A4 A6 A8 A10
1 0.0000E+00 -2.4234E-04 6.7694E-05 9.5189E-06 -3.2738E-07
2 0.0000E+00 7.4726E-04 8.5317E-05 7.9662E-06 -6.4674E-07
3 0.0000E+00 -1.0455E-03 -2.7135E-04 -2.4506E-05 -1.2958E-06
4 0.0000E+00 -1.4090E-03 -2.6033E-04 -3.6940E-05 4.6898E-06
5 0.0000E+00 -1.9939E-03 -1.4629E-04 -1.7838E-05 2.6301E-06
6 0.0000E+00 -2.8018E-04 -9.8170E-05 -5.4890E-06 3.8947E-07
7 0.0000E+00 9.8294E-03 -1.4827E-03 1.6449E-04 -9.6737E-06
8 0.0000E+00 7.9215E-03 -4.7219E-04 4.8074E-05 2.5181E-06
9 0.0000E+00 -6.0098E-03 4.9475E-04 -5.6628E-05 4.1063E-06
10 0.0000E+00 -6.0192E-03 2.4361E-04 -3.5619E-05 1.5327E-06
11 0.0000E+00 1.7119E-03 1.3443E-04 -3.2076E-05 5.3290E-07
12 0.0000E+00 4.0167E-03 1.8733E-04 -5.3277E-06 -1.3317E-06
13 0.0000E+00 -8.6012E-04 2.3103E-04 1.6139E-05 -1.2058E-06
14 0.0000E+00 -3.3438E-03 2.4644E-04 -1.5055E-05 7.3173E-07
表18
(表18)各种数据
物体距离 45.139 22.397
横向倍率 - -0.5倍 -1.0倍
F数 4.100 4.608 4.987
透镜全长 21.680 21.680 21.680
d6 1.000 3.249 6.396
d10 6.380 4.131 0.984
焦距为21.999,最大像高为4.000。
表19
(表19)透镜组数据
起始面 焦距 透镜配置长度 透镜移动量 倍率
1 1 8.437 5.301 0.000 -
2 7 -11.495 3.350 5.396 2.269
3 11 -34.345 2.178 0.000 1.149
表20
(表20)单透镜数据
透镜 起始面 焦距
1 1 12.544
2 3 -8.154
3 5 5.982
4 7 -6.143
5 9 16.548
6 11 -39.691
7 13 -270.705
[根据细则91更正 19.07.2022]
在以上的实施例1~4中,将对应于上述实施方式的各条件的值表示在下述的表21中。另外,在表21中,条件式(1)为OAL2/OAL,条件式(2)为OAL/f,条件式(3)为|B|,条件式(4)为(1-b22)×b32,条件式(5)为f2/f。
表21
(表21)条件式对应值
  实施例1 实施例2 实施例3 实施例4
条件式(1) 0.157 0.184 0.197 0.155
条件式(2) 0.986 0.931 0.931 0.985
条件式(3) 1.000 1.000 1.000 1.000
条件式(4) -5.813 -6.610 -6.916 -5.477
条件式(5) -0.482 -0.323 -0.349 -0.523
OAL2 3.408 1.990 2.124 3.350
OAL 21.680 10.800 10.800 21.680
f 21.999 11.600 11.598 21.999
|B| 1.000 1.000 1.000 1.000
b2 2.331 2.613 2.622 2.269
b3 1.145 1.065 1.085 1.149
f2 -10.613 -3.745 -4.044 -11.495
为了表示本发明,在上述参照附图的同时,通过实施方式适当且充分地说明了本发明,但是本领域技术人员应该认识到,能够容易地进行上述实施方式的变更和/或改良。因此,只要本领域技术人员实施的变更方式或改良方式不是脱离权利要求书所记载的权利要求书的等级,则该变更方式或该改良方式被解释为包含在该权利要求书的权利范围内。
附图标记说明:
1…拍摄装置,2…光学系统,20…棱镜(反射光学元件),21…第一透镜组,22…第二透镜组,221…在第二透镜组22中正屈光力最强的透镜,222…在第二透镜组22中负屈光力最强的透镜,23…第三透镜组,25…滤光片,26…镜筒,3…拍摄元件,4…液晶屏幕,C…光轴,F…对焦透镜组,G…透镜组。

Claims (7)

  1. 一种光学系统,其特征在于,
    具备从物体侧到像侧依次排列的、具有正屈光力的第一透镜组、具有负屈光力的第二透镜组、以及具有负屈光力的第三透镜组,
    在对焦时,
    所述第二透镜组沿着光轴移动,
    所述第一透镜组以及所述第三透镜组在光轴方向上相对于成像面的位置是固定的,
    在将从所述第二透镜组的最靠物体侧面到最靠像侧面的距离设为OAL2,将从整个光学系统的最靠物体侧面到成像面的距离设为OAL时,满足:
    0.06≤OAL2/OAL。
  2. 根据权利要求1所述的光学系统,其中,
    所述第二透镜组具有:
    至少一片具有正屈光力的透镜;以及
    至少一片具有负屈光力的透镜,
    在所述第二透镜组中,正屈光力最强的透镜位于比负屈光力最强的透镜更靠像侧的位置。
  3. 根据权利要求1或2所述的光学系统,其中,
    在将整个光学系统的无限远对焦时的焦距设为f时,满足:
    OAL/f≤2.00。
  4. 根据权利要求1~3中任意一项所述的光学系统,其中,
    在将整个光学系统的最大横向倍率设为B时,满足:
    0.50≤|B|。
  5. [根据细则91更正 19.07.2022]
    根据权利要求1~4中任意一项所述的光学系统,其中,
    在将所述第二透镜组的无限远对焦时的横向倍率设为b2,将所述第三透镜组的无限远对焦时的横向倍率设为b3时,满足:
    -10.00≤(1-b22)×b32≤-2.00。
  6. 根据权利要求1~5中任意一项所述的光学系统,其中,
    在将整个光学系统的无限远对焦时的焦距设为f,将所述第二透镜组的焦距设为f2时,满足:
    -0.70≤f2/f≤-0.10。
  7. 一种拍摄装置,其特征在于,具备:
    权利要求1~6中任意一项所述的光学系统;以及
    拍摄元件,其配置于所述光学系统的像面侧,将由该光学系统形成的光学像转换为电信号。
PCT/CN2022/091050 2022-05-05 2022-05-05 光学系统、以及具备光学系统的拍摄装置 WO2023212878A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280001656.8A CN117355782A (zh) 2022-05-05 2022-05-05 光学系统、以及具备光学系统的拍摄装置
KR1020237038274A KR20230162717A (ko) 2022-05-05 2022-05-05 광학 시스템, 및 광학 시스템을 구비한 촬영 장치
JP2022534448A JP2024519623A (ja) 2022-05-05 2022-05-05 光学系、及び光学系を備えた撮像装置
PCT/CN2022/091050 WO2023212878A1 (zh) 2022-05-05 2022-05-05 光学系统、以及具备光学系统的拍摄装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/091050 WO2023212878A1 (zh) 2022-05-05 2022-05-05 光学系统、以及具备光学系统的拍摄装置

Publications (1)

Publication Number Publication Date
WO2023212878A1 true WO2023212878A1 (zh) 2023-11-09

Family

ID=88646106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091050 WO2023212878A1 (zh) 2022-05-05 2022-05-05 光学系统、以及具备光学系统的拍摄装置

Country Status (4)

Country Link
JP (1) JP2024519623A (zh)
KR (1) KR20230162717A (zh)
CN (1) CN117355782A (zh)
WO (1) WO2023212878A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102236152A (zh) * 2010-04-29 2011-11-09 大立光电股份有限公司 摄像透镜组
JP2013130723A (ja) * 2011-12-21 2013-07-04 Tamron Co Ltd マクロレンズ
JP5749629B2 (ja) 2011-11-01 2015-07-15 株式会社タムロン インナーフォーカス式望遠レンズ
CN112612127A (zh) * 2019-09-18 2021-04-06 Oppo广东移动通信有限公司 变焦镜头、成像模组和电子设备
CN112882213A (zh) * 2021-01-20 2021-06-01 维沃移动通信有限公司 光学镜头、摄像模组及电子设备
JP2021173847A (ja) 2020-04-23 2021-11-01 富士フイルム株式会社 撮像レンズおよび撮像装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102236152A (zh) * 2010-04-29 2011-11-09 大立光电股份有限公司 摄像透镜组
JP5749629B2 (ja) 2011-11-01 2015-07-15 株式会社タムロン インナーフォーカス式望遠レンズ
JP2013130723A (ja) * 2011-12-21 2013-07-04 Tamron Co Ltd マクロレンズ
CN112612127A (zh) * 2019-09-18 2021-04-06 Oppo广东移动通信有限公司 变焦镜头、成像模组和电子设备
JP2021173847A (ja) 2020-04-23 2021-11-01 富士フイルム株式会社 撮像レンズおよび撮像装置
CN112882213A (zh) * 2021-01-20 2021-06-01 维沃移动通信有限公司 光学镜头、摄像模组及电子设备

Also Published As

Publication number Publication date
JP2024519623A (ja) 2024-05-21
CN117355782A (zh) 2024-01-05
KR20230162717A (ko) 2023-11-28

Similar Documents

Publication Publication Date Title
JP5379784B2 (ja) 固定焦点レンズ
US7551367B2 (en) Wide-angle lens, optical apparatus and method for focusing
JP5612515B2 (ja) 固定焦点レンズ
KR20090063155A (ko) 매크로 렌즈, 광학 장치, 및 매크로 렌즈를 제조하는 방법
US8107174B2 (en) Wide-angle lens, imaging apparatus, and method for manufacturing wide-angle lens
JP2007121650A (ja) ズームレンズ及び撮像装置
JP5396888B2 (ja) 広角レンズ、撮像装置、広角レンズの製造方法
CN102193172A (zh) 变焦透镜系统、可换镜头装置及照相机系统
JP2017146478A (ja) 撮像レンズおよび撮像装置
CN111830692B (zh) 摄影镜头和摄影装置
US20130242171A1 (en) Zoom lens system, imaging device and camera
JP4984608B2 (ja) ズームレンズ及び撮像装置
JP2014021340A (ja) 結像レンズ、撮影レンズユニット、撮像装置
US20120229912A1 (en) Zoom lens system
JP2008249842A (ja) ズームレンズ及び撮像装置
US8576493B2 (en) Zoom lens system, interchangeable lens apparatus and camera system
US9274324B2 (en) Zoom lens system, imaging device and camera
US20140340545A1 (en) Zoom lens system, imaging device and camera
JPH11352402A (ja) ズームレンズ
JP5458586B2 (ja) 広角レンズ、撮像装置、広角レンズの製造方法
WO2023212878A1 (zh) 光学系统、以及具备光学系统的拍摄装置
JP2019191502A (ja) インナーフォーカス式撮像レンズ及び撮像装置
WO2023212877A1 (zh) 光学系统、以及具备光学系统的拍摄装置
JP5338345B2 (ja) 広角レンズ、撮像装置、広角レンズの製造方法
JP7510960B2 (ja) 光学系、及び光学系を備えた撮像装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280001656.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022534448

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237038274

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237038274

Country of ref document: KR

Ref document number: KR1020237038274

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202347078724

Country of ref document: IN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940574

Country of ref document: EP

Kind code of ref document: A1