WO2023211188A1 - System and method for laser scanning-based resistance spot welding quality assessment - Google Patents

System and method for laser scanning-based resistance spot welding quality assessment Download PDF

Info

Publication number
WO2023211188A1
WO2023211188A1 PCT/KR2023/005764 KR2023005764W WO2023211188A1 WO 2023211188 A1 WO2023211188 A1 WO 2023211188A1 KR 2023005764 W KR2023005764 W KR 2023005764W WO 2023211188 A1 WO2023211188 A1 WO 2023211188A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance spot
spot welding
defects
welder
laser scanning
Prior art date
Application number
PCT/KR2023/005764
Other languages
French (fr)
Korean (ko)
Inventor
박영도
이승훈
강태영
백영곤
Original Assignee
테스원 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 테스원 주식회사 filed Critical 테스원 주식회사
Publication of WO2023211188A1 publication Critical patent/WO2023211188A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials

Definitions

  • the present invention relates to a laser scanning-based resistance spot welding quality judgment system and method. More specifically, it is a method of predicting the nugget diameter, which is a welding quality index of resistance spot welding for steel and Al materials, and detecting defects, using 3D scanning. This relates to a laser scanning-based resistance spot welding quality judgment system and method that evaluates the size and defects of the nugget in real time at the same time as measurement using the characteristic values of the surface indentation of the spot weld.
  • welding is the process of joining metal materials of the same type or different types by applying heat and pressure to form a direct bond between solids, and is a general term for metallurgical joining methods of metals.
  • welding processes there are several different welding processes depending on various conditions such as base material and welding electrode.
  • resistance spot welding is one of the simple and widely used welding processes, allowing overlapping materials to be joined inexpensively without the need for disassembly. In particular, it is widely used, being used in approximately 5,000 to 6,000 hits during the automobile production process.
  • Resistance spot welding is a welding process that uses electric resistance to join two metals by placing them face to face and using resistance heat generated by passing appropriate mechanical pressure and electric current.
  • the quality is evaluated through one-dimensional inspection such as surface inspection with the naked eye and a microscope, and nugget diameter inspection through cutting the weld zone, which consumes pre-processing time and is not used in actual car body welding sites. There is a problem that it cannot be done.
  • the present invention was developed to solve the problems of the prior art as described above, and predicts the nugget diameter using a quality prediction method using the indentation shape of resistance spot welding to enable reliability, speed, and automation of quality judgment. There is a purpose.
  • an image of the resistance spot welding surface is scanned by the laser scanner.
  • a laser scanning step ;
  • a characteristic value measurement step of allowing characteristic values consisting of the diameter, height, area, and volume of the indentation caused by resistance spot welding to be measured by the control unit through the image;
  • a welding quality judgment step of allowing the nugget diameter to be predicted by the control unit through the characteristic values;
  • a defect detection step of allowing defects in resistance spot welding to be determined by the control unit through the image;
  • a welder calibration step of allowing the electrodes of the welder to be replaced or realigned according to the defect by the control unit, wherein the welder calibration step includes predicting the nugget diameter of the resistance spot welding performed by non-destructive testing and It is characterized by allowing the welder to be corrected based on defect determination.
  • the present invention has the effect of enabling the quality judgment work of resistance spot welding to be automated and achieving reliability and speed in quality judgment.
  • the present invention has the effect of improving speed through a non-destructive process that allows the process of physically destroying the specimen to be omitted for quality judgment and enabling field-friendly quality inspection to be performed in real time.
  • FIG. 1 is a configuration diagram of a laser scanning-based resistance spot welding quality judgment system according to a first embodiment of the present invention.
  • Figure 2 is a schematic diagram of a laser scanning-based resistance spot welding quality judgment system according to the first embodiment of the present invention.
  • Figure 3 is a flowchart of a laser scanning-based resistance spot welding quality determination method according to the first embodiment of the present invention.
  • Figure 4 is a flowchart of the characteristic value measurement step in the laser scanning-based resistance spot welding quality determination method according to the first embodiment of the present invention.
  • Figure 5 is a diagram showing the process of securing the cross-sectional line of the surface indentation through laser scanning.
  • Figure 6 is a diagram showing the process of extracting the indentation diameter and height from the surface characteristic values at the secured cross section line.
  • Figure 7 is a diagram showing the plane conversion image of cross-section lines and the measurement area of surface characteristic values (indentation circumference, indentation area, indentation volume).
  • Figure 8 is a correlation graph between surface property values and nugget diameter values.
  • Figure 9 is a diagram showing the process of measuring the bending height in a cross-sectional line image.
  • Figure 10 is a detailed flowchart of the defect detection step according to the first embodiment of the present invention.
  • FIG 11 is a flowchart of the edge welding defect detection step according to the first embodiment of the present invention.
  • Figure 12 is a diagram showing the cross-sectional line analysis process for determining edge welding defects.
  • Figure 13 is a flowchart of the electrode wear defect detection step according to the first embodiment of the present invention.
  • Figure 14 is a laser scanning cross-sectional image of a wear electrode welded portion, (a) is a scanning cross-sectional image of a normal electrode and a worn electrode welded portion, and (b) is a diagram showing the process for determining a wear defect.
  • Figure 15 is a diagram showing the analysis process for comparing and determining defects in welds to which normal electrodes and worn electrodes are applied.
  • (a) is a cross-sectional image of a weld to which normal electrodes are applied
  • (b) is a cross-sectional image of a weld to which worn electrodes are applied.
  • Figure 16 is a flowchart of the electrode misalignment defect detection step according to the first embodiment of the present invention.
  • Figure 17 is a diagram showing the analysis process based on the highest point of the cross-sectional line for determining electrode misalignment and surface flaking defects.
  • Figure 18 is a diagram showing the analysis process based on the lowest point of the cross-sectional line for determining electrode misalignment and surface flaking defects.
  • the present invention provides a laser scanning-based resistance spot welding quality judgment system that determines the quality of resistance spot welding that is pressed and welded by a pair of electrodes, and the resistance spot welding is A welder 100, a laser scanner 200 that 3D scans the surface welded by the welder 100, and an image scanned by the laser scanner 200 to determine the diameter, height, area and It includes a control unit 300 that measures one or more characteristic values of the volume and controls the welder 100.
  • the control unit 300 is characterized in that it predicts the nugget diameter of resistance spot welding through the characteristic values and allows welding quality defects to be determined.
  • the welder 100 performs resistance spot welding in which two metal plates are joined together through resistance heat generated by touching two metal plates and passing pressure and current through a pair of electrodes.
  • the welder 100 can be controlled by the control unit 300 to control the pressure applied to the electrode, the energizing voltage, and the electrode position alignment.
  • the metal sheet is mainly used as a steel or Al material.
  • the laser scanner 200 is provided on one side of the welder 100 and serves to scan nuggets and indentations created on a metal plate on which a resistance spot welding process has been performed.
  • the laser scanner 200 is equipped with a laser vision to obtain not only a 3D image but also a 2D image of the welded area.
  • control unit 300 secures the cross-sectional line of the indentation through the image scanned by the laser scanner 200 to detect edge welding defects of the resistance spot welding, electrode wear defects of the welder, electrode misalignment, and surface A blowing defect is determined, and the electrodes of the welder can be replaced or realigned according to the defect.
  • control unit 300 enables nugget diameters according to various types of electrodes and materials to be predicted through prediction equations 1 to 3 below.
  • Prediction equation 1 allows the nugget diameter to be predicted through the surface characteristic values of resistance spot welding using a dome-type electrode when the plate is made of steel.
  • D is the indentation diameter
  • C is the indentation circumference
  • A is the indentation area
  • V is the indentation volume.
  • Prediction equation 2 allows the nugget diameter to be predicted through the surface characteristic values of resistance spot welding using a radius type electrode when the plate is made of Al.
  • Prediction equation 3 allows the nugget diameter to be predicted through the surface characteristic values of resistance spot welding using a multi-ring type electrode when the plate is made of Al.
  • an image of the resistance spot welding surface can be scanned by the laser scanner 200.
  • S200 a welding quality judgment step in which the nugget diameter can be predicted through the characteristic values by the control unit 300, and a defect in resistance spot welding through the image by the control unit 300.
  • It includes a defect detection step (S400) that allows this to be determined and a welder calibration step (S500) that allows the control unit 300 to replace or realign the electrodes of the welder 100 according to the defect.
  • the welder calibration step (S500) allows the welder 100 to be calibrated based on nugget diameter prediction and defect determination of the resistance spot welding performed through non-destructive testing.
  • the surface of the resistance spot weld is scanned through the laser scanner 200, so that images of the indentation diameter, height, area, and volume of the weld portion can be collected.
  • the image collected by the laser scanner 200 is processed through the control unit 300 to obtain characteristic values including the indentation diameter, height, circumference, area, and volume. Allow this to be created.
  • the 2D cross-sectional line of the indentation can be extracted by the control unit 300 through the 3D image measured by the laser scanner 200. It includes a cross-sectional line extraction step (S210) and a characteristic value extraction step (S220) that allows the control unit 300 to extract the characteristic value through the 2D cross-sectional line.
  • the cross-sectional line extraction step (S210) causes a 2D cross-sectional line to be formed on the image collected by the laser scanner 200.
  • the cross-sectional line extraction step (S210) causes a circular line with a diameter of 10 mm larger than the indentation to be formed outside the indentation in the indentation image.
  • a tangent (n1) is formed that is in contact with the point (R1) and the circular line and has a length equal to the diameter of the circular line. do.
  • a 2D section line is formed by arranging at least 500 intersection lines at intervals of 0.02 mm in the direction perpendicular to the tangent n1. At this time, the formed 2D cross-section line may be formed as shown in (d) of FIG. 5.
  • the characteristic value extraction step (S220) allows the characteristic value of the indentation portion to be extracted from the 2D cross-section line formed in the cross-section line extraction step (S210).
  • a point 20 ⁇ m lower than the height of the base material on the 2D cross-section line is selected as the start area of the indentation, and a parallel line connecting the starting point of the designated indentation on both base materials is drawn. form Afterwards, the indentation diameter, which is one of the surface characteristic values, is extracted from the lengths of both sides of the 2D cross-section line (S220).
  • the indentation height value is extracted by connecting a parallel line connecting the indentation start point and the point with the lowest value on the cross-sectional line.
  • the characteristic value extraction step (S220) as shown in (a) of FIG. 5, about 500 to 600 indentation length and diameter values are extracted from the tangent line (n1) at one point, and then the reference point ( The angle of R1) is moved 10° along the circumference and the characteristic value extraction is repeated until the reference circle is rotated 360° to extract the values of the indentation diameter and height.
  • the indentation circumference which is one of the surface characteristic values
  • the characteristic value extraction step (S220) converts a plurality of cross-sectional lines into surfaces so that the indentation area and volume, which are one of the surface characteristic values, can be extracted based on the indentation start point.
  • the nugget diameter is predicted through the characteristic values measured in the characteristic value measurement step (S200) so that the quality of the weld can be judged.
  • Figure 8 is a correlation graph of surface characteristic values according to nugget diameter.
  • various types of electrodes are used by the control unit 300 through the following prediction equations 1 to 3 to predict the nugget diameter derived from the correlation of surface characteristic values according to the nugget diameter. and material so that the nugget diameter can be predicted.
  • D is the indentation diameter
  • C is the indentation circumference
  • A is the indentation area
  • V is the indentation volume.
  • Prediction equation 2 allows the nugget diameter to be predicted through the surface characteristic values of resistance spot welding using a radius type electrode when the plate is made of Al.
  • Prediction equation 3 allows the nugget diameter to be predicted through the surface characteristic values of resistance spot welding using a multi-ring type electrode when the plate is made of Al.
  • prediction equation 3 which predicts the nugget diameter when the welder 100 performs resistance spot welding using a multi-ring electrode, has a bend number of 0.05 mm or more in height from the cross-section line, as shown in Figure 9. It is derived through the value of the number of bends in the cross-section line.
  • the defect detection step (S400) serves to detect welding defects, including edge welding defects, electrode wear defects, and surface flaking defects, from the cross-section line formed by processing the image collected by the laser scanner 200. Do it.
  • the defect detection step (S400) includes an edge welding defect detection step (S410) of detecting an edge welding defect of the resistance spot welding, and an edge welding defect detection step (S410) of detecting an electrode wear defect of the welder 100. It includes an electrode wear defect detection step (S420) and an electrode misalignment detection step (S430) for detecting electrode misalignment and surface flaking defects of the resistance spot welding.
  • the edge welding defect detection step (S410) is performed by the control unit 300, at the indentation start point (S) based on the cross-sectional line extracted in the characteristic value measurement step (S200). Compare the height difference between the height of the point (E), which is 1 mm apart in the centrifugal direction, and the starting point (S). Afterwards, if the height difference between the spaced point (E) and the starting point (S) is less than 0.5 mm, it can be judged to be an edge welding defect (S411). On the other hand, if the height difference between the spaced point (E) and the starting point (S) is greater than 0.5 mm, it can be judged to be an edge welding defect (S412).
  • the electrode wear defect detection step (S420) is performed by the control unit 300 at the indentation start point and the low point of the cross-section line based on the cross-section line extracted in the characteristic value measurement step (S200).
  • a connection line is formed connecting the intersecting horizontal lines, and electrode wear defects can be determined through the angle of the horizontal line and the connection line.
  • the angle between the horizontal line and the connecting line ( ) is measured (S423).
  • the angle between the horizontal line and the connecting line ( ) can be compared (S424).
  • the angle between the horizontal line and the connecting line ( ) is greater than 130°, it can be judged to be an electrode wear defect (S425).
  • a horizontal line is drawn that intersects the cross-section line at a point within 3 mm left and right based on the lowest point representing the lowest height value in the cross-section line.
  • connection lines are formed to connect the intersection point of the cross-sectional line with the horizontal line and the two indentation start points adjacent to the intersection point (S426).
  • the connection line that maximizes the angle with the horizontal line can be selected (S426).
  • the horizontal line intersects each of the two selected connection lines, and the distance D between the two intersection points formed is measured (S427).
  • the shape of the nugget is formed in one direction, resulting in surface flaking. so that it can be detected.
  • the cross-sectional line with the maximum indentation diameter is selected from among the cross-sectional lines extracted in the characteristic value measurement step (S200) (S431). Also, referring to FIG. 17, a horizontal line is formed connecting the indentation starting points S1 and S2 on both sides of the cross-sectional line where the indentation diameter is the maximum (S432).
  • an upper connection line is formed connecting the highest point (E) of the cross-sectional line and the indentation start point (S1) (S433). Additionally, the angle ⁇ between the horizontal line and the upper connection line can be measured (S434). Thereafter, with reference to FIG. 18, a lower connection line is formed connecting the lowest point (L) of the cross-sectional line and the indentation start point (S2) (S435). Then, the angle ⁇ between the lower connection line and the horizontal line can be measured (S436). Afterwards, by substituting the angles ⁇ and ⁇ into the prediction equation 4 below, the angles ⁇ 1 and Allow ⁇ 2 to be derived (S437).
  • angle ⁇ is greater than 1 If ⁇ 2 is large, it can be judged to be an electrode misalignment defect (S438). On the other hand, angle ⁇ greater than 1 If ⁇ 2 is small, it can be judged as normal welding (S439).
  • the electrodes of the welder 100 can be replaced or realigned by the control unit 300 according to the type and degree of defect determined in the defect detection step (S400). Ensure that welding quality is maintained.
  • the present invention has the effect of enabling the quality judgment work of resistance spot welding to be automated and achieving reliability and speed in quality judgment.
  • the present invention has the effect of improving speed through a non-destructive process that allows the process of physically destroying the specimen to be omitted for quality judgment and enabling field-friendly quality inspection to be performed in real time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Quality & Reliability (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Laser Beam Processing (AREA)

Abstract

The present invention relates to a system and a method for laser scanning-based resistance spot welding quality assessment and, more particularly, to a system for laser scanning-based resistance spot welding quality assessment, the system being configured to assess the quality of resistance spot welding which occurs under pressurization by a pair of electrodes. The system comprises: a welding machine for performing the resistance spot welding; a laser scanner for 3D-scanning a surface welded by the welding machine; and a controller for measuring characteristic values comprising the diameter, height, area, and volume of a surface indentation through an image scanned by the laser scanner, and controlling the welding machine. The controller predicts the nugget diameter of resistance spot welding through the characteristic values and guarantees that welding quality defects can be assessed. In addition, the method comprises: a laser scan step in which an image of the resistance spot welding surface can be scanned by the laser scanner; a characteristic value measuring step in which characteristic values comprising the diameter, height, area, and volume of a surface indentation caused by resistance spot welding can be measured by the controller; a welding quality assessing step in which the nugget diameter can be predicted through the characteristic values by the controller; a defect detecting step in which defects of resistance spot welding can be assessed through the image by the controller; and a welding machine correction step in which the electrode of the welding machine can be replaced or realigned according to the defects by the controller. In the welding machine correction step, the welding machine can be corrected on the basis of assessment of defects and prediction of the nugget diameter of the resistance spot welding performed as nondestructive tests. In addition, the present invention is advantageous in that resistance spot welding quality assessment operations can be automated, and reliability and swiftness can be obtained in connection with quality assessment.

Description

레이저 스캐닝 기반 저항 점 용접 품질 판단 시스템 및 방법Laser scanning-based resistance spot welding quality judgment system and method
본 발명은 레이저 스캐닝 기반 저항 점 용접 품질 판단 시스템 및 방법에 관한 것으로서, 더욱 상세하게는 Steel 및 Al 소재에 대한 저항 점 용접의 용접 품질 지수인 너겟 직경을 예측하고 결함을 검출하는 방법으로, 3D스캐닝을 통한 점용접부 표면 압흔의 특성값들을 이용하여 측정과 동시에 실시간으로 너겟의 크기와 결함을 평가하는 레이저 스캐닝 기반 저항 점 용접 품질 판단 시스템 및 방법에 관한 것이다.The present invention relates to a laser scanning-based resistance spot welding quality judgment system and method. More specifically, it is a method of predicting the nugget diameter, which is a welding quality index of resistance spot welding for steel and Al materials, and detecting defects, using 3D scanning. This relates to a laser scanning-based resistance spot welding quality judgment system and method that evaluates the size and defects of the nugget in real time at the same time as measurement using the characteristic values of the surface indentation of the spot weld.
일반적으로 용접은 같은 종류 또는 다른 종류의 금속재료에 열과 압력을 가하여 고체 사이에 직접 결합이 되도록 접합하는 것으로, 금속의 야금적 접합법의 총칭이다. 또한, 용접은 모재와 용접봉 등 여러 조건에 따라 각기 다른 여러 가지 용접 공정이 존재하는데. 그 중에서도 저항 점 용접은 간단하고 광범위하게 사용되는 용접 공정 중 하나로, 겹쳐있는 재료가 분해될 필요 없이 저렴하게 접합되도록 한다. 특히, 자동차 생산 공정 중 약 5000 내지 6000 타점 정도에 사용될 정도로 광범위하게 사용되고 있다. 이러한 저항 점 용접은 전기 저항을 이용한 용접 방법으로 두 금속을 맞대어 놓고 적당한 기계적 압력과 전류를 통전하여 발생하는 저항 열을 이용하여 두 금속을 접합하는 용접 공정이다. 다만, 저항 점 용접의 품질을 평가함에 있어서, 육안 및 현미경을 통한 표면검사, 용접부 커팅을 통한 너겟직경 검사 등 1차원적인 검사를 통해 품질이 평가되어 전처리 시간이 소모되고, 실제 차체 용접 현장에서는 사용될 수 없다는 문제점이 있다.In general, welding is the process of joining metal materials of the same type or different types by applying heat and pressure to form a direct bond between solids, and is a general term for metallurgical joining methods of metals. In addition, there are several different welding processes depending on various conditions such as base material and welding electrode. Among them, resistance spot welding is one of the simple and widely used welding processes, allowing overlapping materials to be joined inexpensively without the need for disassembly. In particular, it is widely used, being used in approximately 5,000 to 6,000 hits during the automobile production process. Resistance spot welding is a welding process that uses electric resistance to join two metals by placing them face to face and using resistance heat generated by passing appropriate mechanical pressure and electric current. However, in evaluating the quality of resistance spot welding, the quality is evaluated through one-dimensional inspection such as surface inspection with the naked eye and a microscope, and nugget diameter inspection through cutting the weld zone, which consumes pre-processing time and is not used in actual car body welding sites. There is a problem that it cannot be done.
이러한 문제점을 해결하기 위한 선행문헌으로, 대한민국 등록특허공보 제10-1799051호를 살펴보면, 레이저 스캔을 이용한 용접비드의 검사 방법 및 장치에 대해 개시되어 있다.As a prior document to solve this problem, looking at Republic of Korea Patent Publication No. 10-1799051, a method and device for inspecting a weld bead using laser scanning is disclosed.
다만, 이러한 종래의 기술은, 신속성 및 자동화에 불리하다는 문제점이 있으며, 타점부의 표면 특성값을 통한 품질판단의 신뢰성 등을 얻을 수 없다는 문제점이 있다.However, this conventional technology has the problem of being disadvantageous in speed and automation, and the reliability of quality judgment through the surface characteristic values of the dotted part cannot be obtained.
본 발명은 상술한 바와 같은 선행기술의 문제점을 해결하기 위하여 안출된 것으로, 저항 점 용접의 압흔 형상을 이용한 품질 예측 방식으로 너겟직경을 예측하여 품질 판단에 대한 신뢰성, 신속성 및 자동화가 이루어질 수 있도록 하는 데 그 목적이 있다.The present invention was developed to solve the problems of the prior art as described above, and predicts the nugget diameter using a quality prediction method using the indentation shape of resistance spot welding to enable reliability, speed, and automation of quality judgment. There is a purpose.
본 발명의 바람직한 일 실시예에 레이저 스캐닝 기반 저항 점 용접 품질 판단 시스템을 이용한 레이저 스캐닝 기반 저항 점 용접 품질 판단 방법에 있어서, 상기 레이저스캐너에 의하여, 상기 저항 점 용접 표면에 대한 이미지가 스캔될 수 있도록 하는 레이저스캔단계; 상기 제어부에 의하여, 상기 이미지를 통해 저항 점 용접에 의한 압흔의 직경, 높이, 면적 및 부피로 구성되는 특성값이 측정될 수 있도록 하는 특성값측정단계; 상기 제어부에 의하여, 상기 특성값을 통해 너겟직경이 예측될 수 있도록 하는 용접품질판단단계; 상기 제어부에 의하여, 상기 이미지를 통해 저항 점 용접의 결함이 판단될 수 있도록 하는 결함검출단계; 및 상기 제어부에 의하여, 상기 결함에 따라 상기 용접기의 전극이 교체되거나 재정렬 될 수 있도록 하는 용접기교정단계;를 포함하고, 상기 용접기교정단계는, 비파괴 검사로 수행되는 상기 저항 점 용접의 너겟직경 예측과 결함 판단을 기반으로 용접기가 교정될 수 있도록 하는 것을 특징으로 한다.In a laser scanning-based resistance spot welding quality judgment method using a laser scanning-based resistance spot welding quality judgment system in a preferred embodiment of the present invention, an image of the resistance spot welding surface is scanned by the laser scanner. A laser scanning step; A characteristic value measurement step of allowing characteristic values consisting of the diameter, height, area, and volume of the indentation caused by resistance spot welding to be measured by the control unit through the image; A welding quality judgment step of allowing the nugget diameter to be predicted by the control unit through the characteristic values; A defect detection step of allowing defects in resistance spot welding to be determined by the control unit through the image; And a welder calibration step of allowing the electrodes of the welder to be replaced or realigned according to the defect by the control unit, wherein the welder calibration step includes predicting the nugget diameter of the resistance spot welding performed by non-destructive testing and It is characterized by allowing the welder to be corrected based on defect determination.
상기 과제의 해결 수단에 의해, 본 발명은, 저항 점 용접의 품질 판단 작업이 자동화 될 수 있도록 하며, 품질 판단에 대한 신뢰성 및 신속성을 얻을 수 있다는 효과가 있다.As a means of solving the above problems, the present invention has the effect of enabling the quality judgment work of resistance spot welding to be automated and achieving reliability and speed in quality judgment.
또한, 본 발명은 품질 판단을 위해 시편을 물리적으로 파괴하는 공정이 생략될 수 있도록 하는 비파괴 공정을 통해 신속성을 향상시키고, 실시간으로 현장에 친화적인 품질 검사가 이루어질 수 있도록 하는 효과가 있다.In addition, the present invention has the effect of improving speed through a non-destructive process that allows the process of physically destroying the specimen to be omitted for quality judgment and enabling field-friendly quality inspection to be performed in real time.
도 1은, 본 발명의 제1실시예에 따른 레이저 스캐닝 기반 저항 점 용접 품질 판단 시스템의 구성도이다.1 is a configuration diagram of a laser scanning-based resistance spot welding quality judgment system according to a first embodiment of the present invention.
도 2는, 본 발명의 제1실시예에 따른 레이저 스캐닝 기반 저항 점 용접 품질 판단 시스템의 모식도이다.Figure 2 is a schematic diagram of a laser scanning-based resistance spot welding quality judgment system according to the first embodiment of the present invention.
도 3은, 본 발명의 제1실시예에 따른 레이저 스캐닝 기반 저항 점 용접 품질 판단 방법의 흐름도이다.Figure 3 is a flowchart of a laser scanning-based resistance spot welding quality determination method according to the first embodiment of the present invention.
도 4는, 본 발명의 제1실시예에 따른 레이저 스캐닝 기반 저항 점 용접 품질 판단 방법 중 특성값측정단계의 흐름도이다.Figure 4 is a flowchart of the characteristic value measurement step in the laser scanning-based resistance spot welding quality determination method according to the first embodiment of the present invention.
도 5는, 레이저스캐닝을 통한 표면 압흔부 단면라인 확보 과정을 나타낸 도면이다.Figure 5 is a diagram showing the process of securing the cross-sectional line of the surface indentation through laser scanning.
도 6은, 확보된 단면라인(Cross section line)에서의 표면 특성값 중 압흔 직경 및 높이를 추출하는 과정을 나타낸 도면이다.Figure 6 is a diagram showing the process of extracting the indentation diameter and height from the surface characteristic values at the secured cross section line.
도 7은, 단면라인 선(line)들의 면(Plane) 변환 이미지 및 표면 특성값 (압흔 원주, 압흔 면적, 압흔 부피) 측정 영역을 나타낸 도면이다.Figure 7 is a diagram showing the plane conversion image of cross-section lines and the measurement area of surface characteristic values (indentation circumference, indentation area, indentation volume).
도 8은, 표면특성 값과 너겟직경 값에 대한 상관관계 그래프이다.Figure 8 is a correlation graph between surface property values and nugget diameter values.
도 9는, 단면라인 이미지에서 굴곡 높이 측정 과정을 나타낸 도면이다.Figure 9 is a diagram showing the process of measuring the bending height in a cross-sectional line image.
도 10은, 본 발명의 제1실시예에 따른 결함검출단계의 상세 흐름도이다.Figure 10 is a detailed flowchart of the defect detection step according to the first embodiment of the present invention.
도 11은, 본 발명의 제1실시예에 따른 엣지용접결함 검출단계의 흐름도이다.Figure 11 is a flowchart of the edge welding defect detection step according to the first embodiment of the present invention.
도 12는, 엣지용접결함 판정을 위한 단면라인 분석 과정을 나타낸 도면이다. Figure 12 is a diagram showing the cross-sectional line analysis process for determining edge welding defects.
도 13은, 본 발명의 제1실시예에 따른 전극마모결함 검출단계의 흐름도이다.Figure 13 is a flowchart of the electrode wear defect detection step according to the first embodiment of the present invention.
도 14는, 마모전극 용접부의 레이저 스캐닝 단면 이미지로, (a)는 정상전극 및 마모전극 용접부의 스캐닝 단면이미지, (b)는 마모결함 판정을 위한 과정을 나타낸 도면이다.Figure 14 is a laser scanning cross-sectional image of a wear electrode welded portion, (a) is a scanning cross-sectional image of a normal electrode and a worn electrode welded portion, and (b) is a diagram showing the process for determining a wear defect.
도 15는, 정상 전극 및 마모 전극 적용 용접부 비교 및 결함 판정을 위한 분석 과정을 나타낸 도면으로, (a)는 정상 전극 적용 용접부의 단면 이미지, (b)는 마모된 전극 적용 용접부의 단면 이미지이다. Figure 15 is a diagram showing the analysis process for comparing and determining defects in welds to which normal electrodes and worn electrodes are applied. (a) is a cross-sectional image of a weld to which normal electrodes are applied, and (b) is a cross-sectional image of a weld to which worn electrodes are applied.
도 16은, 본 발명의 제1실시예에 따른 전극 오정렬 결함 검출단계의 흐름도이다.Figure 16 is a flowchart of the electrode misalignment defect detection step according to the first embodiment of the present invention.
도 17은, 전극 오정렬 및 표면날림 결함 판정을 위한 단면라인 최고점 기반 분석 과정을 나타낸 도면이다.Figure 17 is a diagram showing the analysis process based on the highest point of the cross-sectional line for determining electrode misalignment and surface flaking defects.
도 18은, 전극 오정렬 및 표면날림 결함 판정을 위한 단면라인 최저점 기반 분석 과정을 나타낸 도면이다.Figure 18 is a diagram showing the analysis process based on the lowest point of the cross-sectional line for determining electrode misalignment and surface flaking defects.
본 명세서에서 사용되는 용어에 대해 간략히 설명하고, 본 발명에 대해 구체적으로 설명하기로 한다.The terms used in this specification will be briefly explained, and the present invention will be described in detail.
본 발명에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.The terms used in the present invention are general terms that are currently widely used as much as possible while considering the function in the present invention, but this may vary depending on the intention or precedent of a person working in the art, the emergence of new technology, etc. Therefore, the terms used in the present invention should be defined based on the meaning of the term and the overall content of the present invention, rather than simply the name of the term.
명세서 전체에서 어떤 부분이 어떤 구성요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.When a part in the entire specification is said to “include” a certain element, this means that it does not exclude other elements but may further include other elements, unless specifically stated to the contrary.
아래에서는 첨부한 도면을 참고하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Below, with reference to the attached drawings, embodiments of the present invention will be described in detail so that those skilled in the art can easily implement the present invention. However, the present invention may be implemented in many different forms and is not limited to the embodiments described herein.
본 발명에 대한 해결하고자 하는 과제, 과제의 해결 수단, 발명의 효과를 포함한 구체적인 사항들은 다음에 기재할 실시 예 및 도면들에 포함되어 있다. 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다.Specific details, including the problem to be solved by the present invention, the means for solving the problem, and the effect of the invention, are included in the examples and drawings described below. The advantages and features of the present invention and methods for achieving them will become clear by referring to the embodiments described in detail below along with the accompanying drawings.
이하, 첨부된 도면을 참조하여 본 발명의 레이저 스캐닝 기반 저항 점 용접 품질 판단 시스템 및 방법에 대해 설명하기로 한다.Hereinafter, the laser scanning-based resistance spot welding quality determination system and method of the present invention will be described with reference to the attached drawings.
먼저, 도 1 내지 도 2를 참조하면, 본 발명은, 한 쌍의 전극에 의해 가압되며 용접되는 저항 점 용접의 품질을 판단하는 레이저 스캐닝 기반 저항 점 용접 품질 판단 시스템에 있어서, 상기 저항 점 용접을 수행하는 용접기(100), 상기 용접기(100)에 의해 용접된 표면을 3D스캐닝하는 레이저스캐너(200) 및, 상기 레이저스캐너(200)에 의해 스캔된 이미지를 통해 표면 압흔의 직경, 높이, 면적 및 부피 중 어느 하나 이상인 특성값을 측정하고, 상기 용접기(100)를 제어하는 제어부(300)를 포함한다. 그리고, 상기 제어부(300)는, 상기 특성값을 통해 저항 점 용접의 너겟 직경을 예측하고, 용접품질 결함이 판단될 수 있도록 하는 것을 특징으로 한다.First, referring to FIGS. 1 and 2, the present invention provides a laser scanning-based resistance spot welding quality judgment system that determines the quality of resistance spot welding that is pressed and welded by a pair of electrodes, and the resistance spot welding is A welder 100, a laser scanner 200 that 3D scans the surface welded by the welder 100, and an image scanned by the laser scanner 200 to determine the diameter, height, area and It includes a control unit 300 that measures one or more characteristic values of the volume and controls the welder 100. In addition, the control unit 300 is characterized in that it predicts the nugget diameter of resistance spot welding through the characteristic values and allows welding quality defects to be determined.
보다 상세히, 상기 용접기(100)는, 두 금속 판재를 맞대고 한 쌍의 전극을 통해 압력과 전류를 통전하여 발생되는 저항 열을 통해 상기 두 금속이 접합되도록 하는 저항 점 용접을 수행한다. 또한, 상기 용접기(100)는, 상기 제어부(300)에 의해 제어되어 전극이 가하는 압력, 통전 전압, 전극 위치 정렬이 제어될 수 있다. 이때, 상기 금속 판재는, 주로 Steel이나 Al 소재로 사용되며, 이러한 금속 판재가 저항 점 용접에 의해 접합되는 경우, 용접 너겟과 압흔이 형성되며 상기 압흔 및 너겟의 검사를 통해 용접 품질의 확인이 가능하다. More specifically, the welder 100 performs resistance spot welding in which two metal plates are joined together through resistance heat generated by touching two metal plates and passing pressure and current through a pair of electrodes. In addition, the welder 100 can be controlled by the control unit 300 to control the pressure applied to the electrode, the energizing voltage, and the electrode position alignment. At this time, the metal sheet is mainly used as a steel or Al material. When these metal sheets are joined by resistance spot welding, welding nuggets and indentations are formed, and welding quality can be confirmed through inspection of the indentations and nuggets. do.
또한, 상기 레이저스캐너(200)는, 상기 용접기(100)의 일측에 마련되어 저항 점 용접 공정이 이루어진 금속 판재에 생성된 너겟 및 압흔을 스캔하는 역할을 한다. 또한, 상기 레이저스캐너(200)는, 레이저 비전을 구비하여 용접부의 3D 이미지뿐만 아니라 2D 이미지도 획득할 수 있도록 한다. In addition, the laser scanner 200 is provided on one side of the welder 100 and serves to scan nuggets and indentations created on a metal plate on which a resistance spot welding process has been performed. In addition, the laser scanner 200 is equipped with a laser vision to obtain not only a 3D image but also a 2D image of the welded area.
또한, 상기 제어부(300)는, 상기 레이저스캐너(200)에 의해 스캔된 이미지를 통해 상기 압흔의 단면라인을 확보하여 상기 저항 점 용접의 엣지용접결함, 상기 용접기의 전극 마모결함, 전극 오정렬 및 표면날림 결함을 판단하고, 상기 결함에 따라 상기 용접기의 전극 교체, 재정렬이 이루어질 수 있도록 한다. In addition, the control unit 300 secures the cross-sectional line of the indentation through the image scanned by the laser scanner 200 to detect edge welding defects of the resistance spot welding, electrode wear defects of the welder, electrode misalignment, and surface A blowing defect is determined, and the electrodes of the welder can be replaced or realigned according to the defect.
일례로, 상기 제어부(300)는, 하기 예측식1 내지 예측식3을 통해 여러 형태의 전극과 소재에 따른 너겟직경이 예측될 수 있도록 한다.For example, the control unit 300 enables nugget diameters according to various types of electrodes and materials to be predicted through prediction equations 1 to 3 below.
하기 예측식1은 판재가 Steel 소재일 때, Dome 타입의 전극을 사용한 저항 점 용접의 표면특성 값을 통해 너겟직경이 예측될 수 있도록 한다. Prediction equation 1 below allows the nugget diameter to be predicted through the surface characteristic values of resistance spot welding using a dome-type electrode when the plate is made of steel.
[예측식1][Prediction Equation 1]
y = (1.714D - 4.729)mm, y = (1.714D - 4.729)mm,
y = (23.325H + 0.123)mm, y = (23.325H + 0.123)mm,
y = (0.436C - 2.947)mm, y = (0.436C - 2.947)mm,
y = (0.213A - 0.477)mm, y = (0.213A - 0.477)mm,
y = (1.049V + 1.646)mm, y = (1.049V + 1.646)mm,
y = (-2.94 - 0.197A + 3.7C + 0.196V - 10.2D + 15.05H)mmy = (-2.94 - 0.197A + 3.7C + 0.196V - 10.2D + 15.05H)mm
이때, D는 압흔 직경, C는 압흔 원주, A는 압흔 면적, V는 압흔 부피의 값이다.At this time, D is the indentation diameter, C is the indentation circumference, A is the indentation area, and V is the indentation volume.
하기 예측식2는 판재가 Al 소재일 때, Radius 타입의 전극을 사용한 저항 점 용접의 표면특성 값을 통해 너겟직경이 예측될 수 있도록 한다. Prediction equation 2 below allows the nugget diameter to be predicted through the surface characteristic values of resistance spot welding using a radius type electrode when the plate is made of Al.
[예측식2][Prediction Equation 2]
y = (1.404D - 7.066)mm, y = (1.404D - 7.066)mm,
y = (27.133H + 3.823)mm, y = (27.133H + 3.823)mm,
y = (0.447C - 7.066)mm, y = (0.447C - 7.066)mm,
y = (0.097A - 0.816)mm, y = (0.097A - 0.816)mm,
y = (0.74V + 4.503)mm, y = (0.74V + 4.503)mm,
y = (8.3 + 0.129A - 1.38D + 1.8C + 0.258V + 10.8H)mmy = (8.3 + 0.129A - 1.38D + 1.8C + 0.258V + 10.8H)mm
하기 예측식3은 판재가 Al 소재일 때, Multi-ring 타입의 전극을 사용한 저항 점 용접의 표면특성 값을 통해 너겟직경이 예측될 수 있도록 한다. Prediction equation 3 below allows the nugget diameter to be predicted through the surface characteristic values of resistance spot welding using a multi-ring type electrode when the plate is made of Al.
[예측식3][Prediction Equation 3]
y = (0.772D - 1.565)mm, y = (0.772D - 1.565)mm,
y = (26.071H + 3.004)mm, y = (26.071H + 3.004)mm,
y = (0.245C - 1.562)mm, y = (0.245C - 1.562)mm,
y = (0.061A + 1.453)mm, y = (0.061A + 1.453)mm,
y = (1.119V + 3.401)mm y = (1.119V + 3.401)mm
이하에서는, 본 발명에 따른 레이저 스캐닝 기반 저항 점 용접 품질 판단 방법에 대해 설명하기로 한다.Hereinafter, the laser scanning-based resistance spot welding quality determination method according to the present invention will be described.
도 3을 참조하면, 레이저 스캐닝 기반 저항 점 용접 품질 판단 시스템을 이용한 레이저 스캐닝 기반 저항 점 용접 품질 판단 방법에 있어서, 상기 레이저스캐너(200)에 의하여, 상기 저항 점 용접 표면에 대한 이미지가 스캔될 수 있도록 하는 레이저스캔단계(S100), 상기 제어부(300)에 의하여, 상기 이미지를 통해 저항 점 용접에 의한 압흔의 직경, 높이, 면적 및 부피로 구성되는 특성값이 측정될 수 있도록 하는 특성값측정단계(S200), 상기 제어부(300)에 의하여, 상기 특성값을 통해 너겟직경이 예측될 수 있도록 하는 용접품질판단단계(S300), 상기 제어부(300)에 의하여, 상기 이미지를 통해 저항 점 용접의 결함이 판단될 수 있도록 하는 결함검출단계(S400) 및 상기 제어부(300)에 의하여, 상기 결함에 따라 상기 용접기(100)의 전극이 교체되거나 재정렬 될 수 있도록 하는 용접기교정단계(S500)를 포함한다. 그리고, 상기 용접기교정단계(S500)는, 비파괴 검사로 수행되는 상기 저항 점 용접의 너겟직경 예측과 결함 판단을 기반으로 용접기(100)가 교정될 수 있도록 한다.Referring to FIG. 3, in the laser scanning-based resistance spot welding quality judgment method using the laser scanning-based resistance spot welding quality judgment system, an image of the resistance spot welding surface can be scanned by the laser scanner 200. A laser scanning step (S100) that allows the control unit 300 to measure characteristic values consisting of the diameter, height, area, and volume of the indentation by resistance spot welding through the image. (S200), a welding quality judgment step (S300) in which the nugget diameter can be predicted through the characteristic values by the control unit 300, and a defect in resistance spot welding through the image by the control unit 300. It includes a defect detection step (S400) that allows this to be determined and a welder calibration step (S500) that allows the control unit 300 to replace or realign the electrodes of the welder 100 according to the defect. And, the welder calibration step (S500) allows the welder 100 to be calibrated based on nugget diameter prediction and defect determination of the resistance spot welding performed through non-destructive testing.
보다 상세히, 상기 레이저스캔단계(S100)는, 레이저스캐너(200)를 통해 상기 저항 점 용접의 표면을 스캔하여, 용접부의 압흔 직경, 높이, 면적 및 부피에 대한 이미지가 수집될 수 있도록 한다.More specifically, in the laser scanning step (S100), the surface of the resistance spot weld is scanned through the laser scanner 200, so that images of the indentation diameter, height, area, and volume of the weld portion can be collected.
다음으로, 상기 특성값측정단계(S200)는, 상기 제어부(300)를 통해 상기 레이저스캐너(200)에 의해 수집된 이미지를 처리하여 상기 압흔 직경, 높이, 원주, 면적, 부피를 포함하는 특성값이 생성될 수 있도록 한다. 보다 상세히, 도 4를 참조하면, 상기 특성값측정단계(S200)는, 상기 제어부(300)에 의하여, 상기 레이저스캐너(200)에 의해 측정된 3D 이미지를 통해 압흔의 2D 단면라인이 추출될 수 있도록 하는 단면라인추출단계(S210) 및, 상기 제어부(300)에 의하여, 상기 2D 단면라인을 통해 상기 특성값이 추출될 수 있도록 하는 특성값추출단계(S220)를 포함한다.Next, in the characteristic value measurement step (S200), the image collected by the laser scanner 200 is processed through the control unit 300 to obtain characteristic values including the indentation diameter, height, circumference, area, and volume. Allow this to be created. In more detail, referring to FIG. 4, in the characteristic value measurement step (S200), the 2D cross-sectional line of the indentation can be extracted by the control unit 300 through the 3D image measured by the laser scanner 200. It includes a cross-sectional line extraction step (S210) and a characteristic value extraction step (S220) that allows the control unit 300 to extract the characteristic value through the 2D cross-sectional line.
상기 단면라인추출단계(S210)는, 상기 레이저스캐너(200)에 의해 수집된 이미지 위에 2D 단면라인이 형성되도록 한다. 일례로, 도 5의 (b), (c)를 참조하면, 상기 단면라인추출단계(S210)는, 압흔부 이미지에서 압흔부 외부에 압흔부보다 직경이 10mm 큰 원형 라인이 형성되도록 한다. 또한, 상기 단면라인추출단계(S210)는, 원형 라인의 일 지점(R1)을 기준으로, 상기 일 지점(R1)과 원형 라인에 접하고 원형 라인의 직경과 같은 길이의 접선(n1)이 형성되도록 한다. 또한, 상기 단면라인추출단계(S210)는, 상기 접선(n1)에 수직방향으로 0.02mm 간격의 교차라인이 적어도 500개 이상 나열되도록 하여 2D 단면라인이 형성되도록 한다. 이때, 형성된 2D 단면라인은 도 5의 (d)와 같이 형성될 수 있다.The cross-sectional line extraction step (S210) causes a 2D cross-sectional line to be formed on the image collected by the laser scanner 200. For example, referring to (b) and (c) of Figures 5, the cross-sectional line extraction step (S210) causes a circular line with a diameter of 10 mm larger than the indentation to be formed outside the indentation in the indentation image. In addition, in the section line extraction step (S210), based on a point (R1) of the circular line, a tangent (n1) is formed that is in contact with the point (R1) and the circular line and has a length equal to the diameter of the circular line. do. In addition, in the section line extraction step (S210), a 2D section line is formed by arranging at least 500 intersection lines at intervals of 0.02 mm in the direction perpendicular to the tangent n1. At this time, the formed 2D cross-section line may be formed as shown in (d) of FIG. 5.
상기 특성값추출단계(S220)는, 상기 단면라인추출단계(S210)에서 형성된 2D 단면라인으로부터 압흔부의 특성값이 추출될 수 있도록 한다. 도 6을 참조하면, 상기 특성값추출단계(S220)는, 상기 2D 단면라인에서 모재의 높이 기준으로 20㎛ 낮은 지점을 압흔의 시작 영역이라고 선정하며 양쪽 모재에서 지정된 압흔의 시작점을 연결하는 평행선을 형성한다. 이후, 상기 2D 단면라인의 양측 길이로부터 상기 표면 특성값 중 하나인 압흔 직경을 추출한다(S220). 또한, 상기 특성값추출단계(S220)는, 압흔 시작점을 연결하는 평행선과 단면라인에서 가장 낮은 값을 가지는 지점을 연결하여 압흔 높이 값을 추출한다. 또한, 상기 특성값추출단계(S220)는, 도 5의 (a)와 같이, 일 지점의 접선(n1)에서 약 500개 내지 600개의 압흔 길이 및 직경 값을 추출한 후, 기준으로 삼았던 점(R1)의 각도를 원주를 따라 10˚를 이동시키며 기준 원을 360˚ 회전할 때까지 특성값 추출을 반복하여 상기 압흔 직경 및 높이의 값을 추출한다. 또한, 도 7을 참조하면, 상기 특성값추출단계(S220)는, 다수개의 단면라인에 의해 추출된 압흔 직경값을 활용하여, 표면 특성값 중 하나인 압흔 원주를 추출할 수 있다. 또한, 상기 특성값추출단계(S220)는, 다수개의 단면라인을 면으로 변환하여 압흔 시작점을 기준으로, 표면 특성값 중 하나인 압흔 면적 및 부피가 추출될 수 있도록 한다.The characteristic value extraction step (S220) allows the characteristic value of the indentation portion to be extracted from the 2D cross-section line formed in the cross-section line extraction step (S210). Referring to FIG. 6, in the characteristic value extraction step (S220), a point 20㎛ lower than the height of the base material on the 2D cross-section line is selected as the start area of the indentation, and a parallel line connecting the starting point of the designated indentation on both base materials is drawn. form Afterwards, the indentation diameter, which is one of the surface characteristic values, is extracted from the lengths of both sides of the 2D cross-section line (S220). In addition, in the characteristic value extraction step (S220), the indentation height value is extracted by connecting a parallel line connecting the indentation start point and the point with the lowest value on the cross-sectional line. In addition, in the characteristic value extraction step (S220), as shown in (a) of FIG. 5, about 500 to 600 indentation length and diameter values are extracted from the tangent line (n1) at one point, and then the reference point ( The angle of R1) is moved 10° along the circumference and the characteristic value extraction is repeated until the reference circle is rotated 360° to extract the values of the indentation diameter and height. Additionally, referring to FIG. 7, in the characteristic value extraction step (S220), the indentation circumference, which is one of the surface characteristic values, can be extracted by utilizing the indentation diameter value extracted by a plurality of cross-sectional lines. In addition, the characteristic value extraction step (S220) converts a plurality of cross-sectional lines into surfaces so that the indentation area and volume, which are one of the surface characteristic values, can be extracted based on the indentation start point.
다음으로, 상기 용접품질판단단계(S300)는, 상기 특성값측정단계(S200)에서 측정된 특성값을 통해 너겟직경을 예측하여 용접의 품질이 판단될 수 있도록 한다. 도 8은, 너겟직경에 따른 표면 특성값의 상관관계 그래프이다. 상기 용접품질판단단계(S300)에서는, 상기 제어부(300)에 의하여, 너겟직경에 따른 표면 특성값의 상관관계로부터 도출된 너겟직경을 예측하는 하기 예측식1 내지 예측식3을 통해 여러 형태의 전극과 소재에 따른 너겟직경이 예측될 수 있도록 한다.Next, in the welding quality judgment step (S300), the nugget diameter is predicted through the characteristic values measured in the characteristic value measurement step (S200) so that the quality of the weld can be judged. Figure 8 is a correlation graph of surface characteristic values according to nugget diameter. In the welding quality judgment step (S300), various types of electrodes are used by the control unit 300 through the following prediction equations 1 to 3 to predict the nugget diameter derived from the correlation of surface characteristic values according to the nugget diameter. and material so that the nugget diameter can be predicted.
[예측식1][Prediction Equation 1]
y = (1.714D - 4.729)mm, y = (1.714D - 4.729)mm,
y = (23.325H + 0.123)mm, y = (23.325H + 0.123)mm,
y = (0.436C - 2.947)mm, y = (0.436C - 2.947)mm,
y = (0.213A - 0.477)mm, y = (0.213A - 0.477)mm,
y = (1.049V + 1.646)mm, y = (1.049V + 1.646)mm,
y = (-2.94 - 0.197A + 3.7C + 0.196V - 10.2D + 15.05H)mmy = (-2.94 - 0.197A + 3.7C + 0.196V - 10.2D + 15.05H)mm
이때, D는 압흔 직경, C는 압흔 원주, A는 압흔 면적, V는 압흔 부피의 값이다.At this time, D is the indentation diameter, C is the indentation circumference, A is the indentation area, and V is the indentation volume.
하기 예측식2는 판재가 Al 소재일 때, Radius 타입의 전극을 사용한 저항 점 용접의 표면특성 값을 통해 너겟직경이 예측될 수 있도록 한다. Prediction equation 2 below allows the nugget diameter to be predicted through the surface characteristic values of resistance spot welding using a radius type electrode when the plate is made of Al.
[예측식2][Prediction Equation 2]
y = (1.404D - 7.066)mm, y = (1.404D - 7.066)mm,
y = (27.133H + 3.823)mm, y = (27.133H + 3.823)mm,
y = (0.447C - 7.066)mm, y = (0.447C - 7.066)mm,
y = (0.097A - 0.816)mm, y = (0.097A - 0.816)mm,
y = (0.74V + 4.503)mm, y = (0.74V + 4.503)mm,
y = (8.3 + 0.129A - 1.38D + 1.8C + 0.258V + 10.8H)mmy = (8.3 + 0.129A - 1.38D + 1.8C + 0.258V + 10.8H)mm
하기 예측식3은 판재가 Al 소재일 때, Multi-ring 타입의 전극을 사용한 저항 점 용접의 표면특성 값을 통해 너겟직경이 예측될 수 있도록 한다. Prediction equation 3 below allows the nugget diameter to be predicted through the surface characteristic values of resistance spot welding using a multi-ring type electrode when the plate is made of Al.
[예측식3][Prediction Equation 3]
y = (0.772D - 1.565)mm, y = (0.772D - 1.565)mm,
y = (26.071H + 3.004)mm, y = (26.071H + 3.004)mm,
y = (0.245C - 1.562)mm, y = (0.245C - 1.562)mm,
y = (0.061A + 1.453)mm, y = (0.061A + 1.453)mm,
y = (1.119V + 3.401)mm y = (1.119V + 3.401)mm
이때, 상기 용접기(100)가 Multi-ring 전극을 이용하여 저항 점 용접을 수행하는 경우의 너겟직경을 예측하는 예측식3은, 도 9와 같이, 단면라인에서 0.05mm 이상 높이의 굴곡 개수를 가지는 단면라인의 굴곡 개수 값을 통해 도출된다.At this time, prediction equation 3, which predicts the nugget diameter when the welder 100 performs resistance spot welding using a multi-ring electrode, has a bend number of 0.05 mm or more in height from the cross-section line, as shown in Figure 9. It is derived through the value of the number of bends in the cross-section line.
다음으로, 상기 결함검출단계(S400)는, 상기 레이저스캐너(200)에 의해 수집된 이미지를 처리하여 형성된 상기 단면라인으로부터 엣지용접결함, 전극마모결함, 표면날림 결함을 포함한 용접 결함을 검출하는 역할을 한다. 보다 상세히, 도 10을 참조하면, 상기 결함검출단계(S400)는, 상기 저항 점 용접의 엣지용접결함을 검출하는 엣지용접결함 검출단계(S410), 상기 용접기(100)의 전극 마모결함을 검출하는 전극마모결함 검출단계(S420) 및, 상기 저항 점 용접의 전극 오정렬 및 표면날림 결함을 검출하는 전극 오정렬 검출단계(S430)를 포함한다.Next, the defect detection step (S400) serves to detect welding defects, including edge welding defects, electrode wear defects, and surface flaking defects, from the cross-section line formed by processing the image collected by the laser scanner 200. Do it. In more detail, referring to FIG. 10, the defect detection step (S400) includes an edge welding defect detection step (S410) of detecting an edge welding defect of the resistance spot welding, and an edge welding defect detection step (S410) of detecting an electrode wear defect of the welder 100. It includes an electrode wear defect detection step (S420) and an electrode misalignment detection step (S430) for detecting electrode misalignment and surface flaking defects of the resistance spot welding.
도 11 및 도 12를 참조하여, 상기 엣지용접결함 검출단계(S410)는, 상기 제어부(300)에 의하여, 상기 특성값측정단계(S200)에서 추출한 단면라인을 기반으로 압흔 시작점(S)에서 압흔의 원심 방향으로 1mm 이격된 지점(E)의 높이와 시작점(S)의 높이 차이를 비교한다. 이후, 상기 이격된 지점(E)과 시작점(S)의 높이 차이가 0.5mm 보다 작다면 엣지용접결함이라고 판단될 수 있도록 한다(S411). 반면, 상기 이격된 지점(E)과 시작점(S)의 높이 차이가 0.5mm 보다 크다면 엣지용접결함이라고 판단될 수 있도록 한다(S412).Referring to Figures 11 and 12, the edge welding defect detection step (S410) is performed by the control unit 300, at the indentation start point (S) based on the cross-sectional line extracted in the characteristic value measurement step (S200). Compare the height difference between the height of the point (E), which is 1 mm apart in the centrifugal direction, and the starting point (S). Afterwards, if the height difference between the spaced point (E) and the starting point (S) is less than 0.5 mm, it can be judged to be an edge welding defect (S411). On the other hand, if the height difference between the spaced point (E) and the starting point (S) is greater than 0.5 mm, it can be judged to be an edge welding defect (S412).
도 13 및 도 14를 참조하여, 상기 전극마모결함 검출단계(S420)는, 상기 제어부(300)에 의하여, 상기 특성값측정단계(S200)에서 추출한 단면라인을 기반으로 압흔 시작점과 단면라인 저점에 교차되는 가로선을 연결하는 연결선을 형성하고, 가로선과 연결선의 각도를 통해 전극마모결함이 판단될 수 있도록 한다. 먼저, 상기 특성값측정단계(S200)에서 추출한 단면라인을 기반으로 가장 낮은 높이 값을 나타내는 최지점으로부터 좌우 3mm 내 지점에 단면라인과 교차되는 가로선을 형성한다(S421). 또한, 상기 가로선과 단면라인의 교차점으로부터 상기 교차점과 인접한 압흔 시작점이 연결되는 연결선을 형성한다(S422). 또한, 상기 가로선과 연결선의 각도(
Figure PCTKR2023005764-appb-img-000001
)를 측정한다(S423). 또한, 상기 가로선과 연결선의 각도(
Figure PCTKR2023005764-appb-img-000002
)가 비교될 수 있도록 한다(S424). 이때, 상기 가로선과 연결선의 각도(
Figure PCTKR2023005764-appb-img-000003
)가 130° 이상이면 전극마모결함이라고 판단될 수 있도록 한다(S425). 이후, 상기 가로선과 연결선의 각도가 130° 미만인 경우, 도 13 및 도 15를 참조하여, 상기 단면라인에서 가장 낮은 높이 값을 나타내는 최저점을 기준으로, 좌우 3mm 내 지점의 단면라인과 교차되는 가로선을 형성한다(S426). 그리고, 상기 단면라인의 위 상기 가로선과의 교차점 및 상기 교차점과 인접한 두 압흔 시작점이 각각 연결되도록 하는 연결선을 다수개 형성한다(S426). 또한, 상기 연결선 중 상기 가로선과의 각도가 최대를 이루도록 하는 연결선이 선별될 수 있도록 한다(S426). 그리고, 상기 가로선이 선별된 두 연결선에 각각 교차되며 형성된 두 교차점 간 거리 D를 측정한다(S427). 이후, 상기 두 교차점 간 거리 D가 2.5mm보다 초과되는지 비교한다(S428). 이때, 상기 두 교차점 간 거리 D가 2.5mm 이상인 경우 전극마모결함이라고 판단될 수 있도록 한다(S429). 그리고, 상기 두 교차점 간 거리D가 2.5mm 이하인 경우 정상용접이라고 판단될 수 있도록 한다(S430).
13 and 14, the electrode wear defect detection step (S420) is performed by the control unit 300 at the indentation start point and the low point of the cross-section line based on the cross-section line extracted in the characteristic value measurement step (S200). A connection line is formed connecting the intersecting horizontal lines, and electrode wear defects can be determined through the angle of the horizontal line and the connection line. First, based on the cross-section line extracted in the characteristic value measurement step (S200), a horizontal line that intersects the cross-section line is formed at a point within 3 mm on the left and right from the highest point representing the lowest height value (S421). Additionally, a connection line is formed from the intersection of the horizontal line and the cross-sectional line to the indentation start point adjacent to the intersection (S422). In addition, the angle between the horizontal line and the connecting line (
Figure PCTKR2023005764-appb-img-000001
) is measured (S423). In addition, the angle between the horizontal line and the connecting line (
Figure PCTKR2023005764-appb-img-000002
) can be compared (S424). At this time, the angle between the horizontal line and the connecting line (
Figure PCTKR2023005764-appb-img-000003
) is greater than 130°, it can be judged to be an electrode wear defect (S425). Thereafter, when the angle between the horizontal line and the connecting line is less than 130°, with reference to FIGS. 13 and 15, a horizontal line is drawn that intersects the cross-section line at a point within 3 mm left and right based on the lowest point representing the lowest height value in the cross-section line. Form (S426). Then, a plurality of connection lines are formed to connect the intersection point of the cross-sectional line with the horizontal line and the two indentation start points adjacent to the intersection point (S426). In addition, among the connection lines, the connection line that maximizes the angle with the horizontal line can be selected (S426). Then, the horizontal line intersects each of the two selected connection lines, and the distance D between the two intersection points formed is measured (S427). Afterwards, it is compared whether the distance D between the two intersection points exceeds 2.5 mm (S428). At this time, if the distance D between the two intersection points is 2.5 mm or more, it can be judged to be an electrode wear defect (S429). Also, if the distance D between the two intersection points is 2.5 mm or less, it can be judged as normal welding (S430).
도 16을 참조하여, 상기 전극 오정렬 검출단계(S430)는, 상기 제어부(300)에 의하여, 상기 용접기(100)의 전극이 오정렬인 경우 너겟의 형상이 편방향으로 형성되어 표면날림이 발생되는 결함이 검출될 수 있도록 한다. 먼저, 상기 특성값측정단계(S200)에서 추출된 단면라인 중에서 압흔 직경이 최대로 나타나는 단면라인을 선별한다(S431). 또한, 도 17을 참조하여, 상기 압흔 직경이 최대인 단면라인에서 양측의 압흔 시작점(S1,S2)을 연결하는 가로선이 형성되도록 한다(S432). 그리고, 상기 단면라인의 최고점(E)과 압흔 시작점(S1)을 연결하는 상부연결선이 형성되도록 한다(S433). 또한, 상기 가로선과 상부연결선의 각도 α가 측정될 수 있도록 한다(S434). 이후, 도 18을 참조하여, 상기 단면라인의 최저점(L)과 압흔 시작점(S2)을 연결하는 하부연결선이 형성되도록 한다(S435). 그리고, 상기 하부연결선과 가로선의 각도 β가 측정될 수 있도록 한다(S436). 이후, 하기 예측식4에 각도 α, β를 대입하여 각도 θ1 θ2가 도출될 수 있도록 한다(S437). Referring to FIG. 16, in the electrode misalignment detection step (S430), when the electrode of the welder 100 is misaligned by the control unit 300, the shape of the nugget is formed in one direction, resulting in surface flaking. so that it can be detected. First, the cross-sectional line with the maximum indentation diameter is selected from among the cross-sectional lines extracted in the characteristic value measurement step (S200) (S431). Also, referring to FIG. 17, a horizontal line is formed connecting the indentation starting points S1 and S2 on both sides of the cross-sectional line where the indentation diameter is the maximum (S432). Then, an upper connection line is formed connecting the highest point (E) of the cross-sectional line and the indentation start point (S1) (S433). Additionally, the angle α between the horizontal line and the upper connection line can be measured (S434). Thereafter, with reference to FIG. 18, a lower connection line is formed connecting the lowest point (L) of the cross-sectional line and the indentation start point (S2) (S435). Then, the angle β between the lower connection line and the horizontal line can be measured (S436). Afterwards, by substituting the angles α and β into the prediction equation 4 below, the angles θ 1 and Allow θ 2 to be derived (S437).
[예측식4][Prediction Equation 4]
θ1 = 2.1α + 0.416 θ 1 = 2.1α + 0.416
θ2 = -3.76β + 17.42θ 2 = -3.76β + 17.42
이때, 각도 θ1 보다 θ2가 크다면 전극 오정렬 결함이라고 판단될 수 있도록 한다(S438). 반면, 각도 θ1 보다 θ2가 작다면 정상용접이라고 판단될 수 있도록 한다(S439).At this time, the angle θ is greater than 1 If θ 2 is large, it can be judged to be an electrode misalignment defect (S438). On the other hand, angle θ greater than 1 If θ 2 is small, it can be judged as normal welding (S439).
다음으로, 상기 용접기교정단계(S500)는, 상기 제어부(300)에 의하여, 상기 결함검출단계(S400)에서 판단된 결함의 종류와 결함정도에 따라 용접기(100)의 전극이 교체되거나 재정렬 될 수 있도록 하여 용접품질이 유지될 수 있도록 한다.Next, in the welder calibration step (S500), the electrodes of the welder 100 can be replaced or realigned by the control unit 300 according to the type and degree of defect determined in the defect detection step (S400). Ensure that welding quality is maintained.
따라서, 본 발명은, 저항 점 용접의 품질 판단 작업이 자동화 될 수 있도록 하며, 품질 판단에 대한 신뢰성 및 신속성을 얻을 수 있다는 효과가 있다. 또한, 본 발명은 품질 판단을 위해 시편을 물리적으로 파괴하는 공정이 생략될 수 있도록 하는 비파괴 공정을 통해 신속성을 향상시키고, 실시간으로 현장에 친화적인 품질 검사가 이루어질 수 있도록 하는 효과가 있다. Therefore, the present invention has the effect of enabling the quality judgment work of resistance spot welding to be automated and achieving reliability and speed in quality judgment. In addition, the present invention has the effect of improving speed through a non-destructive process that allows the process of physically destroying the specimen to be omitted for quality judgment and enabling field-friendly quality inspection to be performed in real time.
이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 하고, 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타나며, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The embodiments described above should be understood in all respects as illustrative and not restrictive, and the scope of the present invention is indicated by the claims described later rather than the detailed description above, and the meaning and scope of the claims and their equivalents. All changes or modified forms derived from the concept should be construed as falling within the scope of the present invention.
[부호의 설명][Explanation of symbols]
100 : 용접기100: welder
200 : 레이저스캐너200: Laser scanner
300 : 제어부300: control unit

Claims (5)

  1. 한 쌍의 전극에 의해 가압되며 용접되는 저항 점 용접의 품질을 판단하는 레이저 스캐닝 기반 저항 점 용접 품질 판단 시스템에 있어서, In a laser scanning-based resistance spot welding quality judgment system that determines the quality of resistance spot welding that is pressed and welded by a pair of electrodes,
    상기 저항 점 용접을 수행하는 용접기;a welder performing the resistance spot welding;
    상기 용접기에 의해 용접된 표면을 3D스캐닝하는 레이저스캐너; 및A laser scanner for 3D scanning the surface welded by the welder; and
    상기 레이저스캐너에 의해 스캔된 이미지를 통해 표면 특성값을 측정하고, 상기 용접기를 제어하는 제어부;를 포함하고,It includes a control unit that measures surface characteristic values through the image scanned by the laser scanner and controls the welder,
    상기 제어부는, 상기 특성값을 통해 저항 점 용접의 너겟 직경을 예측하고, 용접품질 결함이 판단될 수 있도록 하는 것을 특징으로 하는 것을 특징으로 하는 레이저 스캐닝 기반 저항 점 용접 품질 판단 시스템.The control unit predicts the nugget diameter of resistance spot welding through the characteristic values and allows welding quality defects to be determined. A laser scanning-based resistance spot welding quality judgment system.
  2. 제1항에 있어서,According to paragraph 1,
    상기 제어부는,The control unit,
    상기 레이저스캐너에 의해 스캔된 이미지를 통해 상기 압흔의 단면라인을 확보하여 상기 저항 점 용접의 엣지용접결함, 상기 용접기의 전극 마모결함, 전극 오정렬 및 표면날림 결함을 판단하고, 상기 결함에 따라 상기 용접기의 전극 교체, 재정렬이 이루어질 수 있도록 하는 것을 특징으로 하는 레이저 스캐닝 기반 저항 점 용접 품질 판단 시스템.The cross-sectional line of the indentation is secured through the image scanned by the laser scanner to determine edge welding defects of the resistance spot welding, electrode wear defects of the welder, electrode misalignment, and surface flaking defects, and according to the defects, the welder A laser scanning-based resistance spot welding quality judgment system that allows electrode replacement and realignment.
  3. 제1항의 레이저 스캐닝 기반 저항 점 용접 품질 판단 시스템을 이용한 레이저 스캐닝 기반 저항 점 용접 품질 판단 방법에 있어서,In the laser scanning-based resistance spot welding quality judgment method using the laser scanning-based resistance spot welding quality judgment system of claim 1,
    상기 레이저스캐너에 의하여, 상기 저항 점 용접 표면에 대한 이미지가 스캔될 수 있도록 하는 레이저스캔단계;a laser scanning step of allowing an image of the resistance spot welding surface to be scanned by the laser scanner;
    상기 제어부에 의하여, 상기 이미지를 통해 표면 특성값이 측정될 수 있도록 하는 특성값측정단계;A characteristic value measurement step of allowing surface characteristic values to be measured through the image by the control unit;
    상기 제어부에 의하여, 상기 특성값을 통해 너겟직경이 예측될 수 있도록 하는 용접품질판단단계;A welding quality judgment step of allowing the nugget diameter to be predicted by the control unit through the characteristic values;
    상기 제어부에 의하여, 상기 이미지를 통해 저항 점 용접의 결함이 판단될 수 있도록 하는 결함검출단계; 및 A defect detection step of allowing defects in resistance spot welding to be determined by the control unit through the image; and
    상기 제어부에 의하여, 상기 결함에 따라 상기 용접기의 전극이 교체되거나 재정렬 될 수 있도록 하는 용접기교정단계;를 포함하고,A welder calibration step of allowing the electrodes of the welder to be replaced or realigned according to the defect, by the control unit,
    상기 용접기교정단계는, 비파괴 검사로 수행되는 상기 저항 점 용접의 너겟직경 예측과 결함 판단을 기반으로 용접기가 교정될 수 있도록 하는 것을 특징으로 하는 레이저 스캐닝 기반 저항 점 용접 품질 판단 방법.The welder calibration step is a laser scanning-based resistance spot welding quality judgment method, characterized in that the welder is calibrated based on nugget diameter prediction and defect determination of the resistance spot welding performed by non-destructive testing.
  4. 제3항에 있어서,According to paragraph 3,
    상기 특성값측정단계는,The characteristic value measurement step is,
    상기 제어부에 의하여, 상기 레이저스캐너에 의해 측정된 3D 이미지를 통해 압흔의 2D 단면라인이 추출될 수 있도록 하는 단면라인추출단계; 및A cross-sectional line extraction step of allowing the 2D cross-sectional line of the indentation to be extracted by the control unit through the 3D image measured by the laser scanner; and
    상기 제어부에 의하여, 상기 2D 단면라인을 통해 상기 특성값이 추출될 수 있도록 하는 특성값추출단계;를 포함하는 것을 특징으로 하는 레이저 스캐닝 기반 저항 점 용접 품질 판단 방법.A laser scanning-based resistance spot welding quality judgment method comprising a characteristic value extraction step of allowing the characteristic value to be extracted through the 2D cross-section line by the control unit.
  5. 제3항에 있어서,According to paragraph 3,
    상기 결함검출단계는,The defect detection step is,
    상기 저항 점 용접의 엣지용접결함을 검출하는 엣지용접결함 검출단계;An edge welding defect detection step of detecting an edge welding defect of the resistance spot welding;
    상기 용접기의 전극 마모결함을 검출하는 전극마모결함 검출단계; 및An electrode wear defect detection step of detecting electrode wear defects of the welder; and
    상기 저항 점 용접의 전극 오정렬 및 표면날림 결함을 검출하는 전극 오정렬 검출단계;를 포함하는 것을 특징으로 하는 레이저 스캐닝 기반 저항 점 용접 품질 판단 방법.A laser scanning-based resistance spot welding quality judgment method comprising: an electrode misalignment detection step of detecting electrode misalignment and surface flaking defects of the resistance spot welding.
PCT/KR2023/005764 2022-04-27 2023-04-27 System and method for laser scanning-based resistance spot welding quality assessment WO2023211188A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220051876 2022-04-27
KR10-2022-0051876 2022-04-27

Publications (1)

Publication Number Publication Date
WO2023211188A1 true WO2023211188A1 (en) 2023-11-02

Family

ID=88508381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/005764 WO2023211188A1 (en) 2022-04-27 2023-04-27 System and method for laser scanning-based resistance spot welding quality assessment

Country Status (2)

Country Link
KR (1) KR102591938B1 (en)
WO (1) WO2023211188A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012139725A (en) * 2010-12-17 2012-07-26 Toho Technology Corp Spot welding automatic inspection device
US20160223477A1 (en) * 2015-01-30 2016-08-04 Toyota Motor Engineering & Manufacturing North America, Inc. Non-destructive quantitative weld quality measurement using radiographic imaging
KR101661665B1 (en) * 2016-03-21 2016-10-04 (주)디엠소프트 Device and method for inspecting welding quality using vision system
KR20170119901A (en) * 2016-04-20 2017-10-30 아진산업(주) Weld bead detecting apparatus
KR20210036522A (en) * 2019-09-26 2021-04-05 삼성중공업 주식회사 Welding defect inspecting method and apparatus and automatic welding apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60247483A (en) * 1984-05-24 1985-12-07 Mitsubishi Motors Corp Method for quality control of spot welding
WO2017019860A1 (en) * 2015-07-29 2017-02-02 Illinois Tool Works Inc. System and method to facilitate welding software as a service
KR101799051B1 (en) 2016-08-23 2017-11-20 (주)피앤에스 Method and apparatus for inspecting bead through laser scanning
KR102235832B1 (en) * 2019-05-28 2021-04-05 이희준 Portable type welding inspection appatatus and inspection method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012139725A (en) * 2010-12-17 2012-07-26 Toho Technology Corp Spot welding automatic inspection device
US20160223477A1 (en) * 2015-01-30 2016-08-04 Toyota Motor Engineering & Manufacturing North America, Inc. Non-destructive quantitative weld quality measurement using radiographic imaging
KR101661665B1 (en) * 2016-03-21 2016-10-04 (주)디엠소프트 Device and method for inspecting welding quality using vision system
KR20170119901A (en) * 2016-04-20 2017-10-30 아진산업(주) Weld bead detecting apparatus
KR20210036522A (en) * 2019-09-26 2021-04-05 삼성중공업 주식회사 Welding defect inspecting method and apparatus and automatic welding apparatus

Also Published As

Publication number Publication date
KR102591938B1 (en) 2023-10-23

Similar Documents

Publication Publication Date Title
US8552718B2 (en) Method for the nondestructive testing of pipes
WO2023211188A1 (en) System and method for laser scanning-based resistance spot welding quality assessment
WO2007055130A1 (en) Spot welding method, method for judging shape of nugget, spot welding machine, and spot welding electrode
CN1720458B (en) Circuit pattern inspection device and circuit pattern inspection method
WO2018182103A1 (en) Defect detection device and defect detection method using same
TWI407126B (en) Circuit pattern checking device and method thereof
WO2011031117A2 (en) Method and device for detecting impurities in pouch type battery
JP4383648B2 (en) Inspection apparatus for connecting structure for secondary battery and inspection method thereof
JP3944068B2 (en) Inspection method for butt welds of steel sheets
KR20180095294A (en) Steel plate surface defect detection system and defect detection method using the same
KR100648111B1 (en) Automated bead detecting and sorting system for welded pipe
JP7265139B2 (en) Steel material surface layer inspection method and steel material surface layer inspection system
JP3064072B2 (en) Method and apparatus for detecting weld shape during butt welding
KR102666005B1 (en) Quality prediction method and system based on welding surface shape of resistance spot welding
WO2023214756A1 (en) Laser scanning-based spr fastening quality determination method
JP2540630B2 (en) Method of evaluating remaining life of ferritic heat resistant steel
JPH0972721A (en) Method and apparatus for diagnosing welded part of thin plate material of continuous processing line
JP2008196866A (en) Weld crack detection method and device
JP7213214B2 (en) Weld crack detector
CN115673521B (en) Detection method for mechanical properties of friction stir welding area and welding optimization method
JPH11248638A (en) Automatic detection method for surface of press-molded product
CN213147636U (en) Grouting sleeve structure length dimension checking fixture
KR20050064964A (en) Electrode line inspection device for flat-display panel and method for the same
JP2786806B2 (en) Evaluation method for thin plate welds
JPH0634883U (en) Laser welding machine controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796830

Country of ref document: EP

Kind code of ref document: A1