WO2023212875A1 - 一种紫外阴极射线管 - Google Patents

一种紫外阴极射线管 Download PDF

Info

Publication number
WO2023212875A1
WO2023212875A1 PCT/CN2022/091035 CN2022091035W WO2023212875A1 WO 2023212875 A1 WO2023212875 A1 WO 2023212875A1 CN 2022091035 W CN2022091035 W CN 2022091035W WO 2023212875 A1 WO2023212875 A1 WO 2023212875A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
ray tube
cathode ray
ultraviolet
layer
Prior art date
Application number
PCT/CN2022/091035
Other languages
English (en)
French (fr)
Inventor
赵健
朱滨
夏忠平
Original Assignee
上海极优威光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海极优威光电科技有限公司 filed Critical 上海极优威光电科技有限公司
Priority to PCT/CN2022/091035 priority Critical patent/WO2023212875A1/zh
Publication of WO2023212875A1 publication Critical patent/WO2023212875A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/86Vessels; Containers; Vacuum locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/36Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors

Definitions

  • the present application relates to the technical field of light-emitting devices, and in particular to an ultraviolet cathode ray tube.
  • Ultraviolet light sources have broad application prospects in sterilization, surface modification, ultraviolet communications and other fields.
  • Traditional ultraviolet light sources mainly include mercury lamps, ultraviolet LEDs and ultraviolet excimer lamps.
  • mercury lamps contain mercury, which can easily cause mercury pollution during production and use.
  • the frequency of mercury lamps cannot be adjusted, which limits the application of mercury lamps in ultraviolet communications; UV LEDs have low conversion efficiency and high production costs; UV excimer lamps Short life and high cost.
  • a cathode ray tube is a component that uses electron beams to excite phosphors to achieve luminous imaging. It is often used in display devices. Recently, research on devices that use cathode ray tubes to achieve ultraviolet light emission has been actively carried out; however, there are differences in structure, performance and product requirements between cathode ray tubes that achieve ultraviolet light emission and traditional cathode ray tubes used for imaging. Big difference. UV cathode ray tubes still have many technical problems that need to be overcome, such as: difficulty in packaging, unsatisfactory luminous efficiency, low luminous energy, difficulty in industrialization, and high production costs.
  • embodiments of the present application provide an ultraviolet cathode ray tube to solve at least one problem existing in the background art.
  • the ultraviolet cathode ray tube includes: a glass envelope, a light-emitting structural layer and an electron gun;
  • the glass bulb includes a tubular portion for accommodating the electron gun and a fluorescent screen portion connected to the tubular portion;
  • the electron gun is disposed in the tubular part and used to emit electron beams to the fluorescent screen part;
  • the light-emitting structure layer includes a phosphor layer and a conductive layer, the light-emitting structure layer is arranged on the fluorescent screen part, and the light-emitting structure layer emits ultraviolet light under the excitation of the electron beam;
  • the wavelength of the main emission peak of the ultraviolet light emitted by the phosphor layer is between 190nm and 250nm; wherein the main emission peak refers to the luminescence emitted by the phosphor layer under the excitation of the electron beam.
  • the glass bulb further includes a sealing portion connected to an end of the tubular portion away from the phosphor screen portion, and the sealing portion is configured to achieve port sealing of an end of the tubular portion away from the phosphor screen portion. ;
  • the fluorescent screen part, the tubular part and the closing part are all made of quartz glass or sapphire crystal;
  • the closed part is formed by deforming one end of the tubular part
  • the glass bulb encloses a sealed internal space through the fluorescent screen part, the tubular part and the sealing part, and the internal space of the glass bulb is in a vacuum state.
  • the ultraviolet cathode ray tube provided in the embodiment of the present application includes a glass envelope, a luminescent structural layer and an electron gun.
  • the electron gun emits electron beams to excite the luminescent structural layer to emit ultraviolet light.
  • the fluorescent screen part, the tubular part and the sealing part are all made of quartz glass or sapphire crystal, and the three can form matching connections.
  • the glass bulb has the advantages of good shock resistance and explosion-proof performance, and can better meet the requirements of ultraviolet cathode ray tubes. Air tightness requirements can significantly improve the light output efficiency of the light source.
  • the ultraviolet cathode ray tube of the present application has high luminous efficiency, high luminous energy, no pollution, low cost, and is easy to be mass-produced.
  • Figure 1 is a schematic structural diagram of a cathode ray tube according to an embodiment of the present application
  • Figure 2 is a schematic structural diagram of a glass bulb according to an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of a glass bulb according to another embodiment of the present application.
  • Figure 4 is a schematic structural diagram of a glass bulb according to another embodiment of the present application.
  • Figure 5 is a schematic diagram of the structure of the light-emitting structure layer according to an embodiment of the present application.
  • Figure 6 is a luminescence spectrum diagram of the phosphor layer under electron beam excitation according to an embodiment of the present application.
  • Figure 7 is a luminescence spectrum diagram of different phosphor phosphor powder layers under electron beam excitation according to an embodiment of the present application.
  • Figure 8 is a schematic diagram of the structure of a single-layer phosphor layer according to an embodiment of the present application.
  • Figure 9 is a schematic diagram of the structure of a multi-layer phosphor layer according to an embodiment of the present application.
  • Figure 10 is a luminescence spectrum diagram of phosphor layers with different structures under electron beam excitation according to an embodiment of the present application.
  • Figure 11 is a flow chart of a method for preparing a phosphor layer according to an embodiment of the present application.
  • Figure 12 is an SEM image of the surface of the phosphor layer according to an embodiment of the present application.
  • Figure 13 is a flow chart of a method for preparing a light-emitting structural layer according to an embodiment of the present application
  • Figure 14 is a schematic structural diagram of a fluorescent screen according to an embodiment of the present application.
  • Figure 15 is an SEM image of the surface of the first structural layer according to an embodiment of the present application.
  • Figure 16 is a flow chart of a fluorescent screen preparation method according to an embodiment of the present application.
  • Figure 17 is a schematic structural diagram of an electron gun according to an embodiment of the present application.
  • Figure 18 is a schematic structural diagram of an electrical lead assembly according to an embodiment of the present application.
  • an ultraviolet cathode ray tube 10 provided by an embodiment of the present application includes a glass bulb 20 and an electron gun 30 .
  • the glass bulb 20 includes a fluorescent screen portion 21 and a tubular portion 22 connected to the fluorescent screen portion 21 .
  • the electron gun 30 is disposed in the tubular portion 22 and used to emit electron beams to the fluorescent screen portion 21 .
  • the axis “A” as shown in FIGS. 1 to 4 is defined, and the axis “A” is the central axis of the fluorescent screen portion 21 .
  • the extending direction of axis “A” is called the longitudinal direction; it can be understood that the extending direction of axis “A” is perpendicular to the surface of the fluorescent screen portion 21 .
  • the fluorescent screen part 21 is connected to one end of the tubular part 22; the fluorescent screen part 21 has an inner surface facing the tubular part 22 and an outer surface away from the tubular part 22, and both the inner surface and the outer surface of the fluorescent screen part 21 are perpendicular to the axis "A".
  • the fluorescent screen part 21 is composed of one or more inorganic light-transmitting materials, and the ultraviolet light transmittance of the inorganic light-transmitting materials in the 190nm-250nm band range is greater than or equal to 80%.
  • the inorganic light-transmitting material may be one of quartz glass, sapphire crystal or magnesium fluoride crystal.
  • the inorganic light-transmitting material is quartz glass or sapphire crystal. Compared with ordinary electronic glass, quartz glass or sapphire crystal has the advantages of lead-free and high purity, which can reduce pollution, reduce the absorption of ultraviolet light by impurities, and improve the ultraviolet light extraction efficiency of cathode ray tubes.
  • the materials of the tubular part 22 and the fluorescent screen part 21 are both quartz glass or sapphire crystal.
  • the glass bulb sealing effect is good, the sealing process can be scaled up, and the cost is low.
  • the glass bulb has the advantages of good shock resistance and good explosion-proof properties.
  • matching sealing in the embodiment of the present application means that the thermal expansion coefficients of the two sealing materials are similar or the same. During the gradual cooling process after high-temperature sealing, the shrinkage of the two materials can be consistent, thereby eliminating the shrinkage difference. the internal stress produced.
  • the phosphor screen portion 21 and the tubular portion 22 are first formed separately, and then are melted at high temperature, sealed, and then cooled to form. Since the materials are the same, the softening temperatures and thermal expansion coefficients of the fluorescent screen part 21 and the tubular part 22 are basically the same, so it is easy to seal and form a glass bulb 20 with stable performance.
  • the fluorescent screen part 21 and the tubular part 22 are formed in one melting and molding process; specifically, the raw materials are melted to a plastic state, and then the melted materials are melted according to the shape and size requirements of the glass bulb 20 The raw material is formed and cooled to obtain a glass bulb 20 including a phosphor screen part 21 and a tubular part 22. This not only improves the production efficiency of the glass bulb 20, but also further reduces internal stress because there is no sealing process.
  • the glass bulb 20 has high shock resistance and stability.
  • the fluorescent screen portion 21 is in the shape of a disc, and the corresponding inner surface contour of the fluorescent screen portion 21 is circular.
  • the tubular portion 22 is in the shape of a circular tube, and the inner diameter of the tubular portion 22 is less than or equal to the inner surface diameter of the fluorescent screen portion 21 .
  • the circular inner surface can receive more electron beam bombardments in the same area, thereby increasing the luminous intensity of ultraviolet light.
  • the phosphor screen portion 21 and the tubular portion 22 are formed separately first and then sealed, then during the sealing process of the phosphor screen portion 21 and the tubular portion 22, the side surfaces of the disc-shaped phosphor screen portion 21 will be smooth, and each position will be sealed.
  • the joints are easier to control and consistent, which can reduce the stress caused by the inconsistent thickness of the sealing position.
  • the thickness of the fluorescent screen part 21 is between 0.5mm and 3mm.
  • the thickness of the tube wall of the tubular portion 22 is between 0.5 mm and 2 mm.
  • the glass bulb 20 includes a tubular part 22 and a fluorescent screen part 21 .
  • the tubular part 22 includes a first cylindrical part 220 , and the inner surface of the first cylindrical part 220 and the inner surface of the fluorescent screen part 21 are perpendicular to each other.
  • the first barrel part 220 and the fluorescent screen part 21 may be directly connected (as shown in Figure 2), or may not be directly connected.
  • the tubular part 22 may also include a tapered part 221.
  • the first cylindrical part 220 is connected to the fluorescent screen part 21 through the tapered part 221; further, the tapered part 221 is connected to the fluorescent screen part 21 through the second tube part 202.
  • three optional implementations of the glass bulb 20 are shown in FIGS. 2 to 4 .
  • the tubular part 22 includes a first cylindrical part 220 , and one end of the first cylindrical part 220 is connected to the fluorescent screen part 21 .
  • the inner surface of the first cylinder part 220 and the inner surface of the fluorescent screen part 21 are perpendicular to each other, that is, the first cylinder part 220 and the fluorescent screen part 21 form a cylinder with a closed bottom.
  • the amount of solution above each area on the inner surface of the phosphor screen can be kept consistent during the phosphor precipitation process, so that the phosphor powder can be deposited on the inner surface of the phosphor screen portion 21 more evenly; on the other hand, the side wall of the cylindrical portion It is easier to control the thickness in processing engineering, making it easier to achieve consistent thickness and better earthquake and explosion-proof performance.
  • the tubular part 22 includes a tapered part 221 and a first cylindrical part 220 .
  • the cone portion 221 includes a small opening end close to the first barrel portion 220 and a large opening end away from the first barrel portion 220; the large opening end of the cone portion 221 is connected to the fluorescent screen portion 21, and the small opening end of the cone portion 221 is connected to the third tube portion 220.
  • a barrel 220 is connected.
  • the electron gun 30 is disposed in the tubular part 22 . Specifically, the electron gun 30 is disposed in the first barrel part 220 .
  • the ratio of the distance from the end surface of the small opening end of the cone portion 221 to the inner surface of the phosphor screen portion 21 and the inner surface diameter of the phosphor screen portion 21 is between 1:0.5-1:4, thereby facilitating the control of the electron beam angle and making the electron beam Evenly emitted to the entire inner surface of the phosphor screen portion 21 .
  • the tubular portion 22 includes a first cylinder portion 220, a tapered portion 221 and a second cylinder portion 222.
  • the inner diameter of the second cylinder portion 222 is larger than that of the first cylinder. Part 220 inner diameter.
  • the cone portion 221 includes a small opening end close to the first cylinder portion 220 and a large opening end far away from the first cylinder portion 220; one end of the second cylinder portion 222 is connected to the large opening end of the cone portion 221, and the second cylinder portion 222
  • the other end of the tapered portion 221 is connected to the fluorescent screen portion 21 , and the small opening end of the tapered portion 221 is connected to the first barrel portion 220 .
  • the end surface of the small opening end of the tapered portion 221 , the end surface of the large opening end of the tapered portion 221 and the inner surface of the fluorescent screen portion 21 are parallel to each other.
  • the inner surface of the second cylinder part 222 and the inner surface of the fluorescent screen part 21 are perpendicular to each other, that is, the second cylinder part 222 and the fluorescent screen part 21 form a cylinder with a closed bottom.
  • the electron gun 30 is disposed in the tubular part 22 . Specifically, the electron gun 30 is disposed in the first barrel part 220 .
  • the amount of solution directly above the inner surface of the phosphor screen part 21 is the same in the gravity precipitation method, and the phosphor powder can be uniformly precipitated under the action of gravity.
  • the thickness of the phosphor at various locations on the inner surface of the fluorescent screen can be made more uniform, thereby improving the luminous effect.
  • the height of the second barrel portion 222 is greater than or equal to 20 mm, so that the phosphor powder can be more evenly distributed at the bottom of the glass bulb 20 and the uniformity of the phosphor powder layer can be improved.
  • the height of the second barrel portion 222 refers to the length of the second barrel portion 222 in the axis “A” direction.
  • the ratio of the distance from the end face of the small opening end of the cone part 221 to the inner surface of the phosphor screen part 21 and the diameter of the inner surface of the phosphor screen part 21 is between 1:0.5-1:4, so as to facilitate the control of the electron beam angle and make the electron beam uniform. Otherwise, the electron beam angle is too small or too large, which is not conducive to evenly emitting the electron beam to the entire inner surface of the phosphor screen 21 .
  • the ratio of the distance from the end surface of the small opening end of the cone part 221 to the end surface of the large opening end of the cone part 221 and the height of the second cylinder part 222 is between 0.5:1-2:1, so that it can be easier
  • the electron beam is controlled to be completely emitted onto the inner surface of the phosphor screen portion 21 to prevent the electron beam from being blocked by the inner surface of the cone portion 221 .
  • the tapered portion 221 is not limited to the case where the side wall extends in a straight line with a constant slope from the small opening end to the large opening end as shown in Figure 3 or Figure 4.
  • the tapered portion 221 can also include a slope.
  • the changing side wall can even include multiple sub-cone sections, and each sub-cone section can also be connected through other barrel sections, which will not be described in detail here.
  • the glass bulb 20 further includes a closing part 23 , and the closing part 23 is connected to one end of the tubular part 22 away from the fluorescent screen part 21 .
  • the sealing portion 23 is configured to achieve port sealing of an end of the tubular portion 22 away from the phosphor screen portion 21 .
  • the glass bulb 20 forms a sealed internal space by the fluorescent screen part 21, the tubular part 22 and the sealing part 23, and the internal space of the glass bulb 20 is in a vacuum state.
  • the air pressure in the internal space of the glass bulb 20 can be between 10 -2 and 10 -7 Pa, thereby reducing the impact of residual air in the internal space on the electron beam and cathode.
  • the thickness of the closing portion 23 is greater than the thickness of the tube wall of the tubular portion 22 and smaller than the inner diameter of the tubular portion 22 .
  • the material of the closing part 23 is quartz glass or sapphire crystal.
  • mercury lamps and excimer ultraviolet lamps are both gas discharge lamps.
  • the internal pressure of the gas discharge lamp is 5-10 times the external atmospheric pressure.
  • the external atmospheric pressure in the embodiment of the present application is 10 times the internal pressure of the glass bulb. 7-10 12 times; therefore, compared to gas discharge lamps, the sealing requirements and air tightness requirements of the glass bulb of the embodiment of the present application are much higher.
  • the fluorescent screen part material, the sealing part material and the tubular part material are all quartz glass or sapphire crystal.
  • the closed portion 23 is formed, for example, by deforming one end of the tubular portion 22. Specifically, it can be formed by pressing the open end of the tubular portion 22 in a high-temperature heating and molten state and then cooling it; wherein the maximum cross-section of the formed sealing portion is equal to Axis "A" is parallel.
  • the closing part 23 is flat, the length of the flat sealing part is greater than 15 mm, and the length of the sealing part is the length along the axis "A" direction.
  • the flat closing portion 23 specifically means that the length and width of the closing portion 23 are significantly greater than the thickness of the closing portion 23 , for example, the length of the closing portion 23 is greater than 15 mm, the width is greater than 10 mm, and the thickness is less than 4 mm. It should be noted that during the process of deforming one end of the tubular portion 22 into the closed portion 23, a transition portion 24 is also formed between the tubular portion 22 and the closed portion 23; one end of the transition portion 24 is connected to the tubular portion 22, and the other end of the transition portion 24 is connected to the tubular portion 22.
  • the transition portion 24 specifically refers to the portion of the tubular portion 22 that is gradually closed but not completely closed after one end of the tubular portion 22 is pressed and deformed.
  • the closing part 23 provided by the embodiment of the present application has a better sealing effect.
  • the materials of the closing part and the tubular part are quartz glass or sapphire crystal, so that a matching seal can be formed. The effect is good and meets the air-tightness requirements of the glass bulb; on the other hand, the closed part directly formed by the deformation of the open end of the tubular part can form a smooth connection during the high-temperature heating sealing process.
  • the sealing is convenient and simple, and at the same time has a better connection effect. .
  • the glass bulb 20 also includes an exhaust part 25.
  • the tubular part 22 is provided with an exhaust part 25.
  • One end of the exhaust part 25 is connected to the inside of the tube, and the other end is sealed.
  • the material of the exhaust part 25 is the same as the material of the tubular part 22 .
  • the side wall of the tubular part 22 is locally heated to a molten state at high temperature, and then one end of the exhaust pipe with openings at both ends is inserted into the side wall heated to a molten state at high temperature. After cooling, the exhaust pipe is fixed to the tubular part. 22 above; when exhaust operation is required, connect the opening at the other end of the exhaust pipe to the exhaust equipment and perform the exhaust operation.
  • the exhaust part 25 is provided on the tubular part 22 on the side close to the electron gun 30 , that is, the distance between the exhaust part 25 and the electron gun 30 is smaller than the distance between the exhaust part 25 and the fluorescent part.
  • the exhaust part 25 is provided on the first cylindrical part 220. There is no other coating on the inner and outer surfaces of the first cylindrical part 220, so it is more convenient to provide the exhaust part.
  • the cathode ray tube 10 further includes an anode metal rod (not shown in the figure).
  • the anode metal rod penetrates the tubular part 22.
  • one end of the anode metal rod is disposed in the tubular part 22 and connected to the conductive layer on the inner wall of the tubular part 22.
  • the other end of the anode metal rod is disposed on the tubular part 22 and connected to the external high voltage. , thereby forming a high-voltage electric field on the inner wall of the tubular portion 22 .
  • the middle part of the anode metal rod is fused to the tubular part 22 .
  • the surface of the anode metal rod is coated with a transition metal film, where the thermal expansion coefficient of the transition metal film is between the glass bulb 20 and the anode metal rod; the anode metal rod is a tungsten rod, and the transition metal film can be a nickel film.
  • the transition metal film reduces the internal stress problem caused by the mismatch of thermal expansion coefficients and improves the sealing effect.
  • the anode metal rod is provided on the tubular portion 22 on one side close to the fluorescent screen portion 21 .
  • the ultraviolet cathode ray tube 10 in the embodiment of the present application further includes a light-emitting structure layer 40 .
  • the light-emitting structure layer 40 is disposed on the fluorescent screen portion 21 .
  • the light-emitting structure layer 40 emits ultraviolet light when excited by electron beams.
  • FIG. 5 is a schematic diagram of the structure of the light-emitting structure layer according to an embodiment of the present application.
  • the light-emitting structure layer 40 includes a phosphor layer 41 , and the phosphor layer 41 is disposed on the fluorescent screen portion 21 .
  • the electron gun 30 is used to emit electron beams to the phosphor screen portion 21 , specifically to emit all or most of the electron beams onto the phosphor layer 41 , and the phosphor layer 41 emits ultraviolet light when excited by the electron beam.
  • the phosphor layer 41 is disposed on the inner surface of the phosphor screen portion 21 .
  • the inner surface refers to the surface of the phosphor screen portion 21 on the side close to the electron gun 30 .
  • the thickness of the phosphor layer 41 is between 5-50 ⁇ m.
  • the thickness of the phosphor layer 41 is the distance between the inner surface of the phosphor screen portion 21 and the surface of the phosphor layer 41 , where the surface of the phosphor layer 41 refers to the surface of the phosphor layer 41 facing the electron gun 30 .
  • the wavelength of the main emission peak of ultraviolet light emitted by the phosphor layer 41 under electron beam excitation is between 190 nm and 250 nm.
  • the main emission peak in the embodiments of this application refers to the emission peak with the maximum luminescence intensity emitted under electron beam excitation; it is easy to understand that if the emitted ultraviolet light also includes other emission peaks, any other The luminescence intensity of the emission peak is smaller than the luminescence intensity of the main emission peak.
  • the wavelengths of different emission peaks are at least 5nm apart; if the wavelengths of different emission peaks are within 5nm, they are regarded as the same emission peak.
  • the ultraviolet cathode ray tube 10 in the embodiment of the present application uses electron beams to excite the phosphor layer 41 to emit ultraviolet light.
  • the main emission peak wavelength of the emitted ultraviolet light is between 190nm and 250nm.
  • the ultraviolet light emitted by the embodiment of the present application has a smaller wavelength, high luminous energy, adjustable luminous intensity and adjustable luminous frequency, and has broader application prospects in the fields of sterilization and disinfection, ultraviolet communication, and ultraviolet curing.
  • the emitted ultraviolet light also includes at least one secondary emission peak in the wavelength range of 300 nm or less, and the ratio of the luminous intensity of the secondary emission peak to the luminous intensity of the main emission peak is greater than or equal to 1:10.
  • the ultraviolet light emitted by a phosphor layer containing LaPO 4 :Pr phosphor under electron beam excitation includes a main emission peak and a secondary emission peak, where the wavelength of the main emission peak is 225 nm and the wavelength of the secondary emission peak is 280 nm.
  • the emitted ultraviolet light also includes two or more secondary emission peaks in the wavelength range of 300 nm or less, and the ratio of the luminous intensity of the secondary emission peak to the luminous intensity of the main emission peak is greater than or equal to 1:10.
  • Figure 6 is the luminescence spectrum of the phosphor layer under electron beam excitation according to an embodiment of the present application.
  • the ultraviolet light emitted by the phosphor layer containing YPO 4 :Pr phosphor includes a main emission peak and three secondary emission peaks. Emission peak, the wavelength of the main emission peak is 232nm, the wavelength of the first emission peak is 243nm, the wavelength of the second emission peak is 261nm, and the wavelength of the third emission peak is 271nm.
  • the cumulative emission intensity of the ultraviolet light emitted by the phosphor layer 41 under electron beam excitation at wavelengths between 190 nm and 250 nm is greater than the cumulative emission intensity at wavelengths between 250 nm and 300 nm.
  • the cumulative emission intensity refers to the sum of the cumulative intensity under a certain wavelength range.
  • the phosphor layer 41 in the embodiment of the present application may include phosphor 410 .
  • the phosphor layer 41 emits ultraviolet light when excited by an electron beam.
  • the phosphor 410 emits ultraviolet light when excited by an electron beam.
  • the phosphor includes a host material and a doping element, wherein the doping element is incorporated into the host material to form impurity defects to cause luminescence.
  • the doping element contains Nd, Pr or Bi.
  • the element Nd, Pr or Bi can emit ultraviolet light of less than 250nm after absorbing electron beam energy, and has the advantages of high luminous efficiency and short luminous wavelength.
  • the matrix material is rare earth phosphate. Rare earth phosphate has the advantages of low phonon energy and stable properties. As a matrix material, it can withstand electron beam bombardment and can significantly improve the luminous intensity and service life of the phosphor layer.
  • the phosphor contains a doping element.
  • the doping element contains at least one selected from Nd, Pr, and Bi.
  • the doping element emits ultraviolet light after being excited by an electron beam.
  • Nd, Pr, and Bi mainly have stable trivalent electron configurations.
  • the phosphor may include at least one of the following: RePO 4 :Z 1 , LaP 5 O 14 :Z 1 , CaSO 4 :Z 1 , SrSO 4 :Z 1 , NaYF 4 :Z 1 , LiYF 4 :Z 1 , KYF 4 :Z 1 , LiLaP 4 O 12 :Z 1 , Y 2 (SO 4 ) 3 : Z 1 , YAlO 3 : Z 1 , YF 3 : Z 1 ; where Re means selected from Y, La, Lu, Sr, One or more of Gd, Sm, and Ce, Z 1 represents a doping element, and the doping element contains one element selected from Nd, Pr, and Bi.
  • the molar ratio of the doping element to the doped element in the host material is less than 5:95, that is, the doping element concentration is less than or equal to 5%.
  • the main emission peak wavelength of the ultraviolet light emitted by the phosphor layer containing YPO 4 :Nd phosphor (the doping concentration of Nd is 1%, that is, the molar ratio of Y and Nd is 99:1) is 195nm.
  • the first emission peak wavelength is 277nm
  • the second emission peak wavelength is 240nm
  • the intensity integrated area of the luminescence spectrum curve in the figure is 14.3 between the wavelengths of 190nm-250nm, and the luminescence spectrum curve between the wavelengths of 250nm-300nm
  • the intensity integration area is 8.9, and the cumulative emission intensity of the emitted ultraviolet light in the wavelength range of 190nm-250nm is greater than the cumulative emission intensity in the wavelength range of 250nm-300nm.
  • Table 1 shows the main emission peak wavelength in the cathode ray emission spectrum of the phosphor in the embodiment of the present application. In the table, the doping element concentration of the phosphor is 1%, and the electron beam acceleration voltage is 10 kV.
  • the wavelength of the main emission peak in the cathode ray luminescence spectrum of the phosphor is affected by the particle size, doping concentration and electron beam acceleration voltage of the phosphor.
  • the main emission peak wavelength may be different under different conditions; at the same time
  • the phosphors in the embodiments of this application are phosphors that emit light under electron beam excitation, which is completely different from photoluminescence phosphors; even for the same phosphor, the spectral curves under electron beam excitation and light excitation are not exactly the same. of.
  • the phosphor contains doping elements, and at least two doping elements are selected from Nd, Pr, and Bi and emit ultraviolet light after being excited by the electron beam; among the doping elements, Nd, Pr, and Bi mainly have a stable trivalent electron configuration. Under electron beam excitation, Nd, Pr, and Bi can form energy transfer between each other to increase the luminous intensity of ultraviolet light.
  • the phosphor may include at least one of the following: RePO 4 : Z 2 , LaP 5 O 14 : Z 2 , CaSO 4 : Z 2 , SrSO 4 : Z 2 , NaYF 4 : Z 2 , LiYF 4 : Z 2 , KYF 4 :Z 2 , LiLaP 4 O 12 :Z 2 , Y 2 (SO 4 ) 3 : Z 2 , YAlO 3 : Z 2 , YF 3 : Z 2 ; where Re means selected from Y, La, Lu, Sr, One or more of Gd, Sm, and Ce, Z 2 represents a doping element, and the doping element contains two elements selected from Nd, Pr, and Bi.
  • the molar ratio of the doping element to the doped element is less than 5:95.
  • the thickness of the phosphor layer when the thickness of the phosphor layer is the same, it contains YPO 4 :Nd (Nd doping concentration is 1%), YPO 4 :Bi (Bi doping concentration is 1%) and YPO 4 :Nd.
  • the luminescence spectrum of the phosphor layer of Bi (Nd doping concentration is 1%, Bi doping concentration is 1%) phosphor under electron beam excitation, which contains the main emission peak of the phosphor layer of YPO 4 :Nd phosphor
  • the wavelength is 195nm, the first emission peak wavelength is 277nm, and the second emission peak wavelength is 240nm;
  • the main emission peak wavelength of the phosphor layer containing YPO 4 :Bi phosphor is 241nm;
  • the main emission peak wavelength of the phosphor layer is 241nm, the first emission peak wavelength is 195nm, and the second emission peak wavelength is 277nm.
  • the luminous intensity of the phosphor layer containing YPO 4 :Nd, Bi phosphors at 195nm and 277nm is less than that of YPO 4 :Nd, while the luminous intensity at 241nm is greater than that of YPO 4 :Bi. Intensity; this is due to the energy transfer between the doping element Nd and the doping element Bi in the phosphor layer containing YPO 4 :Nd,Bi phosphor, that is, part of the electron energy absorbed by Nd is transferred to Bi, not only
  • the luminous intensity of the Bi element at 241nm is increased, and the overall ultraviolet light emission intensity of the phosphor layer in the range of less than 300nm is also increased.
  • the cumulative emission intensity of the ultraviolet light emitted by the three phosphor layers in the wavelength range of 190nm-250nm is greater than the cumulative emission intensity in the wavelength range of 250nm-300nm.
  • the phosphor layer in the embodiment of the present application may be a single phosphor layer or multiple phosphor layers.
  • the phosphor layer is a single phosphor layer.
  • the single phosphor layer may include one kind of phosphor, or may include two or more phosphors.
  • the single-layer phosphor layer includes more than two phosphors, so that ultraviolet light containing a variety of different wavelengths can be obtained through the ultraviolet light emitted by different phosphors, thereby meeting the needs of different fields, such as in the field of sterilization and disinfection.
  • the wavelength of ultraviolet light can effectively kill a variety of bacteria or viruses, thus improving the sterilization or disinfection effect.
  • the two phosphors included in the single-layer phosphor layer may be YPO 4 :Nd and YPO 4 :Pr, or YPO 4 :Nd and LaPO4:Pr, or YPO 4 :Pr and LaPO 4 :Pr.
  • the ultraviolet light emitted by YPO 4 :Nd phosphor, YPO 4 :Pr phosphor and LaPO 4 :Pr under electron beam excitation all has multiple emission peaks.
  • the single-layer phosphor layer includes two of them and can emit more at the same time. wavelength of ultraviolet light to meet the needs in the field of sterilization and disinfection, for example.
  • a single phosphor layer may include a mixture of two or more phosphors. Specifically, two or more phosphor powders are directly mixed first, and then a single layer of phosphor powder layer is formed by gravity precipitation.
  • a single phosphor layer may include more than two sub-region phosphor layers.
  • the main emission peak wavelength of the ultraviolet light emitted by the phosphor layer in each sub-region under electron beam excitation is different, and the main emission peak wavelength of the ultraviolet light emitted by the phosphor layer in at least one sub-region is between 190nm and 250nm.
  • the phosphor powder layers in each sub-region contain different types of phosphors. Different phosphor powder types means that the phosphor powder layers in each sub-region include at least one different phosphor.
  • each sub-region phosphor powder layer is located on the same layer.
  • the lower surface of each sub-region phosphor powder layer is generally coplanar, and the upper surface can also be approximately Coplanar, the phosphor powder layers in each sub-region together form a phosphor powder layer.
  • Figure 8 is a schematic structural diagram of a single-layer phosphor layer according to an embodiment of the present application.
  • the phosphor layer 41 at least includes a first sub-region phosphor layer 412 and a second sub-region phosphor layer 413.
  • the first sub-region phosphor layer The powder layer 412 and the second sub-region phosphor layer 413 are disposed on different areas on the inner surface of the phosphor screen portion 21 .
  • the first sub-region phosphor layer 412 emits the first ultraviolet light under electron beam excitation
  • the second sub-region phosphor layer 413 emits the second ultraviolet light under electron beam excitation.
  • the main emission peak wavelength of the first ultraviolet light is the same as the second ultraviolet light.
  • the main emission peak wavelengths of the ultraviolet light are different. At least one of the main emission peak wavelength of the first ultraviolet light and the main emission peak wavelength of the second ultraviolet light is between 190 nm and 250 nm.
  • the phosphor of the first sub-region phosphor layer 412 and the phosphor of the second sub-region phosphor layer 413 are different. It can be understood that different types of phosphor means that each sub-region phosphor layer includes at least one different phosphor.
  • the first sub-region phosphor layer includes phosphor LuPO 4:Bi
  • the second sub-region phosphor layer includes LuPO 4 :Bi.
  • the powder layer includes phosphor LuPO 4 :Pr; or the first sub-region phosphor layer includes phosphor LuPO 4 :Bi and phosphor LuPO 4 :Pr, and the second sub-region phosphor layer includes phosphor LuPO 4 :Bi and phosphor LuPO 4 : Nd; or the first sub-region phosphor layer includes phosphor LuPO 4 : Bi, and the second sub-region phosphor layer includes phosphor LuPO 4 : Bi and phosphor LuPO 4 : Nd.
  • each sub-region phosphor layer may include one kind of phosphor, or may include a mixture of two or more phosphors.
  • the phosphor layers are arranged in different areas, thereby generating multiple types of ultraviolet light of different wavelengths.
  • the ultraviolet light of multiple wavelengths can be superimposed on each other, reducing the impact of mutual absorption between different phosphors. , thereby improving the overall luminous intensity of the UV cathode ray tube.
  • the phosphor layer includes two or more stacked phosphor layers.
  • Each phosphor layer may include one type of phosphor, or may include a mixture of two or more phosphors.
  • the types of phosphor included in each phosphor layer are different. It can be understood that different types of phosphors means that each phosphor layer includes at least one different phosphor.
  • the main emission peak wavelength of the ultraviolet light emitted by each phosphor layer under electron beam excitation is different, and the wavelength of each main emission peak is below 300nm; further, at least one of the wavelengths of each main emission peak is between 190nm and 250nm. between.
  • FIG. 9 is a schematic diagram of a multi-layer phosphor layer according to an embodiment of the present application.
  • the phosphor layer 41 includes a first phosphor layer 414 and a second phosphor layer 415, where the first phosphor layer 414 is disposed on On the inner surface of the fluorescent screen part 21, the second phosphor layer 415 is disposed on the first phosphor layer 414. Further, the main emission peak wavelength of the first phosphor layer 414 is greater than the main emission peak wavelength of the second phosphor layer 415, so that the first phosphor layer 414 can partially absorb the ultraviolet light emitted by the second phosphor layer 415, The luminous intensity of the first phosphor layer 414 is increased. By arranging two or more phosphor layers, the influence of each phosphor layer on the mutual absorption of emitted ultraviolet light can be effectively adjusted. Not only can ultraviolet light containing a variety of different wavelengths be obtained, but also the effects of each phosphor layer can be adjusted. The intensity of the luminescent wavelength.
  • Figure 10 shows the luminescence spectra of phosphor layers with different structures under electron beam excitation according to an embodiment of the present application.
  • Curve a in the figure is the spectrum of a single layer of phosphor containing YPO 4 :Nd phosphor;
  • curve b in the figure is the spectrum of a single layer of phosphor containing YPO 4 :Pr phosphor;
  • curve c in the figure is the spectrum of the phosphor layer containing two sub-regions;
  • the first sub-region phosphor layer contains YPO 4 : Nd phosphor (YPO 4 : Nd
  • the amount of phosphor is half of the YPO 4 : Nd phosphor in curve a), and the phosphor layer in the second sub-region contains YPO 4 : Pr phosphor (the amount of YPO 4 : Pr phosphor is the YPO 4 : Pr phosphor in curve b)
  • Half of the powder curve d in the figure is the spectrum
  • the first phosphor layer contains YPO 4 :Pr phosphor (the amount of YPO 4 :Pr phosphor is consistent with the amount of YPO 4 :Pr phosphor in curve c
  • the amount of YPO 4:Nd phosphor in curve c is the same
  • the second phosphor layer contains YPO 4 :Nd phosphor (the amount of YPO 4 :Nd phosphor is the same as the amount of YPO 4 :Nd phosphor in curve c); the phosphors in curve a-curve d
  • the thickness of the layers is the same.
  • the phosphor layers of curve c and curve d both contain two kinds of phosphors.
  • curve c and curve d have five emission peaks, which can produce ultraviolet light of multiple wavelengths, thus having broad application prospects in the field of sterilization and disinfection.
  • the main emission peak wavelength in curve c is at 241nm, and its spectral curve is generated by the simple superposition of two sub-region phosphor layers; while the main emission peak wavelength in curve d is at 232nm (the same as the main emission peak wavelength in curve b).
  • the YPO 4 :Pr phosphor in the first phosphor layer will absorb part of the light emitted by YPO 4 :Nd in the phosphor layer in the second sub-region (light at a wavelength of 195nm), thereby causing the wavelength of 232nm in curve d to The intensity of the emission peak is stronger, while the intensity of the emission peak at 195nm is weaker.
  • the average particle size of the phosphor 410 particles is between 1 ⁇ m and 10 ⁇ m. If the average particle size of the particles is less than 1 ⁇ m, it will be too small and too many surface defects will affect the luminescence; if the average particle size of the particles is greater than 10 ⁇ m, it will be difficult to stick. The connection is easy to fall off.
  • the average particle size of the phosphor is between 1 ⁇ m and 10 ⁇ m, which can not only maintain the luminous efficiency, but also provide better bonding and prevent falling off.
  • the maximum diameter of the cross section of the pores inside the phosphor layer in a direction parallel to the inner surface of the phosphor screen portion 21 is between 1 ⁇ m and 10 ⁇ m.
  • the phosphor layer 41 in the embodiment of the present application may further include an adhesive oxide 411 .
  • the phosphor layer 41 may include an adhesive oxide 411 made of an inorganic material.
  • the adhesive oxide 411 is composed of inorganic particles.
  • the inorganic material has less absorption of ultraviolet light, which can especially reduce the adhesive oxide 411 Absorption of ultraviolet light with wavelengths less than 250nm.
  • the ratio of the average particle size of the particles of the bonding oxide 411 to the average particle size of the phosphor 410 is between 1:1000 and 1:100.
  • the particles of the bonding oxide 411 are distributed around the particles of the phosphor 410 and are used to bond the particles of the phosphor 410 together and to bond the particles of the phosphor 410 to the inner surface of the phosphor screen portion 21 .
  • the particles of the bonding oxide 411 are nanoparticles with an average particle size between 1 nm and 100 nm.
  • the particles of the adhesive oxide 411 are adsorbed on the particle surfaces of the phosphor 410 .
  • the bonding oxide 411 in the embodiment of the present application is a nanoparticle.
  • the particle size of the bonding oxide 411 is much smaller than the particle size of the phosphor 410. Under the action of the nano effect, the nanoparticles of the bonding oxide 411 will be adsorbed on the fluorescent powder.
  • the nanoparticles are easily bonded together through the polymerization of the active hydroxyl groups, thereby connecting the phosphor 410 particles and the phosphor 410 particles and the phosphor screen.
  • the surfaces of parts 21 are bonded together.
  • the mass ratio of the bonding oxide 411 to the phosphor 410 is less than 1:10, thereby reducing the problem of reduced adhesion caused by excessive aggregation of the bonding oxides.
  • the weight percentage of the main component of the bonding oxide 411 is greater than 99.9%, and the weight percentage of other impurity components is less than 0.1%.
  • the main component of the bonding oxide refers to the component with the highest proportion in the bonding oxide 411, and it is also the component that plays a bonding role in the bonding oxide 411.
  • the main component refers to the oxide in the bonding oxide 411, and is specifically an oxide; other impurity components refer to impurity components generated during the preparation process of the main component of the bonding oxide.
  • the adhesive oxide 411 contains only inorganic components and does not contain organic components and organic residual components. It should be noted that the organic components in the examples of this application refer to compounds containing C-H bonds.
  • the main emission of ultraviolet light emitted by the phosphor layer under electron beam excitation is The peak wavelength is between 190nm and 250nm.
  • the main component of the bonded oxide composed of inorganic particles has high purity, which can effectively reduce the absorption of ultraviolet light by impurities or organic components and significantly improve the luminous efficiency.
  • the main component of the bonding oxide is SiO 2 or Al 2 O 3 .
  • SiO 2 or Al 2 O 3 is resistant to electron beam bombardment, has stable properties, and has small absorption of ultraviolet light, thereby increasing the emission intensity of ultraviolet light.
  • the main component of the bonding oxide is the same as the main component of the inner surface of the phosphor screen portion 21 , and an oxygen bridge (—O—) can be formed between the bonding oxide 411 and the inner surface of the phosphor screen portion.
  • Chemical bonding that is, the bonding oxide 411 and the inner surface of the phosphor screen can be connected to each other through oxygen atoms to form a chemical bond, thereby improving the adhesion between the phosphor 410 and the inner surface of the phosphor screen.
  • the main component value of the inner surface of the fluorescent screen part 21 is the component with the highest proportion among the inner surface components of the fluorescent screen part 21 .
  • the fluorescent screen part 21 is made of quartz glass, the main component of the inner surface is SiO 2 , and the main component of the bonding oxide is SiO 2 .
  • the fluorescent screen part 21 is made of sapphire crystal, the main component of the inner surface is Al 2 O 3 , and the main component of the bonding oxide is Al 2 O 3 .
  • a buffer layer (not shown in the figure) is further provided between the phosphor screen portion 21 and the phosphor layer 41 .
  • the main component of the buffer layer is the same as the main component of the adhesive oxide.
  • the main component of the buffer layer refers to the component with the highest proportion in the buffer layer.
  • a buffer layer is provided on the inner surface of the fluorescent screen portion 21
  • a phosphor layer 41 is provided on the buffer layer.
  • the buffer layer is in the form of a film and can be tightly formed on the inner surface of the phosphor screen portion 21 by physical deposition (such as physical vapor deposition) or chemical deposition (such as chemical vapor deposition), and then phosphor powder is formed on the buffer layer.
  • Layer 41 is the form of a film and can be tightly formed on the inner surface of the phosphor screen portion 21 by physical deposition (such as physical vapor deposition) or chemical deposition (such as chemical vapor deposition), and then phosphor powder is formed on the buffer layer.
  • the main components of the buffer layer are the same as the main components of the adhesive oxide 411 in the phosphor layer 41, and the two can form chemical bonds through oxygen bridges. That is, the adhesive oxide 411 in the phosphor layer 41 and the buffer layer are bonded through oxygen bridges. The atoms are connected with each other to form chemical bonds, thereby improving the adhesion between the phosphor 410 and the inner surface of the phosphor screen.
  • an embodiment of the present application also provides a method for preparing a phosphor layer, which specifically includes the following steps:
  • the adhesive oxide dispersion liquid pours the adhesive oxide dispersion liquid into the glass bulb; wherein the ingredients of the adhesive oxide dispersion liquid are adhesive oxide and water.
  • the pH value of the adhesive oxide dispersion is between 6 and 8, and the concentration of the adhesive oxide in the adhesive oxide dispersion is less than or equal to 5%, thereby preventing the adhesion due to the high concentration of the adhesive oxide.
  • the oxides clump together.
  • the bonding oxide is an inorganic material composed of inorganic particles. Specifically, the particles of the bonded oxide are nanoparticles with an average particle diameter between 1 nm and 100 nm.
  • the weight percentage of the main component of the bonding oxide is greater than 99.9%, and the weight percentage of other impurity components is less than 0.1%.
  • the main component of the bonding oxide refers to the component with the highest proportion in the bonding oxide, and it is also the component that plays a bonding role in the bonding oxide.
  • the main component refers to the oxide in the bonding oxide, and is specifically an oxide; other impurity components refer to the impurity components produced during the preparation process of the main component of the bonding oxide.
  • the adhesive oxide contains only inorganic components and does not contain organic components and organic residual components. It should be noted that the organic components in the examples of this application refer to compounds containing CH bonds.
  • the components of the adhesive oxide dispersion of the present application are adhesive oxide and water, which can make the main component of the adhesive oxide in the finally formed phosphor layer more pure, thereby reducing the impurities in the adhesive oxide.
  • the absorption of ultraviolet light by the ingredients increases the luminous intensity.
  • the main component of the bonding oxide is SiO 2 .
  • the bonding oxide dispersion is a SiO 2 dispersion.
  • the components in the SiO 2 dispersion are SiO 2 particles and water.
  • the average particle size of the SiO 2 particles is SiO 2 particles are evenly dispersed in water between 1-100nm.
  • the embodiment of the present application is formed directly by using the bonding oxide in the bonding oxide dispersion as a bonding agent, and through the adsorption of nanoparticles and the bonding between nanoparticles, without the need for reaction between the silicate solution and the electrolyte solution.
  • Forming a bonding agent can reduce the residual impurity ions (such as K, Na, Sr, Ba, etc.) or impurity components in the bonding oxide, and reduce the absorption of the emitted ultraviolet light by the impurity ions or impurity components.
  • the main component of the bonding oxide is Al 2 O 3
  • the bonding oxide dispersion is Al 2 O 3 dispersion
  • the component of the Al 2 O 3 dispersion is Al 2 O 3 Particles and water
  • the average particle size of Al 2 O 3 particles is between 1-100 nm
  • the Al 2 O 3 particles are evenly dispersed in water; compared with using aluminate solution (potassium aluminate or sodium aluminate) and electrolyte solution ( For example, barium nitrate or strontium nitrate) is used as the precipitate.
  • the remaining impurity components or impurity ions (such as K , Na, Sr, Ba, etc.), which can reduce the absorption of emitted ultraviolet light by impurity ions and increase the ultraviolet luminescence intensity of the phosphor layer.
  • the phosphor particles is between 1 ⁇ m and 10 ⁇ m.
  • the ratio of the average particle size of the binding oxide particles to the average particle size of the phosphor particles is between 1:1000 and 1:100.
  • the phosphor includes at least one of the following: RePO 4 :Z 1 , LaP 5 O 14 :Z 1 , CaSO 4 :Z 1 , SrSO 4 :Z 1 , NaYF 4 :Z 1 , LiYF 4 :Z 1 , KYF 4 :Z 1.
  • LiLaP 4 O 12 Z 1 , Y 2 (SO 4 ) 3 : Z 1 , YAlO 3 : Z 1 , YF 3 : Z 1 ; where Re means selected from Y, La, Lu, Sr, Gd, Sm, One or more of Ce, Z 1 represents a doping element, and the doping element contains an element selected from Nd, Pr, and Bi.
  • the phosphor includes at least one of the following: RePO 4 : Z 2 , LaP 5 O 14 : Z 2 , CaSO 4 : Z 2 , SrSO 4 : Z 2 , NaYF 4 : Z 2 , LiYF 4 : Z 2 , KYF 4 : Z 2 , LiLaP 4 O 12 : Z 2 , Y 2 (SO 4 ) 3 : Z 2 , YAlO 3 : Z 2 , YF 3 : Z 2 ; where Re represents selected from Y, One or more of La, Lu, Sr, Gd, Sm, and Ce, Z 2 represents a doping element, and the doping element contains two elements selected from Nd, Pr, and Bi.
  • the phosphor powder is a pre-prepared phosphor powder; for example, it is prepared using a high-temperature solid phase method: the raw materials of the phosphor powder are mixed, ground, and then calcined at high temperature. After the calcination is completed, the required phosphor powder is obtained after grinding, cleaning, and drying. Phosphor.
  • the bonding oxide uses nanoparticles with a particle size between 1-100nm. There are many active hydroxyl groups on the surface of the nanoparticles. During the standing process, due to nano-adsorption and gravity, some of the bonding oxide particles will tightly It is adsorbed on the surface of the phosphor particles and precipitates to the bottom of the glass bulb as the phosphor particles.
  • the bonded oxide particles are connected and polymerized through oxygen atoms (i.e., oxygen bridge -O-) to form a network structure, which can make the fluorescence
  • oxygen atoms i.e., oxygen bridge -O-
  • the powder particles are bonded to each other, and the bonded oxide particles in contact with the bottom of the glass bulb are also connected to each other to form a network structure, so that the phosphor particles are tightly attached to the bottom surface of the glass bulb, that is, between the phosphor particles
  • the phosphor particles and the bottom surface of the glass bulb can be tightly bonded by bonding oxide particles.
  • the bottom surface of the glass bulb in this application refers to the inner surface of the phosphor screen; the resting time needs to be determined according to the size of the phosphor particles, the bonding oxide particles and the volume of the bonding oxide dispersion, and generally requires 6- 12 hours.
  • S104 Remove the remaining adhesive oxide dispersion in the glass bulb and dry it to form a phosphor layer on the bottom surface of the glass bulb. After the rest is completed, the bonding oxide particles are adsorbed on the phosphor particles and the phosphor particles are bonded together as well as between the phosphor particles and the surface of the glass bulb. The remaining bonding oxide dispersion liquid is poured away. , an undried phosphor layer will be left at the bottom of the glass bulb, and the final phosphor layer will be formed after drying. At the same time, the surface of the bonding oxide will be dehydrated during the drying process, further strengthening the adhesion. In actual operation, the remaining adhesive oxide dispersion liquid in the glass bulb 20 can be removed by pouring or sucking out.
  • the drying temperature is less than or equal to 100°C, and the drying time is between 6-12 hours.
  • the phosphor layer is formed by stacking phosphor particles and bonded oxide particles under the action of gravity, there will be obvious pores between the particles, and the surface of the formed phosphor layer and the interior of the phosphor layer will also have pores.
  • the maximum diameter of the cross section of the pores on the surface and inside the phosphor layer in the direction perpendicular to the axis "A" is between 1 ⁇ m and 10 ⁇ m.
  • the thickness of the phosphor layer is between 5-50 ⁇ m.
  • the preparation method of the phosphor layer may include forming two or more stacked phosphor layers, wherein at least one phosphor layer in each phosphor layer is formed using the above steps S101 to S104.
  • the main emission peak wavelength of the ultraviolet light emitted by each phosphor layer under electron beam excitation is different, and the wavelength of each main emission peak is below 300nm; further, at least one of the wavelengths of each main emission peak is between 190nm and 250nm. between.
  • each of the two or more phosphor layers is formed using the above steps S101 to S104.
  • the phosphor types of each phosphor layer are different.
  • different types of phosphors means that each phosphor layer contains at least one different phosphor.
  • a method of forming two phosphor layers includes: using the above steps S101 to step S104 to form a first phosphor layer; using the above steps S101 to step S104 to form a second phosphor layer, wherein the first phosphor layer and the second phosphor layer are There is at least one different phosphor between the powder layers.
  • the preparation method of the phosphor layer may include forming more than two sub-region phosphor layers, wherein at least one sub-region phosphor layer in each sub-region phosphor layer adopts the above steps S101 to S104 is formed.
  • the main emission peak wavelength of the ultraviolet light emitted by the phosphor layer in each sub-region is different when excited by the electron beam.
  • At least one sub-region phosphor layer emits the main emission peak wavelength of ultraviolet light between 190nm and 250nm.
  • the phosphor powder types in each sub-region phosphor powder layer are different.
  • the different phosphor powder types means that the phosphor powder layers in each sub-region include at least one different phosphor powder.
  • each sub-region phosphor powder layer is located on the same layer.
  • the lower surface of each sub-region phosphor powder layer is generally coplanar, and the upper surface can also be approximately Coplanar, the phosphor powder layers in each sub-region together form a phosphor powder layer.
  • step 101 it also includes: placing the sub-region mask into the glass bulb 20, wherein the sub-region mask is exposed Sub-regions to be formed.
  • the sub-region mask can be rigid or flexible.
  • a method for forming two sub-region phosphor layers includes: placing a first sub-region mask into the glass bulb 20 , wherein the first sub-region mask exposes the first sub-region; and forming the first sub-region using steps S101 to S104 Phosphor layer; place the second sub-region mask into the glass bulb 20, wherein the second sub-region mask exposes the second sub-region; use steps S101 to S104 to form the second sub-region phosphor layer; wherein the first sub-region At least one different phosphor is contained between the phosphor layer and the second sub-region phosphor layer.
  • the preparation method of the phosphor layer in the embodiment of the present application is to directly use the adhesive oxide dispersion as the precipitation solution.
  • the components of the dispersion are the adhesive oxide and water, and the adhesive oxide is nanoparticles.
  • the nano-effect of the nanoparticles and The surface hydroxyl groups bond the phosphor to form a phosphor layer; compared with the phosphor layer prepared by the traditional method, the preparation method of the embodiment of the present application is simpler and more convenient.
  • the prepared phosphor layer does not contain organic components, and at the same time, the residual There are fewer impurity ions (such as K, Na, Sr, Ba, etc. or impurity components), which can reduce the absorption of emitted ultraviolet light by impurity ions or impurity components and increase the luminous intensity of the phosphor layer.
  • Figure 12 shows an SEM image of the surface of the phosphor layer according to an embodiment of the present application. It can be seen from the figure that the surface of the phosphor layer has phosphor particles of different sizes, and the average particle size of the phosphor particles is between 1 ⁇ m and 10 ⁇ m. between. The surface of the phosphor powder is uneven and has pores, and the maximum pore size is between 1 ⁇ m and 10 ⁇ m.
  • the light-emitting structure layer 40 of the embodiment of the present application also includes a conductive layer 42.
  • the conductive layer 42 is provided on the phosphor layer 41.
  • the conductive layer 42 is used to conduct away the negative charges accumulated on the surface of the phosphor layer 41. This avoids the accumulated negative charges repelling the electron beam and reducing the electron beam energy.
  • the conductive layer 42 may be an aluminum film layer.
  • the thickness of the aluminum film layer is between 200-400nm.
  • the aluminum film layer can form a reflective surface, which can reflect the ultraviolet light emitted by the phosphor layer 41 to the direction of the outer surface of the phosphor screen portion 21 , thereby enhancing the luminous intensity.
  • an embodiment of the present application also provides a method for preparing a light-emitting structural layer, including:
  • S201 Form a phosphor layer on the phosphor screen. Specifically, the steps in the embodiments of the above method for preparing the phosphor layer can be used to form the phosphor layer.
  • S202 Form a conductive layer on the phosphor layer to obtain a light-emitting structure layer.
  • forming the conductive layer on the phosphor layer includes:
  • An organic film layer is formed on the phosphor layer. There are pores inside the phosphor layer. Forming a conductive layer directly on the phosphor layer will cause "phosphor blackening". At the same time, due to the uneven surface of the phosphor layer, it is difficult to form a specular reflection directly on the surface of the conductive layer, which ultimately affects light intensity. In the embodiment of the present application, an organic film can be formed on the phosphor layer to avoid the adverse effects caused by directly forming the conductive layer. It should be noted that "phosphor blackening” refers to the fact that there are many pores of hundreds of nanometers or even several microns inside the phosphor layer.
  • the conductive layer formed directly on the phosphor layer will cause the conductive layer particles to enter the pores and interact with the phosphor.
  • the particles are mixed together, resulting in the blackening of the phosphor layer.
  • the conductive layer particles in "phosphor blackening" will strongly absorb the emitted ultraviolet light, thus seriously affecting the luminous intensity of the phosphor layer.
  • pure water is first used to wet the phosphor layer, thereby forming a smooth film-forming surface on the uneven surface of the phosphor layer, and reducing the surface tension of the solid powder layer, which is conducive to the spreading of the organic film solution on it. ; Then add the organic film solution into the glass bulb to form a smooth film on the surface of the phosphor layer.
  • the organic film solution can be applied to the surface of the phosphor layer by spraying or spin coating; finally, the phosphor layer will be coated with the organic film solution.
  • an organic film layer is formed.
  • the organic film solution mainly includes film-forming substances, solvents, and plasticizers; among them, the film-forming substance is the basic material for forming an organic film, which can be nitrocellulose; the solvent is the main component of the volatile part of the organic film solution, and can be butyl acetate ;
  • the plasticizer is used to increase the flexibility of the organic film, which can be dimethyl phthalate.
  • Organic film solutions are greatly affected by composition, temperature and humidity. Environmental conditions need to be strictly controlled during storage and use. Otherwise, the formed organic film plane is prone to problems such as unevenness and many pinholes, which will affect the subsequent formation of the conductive layer.
  • a first conductive layer is formed on the organic film layer.
  • the first conductive layer may be an aluminum film layer with a thickness between 100 nm and 200 nm.
  • the first conductive layer can be formed on the organic film layer by evaporation.
  • Remove the organic film layer Specifically, the glass bulb is heated at 200-400°C to remove the organic film layer, so that the first conductive layer directly covers the phosphor layer.
  • oxygen is introduced into the oven, and the concentration of oxygen in the oven is greater than 50%.
  • Organic matter has strong absorption of ultraviolet light, especially ultraviolet light below 250nm. The residue of organic matter will seriously affect the luminous intensity of the phosphor layer.
  • oxygen in the oven By introducing oxygen in the oven to increase the oxygen concentration, the hydrocarbons in the organic matter can be fully absorbed. Converted into CO 2 and H 2 O, thereby reducing the residue of organic matter and increasing the luminous intensity.
  • a second conductive layer is formed on the first conductive layer to obtain a light-emitting structure layer.
  • the second conductive layer may be an aluminum film layer with a thickness between 100 nm and 200 nm.
  • the second conductive layer can be formed on the first conductive layer by evaporation.
  • gases are often released, causing small bulges or pinholes on the conductive layer.
  • the surface of the conductive layer is easily oxidized and contaminated during the heating process, reducing the light reflection efficiency of the conductive layer, thereby ultimately affecting the luminous efficiency.
  • the conductive layer in this application is formed in two steps. The first time is to use an organic film as a substrate to form the first conductive layer.
  • a second conductive layer is formed on the first conductive layer. Therefore, even if the first conductive layer In the event of oxidative contamination or pinholes, the second conductive layer can also make up for the defects of the first conductive layer, so that the final conductive layer has a bright and smooth light-reflecting surface.
  • the phosphor layer directly uses the adhesive oxide dispersion as the precipitate, leaving fewer impurity ions remaining, thereby reducing the absorption of ultraviolet light by the impurity ions; at the same time, the conductive layer passes through it twice Formation, thereby forming a bright and smooth reflective surface; the finally prepared luminescent structural layer has higher luminous intensity.
  • the light-emitting structure layer 40 further includes a filling oxide 440 , and the filling oxide 440 is used to fill the surface and internal pores of the phosphor layer 41 .
  • the structural layer formed after the phosphor layer 41 is filled with the filling oxide 440 is defined as the first structural layer 44 , that is, the first structural layer 44 includes the phosphor layer 41 and the filling oxide 440 .
  • the filling oxide 440 is an inorganic material composed of inorganic particles.
  • at least part of the filling oxide 440 is filled in the surface and internal pores of the phosphor layer 41 .
  • the ratio of the average particle size of the filled oxide particles 440 to the average particle size of the phosphor particles is between 1:1000 and 1:100.
  • the particle size of the filled oxide 440 is much smaller than that of the phosphor particles.
  • the particles filled with oxide 440 are nanoparticles with an average particle size between 1 nm and 50 nm.
  • the structural layer formed after the phosphor layer 41 is filled with the filled oxide 440 is defined as the first structural layer 44.
  • the first structural layer 44 includes phosphor particles, bonded oxide particles and filled oxide particles.
  • the maximum cross-sectional diameter of the internal pores of a structural layer 44 in a direction parallel to the inner surface of the phosphor screen portion 21 is less than 1 ⁇ m.
  • the maximum diameter of the cross section of the internal pores of the first structural layer 44 in a direction parallel to the inner surface of the phosphor screen portion 21 is less than or equal to 50 nm. This application fills the internal pores of the phosphor powder layer with filled oxides composed of nanoparticles, thereby reducing the size of the internal pores of the phosphor powder layer.
  • the conductive layer can be directly formed on the phosphor powder layer without using an organic film. On the one hand, it will not produce The organic residue caused by the use of organic films reduces the absorption of ultraviolet light; on the other hand, the reduction of pores can effectively reduce the "phosphor blackening" phenomenon, thereby increasing the luminous intensity; at the same time, the filling oxide is filled inside the phosphor layer A light guide structure composed of filled oxides can be formed after the pores. The light generated by the phosphor layer can be propagated and emitted through the light guide structure, effectively reducing the loss of ultraviolet light during the propagation process of the internal pores, thereby increasing the luminous intensity.
  • the surface of the first structural layer 44 is composed of phosphor particles, bonded oxide particles and filled oxide particles. Compared with the surface of the phosphor layer 41, the size of the filled oxide particles is much smaller than that of the phosphor particles. Therefore, the surface of the first structural layer 44 formed after the filled oxide particles fill the surface of the phosphor layer 41 is flatter and denser.
  • the surface of the first structural layer 44 is composed of filled oxide particles, that is, the filled oxide 440 not only fills the surface and internal pores of the phosphor layer 41, but also covers the surface of the phosphor layer 41.
  • the surface of the first structural layer 44 thus formed is smooth and dense.
  • the surface of the first structural layer 44 has crack-like pores, and the maximum width of the pores is less than 1 ⁇ m.
  • the conductive layer 42 is provided on the first structural layer 44 .
  • Filling the oxide 440 greatly reduces the size of the pores inside and on the surface of the phosphor layer 41.
  • the pore size can be reduced from a few microns to tens of nanometers or even a few nanometers, which greatly reduces the generation of particles caused by mixing the particles in the conductive layer with the phosphor particles.
  • the conductive layer may be an aluminum film layer, and the thickness of the aluminum film layer is between 50 nm and 400 nm; further, the thickness of the aluminum film layer is between 50 nm and 100 nm.
  • the surface of the first structural layer 44 is flat and dense.
  • a thinner conductive layer 42 can also meet the conductive requirements. At the same time, a thinner conductive layer can also reduce the absorption of electron beam energy and improve luminous efficiency.
  • the weight percentage of the main component of the filled oxide is greater than 99.9%, and the weight percentage of other impurity components is less than 0.1%.
  • the main component of the filling oxide refers to the component with the highest proportion in the filling oxide 440 , and it is also the component that plays a filling role in the filling oxide 440 .
  • the main component refers to the oxide in the filling oxide 440, and is specifically an oxide; other impurity components refer to impurity components generated during the preparation process of the main component of the filling oxide.
  • the filling oxide 440 contains only inorganic components and does not contain organic components and organic residual components.
  • the main component of the filling oxide may be SiO 2 or Al 2 O 3 .
  • SiO 2 or Al 2 O 3 is resistant to electron beam bombardment, has stable properties, and has small absorption of ultraviolet light, thereby reducing the impact on luminous intensity.
  • the main component of the filling oxide is the same as the main component of the bonding oxide. Therefore, the filling oxide 440 and the bonding oxide 411 can form a chemical bond through an oxygen bridge (—O—), that is, the filling oxide 440 and the bonding oxide 411 can be connected to each other through oxygen atoms to form a chemical bond, thereby The adhesion between the filling oxide 440 and the phosphor layer 41 can be improved.
  • the main component of the bonding oxide is SiO 2 and the main component of the filling oxide is SiO 2 .
  • the main component of the bonding oxide is Al 2 O 3 and the main component of the filling oxide is Al 2 O 3 .
  • Figure 15 shows an SEM image of the surface of the first structural layer according to an embodiment of the present application. It can be seen from the figure that compared to the surface of the fluorescent layer, the surface of the first structural layer is smooth and dense, with no obvious particles. The surface of the first structural layer shown in the figure has crack-like pores, and the maximum width of the pores is less than 1 ⁇ m.
  • the fluorescent screen includes a fluorescent screen part and a first structural layer.
  • the first structural layer is provided on the fluorescent screen part.
  • the first structural layer includes a phosphor layer and a filling oxide; the phosphor layer It includes phosphor and bonding oxide.
  • the bonding oxide is used to bond the particles of phosphor to the surface of the phosphor screen.
  • the filling oxide is an inorganic material. At least part of the filling oxide is filled inside the phosphor layer. in the pores.
  • the fluorescent screen further includes a conductive layer, and the conductive layer is disposed on the first structural layer.
  • the fluorescent screen part in this embodiment can be the above-mentioned fluorescent screen part, or it can be other supporting substrates, so that the first structural layer is disposed on the fluorescent screen part; of course, the embodiments of the present application are not limited to this. Any fluorescent screen provided according to this embodiment on any fluorescent screen part shall fall within the protection scope of this application. In addition, other technical features described in this embodiment may be the same as those in the previous embodiment, and will not be described again here. As specifically shown in FIG. 14 , the fluorescent screen 45 includes a fluorescent screen portion 10 , a first structural layer 44 and a conductive layer 42 .
  • filling oxide is used to fill the phosphor layer, which can greatly reduce the pores inside the phosphor layer, thereby effectively reducing "phosphor blackening" during the process of directly forming the conductive layer on the phosphor layer.
  • " phenomenon, improving the luminous intensity; at the same time, the filled oxide can form a light guide structure composed of the filled oxide after filling the internal pores of the phosphor layer.
  • the light generated by the phosphor layer can be propagated and emitted through the light guide structure, effectively reducing the ultraviolet rays.
  • the absorption and scattering of light during propagation through the internal pores enhances the luminous intensity.
  • Embodiments of the present application also provide an ultraviolet cathode ray tube.
  • the ultraviolet cathode ray tube includes the fluorescent screen in the above embodiment, an electron gun, a tubular part for accommodating the electron gun, and an electrical lead assembly electrically connected to the electron gun; wherein, the tubular The electron gun is arranged in the tubular part for emitting electron beams to the fluorescent screen part; the phosphor layer in the first structural layer provided on the fluorescent screen part emits light under the excitation of the electron beam; the electron gun passes through the The electrical lead assembly is electrically connected to the outside.
  • an embodiment of the present application also provides a method for preparing a fluorescent screen, which includes:
  • S301 provides fluorescent screen section.
  • the steps in the embodiments of the above method for preparing the phosphor layer can be used to form the phosphor layer.
  • fill the phosphor layer with the filling oxide to form a first structural layer including the phosphor layer and the filling oxide; wherein at least part of the filling oxide is filled in the internal pores of the phosphor layer, and at least part of the filling oxide is filled formed on the surface of the phosphor layer.
  • Filling the phosphor layer with the filling oxide specifically includes: adding the filling oxide dispersion liquid to the phosphor layer, that is, pouring the filling oxide dispersion liquid into the glass bulb.
  • the components of the filled oxide dispersion are filled oxide and water, and the liquid level of the filled oxide dispersion is level with or slightly higher than the surface of the phosphor layer; it is left to dry for a certain period of time so that the filled oxide is filled on the surface of the phosphor layer. in the internal pores.
  • the concentration of the filling oxide in the filling oxide dispersion is less than or equal to 30%.
  • the filling oxide is an inorganic material composed of inorganic particles.
  • the ratio of the average particle size of the filled oxide particles to the average particle size of the phosphor particles is between 1:1000 and 1:100.
  • the oxide-filled particles are nanoparticles with an average particle size between 1 nm and 50 nm.
  • the filled oxide dispersion will fill the surface and internal pores of the phosphor layer.
  • the moisture is removed, and the oxide-filled particles fill the surface of the phosphor layer and the phosphor powder. pores inside the layer, and at the same time form a denser and smoother surface of the first structural layer than the phosphor layer.
  • the weight percentage of the main component in the filled oxide is greater than 99.9%, and the weight percentage of other impurity components is less than 0.1%.
  • the main component refers to the component with the highest proportion in the filled oxide, which is also the component that plays a bonding role in the filled oxide.
  • the main component refers to the oxide in the filled oxide, and is specifically an oxide; other impurity components refer to the impurity components produced during the preparation process of the main component of the filled oxide.
  • the filling oxide only contains inorganic components and does not contain organic components and organic residual components.
  • the filling oxide dispersion liquid is a SiO 2 dispersion liquid, and correspondingly, the main component of the filling oxide is SiO 2 .
  • the filling oxide dispersion liquid is an Al 2 O 3 dispersion liquid, and correspondingly, the main component of the filling oxide is Al 2 O 3 .
  • the filled oxide dispersion used in the embodiments of the present application contains the filling oxide and water, and does not contain other organic components. At the same time, there are very few impurity ions in the dispersion (only including impurities generated during the preparation process of the main components of the filling oxide). composition), which can fill the pores of the phosphor layer and form a denser and flatter surface without introducing more impurity components.
  • the conductive layer can be directly formed on the first structural layer by evaporation.
  • the conductive layer can be an aluminum film layer, and the thickness of the aluminum film layer is between 50nm and 400nm. Further, the thickness of the aluminum film layer is between 50-100nm.
  • the surface of the first structural layer is flat and dense, and a conductive layer can be formed directly on it without forming an organic film. At the same time, the conductive layer can use a smaller thickness to meet conductive requirements.
  • the method of the embodiment of the present application is to directly form a conductive layer on the first structural layer. Compared with the process of forming an organic film - forming a conductive layer - removing the organic film, the method of this embodiment is simpler, more environmentally friendly, and does not There are cases where organic matter remains due to removal of the organic film.
  • the preparation method of the phosphor screen in this embodiment uses filling oxide to fill the pores on the surface and inside the phosphor layer, forming a denser and flatter surface, greatly reducing the size of the pores inside the phosphor layer, thereby reducing or even avoiding
  • the "phosphor blackening" phenomenon occurs when the particles in the conductive layer are mixed with the phosphor particles.
  • the preparation method of this embodiment uses filling oxide to fill the internal pores of the phosphor layer, and then directly forms the conductive layer.
  • the preparation method is simple and more environmentally friendly. At the same time, there is no need to remove the organic film.
  • the residual organic matter produced by the film avoids the absorption of ultraviolet light by the residual organic matter and improves the luminous efficiency.
  • FIG 17 is a schematic structural diagram of an electron gun according to an embodiment of the present application.
  • the electron gun 30 in the figure is an area projection electron gun, specifically including a cathode assembly 31 and an electrode assembly 32. It should be noted that the area projection electron gun means that the electron beam emitted by the electron gun to the phosphor screen is emitted in an area projection manner.
  • the cathode 310 assembly 31 includes a cathode tube 311, a cathode 310 and a filament 312;
  • the cathode tube 311 is a cylindrical metal tube including a closed end and an open end, the cathode 310 is arranged on the outer surface of the closed end of the cathode tube 311, and the filament 312 is arranged on Inside the cathode tube 311 and close to the closed end of the cathode tube 311.
  • the cathode 310 emits electrons and forms the emission surface of the cathode 310.
  • the cathode 310 can be a planar cathode.
  • the planar cathode means that the material of the cathode 310 is processed into a block shape.
  • the electron beam emitted by the planar cathode is emitted from a plane. More uniform and easier to form a uniform cathode emission surface.
  • the shape of the planar cathode can be annular.
  • the annular cathode is conducive to reducing the electron beam density in the middle of the emitting surface of the cathode 310, thereby improving the uniformity of the electron beam.
  • the material of the cathode 310 is an oxide, that is, the cathode 310 is an oxide cathode.
  • the oxide cathode has the advantages of high melting point, high resistivity, low work function, and long life.
  • the embodiment of the present application uses an oxide cathode, so that it can be used.
  • the electron gun emits electrons stably and has a lifespan of tens of thousands of hours.
  • the material of the cathode 310 is a mixture of BaCO 3 , SrCO 3 and CaCO 3 .
  • the outer diameter of the cathode tube 311 is 1.6mm ⁇ 0.02mm.
  • Electrode assembly 32 includes a plurality of metal cylinders, each of which is axially symmetrical about a longitudinal central axis "A".
  • the multiple metal cylinders are made of non-magnetic metal.
  • the material of the plurality of metal cylinders is non-magnetic stainless steel.
  • the electron beam emitted by the cathode 310 passes through the electrode assembly 32 and bombards the fluorescent screen portion 21 in an area projection manner.
  • the projection surface of the area projection is an inverted image of the emission surface of the cathode 310 .
  • the electron beam bombards the phosphor screen part 21 in an area projection manner means that the electron beam spreads to form a projection surface and bombards the phosphor screen part 21.
  • the opposite is a focusing method, which means that the electron beam bombards the phosphor screen. is a point rather than a surface.
  • the plurality of metal cylinders include a metal cylinder G1 in the cathode modulation area, a metal cylinder G2 in the electron beam modulation area, and a metal cylinder G3 in the electron beam acceleration area.
  • multiple metal cylinders are connected to independent input voltages, so that their input voltages can be independently controlled and can be the same or different.
  • the inner diameter of the multiple metal cylinders is between 3mm and 15mm.
  • the number of electrons emitted by the cathode 310 can be adjusted and the size of the electron beam current can be changed.
  • the potential of the metal cylinder G1 in the cathode modulation area is 0V-20V.
  • the potential of the cathode modulation region is greater than or equal to the potential of the cathode 310 .
  • the metal cylinder G1 in the cathode modulation area is placed outside the cathode tube 311. The end of the metal cylinder G1 in the cathode modulation area has a small hole with a diameter of 2mm-3mm.
  • the cathode 310 is flush with or slightly protrudes from the end of the metal cylinder G1 in the cathode modulation area, that is, the cathode 310 is flush with or passes through the small hole at the end of the metal cylinder G1 in the cathode modulation area, so that the cathode modulation area can be lowered.
  • the electric field affects the emission direction of the electron beam, thereby improving the uniformity of the emission surface of the cathode 310.
  • the distance between the end of the cathode 310 and the metal cylinder G1 in the cathode modulation area is 0.01mm-0.03mm.
  • the metal cylinder G2 in the electron beam modulation area is used to control the electron beam shape in the area.
  • the electron beam modulation area metal cylinder G2 includes multiple sub-beam modulation area metal cylinders.
  • Each sub-beam modulation area metal cylinder is connected to an independent input voltage. Their input voltages can be independently controlled and can be the same or different. , so that the electron beam shape in the area can be accurately controlled; at the same time, the metal cylinders in multiple sub-beam modulation areas can control the electron beam shape more conveniently and flexibly.
  • the distance between the metal cylinders in each sub-beam modulation area is the same; further, the distance between the metal cylinders in each sub-beam modulation area is less than or equal to 1 mm.
  • the distance between the metal cylinder G1 in the cathode modulation area and the metal cylinder in the sub-beam modulation area adjacent to the metal cylinder G1 in the cathode modulation area is less than or equal to 1 mm.
  • the inner diameter of the metal cylinder in each sub-beam modulation area is the same; further, the inner diameter of the metal cylinder in each sub-beam modulation area is 10 ⁇ 0.1 mm.
  • the inner diameter of the metal cylinder in the sub-beam modulation area adjacent to the metal cylinder G1 in the cathode modulation area is greater than or equal to the inner diameter of the metal cylinder G1 in the cathode modulation area, so that the curve of the electric field force can be divergent, making it easier to control electrons.
  • the beams diverge evenly.
  • the potential of the metal cylinder in each sub-beam modulation area is 0V-50V.
  • the potential of the metal cylinder in the sub-beam modulation zone adjacent to the cathode modulation zone is greater than the potential of the metal cylinder in the cathode modulation zone.
  • the electron beam shape can be easily adjusted to make the electron beam disperse evenly.
  • the potential of the metal cylinder in the sub-beam modulation area far away from the cathode 310 is greater than or equal to the potential of the metal cylinder in the sub-beam modulation area close to the cathode 310, so that it can be better Adjust the direction of the electric field and control the shape of the electron beam.
  • the length of the metal cylinder in the sub-beam modulation area far from the cathode 310 is greater than the length of the metal cylinder in the sub-beam modulation area close to the cathode 310 .
  • the potential of the metal cylinder G2 in the electron beam modulation area can be controlled in a pulse manner to realize pulse emission of the light-emitting structure layer. It should be noted that the spacing between metal cylinders refers to the distance between two adjacent end surfaces of two metal cylinders.
  • the size and potential of the metal cylinder in the electron beam modulation area can be used to conveniently and flexibly control the shape of the electron beam; at the same time, the pulse frequency of the potential of the metal cylinder in the electron beam modulation area can also be adjusted to control the luminescence structure layer.
  • the luminous frequency has broad application prospects in fields such as ultraviolet communications.
  • the electron beam modulation area metal cylinder G2 includes two sub-beam modulation area metal cylinders, specifically including the first sub-electron beam modulation area metal cylinder G21 and the second sub-electron beam modulation area metal cylinder G22; by The two metal cylinders in the sub-beam modulation area are coordinated and controlled.
  • the electron beam shape can be flexibly adjusted through the potential and the size of the metal cylinder. On the other hand, it can also reduce the number of electrical leads connected to it, thereby reducing the distance between the electrical leads and the closed part. The defective rate of air leakage between them.
  • the metal cylinder G3 in the electron beam acceleration zone is used to form a strong electric field to accelerate the electron beam to an extremely fast speed and then bombard the phosphor screen portion 21 .
  • the potential of the metal cylinder G3 in the electron beam acceleration zone is a high voltage potential, specifically 5kV-20kV.
  • the inner diameter of the metal cylinder G3 in the electron beam acceleration zone is smaller than the inner diameter of the metal cylinder in the sub-beam modulation zone adjacent to the metal cylinder G3 in the electron beam acceleration zone.
  • the inner diameter of the metal cylinder in the electron beam acceleration zone is smaller than the inner diameter of the metal cylinder in the adjacent sub-beam modulation zone, thereby reducing the electric field range.
  • the direction of the electron beam is further modulated by the potential, so that the electron beam can be focused first.
  • the rear divergence forms an inverted imaging, thereby improving the uniformity of the electron beam, and finally bombards the phosphor screen in an area projection manner, and at the same time, the projection surface of the final area projection of the electron beam is an inverted imaging of the cathode emission surface.
  • the distance between the metal cylinder G3 in the electron beam accelerating area and the metal cylinder in the sub-beam forming area adjacent to the metal cylinder G3 in the electron beam accelerating area is 1mm-3mm.
  • the electrode assembly 32 includes a metal cylinder G1 in the cathode modulation area, a metal cylinder G2 in the electron beam modulation area, and a metal cylinder G3 in the electron beam acceleration area, where the metal cylinder G2 in the electron beam modulation area includes a first sub-section.
  • the distance between G1 and G21 is 0.5mm, the distance between G21 and G22 is 0.5mm, and the distance between G22 and G3 is 2mm; among the multiple metal cylinders, the length of G1 is 8mm, the length of G21 is 5mm, the length of G22 is 8.5mm, and the length of G3 is 5mm.
  • the cathode ray tube 10 of the embodiment of the present application further includes an electrical lead assembly 50 through which the electron gun 30 is electrically connected to the outside.
  • FIG. 18 is a schematic diagram of an electrical lead assembly according to an embodiment of the present application.
  • the electrical lead assembly 50 penetrates the closing part 23 so that one end of the electrical lead assembly 50 is exposed from the closing part 23 and the other end is in the tubular part 22 and connected with the electron gun 30 Connection, the electron gun 30 is connected to the external circuit through the electrical lead assembly 50 .
  • the electrical lead assembly 50 includes a plurality of electrical leads 500, at least some of the plurality of electrical leads are electrically connected to the electrode assembly 32 and/or the cathode assembly 31, and the electrode assembly 32 and/or the cathode assembly 31 are connected through the electrical leads.
  • the multiple metal cylinders in the electrode assembly 32 are respectively connected to different electrical leads, and the different electrical leads are respectively connected to external independent input voltages, so that the input voltages of the multiple metal cylinders can be independently controlled. .
  • the electrical lead assembly 50 includes at least four electrical leads.
  • At least one electrical lead is electrically connected to the metal cylinder in the electron beam acceleration zone.
  • the external circuit can directly provide a high voltage potential of 5kV-20kV to the electron acceleration zone through the electrical lead, making the connection more convenient and simple, thereby avoiding the need for additional circuits on the glass bulb 20 Set an anode metal rod for high voltage potential connection.
  • the electrical lead 500 includes an upper metal wire 501, a middle metal sheet 502 and a lower metal wire 503.
  • the middle metal sheet 502 is connected to the upper metal wire 501 and the lower metal wire 503 respectively; the middle metal sheet 502 is enclosed in the closing part 23 inside; part of the upper metal wire 501 is enclosed in the closing part 23, and the other part extends out of the closing part 23 for connection with the external circuit; part of the lower end metal wire 503 is enclosed in the closing part 23, and the other part is connected to the cathode assembly 31 and/or Or the electrode assembly 32 is connected.
  • each electrical lead 500 of the multiple electrical leads 500 may have the same structure; each electrical lead 500 may include an upper metal wire 501, a middle metal sheet 502 and the lower end metal wire 503; of course, the embodiment of the present application does not exclude the case where the multiple electrical leads 500 have different structures.
  • the sealing condition of the closing part 23 will directly affect the airtightness inside the glass bulb.
  • the thermal expansion coefficient of the electric lead is quite different from the thermal expansion coefficient of the glass bulb.
  • the thinner metal sheet and the flat closing part can make the metal sheet more airtight. The good ones are enclosed in the closed part to maintain good airtightness.
  • the edge of the middle metal sheet 502 along the axis "A" direction is blade-shaped.
  • a tensile force will be generated during the formation of the closing portion 23.
  • the blade-shaped edge of the middle metal sheet 502 along the stretching direction of the closing portion 23 can undergo slight plastic deformation with the tensile force, thereby making the middle metal sheet 502 It is better sealed by the closing part 23 to form good sealing performance.
  • the blade shape in the embodiment of the present application is specifically manifested in that the thickness of the middle metal sheet gradually becomes smaller at the edge.
  • the thickness of the middle metal sheet near the edge is 0.6 mm
  • the thickness at the edge is 0.1 mm. From The thickness gradually decreases from the edge to the very edge.
  • the electrical lead assembly 50 also includes a fixing post 51.
  • the lower metal wire 503 penetrates the fixing post 51 and is connected to the middle metal sheet 502.
  • the fixing post 51 is used to fix the electrical lead to prevent the electrical lead from bending and deforming, and to avoid multiple electrical leads.
  • the leads are in contact with each other.
  • the fixed column 51 is made of quartz glass, which is more heat-insulating and resistant to high temperatures, thereby avoiding being affected by high-temperature heating.
  • the electrical lead assembly 50 also includes a connecting piece 55 through which the lower end metal wire 503 is electrically connected to the electron gun 30 .
  • the lower end metal wire 503 is connected to the connecting piece 55 through welding, and the connecting piece 55 is connected to the electron gun 30 through the metal wire 57 .
  • the connecting piece 55 is L-shaped, thereby occupying less space and making connection more convenient.
  • the electrical lead 500 is made of molybdenum.
  • the connecting piece 55 is made of stainless steel, and the metal wire 57 is made of stainless steel.
  • the electrical lead assembly 50 further includes a buffer metal piece 56 . Specifically, the lower metal wire 503 is connected to the connecting piece 55 through the buffer metal piece 56.
  • the buffer metal piece 56 is welded to the connecting piece 55.
  • the lower metal wire 503 is welded to the buffer metal piece 56.
  • the connecting piece 55 is connected to the electrode through the metal wire 57.
  • Assembly 32 or cathode assembly 31 is connected.
  • the buffer metal piece 56 is made of nickel.
  • the cross-sectional diameters of the upper metal wire 501 and the lower metal wire 503 are both larger than the central thickness of the middle metal sheet 502 .
  • the cross-sectional diameters of the upper metal wire 501 and the lower metal wire 503 are both between 0.5mm and 0.8mm.
  • the center thickness of the middle metal sheet 502 is between 0.1 mm and 0.4 mm.
  • the middle metal piece 502 is a rectangular metal piece, and the long side of the rectangular metal piece extends along the "A" axis direction, and the length of the long side is greater than or equal to 10 mm. It should be understood that except for the thickness change at the blade-shaped edge position of the middle metal sheet in the embodiment of the present application, the thickness at other positions is basically the same.
  • the center thickness of the middle metal sheet 502 refers to the thickness of the area on the middle metal sheet 502 except for the blade-shaped edge position.
  • the ultraviolet cathode ray tube provided by the embodiment of the present application includes a glass envelope, a luminescent structural layer, an electron gun, and an electrical lead assembly electrically connected to the electron gun.
  • the electron gun emits electron beams to excite the luminescent structural layer to emit ultraviolet light.
  • the ultraviolet cathode ray tube of the present application has high luminous efficiency, high luminous energy, no pollution, low cost, and is easy to be mass-produced.

Landscapes

  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

本申请实施例涉及一种紫外阴极射线管(10),包括:玻壳(20)、发光结构层(40)、电子枪(30);玻壳(20)包括管状部(22)、荧光屏部(21)和封闭部(23);电子枪(30)设置在管状部(22)内,用于向荧光屏部(21)发射电子束;发光结构层(40)设置在荧光屏部(21)上,发光结构层(40)在电子束的激发下发射紫外光;荧光屏部(21)、管状部(22)以及封闭部(23)的材料均为石英玻璃或蓝宝石晶体;封闭部(23)由管状部(22)一端形变后形成。

Description

一种紫外阴极射线管 技术领域
本申请涉及发光器件技术领域,尤其涉及一种紫外阴极射线管。
背景技术
紫外光源在杀菌消毒、表面改性、紫外通信等领域具有广阔的应用前景,传统紫外光源主要包括汞灯、紫外LED以及紫外准分子灯。其中,汞灯含有汞,在生产和使用过程中容易造成汞污染,同时汞灯频率不可调节从而限制了汞灯在紫外通信方面的应用;紫外LED转换效率低,生产成本高;紫外准分子灯寿命短,成本高。
阴极射线管是一种采用电子束激发荧光粉从而实现发光显像的元器件,常用于显示设备中。近来,已经积极进行了有关使用阴极射线管实现紫外光发射的器件研究;但是,实现紫外光发射的阴极射线管与传统的用于显像的阴极射线管在结构、性能和产品要求上均存在较大区别。紫外阴极射线管尚有诸多技术问题有待攻克,如:封装难度大、发光效率不理想、发光能量低、产业化困难、生产成本高等。
发明内容
有鉴于此,本申请实施例为解决背景技术中存在的至少一个问题而提供一种紫外阴极射线管。
根据本申请的各种实施例,该紫外阴极射线管包括:玻壳、发光结构层和电子枪;
所述玻壳包括用于容纳所述电子枪的管状部和与所述管状部连接的荧光屏部;
所述电子枪设置在所述管状部内,用于向所述荧光屏部发射电子束;
所述发光结构层包括荧光粉层和导电层,所述发光结构层设置在所述荧光屏部上,所述发光结构层在所述电子束的激发下发射紫外光;
所述荧光粉层发射的所述紫外光的主发射峰的波长在190nm-250nm之间;其中,所述主发射峰指的是所述荧光粉层在所述电子束的激发下发射的发光强度最大的发射峰;
所述玻壳还包括封闭部,所述封闭部与所述管状部的远离所述荧光屏部的一端连接,所述封闭部配置为实现所述管状部的远离所述荧光屏部的一端的端口密封;
所述荧光屏部、所述管状部以及所述封闭部的材料均为石英玻璃或蓝宝石晶体;
所述封闭部由所述管状部一端形变后形成;
所述玻壳通过所述荧光屏部、所述管状部以及所述封闭部围成密闭的内部空间,所述玻壳的内部空间为真空状态。
本申请实施例提供的紫外阴极射线管包括玻壳、发光结构层和电子枪,通过电子枪发射电子束激发发光结构层的方式发出紫外光。本申请实施例中荧光屏部、管状部和封闭部材料均为石英玻璃或蓝宝石晶体,三者可以形成匹配连接,玻壳具有抗震性好、防爆性好等优点,更能满足紫外阴极射线管的气密性要求,可以显著提高光源出光效率。本申请的紫外阴极射线管发光效率高、发光能量高、无污染、成本低,易于大规模生产。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例的阴极射线管结构示意图;
图2是本申请一实施例玻壳结构示意图;
图3是本申请另一实施例玻壳结构示意图;
图4是本申请又一实施例玻壳结构示意图;
图5是本申请一实施例发光结构层结构示意图;
图6是本申请一实施例荧光粉层在电子束激发下的发光光谱图;
图7是本申请一实施例不同荧光粉荧光粉层在电子束激发下的发光光谱图;
图8是本申请一实施例单层荧光粉层结构示意图
图9是本申请一实施例多层荧光粉层结构示意图;
图10是本申请一实施例不同结构荧光粉层在电子束激发下的发光光谱图;
图11是本申请一实施例的荧光粉层的制备方法流程图;
图12是本申请一实施例的荧光粉层表面SEM图;
图13是本申请一实施例的发光结构层的制备方法流程图;
图14是本申请一实施例的荧光屏结构示意图;
图15是本申请一实施例的第一结构层表面SEM图;
图16是本申请一实施例的荧光屏制备方法流程图;
图17是本申请一实施例的电子枪结构示意图;
图18是本申请一实施例的电引线组件结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。虽然附图中显示了本申请的示例性实施方式,然而应当理解,可以以各种形式实现本申请,而不应被这里阐述的具体实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本申请实施例,并且能够将本申请公开的范围完整的传达给本领域的技术人员。
在下文的描述中,给出了大量具体的细节以便提供对本申请实施例更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本申请实施例可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本申请实施例发生混淆,对于本领域公知的一些技术特征未进行描述;即,这里不描述实际实施例的全部特征,不详细描述公知的功能和结构。
在附图中,为了清楚,层、区、元件的尺寸以及其相对尺寸可能被夸大。自始至终相同附图标记表示相同的技术特征。
应当明白,当某一特征被称为“在……上”、“与……相邻”或“与……连接”时,其可以直接地在其它特征上、与之相邻或与之连接,或者可以存在居间的特征。相反,当某一特征被称为“直接在……上”、“与……直接相邻”或“与……直接连接”时,则不存在居间的元件或层。空间关系术语例如“在……上”、“在……下”等,在这里可为了方便描述而被使用从而描述图中所示的一个特征与其它特征的关系。应当明白,除了图中所示的取向以外,空间关系术语意图还包括使用和操作中的器件的不同取向。例如,如果附图中的器件翻转,然后,描述为“在其它特征下面”或“在其之下”或“在其下”特征将取向为在其它特征“上”。
应当明白,尽管可使用术语第一、第二、第三等描述各种特征,这些特征不应当被这些术语限制。这些术语仅仅用来区分一个特征与另一个特征。因此,在不脱离本发明教导之下,下面讨论的第一特征可表示为第二特征。而当讨论的第二特征时,并不表明本发明必然存在第一特征。单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述结构和/或步骤的存在,但不排除一个或更多其它结 构和/或步骤的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
如图1所示,本申请实施例提供的紫外阴极射线管10包括玻壳20和电子枪30。其中,玻壳20包括荧光屏部21和与荧光屏部21连接的管状部22,电子枪30设置在管状部22内并用于向荧光屏部21发射电子束。
为了清楚的说明本申请的技术方案,定义了如图1-图4所示的轴线“A”,轴线“A”为荧光屏部21的中心轴线。其中,将轴线“A”的延伸方向称为纵向;可以理解的,轴线“A”的延伸方向垂直于荧光屏部21的表面。荧光屏部21连接于管状部22的一端;荧光屏部21具有朝向管状部22的内表面和远离管状部22的外表面,荧光屏部21的内表面和外表面均与轴线“A”垂直。
可选的,荧光屏部21由一种或多种无机透光材料构成,无机透光材料在190nm-250nm波段范围内的紫外光透射率大于或等于80%。可选的,无机透光材料可以是石英玻璃、蓝宝石晶体或者氟化镁晶体中的一种。进一步地,无机透光材料是石英玻璃或蓝宝石晶体。石英玻璃或蓝宝石晶体相对于普通电子玻璃具有无铅、纯度高等优点,从而可以减少污染、减少杂质对紫外光的吸收,提高阴极射线管紫外光出光效率。
可选的,管状部22材料与荧光屏部21材料均为石英玻璃或蓝宝石晶体。如此,两者的连接为匹配封接,封接位置几乎不存在应力问题,玻壳封接效果好、封接工艺可规模化从而成本低,玻壳具有抗震性好、防爆性好等优点。需要说明地是,本申请实施例中的匹配封接指的是两种封接材料热膨胀系数相近或相同,在高温封接后逐渐冷却过程中两者材料收缩可以保持一致,从而可以消除收缩差而产生的内应力。
作为一种可行的实现方式,荧光屏部21和管状部22先分别形成,然后在高温熔融下进行封接后再冷却形成。由于材料一样,荧光屏部21和管状部22软化温度及热膨胀系数基本一致,很容易封接并形成性能稳定的玻壳20。作为另一种可行的实现方式,荧光屏部21和管状部22在一次熔制成型工艺中形成;具体地,将原材料熔融至可塑性的状态,再按照玻壳20的形状和尺寸需求将熔融后的原材料成型冷却,从而获得包括荧光屏部21和管状部22的玻壳20,如此不仅可以提高玻壳20生产效率,同时由于没有封接过程,因而可以进一步降低内部应力。玻壳20具有较高的抗震性和稳定性。
可选的,荧光屏部21呈圆片状,对应的荧光屏部21内表面轮廓为圆形。可选的,管状部22呈圆管状,管状部22内径小于或等于荧光屏部21内表面直径。相对于一般的方形或者其它形状的荧光屏部21内表面,圆形内表面可以在相同面积下接收更多电子束轰击,从而可以提高紫外光的发光强度。不仅如此,如果采用先分别形成荧光屏部21和管状部22再封接的实现方式,那么在荧光屏部21与管状部22的封接过程中,圆片状的荧光屏部21侧面平滑,各个位置封接更容易控制一致,从而可以减小因封接位置厚薄不一致产生的应力。可选的,荧光屏部21厚度在0.5mm-3mm之间。可选的,管状部22的管壁厚度在0.5mm-2mm之间。
如图2-图4所示,玻壳20包括管状部22和荧光屏部21。其中管状部22包括第一筒部220,第一筒部220的内表面与荧光屏部21的内表面相互垂直。可选的,第一筒部220与荧光屏部21可以直接连接(如图2),也可以不直接连接。不直接连接的情况下,管状部22还可以包括锥部221,第一筒部220通过锥部221与荧光屏部21连接;进一步的,锥部221通过第二管部202与荧光屏部21连接。具体如图2-图4示出了玻壳20的三种可选的实施方式。
如图2所示,作为玻壳20的一种可选的实施方式,管状部22包括第一筒部220,第一筒部220的一端与荧光屏部21连接。可选的,第一筒部220的内表面与荧光屏部21内表面相互垂直,即第一筒部220与荧光屏部21构成了一个底部封闭的圆筒。如此,一方面可以在荧光粉沉淀过程中保持荧光屏内 表面的各个区域位置上方的溶液量一致,从而使荧光粉更加均匀的沉淀在荧光屏部21内表面上,另一方面筒状部的侧壁在加工工程中更容易控制厚度,从而更容易实现厚度一致,抗震和防爆性能更好。
如图3所示,作为玻壳20的另一种可选的实施方式,管状部22包括锥部221和第一筒部220。其中,锥部221包括靠近第一筒部220的小开口端和远离第一筒部220的大开口端;锥部221的大开口端与荧光屏部21连接,锥部221的小开口端与第一筒部220连接。电子枪30设置在管状部22内具体为电子枪30设置在第一筒部220内。可选的,锥部221小开口端的端面到荧光屏部21内表面的距离与荧光屏部21的内表面直径的比值在1:0.5-1:4之间,从而便于控制电子束角度而使电子束均匀的发射到整个荧光屏部21内表面上。
如图4所示,作为玻壳20的另一种可选的实施方式,管状部22包括第一筒部220,锥部221及第二筒部222,第二筒部222内径大于第一筒部220内径。其中,锥部221包括靠近第一筒部220的小开口端和远离第一筒部220的大开口端;第二筒部222的一端与锥部221的大开口端连接,第二筒部222的另一端与荧光屏部21连接,锥部221的小开口端与第一筒部220连接。需要说明的是,锥部221的小开口端的端面、锥部221的大开口端的端面及荧光屏部21的内表面之间相互平行。可选的,第二筒部222的内表面与荧光屏部21的内表面相互垂直,即第二筒部222与荧光屏部21构成了一个底部封闭的圆筒。电子枪30设置在管状部22内具体为电子枪30设置在第一筒部220内。通过设置第二筒部222的内表面与所述与荧光屏部21内表面相互垂直,从而在重力沉淀法中荧光屏部21内表面正上方的溶液量相同,荧光粉可以在重力作用下均匀的沉淀在荧光屏内表面上,即可以让荧光屏内表面各个位置荧光粉厚度更均匀,从而提高发光效果。可选的,第二筒部222的高度大于或等于20mm,从而可以使荧光粉能更均匀的分布在玻壳20底部,提高荧光粉层均匀性。可以理解的是,第二筒部222的高度指的是第二筒部222在轴线“A”方向上的长度。可选的,锥部221小开口端的端面到荧光屏部21内表面的距离与荧光屏部21内表面直径的比值在1:0.5-1:4之间,从而便于控制电子束角度而使电子束均匀的发射到整个荧光屏部21内表面上,否则电子束角度太小或者太大都不利于将电子束均匀的发射到整个荧光屏部21内表面上。可选的,锥部221的小开口端的端面到锥部221的大开口端的端面的距离与所述第二筒部222的高度的比值在0.5:1-2:1之间,从而可以更容易控制电子束使其全部发射到荧光屏部21内表面上,避免了电子束被锥部221内表面阻挡。
可以理解的,本实施例中锥部221不限于图3或图4所示的从小开口端到大开口端之间的侧壁呈斜率不变的直线延伸的情况,锥部221也可以包含斜率变化的侧壁,甚至可以包含多段子锥部,每段子锥部之间还可以通过其他筒部连接,这里不一一赘述。
可以理解的,锥部221在垂直于轴线“A”的方向上的截面尺寸逐渐变大或变小;筒部在垂直于轴线“A”的方向上的截面尺寸不变。
可选的,如图2-图4所示,玻壳20还包括封闭部23,封闭部23与管状部22的远离荧光屏部21的一端连接。封闭部23配置为实现管状部22的远离荧光屏部21的一端的端口密封。玻壳20通过荧光屏部21、管状部22以及封闭部23围成密闭的内部空间,玻壳20的内部空间为真空状态。具体的,玻壳20的内部空间的气压可以在10 -2~10 -7Pa之间,从而可以减小内部空间残留空气对电子束和阴极的影响。可选的,封闭部23的厚度大于管状部22的管壁的厚度且小于管状部22的内径。可选的,封闭部23的材料为石英玻璃或蓝宝石晶体。现有的紫外光源中汞灯和准分子紫外灯都属于气体放电灯,气体放电灯内部气压是外部大气气压的5-10倍,本申请实施例中的外部大气气压是玻壳内部气压的10 7-10 12倍;因此相对于气体放电灯,本申请实施例玻壳的封接要求和气密性要求要高很多,荧光屏部材料、封闭部材料和管状部材料均为石英玻璃或蓝宝石晶体,从而可以更好的形成匹配封接,达到玻壳的气密性 要求。可选的,封闭部23例如通过将管状部22一端形变后形成,具体可以通过将管状部22的开口端在高温加热熔融状态下压制后降温而形成;其中,形成的封接部最大截面与轴线“A”平行。在具体应用中,封闭部23为扁平状,扁平状的封接部的长度大于15mm,封接部的长度为沿轴线“A”方向上的长度。可以理解的是,扁平状的封闭部23具体是指封闭部23的长度和宽度都明显大于封闭部23厚度,例如封闭部23的长度大于15mm,宽度大于10mm,厚度小于4mm。需要说明的是,在将管状部22的一端形变为封闭部23的过程中,在管状部22与封闭部23之间还会形成过渡部24;过渡部24一端与管状部22衔接,另一端与封闭部23衔接;过渡部24具体是指管状部22一端经过压制形变后管口逐渐闭合但尚未完全闭合的部分。相对于传统的封接方式,本申请实施例提供的封闭部23具有更好的封接效果,一方面封闭部和管状部材料均为石英玻璃或蓝宝石晶体,从而可以形成匹配封接,封接效果好,满足玻壳气密性要求;另一方面直接由管状部开口端形变形成的封闭部在高温加热封接过程中可以形成平滑的连接,封接方便简单,同时具有更好的连接效果。
可选的,如图2-图4所示,玻壳20还包括排气部25。具体的,在管状部22上设置有排气部25,排气部25一端与管内相连,另一端密封。可选的,排气部25的材料与管状部22的材料相同。具体应用中,将管状部22侧壁局部高温加热成熔融状态,然后将两端具有开口的排气管的一端插入被高温加热成熔融状态的侧壁,降温冷却后排气管固定在管状部22上;需要排气操作时,将排气管另一端开口与抽气设备相连并进行抽气操作,当管内真空度达到预设值时,将排气管的另一端加热成熔融状态后压制密封,降温后而形成排气部25。可选的,排气部25设置在靠近电子枪30一侧的管状部22上,即排气部25与电子枪30之间的距离小于排气部25与荧光部的距离。具体的,在管状部22包括锥部221的实施例中,排气部25设置在第一筒部220上,第一筒部220内外表面没有其它的涂敷物,设置排气部更方便。
可选的,阴极射线管10还包括阳极金属杆(图中未示出)。阳极金属杆贯穿管状部22,具体的,阳极金属杆的一端设置在管状部22内并与管状部22内壁的导电层相连,阳极金属杆的另一端设置在管状部22上并且与外部高压连接,从而管状部22内壁形成高压电场。可选的,阳极金属杆中间部位与管状部22熔合连接。具体地,阳极金属杆表面镀有一层过渡金属膜,其中过渡金属膜热膨胀系数介于玻壳20和阳极金属杆之间;阳极金属杆为钨杆,过渡金属膜可以为镍膜。通过过渡金属膜从而减小热膨胀系数不匹配造成的内应力问题,提高了封接效果。可选的,阳极金属杆设置在靠近荧光屏部21的一侧的管状部22上。
如图1所示,本申请实施例中紫外阴极射线管10还包括发光结构层40,发光结构层40设置在荧光屏部21上,发光结构层40在电子束激发下发射紫外光。
如图5所示为本申请一实施例发光结构层结构示意图,其中,发光结构层40包括荧光粉层41,荧光粉层41设置在荧光屏部21上。电子枪30用于向荧光屏部21发射电子束,具体用于将全部或大部分电子束发射至荧光粉层41上,荧光粉层41在电子束激发下发射紫外光。
在具体应用中,荧光粉层41设置在荧光屏部21的内表面上。这里,内表面是指荧光屏部21的靠近电子枪30一侧的表面。可选的,荧光粉层41厚度在5-50μm之间。这里,荧光粉层41厚度是荧光屏部21内表面与荧光粉层41表面之间的距离,其中荧光粉层41表面指的是荧光粉层41朝向电子枪30一侧的表面。
可选的,荧光粉层41在电子束激发下发射的紫外光的主发射峰的波长在190nm-250nm之间。需要说明的是,本申请实施例中的主发射峰指的是在电子束激发下发射的发光强度最大的发射峰;容易理解地,如果发射的紫外光还包括其他发射峰,则任一其他发射峰的发光强度小于主发射峰的发光强度。需 要说明的,不同发射峰的波长之间至少相隔5nm;如果不同发射峰的波长相隔在5nm以内,则将其视为同一个发射峰。紫外光中波长越短能量越强穿透力越弱,例如在杀菌消毒领域,越短波长紫外光能量越高,不仅能更有效的破坏病毒或细菌细胞的DNA,同时穿透力弱从而可以减少对人体皮肤的伤害,因此波长越短的紫外光应用前景越巨大。本申请实施例中的紫外阴极射线管10利用电子束激发荧光粉层41的方式发射紫外光,发射的紫外光的主发射峰波长在190nm-250nm之间,相对于254nm的汞灯和紫外LED灯,本申请实施例发射的紫外光波长更小,发光能量高,同时发光强度可调,发光频率可调,在杀菌消毒、紫外通信以及紫外固化等领域具有更广阔的应用前景。
可选的,发射的紫外光在波长小于等于300nm的范围内还包括至少一个次发射峰,次发射峰的发光强度与主发射峰的发光强度之比大于等于1:10。具体例如含有LaPO 4:Pr荧光粉的荧光粉层在电子束激发下发射的紫外光包括主发射峰和一个次发射峰,其中主发射峰的波长为225nm,次发射峰的波长为280nm。
可选的,发射的紫外光在波长小于等于300nm的范围内还包括两个以上的次发射峰,次发射峰的发光强度与主发射峰的发光强度之比大于等于1:10。具体如图6所示为本申请一实施例荧光粉层在电子束激发下的发光光谱图,图中含有YPO 4:Pr荧光粉的荧光粉层发射的紫外光包括主发射峰和三个次发射峰,其中主发射峰的波长为232nm,第一次发射峰的波长为243nm,第二次发射峰的波长为261nm,第三次发射峰的波长为271nm。
可选的,荧光粉层41在电子束激发下发射的紫外光在波长190nm-250nm之间的累积发射强度大于波长在250nm-300nm之间的累积发射强度。累积发射强度指的是在一定波长范围下的累积强度之和,用公式表示是G=∫f(x)dx,其中G表示累积发射强度,x表示波长,f(x)表示波长x时的发射强度。
如图5所示,本申请实施例中的荧光粉层41可以包括荧光粉410,荧光粉层41在电子束激发下发射紫外光具体为荧光粉410在电子束激发下发射紫外光。
可选的,荧光粉包括基质材料和掺杂元素,其中掺杂元素掺入基质材料中形成杂质缺陷而引起发光。可选的,掺杂元素含有Nd、Pr或Bi,元素Nd、Pr或Bi在吸收电子束能量后可以发射小于250nm的紫外光,同时具有发光效率高、发光波长短等优点。可选的,基质材料为稀土磷酸盐,稀土磷酸盐具有声子能量低,性质稳定等优点,作为基质材料能耐电子束轰击,可以显著提高荧光粉层的发光强度和使用寿命。
作为一种可选的实施方式,荧光粉中含有掺杂元素,掺杂元素含有选自Nd,Pr,Bi中的至少一种,掺杂元素受电子束激发后发射紫外光。可选的,作为掺杂元素,Nd,Pr,Bi主要有稳定的三价电子配置。进一步地,荧光粉可以包括以下至少之一:RePO 4:Z 1、LaP 5O 14:Z 1、CaSO 4:Z 1、SrSO 4:Z 1、NaYF 4:Z 1、LiYF 4:Z 1、KYF 4:Z 1、LiLaP 4O 12:Z 1、Y 2(SO 4) 3:Z 1、YAlO 3:Z 1、YF 3:Z 1;其中Re表示选自Y、La、Lu、Sr、Gd、Sm、Ce中的一种或多种,Z 1表示掺杂元素,掺杂元素含有选自Nd、Pr、Bi中的一种元素。可选的,掺杂元素与基质材料中被掺杂元素的摩尔比小于5:95,即掺杂元素浓度小于等于5%。如图6所示,含有YPO 4:Nd荧光粉的荧光粉层(Nd的掺杂浓度为1%,即Y和Nd的摩尔比为99:1)发射的紫外光的主发射峰波长为195nm,第一次发射峰波长为277nm,第二次发射峰波长为240nm;图中的发光光谱曲线在波长190nm-250nm之间的强度积分面积为14.3,发光光谱曲线在波长250nm-300nm之间的强度积分面积为8.9,发射的紫外光在波长190nm-250nm范围内的累积发射强度大于波长在250nm-300nm之间的累积发射强度。表1显示了本申请实施例中的荧光粉的阴极射线发射光谱中的主发射峰波长,表中荧光粉掺杂元素浓度为1%,电子束加速电压为10kV。需要理解的是,荧光粉的阴极射线发光光谱中主发射峰的波长受荧光粉的粒径、掺杂浓度以及电子束加速电压的影响,不同条件下 主发射峰波长有可能是不同的;同时本申请实施例的荧光粉是电子束激发下发光的荧光粉,这与光致发光荧光粉是完全不同的;即使相同荧光粉,在电子束激发下和光照激发下的光谱曲线也不是完全相同的。
序号 荧光粉 主发射峰波长(nm)
1 LiYF 4:Pr 218
2 KYF 4:Pr 235
3 YPO 4:Pr 232
4 LaPO 4:Pr 225
5 YAlO 3:Pr 245
6 YPO 4:Bi 241
7 YPO 4:Nd 195
8 LuPO 4:Pr 235
9 LaPO 4:Bi 234
10 LaPO 4:Nd 192
表1
作为另一种可选的实施方式,荧光粉中含有掺杂元素,掺杂元素选自Nd、Pr、Bi中的至少两种掺杂元素受电子束激发后发射紫外光;掺杂元素中,Nd,Pr,Bi主要有稳定的三价电子配置,在电子束激发下Nd、Pr、Bi相互之间可以形成能量传递从而提高紫外光的发光强度。进一步地,荧光粉可以包括以下至少之一:RePO 4:Z 2、LaP 5O 14:Z 2、CaSO 4:Z 2、SrSO 4:Z 2、NaYF 4:Z 2、LiYF 4:Z 2、KYF 4:Z 2、LiLaP 4O 12:Z 2、Y 2(SO 4) 3:Z 2、YAlO 3:Z 2、YF 3:Z 2;其中Re表示选自Y,La,Lu,Sr,Gd,Sm,Ce中的一种或多种,Z 2表示掺杂元素,掺杂元素含有选自Nd、Pr、Bi中的两种元素。可选的,掺杂元素与被掺杂元素的摩尔比小于5:95。如图7所示为荧光粉层厚度相同的情况下,分别含有YPO 4:Nd(Nd掺杂浓度为1%),YPO 4:Bi(Bi掺杂浓度为1%)以及YPO 4:Nd,Bi(Nd掺杂浓度为1%,Bi掺杂浓度为1%)荧光粉的荧光粉层在电子束激发下的发光光谱图,其中含有YPO 4:Nd荧光粉的荧光粉层主发射峰的波长为195nm,第一次发射峰波长为277nm,第二次发射峰波长为240nm;含有YPO 4:Bi荧光粉的荧光粉层主发射峰波长为241nm;含有YPO 4:Nd,Bi荧光粉的荧光粉层主发射峰波长为241nm,第一发射峰波长为195nm,第二次发射峰波长为277nm。从图中可以看出,含有YPO 4:Nd,Bi荧光粉的荧光粉层在195nm和277nm的发光强度都小于YPO 4:Nd的发光强度,而在241nm的发光强度大于YPO 4:Bi的发光强度;这是由于在含有YPO 4:Nd,Bi荧光粉的荧光粉层中,掺杂元素Nd与掺杂元素Bi之间形成能量传递,即Nd吸收的电子能量有一部分传递给了Bi,不仅提高了Bi元素在241nm处的发光强度,同时也提高了荧光粉层在小于300nm范围内整体的紫外光发射强度。从图中也可以明显看出三种荧光粉层发射的紫外光波长在190nm-250nm之间范围内的累积发射强度都大于波长在250nm-300nm之间的累积发射强度。
本申请实施例的荧光粉层可以为单层荧光粉层,也可以为多层荧光粉层。
作为一种可选的实施方式,荧光粉层为单层荧光粉层。
可选的,单层荧光粉层中可以包括一种荧光粉,也可以包括两种以上的荧光粉。单层荧光粉层包括两种以上的荧光粉,从而可以通过不同荧光粉发出的紫外光而得到含有多种不同波长的紫外光,从而满足不同领域的需求,例如在杀菌消毒领域,多种不同波长的紫外光可以有效杀灭多种细菌或病毒,从而提高杀菌或者消毒的效果。进一步的,单层荧光粉层包括的两种荧光粉可以为YPO 4:Nd和YPO 4:Pr、 或者YPO 4:Nd和LaPO4:Pr、或者YPO 4:Pr和LaPO 4:Pr。YPO 4:Nd荧光粉、YPO 4:Pr荧光粉和LaPO 4:Pr在电子束激发下发射的紫外光都具有多个发射峰,单层荧光粉层包括其中的两种从而可以同时发出更多波长的紫外光,从而满足例如在杀菌消毒领域的需求。
在一具体应用中,单层荧光粉层可以包括混合的两种以上的荧光粉。具体的,将两种以上的荧光粉先直接混合,然后通过重力沉淀法形成单层荧光粉层。
在另一具体应用中,单层荧光粉层可以包括两个以上的子区域荧光粉层。可选的,各子区域荧光粉层在电子束激发下发射的紫外光的主发射峰波长不相同,至少有一个子区域荧光粉层发射的紫外光的主发射峰波长在190nm-250nm之间。可选的,各子区域荧光粉层之间含有荧光粉种类不同,荧光粉种类不同指的是各子区域荧光粉层之间至少包括一种不同的荧光粉。可以理解地,单层荧光粉层虽然包括两个以上子区域荧光粉层,但是各子区域荧光粉层位于同一层,各子区域荧光粉层的下表面大致共面,并且上表面也可以大致共面,各子区域荧光粉层共同构成一层荧光粉层。具体如图8所示为本申请一实施例单层荧光粉层结构示意图,其中荧光粉层41至少包括第一子区域荧光粉层412和第二子区域荧光粉层413,第一子区域荧光粉层412和第二子区域荧光粉层413设置在荧光屏部21内表面不同区域上。第一子区域荧光粉层412在电子束激发下发射第一紫外光,第二子区域荧光粉层413在电子束激发下发射第二紫外光,第一紫外光的主发射峰波长和第二紫外光的主发射峰波长不相同,第一紫外光的主发射峰波长和第二紫外光的主发射峰波长至少有一个在190nm-250nm之间。进一步地,第一子区域荧光粉层412的荧光粉和第二子区域荧光粉层413的荧光粉种类不同。可以理解的是,荧光粉种类不同指的是各子区域荧光粉层之间至少包括一种不同的荧光粉,比如第一子区域荧光粉层包括荧光粉LuPO 4:Bi,第二子区域荧光粉层包括荧光粉LuPO 4:Pr;或者第一子区域荧光粉层包括荧光粉LuPO 4:Bi和荧光粉LuPO 4:Pr,第二子区域荧光粉层包括荧光粉LuPO 4:Bi和荧光粉LuPO 4:Nd;或者第一子区域荧光粉层包括荧光粉LuPO 4:Bi,第二子区域荧光粉层包括荧光粉LuPO 4:Bi和荧光粉LuPO 4:Nd。进一步地,各子区域荧光粉层可以包括一种荧光粉,也可以包括混合的两种或多种以上的荧光粉。本申请实施例通过将荧光粉层设置在不同区域上,从而可以产生多种不同波长的紫外光,同时多种波长的紫外光能相互叠加在一起,减少了不同荧光粉之间相互吸收的影响,从而提高紫外阴极射线管整体的发光强度。
作为另一种可选的实施方式,荧光粉层包括两层以上叠置的荧光粉层。各层荧光粉层可以包括一种荧光粉,也可以包括混合的两种以上的荧光粉。各层荧光粉层之间包括的荧光粉种类不同。可以理解的是,荧光粉种类不同指的是各荧光粉层之间至少包括一种不同的荧光粉。各层荧光粉层在电子束激发下发射的紫外光的主发射峰波长不相同,各主发射峰的波长都在300nm以下;进一步地,各主发射峰的波长至少有一个在190nm-250nm之间。具体如图9所示为本申请一实施例多层荧光粉层示意图,荧光粉层41包括第一层荧光粉层414和第二层荧光粉层415,其中第一层荧光粉层414设置在荧光屏部21的内表面上,第二层荧光粉层415设置在第一层荧光粉层414上。进一步地,第一层荧光粉层414主发射峰波长大于第二层荧光粉层415主发射峰波长,从而使第一层荧光粉层414可以部分吸收第二荧光粉层415发射的紫外光,提高第一荧光粉层414的发光强度。通过设置两层或者两层以上的荧光粉层,可以有效的调节各荧光粉层之间对发射的紫外光相互吸收的影响,不仅可以获得含有多种不同波长的紫外光,同时也可以调节各发光波长的强度。
如图10所示为本申请一实施例的不同结构荧光粉层在电子束激发下的发光光谱,图中曲线a为含有YPO 4:Nd荧光粉的单层荧光粉的光谱;图中曲线b为含有YPO 4:Pr荧光粉的单层荧光粉的光谱;图中曲线c为荧光粉层含有两个子区域的光谱;第一子区域荧光粉层含有YPO 4:Nd荧光粉(YPO 4:Nd荧光粉的量是曲线a中YPO 4:Nd荧光粉的一半),第二子区域荧光粉层含有YPO 4:Pr荧光粉(YPO 4:Pr荧 光粉的量是曲线b中YPO 4:Pr荧光粉的一半);图中曲线d为两层荧光粉层的光谱,第一层荧光粉层含有YPO 4:Pr荧光粉(YPO 4:Pr荧光粉的量与曲线c中YPO 4:Pr荧光粉的量相同),第二层荧光粉层含有YPO 4:Nd荧光粉(YPO 4:Nd荧光粉的量与曲线c中YPO 4:Nd荧光粉的量相同);曲线a-曲线d中荧光粉层的厚度相同。曲线c和曲线d荧光粉层都含有两种荧光粉,曲线c和曲线d都具有五个发射峰,从而可以产生多种波长的紫外光,从而在杀菌消毒领域有广阔的应用前景。曲线c中主发射峰波长在241nm处,其光谱曲线是两个子区域荧光粉层简单叠加后产生;而曲线d中主发射峰波长在232nm处(与曲线b中的主发射峰波长相同),这是由于第一层荧光粉层中的YPO 4:Pr荧光粉会吸收部分第二子区域荧光粉层中YPO 4:Nd发的光(波长195nm处的光),从而使曲线d中232nm处发射峰强度更强,而195nm处发射峰强度更弱。
可选的,荧光粉410的颗粒的平均粒径在1μm-10μm之间,颗粒的平均粒径小于1μm时太小表面缺陷太多会影响发光;颗粒平均粒径大于10μm时则很难被粘接容易脱落,荧光粉平均颗粒在1μm-10μm之间既能保持发光效率,同时也能更好的粘接,防止脱落。可选的,荧光粉层内部的孔隙在平行于荧光屏部21内表面方向上的截面的最大直径在1μm-10μm之间。
如图5所示,本申请实施例的荧光粉层41还可以包括粘接氧化物411。进一步的,荧光粉层41可以包括材料为一种无机材料的粘接氧化物411,该粘接氧化物411由无机颗粒组成,无机材料对紫外光吸收较小,尤其可以减少粘接氧化物411对波长小于250nm的紫外光的吸收。可选的,粘接氧化物411的颗粒平均粒径与荧光粉410的颗粒平均粒径比例在1:1000-1:100之间。粘接氧化物411的颗粒分布在荧光粉410的颗粒的周围,用于将荧光粉410的颗粒之间粘接在一起以及将荧光粉410的颗粒与荧光屏部21内表面之间粘接在一起。
可选的,粘接氧化物411的颗粒为平均粒径在1nm-100nm之间的纳米颗粒。具体地,在荧光粉层41中,至少部分粘接氧化物411的颗粒吸附在荧光粉410的颗粒表面上。本申请实施例的粘接氧化物411是纳米颗粒,粘接氧化物411的颗粒粒径远远小于荧光粉410颗粒粒径,在纳米效应作用下粘接氧化物411的纳米颗粒会吸附在荧光粉410颗粒表面及荧光屏部21表面,同时纳米颗粒表面有许多活性的羟基,纳米颗粒之间通过活性羟基聚合而容易粘接在一起,从而将荧光粉410颗粒之间和荧光粉410颗粒和荧光屏部21表面之间粘接在一起。
可选的,粘接氧化物411与荧光粉410的质量比小于1:10,从而可以减少由于过多的粘接氧化物相互团聚而造成粘结性下降的问题。
可选的,粘接氧化物411中粘接氧化物的主要成分的重量百分数大于99.9%,其它杂质成分重量百分数小于0.1%。其中,粘接氧化物的主要成分指的是粘接氧化物411中占比最高的成分,它也是粘接氧化物411中起到粘接作用的成分。具体地,主要成分指的是粘接氧化物411中的氧化物,并且具体为一种氧化物;其它杂质成分指的是在粘接氧化物的主要成分的制备过程中所产生的杂质成分。粘接氧化物411仅含有无机成分,不含有有机成分及有机残留成分。需要说明的是,本申请实施例中的有机物成分指的是含有C-H健连接的化合物。发射的紫外光波长越短能量越高,同时杂质成分或有机成分对短波长的紫外光也具有更强的吸收作用,本申请实施例中荧光粉层在电子束激发下发射的紫外光主发射峰波长在190nm-250nm之间,由无机颗粒组成的粘接氧化物主要成分的纯度高,从而可以有效的减少杂质成分或有机成分对紫外光的吸收,显著提高发光效率。
可选的,粘接氧化物的主要成分为SiO 2或者Al 2O 3。SiO 2或者Al 2O 3耐电子束的轰击,性质稳定,同时对紫外光吸收小,从而可以提高紫外光的发射强度。
作为一种可选的实施方式,粘接氧化物的主要成分与荧光屏部21内表面的主要成分相同,粘接氧 化物411和荧光屏部的内表面之间可以通过氧桥(—O—)形成化学键结合,即粘接氧化物411和荧光屏内表面可以通过氧原子相互联结而形成化学键结合,从而提高荧光粉410与荧光屏内表面的粘附性。其中,荧光屏部21内表面的主要成分值的是荧光屏部21内表面成分中占比最高的成分。在一具体应用中,荧光屏部21为石英玻璃,内表面的主要成分为SiO 2,粘接氧化物的主要成分为SiO 2。在另一具体应用中,荧光屏部21为蓝宝石晶体,内表面的主要成分为Al 2O 3,粘接氧化物的主要成分为Al 2O 3
作为另一种可选的实施方式,荧光屏部21和荧光粉层41之间还设置缓冲层(图中未示出),缓冲层的主要成分与粘接氧化物的主要成分相同。其中,缓冲层的主要成分指的是缓冲层中占比最高的成分。具体地,荧光屏部21内表面上设置有缓冲层,缓冲层上设置有荧光粉层41。具体例如缓冲层为薄膜状,可以通过物理沉积(比如物理气相沉积)或者化学沉积(比如化学气相沉积)的方式紧紧的形成在荧光屏部21内表面上,然后再在缓冲层上形成荧光粉层41。缓冲层的主要成分与荧光粉层41中的粘接氧化物411主要成分相同,两者之间可以通过氧桥形成化学键结合,即荧光粉层41中的粘接氧化物411和缓冲层通过氧原子相互联结而形成化学键结合,从而提高荧光粉410与荧光屏内表面的粘附性。
如图11所示,本申请一实施例还提供了一种荧光粉层的制备方法,具体包括以下步骤:
S101,将粘接氧化物分散液倒入玻壳中;其中,粘接氧化物分散液成分为粘接氧化物和水。其中,粘接氧化物分散液的PH值在6-8之间,粘接氧化物分散液中粘接氧化物的浓度小于等于5%,从而可以防止由于粘接氧化物浓度高而使粘接氧化物相互团聚在一起。这里,粘接氧化物是一种无机材料,由无机颗粒组成。具体地,粘接氧化物的颗粒为平均粒径在1nm-100nm之间的纳米颗粒。可选的,粘接氧化物的主要成分的重量百分数大于99.9%,其它杂质成分重量百分数小于0.1%,粘接氧化物的主要成分占比高(即粘接氧化物纯度高)可以有效的减少其它杂质成分对紫外光的吸收,提高发光效率。其中,粘接氧化物的主要成分指的是粘接氧化物中占比最高的成分,它也是粘接氧化物中起到粘接作用的成分。具体地,主要成分指的是粘接氧化物中的氧化物,并且具体为一种氧化物;其它杂质成分指的是在粘接氧化物的主要成分的制备过程中所产生的杂质成分。粘接氧化物仅含有无机成分,不含有有机成分及有机残留成分。需要说明的是,本申请实施例中的有机物成分指的是含有C-H健连接的化合物。本申请的粘接氧化物分散液成分为粘接氧化物和水,从而可以使最终形成的荧光粉层中粘接氧化物的主要成分纯度更高,进而减小了粘接氧化物中的杂质成分对紫外光的吸收,提高了发光强度。作为一种实施方式,粘接氧化物的主要成分为SiO 2,对应的,粘接氧化物分散液为SiO 2分散液,SiO2分散液中成分是SiO2颗粒和水,SiO 2颗粒的平均粒径在1-100nm之间,SiO 2颗粒均匀分散在水中,相对于使用硅酸盐溶液(硅酸钾或硅酸钠)和电解质溶液(比如硝酸钡或者硝酸锶)作为沉淀液,本申请实施例直接通过粘接氧化物分散液中的粘接氧化物作为粘接剂,通过纳米颗粒的吸附和纳米颗粒之间的粘接作用形成荧光粉层,不需要通过硅酸盐溶液和电解质溶液的反应形成粘接剂,从而可以使粘接氧化物中的残留的杂质离子(比如K,Na,Sr,Ba等)或杂质成分更少,减少了杂质离子或杂质成分对发射的紫外光的吸收,提高荧光粉层的紫外发光强度。作为另一种实施方式,粘接氧化物的主要成分为Al 2O 3,对应的,粘接氧化物分散液为Al 2O 3分散液,Al 2O 3分散液的成分为Al 2O 3颗粒和水,Al 2O 3颗粒的平均粒径在1-100nm之间,Al 2O 3颗粒均匀分散在水中;相对于使用铝酸盐溶液(铝酸钾或铝酸钠)和电解质溶液(比如硝酸钡或者硝酸锶)作为沉淀液,本申请实施例直接通过粘接氧化物分散液中的粘接氧化物作为粘接剂,形成的荧光粉层中残留的杂质成分或杂质离子(比如K,Na,Sr,Ba等)更少,从而可以减少了杂质离子对发射的紫外光的吸收,提高荧光粉层的紫外发光强度。
S102,将荧光粉倒入装有粘接氧化物分散液的玻壳中。在实际制备中,用天平称取一定量的荧光粉倒入粘接氧化物的玻壳中。其中,荧光粉的颗粒平均粒径在1μm-10μm之间。可选的,粘接氧化物的 颗粒平均粒径与荧光粉的颗粒平均粒径比例比在1:1000-1:100之间。荧光粉包括以下至少之一:RePO 4:Z 1、LaP 5O 14:Z 1、CaSO 4:Z 1、SrSO 4:Z 1、NaYF 4:Z 1、LiYF 4:Z 1、KYF 4:Z 1、LiLaP 4O 12:Z 1、Y 2(SO 4) 3:Z 1、YAlO 3:Z 1、YF 3:Z 1;其中Re表示选自Y、La、Lu、Sr、Gd、Sm、Ce中的一种或多种,Z 1表示掺杂元素,掺杂元素含有选自Nd、Pr、Bi中的一种元素。作为另一种可选的实施方式,荧光粉包括以下至少之一:RePO 4:Z 2,LaP 5O 14:Z 2,CaSO 4:Z 2,SrSO 4:Z 2,NaYF 4:Z 2,LiYF 4:Z 2,KYF 4:Z 2,LiLaP 4O 12:Z 2,Y 2(SO 4) 3:Z 2,YAlO 3:Z 2,YF 3:Z 2;其中Re表示选自Y、La、Lu、Sr、Gd、Sm、Ce中的一种或多种,Z 2表示掺杂元素,掺杂元素含有选自Nd、Pr、Bi中的两种元素,在电子束激发下Nd,Pr及Bi相互之间可以形成能量传递从而提高紫外光的发光强度。需要说明的是,荧光粉为预先制备的荧光粉;具体例如使用高温固相法制备:将荧光粉原材料混合后研磨,然后在高温下煅烧,煅烧完成经研磨、清洗、干燥后即获得所需荧光粉。
S103,对倒入的荧光粉和粘接氧化物分散液进行搅拌,而后静置一定时间,使得荧光粉通过部分粘接氧化物粘接在玻壳底部表面上。粘接氧化物选用粒径在1-100nm之间的纳米颗粒,纳米颗粒表面有许多活性的羟基,在静置过程中,由于纳米吸附作用和重力作用,部分粘接氧化物的颗粒会紧紧的吸附在荧光粉的颗粒表面上并随着荧光粉颗粒沉淀至玻壳底部,然后粘接氧化物的颗粒之间通过氧原子(即氧桥—O—)连接聚合成网络结构从而可以使荧光粉颗粒之间粘接,同时与玻壳底部接触的粘接氧化物颗粒之间也相互连接成网络结构从而使荧光粉的颗粒紧紧的贴在玻壳底部表面上,即荧光粉颗粒之间、荧光粉颗粒与玻壳底部表面之间都可以通过粘接氧化物颗粒紧紧的粘接起来。需要说明的是,本申请的玻壳底部表面指的是荧光屏部的内表面;静置时间需根据荧光粉颗粒、粘接氧化物颗粒大小以及粘接氧化物分散液体积确定,一般需要6-12小时。
S104,去除玻壳内剩余的粘接氧化物分散液并进行干燥,以在玻壳底部表面上形成荧光粉层。静置完成后,粘接氧化物的颗粒吸附在荧光粉颗粒上并使荧光粉颗粒之间以及荧光粉颗粒与玻壳表面之间粘接在一起,将剩余的粘接氧化物分散液倒掉,玻壳底部会留下未干燥的荧光粉层,经过干燥后即形成最终的荧光粉层,同时干燥过程中粘接氧化物表面脱水从而进一步加强了粘接性。在实际操作中,去除玻壳20内的剩余的粘接氧化物分散液可以通过倒出或吸出的方式实现。可选的,干燥温度小于等于100℃,干燥时间在6-12小时之间。其中,由于荧光粉层是在重力作用下由荧光粉颗粒和粘接氧化物颗粒相互堆叠而成,颗粒与颗粒之间会有明显的孔隙,形成的荧光粉层表面及荧光粉层内部也具有孔隙。可选的,荧光粉层表面及内部的孔隙在垂直于轴线“A”的方向上的截面的最大直径在1μm-10μm之间。可选的,荧光粉层厚度在5-50μm之间。
在一可选实施例中,荧光粉层的制备方法可以包括形成两层以上叠置的荧光粉层,其中,各层荧光粉层中的至少一层荧光粉层采用上述步骤S101至S104形成。各层荧光粉层在电子束激发下发射的紫外光的主发射峰波长不相同,各主发射峰的波长都在300nm以下;进一步地,各主发射峰的波长至少有一个在190nm-250nm之间。
在实际应用中,两层以上荧光粉层中的各层荧光粉层均采用上述步骤S101至S104形成,其中,在步骤S102中,各层荧光粉层的荧光粉种类不同。需要说明的是,荧光粉种类不同指的是各荧光粉层之间至少含有一种不同的荧光粉。具体例如形成两层荧光粉层的方法包括:采用上述步骤S101至步骤S104形成第一荧光粉层;采用上述步骤S101至步骤S104形成第二荧光粉层,其中第一荧光粉层和第二荧光粉层之间至少含有一种不同的荧光粉。
在另一可选实施例中,荧光粉层的制备方法可以包括形成两个以上的子区域荧光粉层,其中,各子区域荧光粉层中的至少一子区域荧光粉层采用上述步骤S101至S104形成。各子区域荧光粉层在电子 束激发下发射的紫外光的主发射峰波长不相同,至少有一个子区域荧光粉层发射的紫外光的主发射峰波长在190nm-250nm之间。可选的,各子区域荧光粉层之间荧光粉种类不同,荧光粉种类不同指的是各子区域荧光粉层之间至少包括一种不同的荧光粉。可以理解地,单层荧光粉层虽然包括两个以上子区域荧光粉层,但是各子区域荧光粉层位于同一层,各子区域荧光粉层的下表面大致共面,并且上表面也可以大致共面,各子区域荧光粉层共同构成一层荧光粉层。
在实际应用中,两个以上的子区域荧光粉层均采用上述步骤S101至S104形成,其中,在步骤101前还包括:将子区域掩模板放入玻壳20内,其中子区域掩模板暴露有待形成的子区域。可选的,子区域掩模板可以为刚性或者柔性的。具体例如形成两个子区域荧光粉层的方法包括:将第一子区域掩模板放入玻壳20中,其中第一子区域掩模板暴露第一子区域;采用步骤S101至S104形成第一子区域荧光粉层;将第二子区域掩模版放入玻壳20内,其中第二子区域掩模板暴露第二子区域;采用步骤S101至S104形成第二子区域荧光粉层;其中第一子区域荧光粉层和第二子区域荧光粉层之间至少含有一种不同的荧光粉。
本申请实施例的荧光粉层制备方法是直接使用粘接氧化物分散液作为沉淀溶液,分散液成分为粘接氧化物和水,同时粘接氧化物为纳米颗粒,利用纳米颗粒的纳米效应和表面羟基聚合作用粘接荧光粉而形成了荧光粉层;相对于传统方法制备的荧光粉层,本申请实施例的制备方法更为简单方便,制备的荧光粉层不含有有机物成分,同时残留的杂质离子(比如K,Na,Sr,Ba等或杂质成分)更少,从而可以减少了杂质离子或杂质成分对发射的紫外光的吸收,提高了荧光粉层的发光强度。
如图12所示为本申请一实施例的荧光粉层表面SEM图,从图中可以看出,荧光粉层表面具有大小不一的荧光粉颗粒,荧光粉的颗粒平均粒径在1μm-10μm之间。荧光粉表面凹凸不平,表面具有孔隙,最大孔隙大小在1μm-10μm之间。
如图5所示,本申请实施例的发光结构层40还包括导电层42,导电层42设置在荧光粉层41上,导电层42用于将荧光粉层41表面累积的负电荷传导出去,避免了累积的负电荷对电子束产生拒斥作用而降低电子束能量。
可选的,导电层42可以为铝膜层。可选的,铝膜层厚度在200-400nm之间。铝膜层可以形成反射面,可以将荧光粉层41发射的紫外光反射至荧光屏部21外表面方向,从而可以增强发光强度。
如图13所示,本申请一实施例还提供了一种发光结构层的制备方法,包括:
S201,在荧光屏部上形成荧光粉层。具体地,可以采用上述荧光粉层的制备方法的实施例中的步骤形成该荧光粉层。
S202,在荧光粉层上形成导电层,获得发光结构层。
具体的,在荧光粉层上形成导电层包括:
在荧光粉层上形成有机膜层。荧光粉层内部具有孔隙,直接在荧光粉层上形成导电层会产生“荧光粉黑化“现象,同时由于荧光粉层表面凹凸不平,直接在其表面形成导电层也难以形成镜面反射,最终影响发光强度。本申请实施例中可以通过在荧光粉层上形成一层有机膜从而可以避免直接形成导电层造成的不利影响。需要说明的是,“荧光粉黑化”指的是由于荧光粉层内部存在很多几百纳米甚至几微米的孔隙,导电层直接在荧光粉层上形成会导致导电层颗粒进入孔隙中与荧光粉颗粒混合在一起,从而导致荧光粉层发黑的现象。其中,“荧光粉黑化”中导电层颗粒会强烈吸收发射的紫外光,从而严重影响荧光粉层的发光强度。具体的,先用纯水将荧光粉层润湿,从而在不平整的荧光粉层表面形成一个光滑的成膜表面,并且减小了固体粉层的表面张力,有利于有机膜溶液在上面铺展;然后将有机膜溶液加入玻壳中以在荧光粉层表面形成一个光滑的薄膜,其中,可以采用喷涂或者旋转涂敷的方式将有机膜溶液涂敷 到荧光粉层表面上;最后将在荧光粉表面上的有机膜干燥后即形成了有机膜层。有机膜溶液主要包括成膜物质、溶剂、增塑剂;其中,成膜物质是形成有机膜的基本材料,可以是硝化纤维素;溶剂是有机膜溶液挥发部分的主要成分,可以是乙酸丁酯;增塑剂用于增加有机膜的柔韧性,可以是邻苯二甲酸二甲酯。有机膜溶液受成分、温度和湿度影响较大,保存和使用过程中都需要严格控制环境条件,否则形成的有机膜平面容易出现不均匀、针孔多等问题,从而影响后续导电层的形成。
在有机膜层上形成第一导电层。其中,第一导电层可以为铝膜层,厚度在100nm-200nm之间。具体的,可以通过蒸镀的方式在有机膜层上形成第一导电层。
去除有机膜层。具体的,将玻壳在200-400℃下加热去除有机膜层,从而使第一导电层直接覆盖在荧光粉层上。可选的,加热过程中烘箱在烘箱中通入氧气,烘箱内氧气的浓度大于50%。有机物对紫外光尤其是250nm以下的紫外光具有强吸收,有机物残留会严重影响到荧光粉层的发光强度,通过在烘箱中通入氧气以增加氧气浓度,从而可以是有机物中的碳氢化合物充分转换成CO 2和H 2O,从而减少有机物的残留,提高发光强度。
在第一导电层上形成第二导电层,获得发光结构层。其中,第二导电层可以为铝膜层,厚度在100nm-200nm之间。具体的,可以通过蒸镀的方式在第一导电层上形成第二导电层。在加热去除有机膜层过程中往往会放出气体导致导电层上产生小的鼓包或针孔,同时加热过程中导电层表面容易被氧化污染,降低导电层的光反射效率,从而最终影响发光效率。本申请的导电层分两次形成,第一次以有机膜作衬底形成第一导电层,然后去除有机膜后再在第一层导电层上形成第二导电层,因此即使第一导电层发生氧化污染或针孔,第二导电层也可以弥补第一导电层的缺陷,从而使最终形成的导电层具有明亮光滑的光反射面。
本申请实施例的发光结构层制备方法中荧光粉层直接使用粘接氧化物分散液作为沉淀液,残留的杂质离子更少,从而可以减少杂质离子对紫外光的吸收;同时导电层通过两次形成,从而可以形成明亮光滑的反射面;最终制备的发光结构层具有更高的发光强度。
如图14所示,在一可选实施例中,发光结构层40还包括填充氧化物440,填充氧化物440用于填充荧光粉层41表面及内部孔隙。可选的,将荧光粉层41被填充氧化物440填充后形成的结构层定义为第一结构层44,即第一结构层44包括荧光粉层41和填充氧化物440。可选的,填充氧化物440是一种无机材料,由无机颗粒组成。可选的,至少部分填充氧化物440填充在荧光粉层41表面及内部孔隙中。
可选的,填充氧化物440的颗粒平均粒径与荧光粉的颗粒平均粒径比例在1:1000-1:100之间。填充氧化物440的颗粒粒径远远小于荧光粉颗粒粒径,通过填充氧化物440从而可以明显的降低荧光粉层41表面及内部孔隙大小,从而可以有效的减少“荧光粉黑化”现象。可选的,填充氧化物440的颗粒为平均粒径在1nm-50nm之间的纳米颗粒。
可选的,将荧光粉层41被填充氧化物440填充后形成的结构层定义为第一结构层44,第一结构层44包括荧光粉颗粒、粘接氧化物颗粒以及填充氧化物颗粒,第一结构层44的内部孔隙在平行于荧光屏部21内表面方向上的截面最大直径小于1μm。进一步的,第一结构层44的内部孔隙在平行于荧光屏部21内表面方向上的截面的最大直径小于等于50nm。本申请通过由纳米颗粒组成的填充氧化物填充荧光粉层内部孔隙,从而降低了荧光粉层内部孔隙的大小,在荧光粉层上可以不使用有机膜而直接形成导电层,一方面不会产生因使用有机膜造成的有机物残留,从而减少了紫外光的吸收;另一方面孔隙减小可以有效的减少“荧光粉黑化”现象,从而提高发光强度;同时填充氧化物填充在荧光粉层内部孔隙后可以形成由填充氧化物组成的光导结构,荧光粉层产生的光可以经过光导结构传播发射出去,有效的减小了紫外光在内部孔隙传播过程中的损失,从而提高了发光强度。
在一可选的实施例中,第一结构层44表面由荧光粉颗粒、粘接氧化物颗粒以及填充氧化物颗粒组成。相较于荧光粉层41表面,填充氧化物颗粒尺寸远远小于比荧光粉颗粒,因此填充氧化物颗粒填充荧光粉层41表面后形成的第一结构层44表面更加平坦且致密。
在另一可选的实施例中,第一结构层44表面由填充氧化物颗粒组成,即填充氧化物440除了填充荧光粉层41表面及内部孔隙外,同时也覆盖在了荧光粉层41表面上,从而形成的第一结构层44表面光滑致密。可选的,第一结构层44表面具有裂纹状孔隙,孔隙最大宽度小于1μm。
可选的,导电层42设置在第一结构层44上。填充氧化物440使荧光粉层41内部及表面孔隙尺寸大大减小,孔隙尺寸可以从几微米减小到几十纳米甚至几纳米,大大降低了导电层中的颗粒与荧光粉的颗粒混合而产生的“荧光粉黑化”现象。可选的,导电层可以为铝膜层,铝膜层厚度在50nm-400nm之间;进一步地,铝膜层的厚度在50nm-100nm之间。第一结构层44表面平坦及致密,导电层42厚度更薄也可以达到导电要求,同时更薄的导电层也可以减少对电子束能量的吸收,提高发光效率。
可选的,填充氧化物的主要成分的重量百分数大于99.9%,其它杂质成分重量百分数小于0.1%。其中,填充氧化物的主要成分指的是填充氧化物440中占比最高的成分,它也是填充氧化物440中起到填充作用的成分。具体地,主要成分指的是填充氧化物440中的氧化物,并且具体为一种氧化物;其它杂质成分指的是在填充氧化物的主要成分的制备过程中所产生的杂质成分。填充氧化物440仅含有无机成分,不含有有机成分及有机残留成分。
可选的,填充氧化物的主要成分可以为SiO 2或者Al 2O 3。SiO 2或者Al 2O 3耐电子束的轰击,性质稳定,同时对紫外光吸收小,从而可以减小对发光强度的影响。
作为一种可选的实施方式,填充氧化物的主要成分与粘接氧化物的主要成分相同。从而使填充氧化物440和粘接氧化物411之间可以通过氧桥(—O—)形成化学键结合,即填充氧化物440和粘接氧化物411可以通过氧原子相互联结而形成化学键结合,从而可以提高填充氧化物440与荧光粉层41的粘附性。在一具体应用中,粘接氧化物的主要成分为SiO 2,填充氧化物的主要成分为SiO 2。在另一具体应用中,粘接氧化物的主要成分为Al 2O 3,填充氧化物的主要成分为Al 2O 3
如图15所示为本申请一实施例的第一结构层表面SEM图,从图中可以看出,相对于荧光层表面,第一结构层表面平整致密,没有明显的颗粒物。图中所示第一结构层表面具有裂纹状孔隙,孔隙最大宽度小于1μm。
基于此,本申请实施例还提供了一种荧光屏,荧光屏包括荧光屏部和第一结构层,第一结构层设置在荧光屏部上;第一结构层包括荧光粉层和填充氧化物;荧光粉层包括荧光粉和粘接氧化物,粘接氧化物用于将荧光粉的颗粒与荧光屏部表面之间粘接在一起;填充氧化物为无机材料;至少部分填充氧化物填充在荧光粉层的内部孔隙中。可选的,荧光屏还包括导电层,导电层设置在第一结构层上。
可以理解的,本实施例中的荧光屏部可以为上述的荧光屏部,也可以为其它支撑衬底,从而将第一结构层设置在荧光屏部上;当然,本申请实施例也不限于此,在任意荧光屏部上按照本实施例提供的荧光屏均应属于本申请的保护范围。此外,对于本实施例中所记载的其他技术特征,可以与前述实施例相同,这里不再赘述。具体如图14所示,荧光屏45包括荧光屏部10、第一结构层44和导电层42。本申请实施例的荧光屏中使用填充氧化物填充荧光粉层,从而可以大大的减小荧光粉层内部的孔隙,从而在荧光粉层上直接形成导电层过程中可以有效的减少“荧光粉黑化”现象,提高发光强度;同时填充氧化物在填充荧光粉层内部孔隙后可以形成由填充氧化物组成的光导结构,荧光粉层产生的光可以经过光导结构传播发射出去,有效的减小了紫外光在内部孔隙传播过程中的吸收和散射,从而增强了发光强度。
本申请实施例还提供了一种紫外阴极射线管,紫外阴极射线管包括上述实施例中的荧光屏、电子枪、 用于容纳所述电子枪的管状部和与电子枪电连接的电引线组件;其中,管状部与荧光屏部连接;电子枪设置在所述管状部内,用于向荧光屏部发射电子束;设置在荧光屏部上的第一结构层中的荧光粉层在电子束的激发下发光;电子枪通过所述电引线组件与外部电连接。
如图16所示,本申请一实施例还提供了一种荧光屏的制备方法,包括:
S301,提供荧光屏部。
S302,在荧光屏部上形成荧光粉层。
具体地,可以采用上述荧光粉层的制备方法的实施例中的步骤形成该荧光粉层。
S303,采用填充氧化物填充荧光粉层,以形成包括荧光粉层和填充氧化物的第一结构层;其中,至少部分填充氧化物填充在荧光粉层的内部孔隙中,至少另外部分填充氧化物形成在荧光粉层的表面。
采用填充氧化物填充在荧光粉层具体包括:将填充氧化物分散液加在荧光粉层上,即将填充氧化物分散液倒入玻壳中。其中,填充氧化物分散液成分为填充氧化物和水,填充氧化物分散液的液面平齐或略高于荧光粉层表面;静置干燥一定时间以使填充氧化物填充在荧光粉层的内部孔隙中。其中,填充氧化物分散液中填充氧化物的浓度小于等于30%。这里,填充氧化物是一种无机材料,由无机颗粒组成。可选的,填充氧化物的颗粒平均粒径与荧光粉的颗粒平均粒径比例在1:1000-1:100之间。可选的,填充氧化物的颗粒为平均粒径在1nm-50nm之间的纳米颗粒。在静置过程中,由于毛细管力作用和重力作用,填充氧化物分散液会填充到荧光层表面及内部孔隙中,经过干燥后水分去除,填充氧化物的颗粒填充在荧光粉层表面及荧光粉层内部的孔隙,并同时形成相对于荧光粉层更为致密平整的第一结构层表面。可选的,填充氧化物中主要成分的重量百分数大于99.9%,其它杂质成分重量百分数小于0.1%。其中,主要成分指的是填充氧化物中占比最高的成分,它也是填充氧化物中起到粘接作用的成分。具体地,主要成分指的是填充氧化物中的氧化物,并且具体为一种氧化物;其它杂质成分指的是在填充氧化物的主要成分的制备过程中所产生的杂质成分。填充氧化物仅含有无机成分,不含有有机成分及有机残留成分。作为一种实施方式,填充氧化物分散液为SiO 2分散液,对应的,填充氧化物的主要成分为SiO 2。作为另一种实施方式,填充氧化物分散液为Al 2O 3分散液,对应的,填充氧化物的主要成分为Al 2O 3。本申请实施例使用的填充氧化物分散液含有填充氧化物和水,不含有其它有机成分,同时分散液中杂质离子也很少(仅包括填充氧化物的主要成分的制备过程中所产生的杂质成分),从而可以填充荧光粉层孔隙并形成了一个更致密平坦的表面,又不会更多的引入杂质成分。
S304,在第一结构层上直接形成导电层。具体的,可以通过蒸镀的方式在第一结构层上直接形成导电层。可选的,导电层可以为铝膜层,铝膜层的厚度在50nm-400nm之间。进一步地,铝膜层的厚度在50-100nm之间。第一结构层表面平坦致密,可以不用形成有机膜而直接在上面形成导电层,同时导电层可以用更小的厚度而达到导电要求。本申请实施例的方法是直接在第一结构层上形成导电层,相对于使用形成有机膜-形成导电层-去除有机膜的工艺,本实施例的方法工艺更简单、环保,同时也不会存在因去除有机膜而造成有机物残留的情况。
本实施例的荧光屏的制备方法利用填充氧化物填充了荧光粉层表面及内部的孔隙,并形成了一个更致密平坦的表面,大幅度减小了荧光粉层内部孔隙尺寸,从而可以减少甚至避免导电层中的颗粒与荧光粉的颗粒混合而产生的“荧光粉黑化”现象。相对于使用有机膜的工艺,本实施例的制备方法使用填充氧化物填充荧光粉层内部孔隙,然后再直接形成导电层,制备方法简单,也更为环保,同时也不会存在因去除去有机膜而产生的有机物残留的情况,避免了残留有机物对紫外光的吸收,提高了发光效率。
如图17为本申请一实施例的电子枪结构示意图,图中电子枪30为一种面积投射式电子枪,具体包括阴极组件31和电极组件32。需要说明的是,面积投射式电子枪是指电子枪发射到荧光屏部的电子束 是以面积投射的方式发射。
阴极310组件31包括阴极管311、阴极310及灯丝312;其中阴极管311为筒状金属管,包括封闭端和开口端,阴极310设置在阴极管311的封闭端外表面上,灯丝312设置在阴极管311内并靠近阴极管311封闭端。可选的,阴极310发射电子并形成阴极310发射面,阴极310具体可以为平面阴极,平面阴极是指阴极310材料加工成块状,发射电子时是从一个平面上发出平面阴极发射的电子束更均匀,更容易形成均匀的阴极发射面。可选的,平面阴极形状可以为环形,环形状阴极有利于减小阴极310发射面中间电子束密度,从而改善电子束均匀性。可选的,阴极310的材料为氧化物,即阴极310为氧化物阴极,氧化物阴极熔点高、电阻率大逸出功小、寿命长等优点,本申请实施例使用氧化物阴极从而可以使电子枪发射电子稳定,寿命达几万小时。进一步的,阴极310的材料为BaCO 3、SrCO 3和CaCO 3的混合物。可选的,阴极管311外径为1.6mm±0.02mm。具体工作时,阴极组件中电流流过灯丝312,灯丝312加热阴极管311封闭端外表面上的阴极310,当温度达到阴极310发射电子所需的温度时,阴极310发射电子。
电极组件32包括多个金属圆筒,各金属圆筒沿纵向中心轴线“A”轴对称。多个金属圆筒材质均为无磁金属材质。进一步地,多个金属圆筒材质为无磁不锈钢。可选的,阴极310发射的电子束经过电极组件32后以面积投射的方式轰击到荧光屏部21,面积投射的投射面为阴极310的发射面的一次倒立成像。需要说明的是,电子束以面积投射的方式轰击荧光屏部21指的是电子束以散开方式形成一个投射面轰击荧光屏部21上,与其相对的是聚焦方式,聚焦方式是指轰击到荧光屏上的是一个点而不是一个面。
多个金属圆筒包括阴极调制区金属圆筒G1、电子束调制区金属圆筒G2和电子束加速区金属圆筒G3。可选的,多个金属圆筒分别连接独立的输入电压,从而它们的输入电压可以独立控制,可以相同也可以不同。可选的,多个金属圆筒的内径在3mm-15mm之间。
通过控制阴极调制区金属圆筒G1电位及阴极310电位可以调节阴极310发射的电子数目,改变电子束流大小。可选的,阴极调制区金属圆筒G1电位为0V-20V。可选的,阴极调制区的电位大于或等于阴极310电位。阴极调制区金属圆筒G1套在阴极管311外面,阴极调制区金属圆筒G1的端部开有小孔,小孔直径为2mm-3mm。可选的,阴极310平齐或稍突出于阴极调制区金属圆筒G1的端部,即阴极310平齐或穿过阴极调制区金属圆筒G1端部的小孔,从而可以降低阴极调制区电场对电子束发射方向的影响,进而改善阴极310发射面均匀性。可选的,阴极310突出阴极调制区金属圆筒G1的端部距离为0.01mm-0.03mm。
电子束调制区金属圆筒G2用于控制区域内的电子束形态。可选的,电子束调制区金属圆筒G2包括多个子束调制区金属圆筒,每个子束调制区金属圆筒分别连接独立的输入电压,它们的输入电压可以独立控制,可以相同也可以不同,从而可以精确控制所在区域内的电子束形态;同时多个子束调制区金属圆筒能更方便灵活的控制电子束形态。可选的,每个子束调制区金属圆筒之间的间距相同;进一步地,每个子束调制区金属圆筒之间的间距为小于等于1mm。可选的,阴极调制区金属圆筒G1和与阴极调制区金属圆筒G1相邻的子束调制区金属圆筒之间的间距小于等于1mm。可选的,各子束调制区金属圆筒内径相同;进一步地,各子束调制区金属圆筒内径为10±0.1mm。可选的,与阴极调制区金属圆筒G1相邻的子束调制区金属圆筒内径大于等于阴极调制区金属圆筒G1内径,从而可以使电场力的曲线呈发散状态,更方便的控制电子束均匀发散。可选的,每个子束调制区金属圆筒电位为0V-50V。可选的,与阴极调制区相邻的子束调制区金属圆筒的电位大于阴极调制区金属圆筒的电位。通过控制金属圆筒内径及电位,从而可以方便的调整电子束形态使电子束均匀发散。可选的,相邻的两个子束调制区金属圆 筒中,远离阴极310的子束调制区金属圆筒的电位大于或等于靠近阴极310的子束调制区金属圆筒的电位,从而可以更好的调整电场方向,控制电子束形态。可选的,相邻的两个子束调制区金属圆筒中,远离阴极310的子束调制区金属圆筒的长度大于靠近阴极310的子束调制区金属圆筒的长度。可选的,可以通过以脉冲方式控制电子束调制区金属圆筒G2电位从而实现发光结构层脉冲方式发光。需要说明的是,金属圆筒之间的间距指的是两个金属圆筒之间相邻两端端面的距离。本申请实施例中通过电子束调制区金属圆筒的尺寸以及电位,从而可以方便灵活的控制电子束形态;同时也可以通过调节电子束调制区金属圆筒电位的脉冲频率来控制发光结构层的发光频率,从而在紫外通信等领域具有广阔的应用前景。进一步地,电子束调制区金属圆筒G2包括两个包括子束调制区金属圆筒,具体包括第一子电子束调制区金属圆筒G21和第二子电子束调制区金属圆筒G22;通过两个子束调制区金属圆筒协调控制,一方面可以通过电位和金属圆筒尺寸灵活地调节电子束形态,另一方面也可以减少与其连接的电引线的数量,从而减小电引线与封闭部之间漏气的不良率。
电子束加速区金属圆筒G3用于形成一个强电场,使电子束加速到极快速度后轰击荧光屏部21。可选的,电子束加速区金属圆筒G3的电位为高压电位,具体为5kV-20kV。可选的,电子束加速区金属圆筒G3内径小于与电子束加速区金属圆筒G3相邻的子束调制区金属圆筒内径,经过电子加速区金属圆筒后的电子束以面积投射的方式投射出去,面积投射的投射面为阴极发射面的一次倒立成像。本申请实施例中电子束加速区金属圆筒内径小于相邻的子束调制区金属圆筒内径,从而减小了电场范围,同时通过电位对电子束方向进一步调制,从而使电子束可以先聚焦后发散形成一次倒立成像,从而改善了电子束均匀性,最终以面积投射的方式轰击荧光屏部,同时使最终的电子束面积投射的投射面为阴极发射面的一次倒立成像。
可选的,电子束加速区金属圆筒G3与电子束加速区金属圆筒G3相邻的子束形成区金属圆筒的间距为1mm-3mm。
具体例如图17所示,电极组件32包括阴极调制区金属圆筒G1、电子束调制区金属圆筒G2和电子束加速区金属圆筒G3,其中电子束调制区金属圆筒G2包括第一子电子束调制区金属圆筒G21和第二子电子束调制区金属圆筒G22。具体的,金属圆筒内径大小关系是G3<G1<G21=G22;通电状态下阴极调制区金属圆筒G1的电位为0V-20V;G2和G3电位均大于G1的电位,G2和G3的电位为0-50V;G4为高压电位,具体为5kV-20kV。G1和G21的间距为0.5mm,G21和G22的间距为0.5mm,G22和G3的间距为2mm;多个金属圆筒中G1长度为8mm,G21长度为5mm,G22长度为8.5mm,G3长度为5mm。
如图1所示,本申请实施例的阴极射线管10还包括电引线组件50,电子枪30通过所述电引线组件50与外部电连接。
如图18为本申请一实施例的电引线组件示意图,图中电引线组件50贯穿封闭部23,以使电引线组件50的一端从封闭部23露出,另一端在管状部22内与电子枪30连接,电子枪30通过电引线组件50与外部电路连接。可选的,电引线组件50包括多根电引线500,多根电引线中的至少部分电引线与电极组件32和/或阴极组件31电连接,电极组件32和/或阴极组件31通过电引线实现与外部电路电连接。具体的,电极组件32中的多个金属圆筒分别与不同的电引线连接,不同的电引线之间分别连接外部的独立的输入电压,从而使多个金属圆筒的输入电压可以分别独立控制。
可选的,电引线组件50至少包括四根的电引线。
可选的,至少一根电引线与电子束加速区金属圆筒电连接。通过将电引线与电子加速区金属圆筒电连接,从而外部电路可以直接通过电引线为电子加速区提供5kV-20kV的高压电位,连接更加方便简单, 从而可以避免了在玻壳20上再额外设置用于高压电位连接的阳极金属杆。
可选的,电引线500包括上端金属丝501,中间金属片502以及下端金属丝503,中间金属片502分别与上端金属丝501和下端金属丝503连接;中间金属片502被封闭在封闭部23内;上端金属丝501一部分被封闭在封闭部23内,另一部分伸出封闭部23用于与外部电路连接;下端金属丝503一部分被封闭在封闭部23内,另一部分与阴极组件31和/或电极组件32连接。对于电引线组件50包括多根电引线500的情况,多根电引线500中的每一根电引线500可以具有相同的结构;每一根电引线500均可以包括上端金属丝501,中间金属片502以及下端金属丝503;当然,本申请实施例也不排除多根电引线500具有不同结构的情况。封闭部23的密闭情况会直接影响到玻壳内的气密性,电引线热膨胀系数与玻壳热膨胀系数相差较大,通过厚度较薄的金属片以及扁平状的封闭部,能使金属片更好的被封闭在封闭部内,保持良好的密闭性。
可选的,中间金属片502沿轴线“A”方向的边缘呈刀刃状。封闭部23形成过程中会产生拉伸的力,中间金属片502在沿封闭部23拉伸方向的上呈刀刃状边缘可以随着拉伸力产生细微的塑性变形,从而可以使中间金属片502更好的被封闭部23封闭,形成良好的密闭性。需要说明的是,本申请实施例中的刀刃状具体表现为中间金属片在边缘厚度逐渐变小,例如中间金属片靠近边缘的位置厚度为0.6mm,最边缘的位置厚度为0.1mm厚度,从靠近边缘到最边缘的厚度是逐渐变小的。
可选的,电引线组件50还包括固定柱51,下端金属丝503贯穿固定柱51后与中间金属片502连接,固定柱51用于固定电引线,防止电引线弯折变形,避免多根电引线之间相互接触。可选的,固定柱51材料为石英玻璃,石英玻璃更隔热耐高温,从而避免受高温加热影响。
可选的,电引线组件50还包括连接片55,下端金属丝503通过连接片55与电子枪30电连接。具体的,下端金属丝503通过焊接与连接片55连接,连接片55通过金属丝57与电子枪30连接。可选的,连接片55的形状为L形,从而可以占用更小的空间更小,更方便的使得连接更加方便。可选的,电引线500材料为钼。可选的,连接片55材料为不锈钢,金属丝57材料为不锈钢。可选的,电引线组件50还包括缓冲金属片56。具体的,下端金属丝503通过缓冲金属片56与连接片55连接,缓冲金属片56焊接在连接片55上,下端金属丝503焊接在缓冲金属片56上,连接片55通过金属丝57与电极组件32或阴极组件31连接。可选的,缓冲金属片56材料为镍。通过缓冲金属和连接片,从而可以降低因材料热膨胀系数不同而造成连接不良的情况,提高连接的稳定性。
可选的,上端金属丝501和下端金属丝503的截面直径均大于中间金属片502的中心厚度。
可选的,上端金属丝501和下端金属丝503的截面直径均在0.5mm-0.8mm之间。
可选的,中间金属片502的中心厚度在0.1mm-0.4mm之间。可选的,中间金属片502为长方形金属片,且长方形金属片的长边沿“A”轴方向延伸,长边的长度大于等于10mm。需要理解的是,本申请实施例中的中间金属片除刀刃状边缘位置厚度会有变化外,其它位置厚度基本相同。中间金属片502的中心厚度指的是中间金属片502上除刀刃状边缘位置以外的区域的厚度。
本申请实施例提供的紫外阴极射线管包括玻壳、发光结构层、电子枪和与电子枪电连接的电引线组件,通过电子枪发射电子束激发发光结构层的方式发出紫外光。本申请的紫外阴极射线管发光效率高、发光能量高、无污染、成本低,易于大规模生产。
以上所述的具体实施例,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请实施例的具体实施例而已,并不用于限定本申请的保护范围,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。以上各具体实施例中的各技术特征,在不冲突的情况下,可以任意组合。

Claims (56)

  1. 一种紫外阴极射线管,包括:玻壳、发光结构层和电子枪;
    所述玻壳包括用于容纳所述电子枪的管状部和与所述管状部连接的荧光屏部;
    所述电子枪设置在所述管状部内,用于向所述荧光屏部发射电子束;
    所述发光结构层包括荧光粉层和导电层,所述发光结构层设置在所述荧光屏部上,所述发光结构层在所述电子束的激发下发射紫外光;
    所述荧光粉层发射的所述紫外光的主发射峰的波长在190nm-250nm之间;其中,所述主发射峰指的是所述荧光粉层在所述电子束的激发下发射的发光强度最大的发射峰;
    所述玻壳还包括封闭部,所述封闭部与所述管状部的远离所述荧光屏部的一端连接,所述封闭部配置为实现所述管状部的远离所述荧光屏部的一端的端口密封;
    所述荧光屏部、所述管状部以及所述封闭部的材料均为石英玻璃或蓝宝石晶体;
    所述封闭部由所述管状部一端形变后形成;
    所述玻壳通过所述荧光屏部、所述管状部以及所述封闭部围成密闭的内部空间,所述玻壳的内部空间为真空状态。
  2. 如权利要求1所述的紫外阴极射线管,其中,所述荧光粉层发射的所述紫外光在波长小于等于300nm的范围内还包括至少一个次发射峰,所述次发射峰的发光强度与所述主发射峰的发光强度之比大于等于1:10。
  3. 如权利要求2所述的紫外阴极射线管,其中,所述次发射峰包括第一次发射峰;
    所述主发射峰的波长在220nm-230nm之间;所述第一次发射峰的波长在275m-285nm之间。
  4. 如权利要求1所述的紫外阴极射线管,其中,所述发射的紫外光在波长小于等于300nm的范围内还包括两个以上次发射峰,所述两个以上次发射峰中的任一次发射峰的发光强度与所述主发射峰的发光强度之比大于等于1:10。
  5. 如权利要求4所述的紫外阴极射线管,其中,所述次发射峰包括第一次发射峰、第二次发射峰和第三次发射峰;
    所述主发射峰的波长在230nm-240nm之间;所述第一次发射峰的波长在240nm-250nm之间;所述第二次发射峰的波长在260nm-270nm之间;所述第三次发射峰的波长在270nm-280nm之间。
  6. 如权利要求4所述的紫外阴极射线管,其中,所述次发射峰包括第一次发射峰和第二次发射峰;
    所述主发射峰的波长在190nm-200nm之间;所述第一次发射峰的波长在270nm-280nm之间;所述第二次发射峰的波长在之间235nm-245nm之间。
  7. 如权利要求1-6任意一项所述的紫外阴极射线管,其中,所述荧光粉层发射的所述紫外光在波长190-250nm范围内的累积发射强度大于波长在250nm-300nm之间的累积发射强度。
  8. 如权利要求1所述的紫外阴极射线管,其中,所述荧光粉层包括荧光粉,所述荧光粉包括以下至少之一:RePO 4:Z 1、LaP 5O 14:Z 1、CaSO 4:Z 1、SrSO 4:Z 1、NaYF 4:Z 1、LiYF 4:Z 1、KYF 4:Z 1、LiLaP 4O 12:Z 1、Y 2(SO 4) 3:Z 1、YAlO 3:Z 1、YF 3:Z 1;其中Re表示选自Y、La、Lu、Sr、Gd、Sm、Ce中的一种或多种,Z 1表示掺杂元素,所述掺杂元素含有选自Nd、Pr、Bi中的一种元素。
  9. 如权利要求1所述的紫外阴极射线管,其中,所述荧光粉层包括荧光粉,所述荧光粉包括以下至少之一:RePO 4:Z 2,LaP 5O 14:Z 2,CaSO 4:Z 2,SrSO 4:Z 2,NaYF 4:Z 2,LiYF 4:Z 2,KYF 4:Z 2,LiLaP 4O 12:Z 2,Y 2(SO 4) 3:Z 2,YAlO 3:Z 2,YF 3:Z 2;其中Re表示选自Y、La、Lu、Sr、Gd、Sm、Ce中的一种或多种,Z 2表示掺杂元素,所述掺杂元素含有选自Nd、Pr、Bi中的两种元素。
  10. 如权利要求8或9所述的紫外阴极射线管,其中,所述荧光粉层为单层荧光粉层,所述单层荧光粉层包括两种以上的所述荧光粉。
  11. 如权利要求10所述的紫外阴极射线管,其中,所述单层荧光粉层包括两个以上的子区域荧光粉层,所述子区域荧光粉层之间包含的荧光粉种类不同。
  12. 如权利要求11所述的紫外阴极射线管,其中,所述子区域荧光粉层之间在电子束激发下发射的紫外光的主发射峰波长不同,至少有一个子区域荧光粉层发射的紫外光的主发射峰波长在190nm-250nm之间。
  13. 如权利要求8或9所述的紫外阴极射线管,其中,所述荧光粉层包括两层以上叠置的荧光粉层,各层荧光粉层之间包含的荧光粉种类不同。
  14. 如权利要求13所述的紫外阴极射线管,其中,所述各层荧光粉层之间在电子束激发下发射的紫外光的主发射峰不同,所述各层荧光粉层的主发射峰的波长至少有一层在190nm-250nm之间。
  15. 一种紫外阴极射线管,包括:玻壳、发光结构层、电子枪和与所述电子枪电连接的电引线组件;
    所述玻壳包括用于容纳所述电子枪的管状部和与所述管状部连接的荧光屏部;
    所述电子枪设置在所述管状部内,用于向所述荧光屏部发射电子束;
    所述发光结构层设置在所述荧光屏部上,所述发光结构层在所述电子束的激发下发射紫外光;
    所述电子枪通过所述电引线组件与外部电连接;
    所述玻壳还包括封闭部,所述封闭部与所述管状部的远离所述荧光屏部的一端连接,所述封闭部配置为实现所述管状部的远离所述荧光屏部的一端的端口密封,以及实现所述电引线组件从所述管状部内至所述管状部外的引出;
    所述电引线组件贯穿所述封闭部,以使所述电引线组件的一端从所述封闭部露出,另一端在所述管状部内与所述电子枪连接;
    所述荧光屏部、所述管状部以及所述封闭部的材料均为石英玻璃或蓝宝石晶体;
    所述封闭部由所述管状部一端形变后形成;
    所述玻壳通过所述荧光屏部、所述管状部以及所述封闭部围成密闭的内部空间,所述玻壳的内部空间为真空状态。
  16. 如权利要求15所述的紫外阴极射线管,其中,所述封闭部的厚度大于所述管状部的管壁的厚度且小于所述管状部的内径。
  17. 如权利要求15所述的紫外阴极射线管,其中,所述电引线组件包括多根电引线;
    所述电引线包括上端金属丝,中间金属片和下端金属丝,其中所述中间金属片的两端分别与所述上端金属丝和所述下端金属丝连接;
    所述中间金属片被封闭在所述封闭部内。
  18. 如权利要求17所述的紫外阴极射线管,其中,所述中间金属片沿轴线方向的边缘呈刀刃状。
  19. 如权利要求17所述的紫外阴极射线管,其中,所述上端金属丝和所述下端金属丝的截面直径均在0.5mm-0.8mm之间,所述中间金属片的中心厚度在0.1mm-0.4mm之间。
  20. 如权利要求17所述的紫外阴极射线管,其中,所述电引线组件还包括固定柱,所述多根电引线中各根电引线的下端金属丝均贯穿所述固定柱。
  21. 如权利要求15所述的紫外阴极射线管,其中,所述荧光屏部的内表面轮廓为圆形。
  22. 如权利要求15所述的紫外阴极射线管,其中,所述管状部包括第一筒部;
    所述第一筒部的内表面与所述荧光屏部的内表面相互垂直。
  23. 如权利要求22所述的紫外阴极射线管,其中,所述第一筒部与所述荧光屏部连接。
  24. 如权利要求22所述的紫外阴极射线管,其中,所述管状部还包括锥部;所述锥部包括小开口端和大开口端;
    所述第一筒部与所述锥部的小开口端连接。
  25. 如权利要求24所述的紫外阴极射线管,其中,所述管状部还包括第二筒部;
    所述第二筒部的一端与所述锥部的大开口端连接,所述第二筒部的另一端与所述荧光屏部连接;
    所述第二筒部的内径大于所述第一筒部的内径。
  26. 如权利要求25所述的紫外阴极射线管,其中,所述第二筒部的内表面与所述荧光屏部的内表面相互垂直。
  27. 如权利要求25所述的紫外阴极射线管,其中,所述锥部的小开口端的端面到所述锥部的大开口端的端面的距离与所述第二筒部的高度的比值在0.5:1-2:1之间。
  28. 如权利要求27所述的紫外阴极射线管,其中,所述第二筒部的高度大于或等于20mm。
  29. 如权利要求24所述的紫外阴极射线管,其中,所述锥部的小开口端的端面到所述荧光屏部的内表面的距离与所述荧光屏部的内表面的直径的比值在1:0.5-1:4之间。
  30. 如权利要求24所述的紫外阴极射线管,其中,所述玻壳还包括排气部,所述排气部设置在所述管状部上,所述排气部一端与所述管状部的管内相连,另一端密封。
  31. 如权利要求30所述的紫外阴极射线管,其中,所述排气部设置在所述第一筒部上。
  32. 如权利要求15所述的紫外阴极射线管,其中,所述发光结构层包括荧光粉层和导电层,所述荧光粉层设置在所述荧光屏部的内表面上,所述导电层设置在所述荧光粉层上;
    所述荧光粉层在所述电子束激发下发射紫外光;
    所述荧光粉层包括荧光粉和粘接氧化物,所述粘接氧化物与所述荧光屏部的内表面之间粘接在一起;
    所述粘接氧化物的颗粒的平均粒径在1nm-100nm之间;
    所述荧光粉的颗粒的平均粒径在1μm-10μm之间。
  33. 如权利要求32所述的紫外阴极射线管,其中,所述粘接氧化物的主要成分的重量百分数大于99.9%;其中,粘接氧化物的主要成分指的是粘接氧化物中占比最高的成分。
  34. 如权利要求33所述的紫外阴极射线管,其中,所述粘接氧化物的主要成分与所述荧光屏部的内表面的主要成分相同;所述荧光屏部的内表面的主要成分指的是荧光屏部的内表面成分中占比最高的成分。
  35. 如权利要求33所述的紫外阴极射线管,其中,所述荧光屏部和所述荧光粉层之间还设置有缓冲层,所述缓冲层的主要成分与所述粘接氧化物的主要成分相同;所述缓冲层的主要成分指的是缓冲层中占比最高的成分。
  36. 如权利要求33所述的紫外阴极射线管,其中,所述粘接氧化物的主要成分为SiO 2或Al 2O 3
  37. 如权利要求15所述的紫外阴极射线管,其中,所述电子枪为面积投射式电子枪;
    所述电子枪包括阴极组件和电极组件;
    所述阴极组件包括阴极,所述阴极发射电子并形成阴极发射面;
    所述电极组件包括多个金属圆筒,所述多个金属圆筒包括阴极调制区金属圆筒、电子束调制区金属圆筒和电子束加速区金属圆筒;所述阴极调制区金属圆筒用于调节电子束流大小,所述电子束调制区金属圆筒用于调节控制电子束形态,所述电子束加速区金属圆筒用于使电子束加速;
    所述电子束调制区金属圆筒的内径大于所述阴极调制区金属圆筒的内径;
    所述电子束加速区金属圆筒的内径小于所述电子束调制区金属圆筒的内径;
    所述电子束调制区金属圆筒的电位大于所述阴极调制区金属圆筒的电位;
    所述电子束加速区金属圆筒的电位大于所述电子束调制区金属圆筒的电位;
    所述阴极发射的电子经过所述多个金属圆筒后以面积投射方式发射出去,所述面积投射的投射面为所述阴极发射面的一次倒立实像。
  38. 如权利要求37所述的紫外阴极射线管,其中,所述电子束调制区金属圆筒包括两个以上子束调制区金属圆筒,每个子束调制区金属圆筒分别连接独立的输入电压;
    相邻的两个所述子束调制区金属圆筒中,远离所述阴极的子束调制区金属圆筒的电位大于或等于靠近所述阴极的子束调制区金属圆筒电位。
  39. 如权利要求38所述的紫外阴极射线管,其中,相邻的两个所述子束调制区中,远离所述阴极的子束调制区金属圆筒的长度大于靠近所述阴极的子束调制区金属圆筒的长度。
  40. 如权利要求38所述的紫外阴极射线管,其中,所述电子束加速区金属圆筒与所述电子束加速区相邻的子束调制区金属圆筒的距离大于相邻所述子束调制区金属圆筒之间的距离。
  41. 如权利要求40所述的紫外阴极射线管,其中,所述电子束加速区金属圆筒与所述电子束加速区相邻的所述子束调制区金属圆筒的距离为1mm-3mm;相邻所述子束调制区之间的距离为0.3mm-1mm。
  42. 如权利要求38所述的紫外阴极射线管,其中,所述子束调制区金属圆筒内径相同,所述子束调制区金属圆筒内径为8mm-12mm。
  43. 如权利要求37所述的紫外阴极射线管,其中,所述阴极平齐或突出于所述阴极调制区金属圆筒的端部。
  44. 如权利要求43所述的紫外阴极射线管,其中,所述阴极突出所述阴极调制区的金属圆筒的端部的距离为0.01mm-0.03mm。
  45. 如权利要求37所述的紫外阴极射线管,其中,所述阴极调制区的电位大于所述阴极的电位。
  46. 如权利要求37所述的紫外阴极射线管,其中,所述电子束调制区金属圆筒的电位为0V-50V;所述电子束加速区金属圆筒的电位为5kV-20kV。
  47. 一种紫外阴极射线管,包括:玻壳、发光结构层和电子枪;
    所述玻壳包括用于容纳所述电子枪的管状部和与所述管状部连接的荧光屏部;
    所述电子枪设置在所述管状部内,用于向所述荧光屏部发射电子束;
    所述发光结构层设置在所述荧光屏部上,所述发光结构层在所述电子束的激发下发射紫外光;
    所述发光结构层包括第一结构层和导电层,所述第一结构层设置在所述荧光屏部上,所述导电层设置在所述第一结构层上;
    所述第一结构层包括荧光粉层和填充氧化物;所述荧光粉层包括荧光粉和粘接氧化物,所述粘接氧化物用于将所述荧光粉的颗粒与所述荧光屏部表面之间粘接在一起;
    所述填充氧化物为无机材料;
    至少部分所述填充氧化物填充在所述荧光粉层的内部孔隙中;
    所述玻壳还包括封闭部,所述封闭部与所述管状部的远离所述荧光屏部的一端连接,所述封闭部配置为实现所述管状部的远离所述荧光屏部的一端的端口密封;
    所述荧光屏部、所述管状部以及所述封闭部的材料均为石英玻璃或蓝宝石晶体;
    所述封闭部由所述管状部一端形变后形成;
    所述玻壳通过所述荧光屏部、所述管状部以及所述封闭部围成密闭的内部空间,所述玻壳的内部空间为真空状态。
  48. 如权利要求47所述的紫外阴极射线管,其中,所述第一结构层的内部孔隙在平行于所述荧光屏部的内表面方向上的截面的最大直径小于1μm。
  49. 如权利要求48所述的紫外阴极射线管,其中,所述第一结构层的内部孔隙在平行于所述荧光屏部的内表面方向上的截面的最大直径小于等于50nm。
  50. 如权利要求47所述的紫外阴极射线管,其中,所述荧光粉的颗粒的平均粒径在1μm-10μm之间,所述填充氧化物的颗粒的平均粒径在1nm-50nm之间。
  51. 如权利要求47所述的紫外阴极射线管,其中,所述填充氧化物的主要成分的重量百分数大于99.9%;其中,所述填充氧化物的主要成分指的是所述填充氧化物中占比最高的成分。
  52. 如权利要求51所述的紫外阴极射线管,其中,所述填充氧化物的主要成分与所述粘接氧化物的主要成分相同,其中所述粘接氧化物的主要成分指的是所述粘接氧化物中占比最高的成分。
  53. 如权利要求51所述的紫外阴极射线管,其中,所述填充氧化物的主要成分为SiO 2或Al 2O 3
  54. 如权利要求47所述的紫外阴极射线管,其中,所述导电层厚度在50nm-100nm之间。
  55. 如权利要求47所述的紫外阴极射线管,其中,所述荧光粉包括以下至少之一:RePO 4:Z 1、LaP 5O 14:Z 1、CaSO 4:Z 1、SrSO 4:Z 1、NaYF 4:Z 1、LiYF 4:Z 1、KYF 4:Z 1、LiLaP 4O 12:Z 1、Y 2(SO 4) 3:Z 1、YAlO 3:Z 1、YF 3:Z 1;其中Re表示选自Y、La、Lu、Sr、Gd、Sm、Ce中的一种或多种,Z 1表示掺杂元素,所述掺杂元素含有选自Nd、Pr、Bi中的一种元素。
  56. 如权利要求47所述的紫外阴极射线管,其中,所述荧光粉包括以下至少之一:RePO 4:Z 2、LaP 5O 14:Z 2、CaSO 4:Z 2、SrSO 4:Z 2、NaYF 4:Z 2、LiYF 4:Z 2、KYF 4:Z 2、LiLaP 4O 12:Z 2、Y 2(SO 4) 3:Z 2、YAlO 3:Z 2、YF 3:Z 2;其中Re表示选自Y、La、Lu、Sr、Gd、Sm、Ce中的一种或多种,Z 2表示掺杂元素,所述掺杂元素含有选自Nd、Pr、Bi中的两种元素。
PCT/CN2022/091035 2022-05-05 2022-05-05 一种紫外阴极射线管 WO2023212875A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/091035 WO2023212875A1 (zh) 2022-05-05 2022-05-05 一种紫外阴极射线管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/091035 WO2023212875A1 (zh) 2022-05-05 2022-05-05 一种紫外阴极射线管

Publications (1)

Publication Number Publication Date
WO2023212875A1 true WO2023212875A1 (zh) 2023-11-09

Family

ID=88646105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091035 WO2023212875A1 (zh) 2022-05-05 2022-05-05 一种紫外阴极射线管

Country Status (1)

Country Link
WO (1) WO2023212875A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1400625A (zh) * 2001-07-27 2003-03-05 日本电气硝子株式会社 能有效地重复利用另一种玻璃的阴极射线管锥玻
CN108102642A (zh) * 2017-12-18 2018-06-01 上海极优威光电科技有限公司 一种紫外荧光粉膜层及其制备方法
CN108231532A (zh) * 2017-12-31 2018-06-29 上海极优威光电科技有限公司 一种电子束激发荧光粉的深紫外光源

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1400625A (zh) * 2001-07-27 2003-03-05 日本电气硝子株式会社 能有效地重复利用另一种玻璃的阴极射线管锥玻
CN108102642A (zh) * 2017-12-18 2018-06-01 上海极优威光电科技有限公司 一种紫外荧光粉膜层及其制备方法
CN108231532A (zh) * 2017-12-31 2018-06-29 上海极优威光电科技有限公司 一种电子束激发荧光粉的深紫外光源

Similar Documents

Publication Publication Date Title
EP2913376B1 (en) Target for ultraviolet light generation, electron beam-excited ultraviolet light source, and production method for target for ultraviolet light generation
JP5581635B2 (ja) 蛍光ランプ
JP5644039B2 (ja) 紫外線を放射する蛍光ランプおよびその製造方法
EP2703471B1 (en) Ultraviolet light generating target, electron-beam-excited ultraviolet light source, and method for producing ultraviolet light generating target
WO2023212875A1 (zh) 一种紫外阴极射线管
TWI515762B (zh) Fluorescent light
JP4044946B2 (ja) 蛍光ランプ、バックライト装置、及び蛍光ランプの製造方法
US20150270116A1 (en) Target for ultraviolet light generation, electron beam-excited ultraviolet light source, and production method for target for ultraviolet light generation
US20080197762A1 (en) Fluorescent Lamp
JP2008059943A (ja) 蛍光体層形成用塗料及びそれを用いた蛍光体層並びに蛍光ランプ
CN114944314A (zh) 一种荧光屏及其制备方法
US7741766B2 (en) Composition for forming layer, fluorescent lamp using the composition, and method of manufacturing a fluorescent lamp
KR20210040697A (ko) 수명과 반사 성능이 향상된 자외선 반사막을 포함하는 엑시머 램프
KR100944287B1 (ko) 형광 램프 및 그 제조 방법
TWI402883B (zh) Excimer lamp
KR101629624B1 (ko) 세라믹-유리 복합체 전극과 이를 갖는 형광 램프
CN217361493U (zh) 一种阴极射线管
TW201103072A (en) Low pressure mercury vapor lamp
CN114944315A (zh) 一种阴极射线管
JP2010157357A (ja) 蛍光ランプ用塗料とそれを用いた塗膜及び塗膜の製造方法並びに蛍光ランプ
JP2008117606A (ja) 発光素子
JPS6122556A (ja) けい光ランプ
JP2009252366A (ja) 蛍光ランプ
JP2011100615A (ja) 蛍光ランプ及び蛍光ランプの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940571

Country of ref document: EP

Kind code of ref document: A1