WO2023210883A1 - Tactile sensor using frictional electric field propagation, and tactile sensing method using same - Google Patents

Tactile sensor using frictional electric field propagation, and tactile sensing method using same Download PDF

Info

Publication number
WO2023210883A1
WO2023210883A1 PCT/KR2022/014787 KR2022014787W WO2023210883A1 WO 2023210883 A1 WO2023210883 A1 WO 2023210883A1 KR 2022014787 W KR2022014787 W KR 2022014787W WO 2023210883 A1 WO2023210883 A1 WO 2023210883A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
electrode
tactile sensor
field propagation
electric field
Prior art date
Application number
PCT/KR2022/014787
Other languages
French (fr)
Korean (ko)
Inventor
최원준
서병석
차영선
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220123946A external-priority patent/KR20230153222A/en
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2023210883A1 publication Critical patent/WO2023210883A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/164Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in inductance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/22Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators

Definitions

  • the present invention relates to a tactile sensor using friction electric field propagation and a tactile sensing method using the same.
  • Representative tactile sensor technologies include capacitive tactile sensors and resistive tactile sensors.
  • Capacitive tactile sensors and resistance-type tactile sensors require electrode patterns with micro- to nano-scale microstructures for precise contact position sensing.
  • capacitive tactile sensors have object specificity, there is a problem in that they only detect contact materials that are compatible with conductive materials (for example, if you are wearing gloves, they may not be able to detect even if you touch them with your finger). Resistive tactile sensors have the problem of severe mechanical aging due to high contact pressure.
  • triboelectric-based tactile sensors have been proposed as other tactile sensor technologies.
  • One object of the present invention is to provide a tactile sensor using friction electric field propagation and a touch sensing method using the same.
  • a tactile sensor using triboelectric field propagation includes a substrate; 1-1 to 1-n electrodes formed on the substrate and spaced apart from each other (where n is a natural number of 2 or more); and a dielectric layer formed to cover the 1-1 to 1-n electrodes, wherein the frictional electric field propagation generated when an object touches or slides on the dielectric layer is measured at a pair of adjacent electrodes. It is characterized by detecting the contact position or sliding motion of an object using the voltage ratio (V ratio ).
  • the distance between the 1-1th electrode to the 1-nth electrode may be 27 to 33 mm.
  • the 2-1 to 2-m electrodes are formed on the substrate, are formed at different angles from the 1-1 to 1-n electrodes, and are spaced apart from each other.
  • m may be characterized as further including a natural number of 2 or more).
  • the dielectric layer is polyamide (nylon 6,6), poly(vinyl alcohol) (PVA), poly(vinyl acetate) (PVAc), poly(methyl methacrylate) (PMMA), and poly(ethylene terephthalate (Mylar). , polyacrylonitrile (PAN), poly(bisphenol A carbonate) (PC), poly(vinylidene chloride), polystyrene (PS), polyethylene (PE), polypropylene (PP), poly(vinyl chloride) (PVC), polytetrafluoroethylene (PTFE) , polyester, polydimethylsiloxane (PDMS), and polyurethane.
  • PAN polyacrylonitrile
  • PC poly(bisphenol A carbonate)
  • PS poly(vinylidene chloride)
  • PS polystyrene
  • PE polyethylene
  • PP polypropylene
  • PVC poly(vinyl chloride)
  • PTFE polytetrafluoroethylene
  • polyester polydimethylsilox
  • a voltmeter may be connected to each of the 1-1 to 1-n electrodes.
  • a tactile sensing method includes a substrate; 1-1 to 1-n electrodes formed on the substrate and spaced apart from each other (where n is a natural number of 2 or more); and a dielectric layer formed to cover the 1-1 to 1-n electrodes, wherein a pair of adjacent electrodes are connected by friction electric field propagation generated when an object touches or slides on the dielectric layer. It is characterized by detecting the position where the object touches or the sliding motion using the ratio of the voltage (V ratio ) measured at the electrode.
  • a tactile sensor using triboelectric field propagation and a touch sensing method using the same detect triboelectricity at adjacent electrodes when triboelectricity is generated due to touching or sliding of an object between a plurality of electrodes arranged to face each other. By detecting the touched or slid position using the ratio of one voltage, it is possible to detect a precise touch or slid position without a microstructured electrode pattern.
  • the tactile sensor using friction electric field propagation and the touch sensing method using the same can detect a precise contact position or sliding position regardless of the type of contact material. there is.
  • Figure 1 is a schematic diagram of a tactile sensor using friction electric field propagation according to an embodiment of the present invention.
  • Figure 2 is a schematic perspective view of a test device with electrodes installed on one side of the dielectric layer, and schematically shows the propagation of triboelectricity generated by friction charging when an object is brought into contact at one location, and Figure 3 shows the test of Figure 2.
  • This is a schematic cross-sectional view of the device, illustrating the process of dipole energy transfer within the dielectric according to the various contact positions of the object.
  • Figure 4 shows the open-circuit voltage (OCV) measurement results measured at the electrode when an object is contacted at positions 3 mm, 9 mm, 15 mm, 21 mm, and 27 mm away from the electrode of the test device.
  • OCV open-circuit voltage
  • Figure 5 is a graph showing the OCV measurement results according to the position where the object was contacted based on the electrode of the test device.
  • Figure 6 is a schematic diagram for explaining the operating principle of a tactile sensor using triboelectric field propagation according to an embodiment of the present invention
  • Figure 7 shows the ratio of the OCV value measured at each electrode in the tactile sensor of Figure 6 and the voltage of the electrodes. This is the result of measuring .
  • Figure 8 shows the measurement results of V ratio according to the spacing between electrodes.
  • Figure 9 shows the results of evaluating design factors considering detection resolution and panel area to determine optimal design dimensions.
  • Figure 10 shows the results of evaluating the position detection resolution of a tactile sensor using triboelectric field propagation according to an embodiment of the present invention with an electrode spacing of 30 mm.
  • Figure 11 shows the V ratio measurement results according to the contact speed and position of the object.
  • Figure 12 shows the V ratio measurement results when an object is contacted at a vertical speed of 50 cm/s and the object types are cellulose, nylon, and silicon.
  • Figure 13 shows the results of measuring the change over time in the OCV value measured upon contact with an object.
  • Figure 14 is a schematic diagram of dipole energy transfer in a dielectric layer induced by sliding motion.
  • Figure 15 shows OCV measurements when sliding at a speed of 11.5 cm/s at initial positions of 0, 6, 15, and 24 mm
  • Figure 16 shows V ratio measurements at various initial positions and sliding distances.
  • Figure 17 is a touch pad manufactured using a tactile sensor using friction electric field propagation according to an embodiment of the present invention.
  • Figures 19 and 20 show the results of tracking the mixed motion of contact and sliding.
  • Figure 21 shows the results when polygonal stimuli such as (a) triangle, (b) square, and (c) star shape are applied.
  • Figure 22 is a schematic flow chart of a method of manufacturing a tactile sensor using friction electric field propagation according to an embodiment of the present invention.
  • a tactile sensor In order for a tactile sensor to be commercially viable, it must have high resolution and fast response time, and must be easy to integrate into applications such as displays or electronic skin.
  • the tactile sensor using triboelectric field propagation has high resolution and fast response time, and its structure is also very simple.
  • a tactile sensor using friction electric field propagation can detect a precise contact position or sliding position regardless of the type of contact material.
  • Figure 1 is a schematic diagram of a tactile sensor using friction electric field propagation according to an embodiment of the present invention.
  • the tactile sensor 100 using triboelectric field propagation is formed on the substrate 10 and the 1-1 electrode to the 1-1-th electrode formed on the substrate 10 and spaced apart from each other. It includes a first electrode 21 composed of n electrodes (where n is a natural number of 2 or more), and a dielectric layer 30 formed on the first electrode 21 and through which an object touches or slides.
  • the 1-1th electrode to the 1-nth electrode (where n is a natural number of 2 or more) may be collectively referred to as the first electrode 21.
  • the tactile sensor 100 using triboelectric field propagation may further include a 2-1 electrode to a 2-m electrode (where m is a natural number of 2 or more) spaced apart from each other.
  • the 2-1st to 2-m electrodes (where m is a natural number of 2 or more) may be collectively referred to as the second electrode 22.
  • the first electrode 21 and/or the second electrode 22 may be formed to be long in one direction and may be in the form of a wire or line.
  • the 1-1 to 1-n electrodes (where n is a natural number of 2 or more) may be formed parallel to each other, and the 2-1 to 2-m electrodes (where m is a natural number of 2 or more) may also be formed. They can be formed parallel to each other.
  • Parallel does not mean parallel to the extent that they do not meet each other when extending an infinite straight line, but rather means that they are formed side by side to the extent that they do not meet each other within the device.
  • the contact position or sliding position can be detected by the adjacent first electrode 21, and the second Even if the -1 to 2-m electrodes (where m is a natural number of 2 or more) are not parallel to each other, the contact position or sliding position can be detected by the adjacent second electrode 22.
  • the first electrode 21 and the second electrode 22 may be formed in different directions, for example, at right angles.
  • the first electrode 21 can be said to be a row electrode
  • the second electrode 22 can be said to be a column electrode.
  • the first electrode 21 and/or the second electrode 22 are made of highly conductive metal such as gold, silver, or copper, carbon material such as carbon nanotube, or conductive polymer. can be formed.
  • a voltmeter is connected to each of the first electrode 21 and the second electrode 22 to measure the voltage change.
  • a voltmeter may be connected to the 1-1st electrode to the 1-nth electrode (where n is a natural number of 2 or more) and the 2-1th electrode to the 2-m electrode (where m is a natural number of 2 or more).
  • the first electrode 21 and the second electrode 22 may be formed on the substrate 10.
  • the substrate 10 includes a PCB, and its materials include polyamide (nylon 6,6), poly(vinyl alcohol) (PVA), poly(vinyl acetate) (PVAc), and poly(methyl methacrylate) (PMMA). , poly(ethylene terephthalate (Mylar), polyacrylonitrile (PAN), poly(bisphenol A carbonate) (PC), poly(vinylidene chloride), polystyrene (PS), polyethylene (PE), polypropylene (PP), poly(vinyl chloride) Any one selected from the group consisting of (PVC), polytetrafluoroethylene (PTFE), polyester, polydimethylsiloxane (PDMS), and polyurethane can be used.
  • PVC poly(vinyl alcohol)
  • PVAc poly(vinyl acetate)
  • PMMA poly(methyl methacrylate)
  • PMMA poly(ethylene terephthalate
  • Mylar polyacrylonitrile
  • PC poly(bisphenol A carbonate)
  • the material of the substrate within the scope of the present invention is not limited to the above-mentioned materials, and known materials can be used.
  • the dielectric layer 30 is formed on the first electrode 21 and the second electrode 22.
  • the dielectric layer 30 is made of polyamide (nylon 6,6), poly(vinyl alcohol) (PVA), poly(vinyl acetate) (PVAc), poly(methyl methacrylate) (PMMA), poly(ethylene terephthalate (Mylar), polyacrylonitrile ( PAN), poly(bisphenol A carbonate) (PC), poly(vinylidene chloride), polystyrene (PS), polyethylene (PE), polypropylene (PP), poly(vinyl chloride) (PVC), polytetrafluoroethylene (PTFE), polyester, Any one selected from the group consisting of polydimethylsiloxane (PDMS) and polyurethane can be used.
  • PVA poly(vinyl alcohol)
  • PVAc poly(vinyl acetate)
  • PMMA poly(methyl methacrylate)
  • Mylar polyacrylonitrile
  • PC poly(bisphenol A carbonate)
  • PS poly(vinylidene chloride), polystyrene (PS)
  • An object such as a human hand or a pencil touches or slides on one surface of the dielectric layer 30.
  • Figure 2 is a schematic perspective view of a test device with electrodes installed on one side of the dielectric layer, and schematically shows the propagation of triboelectricity generated by friction charging when an object is brought into contact at one location, and Figure 3 shows the test of Figure 2.
  • This is a schematic cross-sectional view of the device, illustrating the process of dipole energy transfer within the dielectric according to the various contact positions of the object.
  • the position of the contact point where the object touches the dielectric layer can be inversely derived.
  • Figure 4 shows the open-circuit voltage (OCV) measurement results measured at the electrode when an object is contacted at positions 3 mm, 9 mm, 15 mm, 21 mm, and 27 mm away from the electrode of the test device.
  • OCV open-circuit voltage
  • the measured OCV value varies depending on the distance from the electrode.
  • Figure 5 is a graph showing the OCV measurement results according to the position where the object was contacted based on the electrode of the test device.
  • the OCV value decreases from 9.07 mV to 1.41 mV as the contact position of the object relative to the electrode increases from 3 mm to 15 mm, and when the distance from the electrode is more than 30 mm, there is a significant change in OCV value. is not observed.
  • Equation 1 From the object contact position-OCV graph of FIG. 5, an empirical spinning calculation as shown in Equation 1 below can be derived.
  • V OCV and x mean the measured OCV value and the contact position of the object based on the electrode, respectively.
  • the tactile sensor 100 using triboelectric field propagation includes a plurality of electrodes 21 and 22, and a dielectric layer 30 formed on the electrodes 21 and 22. ), when an object touches or slides to generate triboelectricity, the ratio (V ratio ) of the voltage detected by a pair of adjacent electrodes is used.
  • the contact or sliding position of an object can be detected with high accuracy even if the distance between adjacent electrodes is widened up to 30 mm, and the type of object changes or the operation Even if the environment changes, the contact or sliding position of an object can be detected with high accuracy.
  • Figure 6 is a schematic diagram for explaining the operating principle of a tactile sensor using triboelectric field propagation according to an embodiment of the present invention
  • Figure 7 shows the ratio of the OCV value measured at each electrode in the tactile sensor of Figure 6 and the voltage of the electrodes. This is the result of measuring .
  • the location where the object touches is detected using the ratio of OCV (V ratio ) detected at the 1-1 electrode (Electrode 1) and the 1-2 electrode (Electrode 2).
  • Figure 8 shows the measurement results of V ratio according to the spacing between electrodes.
  • the V ratio has a similar graph shape regardless of the spacing between electrodes, and converges to 1 at the center.
  • Figure 9 shows the results of evaluating design factors considering detection resolution and panel area to determine optimal design dimensions.
  • the value of the detection resolution varies depending on the target standard.
  • the variation ratio of V ratio according to the contact distance is 99.31%
  • the variation ratio of V ratio according to the contact distance is 99.31%. This is only 2.36%.
  • the spacing between adjacent electrodes may be 27 to 33 mm, and most preferably 30 mm.
  • Performance evaluation was performed based on the electrode spacing of 30 mm, which was the best mode.
  • Figure 10 shows the results of evaluating the position detection resolution of a tactile sensor using triboelectric field propagation according to an embodiment of the present invention with an electrode spacing of 30 mm.
  • Figure 11 shows the V ratio measurement results according to the contact speed and position of the object.
  • the error is within 6.29% when the object is contacted at vertical speeds of 30, 50, and 70 cm/s, showing a similar level of error regardless of the contact speed.
  • Figure 12 shows the V ratio measurement results when an object is contacted at a vertical speed of 50 cm/s and the object types are cellulose, nylon, and silicon.
  • the measured OCV value varies depending on the type of material, but the V ratio can be confirmed to be constant.
  • the tactile sensor using triboelectric field propagation according to an embodiment of the present invention has strong sensing characteristics that do not depend on stimulation conditions such as stimulation dynamics and stimulation object material.
  • Figure 13 shows the results of measuring the change over time in the OCV value measured upon contact with an object.
  • the OCV value increased as the object approached the surface of the dielectric layer through the air gap capacitance, and decreased due to charging after contact.
  • the refresh time and agility of a tactile sensor using triboelectric field propagation according to an embodiment of the present invention are determined by OCV behavior after contact.
  • the maximum refresh time of the tactile sensor using friction electric field propagation according to an embodiment of the present invention was 34.72 Hz.
  • Figure 14 is a schematic diagram of dipole energy transfer in a dielectric layer induced by sliding motion.
  • dipole polarization is induced within the dielectric in the sliding direction.
  • This dipole polarization generates OCV signals at both electrodes with opposite signs (i.e., negative or positive signs compared to ground).
  • the direction and final position of the sliding motion can be detected based on the V ratio of the two electrodes and the sign of that value.
  • Figure 15 shows OCV measurements when sliding at a speed of 11.5 cm/s at initial positions of 0, 6, 15, and 24 mm
  • Figure 16 shows V ratio measurements at various initial positions and sliding distances.
  • Figure 17 is a touch pad manufactured using a tactile sensor using friction electric field propagation according to an embodiment of the present invention.
  • the alphabet from A to I was assigned to the virtual area.
  • Figure 18 shows the results of measuring OCV values generated at each electrode by finger touch stimulation in areas "A", "D", and "E".
  • Figures 19 and 20 show the results of tracking the mixed motion of contact and sliding.
  • Figure 21 shows the results when polygonal stimuli such as (a) triangle, (b) square, and (c) star shape are applied.
  • the touch pad manufactured using a tactile sensor using triboelectric field propagation smoothly senses even complex forms of contact.
  • Figure 22 is a schematic flow chart of a method of manufacturing a tactile sensor using friction electric field propagation according to an embodiment of the present invention.
  • a PET substrate (10 cm ⁇ 10 cm, thickness 50 ⁇ m) cleaned with ethanol and deionized water is covered with a stainless steel shadow mask with an electrode spacing of 30 mm.
  • Silver (4N purity) electrodes were formed through DC magnetron sputtering at 100 W for 1.5 hours and deposited on PET substrates for column electrodes in an argon atmosphere with a flow rate of 30 sccm and a pressure of 2.8 ⁇ 10 -3 Torr.
  • the row electrodes were deposited under identical conditions using aligned cellulose insulators to prevent electrical interference between the column and row electrodes.

Abstract

The present invention relates to a tactile sensor using frictional electric field propagation, comprising: a substrate; (1-1)th to (1-n)th electrodes (where n is a natural number of at least 2) formed on the substrate and spaced from each other; and a dielectric layer formed to cover the (1-1)th to (1-n)th electrodes, and using a ratio (Vratio) of voltage measured at a pair of adjacent electrodes by means of the propagation of a frictional electric field generated when an object comes into contact with or slides on the dielectric layer, thereby sensing the location at which the object makes contact or a sliding operation thereof.

Description

마찰 전기장 전파를 이용한 촉각 센서 및 이를 이용한 촉각 센싱 방법Tactile sensor using friction electric field propagation and tactile sensing method using the same
본 발명은 마찰 전기장 전파를 이용한 촉각 센서 및 이를 이용한 촉각 센싱 방법에 관한 것이다. The present invention relates to a tactile sensor using friction electric field propagation and a tactile sensing method using the same.
휴대용 전자기기의 발달 및 인체에 적용되는 전자 피부 기술의 발달에는 정밀한 접촉 위치 감지가 가능한 촉각 센서의 개발이 요구된다. The development of portable electronic devices and electronic skin technology applied to the human body requires the development of a tactile sensor capable of detecting precise contact positions.
대표적인 촉각 센서 기술로는 정전용량 방식 촉각 센서(capacitive tactile sensor)와 저항형 방식 촉각 센서(resistive tactile sensor)가 있다.Representative tactile sensor technologies include capacitive tactile sensors and resistive tactile sensors.
정전용량 방식 촉각 센서와 저항형 방식 촉각센서는 정밀한 접촉 위치 센싱을 위해 마이크로 내지 나노 단위의 미세 구조를 가지는 전극 패턴이 반드시 필요하다. Capacitive tactile sensors and resistance-type tactile sensors require electrode patterns with micro- to nano-scale microstructures for precise contact position sensing.
이와 같은 미세 구조의 전극 패턴을 제조하기 위해서는 복합하고 어려운 공정이 요구되고, 나아가 비효율적인 에너지 소비가 필요하다.In order to manufacture an electrode pattern with such a fine structure, complex and difficult processes are required, and furthermore, inefficient energy consumption is required.
또한, 정전용량 방식의 촉각센서는 객체 특이성을 가지기 때문에 전도성 물질과 호환되는 접촉 물질만 감지(예를 들어, 장갑을 낀 경우에는 손가락으로 터치를 하더라도 감지하지 못하는 경우가 있다)하는 문제가 있으며, 저항형 방식 촉각센서는 높은 접촉 압력으로 인한 심각한 기계적 노화가 초래되는 문제가 있다. In addition, since capacitive tactile sensors have object specificity, there is a problem in that they only detect contact materials that are compatible with conductive materials (for example, if you are wearing gloves, they may not be able to detect even if you touch them with your finger). Resistive tactile sensors have the problem of severe mechanical aging due to high contact pressure.
정전용량 방식 촉각 센서와 저항형 방식 촉각센서 외에 다른 촉각 센서 기술로는 마찰 전기 기반의 촉각 센서가 제안되고 있다. In addition to capacitive tactile sensors and resistance-type tactile sensors, triboelectric-based tactile sensors have been proposed as other tactile sensor technologies.
한국 공개특허 제10-2022-0037970호의 경우 "단일 전극 마찰발전기의 임피던스 정합을 이용한 자가동력 촉각센서"를 제안하고 있다. In the case of Korean Patent Publication No. 10-2022-0037970, a “self-powered tactile sensor using impedance matching of a single electrode triboelectric generator” is proposed.
하지만 한국 공개특허 제10-2022-0037970호의 "단일 전극 마찰발전기의 임피던스 정합을 이용한 자가동력 촉각센서"를 비롯하여 지금까지의 마찰전기 기반 촉각 센서는 정밀한 접촉 위치를 센싱할 수 없다는 문제가 있다. However, the triboelectric-based tactile sensors to date, including "Self-powered tactile sensor using impedance matching of a single-electrode triboelectric generator" in Korean Patent Publication No. 10-2022-0037970, have the problem of not being able to sense precise contact positions.
[선행특허문헌][Prior patent literature]
한국 공개특허 제10-2022-0037970호Korean Patent Publication No. 10-2022-0037970
한국 공개특허 제10-2019-0072989호Korean Patent Publication No. 10-2019-0072989
한국 공개특허 제10-2008-0054187호Korean Patent Publication No. 10-2008-0054187
한국 공개특허 제10-2011-0124416호Korean Patent Publication No. 10-2011-0124416
본 발명의 일 목적은 마찰 전기장 전파를 이용한 촉각 센서 및 이를 이용한 터치 센싱 방법을 제공하는 것이다. One object of the present invention is to provide a tactile sensor using friction electric field propagation and a touch sensing method using the same.
한편, 본 발명의 명시되지 않은 또 다른 목적들은 하기의 상세한 설명 및 그 효과로부터 용이하게 추론할 수 있는 범위 내에서 추가적으로 고려될 것이다.Meanwhile, other unspecified purposes of the present invention will be additionally considered within the scope that can be easily inferred from the following detailed description and its effects.
이상에서 제안한 목적을 달성하기 위해 다음과 같은 해결수단을 제안한다. To achieve the purpose proposed above, we propose the following solutions.
본 발명의 일 실시예에 따른 마찰 전기장 전파를 이용한 촉각 센서는 기판; 상기 기판 상에 형성되며, 서로 이격되어 형성되는 제1-1전극 내지 제1-n전극(단, n은 2 이상의 자연수); 및 상기 제1-1전극 내지 제1-n전극을 덮도록 형성되는 유전체층;을 포함하고, 상기 유전체층에 객체가 접촉 내지 슬라이딩할 경우에 생성되는 마찰 전기장 전파에 의해 인접하는 한쌍의 전극에서 측정한 전압의 비(Vratio)를 이용하여 객체가 접촉한 위치 또는 슬라이딩 동작을 감지하는 것을 특징으로 한다.A tactile sensor using triboelectric field propagation according to an embodiment of the present invention includes a substrate; 1-1 to 1-n electrodes formed on the substrate and spaced apart from each other (where n is a natural number of 2 or more); and a dielectric layer formed to cover the 1-1 to 1-n electrodes, wherein the frictional electric field propagation generated when an object touches or slides on the dielectric layer is measured at a pair of adjacent electrodes. It is characterized by detecting the contact position or sliding motion of an object using the voltage ratio (V ratio ).
일 예에 있어서, 상기 제1-1전극 내지 제1-n전극을 사이의 간격은 27 내지 33 mm 인 것을 특징으로 할 수 있다.In one example, the distance between the 1-1th electrode to the 1-nth electrode may be 27 to 33 mm.
일 예에 있어서, 상기 기판 상에 형성되며, 상기 제1-1전극 내지 제1-n전극과 서로 다른 각도로 형성되고, 서로 이격되어 형성되는 제2-1전극 내지 제2-m전극(단, m은 2 이상의 자연수)을 더 포함하는 것을 특징으로 할 수 있다. In one example, the 2-1 to 2-m electrodes are formed on the substrate, are formed at different angles from the 1-1 to 1-n electrodes, and are spaced apart from each other. , m may be characterized as further including a natural number of 2 or more).
일 예에 있어서, 상기 유전체층은 polyamide (nylon 6,6), poly(vinyl alcohol) (PVA), poly(vinyl acetate) (PVAc), poly(methyl methacrylate) (PMMA), poly(ethylene terephthalate (Mylar), polyacrylonitrile (PAN), poly(bisphenol A carbonate) (PC), poly(vinylidene chloride), polystyrene (PS), polyethylene (PE), polypropylene (PP), poly(vinyl chloride) (PVC), polytetrafluoroethylene (PTFE), polyester, polydimethylsiloxane (PDMS) 및 polyurethane 이루어지는 군에서 선택되는 어느 하나인 것을 특징으로 할 수 있다. In one example, the dielectric layer is polyamide (nylon 6,6), poly(vinyl alcohol) (PVA), poly(vinyl acetate) (PVAc), poly(methyl methacrylate) (PMMA), and poly(ethylene terephthalate (Mylar). , polyacrylonitrile (PAN), poly(bisphenol A carbonate) (PC), poly(vinylidene chloride), polystyrene (PS), polyethylene (PE), polypropylene (PP), poly(vinyl chloride) (PVC), polytetrafluoroethylene (PTFE) , polyester, polydimethylsiloxane (PDMS), and polyurethane.
일 예에 있어서, 상기 제1-1전극 내지 제1-n전극에는 각각 전압계가 연결되는 것을 특징으로 할 수 있다. In one example, a voltmeter may be connected to each of the 1-1 to 1-n electrodes.
본 발명의 다른 실시예에 따른 촉각 센싱 방법은 기판; 상기 기판 상에 형성되며, 서로 이격되어 형성되는 제1-1전극 내지 제1-n전극(단, n은 2 이상의 자연수); 및 상기 제1-1전극 내지 제1-n전극을 덮도록 형성되는 유전체층;을 포함하는 촉각 센서를 이용하며, 상기 유전체층에 객체가 접촉 내지 슬라이딩할 경우에 생성되는 마찰 전기장 전파에 의해 인접하는 한쌍의 전극에서 측정한 전압의 비(Vratio)를 이용하여 객체가 접촉한 위치 또는 슬라이딩 동작을 감지하는 것을 특징으로 한다. A tactile sensing method according to another embodiment of the present invention includes a substrate; 1-1 to 1-n electrodes formed on the substrate and spaced apart from each other (where n is a natural number of 2 or more); and a dielectric layer formed to cover the 1-1 to 1-n electrodes, wherein a pair of adjacent electrodes are connected by friction electric field propagation generated when an object touches or slides on the dielectric layer. It is characterized by detecting the position where the object touches or the sliding motion using the ratio of the voltage (V ratio ) measured at the electrode.
본 발명의 일 실시예에 따른 마찰 전기장 전파를 이용한 촉각 센서 및 이를 이용한 터치 센싱 방법은 서로 대향하도록 배치된 복수개의 전극 사이에서 객체의 터치 내지 슬라이딩으로 인해 마찰전기가 생성될 경우 인접하는 전극에서 감지한 전압의 비를 이용하여 터치 내지 슬라이딩 된 위치를 감지함으로써 미세구조의 전극 패턴 없이도 정밀한 접촉 위치 내지 슬라이딩된 위치를 감지할 수 있다. A tactile sensor using triboelectric field propagation and a touch sensing method using the same according to an embodiment of the present invention detect triboelectricity at adjacent electrodes when triboelectricity is generated due to touching or sliding of an object between a plurality of electrodes arranged to face each other. By detecting the touched or slid position using the ratio of one voltage, it is possible to detect a precise touch or slid position without a microstructured electrode pattern.
또한, 본 발명의 일 실시예에 따른 마찰 전기장 전파를 이용한 촉각 센서 및 이를 이용한 터치 센싱 방법은 정전용량 방식의 촉각센서와 달리 접촉 물질의 종류와 무관하게 정밀한 접촉 위치 내지 슬라이딩된 위치를 감지할 수 있다. In addition, the tactile sensor using friction electric field propagation and the touch sensing method using the same according to an embodiment of the present invention, unlike the capacitive tactile sensor, can detect a precise contact position or sliding position regardless of the type of contact material. there is.
한편, 여기에서 명시적으로 언급되지 않은 효과라 하더라도, 본 발명의 기술적 특징에 의해 기대되는 이하의 명세서에서 기재된 효과 및 그 잠정적인 효과는 본 발명의 명세서에 기재된 것과 같이 취급됨을 첨언한다.Meanwhile, it is to be added that even if the effects are not explicitly mentioned herein, the effects described in the following specification and their potential effects expected from the technical features of the present invention are treated as if described in the specification of the present invention.
도 1은 본 발명의 일 실시예에 따른 마찰 전기장 전파를 이용한 촉각 센서의 개략적 모식도이다. Figure 1 is a schematic diagram of a tactile sensor using friction electric field propagation according to an embodiment of the present invention.
도 2는 유전체층의 일측에 전극을 설치한 테스트 장치의 개략적 사시도로서 객체를 일 위치에 접촉시킨 경우 마찰 대전에 의해 생성된 마찰전기가 전파하는 것을 개략적으로 도시한 것이며, 도 3은 도 2의 테스트 장치의 개략적 단면도로써, 객체의 다양한 접촉 위치에 따른 유전체 내의 쌍극자 에너지 전달 과정을 도식화한 것이다. Figure 2 is a schematic perspective view of a test device with electrodes installed on one side of the dielectric layer, and schematically shows the propagation of triboelectricity generated by friction charging when an object is brought into contact at one location, and Figure 3 shows the test of Figure 2. This is a schematic cross-sectional view of the device, illustrating the process of dipole energy transfer within the dielectric according to the various contact positions of the object.
도 4는 테스트 장치의 전극으로부터 3mm, 9mm, 15 mm, 21 mm 및 27 mm 떨어진 위치에 객체를 접촉시킨 경우에 대한 전극에서 측정된 개방 회로 전압(OCV: open-circuit voltage) 측정 결과이다. Figure 4 shows the open-circuit voltage (OCV) measurement results measured at the electrode when an object is contacted at positions 3 mm, 9 mm, 15 mm, 21 mm, and 27 mm away from the electrode of the test device.
도 5는 테스트 장치의 전극을 기준으로 객체가 접촉된 위치에 따른 OCV 측정 결과를 그래프로 도시한 것이다. Figure 5 is a graph showing the OCV measurement results according to the position where the object was contacted based on the electrode of the test device.
도 6은 본 발명의 일 실시예에 따른 마찰 전기장 전파를 이용한 촉각 센서의 동작 원리를 설명하기 위한 모식도이며, 도 7은 도 6의 촉각 센서에서 각 전극에서 측정된 OCV 값과 전극들의 전압의 비를 측졍한 결과이다. Figure 6 is a schematic diagram for explaining the operating principle of a tactile sensor using triboelectric field propagation according to an embodiment of the present invention, and Figure 7 shows the ratio of the OCV value measured at each electrode in the tactile sensor of Figure 6 and the voltage of the electrodes. This is the result of measuring .
도 8은 전극 사이의 간격에 따른 Vratio의 측정 결과를 도시한 것이다. Figure 8 shows the measurement results of V ratio according to the spacing between electrodes.
도 9는 최적의 설계 치수를 결정하기 위해 감지 해상도와 패널 면적을 고려하여 설계 요소를 평가한 결과이다. Figure 9 shows the results of evaluating design factors considering detection resolution and panel area to determine optimal design dimensions.
도 10은 30 mm의 전극간격을 가지는 본 발명의 일 실시예에 따른 마찰 전기장 전파를 이용한 촉각 센서의 위치 감지 분해능 평가 결과이다. Figure 10 shows the results of evaluating the position detection resolution of a tactile sensor using triboelectric field propagation according to an embodiment of the present invention with an electrode spacing of 30 mm.
도 11은 객체의 접촉 속도 및 위치에 따른 Vratio 측정 결과이다.Figure 11 shows the V ratio measurement results according to the contact speed and position of the object.
도 12는 수직속도 50 cm/s로 객체를 접촉하되, 객체의 종류를 셀룰로오스, 나일론 및 실리콘을 사용한 경우의 Vratio 측정 결과이다.Figure 12 shows the V ratio measurement results when an object is contacted at a vertical speed of 50 cm/s and the object types are cellulose, nylon, and silicon.
도 13은 객체의 접촉시에 측정되는 OCV 값의 시간에 따른 변화를 측정한 결과이다.Figure 13 shows the results of measuring the change over time in the OCV value measured upon contact with an object.
도 14는 슬라이딩 모션에 의해 유도된 유전체층 내 쌍극자 에너지 전달의 개략도이다. Figure 14 is a schematic diagram of dipole energy transfer in a dielectric layer induced by sliding motion.
도 15는 0, 6, 15 및 24mm의 초기 위치에서 11.5cm/s의 속도로 슬라이딩 한 경우의 OCV 측정 값이며, 도 16은 다양한 초기 위치 및 슬라이딩 거리에 따른 Vratio 측정 값이다. Figure 15 shows OCV measurements when sliding at a speed of 11.5 cm/s at initial positions of 0, 6, 15, and 24 mm, and Figure 16 shows V ratio measurements at various initial positions and sliding distances.
도 17은 본 발명의 일 실시예에 따른 마찰 전기장 전파를 이용한 촉각 센서를 활용하여 제조한 터치 패드이다. Figure 17 is a touch pad manufactured using a tactile sensor using friction electric field propagation according to an embodiment of the present invention.
도 19 및 도 20은 접촉과 슬라이딩의 혼합 동작을 추적한 결과이다. Figures 19 and 20 show the results of tracking the mixed motion of contact and sliding.
도 21은 (a) 삼각형, (b) 사각형, (c) 별 형태와 같은 다각형 자극을 인가한 경우의 결과이다. Figure 21 shows the results when polygonal stimuli such as (a) triangle, (b) square, and (c) star shape are applied.
도 22는 본 발명의 일 실시예에 따른 마찰 전기장 전파를 이용한 촉각 센서의 제조방법의 개략적 플로우 차트이다. Figure 22 is a schematic flow chart of a method of manufacturing a tactile sensor using friction electric field propagation according to an embodiment of the present invention.
첨부된 도면은 본 발명의 기술사상에 대한 이해를 위하여 참조로서 예시된 것임을 밝히며, 그것에 의해 본 발명의 권리범위가 제한되지는 아니한다.The attached drawings are intended as reference for understanding the technical idea of the present invention, and are not intended to limit the scope of the present invention.
이하, 도면을 참조하여 본 발명의 다양한 실시예가 안내하는 본 발명의 구성과 그 구성으로부터 비롯되는 효과에 대해 살펴본다. 본 발명을 설명함에 있어서 관련된 공지기능에 대하여 이 분야의 기술자에게 자명한 사항으로서 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.Hereinafter, with reference to the drawings, we will look at the configuration of the present invention guided by various embodiments of the present invention and the effects resulting from the configuration. In describing the present invention, if it is determined that related known functions may unnecessarily obscure the gist of the present invention as they are obvious to those skilled in the art, the detailed description thereof will be omitted.
촉각센서가 상업성을 가지기 위해서는 높은 분해능 및 빠른 응답 시간을 가져야 하며, 디스플레이나 전자 피부 등의 어플리케이션에 통합되기 용이하여야 한다.In order for a tactile sensor to be commercially viable, it must have high resolution and fast response time, and must be easy to integrate into applications such as displays or electronic skin.
본 발명의 일 실시예에 따른 마찰 전기장 전파를 이용한 촉각 센서는 높은 분해능과 빠른 응답시간을 가지며, 그 구조도 매우 간단하다. The tactile sensor using triboelectric field propagation according to an embodiment of the present invention has high resolution and fast response time, and its structure is also very simple.
나아가 본 발명의 일 실시예에 따른 마찰 전기장 전파를 이용한 촉각 센서는 접촉 물질의 종류와 무관하게 정밀한 접촉 위치 내지 슬라이딩된 위치를 감지할 수 있다.Furthermore, a tactile sensor using friction electric field propagation according to an embodiment of the present invention can detect a precise contact position or sliding position regardless of the type of contact material.
도 1은 본 발명의 일 실시예에 따른 마찰 전기장 전파를 이용한 촉각 센서의 개략적 모식도이다. Figure 1 is a schematic diagram of a tactile sensor using friction electric field propagation according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 마찰 전기장 전파를 이용한 촉각 센서(100)는 기판(10), 기판(10) 상에 형성되며 서로 이격된 제1-1전극 내지 제1-n전극(단, n은 2 이상의 자연수)로 구성되는 제1전극(21)과, 제1전극(21) 상에 형성되며 객체의 접촉 내지 슬라이딩이 이루어지는 유전체층(30)을 포함한다. Referring to Figure 1, the tactile sensor 100 using triboelectric field propagation according to an embodiment of the present invention is formed on the substrate 10 and the 1-1 electrode to the 1-1-th electrode formed on the substrate 10 and spaced apart from each other. It includes a first electrode 21 composed of n electrodes (where n is a natural number of 2 or more), and a dielectric layer 30 formed on the first electrode 21 and through which an object touches or slides.
제1-1전극 내지 제1-n전극(단, n은 2 이상의 자연수)을 제1전극(21)이라 통칭할 수 있다. The 1-1th electrode to the 1-nth electrode (where n is a natural number of 2 or more) may be collectively referred to as the first electrode 21.
본 발명의 일 실시예에 따른 마찰 전기장 전파를 이용한 촉각 센서(100)는 서로 이격된 제2-1전극 내지 제2-m전극(단, m은 2 이상의 자연수)를 더 포함할 수 있다.The tactile sensor 100 using triboelectric field propagation according to an embodiment of the present invention may further include a 2-1 electrode to a 2-m electrode (where m is a natural number of 2 or more) spaced apart from each other.
제2-1전극 내지 제2-m전극(단, m은 2 이상의 자연수)은 제2전극(22) 이라 통칭할 수 있다. The 2-1st to 2-m electrodes (where m is a natural number of 2 or more) may be collectively referred to as the second electrode 22.
제1전극(21) 및/또는 제2전극(22) 은 일 방향으로 길게 형성될 수 있으며, 와이어 형태이거나 선 형태일 수 있다. The first electrode 21 and/or the second electrode 22 may be formed to be long in one direction and may be in the form of a wire or line.
제1-1전극 내지 제1-n전극(단, n은 2 이상의 자연수)은 서로 평행하게 형성될 수 있으며, 제2-1전극 내지 제2-m전극(단, m은 2 이상의 자연수)도 서로 평행하게 형성될 수 있다.The 1-1 to 1-n electrodes (where n is a natural number of 2 or more) may be formed parallel to each other, and the 2-1 to 2-m electrodes (where m is a natural number of 2 or more) may also be formed. They can be formed parallel to each other.
여기서 평행하다는 것은 무한한 직선을 연장하였을 때 서로 만나지 않는 정도의 평행을 의미하는 것은 아니며, 장치 내에서 서로 만나지 않는 정도로 나란히 형성됨을 의미한다. Parallel here does not mean parallel to the extent that they do not meet each other when extending an infinite straight line, but rather means that they are formed side by side to the extent that they do not meet each other within the device.
나아가 제1-1전극 내지 제1-n전극(단, n은 2 이상의 자연수)이 서로 평행하지 않더라도 인접하는 제1전극(21)에 의해 접촉 위치 내지 슬라이딩된 위치를 감지할 수 있으며, 제2-1전극 내지 제2-m전극(단, m은 2 이상의 자연수)이 서로 평행하지 않더라도 인접하는 제2전극(22)에 의해 접촉 위치 내지 슬라이딩된 위치를 감지할 수 있다.Furthermore, even if the 1-1st to 1-nth electrodes (where n is a natural number of 2 or more) are not parallel to each other, the contact position or sliding position can be detected by the adjacent first electrode 21, and the second Even if the -1 to 2-m electrodes (where m is a natural number of 2 or more) are not parallel to each other, the contact position or sliding position can be detected by the adjacent second electrode 22.
제1전극(21) 및 제2전극(22) 은 서로 다른 방향, 예를 들어 직각으로 형성될 수 있다. The first electrode 21 and the second electrode 22 may be formed in different directions, for example, at right angles.
이때, 제1전극(21)은 행 전극, 제2전극(22)은 열 전극이라고 할 수 있다. At this time, the first electrode 21 can be said to be a row electrode, and the second electrode 22 can be said to be a column electrode.
제1전극(21) 및/또는 제2전극(22) 은 금(gold), 은(silver), 구리(copper) 등 도전성이 높은 금속이나, 탄소나노튜브 등과 같은 탄소재료, 또는 전도성 폴리머 등으로 형성될 수 있다. The first electrode 21 and/or the second electrode 22 are made of highly conductive metal such as gold, silver, or copper, carbon material such as carbon nanotube, or conductive polymer. can be formed.
제1전극(21) 및 제2전극(22)의 각각에는 전압계가 연결되어 전압변화가 측정된다. A voltmeter is connected to each of the first electrode 21 and the second electrode 22 to measure the voltage change.
즉, 제1-1전극 내지 제1-n전극(단, n은 2 이상의 자연수)과 제2-1전극 내지 제2-m전극(단, m은 2 이상의 자연수)에 각각 전압계가 연결될 수 있다. That is, a voltmeter may be connected to the 1-1st electrode to the 1-nth electrode (where n is a natural number of 2 or more) and the 2-1th electrode to the 2-m electrode (where m is a natural number of 2 or more). .
제1전극(21) 및 제2전극(22) 은 기판(10) 상에 형성될 수 있다. The first electrode 21 and the second electrode 22 may be formed on the substrate 10.
보다 구체적으로 기판(10)으로는 PCB를 비롯하여, 그 재질로 polyamide (nylon 6,6), poly(vinyl alcohol) (PVA), poly(vinyl acetate) (PVAc), poly(methyl methacrylate) (PMMA), poly(ethylene terephthalate (Mylar), polyacrylonitrile (PAN), poly(bisphenol A carbonate) (PC), poly(vinylidene chloride), polystyrene (PS), polyethylene (PE), polypropylene (PP), poly(vinyl chloride) (PVC), polytetrafluoroethylene (PTFE), polyester, polydimethylsiloxane (PDMS) 및 polyurethane로 이루어진 군에서 선택되는 어느 하나를 이용할 수 있다. More specifically, the substrate 10 includes a PCB, and its materials include polyamide (nylon 6,6), poly(vinyl alcohol) (PVA), poly(vinyl acetate) (PVAc), and poly(methyl methacrylate) (PMMA). , poly(ethylene terephthalate (Mylar), polyacrylonitrile (PAN), poly(bisphenol A carbonate) (PC), poly(vinylidene chloride), polystyrene (PS), polyethylene (PE), polypropylene (PP), poly(vinyl chloride) Any one selected from the group consisting of (PVC), polytetrafluoroethylene (PTFE), polyester, polydimethylsiloxane (PDMS), and polyurethane can be used.
다만, 본 발명의 권리범위 중 기판의 재질이 상술한 것으로 한정되는 것은 아니며 공지의 것을 이용할 수 있다.However, the material of the substrate within the scope of the present invention is not limited to the above-mentioned materials, and known materials can be used.
유전체층(30)은 제1전극(21) 및 제2전극(22) 의 상부에 형성된다.The dielectric layer 30 is formed on the first electrode 21 and the second electrode 22.
유전체층(30)은 polyamide (nylon 6,6), poly(vinyl alcohol) (PVA), poly(vinyl acetate) (PVAc), poly(methyl methacrylate) (PMMA), poly(ethylene terephthalate (Mylar), polyacrylonitrile (PAN), poly(bisphenol A carbonate) (PC), poly(vinylidene chloride), polystyrene (PS), polyethylene (PE), polypropylene (PP), poly(vinyl chloride) (PVC), polytetrafluoroethylene (PTFE), polyester, polydimethylsiloxane (PDMS) 및 polyurethane 이루어지는 군에서 선택되는 어느 하나를 이용할 수 있다. The dielectric layer 30 is made of polyamide (nylon 6,6), poly(vinyl alcohol) (PVA), poly(vinyl acetate) (PVAc), poly(methyl methacrylate) (PMMA), poly(ethylene terephthalate (Mylar), polyacrylonitrile ( PAN), poly(bisphenol A carbonate) (PC), poly(vinylidene chloride), polystyrene (PS), polyethylene (PE), polypropylene (PP), poly(vinyl chloride) (PVC), polytetrafluoroethylene (PTFE), polyester, Any one selected from the group consisting of polydimethylsiloxane (PDMS) and polyurethane can be used.
유전체층(30)의 일면에는 사람의 손이나 펜슬과 같은 객체가 접촉하거나 슬라이딩 하게 된다. An object such as a human hand or a pencil touches or slides on one surface of the dielectric layer 30.
도 2는 유전체층의 일측에 전극을 설치한 테스트 장치의 개략적 사시도로서 객체를 일 위치에 접촉시킨 경우 마찰 대전에 의해 생성된 마찰전기가 전파하는 것을 개략적으로 도시한 것이며, 도 3은 도 2의 테스트 장치의 개략적 단면도로써, 객체의 다양한 접촉 위치에 따른 유전체 내의 쌍극자 에너지 전달 과정을 도식화한 것이다. Figure 2 is a schematic perspective view of a test device with electrodes installed on one side of the dielectric layer, and schematically shows the propagation of triboelectricity generated by friction charging when an object is brought into contact at one location, and Figure 3 shows the test of Figure 2. This is a schematic cross-sectional view of the device, illustrating the process of dipole energy transfer within the dielectric according to the various contact positions of the object.
객체가 유전체층에 접촉하게 되면 마찰 대전에 의해 마찰전기가 생성되며, 유전체의 표면을 따라 원형으로 마찰전기가 전파되면서 그 주위에 전기장을 형성한다(도 2 참조). When an object comes into contact with a dielectric layer, triboelectricity is generated by friction charging, and the triboelectricity propagates in a circle along the surface of the dielectric, forming an electric field around it (see Figure 2).
전파되는 마찰전기의 전기장과 인접한 쌍극자는 서로 상호작용에 의해 쌍극자의 모멘트 각도가 변경되며, 쌍극자의 모멘트 각도 변경에 소비된 에너지로 인해 마찰전기가 전파거리에 따라 감소하는 결과가 초래된다(도 3 참조).The electric field of the propagating triboelectricity and the adjacent dipoles interact with each other to change the moment angle of the dipole, and the energy consumed to change the moment angle of the dipole results in the triboelectricity decreasing with the propagation distance (Figure 3 reference).
그러므로 전극을 이용하여 마찰전기를 감지하여 감쇠된 정도를 측정할 경우 객체가 유전체층에 접촉한 접점의 위치를 역으로 도출할 수 있다.Therefore, when triboelectricity is sensed using an electrode and the degree of attenuation is measured, the position of the contact point where the object touches the dielectric layer can be inversely derived.
도 4는 테스트 장치의 전극으로부터 3mm, 9mm, 15 mm, 21 mm 및 27 mm 떨어진 위치에 객체를 접촉시킨 경우에 대한 전극에서 측정된 개방 회로 전압(OCV: open-circuit voltage) 측정 결과이다. Figure 4 shows the open-circuit voltage (OCV) measurement results measured at the electrode when an object is contacted at positions 3 mm, 9 mm, 15 mm, 21 mm, and 27 mm away from the electrode of the test device.
위에서 설명한 바와 같이 전극으로부터 떨어진 거리에 따라 측정되는 OCV 값이 달라지는 것을 확인할 수 있다. As explained above, it can be seen that the measured OCV value varies depending on the distance from the electrode.
도 5는 테스트 장치의 전극을 기준으로 객체가 접촉된 위치에 따른 OCV 측정 결과를 그래프로 도시한 것이다. Figure 5 is a graph showing the OCV measurement results according to the position where the object was contacted based on the electrode of the test device.
도 5에서 보는 바와 같이, OCV 값은 전극을 기준으로 한 객체의 접촉 위치가 3mm 에서 15mm로 증가함에 따라 9.07 mV에서 1.41 mV로 감소하게 되며, 전극으로부터 30 mm 이상으로 떨어진 경우에는 유의미한 OCV 값 변화가 관찰되지 않는다. As shown in Figure 5, the OCV value decreases from 9.07 mV to 1.41 mV as the contact position of the object relative to the electrode increases from 3 mm to 15 mm, and when the distance from the electrode is more than 30 mm, there is a significant change in OCV value. is not observed.
도 5의 객체 접촉위치-OCV 그래프로부터 다음의 수학식 1과 같은 경험적 방적싱을 도출 할 수 있다.From the object contact position-OCV graph of FIG. 5, an empirical spinning calculation as shown in Equation 1 below can be derived.
Figure PCTKR2022014787-appb-img-000001
Figure PCTKR2022014787-appb-img-000001
수학식 1에서 VOCV 및 x는 각각 측정된 OCV 값 및 전극을 기준으로 한 객체의 접촉 위치를 의미한다. In Equation 1, V OCV and x mean the measured OCV value and the contact position of the object based on the electrode, respectively.
도 5와 수학식 1의 계산 결과는 단일한 전극을 이용한 테스트 장치에서 마찰전기에 의한 전압변화를 측정할 경우 객체가 접촉한 위치, 즉 전극으로부터 얼마나 떨어진 거리에 객체가 접촉한 것인지를 역산할 수 있음을 시사한다. The calculation results of FIG. 5 and Equation 1 show that when measuring the voltage change due to triboelectricity in a test device using a single electrode, it is possible to invert the location where the object was in contact, that is, the distance from the electrode. It suggests that there is.
하지만 단일한 전극을 이용한 테스트 장치에서는 전극으로부터 10 mm 이상 떨어진 위치는 측정되는 전압의 변화율이 적어 구분하기 어렵고, 나아가 객체의 종류, 유전체층의 종류, 온도, 습도 등의 요인에 의해 측정되는 전압값이 달라지는 문제가 있다.However, in a test device using a single electrode, it is difficult to distinguish locations more than 10 mm from the electrode because the rate of change in the measured voltage is small, and furthermore, the measured voltage value varies depending on factors such as the type of object, type of dielectric layer, temperature, and humidity. There is a problem that is changing.
즉, 테스트 장치와 같이 단일한 전극을 사용하는 방법으로는 객체가 접촉하는 정확한 위치를 도출하는 것에 한계가 있다. In other words, methods using a single electrode, such as in a test device, have limitations in deriving the exact location where an object touches.
이와 같은 한계를 극복하기 위해 본 발명의 일 실시예에 따른 마찰 전기장 전파를 이용한 촉각 센서(100)는 복수개의 전극(21, 22)을 포함하고, 전극(21, 22) 상에 형성된 유전체층(30)에 객체가 접촉 또는 슬라이딩하여 마찰전기가 생성되면, 인접하는 한 쌍의 전극에서 감지한 전압의 비(Vratio)를 이용한다. In order to overcome this limitation, the tactile sensor 100 using triboelectric field propagation according to an embodiment of the present invention includes a plurality of electrodes 21 and 22, and a dielectric layer 30 formed on the electrodes 21 and 22. ), when an object touches or slides to generate triboelectricity, the ratio (V ratio ) of the voltage detected by a pair of adjacent electrodes is used.
인접하는 한 쌍의 전극에서 감지한 전압의 비를 이용할 경우 인접하는 전극의 거리를 최대 30 mm까지 넓히더라도 높은 정확도로 객체의 접촉 내지 슬라이딩 위치를 감지할 수 있으며, 객체의 종류가 달라지거나, 작동 환경이 달라지더라도 높은 정확도로 객체의 접촉 내지 슬라이딩 위치를 감지할 수 있다. When using the ratio of voltages detected by a pair of adjacent electrodes, the contact or sliding position of an object can be detected with high accuracy even if the distance between adjacent electrodes is widened up to 30 mm, and the type of object changes or the operation Even if the environment changes, the contact or sliding position of an object can be detected with high accuracy.
구체적인 원리를 살펴보면 다음과 같다. Looking at the specific principles, they are as follows.
도 6은 본 발명의 일 실시예에 따른 마찰 전기장 전파를 이용한 촉각 센서의 동작 원리를 설명하기 위한 모식도이며, 도 7은 도 6의 촉각 센서에서 각 전극에서 측정된 OCV 값과 전극들의 전압의 비를 측졍한 결과이다. Figure 6 is a schematic diagram for explaining the operating principle of a tactile sensor using triboelectric field propagation according to an embodiment of the present invention, and Figure 7 shows the ratio of the OCV value measured at each electrode in the tactile sensor of Figure 6 and the voltage of the electrodes. This is the result of measuring .
Figure PCTKR2022014787-appb-img-000002
Figure PCTKR2022014787-appb-img-000002
도 7에서 알 수 있듯이. 마찰전기가 생성되어 전파됨에 따라 인접하는 전극은 객체의 접촉 위치로부터 떨어진 거리에 따라 다른 값의 OCV를 감지한다. As can be seen in Figure 7. As triboelectricity is generated and propagated, adjacent electrodes detect different values of OCV depending on the distance from the object's contact location.
이때, 제1-1전극(Electrode 1)과 제1-2전극(Electrode 2)에서 감지된 OCV의 비(Vratio)를 이용하여 객체가 접촉한 위치를 감지하게 된다. At this time, the location where the object touches is detected using the ratio of OCV (V ratio ) detected at the 1-1 electrode (Electrode 1) and the 1-2 electrode (Electrode 2).
즉, 제1-1전극(Electrode 1)과 제1-2전극(Electrode 2) 사이에 전극이 형성되지 않은 영역에 객체가 접촉하더라도 그 위치를 정밀하게 감지할 수 있는 것이다. In other words, even if an object touches an area where no electrode is formed between the 1-1 electrode (Electrode 1) and the 1-2 electrode (Electrode 2), its position can be detected precisely.
제1-1전극(Electrode 1)과 제1-2전극(Electrode 2) 사이의 간격이 30 mm 인 경우 중앙인 15mm 위치에서는 양쪽의 전극에서 수신한 OCV 값이 거의 동일하였다. When the distance between the 1-1 electrode (Electrode 1) and the 1-2 electrode (Electrode 2) was 30 mm, the OCV values received from both electrodes were almost the same at the central 15 mm position.
도 8은 전극 사이의 간격에 따른 Vratio의 측정 결과를 도시한 것이다. Figure 8 shows the measurement results of V ratio according to the spacing between electrodes.
도 8에서 알 수 있듯이 Vratio는 전극 사이의 간격과 무관하게 그래프의 개형이 유사하고, 동일하게 중앙에서는 1로 수렴하는 것을 알 수 있다. As can be seen in Figure 8, the V ratio has a similar graph shape regardless of the spacing between electrodes, and converges to 1 at the center.
도 9는 최적의 설계 치수를 결정하기 위해 감지 해상도와 패널 면적을 고려하여 설계 요소를 평가한 결과이다. Figure 9 shows the results of evaluating design factors considering detection resolution and panel area to determine optimal design dimensions.
전극 사이의 간격이 넓을수록 제조공정이 간단해지고, 특히 전극에 의해 스크린 가림 등의 문제가 적어진다. The wider the gap between electrodes, the simpler the manufacturing process, and in particular, the fewer problems such as screen blocking by electrodes.
한편, 감지 해상도는 목표로 하는 기준에 따라 그 값이 상이해지는데, 목표 감지 해상도가 3mm 인 경우에는 접촉 거리에 따른 Vratio의 변동 비율이 99.31 %이며, 100 μm인 경우에는 Vratio의 변동 비율이 2.36 % 수준에 불과하다. Meanwhile, the value of the detection resolution varies depending on the target standard. When the target detection resolution is 3mm, the variation ratio of V ratio according to the contact distance is 99.31%, and when the target detection resolution is 3mm, the variation ratio of V ratio according to the contact distance is 99.31%. This is only 2.36%.
도 9에서는 목표 감지 해상도 100 μm 경우의 최적 설계가 가능한 전극 간격을 도출하였다.In Figure 9, the electrode spacing that allows optimal design when the target detection resolution is 100 μm is derived.
도 9를 참조하면 인접하는 전극 사이의 간격은 27 내지 33 mm 일 수 있으며, 가장 바람직하게는 30 mm 일 수 있다. Referring to FIG. 9, the spacing between adjacent electrodes may be 27 to 33 mm, and most preferably 30 mm.
다음으로 본 발명의 일 실시예에 따른 마찰 전기장 전파를 이용한 촉각 센서의 성능평가를 수행하였다. Next, performance evaluation of the tactile sensor using friction electric field propagation according to an embodiment of the present invention was performed.
성능 평가는 베스트 모드였던 전극간격 30mm를 기준으로 수행되었다. Performance evaluation was performed based on the electrode spacing of 30 mm, which was the best mode.
도 10은 30 mm의 전극간격을 가지는 본 발명의 일 실시예에 따른 마찰 전기장 전파를 이용한 촉각 센서의 위치 감지 분해능 평가 결과이다. Figure 10 shows the results of evaluating the position detection resolution of a tactile sensor using triboelectric field propagation according to an embodiment of the present invention with an electrode spacing of 30 mm.
0 ~ 30 mm의 범위 내에서 2 mm 마다 객체를 접촉시켰으며, 그 결과 접촉위치와 무관하게 7.14% 미만으로 낮은 수준의 오차를 나타내었다. Objects were contacted every 2 mm within the range of 0 to 30 mm, and as a result, a low level of error was shown, less than 7.14%, regardless of the contact location.
도 11은 객체의 접촉 속도 및 위치에 따른 Vratio 측정 결과이다.Figure 11 shows the V ratio measurement results according to the contact speed and position of the object.
도 11에서 알 수 있듯이, 30, 50 및 70cm/s의 수직 속도로 객체를 접촉시켰을 때 6.29% 이내의 오차를 나타내므로, 접촉 속도와 무관하게 유사한 수준의 오차를 보임을 알 수 있다. As can be seen in Figure 11, the error is within 6.29% when the object is contacted at vertical speeds of 30, 50, and 70 cm/s, showing a similar level of error regardless of the contact speed.
도 12는 수직속도 50 cm/s로 객체를 접촉하되, 객체의 종류를 셀룰로오스, 나일론 및 실리콘을 사용한 경우의 Vratio 측정 결과이다.Figure 12 shows the V ratio measurement results when an object is contacted at a vertical speed of 50 cm/s and the object types are cellulose, nylon, and silicon.
셀룰로오스, 나일론 및 실리콘과 같이 유전 특성이 서로 상이한 객체를 이용하여 접촉할 경우 측정된 OCV 값은 재료의 종류에 따라 서로 다르지만, Vratio는 일정한 것을 확인할 수 있다. When objects with different dielectric properties such as cellulose, nylon, and silicon come into contact, the measured OCV value varies depending on the type of material, but the V ratio can be confirmed to be constant.
즉, 본 발명의 일 실시예에 따른 마찰 전기장 전파를 이용한 촉각 센서는 자극 역학 및 자극 물체 물질과 같은 자극 조건에 의존하지 않는 강력한 감지 특성을 가짐을 알 수 있다.In other words, it can be seen that the tactile sensor using triboelectric field propagation according to an embodiment of the present invention has strong sensing characteristics that do not depend on stimulation conditions such as stimulation dynamics and stimulation object material.
도 13은 객체의 접촉시에 측정되는 OCV 값의 시간에 따른 변화를 측정한 결과이다.Figure 13 shows the results of measuring the change over time in the OCV value measured upon contact with an object.
도 13을 참조하면, OCV 값은 객체가 에어 갭 커패시턴스를 통해 유전체층의 표면에 접근함에 따라 증가하였으며, 접촉한 이후에는 대전에 의해 감소되었다. Referring to Figure 13, the OCV value increased as the object approached the surface of the dielectric layer through the air gap capacitance, and decreased due to charging after contact.
본 발명의 일 실시예에 따른 마찰 전기장 전파를 이용한 촉각 센서의 리프레쉬 타임(refresh time) 및 민첩성은 접촉한 이후의 OCV 거동에 의해 결정된다. The refresh time and agility of a tactile sensor using triboelectric field propagation according to an embodiment of the present invention are determined by OCV behavior after contact.
본 발명의 일 실시예에 따른 마찰 전기장 전파를 이용한 촉각 센서의 최대 리프레쉬 타임(refresh time)은 34.72 Hz 였다. The maximum refresh time of the tactile sensor using friction electric field propagation according to an embodiment of the present invention was 34.72 Hz.
다음으로 본 발명의 일 실시예에 따른 마찰 전기장 전파를 이용한 촉각 센서의 슬라이딩 모션 감지에 대한 성능 평가를 수행하였다.Next, performance evaluation was performed on the sliding motion detection of the tactile sensor using triboelectric field propagation according to an embodiment of the present invention.
도 14는 슬라이딩 모션에 의해 유도된 유전체층 내 쌍극자 에너지 전달의 개략도이다. Figure 14 is a schematic diagram of dipole energy transfer in a dielectric layer induced by sliding motion.
촉각 센서의 유전체층 상에서 살라이딩 모션을 할 경우 슬라이딩 방향에 유전체 내에서 쌍극자 분극이 유도된다.When a sliding motion is performed on the dielectric layer of a tactile sensor, dipole polarization is induced within the dielectric in the sliding direction.
이와 같은 쌍극자 분극은 반대 부호(즉, 접지와 비교하여 음 또는 양의 부호)로 양 측의 전극에서 OCV 신호를 생성하게 된다. This dipole polarization generates OCV signals at both electrodes with opposite signs (i.e., negative or positive signs compared to ground).
예를 들어, 유전체층에서 객체가 제1-1전극(electrode 1)에서 제1-2전극(electrode 2)으로 슬라이딩 하게 되면, 양측의 전극에서는 서로 반대 부호의 전압 펄스가 측정된다. For example, when an object slides from the 1-1 electrode (electrode 1) to the 1-2 electrode (electrode 2) in the dielectric layer, voltage pulses of opposite signs are measured at both electrodes.
그러므로 슬라이딩 모션의 방향과 최종 위치는 두 전극의 Vratio 와 그 값의 부호를 기반으로 감지할 수 있다. Therefore, the direction and final position of the sliding motion can be detected based on the V ratio of the two electrodes and the sign of that value.
도 15는 0, 6, 15 및 24mm의 초기 위치에서 11.5cm/s의 속도로 슬라이딩 한 경우의 OCV 측정 값이며, 도 16은 다양한 초기 위치 및 슬라이딩 거리에 따른 Vratio 측정 값이다. Figure 15 shows OCV measurements when sliding at a speed of 11.5 cm/s at initial positions of 0, 6, 15, and 24 mm, and Figure 16 shows V ratio measurements at various initial positions and sliding distances.
도 15 및 도 16을 참조하면, Vratio를 이용할 경우 모든 초기 위치와 슬라이딩 거리에 대해 가려진 영역없이 감지할 수 있다는 장점이 있다. Referring to Figures 15 and 16, when using V ratio , there is an advantage that all initial positions and sliding distances can be detected without hidden areas.
다음으로 본 발명의 일 실시예에 따른 마찰 전기장 전파를 이용한 촉각 센서를 활용한 예를 소개한다. Next, an example of using a tactile sensor using friction electric field propagation according to an embodiment of the present invention will be introduced.
도 17은 본 발명의 일 실시예에 따른 마찰 전기장 전파를 이용한 촉각 센서를 활용하여 제조한 터치 패드이다. Figure 17 is a touch pad manufactured using a tactile sensor using friction electric field propagation according to an embodiment of the present invention.
가장자리에만 한쌍의 제1전극과 한쌍의 제2전극을 부착하여 3 cm X 3 cm 크기의 터치 영역을 가지는 터치패드를 제작했으며, 터치 영역은 1 cm X 1 cm의 9개의 가상 영역으로 구분하였다.A touch pad with a touch area of 3 cm
가상 영역에는 A ~ I 까지의 알파벳을 할당하였다.The alphabet from A to I was assigned to the virtual area.
도 18은 "A", "D" 및 "E" 영역에서 손가락 접촉 자극에 의해 각 전극에서 생성된 OCV 값 측정 결과이다. Figure 18 shows the results of measuring OCV values generated at each electrode by finger touch stimulation in areas "A", "D", and "E".
도 18에서 알 수 있듯이, 본 발명의 일 실시예에 따른 마찰 전기장 전파를 이용한 촉각 센서를 활용하여 제조한 터치 패드에 손가락이 접촉된 위치를 정확하게 구분할 수 있음을 확인할 수 있다. As can be seen in Figure 18, it can be confirmed that the position where the finger is in contact with the touch pad manufactured using the tactile sensor using friction electric field propagation according to an embodiment of the present invention can be accurately distinguished.
도 19 및 도 20은 접촉과 슬라이딩의 혼합 동작을 추적한 결과이다. Figures 19 and 20 show the results of tracking the mixed motion of contact and sliding.
도 19와 같이 영역 "A"에 접촉하고 영역 "G"로 순차적으로 슬라이딩 할 경우 모든 전극은 초기에 양의 OCV를 감지하하여 접촉위치가 "A"임을 감지하였으며, 그 이후 G 영역으로 슬라이딩 하면서 슬라이딩 방향에 위치한 Line 4에서만 양의 OCV가 측정되어 슬라이딩 방향과 위치를 정확히 감지하였음을 확인할 수 있다. As shown in Figure 19, when touching area "A" and sequentially sliding to area "G", all electrodes initially detect a positive OCV and detect that the contact position is "A", and then while sliding to area G. Positive OCV was measured only at Line 4 located in the sliding direction, confirming that the sliding direction and position were accurately detected.
도 20과 같이 영역 "A"에 접촉하고 영역 "I"로 순차적으로 슬라이딩 할 경우 모든 전극은 초기에 양의 OCV를 감지하하여 접촉위치가 "A"임을 감지하였으며, 그 이후 I 영역으로 슬라이딩 하면서 슬라이딩 방향에 위치한 Lune 2와 Line 4에서만 양의 OCV가 측정되어 슬라이딩 방향과 위치를 정확히 감지하였음을 확인할 수 있다. As shown in Figure 20, when touching area "A" and sequentially sliding to area "I", all electrodes initially detect positive OCV and detect that the contact position is "A", and then while sliding to area I. Positive OCV was measured only at Lune 2 and Line 4 located in the sliding direction, confirming that the sliding direction and position were accurately detected.
나아가 Vratio를 이용할 경우 접촉위치의 좌표와 슬라이딩 거리를 추산할 수 있다. Furthermore, when using V ratio , the coordinates of the contact location and sliding distance can be estimated.
도 21은 (a) 삼각형, (b) 사각형, (c) 별 형태와 같은 다각형 자극을 인가한 경우의 결과이다. Figure 21 shows the results when polygonal stimuli such as (a) triangle, (b) square, and (c) star shape are applied.
도 21에서 보는 바와 같이 본 발명의 일 실시예에 따른 마찰 전기장 전파를 이용한 촉각 센서를 활용하여 제조한 터치 패드는 복잡한 형태의 접촉도 원활하게 감지함을 알 수 있다. As shown in Figure 21, it can be seen that the touch pad manufactured using a tactile sensor using triboelectric field propagation according to an embodiment of the present invention smoothly senses even complex forms of contact.
도 22는 본 발명의 일 실시예에 따른 마찰 전기장 전파를 이용한 촉각 센서의 제조방법의 개략적 플로우 차트이다. Figure 22 is a schematic flow chart of a method of manufacturing a tactile sensor using friction electric field propagation according to an embodiment of the present invention.
구체적으로 살펴보면, 에탄올과 탈이온수로 세척한 PET 기판(10cm Х 10cm, 두께 50μm)을 전극 간격이 30mm인 스테인리스 스틸 섀도우 마스크로 덮는다. Specifically, a PET substrate (10 cm Х 10 cm, thickness 50 μm) cleaned with ethanol and deionized water is covered with a stainless steel shadow mask with an electrode spacing of 30 mm.
은(4N 순도) 전극은 100W에서 1.5시간 동안 DC 마그네트론 스퍼터링을 통해 형성되었으며, 유속 30sccm의 아르곤 분위기 및 압력 2.8Х10-3Torr에서 컬럼 전극용 PET 기판에 증착되었다. Silver (4N purity) electrodes were formed through DC magnetron sputtering at 100 W for 1.5 hours and deposited on PET substrates for column electrodes in an argon atmosphere with a flow rate of 30 sccm and a pressure of 2.8Х10 -3 Torr.
행 전극은 열 전극과 행 전극 사이의 전기적 간섭을 방지하기 위해 정렬된 셀룰로오스 절연체를 사용하여 동일한 조건에서 증착되었다. The row electrodes were deposited under identical conditions using aligned cellulose insulators to prevent electrical interference between the column and row electrodes.
질소를 분사하여 불순물을 제거한 후, vortex mixer를 이용하여 10:1의 중량비로 경화제와 혼합한 PDMS 용액(Sigma-Aldrich, SYLGARD 184) 1g을 붓고 60℃에서 2시간 동안 소성하였다. After removing impurities by spraying nitrogen, 1 g of PDMS solution (Sigma-Aldrich, SYLGARD 184) mixed with a curing agent at a weight ratio of 10:1 using a vortex mixer was poured and fired at 60°C for 2 hours.
이와 같은 방법으로 본 발명의 일 실시예에 따른 마찰 전기장 전파를 이용한 촉각 센서를 제조하였다. In this way, a tactile sensor using friction electric field propagation according to an embodiment of the present invention was manufactured.
본 발명의 보호범위가 이상에서 명시적으로 설명한 실시예의 기재와 표현에 제한되는 것은 아니다. 또한, 본 발명이 속하는 기술분야에서 자명한 변경이나 치환으로 말미암아 본 발명이 보호범위가 제한될 수도 없음을 다시 한번 첨언한다.The scope of protection of the present invention is not limited to the description and expression of the embodiments explicitly described above. In addition, it is once again added that the scope of protection of the present invention may not be limited due to changes or substitutions that are obvious in the technical field to which the present invention pertains.

Claims (6)

  1. 기판; Board;
    상기 기판 상에 형성되며, 서로 이격되어 형성되는 제1-1전극 내지 제1-n전극(단, n은 2 이상의 자연수); 및 1-1 to 1-n electrodes formed on the substrate and spaced apart from each other (where n is a natural number of 2 or more); and
    상기 제1-1전극 내지 제1-n전극을 덮도록 형성되는 유전체층;을 포함하고, It includes a dielectric layer formed to cover the 1-1 to 1-n electrodes,
    상기 유전체층에 객체가 접촉 내지 슬라이딩할 경우에 생성되는 마찰 전기장 전파에 의해 인접하는 한쌍의 전극에서 측정한 전압의 비(Vratio)를 이용하여 객체가 접촉한 위치 또는 슬라이딩 동작을 감지하는 것을 특징으로 하는 마찰 전기장 전파를 이용한 촉각 센서. Characterized by detecting the contact position or sliding motion of the object using the ratio of voltages (V ratio ) measured at a pair of adjacent electrodes by friction electric field propagation generated when an object touches or slides on the dielectric layer. A tactile sensor using friction electric field propagation.
  2. 제1항에 있어서, According to paragraph 1,
    상기 제1-1전극 내지 제1-n전극을 사이의 간격은 27 내지 33 mm 인 것을 특징으로 하는 마찰 전기장 전파를 이용한 촉각 센서. A tactile sensor using triboelectric field propagation, characterized in that the distance between the 1-1 electrode to the 1-n electrode is 27 to 33 mm.
  3. 제1항에 있어서, According to paragraph 1,
    상기 기판 상에 형성되며, 상기 제1-1전극 내지 제1-n전극과 서로 다른 각도로 형성되고, 서로 이격되어 형성되는 제2-1전극 내지 제2-m전극(단, m은 2 이상의 자연수)을 더 포함하는 것을 특징으로 하는 마찰 전기장 전파를 이용한 촉각 센서. 2-1 to 2-m electrodes formed on the substrate, formed at different angles from the 1-1 to 1-n electrodes, and spaced apart from each other (where m is 2 or more) A tactile sensor using friction electric field propagation, characterized in that it further includes natural water).
  4. 제1항에 있어서,According to paragraph 1,
    상기 유전체층은 polyamide (nylon 6,6), poly(vinyl alcohol) (PVA), poly(vinyl acetate) (PVAc), poly(methyl methacrylate) (PMMA), poly(ethylene terephthalate (Mylar), polyacrylonitrile (PAN), poly(bisphenol A carbonate) (PC), poly(vinylidene chloride), polystyrene (PS), polyethylene (PE), polypropylene (PP), poly(vinyl chloride) (PVC), polytetrafluoroethylene (PTFE), polyester, polydimethylsiloxane (PDMS) 및 polyurethane 이루어지는 군에서 선택되는 어느 하나인 것을 특징으로 하는 마찰 전기장 전파를 이용한 촉각 센서. The dielectric layer is polyamide (nylon 6,6), poly(vinyl alcohol) (PVA), poly(vinyl acetate) (PVAc), poly(methyl methacrylate) (PMMA), poly(ethylene terephthalate (Mylar), polyacrylonitrile (PAN). , poly(bisphenol A carbonate) (PC), poly(vinylidene chloride), polystyrene (PS), polyethylene (PE), polypropylene (PP), poly(vinyl chloride) (PVC), polytetrafluoroethylene (PTFE), polyester, polydimethylsiloxane ( A tactile sensor using triboelectric field propagation, characterized in that it is selected from the group consisting of PDMS) and polyurethane.
  5. 제1항에 있어서,According to paragraph 1,
    상기 제1-1전극 내지 제1-n전극에는 각각 전압계가 연결되는 것을 특징으로 하는 마찰 전기장 전파를 이용한 촉각 센서. A tactile sensor using friction electric field propagation, characterized in that a voltmeter is connected to each of the 1-1 to 1-n electrodes.
  6. 기판; 상기 기판 상에 형성되며, 서로 이격되어 형성되는 제1-1전극 내지 제1-n전극(단, n은 2 이상의 자연수); 및 상기 제1-1전극 내지 제1-n전극을 덮도록 형성되는 유전체층;을 포함하는 촉각 센서를 이용한 촉각 센싱 방법으로서: Board; 1-1 to 1-n electrodes formed on the substrate and spaced apart from each other (where n is a natural number of 2 or more); and a dielectric layer formed to cover the 1-1 to 1-n electrodes. A tactile sensing method using a tactile sensor comprising:
    상기 유전체층에 객체가 접촉 내지 슬라이딩할 경우에 생성되는 마찰 전기장 전파에 의해 인접하는 한쌍의 전극에서 측정한 전압의 비(Vratio)를 이용하여 객체가 접촉한 위치 또는 슬라이딩 동작을 감지하는 것을 특징으로 하는 촉각 센싱 방법.Characterized by detecting the contact position or sliding motion of the object using the ratio of voltages (V ratio ) measured at a pair of adjacent electrodes by friction electric field propagation generated when an object touches or slides on the dielectric layer. A tactile sensing method.
PCT/KR2022/014787 2022-04-28 2022-09-30 Tactile sensor using frictional electric field propagation, and tactile sensing method using same WO2023210883A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0052848 2022-04-28
KR20220052848 2022-04-28
KR10-2022-0123946 2022-09-29
KR1020220123946A KR20230153222A (en) 2022-04-28 2022-09-29 Tactile sensor using triboelectric field propagation and tactile sensing method using the same

Publications (1)

Publication Number Publication Date
WO2023210883A1 true WO2023210883A1 (en) 2023-11-02

Family

ID=88519001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/014787 WO2023210883A1 (en) 2022-04-28 2022-09-30 Tactile sensor using frictional electric field propagation, and tactile sensing method using same

Country Status (1)

Country Link
WO (1) WO2023210883A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120146943A1 (en) * 2009-09-03 2012-06-14 Koninklijke Philips Electronics N.V. Touch sensing output device
KR20140123895A (en) * 2013-04-15 2014-10-23 삼성전자주식회사 Apparatus and method for providing tactile
JP2017506395A (en) * 2014-02-21 2017-03-02 タンヴァス, インコーポレイテッドTanvas, Inc. Tactile display with simultaneous detection and actuation
US20200218351A1 (en) * 2017-08-07 2020-07-09 Mitsubishi Electric Corporation Tactile presentation panel, tactile presentation touch panel, and tactile presentation touch display
KR20220050892A (en) * 2019-07-17 2022-04-25 유이 라이프사이언시스 인코포레이티드 Systems and methods for measuring tissue parameters by use of a capacitive tactile sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120146943A1 (en) * 2009-09-03 2012-06-14 Koninklijke Philips Electronics N.V. Touch sensing output device
KR20140123895A (en) * 2013-04-15 2014-10-23 삼성전자주식회사 Apparatus and method for providing tactile
JP2017506395A (en) * 2014-02-21 2017-03-02 タンヴァス, インコーポレイテッドTanvas, Inc. Tactile display with simultaneous detection and actuation
US20200218351A1 (en) * 2017-08-07 2020-07-09 Mitsubishi Electric Corporation Tactile presentation panel, tactile presentation touch panel, and tactile presentation touch display
KR20220050892A (en) * 2019-07-17 2022-04-25 유이 라이프사이언시스 인코포레이티드 Systems and methods for measuring tissue parameters by use of a capacitive tactile sensor

Similar Documents

Publication Publication Date Title
WO2010093162A2 (en) Touch screen input apparatus
Zhu et al. Triboelectrification-enabled touch sensing for self-powered position mapping and dynamic tracking by a flexible and area-scalable sensor array
WO2010085070A2 (en) Input apparatus
WO2010082795A2 (en) Input device
CN103257741B (en) Touch panel and display device employing the same
WO2020036253A1 (en) Pixel-type pressure sensor and manufacturing method therefor
CN113950659A (en) Pressure sensing apparatus and method
KR20100004827A (en) Touch panel device of digital capacitive coupling type with high sensitivity
Gorgutsa et al. A woven 2D touchpad sensor and a 1D slide sensor using soft capacitor fibers
WO2017039350A1 (en) Deformation sensing sensor having improved sensitivity
Sohgawa et al. Multimodal measurement of proximity and touch force by light-and strain-sensitive multifunctional MEMS sensor
WO2023210883A1 (en) Tactile sensor using frictional electric field propagation, and tactile sensing method using same
Liu et al. A flexible conductive hybrid elastomer for high-precision stress/strain and humidity detection
Nguyen et al. Transparent stretchable capacitive touch sensor grid using ionic liquid electrodes
Su et al. Tunable flexible pressure sensor based on bioinspired capillary-driven method
WO2015002426A1 (en) Organic solvent leak detection apparatus
WO2010013951A2 (en) Touch sensor with resistive pattern formed in one continuous line, and method for sensing touch point using touch sensor
WO2011023856A1 (en) Gesture sensor arrangement and a method for producing it
KR20230153222A (en) Tactile sensor using triboelectric field propagation and tactile sensing method using the same
WO2017095097A1 (en) High-sensitivity sensor containing linearly induced cracks and method for manufacturing same
CN110849252B (en) Method for preparing large-area conformable semiconductor type proximity sensor
WO2013183925A1 (en) Method and apparatus for detecting touch
CN111124186B (en) Non-contact screen sensor based on triboelectric and electrostatic induction and sensing method
WO2023027303A1 (en) Triboresistive touch sensor
JPH11211770A (en) Static electricity evaluation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940377

Country of ref document: EP

Kind code of ref document: A1