WO2017095097A1 - High-sensitivity sensor containing linearly induced cracks and method for manufacturing same - Google Patents

High-sensitivity sensor containing linearly induced cracks and method for manufacturing same Download PDF

Info

Publication number
WO2017095097A1
WO2017095097A1 PCT/KR2016/013789 KR2016013789W WO2017095097A1 WO 2017095097 A1 WO2017095097 A1 WO 2017095097A1 KR 2016013789 W KR2016013789 W KR 2016013789W WO 2017095097 A1 WO2017095097 A1 WO 2017095097A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
crack
high sensitivity
sensitivity sensor
thin film
Prior art date
Application number
PCT/KR2016/013789
Other languages
French (fr)
Korean (ko)
Inventor
최용환
이태민
이건희
최만수
강대식
페트로피키트사
Original Assignee
재단법인 멀티스케일 에너지시스템 연구단
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160097970A external-priority patent/KR101898604B1/en
Application filed by 재단법인 멀티스케일 에너지시스템 연구단, 서울대학교산학협력단 filed Critical 재단법인 멀티스케일 에너지시스템 연구단
Priority to CN201680069974.2A priority Critical patent/CN108291797B/en
Priority to US15/779,202 priority patent/US20200240859A1/en
Publication of WO2017095097A1 publication Critical patent/WO2017095097A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes

Definitions

  • the present invention relates to a linear sensor-induced crack-containing high sensitivity sensor and a method for manufacturing the same, and applied to a measurement or artificial skin requiring high precision for sensing tensile force and pressure by using a conductive thin film formed with linear cracks. This relates to a possible high sensitivity sensor.
  • a high sensitivity sensor is a device that detects a minute signal and delivers it as data such as an electrical signal, which is one of the components required in the modern industry.
  • capacitive sensors piezoelectric sensors, strain gauges and the like are known as sensors for measuring pressure and tensile force.
  • Strain gauge sensor which is a conventional tensile sensor, detects mechanical change as an electrical signal. When it is attached to the surface of a machine or structure, the strain gauge sensor is used to measure the change in fine dimension, that is, the strain. It is possible to know the stress which is important for confirming the strength and the safety from the size of the strain.
  • strain gauge measures the deformation of the surface of the workpiece in accordance with the change in the resistance value of the metal resistance element, and in general, the resistance value of the metal material increases with increasing force from the outside and decreases with compression.
  • Strain gages are applied to sensors as sensors for converting physical quantities such as force, pressure, acceleration, displacement, and torque into electrical signals, and are widely used for measurement control as well as experiments and research.
  • strain gauge sensors are susceptible to corrosion due to the use of metal wires, are not only very sensitive, but also have low output values, requiring additional circuitry to compensate for small signals, and semiconductor tension sensors are heat sensitive.
  • the pressure sensor is a sensor that can measure the pressure applied to the surface, which is an essential element when manufacturing artificial skin. Strain represents the horizontal change in length applied to the surface, while pressure represents the force applied perpendicular to the surface.
  • Conventional pressure sensors measure the resistance value of a silicon film made of thin film that changes with pressure, and is widely used not only for research and measurement but also in industry.
  • the conventional pressure sensor has a disadvantage of being unable to distinguish small pressures due to its very low sensitivity and cannot be bent. This disadvantage makes it impossible to apply to artificial skin, it is necessary to manufacture a sensor that can bend while detecting a small pressure.
  • the senor can be driven only in a specific environment, or affected by various environmental factors, such that the accuracy of the measured value is degraded. There is a problem that is difficult to secure. In addition, these sensors have a problem that it is difficult to manufacture a flexible structure due to its structural problems.
  • strain sensors based on carbon nanotubes, nanofibers, graphene platelets and mechanical cracks have been reported.
  • the crack sensor was affected by the spider's sensory system. Spider sensor is known to be very sensitive to strain and vibration.
  • the technical problem to be solved in the present invention is to maintain the accuracy of the measured value even after repeated use while being less affected by the environment, and has a high sensitivity sensor that can sense the change in tension and pressure applicable to a variety of fields with flexibility To provide.
  • Another technical problem to be solved by the present invention is to provide a method for manufacturing the high sensitivity sensor.
  • a flexible support having a hole pattern formed thereon;
  • the conductive thin film includes cracks induced in a straight line having a crack surface facing each other and at least some of the surfaces in contact with each other,
  • the crack surface is guided in a straight shape by a regular hole pattern formed in the flexible support,
  • a high sensitivity sensor for measuring an external stimulus by measuring an electrical change caused by a change in contact area or a short circuit or re-contact as the crack plane moves in response to an external physical stimulus.
  • the present invention also provides
  • It provides a method of manufacturing a high-sensitivity sensor comprising a; stretching the conductive thin film to induce a linear crack.
  • the high-sensitivity sensor of the present invention is capable of measuring tension and / or pressure with high sensitivity using a conductive thin film in which linearly induced cracks are formed on one surface of the support, and has flexibility to be applicable to various fields.
  • the high-sensitivity sensor as described above can be applied to highly accurate measurement or artificial skin, and can be utilized as a positioning detection sensor by pixelating the sensor, and thus can be used as a precision measurement field, a biometric device using human skin, and the like. It can be usefully used in the field of motion measuring sensor, display panel sensor and the like.
  • the high-sensitivity sensor can be mass-produced in a simple process, thereby having a very high economy.
  • FIG. 1 is a model of a crack lip having grains of size 1.
  • FIG 3 is a schematic diagram of a manufacturing process of a crack sensor according to an exemplary embodiment.
  • FIG. 4 is an SEM image (c, d) showing changes in the surface of the sensor (a, b) before and after pulling the crack sensor and changes in the crack on the conductive thin film according to one embodiment.
  • FIG. 5 is an SEM image showing that cracks are formed (b, c) before (a) and after the cracks are applied.
  • FIG. 6 is an SEM image showing the formation of cracks in various gap lengths.
  • FIG. 7 is a graph (b, d) showing a difference (a) of crack formation patterns and a FEM simulation result (c) for identifying the gaps at various gap lengths, and illustrating resistance changes according to crack formation differences.
  • FIG. 8 is a graph of the surface of a crack-based sensor randomly formed without patterning and a resistance change measured using the same.
  • FIG. 9 is a conceptual diagram and a result graph showing a change pattern of resistance in the tensile direction.
  • 10 is a load cell for measuring changes due to pressure and tension.
  • Figure 11 is a graph showing the reproducibility of the change in the resistance and repeated experiments by loading and unloading according to the range of change rate.
  • FIG. 13 shows a normalized resistance vs strain curve comparing the theoretical value obtained by equation 6 with the experimental value measured by the crack sensor.
  • Fig. 15 shows experimental results showing resistance changes caused by various pressurization conditions of a pressure range (a) of 0 to 10 kPa, a pressure caused by a small ant (b) and a pressure caused by a wrist pulse (c, d).
  • FIG. 16 illustrates a high sensitivity sensor capable of simultaneously indicating position and pressure using a multi-pixel array and measured results using the same.
  • the present invention provides an inexpensive ultra high sensitivity strain and pressure sensor based on the induction formation of more precise mechanical cracks in a regular micro scale pattern.
  • the sensor according to the present invention can concentrate stress in a specific area around the hole by patterning a hole on the surface of the device, from which it is possible to precisely form a uniform crack connecting the hole.
  • the sensor of the present invention is a sensor capable of measuring the tensile rate and measuring the pressure applied to the surface. After depositing a thin metal film on the polymer to produce a mechanical crack. It can be effectively applied to wearable healthcare and can replace existing stretch or pressure sensors.
  • a flexible support having a hole pattern formed thereon;
  • the conductive thin film includes cracks induced in a straight line having a crack surface facing each other and at least some of the surfaces in contact with each other,
  • the crack surface is guided in a straight shape by a regular hole pattern formed in the flexible support,
  • a high sensitivity sensor for measuring an external stimulus by measuring an electrical change caused by a change in contact area or a short circuit or re-contact as the crack plane moves in response to an external physical stimulus.
  • It provides a method of manufacturing a high-sensitivity sensor comprising a; stretching the conductive thin film to induce a linear crack.
  • the high-sensitivity sensor according to the present invention may form cracks uniformly formed in a straight line along the hole pattern by the hole pattern formed on the flexible support, and the formation of such a straight crack may further improve the sensitivity of the sensor. Can be.
  • the crack sensor when a conductive thin film formed on a hole pattern formed on the flexible support is subjected to an external physical stimulus due to tension or pressure, a stress sensor is formed around a position where a hole formed on the flexible support is located. ), The crack surface can be uniformly formed along the contact surface between the hole and the hole.
  • the crack surface is formed between the hole and the hole as shown in the adjacent c and d of Figure 4, the length (G) of the crack surface as shown in Figure 7a is the center of the hole adjacent to the center of the hole It may have a length of 50% or more with respect to the length (P) of the straight line followed by, preferably, having a length of 60% or more.
  • the crack may not be formed in a straight line, which is formed in the form of a plurality of cracks are not straight, as shown in Figure 6a and 7a Sensitivity may be reduced.
  • the hole (hole) pattern may be any shape, such as circular, oval, square, rhombus, asterisk, cross, etc., preferably a rhombus made of a curve as shown in c, d of FIG. That is, a rhombus consisting of four arcs with four vertices in the shape of a cross or a curve may be suitable.
  • the hole pattern described above may be advantageous for uniformly forming cracks of a straighter shape by providing directionality in the generation of cracks at each vertex.
  • Crack sensor according to the present invention is generated by the stress concentrated in two adjacent hole pans by the external force by the hole pattern as shown in Figure 4c, d, as shown in Figure 4d and 6b by the external force Cracks may be formed in a straight line along the hole pattern.
  • the high sensitivity sensor of the present invention may exhibit a sensitivity ( ⁇ R / R 0 ) of 1 to 1 ⁇ 10 6 at a strain of 0 to 10%.
  • the gauge factor of the high sensitivity sensor according to the present invention is defined as ( ⁇ R / R 0 ) / ⁇ , and the gauge factor may be 2 ⁇ 10 6 or more in a strain range of 0 to 10%.
  • the high sensitivity sensor according to the present invention may exhibit a sensitivity ( ⁇ R / R 0 ) of 2 ⁇ 10 4 or more at a pressure in the range of 7 to 10 kPa, and preferably 1 ⁇ 10 5 or more at a pressure in the range of 8 to 9.5 kPa. .
  • the present invention exhibits high sensitivity by pressure sensitivity, which can be used to measure physiological signals such as pulses by attaching to the wrist as shown in FIGS. 15C and 15D.
  • Figure 15c is a result of measuring the pulse by attaching a high-sensitivity sensor according to the present invention to the wrist
  • Figure 15d is a high-sensitivity sensor according to the present invention can distinguish the three minute differences, such as pulse percussion wave, tidal wave, diastolic wave It means that it has high precision as much as possible.
  • the external physical stimulus may be applied at various angles with respect to the crack surface, the axis of force with respect to the direction in which the external physical stimulus exerts a force on the crack surface is perpendicular (90 °) or 45 degrees.
  • the axis of force with respect to the direction in which the external physical stimulus exerts a force on the crack surface is perpendicular (90 °) or 45 degrees.
  • the gauge factor The change in gauge factor may be greater, and more preferably an external force may be applied to the crack surface in an angle range of 90 ° ⁇ 10 °.
  • the high-sensitivity sensor is a sensor in which cracks formed in the conductive thin film are spaced according to tension or pressure, thereby measuring the change in resistance of the conductive thin film to measure external tension or pressure.
  • the resistance increases as the metal thin film is stretched, but in the case of the present invention, the crack gap of the metal thin film is opened. As crack cracks open, electrical shorts increase, and resistance increases rapidly. For this reason, it has a much higher sensitivity than the conventional strain gauge sensor.
  • the cracks present in the conductive thin film may be induced in a straight line according to the hole pattern formed in the flexible support, the extent of the crack is also generated lifespan spacing, shape, thickness of the conductive thin film, forming conditions And the like, and are not particularly limited.
  • the flexible support is selected from the group consisting of polyurethane acrylate (PUA), polydimethylsiloxane (PDMS), polyethylene terephthalate (PET), polypropylene (PP), polyethylene (PE) and the like. It is preferably any one selected or a combination thereof, most preferably polyurethane acrylate (PUA).
  • PUA polyurethane acrylate
  • PDMS polydimethylsiloxane
  • PET polyethylene terephthalate
  • PP polypropylene
  • PE polyethylene
  • the conductive thin film is preferably any one selected from the group consisting of Au, Ag, Pt, Cu, Cr, Pt, etc., or a combination thereof, most preferably Cr / Pt combination. Can be.
  • the thickness of the conductive thin film is not limited, but preferably has a thickness such that cracks can be formed by mechanical methods such as tensile and bending, and the formation conditions of such a crack is a conductive thin film. And the type of flexible support.
  • the thickness of the conductive thin film is preferably 0.1 nm to 1 ⁇ m, more preferably 10 nm to 50 nm, even more preferably 20 nm to 30 nm.
  • the Young's modulus of the conductive thin film may be 10 10 to 10 12 .
  • the gauge factor of the high sensitivity sensor may be 1 x 10 5 to 1 x 10 6 (1 to 10% tensile range).
  • the gauge factor refers to the rate of change of the strain gauge's resistance to generated strain.
  • the flexibility of the high sensitivity sensor means that it can be bent to a minimum radius of 1 mm or more.
  • the high-sensitivity sensor of the present invention can be applied in various fields such as pressure sensor, tension sensor, artificial skin, etc., and can be utilized as positioning detection sensor by pixelating the sensor.
  • the present invention carried out a theoretical analysis of the resistance vs strain data, which was in agreement with the results of the experimental data at strains not too large.
  • the inventors have revealed a universal mechanism for strain sensors based on parallel cracks formed on a uniform 20 nm Pt film of particulate form cracked on a stretchable polymer.
  • free cracks cut the sensor strip by a technique that produces a large unidirectional strain.
  • the normalized conductance S vs. strain ⁇ of the sensor, defined by Equation (1) below, is the probability distribution function (pdf) P (x) of the steps on the cracks that form the contact between the cracks lip: Is determined by
  • equation P (x) has only parameters related to size.
  • x ⁇ / ⁇ 0 and k is a proportional coefficient defined in relation to the crack gap width with respect to strain. k may differ depending on the materials constituting the parallel crack system, which can be obtained from the experiment.
  • Equation 2 indicates that the small step of the crack protrusion formed by the shift of the grain is the same distribution as the large step formed by the accumulation of the grain, which is the elasticity of the substrate having no scale and any length characteristics. Because of the presence of the area, it may not be possible to distinguish between large and small meandering projections.
  • ⁇ and B are variables of pdf.
  • the large non-zero probability, except for the rare contact between the crack lip, is in the nature of the conduction mechanism through the crack, and therefore coincides with the long tail distribution.
  • Equation 5 renders the normalized resistance. The normalized resistance is remarkably consistent with the experimental results with strains up to 2%.
  • Equation 4 the log-logistic pdf of Equation 4 can be derived with Equation 1 below.
  • the present invention can propose a generalized exponential law for data fitting by experimenters doing free parallel crack studies.
  • FIGS. 5B and 5C Important differences between the cracks formed in previous studies and the present invention are shown in FIGS. 5B and 5C.
  • the cracks between the pattern patches closely follow the "crests" of the wrinkles on the metal / polymer film.
  • the local deviation is related to the size of the grains and, therefore, may not satisfy the modification equation 1 for free crack generation.
  • the pattern patches are pressed to each other in a direction horizontal and perpendicular to the deformation direction, due to a Poisson ratio of 0.5, which is an inherent property of the rubbery material.
  • each i-th particle along the crack (crack orbit) lip can move up and down with a probability of 1/2 and yi movement (in the deformation direction).
  • the crack step size refers to the travel distance of the up (down) trajectory by several adjacent particles.
  • the sum of three grain movements in one direction produces a step of size X.
  • the local grain shift is distributed in the local pdf P (y).
  • the grains adjacent to normalized size 1 moving perpendicular to the small steps y1, ..., y2 may have an overall pdf P (x) function of step size x.
  • Equation 7 Equation 7 as the Fourier integral of the delta function
  • Equation 11 The Cauchy integration of Equation 11 can be analyzed in general terms.
  • the decay of the function P (x) may be nearly exponential and may indicate that it may be nearly independent of the particular form of P (y).
  • All other poles can be complex and can lie at the bottom of the complex plane (see example in FIG. 2).
  • Equation 6 The exponential law function and the exponential function can be regarded as the difference between Equations 6 and 16.
  • Equation 10 Equation 17
  • Equation 13 then takes the form:
  • Equation 17 can be found numerically.
  • the lowest z 0 1.256, and the other poles are 2.789 ⁇ 7.438 i and 3.360 ⁇ 13.866 i ... (see Figure 2).
  • the resistance reacts as flattening by increasing the slope of the resistance on the semi-logarithmic scale.
  • the parameter measures the flatness of the crack.
  • the parameter of strain measured in% is to be.
  • a crack sensor was prepared as shown in FIGS. 3A-3C.
  • PDMS polydimethylsiloxane
  • PUA polyurethane acrylate
  • the patterned 10 nm chromium layer was formed by thermal evaporation with a thermal evaporator (Selcos Inc.) and deposited a sputtered 20 nm platinum layer.
  • the metal layer deposited PUA film was carefully peeled off the PDMA / glass mold and then tensioned 5% in the x / y direction using a custom stretcher.
  • the crack sensor before and after tensioning is shown in FIG. 4.
  • FIGS. 4 and 5 show that the crack is opened as the deformation is applied to the high sensitivity sensor.
  • FIG. 16b A schematic diagram of a multiple pixel system is shown in FIGS. 16A and 16C.
  • Each pixel (1 ⁇ 1 cm 2 islands) was constructed with a thickness of 100 ⁇ m PUA / 10 nm Cr / 20 nm Pt with a hole pattern, and then stretched and stretched 10% bi-axially to generate cracks.
  • the electrical connection between cracked Pt and Lab View-based PXI-4071 system (NI instrument Inc.) was formed by gold lines (Au, 50 nm thick) deposited on PET films using the shadow mark method.
  • Each pixel manufactured was freely placed on a PET film by a conductive polymer (CW2400, circuitworks) or electrically connected by a gold line.
  • CW2400 conductive polymer
  • P is the shortest distance to the hole center, is the same in all three patterns tested, G is the length of the gap, and the gap represents the shortest distance between the tip of the hole.
  • 6A shows that when the length of the gap G is 10 ⁇ m and 15 ⁇ m, several cracks can be induced, and 6b shows that a very straight crack can be generated when G is 20 ⁇ m.
  • the occurrence of a large number of uneven cracks, such as that shown in FIG. 6A, can lower the sensitivity to changes in resistance, and these results are shown in FIGS. 7B and 7D.
  • the crack of the crack sensor according to the invention is advantageous in the case where it is induced in a straight line, which is shown in the results of FIGS. 7b and 7d.
  • the resistance change at 20 ⁇ m of FIG. 7B shows a sharper graph compared to the sensor based on the disordered crack, which shows the change in resistance according to the change of the distance of the crack lip. Respond more accurately to changes in the distance of cracks.
  • Figure 9d is a result of the resistance change that occurs as the angle of the crack generated in the lattice shape, the largest change in resistance when the angle is 90 °, the change in resistance is shown in the order of 45 °, 60 ° .
  • the change in resistance is more sensitive when the rectangular patch formed by the cracks generated in the form of a lattice is tensioned through the force symmetrically at the same angle, which means that the distance of the cracks can be more effectively opened (90 ° -tension).
  • the angle generated by the difference of the angle) is an angle of 45 ° or less at an angle of 45 ° or more, which may result in a lower resistance compared to 45 ° as a narrower distance between cracks is formed. However, this may have less effect at angles close to 90 °.
  • FIGS. 11A to 11D illustrate changes in electrical resistance measured by stretching up to a maximum of 10% and returning to an original state, that is, 0% strain
  • FIGS. 11A to 11C illustrate hysteresis and reproducibility of the sensor of Example 1. It is a graph.
  • the high sensitivity crack sensor of Example 1 was fixed by a custom pressure test equipment.
  • FIG. 11A shows the results of reproducibility tests measured at 5000 repetition cycles in the strain ranges of 0 to 2.5%, 0 to 5%, and 0 to 10%
  • FIG. 11B shows reproducibility after 5000 cycles at 10% strain. It represents. From this, it can be seen that the crack sensor according to the present invention shows little difference in performance even after 5000 or more repeated measurements.
  • FIG. 11C shows a reproducibility result of repeating the loading-unloading test using the loading cell of FIG. 10 1800 times in the strain range of 0 to 10%, and the crack sensor according to the present invention has excellent reproducibility from the results of the graph. It can be seen that.
  • 12A to 12C show graphs measuring resistance changes measured in loading and unloading tests in the strain ranges of 0 to 2.5%, 0 to 5%, and 0 to 10%.
  • the crack-based sensor of Example 1 according to the present invention shows little hysteresis in the loading and unloading process, but the hysteresis increases slightly as the applied strain range increases.
  • FIG. 13 shows a strain-resistance curve in which the resistance change according to the strain is fitted based on data obtained experimentally and theoretically. Plot of From the above results, it can be seen that the crack sensor according to the present invention exhibits almost the same result as the experimental data in the range of strain not too large.
  • Figure 14 is a graph showing the reaction time when a sudden change, it can be seen that the reaction within 100ms through the results of the experiment. In addition, it can be seen from FIG. 14 that the change of the strain and the change of resistance show almost the same response.
  • the application of pressure can stretch the sample and increase the resistance of the metal film.
  • the crack-based sensor of Example 1 is mounted on a custom machine, and the resistance data can be measured with a resistance analyzer (PXI-4071, National Instruments).
  • the resistance of the pressure data obtained can be linearized into three pressure zones, which is shown in Figure 15a.
  • the graph of FIG. 15A is
  • FIG. 15B shows a result of measuring a small ant mass (Ponera japonica, 1 mg) corresponding to a pressure of 0.2 Pa using the crack sensor, which shows that the crack sensor according to the present invention exhibits high sensitivity to pressure. .
  • the crack sensor was mounted on the wrist to measure the physiological signal of the wrist pulse.
  • FIG. 15C and 15D show graphs of measuring physiological signals of the wrist pulse, and FIG. 15D shows enlarged results of a part of the 15C graph, and the crack sensor according to the present invention is shown in FIG. It can be seen that the sensitivity is high enough to measure all the step changes.
  • Example 2 To demonstrate sensor scalability and spatial resolution and pressure sensing capability, a multi-pixel array was fabricated by the method of Example 2, which is shown in FIG. 16A. Crack-based devices exhibit high flexibility and may be warped as shown in FIG. 16B.

Abstract

Provided is a high-sensitivity sensor having a conductive thin film containing linearly induced cracks. The high-sensitivity sensor relates to a sensor, obtained by forming linearly induced microcracks on a conductive thin film formed on a support, for measuring external tensile and pressure by measuring a change in the electrical resistance due to modification, short - circuiting, or openings in micro - joining structures formed by the microcracks. The high-sensitivity conductive crack sensor may be applied to high-precision measurements or artificial skins, and may be utilized as a positioning detection sensor by pixelating the sensor. Thus, the high-sensitivity sensor may be effectively used in the fields of precise measurements , bio-measurement devices through human skin , human motion measuring sensors, display panel sensors, etc.

Description

직선으로 유도된 크랙 함유 고감도 센서 및 그의 제조 방법Straight line-induced crack sensitive sensor and its manufacturing method
본 발명은 직선으로 유도된 크랙 함유 고감도 센서 및 그의 제조방법에 관한 것으로, 직선으로 유도된 미세한 크랙이 형성된 전도성 박막을 사용하여, 인장력 및 압력을 감지하는 높은 정밀도가 요구되는 계측 또는 인공 피부에 적용이 가능한 고감도 센서에 관한 것이다.The present invention relates to a linear sensor-induced crack-containing high sensitivity sensor and a method for manufacturing the same, and applied to a measurement or artificial skin requiring high precision for sensing tensile force and pressure by using a conductive thin film formed with linear cracks. This relates to a possible high sensitivity sensor.
일반적으로 고감도 센서는 미세한 신호를 감지하여 이를 전기적 신호 등의 데이터로 전달하는 장치로서 현대산업에서 필수적으로 요구되는 부품 중 하나이다.In general, a high sensitivity sensor is a device that detects a minute signal and delivers it as data such as an electrical signal, which is one of the components required in the modern industry.
이와 같은 센서 중 압력이나 인장력을 측정하는 센서로서는 정전용량(capacitive) 센서, 압전기(piezoelectric) 센서, 스트레인 게이지 등이 알려져 있다.Among such sensors, capacitive sensors, piezoelectric sensors, strain gauges and the like are known as sensors for measuring pressure and tensile force.
기존의 인장 센서인 스트레인 게이지 센서는 기계적인 미세한 변화를 전기신호로 해서 검출하는 센서로서, 기계나 구조물의 표면에 접착해두면, 그 표면에서 생기는 미세한 치수의 변화, 즉 스트레인(strain)을 측정하는 것이 가능하고, 스트레인의 크기로부터 강도나 안전성을 확인하는데 중요한 응력을 알 수 있다.Strain gauge sensor, which is a conventional tensile sensor, detects mechanical change as an electrical signal. When it is attached to the surface of a machine or structure, the strain gauge sensor is used to measure the change in fine dimension, that is, the strain. It is possible to know the stress which is important for confirming the strength and the safety from the size of the strain.
또한, 스트레인 게이지는 금속저항 소자의 저항치 변화에 따라 피 측정물의 표면의 변형을 측정하는 것으로, 일반적으로 금속 재료의 저항치는 외부로부터의 힘에 의해 늘어나면 증가하고 압축되면 감소하는 성질을 가지고 있다. 스트레인 게이지는 힘, 압력, 가속도, 변위 및 토크(torque) 등의 물리량을 전기신호로 바꾸기 위한 센서의 수감 소자로도 응용되고, 실험, 연구뿐만 아니라 계측제어용으로도 널리 이용되고 있다.In addition, the strain gauge measures the deformation of the surface of the workpiece in accordance with the change in the resistance value of the metal resistance element, and in general, the resistance value of the metal material increases with increasing force from the outside and decreases with compression. Strain gages are applied to sensors as sensors for converting physical quantities such as force, pressure, acceleration, displacement, and torque into electrical signals, and are widely used for measurement control as well as experiments and research.
그러나, 기존의 스트레인 게이지 센서는 금속선을 이용함에 따라, 부식에 약하며, 민감도가 매우 떨어질 뿐만 아니라, 출력 값이 작아서, 작은 신호를 보상하기 위해, 추가 회로가 필요하며, 반도체 인장 센서는 열에 민감한 단점을 가진다.  However, conventional strain gauge sensors are susceptible to corrosion due to the use of metal wires, are not only very sensitive, but also have low output values, requiring additional circuitry to compensate for small signals, and semiconductor tension sensors are heat sensitive. Has
압력 센서란 표면에 가해지는 압력을 측정할 수 있는 센서로, 인공 피부 제작 시 필수적인 요소이다. 스트레인은 표면에 가해지는 수평적 길이변화를 나타내지만, 압력은 표면에 수직으로 가해지는 힘을 나타낸다.The pressure sensor is a sensor that can measure the pressure applied to the surface, which is an essential element when manufacturing artificial skin. Strain represents the horizontal change in length applied to the surface, while pressure represents the force applied perpendicular to the surface.
기존의 압력 센서는 박막으로 제작된 실리콘 필름이 압력에 의해 변화하는 저항 값을 측정하며, 연구용이나 계측용뿐만 아니라 산업에서도 널리 쓰이고 있다. Conventional pressure sensors measure the resistance value of a silicon film made of thin film that changes with pressure, and is widely used not only for research and measurement but also in industry.
그러나, 기존의 압력 센서는 민감도가 매우 낮기 때문에 작은 압력을 구분할 수 없다는 단점이 있으며 휘어질 수 없다. 이러한 단점은 인공피부로의 적용이 불가하게 하므로, 작은 압력을 감지하면서도 휘어질 수 있는 센서의 제작이 필요하다.However, the conventional pressure sensor has a disadvantage of being unable to distinguish small pressures due to its very low sensitivity and cannot be bent. This disadvantage makes it impossible to apply to artificial skin, it is necessary to manufacture a sensor that can bend while detecting a small pressure.
상기와 같은 문제점에 의해서, 상기의 센서는 특정 환경에서만 구동이 가능하거나, 다양한 환경적 요인에 의해 영향을 받아 측정값의 정확성이 저하되는 등의 문제가 존재함과 동시에 반복 구동 시 일정한 측정값을 확보하기 곤란한 문제가 있다. 또한, 이들 센서는 자체의 구조적인 문제로 인하여 플렉시블 구조체를 제조하기 곤란한 문제가 있다.Due to the above problems, the sensor can be driven only in a specific environment, or affected by various environmental factors, such that the accuracy of the measured value is degraded. There is a problem that is difficult to secure. In addition, these sensors have a problem that it is difficult to manufacture a flexible structure due to its structural problems.
착용형 의료 및 인공적 전자 피부 장치 및 고성능 센서의 개발에 대한 연구에 대한 관심이 높아짐에 따라, 나노와이어, 실리콘 고무, 압전 및 외부 정보를 축적하는 유기박막 트랜지스터를 기반으로 하는 다양한 유형의 압력 센서가 개발되어왔다.As interest in research into the development of wearable medical and artificial electronic skin devices and high performance sensors has increased, various types of pressure sensors based on nanowires, silicon rubber, piezoelectric and organic thin film transistors that accumulate external information have been developed. Has been developed.
크랙은 일반적으로 결함으로 간주되어 기피되어 왔지만, 크랙, 나노와이어 생산을 위한 박막의 크랙킹 및 인터 컨넥터(interconnector)와 같은 크랙과 관련된 연구가 최근에 보고되고 있다.Cracks have generally been regarded as defects and have been avoided, but studies related to cracks such as cracks, thin film cracking and interconnectors for nanowire production have recently been reported.
또한, 카본나노튜브, 나노섬유, 그래핀 혈소판 및 기계적 크랙을 기반으로 하는 스트레인 센서가 보고된 바 있다.In addition, strain sensors based on carbon nanotubes, nanofibers, graphene platelets and mechanical cracks have been reported.
크랙 센서는 거미의 감각 시스템에 의해 영향을 받았다. 거미의 감각 센서는 스트레인과 진동에 매우 민감한 것으로 알려져 있다. The crack sensor was affected by the spider's sensory system. Spider sensor is known to be very sensitive to strain and vibration.
크랙은 일반적으로 피해야 할 결함으로 간주되었으나, 크랙에 의한 패터닝에 대한 연구로서, 최근에는 나노와이어 및 인터커넥터 등의 제작을 위해 박막 필름 크랙 형성이 보고되어 있으며, 거미의 감각 시스템과 유사한 크랙 센서는 스트레인과 진동에 매우 민감한 것으로 보고되어 있으나, 단지 2%의 변형률을 갖는다는 한계가 있다. Although cracks were generally regarded as defects to be avoided, as a study of cracking patterning, thin film crack formation has recently been reported for the fabrication of nanowires and interconnectors, and crack sensors similar to spider's sensory systems have been reported. It has been reported to be very sensitive to strain and vibration, but has a limit of only 2% strain.
따라서, 이러한 문제점을 보완할 수 있는 새로운 고감도 센서의 개발이 요구된다.Therefore, the development of a new high-sensitivity sensor that can compensate for this problem is required.
본 발명에서 해결하고자 하는 기술적 과제는 환경에 의한 영향을 적게 받으면서 반복적인 사용에도 측정값의 정확도가 유지되며, 유연성을 가지고 있어 다양한 분야에 응용 가능한 인장 및 압력의 변화를 감지할 수 있는 고감도 센서를 제공하는 것이다.The technical problem to be solved in the present invention is to maintain the accuracy of the measured value even after repeated use while being less affected by the environment, and has a high sensitivity sensor that can sense the change in tension and pressure applicable to a variety of fields with flexibility To provide.
본 발명이 해결하고자 하는 다른 기술적 과제는 상기 고감도 센서의 제조방법을 제공하는 것이다.Another technical problem to be solved by the present invention is to provide a method for manufacturing the high sensitivity sensor.
상기의 기술적 과제를 해결하기 위해서 본 발명은, In order to solve the above technical problem, the present invention,
홀(hole) 패턴이 형성된 유연 지지체; 및 A flexible support having a hole pattern formed thereon; And
상기 지지체의 적어도 일면 상에 형성되는 전도성 박막;을 구비하며,A conductive thin film formed on at least one surface of the support;
상기 전도성 박막은, 서로 마주하면서 적어도 일부 면이 서로 접촉하고 있는 크랙면을 갖는 직선으로 유도된 크랙을 포함하며,The conductive thin film includes cracks induced in a straight line having a crack surface facing each other and at least some of the surfaces in contact with each other,
상기 크랙면은 상기 유연 지지체에 형성된 규칙적인 홀(hole) 패턴에 의해 직선 형태로 유도되고,The crack surface is guided in a straight shape by a regular hole pattern formed in the flexible support,
외부 물리적 자극에 따라 상기 크랙면이 이동하면서 접촉면적이 변화하거나 단락 혹은 재접촉에 의해 발생되는 전기적 변화의 측정에 의한 외부자극을 측정하는 고감도 센서를 제공한다.Provided is a high sensitivity sensor for measuring an external stimulus by measuring an electrical change caused by a change in contact area or a short circuit or re-contact as the crack plane moves in response to an external physical stimulus.
본 발명은 또한, The present invention also provides
유연 지지체에 규칙적 홀 패턴을 형성하는 단계;Forming a regular hole pattern in the flexible support;
상기 유연 지지체의 적어도 일면 상에 전도성 박막을 형성하는 단계; 및Forming a conductive thin film on at least one surface of the flexible support; And
상기 전도성 박막을 인장하여 직선상의 크랙을 유도하는 단계;를 포함하는 고감도 센서의 제조방법을 제공한다.It provides a method of manufacturing a high-sensitivity sensor comprising a; stretching the conductive thin film to induce a linear crack.
본 발명의 고감도 센서는 지지체의 일면 상에 직선으로 유도된 크랙이 형성된 전도성 박막을 이용하여, 높은 감도로 인장 및/또는 압력을 측정할 수 있을 뿐만 아니라, 유연성을 가지고 있어 여러 분야에 응용 가능하다. 상기와 같은 고감도 센서는 정밀도가 높은 계측, 또는 인공 피부에 적용이 가능하며, 상기 센서를 픽셀화하여 포지셔닝 디텍팅 센서로도 활용 가능하여, 정밀 계측 분야, 인체 피부 등을 통한 생체 측정 디바이스, 사람의 모션의 측정 센서, 디스플레이 패널 센서 등의 분야에서 유용하게 사용할 수 있다.The high-sensitivity sensor of the present invention is capable of measuring tension and / or pressure with high sensitivity using a conductive thin film in which linearly induced cracks are formed on one surface of the support, and has flexibility to be applicable to various fields. . The high-sensitivity sensor as described above can be applied to highly accurate measurement or artificial skin, and can be utilized as a positioning detection sensor by pixelating the sensor, and thus can be used as a precision measurement field, a biometric device using human skin, and the like. It can be usefully used in the field of motion measuring sensor, display panel sensor and the like.
또한, 상기 고감도 센서는 간단한 공정으로 대량 생산이 가능하므로 매우 높은 경제성을 갖는다.In addition, the high-sensitivity sensor can be mass-produced in a simple process, thereby having a very high economy.
도 1은 크기 1의 결정립을 갖는 크랙 립(crack lip)을 모델링 한 것이다. FIG. 1 is a model of a crack lip having grains of size 1. FIG.
도 2는 집적화 윤곽에 의해 둘러싸인 복소 평면 부분을 나타낸 것이다.2 shows a complex planar portion surrounded by an integration contour.
도 3은 일 실시예에 따른 크랙 센서의 제조공정의 개략도이다.3 is a schematic diagram of a manufacturing process of a crack sensor according to an exemplary embodiment.
도 4는 일 실시예에 따른 크랙 센서를 당기기 전 및 당긴 후의 센서 표면의 변화(a, b) 및 전도성 박막상의 크랙의 변화를 도시한 SEM 이미지(c, d)이다.4 is an SEM image (c, d) showing changes in the surface of the sensor (a, b) before and after pulling the crack sensor and changes in the crack on the conductive thin film according to one embodiment.
도 5는 인장력이 가해지기 전(a) 및 가해진 이후 크랙립을 따라 크랙이 형성(b, c)되는 것을 나타내는 SEM 이미지 이다.FIG. 5 is an SEM image showing that cracks are formed (b, c) before (a) and after the cracks are applied.
도 6은 다양한 간극의 길이에서 크랙이 형성되는 양상을 나타내는 SEM 이미지이다.FIG. 6 is an SEM image showing the formation of cracks in various gap lengths. FIG.
도 7은 다양한 간극의 길이에서 크랙 형성 패턴의 차이(a) 및 이를 규명하기 위한 FEM 시뮬레이션 결과(c)를 나타내며, 크랙 형성의 차이에 따른 저항 변화를 나타내는 그래프(b, d)이다.FIG. 7 is a graph (b, d) showing a difference (a) of crack formation patterns and a FEM simulation result (c) for identifying the gaps at various gap lengths, and illustrating resistance changes according to crack formation differences.
도 8은 패턴화 없이 무질서하게 형성된 크랙 기반 센서의 표면 및 이를 이용하여 측정된 저항변화의 그래프이다.FIG. 8 is a graph of the surface of a crack-based sensor randomly formed without patterning and a resistance change measured using the same. FIG.
도 9는 인장 방향에 따른 저항 변화 양상을 나타내는 개념도 및 결과 그래프이다.9 is a conceptual diagram and a result graph showing a change pattern of resistance in the tensile direction.
도 10은 압력 및 인장에 의한 변화를 측정하기 위한 로드 셀이다.10 is a load cell for measuring changes due to pressure and tension.
도 11은 변화율의 범위에 따른 로딩 및 언로딩에 의한 저항의 변화 및 반복실험을 통한 재현성을 나타낸 그래프이다.Figure 11 is a graph showing the reproducibility of the change in the resistance and repeated experiments by loading and unloading according to the range of change rate.
도 12는 변화율 범위에 따른 로딩 및 언로딩에 의한 저항변화 측정 결과 및 이의 히스테리시스를 나타낸다.12 shows the results of resistance change measurement and hysteresis thereof by loading and unloading according to the change rate range.
도 13은 식 6에 의한 이론적 값과 크랙센서에 의해 측정된 실험 값을 비교한 정규화된 저항 vs 변형율 곡선을 나타낸다.FIG. 13 shows a normalized resistance vs strain curve comparing the theoretical value obtained by equation 6 with the experimental value measured by the crack sensor.
도 14는 갑작스런 변화에 대한 반응속도를 측정한 그래프이다.14 is a graph measuring the reaction rate for a sudden change.
도 15는 0 내지 10kPa의 압력 범위(a), 작은 개미에 의한 압력(b) 및 손목 맥박에 의한 압력(c, d)의 여러 가지 가압 조건에 의한 저항변화를 나타내는 실험 결과를 나타낸다.Fig. 15 shows experimental results showing resistance changes caused by various pressurization conditions of a pressure range (a) of 0 to 10 kPa, a pressure caused by a small ant (b) and a pressure caused by a wrist pulse (c, d).
도 16은 다중 픽셀 어레이를 이용하여 위치 및 압력을 동시에 나타낼 수 있는 고감도 센서 및 이를 이용하여 측정된 결과를 나타낸다. FIG. 16 illustrates a high sensitivity sensor capable of simultaneously indicating position and pressure using a multi-pixel array and measured results using the same.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.As the invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all transformations, equivalents, and substitutes included in the spirit and scope of the present invention. In the following description of the present invention, if it is determined that the detailed description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.
최근, 변형 및 진동에 대한 높은 감도를 갖는 무 균열의 병렬 시스템을 사용하는 기계적 크랙 기반의 센서가 보고되었다. 그러나, 초고속 성능을 달성하기 위해서는, 힘에 대한 감도가 균열의 형성을 통한 높은 신축성 및 제어성에 의해 증폭되어야 한다.Recently, a mechanical crack based sensor using a crackless parallel system with high sensitivity to deformation and vibration has been reported. However, in order to achieve ultrafast performance, force sensitivity must be amplified by high flexibility and controllability through the formation of cracks.
본 발명은, 규칙적인 마이크로 스케일 패턴 내에서 보다 정밀한 기계적 크랙의 유도 형성을 기반으로 한 저가의 초 고감도 스트레인 및 압력 센서를 제공한다.The present invention provides an inexpensive ultra high sensitivity strain and pressure sensor based on the induction formation of more precise mechanical cracks in a regular micro scale pattern.
본 발명에 따른 센서는 디바이스 표면에 홀(hole)을 패터닝함으로써, 홀을 중심으로 특정 지역에 스트레스를 집중시킬 수 있으며, 이로부터 상기 홀을 연결하는 균일한 크랙을 정밀하게 형성할 수 있다.The sensor according to the present invention can concentrate stress in a specific area around the hole by patterning a hole on the surface of the device, from which it is possible to precisely form a uniform crack connecting the hole.
본 발명의 센서는 인장률을 측정하고, 표면에 가해지는 압력을 측정할 수 있는 센서이다. 폴리머 위에 금속 박막을 증착한 후 기계적인 크랙을 발생시켜 제작한다. 웨어러블 헬스케어에도 효과적으로 적용될 수 있으며, 기존의 연신 센서나 압력 센서를 대체할 수 있다.The sensor of the present invention is a sensor capable of measuring the tensile rate and measuring the pressure applied to the surface. After depositing a thin metal film on the polymer to produce a mechanical crack. It can be effectively applied to wearable healthcare and can replace existing stretch or pressure sensors.
이하, 본 발명의 구현예에 따른 직선으로 유도된 크랙 함유 전도성 박막을 구비하는 고감도 센서에 대하여 보다 상세하게 설명한다.Hereinafter, a high sensitivity sensor having a conductive film containing a crack induced in a straight line according to an embodiment of the present invention will be described in more detail.
본 발명에 따른 고감도 센서는High sensitivity sensor according to the present invention
홀(hole) 패턴이 형성된 유연 지지체; 및 A flexible support having a hole pattern formed thereon; And
상기 지지체의 적어도 일면 상에 형성되는 전도성 박막;을 구비하며,A conductive thin film formed on at least one surface of the support;
상기 전도성 박막은, 서로 마주하면서 적어도 일부 면이 서로 접촉하고 있는 크랙면을 갖는 직선으로 유도된 크랙을 포함하며,The conductive thin film includes cracks induced in a straight line having a crack surface facing each other and at least some of the surfaces in contact with each other,
상기 크랙면은 상기 유연 지지체에 형성된 규칙적인 홀(hole) 패턴에 의해 직선 형태로 유도되고,The crack surface is guided in a straight shape by a regular hole pattern formed in the flexible support,
외부 물리적 자극에 따라 상기 크랙면이 이동하면서 접촉면적이 변화하거나 단락 혹은 재접촉에 의해 발생되는 전기적 변화의 측정에 의한 외부자극을 측정하는 고감도 센서를 제공한다.Provided is a high sensitivity sensor for measuring an external stimulus by measuring an electrical change caused by a change in contact area or a short circuit or re-contact as the crack plane moves in response to an external physical stimulus.
또한, 본 발명은, In addition, the present invention,
유연 지지체에 규칙적 홀 패턴을 형성하는 단계;Forming a regular hole pattern in the flexible support;
상기 유연 지지체의 적어도 일면 상에 전도성 박막을 형성하는 단계; 및 Forming a conductive thin film on at least one surface of the flexible support; And
상기 전도성 박막을 인장하여 직선상의 크랙을 유도하는 단계;를 포함하는 고감도 센서의 제조방법을 제공한다.It provides a method of manufacturing a high-sensitivity sensor comprising a; stretching the conductive thin film to induce a linear crack.
본 발명에 따른 고감도 센서는, 상기 유연 지지체 상에 형성된 홀 패턴에 의해 상기 홀 패턴을 따라 직선으로 균일하게 형성된 크랙을 형성할 수 있으며, 이러한 직선 형태의 크랙의 형성은 센서의 민감도를 보다 향상시킬 수 있다.The high-sensitivity sensor according to the present invention may form cracks uniformly formed in a straight line along the hole pattern by the hole pattern formed on the flexible support, and the formation of such a straight crack may further improve the sensitivity of the sensor. Can be.
본 발명에 따른 크랙센서는, 상기 유연 지지체 상에 형성된 홀 패턴상에 형성된 전도성 박막이 인장 또는 압력에 의한 외부 물리적 자극이 가해지는 경우 상기 유연 지지체 상에 형성된 홀이 위치한 곳을 중심으로 응력(stress)이 집중됨으로써, 상기 홀과 홀의 사이의 접촉면을 따라 균일하게 크랙면이 형성될 수 있다.In the crack sensor according to the present invention, when a conductive thin film formed on a hole pattern formed on the flexible support is subjected to an external physical stimulus due to tension or pressure, a stress sensor is formed around a position where a hole formed on the flexible support is located. ), The crack surface can be uniformly formed along the contact surface between the hole and the hole.
상기 크랙면은 인접하는 도 4의 c 및 d에 도시된 바와 같이 홀과 홀 사이에 형성되는 것이며, 도 7a에 도시된 바와 같이 상기 크랙면의 길이(G)는 상기 홀의 중심과 인접하는 홀의 중심을 이은 직선의 길이(P)에 대해 50% 이상의 길이를 가질 수 있으며, 바람직하게는 60% 이상의 길이를 갖는 것이 바람직할 수 있다.The crack surface is formed between the hole and the hole as shown in the adjacent c and d of Figure 4, the length (G) of the crack surface as shown in Figure 7a is the center of the hole adjacent to the center of the hole It may have a length of 50% or more with respect to the length (P) of the straight line followed by, preferably, having a length of 60% or more.
상기 G의 길이가 상기 P의 길이에 대해 50% 미만의 길이를 갖는 경우 크랙이 직선으로 형성되지 않을 수 있으며, 이는 도 6a 및 도 7a에 도시된 것과 같이 여러 개의 크랙이 직선이 아닌 형태로 형성될 수 있어 민감도가 저하될 수 있다.When the length of the G has a length of less than 50% of the length of the P, the crack may not be formed in a straight line, which is formed in the form of a plurality of cracks are not straight, as shown in Figure 6a and 7a Sensitivity may be reduced.
일 실시예에 따르면, 상기 홀(hole) 패턴은 원형, 타원형, 사각형, 마름모, 별표, 십자형 등 어떠한 형태라도 가능하며, 바람직하게는 도 4의 c, d에 도시된 것과 같이 곡선으로 이루어진 마름모형, 즉, 4개의 호(arc)가 결합되어 4개의 꼭지점을 갖는 십자 형태 또는 곡선으로 이루어진 마름모가 적합할 수 있다.According to one embodiment, the hole (hole) pattern may be any shape, such as circular, oval, square, rhombus, asterisk, cross, etc., preferably a rhombus made of a curve as shown in c, d of FIG. That is, a rhombus consisting of four arcs with four vertices in the shape of a cross or a curve may be suitable.
상기한 홀 패턴은 각각의 꼭지점으로 크랙의 생성에 있어서 방향성을 제공함으로써, 보다 곧은 형태의 크랙을 균일하게 형성하는 데 유리할 수 있다.The hole pattern described above may be advantageous for uniformly forming cracks of a straighter shape by providing directionality in the generation of cracks at each vertex.
본 발명에 따른 크랙센서는 도 4c, d 에 도시된 바와 같이 홀 패턴에 의해 외력에 의해 응력이 2개의 인접하는 홀 팬에 집중되어 발생되며, 외력에 의해 도 4d 및 도 6b에 도시된 것과 같이 홀 패턴을 따라 크랙이 직선으로 형성될 수 있다.Crack sensor according to the present invention is generated by the stress concentrated in two adjacent hole pans by the external force by the hole pattern as shown in Figure 4c, d, as shown in Figure 4d and 6b by the external force Cracks may be formed in a straight line along the hole pattern.
인장력이 패턴화된 크랙에 적용될 때, 상기 인장력에 의해 가해짐 힘의 축에 대해 수직으로 형성된 크랙은 열리고, 병렬(수평하게)로 형성된 크랙은 닫히게 된다.When a tensile force is applied to a patterned crack, the cracks formed perpendicular to the axis of force exerted by the tensile force are opened, and the cracks formed in parallel (horizontally) are closed.
도 4c 와 같이 단단히 닫힌 크랙에 연신에 의한 변형을 가함으로써 도 4d와 같이 크랙의 간격이 넓어짐으로써, 크랙면 사이의 접촉면적이 감소될 수 있으며, 이는 전기 저항을 증가시키게 된다. 단절된 크랙면 상이에는 전도성이 없기 때문에, 단절에 의해 개방된 크랙에 의해 금속층의 저항이 급격히 증가할 수 있다. By extending the cracks as shown in FIG. 4D by applying strain to the tightly closed cracks as shown in FIG. 4C, the contact area between the crack surfaces can be reduced, which increases the electrical resistance. Since there is no conductivity between the broken crack faces, the resistance of the metal layer may increase rapidly due to the cracks opened by the break.
드물게는, 크랙립(crack lip) 사이의 브릿지, 금속 접촉이 저항의 높은 변형 감도를 도출할 수도 있다.In rare cases, bridge, metal contact between crack lip may lead to high strain sensitivity of the resistance.
본 발명의 고감도 센서는 0 내지 10%의 변형율에서 1 내지 1x106의 민감도(△R/R0)를 나타낼 수 있다.The high sensitivity sensor of the present invention may exhibit a sensitivity (ΔR / R 0 ) of 1 to 1 × 10 6 at a strain of 0 to 10%.
본 발명에 따른 고감도 센서의 게이지 팩터는 (△ R/R0)/ε 으로 정의되며, 상기 게이지 팩터가 0 내지 10% 의 스트레인(strain)범위에서 2x106 이상일 수 있다. The gauge factor of the high sensitivity sensor according to the present invention is defined as (Δ R / R 0 ) / ε, and the gauge factor may be 2 × 10 6 or more in a strain range of 0 to 10%.
본 발명에 따른 고감도 센서는 7 내지 10 kPa 범위의 압력에서 2x104 이상의 민감도(△R/R0)를 나타낼 수 있으며, 바람직하게는 8 내지 9.5kPa 범위의 압력에서 1x105 이상의 민감도를 나타낼 수 있다.The high sensitivity sensor according to the present invention may exhibit a sensitivity (ΔR / R 0 ) of 2 × 10 4 or more at a pressure in the range of 7 to 10 kPa, and preferably 1 × 10 5 or more at a pressure in the range of 8 to 9.5 kPa. .
본 발명은 압력 감도에 의한 높은 감도를 나타내며, 이는 도 15c 및 도 15d에 도시된 것과 같이 손목에 부착함으로써 맥박과 같은 생리 신호를 측정하는데 사용될 수 있다. 도 15c에는 본 발명에 따른 고감도 센서를 손목에 부착하여 맥박을 잰 결과이며, 도 15d는 본 발명에 따른 고감도 센서가 맥박의 percussion wave, tidal wave, diastolic wave와 같은 3단계의 미세한 차이를 구별할 수 있을 정도로 높은 정밀도를 갖는다는 것을 의미한다. The present invention exhibits high sensitivity by pressure sensitivity, which can be used to measure physiological signals such as pulses by attaching to the wrist as shown in FIGS. 15C and 15D. Figure 15c is a result of measuring the pulse by attaching a high-sensitivity sensor according to the present invention to the wrist, Figure 15d is a high-sensitivity sensor according to the present invention can distinguish the three minute differences, such as pulse percussion wave, tidal wave, diastolic wave It means that it has high precision as much as possible.
일 실시예에 따르면, 상기 외부 물리적 자극은 상기 크랙면에 대해 여러 각도에서 가해질 수 있으며, 상기 외부 물리적 자극이 상기 크랙면에 대해 힘을 가하는 방향에 대한 힘의 축이 수직(90°) 또는 45°의 각도로 가해지는 경우에 보다 우수한 민감도를 나타낼 수 있다. 즉, 외부 물리적 자극이 홀(hole) 패턴의 모양 또는 크랙에 의해 형성된 전도성 박막의 패턴의 모양에 대해 대칭적으로 균등하게 외력을 가해지는 경우에 보다 민감도가 크게 나타날 수 있으며, 즉, 게이지 팩터(gauge factor)의 변화가 더 크게 나타날 수 있으며, 보다 바람직하게는 크랙면에 90°± 10°의 각도 범위에서 외력이 가해질 수 있다. According to one embodiment, the external physical stimulus may be applied at various angles with respect to the crack surface, the axis of force with respect to the direction in which the external physical stimulus exerts a force on the crack surface is perpendicular (90 °) or 45 degrees. When applied at an angle of ° can exhibit a better sensitivity. That is, when the external physical stimulus exerts an external force symmetrically and uniformly with respect to the shape of the pattern of the conductive thin film formed by the shape of the hole (hole) or cracks, it may appear more sensitive, that is, the gauge factor ( The change in gauge factor may be greater, and more preferably an external force may be applied to the crack surface in an angle range of 90 ° ± 10 °.
상기 고감도 센서는 전도성 박막에 형성된 크랙이 인장이나 압력에 따라 간격이 벌어지며 그에 따른 전도성 박막의 저항 변화를 측정하여 외부의 인장이나 압력을 계측하는 센서이다.The high-sensitivity sensor is a sensor in which cracks formed in the conductive thin film are spaced according to tension or pressure, thereby measuring the change in resistance of the conductive thin film to measure external tension or pressure.
즉, 전도성 박막에 형성시킨 크랙 중에 서로 마주하면서 적어도 일부면이 서로 접촉하고 있는 크랙면을 갖는 크랙이 존재하게 되고 인장이나 압력 변화와 같은 외부 자극을 가할 경우 접촉되어 있던 크랙면이 이동하면서 접촉 면적이 바뀜에 따라 전기적 저항이 변화하거나 전기적 단락(short)이나 개방(open)이 형성되어 상기 전도성 박막상의 저항값의 변화가 크게 발생하게 되며, 이를 검출함으로써 상기 전도성 박막 구조체를 인장센서, 압력센서 등으로 활용이 가능하게 된다.That is, among the cracks formed in the conductive thin film, cracks having crack surfaces facing each other and at least some of the surfaces are in contact with each other, and when the external stimulus such as tension or pressure change is applied, the contact surface moves while the contacted crack surfaces move. According to this change, an electrical resistance is changed or an electrical short or open is formed, and thus a large change in the resistance value on the conductive thin film is generated, thereby detecting the conductive thin film structure by using a tension sensor, a pressure sensor, or the like. It can be used as.
기존의 스트레인 게이지 센서의 경우, 금속 박막이 연신됨에 따라 저항이 증가하는 것을 이용하나, 본 발명의 경우 금속 박막의 크랙 틈이 벌어지게 됨을 이용한다. 크랙 틈이 벌어지면서 전기적인 단락이 증가하게 되고, 저항이 급격히 증가게 된다. 상기와 같은 이유로 기존의 스트레인 게이지 센서보다 월등히 높은 민감도를 갖게 된다.In the case of the conventional strain gauge sensor, the resistance increases as the metal thin film is stretched, but in the case of the present invention, the crack gap of the metal thin film is opened. As crack cracks open, electrical shorts increase, and resistance increases rapidly. For this reason, it has a much higher sensitivity than the conventional strain gauge sensor.
일구현예에 따르면, 상기 전도성 박막에 존재하는 크랙은 유연 지지체에 형성된 홀 패턴에 따라 직선으로 유도될 수 있으며, 상기 크랙이 발생하는 정도 또한 구명형상의 간격, 모양, 전도성 박막의 두께, 형성 조건 등에 따라 달라질 수 있으며 특별히 제한되지 않는다. According to one embodiment, the cracks present in the conductive thin film may be induced in a straight line according to the hole pattern formed in the flexible support, the extent of the crack is also generated lifespan spacing, shape, thickness of the conductive thin film, forming conditions And the like, and are not particularly limited.
본 발명의 고감도 센서에 있어서, 상기 유연 지지체는 폴리우레탄아크릴레이트 (PUA), 폴리디메틸실록세인 (PDMS), 폴리에틸렌테레프탈레이트(PET), 폴리프로필렌(PP) 및 폴리에틸렌(PE) 등으로 이루어지는 그룹으로부터 선택되는 어느 하나 또는 이들의 조합인 것이 바람직하며, 가장 바람직하게는 폴리우레탄아크릴레이트 (PUA), 일 수 있다.In the high sensitivity sensor of the present invention, the flexible support is selected from the group consisting of polyurethane acrylate (PUA), polydimethylsiloxane (PDMS), polyethylene terephthalate (PET), polypropylene (PP), polyethylene (PE) and the like. It is preferably any one selected or a combination thereof, most preferably polyurethane acrylate (PUA).
본 발명의 고감도 센서에 있어서, 상기 전도성 박막은 Au, Ag, Pt, Cu, Cr, Pt 등으로 이루어지는 그룹으로부터 선택되는 어느 하나 또는 이들의 조합인 것이 바람직하며, 가장 바람직하게는 Cr/Pt 조합일 수 있다.In the high-sensitivity sensor of the present invention, the conductive thin film is preferably any one selected from the group consisting of Au, Ag, Pt, Cu, Cr, Pt, etc., or a combination thereof, most preferably Cr / Pt combination. Can be.
일구현예에 따르면, 상기 전도성 박막은 그 두께가 한정되는 것은 아니나 인장 및 구부림 등의 기계적 방법에 의해 크랙이 형성될 수 있는 정도의 두께를 갖는 것이 바람직하며, 이와 같은 크랙의 형성 조건은 전도성 박막 및 유연 지지체의 종류에 따라 달라질 수 있다. According to one embodiment, the thickness of the conductive thin film is not limited, but preferably has a thickness such that cracks can be formed by mechanical methods such as tensile and bending, and the formation conditions of such a crack is a conductive thin film. And the type of flexible support.
본 발명의 고감도 센서에 있어서, 상기 전도성 박막의 두께가 0.1 nm 내지 1 ㎛ 인 것이 바람직하며, 더욱 바람직하게는 10 nm 내지 50 nm, 더욱 더 바람직하게는 20 nm 내지 30 nm 일 수 있다. 또한, 전도성 박막의 영계수는 1010 내지 1012 일 수 있다. In the high sensitivity sensor of the present invention, the thickness of the conductive thin film is preferably 0.1 nm to 1 μm, more preferably 10 nm to 50 nm, even more preferably 20 nm to 30 nm. In addition, the Young's modulus of the conductive thin film may be 10 10 to 10 12 .
본 발명의 고감도 센서에 있어서, 상기 고감도 센서의 게이지 팩터가(gage factor) 1 x 105 내지 1 x 106 (1 ~ 10% 인장 범위) 일 수 있다. 게이지 팩터란 발생한 스트레인(strain)에 대한 스트레인 게이지의 저항 변화율을 의미한다. In the high sensitivity sensor of the present invention, the gauge factor of the high sensitivity sensor may be 1 x 10 5 to 1 x 10 6 (1 to 10% tensile range). The gauge factor refers to the rate of change of the strain gauge's resistance to generated strain.
본 발명의 고감도 센서에 있어서, 상기 고감도 센서의 유연성은 최소 반지름 1 mm 이상으로 구부릴 수 있는 것을 의미한다. In the high sensitivity sensor of the present invention, the flexibility of the high sensitivity sensor means that it can be bent to a minimum radius of 1 mm or more.
상기와 같은 특성에 의해서 본 발명의 고감도 센서는 압력센서, 인장센서, 인공 피부 등의 다양한 분야에서 응용할 수 있으며, 상기 센서를 픽셀화 하여 포지셔닝 디텍팅 센서로도 활용 가능하다.By the above characteristics, the high-sensitivity sensor of the present invention can be applied in various fields such as pressure sensor, tension sensor, artificial skin, etc., and can be utilized as positioning detection sensor by pixelating the sensor.
본 발명은 저항 vs 변형률 데이터의 이론적인 분석을 수행하였으며, 상기 이론적 분석 결과는 너무 크지 않은 변형에서의 실험적 데이터의 결과와 일치하였다.The present invention carried out a theoretical analysis of the resistance vs strain data, which was in agreement with the results of the experimental data at strains not too large.
본 발명자들은 신축성이 작은 고분자 상에서 크랙화된 입자형의 균일한 20nm Pt 필름 상에 형성된 평행 크랙을 기반으로 하는 스트레인 센서에 대한 보편적인 메커니즘을 밝힌 바 있다. 상기 센서는, 큰 단방향 스트레인을 생성하는 기술에 의해, 자유 크랙이 센서 스트립을 절단한다. 하기 식(1)로 정의되는 센서의 정규화 컨덕턴스 S vs 변형율 ε은 크랙립(crack lip) 사이의 접촉을 형성하는 크랙립 상의 계단(steps)의 확률 분포 함수(probability distribution function, pdf) P(x)에 의해 결정된다.The inventors have revealed a universal mechanism for strain sensors based on parallel cracks formed on a uniform 20 nm Pt film of particulate form cracked on a stretchable polymer. In the sensor, free cracks cut the sensor strip by a technique that produces a large unidirectional strain. The normalized conductance S vs. strain ε of the sensor, defined by Equation (1) below, is the probability distribution function (pdf) P (x) of the steps on the cracks that form the contact between the cracks lip: Is determined by
Figure PCTKR2016013789-appb-I000001
(1)
Figure PCTKR2016013789-appb-I000001
(One)
자유 크랙의 경우, 식 P(x)는 오직 크기와 관련된 매개 변수를 가진다. For free cracks, equation P (x) has only parameters related to size.
변형율(strain) ε0는 크랙 간극의 폭 kε0에 대응하고, kε0는 결정립 크기인 x0= kε0 이다. Strain ε 0 corresponds to the width of crack gap kε 0 , where kε 0 is the grain size x 0 = kε 0 to be.
Figure PCTKR2016013789-appb-I000002
(2)
Figure PCTKR2016013789-appb-I000002
(2)
상기 식에 있어서, x= ε/ ε0이고, k는 변형율(strain)에 대한 크랙 간극 폭과 관련되어 정의한 비례 계수이다. k는 병렬 크랙 시스템을 구성하는 재료에 따라 상이할 수 있으며, 이는 실험으로부터 얻을 수 있다.In the above formula, x = ε / ε 0 and k is a proportional coefficient defined in relation to the crack gap width with respect to strain. k may differ depending on the materials constituting the parallel crack system, which can be obtained from the experiment.
물리적으로, 식 2는 결정립(grain)의 이동(shift)에 의해 형성된 크랙 돌기의 작은 계단이 결정립의 누적에 의해 형성된 큰 계단과 동일한 분포임을 나타내며, 이는 스케일 및 어떠한 길이 특성을 갖지 않는 기판의 탄성 영역이 존재하기 때문에, 크고 작은 사행(meandering) 돌기를 구별할 수 없을 수 있다.Physically, Equation 2 indicates that the small step of the crack protrusion formed by the shift of the grain is the same distribution as the large step formed by the accumulation of the grain, which is the elasticity of the substrate having no scale and any length characteristics. Because of the presence of the area, it may not be possible to distinguish between large and small meandering projections.
식 2의 해결책 중 하나는 로그 정규(log-normal) pdf One of the solutions in equation 2 is log-normal pdf
Figure PCTKR2016013789-appb-I000003
(3)
Figure PCTKR2016013789-appb-I000003
(3)
또는 거의 동일한 로그-로지스틱(log-logistic) pdf를 선택할 수 있다.Alternatively, you can choose the nearly identical log-logistic pdf.
Figure PCTKR2016013789-appb-I000004
(4)
Figure PCTKR2016013789-appb-I000004
(4)
상기 식에서 μ 및 B는 pdf의 변수이다.Μ and B are variables of pdf.
식 3의 분포 및 식 4의 분포는 모두 소위 롱 테일(long tail)을 갖는 비대칭 분포의 분류에 속한다.The distribution of equation 3 and the distribution of equation 4 both belong to the class of asymmetric distributions with so-called long tails.
크랙립(crack lip) 사이의 드문 접촉을 제외한 대형의 비-제로 확률은 크랙을 통한 전도 메커니즘의 본질에 있으며, 그러므로 롱 테일(long tail) 분포와 일치한다.The large non-zero probability, except for the rare contact between the crack lip, is in the nature of the conduction mechanism through the crack, and therefore coincides with the long tail distribution.
식 3과 식 1은 변형률의 함수로서 저항 R=1/S을 다음과 같이 제공한다:Equations 3 and 1 provide the resistance R = 1 / S as a function of strain, as follows:
Figure PCTKR2016013789-appb-I000005
(5)
Figure PCTKR2016013789-appb-I000005
(5)
erf(x)는 오차 함수이다. 식 5는 정규화된 저항을 렌더링한다. 상기 정규화된 저항은 2% 까지의 변형율에 의한 실험결과와 현저하게 일치한다.    erf (x) is an error function. Equation 5 renders the normalized resistance. The normalized resistance is remarkably consistent with the experimental results with strains up to 2%.
동시에, 식 4의 로그-로지스틱 pdf는 식 1과 함께 하기 식을 유도할 수 있다. At the same time, the log-logistic pdf of Equation 4 can be derived with Equation 1 below.
Figure PCTKR2016013789-appb-I000006
(6)
Figure PCTKR2016013789-appb-I000006
(6)
상기 식은 피팅 매개변수 ε0=0.39 및 B=2.39의 실험과 일치하며, 식 5의 로그 정규 pdf와 같은 정밀도를 갖는다.The equation is consistent with the experiments of the fitting parameters ε 0 = 0.39 and B = 2.39 and has the same precision as the lognormal pdf of equation 5.
단, 식 6의 지수 법칙 함수(power-law function )는 식 5의 오차함수보다 훨씬 간단하다.However, the power-law function of Equation 6 is much simpler than the error function of Equation 5.
본 발명은 자유 평행 크랙 연구를 하는 실험자에 의한 데이터 피팅을 위해 범용의 지수 법칙을 제안할 수 있다.The present invention can propose a generalized exponential law for data fitting by experimenters doing free parallel crack studies.
아주 놀랍게도, 균일한 Pt막 스트립을 훨씬 더 신장 가능한 고분자(도 4a) 상에 패턴화된 스트립으로 변경한 후, 저항의 변형율 의존성이 5% 이상의 넓은 변형율 범위에서 식 6의 지수 법칙으로부터 지수함수까지 엄청나게 변했다. 세미-로그 플롯에서 직선 양상이 나타나는 것을 도 11d에서 나타내고 있다.Surprisingly, after changing a uniform Pt film strip into a patterned strip on a much more extensible polymer (FIG. 4A), the strain dependence of resistance from exponential law to exponential function in equation 6 over a wide strain range of 5% or more. It has changed tremendously. A straight line appearance in the semi-log plot is shown in FIG. 11D.
여기서 이 현상의 기본 메커니즘에 대해 설명한다. Here is the basic mechanism of this phenomenon.
이전의 연구와 본 발명에서 형성된 크랙의 중요한 차이점을 도 5b, 5c에 도시하였다. Important differences between the cracks formed in previous studies and the present invention are shown in FIGS. 5B and 5C.
패턴 패치 사이의 크랙은 금속/고분자 필름상의 주름의 "마루(crests)"에 근접하게 따른다.The cracks between the pattern patches closely follow the "crests" of the wrinkles on the metal / polymer film.
즉, 이는 상기 크랙 통로가 매우 직접적이며, 오직 근접하게 이웃하는 백금 입자만 상기 크랙립을 따라 분리되었다는 것을 의미한다(도 1).That is, this means that the crack passage is very direct and only closely neighboring platinum particles have separated along the crack lip (FIG. 1).
이와 관련하여, 상기 로컬 편차는 결정립의 사이즈와 관련된 것이며, 그러므로, 자유 크랙 생성을 위한 변경 식 1을 만족하지 않을 수 있다.In this regard, the local deviation is related to the size of the grains and, therefore, may not satisfy the modification equation 1 for free crack generation.
한편, 도 5b에 도시된 바와 같이 패턴 패치는 변형 방향에 수평 및 수직인 방향으로 서로 가압되었으며, 이는 고무상 물질의 고유 특성인 0.5의 Poisson 비 때문이다.Meanwhile, as shown in FIG. 5B, the pattern patches are pressed to each other in a direction horizontal and perpendicular to the deformation direction, due to a Poisson ratio of 0.5, which is an inherent property of the rubbery material.
따라서, 시스템은 현재 수평 방향으로 줄지어진 사각형의 무리에 위치하는 크랙을 통한 절단을 갖는 1차원 상에서는 사실상 달라지지 않는다(도 5). Thus, the system is virtually unchanged in one dimension with cutting through cracks currently located in a cluster of squares that are lined up in the horizontal direction (FIG. 5).
본 연구와 유사하게, 스텝(step) pdf를 계산하기에 충분하다.Similar to this study, it is sufficient to calculate the step pdf.
도 1에 따르면, 크랙(크랙 궤도)립을 따라 각각의 i번째 입자가 1/2의 확률 및 yi 이동으로 위 아래로 이동할 수 있다(변형 방향으로).According to FIG. 1, each i-th particle along the crack (crack orbit) lip can move up and down with a probability of 1/2 and yi movement (in the deformation direction).
크랙 스텝(crack step) 크기는 여러 인접 입자에 의한 상향 (하향) 궤적의 이동 거리를 의미한다.The crack step size refers to the travel distance of the up (down) trajectory by several adjacent particles.
도 1에 도시된 바와 같이, 가령, 한 방향으로 이루어지는 세개의 결정립 이동의 합은 X 크기의 스텝을 생성한다. 로컬 결정립 이동이 로컬 pdf P(y)로 분포된다고 가정해보자. As shown in FIG. 1, for example, the sum of three grain movements in one direction produces a step of size X. Suppose the local grain shift is distributed in the local pdf P (y).
y1,‥‥, y2 의 작은 스텝에 수직하게 이동하는 정규화된 사이즈 1에 이웃하는 결정립은 스텝 크기x 의 전반적인 pdf P(x) 함수를 가질 수 있다. The grains adjacent to normalized size 1 moving perpendicular to the small steps y1, ..., y2 may have an overall pdf P (x) function of step size x.
Figure PCTKR2016013789-appb-I000007
(7)
Figure PCTKR2016013789-appb-I000007
(7)
상기 식에 있어서,  In the above formula,
Figure PCTKR2016013789-appb-I000008
(8)
Figure PCTKR2016013789-appb-I000008
(8)
δ는 델타 함수이고, n=1,2,‥‥,이다. 상기 델타함수는 식 y1 + ‥‥+yn - x = 0을 만족하는 방향에서 양(positive)의 값 n의 이동으로 구성된 스텝의 미세한 pdf를 나타낸다.delta is a delta function and n = 1, 2, ... The delta function represents a fine pdf of the step consisting of the movement of the positive value n in the direction satisfying the equation y1 + ... + yn-x = 0.
상기 식에 의하면 가정한바 대로, 입자의 상하 이동의 확률은 1/2 이다. According to the above equation, as assumed, the probability of vertical movement of the particles is 1/2.
그러므로, 총 상향 이동으로서의 스텝을 정의하면, n의 작은 스텝들에 주어진 구성의 확률은 1/2n에 비례 한다.Therefore, defining a step as total upward movement, the probability of the configuration given to the small steps of n is proportional to 1/2 n .
그런 다음, 델타함수를 푸리에 적분으로 식 7을 다시 쓰면, Then rewrite Equation 7 as the Fourier integral of the delta function,
Figure PCTKR2016013789-appb-I000009
(9a)
Figure PCTKR2016013789-appb-I000009
(9a)
또는 각각의 yi를 통해 독립적인 적분을 하기 위해 식 9a를 하기와 같이 단순화한 후Or to simplify Equation 9a as
Figure PCTKR2016013789-appb-I000010
(9)
Figure PCTKR2016013789-appb-I000010
(9)
상기 식에서,Where
Figure PCTKR2016013789-appb-I000011
(10)
Figure PCTKR2016013789-appb-I000011
10
이다.to be.
식 9의 기하학적 시리즈는 하기 식 11로 직접적으로 변환될 수 있다.The geometric series of equation 9 can be converted directly to equation 11 below.
Figure PCTKR2016013789-appb-I000012
(11)
Figure PCTKR2016013789-appb-I000012
(11)
식 11의 Cauchy 적분은 일반적인 용어로 분석될 수 있다.The Cauchy integration of Equation 11 can be analyzed in general terms.
큰값의 x에서 함수 P(x)의 붕괴는 거의 지수함수적일 수 있고, P(y)의 특정 형태에 거의 독립적일 수 있음을 나타낼 수 있다.At large values x, the decay of the function P (x) may be nearly exponential and may indicate that it may be nearly independent of the particular form of P (y).
Figure PCTKR2016013789-appb-I000013
(12)
Figure PCTKR2016013789-appb-I000013
(12)
만약, 식 11의 분모에서 하나의 극이 지배적인 역할을 하는 경우,If one pole plays the dominant role in the denominator of equation 11,
Figure PCTKR2016013789-appb-I000014
(13)
Figure PCTKR2016013789-appb-I000014
(13)
식 13에서 가장 낮은 실제 값 z0>0이다.In equation 13, the lowest actual value z 0 > 0.
다른 모든 극(식 13의 모든 솔루션)은 복잡할 수 있으며, 복소 평면의 하단에 놓일 수 있다(도 2의 예를 참조).All other poles (all solutions in equation 13) can be complex and can lie at the bottom of the complex plane (see example in FIG. 2).
식 10에서 알 수 있는 것은, 이와 같이 단일의 순수한 상상의 극인 α=-iz0가 항상 존재한다는 것이고, 그렇지 않으면 상반부에서 극을 가질 때 식 10의 적분이 2와 동일하게 되는 것이 불가능하기 때문이다.It can be seen from Equation 10 that there is always a single pure imaginary pole, α = -iz 0 , otherwise it is impossible for the integral of Equation 10 to equal 2 when we have the pole in the upper half. .
실제로, 만약 α=-iz0이고, 그리고
Figure PCTKR2016013789-appb-I000015
이며, 1보다 큰 값을 갖는 식 10의 f(α)의 적분이 불가능하다면, 이는 상기 적분이 정규화된 확률 함수를 포함하고 있기 때문이고, 식 10에서 모든 y 에 대해 |exp(iαy) |가 정확히 1인 경우에도 최대값은 오직 1로만 주어진다.
In fact, if α = -iz 0 , and
Figure PCTKR2016013789-appb-I000015
If the integral of f (α) in Equation 10 with a value greater than 1 is not possible, it is because the integral contains a normalized probability function, and | exp (iαy) | Even if it is exactly 1, the maximum value is given only as 1.
그러나, 식 13은 f(α)=2>1이기 때문에 만족하지 않는다.However, Equation 13 is not satisfied because f (?) = 2> 1.
편리하게, 하단면 (도 2)에서 무한히 큰 반원에 의해 식 11의 코시(Cauchy) 적분 통합 형상을 폐쇄함으로써, 극의 나머지의 합으로써 P(x)를 얻으며, 극 -iz0에의해 지배되는 지수항의 가장 큰 값은 큰 x에서 우세하게 나타날 것이다. 이 극에 의해 그 자체를 제한하는 경우에는, 정규화된 확률을 가져올 수 있다.Conveniently, by closing the Cauchy integral integral shape of Equation 11 by an infinitely large semicircle at the bottom face (FIG. 2), P (x) is obtained as the sum of the remainder of the poles, which is governed by the pole -iz 0 . The largest value of the exponent term will prevail at the large x. In the case of limiting itself by this play, a normalized probability can be obtained.
Figure PCTKR2016013789-appb-I000016
(14)
Figure PCTKR2016013789-appb-I000016
(14)
이는 식 1로부터 컨덕턴스 S가 큰 변형율에서 뿐만 아니라,This is because from the equation 1 the conductance S has a large strain as well
Figure PCTKR2016013789-appb-I000017
(15)
Figure PCTKR2016013789-appb-I000017
(15)
저항에 의한 변형율의 지수함수도 되는 것임을 분명히 하고 있다.It is clear that it is also an exponential function of strain due to resistance.
Figure PCTKR2016013789-appb-I000018
(16)
Figure PCTKR2016013789-appb-I000018
(16)
지수 법칙 함수와 지수함수가 식 6과 식 16 사이의 차이점이라고 볼 수 있다.The exponential law function and the exponential function can be regarded as the difference between Equations 6 and 16.
각자에 이웃하는 임의의 결정립의 위치를 가정하는 P(y)=1의 가장 일반적인 예를 고려해본 다음, 도 1에서 결정립(grain) 의 균일한 분포를 크랙립을 따라 이동시킨다. 이 경우 식 10은 하기 식 17을 제고하고,Consider the most common example of P (y) = 1, assuming the position of any grains next to each other, and then move the uniform distribution of grains along the cracks in FIG. In this case, Equation 10 enhances the following Equation 17,
Figure PCTKR2016013789-appb-I000019
(17)
Figure PCTKR2016013789-appb-I000019
(17)
그 다음 식 13이 하기 형식을 갖춘다.Equation 13 then takes the form:
Figure PCTKR2016013789-appb-I000020
. (18)
Figure PCTKR2016013789-appb-I000020
. (18)
식 17의 해답은 수치적으로 확인할 수 있다. 가장 낮은 z0=1.256 이고, 다른 극은 2.789±7.438i, 3.360±13.866i‥‥이다(도 2 참조).Equation 17 can be found numerically. The lowest z 0 = 1.256, and the other poles are 2.789 ± 7.438 i and 3.360 ± 13.866 i ... (see Figure 2).
도 13에서 우리는 실험 데이터와 이론 사이의 일치하는 것을 보기 위해, 식 16(검은색 선)의 순수한 지수함수와 함께 정규화된 저항 vs P(y)=1로 계산된 변형율(적색 선)을 제공한다. 반면, 점근 함수(asymptotic) 식 16은, 예를 들면, 결정립의 균일한 pdf으로 계산된 저항 vs 변형율, 도 11d에서 실험의 선형 기울기와 일치하도록 상기 변형을 α=7배로 리스케일 해야 한다.In FIG. 13 we provide the pure exponential function of equation 16 (black line) with the strain (red line) calculated as normalized resistance vs P (y) = 1 to see the agreement between the experimental data and the theory. do. On the other hand, the asymptotic function 16 must rescale the strain by α = 7 times, for example, to match the resistance vs strain calculated with a uniform pdf of grains, and the linear slope of the experiment in FIG. 11D.
물리적으로 그것은 결정립의 이동을 30%까지 제한하고, 따라서 크랙립이 평탄화하는 것을 의미한다. Physically it limits the movement of grains by 30% and thus means that the cracks are flattened.
그러므로, 저항은 반대수(the semi-logarithmic) 스케일에서 저항의 기울기를 증가시킴으로써 평탄화하는 것과 같이 반응한다.Therefore, the resistance reacts as flattening by increasing the slope of the resistance on the semi-logarithmic scale.
매개 변수 는 크랙립의 평탄도를 측정한다.The parameter measures the flatness of the crack.
도 1로부터, 스텝 돌기의 최대 기울기는 α에 의해 제한되는 것을 알 수 있으며, α는 최대 경사 각도의 탄젠트 값이다. It can be seen from FIG. 1 that the maximum inclination of the step protrusion is limited by α, and α is the tangent of the maximum inclination angle.
P(y) =1에서의 최대 경사 각도는 탄젠트 α=1인 45도(°) 이다.The maximum tilt angle at P (y) = 1 is 45 degrees with tangent α = 1.
물론, 크랙립이 어떠한 이동도 없이 α=0인 완벽하게 평평한 경우에는, 크랙립의 갑작스런 분리 및 R/R0의 무한한 기울기를 가질 수 있다.Of course, if the crack ribs are perfectly flat with no movement and α = 0, it can have sudden separation of the crack ribs and infinite slope of R / R 0 .
도 2e의 피팅에 따르면, %로 측정된 변형률의 매개변수는
Figure PCTKR2016013789-appb-I000021
이다.
According to the fitting of FIG. 2E, the parameter of strain measured in% is
Figure PCTKR2016013789-appb-I000021
to be.
이러한 근접한 추정치를 가지고, 특정한 결정립 크기 x0를 계산할 수 있었다.With this close estimate, it was possible to calculate a particular grain size x 0 .
SEM 이미지에 의하면, 간극의 거리 x는 변형률 x=kε에 비례하는 것으로 나타났고, 이때, %에서 ε을 갖는 k
Figure PCTKR2016013789-appb-I000022
50nm이고, 상기 입도 x0 =kε0 =30nm는, 입자화된 Pt 막의 1차입자 크기 구성요소와 상당히 근접할 수 있다.
The SEM image shows that the distance x of the gap is proportional to the strain x = kε, where k with ε in%
Figure PCTKR2016013789-appb-I000022
50 nm and the particle size x 0 = kε 0 = 30 nm can be quite close to the primary particle size component of the granulated Pt film.
이하, 본 발명의 이해를 돕기 위하여 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 본 기술 분야에서 통상의 지식을 가진 자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 자명한 것이다. Hereinafter, examples are provided to help the understanding of the present invention, but the following examples are merely for exemplifying the present invention, and various changes and modifications can be made within the scope and spirit of the present invention. It will be apparent to one having the above and obviously such modifications and modifications fall within the scope of the appended claims.
<실시예 1> 유도 크랙 기반 고감도 센서의 제작Example 1 Fabrication of Inductive Crack-based High Sensitivity Sensor
도 3a 내지 3c에 도시된 것과 같이 크랙 센서를 제조하였다.A crack sensor was prepared as shown in FIGS. 3A-3C.
구체적으로, 스핀 코팅된 100㎛ 의 폴리디메틸실록산(PDMS; polydimethylsiloxane)를 플라즈마 표면처리기 CUTE-1MPR(Femto Science Inc.)를 사용한 산소 플라즈마로 처리하여 유리 위에 결합시켰다. 20 ㎕ 폴리우레탄 아크릴레이트(PUA; polyurethane acrylate)를 PDMS/glass 몰드에 떨어뜨린 후, 필러 패터닝된 실리콘 몰드를 덮은 후에, 350 ㎚ UV (약 12 mJ/cm2)를 조사하였다. 페터팅된 10 ㎚ 크롬층은 열 증착기(thermal evaporator; Selcos Inc.)에 의한 열 증착에 의해 형성하고, 스퍼터링 된 20 ㎚ 백금층을 증착하였다. 금속 층 증착 PUA 필름을 PDMA/glass 몰드로부터 조심스럽게 떼어낸 후, 맞춤형 스트레쳐를 사용하여 x/y 방향으로 5% 인장하였다. 인장 전 후 의 크랙 센서를 도 4에 도시하였다.Specifically, spin coated 100 탆 polydimethylsiloxane (PDMS; polydimethylsiloxane) was treated with oxygen plasma using a plasma surface treatment machine CUTE-1MPR (Femto Science Inc.) and bonded onto glass. 20 μl polyurethane acrylate (PUA; polyurethane acrylate) was dropped into the PDMS / glass mold, and then covered with a filler patterned silicone mold, followed by irradiation with 350 nm UV (about 12 mJ / cm 2 ). The patterned 10 nm chromium layer was formed by thermal evaporation with a thermal evaporator (Selcos Inc.) and deposited a sputtered 20 nm platinum layer. The metal layer deposited PUA film was carefully peeled off the PDMA / glass mold and then tensioned 5% in the x / y direction using a custom stretcher. The crack sensor before and after tensioning is shown in FIG. 4.
그 후, 센서에 전기적 신호를 연결 할 수 있도록 전도성 폴리머를 이용해 전선을 부착하였다. 이와 같이 제작한 고감도 센서를 도 4 및 도 5에 도시하였다. 도 4 및 도 5는 상기 고감도 센서에 변형이 가해짐에 따라 크랙이 벌어지는 것을 나타낸다.After that, wires were attached using conductive polymers to connect electrical signals to the sensors. The high sensitivity sensor thus manufactured is illustrated in FIGS. 4 and 5. 4 and 5 show that the crack is opened as the deformation is applied to the high sensitivity sensor.
<실시예 2> 다중 픽셀 어레이 샘플 제조Example 2 Multi-Pixel Array Sample Preparation
기계적 진동 및 압력을 검출하기 위한 장치의 확장성 및 능력을 입증하기 위하여, 도 16b에 나타낸 바와 같이 6 x 6 cm2 면적에 16 픽셀(4 x 4 pixel array)의 센서 네트워크를 제공한다. 다중 픽셀 시스템의 개략도는 도 16a 및 16c에 나타내었다. 각 픽셀(1 x 1 cm2 islands)은 구멍 패턴을 가지는 100 ㎛ PUA/10nm Cr/20nm Pt의 두께로 구성된 후에, 크랙을 발생시키기 위해 10% 이축(bi-axially)으로 신장하여 연신하였다. 크랙이 형성된 Pt와 Lab View-based PXI-4071 system (NI instrument Inc.) 사이의 전기적 연결은 쉐도우 마크법을 사용한 PET 필름 상에 증착된 골드라인(Au, 50 nm thick)에 의해 형성되었다. 제조된 각 픽셀은 전도성 고분자(CW2400, circuitworks)에 의해 PET 필름에 자립형으로 배치되거나 골드라인에 의해 전기적으로 연결되었다.In order to demonstrate the scalability and ability of the device for detecting mechanical vibrations and pressures, a 16 x 4 pixel array is provided in a 6 x 6 cm 2 area as shown in FIG. 16b. A schematic diagram of a multiple pixel system is shown in FIGS. 16A and 16C. Each pixel (1 × 1 cm 2 islands) was constructed with a thickness of 100 μm PUA / 10 nm Cr / 20 nm Pt with a hole pattern, and then stretched and stretched 10% bi-axially to generate cracks. The electrical connection between cracked Pt and Lab View-based PXI-4071 system (NI instrument Inc.) was formed by gold lines (Au, 50 nm thick) deposited on PET films using the shadow mark method. Each pixel manufactured was freely placed on a PET film by a conductive polymer (CW2400, circuitworks) or electrically connected by a gold line.
<실험예 1> 크랙 간극의 길이에 따른 저항의 변화(게이지 팩터) 측정Experimental Example 1 Measurement of Change in Resistance (Gauge Factor) According to Crack Gap Length
실시예 1의 고감도 센서을 이용하여 직선 크랙의 효과를 확인하기 위해, 세 가지 다른 구멍 패턴을 사용하여 크랙을 형성하였다.In order to confirm the effect of the straight crack using the high sensitivity sensor of Example 1, cracks were formed using three different hole patterns.
도 7a에 도시된 바와 같이 P는 홀 중심의 최단 거리이고, 테스트되는 세개의 패턴에서 모두 동일하고, G는 간극의 길이이며, 간극은 구멍의 선단 사이의 최단 거리를 나타낸다.As shown in FIG. 7A, P is the shortest distance to the hole center, is the same in all three patterns tested, G is the length of the gap, and the gap represents the shortest distance between the tip of the hole.
G의 길이가 10㎛, 15㎛, 20㎛일 때 크랙의 형성 양상 및 저항의 변화를 도 6의 a, b 및 도 7의 a 내지 d 에 나타내었다. The crack formation patterns and changes in resistance when the lengths of G were 10 μm, 15 μm, and 20 μm are shown in FIGS. 6 a, b, and a through d in FIG. 7.
도 6a은 간극(G)의 길이가 10㎛, 15㎛일 때, 여러 개의 크랙이 유도될 수 있음을 나타내며, 6b는 G가 20㎛ 일 때 매우 곧은 크랙을 발생시킬 수 있음을 나타낸다. 도 6a에 도시된 것과 같은 다수의 곧지 않은 크랙의 발생은 저항의 변화에 대한 민감도를 저하시킬 수 있으며, 이러한 결과는 도 7b 및 7d에 도시되어있다.6A shows that when the length of the gap G is 10 μm and 15 μm, several cracks can be induced, and 6b shows that a very straight crack can be generated when G is 20 μm. The occurrence of a large number of uneven cracks, such as that shown in FIG. 6A, can lower the sensitivity to changes in resistance, and these results are shown in FIGS. 7B and 7D.
이러한 불균일성을 이해하기 위해, 우리는 FEM(finite element method) 시뮬레이션을 수행하였으며, 상기 시뮬레이션 결과를 도 7c에 나타내었다. 도 7c의 결과에 의하며, 좁은 패턴 간극이 간극 거리내에 크랙이 나타나는 모든 곳을 자극하는 높은 응력의 더 넓은 분포를 생성함을 나타내고 있다. 또한, 간극의 길이 G가 P에 대해 충분한 길이를 가지고 있지 않으면, 크랙이 발생되는 크랙면에 응력이 작용하는 구간이 너무 넓고 다양해질 수 있으며, 이로부터 여러 지점에서 응력이 발생하여 크랙을 유도할 수 있게 된다.To understand this non-uniformity, we performed a finite element method (FEM) simulation and the simulation results are shown in Figure 7c. Based on the results of FIG. 7C, it is shown that the narrow pattern gap produces a wider distribution of high stresses that stimulates wherever cracks appear within the gap distance. In addition, if the length G of the gap does not have a sufficient length with respect to P, the section in which the stress acts on the crack surface where the crack is generated may be too wide and diverse, and stresses may be generated at various points to induce the crack. It becomes possible.
본 발명에 따른 크랙 센서의 크랙은 직선으로 유도되는 경우에 유리하며, 이는 도 7b 및 도 7d의 결과에 나타내었다. The crack of the crack sensor according to the invention is advantageous in the case where it is induced in a straight line, which is shown in the results of FIGS. 7b and 7d.
또한, 도 7b 의 20㎛에서의 저항변화는 무질서한 크랙을 기반으로 하는 센서에 비해 보다 샤프한 그래프를 나타내며, 이는 크랙립(crack lip)의 거리변화에 따른 저항 변화를 나타내는 것이며, 직선의 크랙에서는 이러한 크랙의 거리변화에 보다 정확하게 반응함을 나타낸다.In addition, the resistance change at 20 μm of FIG. 7B shows a sharper graph compared to the sensor based on the disordered crack, which shows the change in resistance according to the change of the distance of the crack lip. Respond more accurately to changes in the distance of cracks.
<실험예 2> 인장 각도에 따른 저항의 변화(게이지 팩터) 측정Experimental Example 2 Measurement of Change in Resistance (Gauge Factor) According to Tensile Angle
실시예 1에서 제조된 고감도 센서의 단일 매개 변수(정규화된 간극 크기 x/x0 = kε/x0)에 의존하는 저항의 이론적 개념의 가능성을 증명하기 위해, 우리는 정규화된 저항 vs 변형율을 90°의 경우와 비교하기 위해 도 9b에 도시된 바와 같이 60 내지 45°에 사각형 패턴을 위치시켰다. 상기 실험 결과는 도 9c 및 9d에 도시되었다.To demonstrate the possibility of a theoretical concept of resistance that depends on the single parameter (normalized gap size x / x 0 = kε / x 0 ) of the high sensitivity sensor manufactured in Example 1, we set the normalized resistance vs strain The square pattern was positioned at 60-45 ° as shown in FIG. 9B to compare with the case of °. The experimental results are shown in FIGS. 9C and 9D.
로그-로그 스케일로 리플롯 함으로써, 60도(°)의 곡선은 변형율을 0.32으로 조절한 후 90도(°) 곡선과 일치하였다(도 9c 참조).By replotting on a log-log scale, the 60 degree curve coincided with the 90 degree curve after adjusting the strain to 0.32 (see FIG. 9C).
기하학적으로 90-60=30이며, 이는 샘플의 직교방향으로의 변형에 의한 추가적인 수축 때문에 x=kε에서부터 sin(π/6)x=k(0.5ε)까지의 또는 k(0.32 ε) 이상까지의 변형에 의한 간극 크기가 제공되기 때문에, 적절한 간극 사이즈를 효과적으로 좁히는 것에 의해 설명된다(도 9a). Geometrically 90-60 = 30, which is from x = kε to sin (π / 6) x = k (0.5ε) or above k (0.32 ε) because of the additional shrinkage caused by the deformation in the orthogonal direction of the sample. Since the gap size by deformation is provided, it is explained by effectively narrowing the appropriate gap size (Fig. 9A).
전도도가 30°에서 좁은 간극을 통해 일어나는 대부분의 전도도 경로에 의해 지배 당하기 때문에 60°의 여각의 차이는 여기에 다소 관련이 있을 수 있다.Since the conductivity is dominated by most of the conductivity paths that occur through narrow gaps at 30 °, the difference in the angle of view of 60 ° may be somewhat relevant here.
동일 여각에서 45°의 경우, 리스케일링 팩터는 0.7이고, 따라서 sin(π/4)=1/√2에 가깝다(도 9c).For 45 ° at the same angle of view, the rescaling factor is 0.7, thus close to sin (π / 4) = 1 / √2 (FIG. 9C).
도 9d는 격자형태로 발생된 크랙이 각도가 변화함에 따라 나타나는 저항변화의 결과이며, 각도가 90° 일 때, 가장 큰 저항의 변화가 나타나며, 45°, 60° 순으로 저항의 변화가 크게 나타난다.Figure 9d is a result of the resistance change that occurs as the angle of the crack generated in the lattice shape, the largest change in resistance when the angle is 90 °, the change in resistance is shown in the order of 45 °, 60 ° .
따라서, 격자형태로 발생된 크랙에 의해 형성된 사각형 패치가 동일한 각도로 대칭되는 힘을 통해 인장될 때 보다 저항 변화가 민감하게 나타나며, 이는 크랙의 거리가 보다 효과적으로 벌어질 수 있으며, (90°- 인장각도)의 차이에 의해 발생되는 여각이, 45° 이상의 각도에서는 45°이하의 각도이며, 이로 인해 더 좁은 크랙간 거리를 형성함에 따라 45°에 비해 더 낮은 저항감도를 나타내는 것일 수 있다. 그러나, 이는 90°에 가까운 각도에서는 그 영향이 덜 할 수 있다.Thus, the change in resistance is more sensitive when the rectangular patch formed by the cracks generated in the form of a lattice is tensioned through the force symmetrically at the same angle, which means that the distance of the cracks can be more effectively opened (90 ° -tension). The angle generated by the difference of the angle) is an angle of 45 ° or less at an angle of 45 ° or more, which may result in a lower resistance compared to 45 ° as a narrower distance between cracks is formed. However, this may have less effect at angles close to 90 °.
<실험예 3> 스트레인 변화에 따른 저항 변화 측정Experimental Example 3 Measurement of Resistance Change According to Strain Variation
상기 실시예 1의 고감도 센서에 인장을 가하면서 전류를 가하여 저항의 변화를 측정하였다. 구체적으로 도 11a~ 11d는 최대 10%까지 인장하였다가 다시 원래 상태 즉 0% 스트레인 상태로 가면서 측정한 전기저항의 변화를 나타낸 것이고, 도 11a ~ 11c는 실시예 1의 센서의 이력현상 및 재현성을 나타내는 그래프이다.The change in resistance was measured by applying current while applying tension to the high sensitivity sensor of Example 1. In detail, FIGS. 11A to 11D illustrate changes in electrical resistance measured by stretching up to a maximum of 10% and returning to an original state, that is, 0% strain, and FIGS. 11A to 11C illustrate hysteresis and reproducibility of the sensor of Example 1. It is a graph.
상기 실시예 1의 고감도 크랙 센서는 맞춤형 압력 테스트장비에 의해 고정되었다.The high sensitivity crack sensor of Example 1 was fixed by a custom pressure test equipment.
지속적인 압력이 도 10의 로드셀(2712-041, Instron Co.) 및 PXI-4071 저항 분석기(NI instrument) 기반의 Lab VIEW(NI instrument)를 기반으로 구성된 크랙 센서에 적용되었다.Continuous pressure was applied to the crack sensor constructed based on the load cell (2712-041, Instron Co.) and Lab VIEW (NI instrument) based on the PXI-4071 resistance analyzer (NI instrument) of FIG. 10.
도 11a에는 0~2.5%, 0~5%, 0~10%의 변형율 범위에서 5000회의 반복사이클로 측정된 재현성 테스트의 결과가 도시되어있으며, 도 11b에는 변형율 10% 범위에서 5000회 이상의 사이클 후의 재현성을 나타내는 것이다. 이로부터 본 발명에 따른 크랙 센서는 5000회 이상의 반복 측정 이후에도 성능의 거의 차이가 나타나지 않음을 알 수 있다.FIG. 11A shows the results of reproducibility tests measured at 5000 repetition cycles in the strain ranges of 0 to 2.5%, 0 to 5%, and 0 to 10%, and FIG. 11B shows reproducibility after 5000 cycles at 10% strain. It represents. From this, it can be seen that the crack sensor according to the present invention shows little difference in performance even after 5000 or more repeated measurements.
도 11c에는 0 ~ 10%의 변형율 범위에서 도 10의 로딩셀을 이용한 로딩-언로딩 테스트를 1800회 반복한 재현성 결과를 나타내며, 상기 그래프를 통한 결과로부터 본 발명에 따른 크랙 센서가 매우 우수한 재현성을 가짐을 알 수 있다.FIG. 11C shows a reproducibility result of repeating the loading-unloading test using the loading cell of FIG. 10 1800 times in the strain range of 0 to 10%, and the crack sensor according to the present invention has excellent reproducibility from the results of the graph. It can be seen that.
또한, 도 11d에 나타낸 바와 같이, 실시예 1의 센서를 최대 10% 까지 인장하였다가 다시 원래 상태 즉 0% 스트레인 상태로 가면서 측정한 전기저항을 측정하였을 때, 전기저항의 변화가 초기 저항의 약 2x105 배까지 변화함을 알 수 있었으며, 반복적으로 같은 형태의 저항 변화를 재현성 있게 얻을 수 있었다. 이는 서로 접촉하고 있던 크랙면에 스트레인이 가해짐에 따라 이동하면서 접촉 면적이 감소하고, 결국은 이격되면서 전기 저항이 급격하게 증가하는 데에 기인하며, 스트레인을 제거함에 따라 센서가 수축되면서 이격되었던 크랙면이 접촉하게 되고, 접촉면적이 증가함에 따라 저항이 줄어들면서 원래 상태로 돌아온다. In addition, as shown in FIG. 11D, when the electrical resistance measured while the sensor of Example 1 was stretched to a maximum of 10% and then returned to its original state, that is, 0% strain state, the change in electrical resistance was approximately equal to the initial resistance. It can be seen that it changes up to 2x10 5 times, and the same type of resistance change can be repeatedly obtained repeatedly. This is due to the fact that the contact area decreases as the strain is applied to the crack surfaces that were in contact with each other, and eventually the electrical resistance rapidly increases as they are spaced apart, and the cracks spaced apart as the sensor contracts as the strain is removed. As the surface comes into contact, the resistance decreases as the contact area increases, returning to its original state.
<실험예 4> 스트레인 변화에 따른 저항 변화 측정Experimental Example 4 Measurement of Resistance Change According to Strain Variation
도 12a 내지 12c는 0~2.5%, 0~5%, 0~10%의 변형률 범위에서 로딩 및 언로딩 테스트에서 측정된 저항변화를 측정한 그래프를 나타낸다.12A to 12C show graphs measuring resistance changes measured in loading and unloading tests in the strain ranges of 0 to 2.5%, 0 to 5%, and 0 to 10%.
도 12a 내지 12c의 결과로부터 본 발명에 따른 실시예 1의 크랙 기반 센서는 로딩 및 언로딩 과정에서 히스테리시스가 거의 나타나지 않으나, 적용되는 변형율의 범위가 커질수록 히스테리시스가 다소 증가하는 양상을 보인다.12A to 12C, the crack-based sensor of Example 1 according to the present invention shows little hysteresis in the loading and unloading process, but the hysteresis increases slightly as the applied strain range increases.
도 12c는 5개의 셈플에서 측정된 값의 평균값을 이용하여 표준편차와 함께 나타낸 것이다.12C is shown with standard deviation using the mean value of the values measured in five samples.
본 발명은 저항에 대한 변형 데이터의 이론적인 분석을 수행하였으며(식 1~ 18), 도 13은 변형율에 따른 저항 변화를 실험적 vs 이론적으로 얻어진 데이터를 바탕으로 피팅(fits)된 변형율-저항변화 곡선의 플롯을 나타낸다. 상기 결과로부터 본 발명에 따른 크랙 센서는 너무 크지 않은 변형율의 범위에서 실험적 데이터의 결과와 거의 일치하는 양상을 나타냄을 것을 알 수 있다.In the present invention, the theoretical analysis of the strain data for the resistance was performed (Equations 1 to 18), and FIG. 13 shows a strain-resistance curve in which the resistance change according to the strain is fitted based on data obtained experimentally and theoretically. Plot of From the above results, it can be seen that the crack sensor according to the present invention exhibits almost the same result as the experimental data in the range of strain not too large.
도 14는 갑작스런 변화를 주었을 때의 반응시간에 대해서 나타낸 그래프이며, 실험의 결과를 통해 100ms 이내에 반응하는 것을 알 수 있다. 또한, 상기 도 14를 통해 변형율의 변화 양상과 저항변화가 거의 동일한 반응 양상을 나타내는 것을 알 수 있다. Figure 14 is a graph showing the reaction time when a sudden change, it can be seen that the reaction within 100ms through the results of the experiment. In addition, it can be seen from FIG. 14 that the change of the strain and the change of resistance show almost the same response.
<실험예 5> 압력에 따른 저항변화의 측정Experimental Example 5 Measurement of Resistance Change According to Pressure
압력의 인가는 샘플을 연신시키고, 금속 필름의 저항을 증가시킬 수 있다. The application of pressure can stretch the sample and increase the resistance of the metal film.
압력의 측정을 위해 상기 실시예 1의 크랙 기반 센서는 맞춤형 기계에 장착되며, 저항 데이터는 저항 분석기로 측정될 수 있다(PXI-4071, National Instruments).For the measurement of pressure, the crack-based sensor of Example 1 is mounted on a custom machine, and the resistance data can be measured with a resistance analyzer (PXI-4071, National Instruments).
압력 데이터는 도 10의 로드 셀(2712-041, Instron Co.)로 획득되었다. Pressure data was obtained with the load cell 2712-041, Instron Co. of FIG.
수득된 압력 데이터의 저항은 세 가지 압력 영역으로 선형화 될 수 있으며, 이는 도 15a에 도시되었다. 도 15a의 그래프는,The resistance of the pressure data obtained can be linearized into three pressure zones, which is shown in Figure 15a. The graph of FIG. 15A is
1) 0-6 kPa 에서의 기울기 606.15 kPa-1 1) Slope at 0-6 kPa 606.15 kPa -1
2) 6-8 kPa 에서의 기울기 40341.53 kPa-1 2) Slope at 6-8 kPa 40341.53 kPa -1
3) 8-9.5 kPa 에서의 기울기 136018.16 kPa-1의 세 가지 압력영역을 나타내며, 이러한 압력-저항 곡선의 기울기는 보고된 연구(Y.Zang. et al. Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection. NATURE COMMUNICATIONS, 6:6269, doi: 10.1038/ncomms7269)에서 나타낸 압력 감도의 최고 성능인 0-5 kPa의 범위의 압력에서 192 kPa-1보다 현저히 우수한 감도를 나타낸다.3) slope at 8-9.5 kPa shows three pressure regimes of 136018.16 kPa -1 , and the slope of this pressure-resistance curve is reported (Y.Zang. Et al. Flexible suspended gate organic thin-film transistors for ultra -sensitive pressure detection.NAURE COMMUNICATIONS, 6: 6269, doi: 10.1038 / ncomms7269) shows a significantly better sensitivity than 192 kPa -1 at pressures in the range of 0-5 kPa, the highest performance of pressure sensitivity.
도 15b는 상기 크랙 센서를 이용해 0.2Pa의 압력에 대응하는 작은 개미질량(Ponera japonica, 1mg)을 측정한 결과를 나타내며, 이는 본 발명에 따른 크랙 센서가 압력에 대해 높은 감도를 나타내는 것을 나타내는 결과이다.FIG. 15B shows a result of measuring a small ant mass (Ponera japonica, 1 mg) corresponding to a pressure of 0.2 Pa using the crack sensor, which shows that the crack sensor according to the present invention exhibits high sensitivity to pressure. .
상기 크랙 센서를 손목에 장착하여 손목 맥박의 생리신호를 측정하였다.The crack sensor was mounted on the wrist to measure the physiological signal of the wrist pulse.
도 15c 및 15d에는 상기 손목 맥박의 생리신호를 측정한 그래프를 나타내었으며, 도 15d에는 15c 그래프의 일부를 확대한 결과를 나타내며, 상기 15d의 그래프로부터 본 발명에 따른 크랙 센서가 손목 맥박의 미세한 3단계 변화를 모두 측정할 수 있을 만큼 높은 민감도를 나타내고 있음을 알 수 있다.15C and 15D show graphs of measuring physiological signals of the wrist pulse, and FIG. 15D shows enlarged results of a part of the 15C graph, and the crack sensor according to the present invention is shown in FIG. It can be seen that the sensitivity is high enough to measure all the step changes.
<실험예 6> 고감도 센서 어레이를 통한 위치 및 압력 측정Experimental Example 6 Position and Pressure Measurement Using a High Sensitivity Sensor Array
센서 확장성 및 공간 해상도와 압력 감지 능력을 입증하기 위해, 실시예 2의 방법으로 다중 픽셀 어레이를 제조하였으며, 이를 도 16a에 도시하였다. 크랙 기반의 디바이스는 높은 유연성을 나타내고, 도 16b에 나타난 것과 같이 휨이 있을 수 있다.To demonstrate sensor scalability and spatial resolution and pressure sensing capability, a multi-pixel array was fabricated by the method of Example 2, which is shown in FIG. 16A. Crack-based devices exhibit high flexibility and may be warped as shown in FIG. 16B.
작은 LEGO 조각 모양의 S, N, U를 조심스럽게 픽셀이 어레이된 실시예 2의 센서에 도 16c와 같이 위치시켰으며, 이로부터 유도된 압력 및 위치를 상기 어레이 센서로부터 용이하게 검출할 수 있었다. 상기 어레이 센서로부터 측정된 결과를 도 16d에 나타내었다.S, N, and U in the shape of small LEGO pieces were carefully placed in the sensor of Example 2 in which the pixels were arrayed as shown in FIG. 16C, and the pressure and position derived therefrom could be easily detected from the array sensor. The results measured from the array sensor are shown in FIG. 16d.
이상으로 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.The specific parts of the present invention have been described in detail above, and for those skilled in the art, these specific descriptions are merely preferred embodiments, and the scope of the present invention is not limited thereto. Will be obvious. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (19)

  1. 홀(hole) 패턴이 형성된 유연 지지체; 및 A flexible support having a hole pattern formed thereon; And
    상기 지지체의 적어도 일면 상에 형성되는 전도성 박막;을 구비하며,A conductive thin film formed on at least one surface of the support;
    상기 전도성 박막은, 서로 마주하면서 적어도 일부 면이 서로 접촉하고 있는 크랙면을 갖는 직선으로 유도된 크랙을 포함하며,The conductive thin film includes cracks induced in a straight line having a crack surface facing each other and at least some of the surfaces in contact with each other,
    상기 크랙면은 상기 유연 지지체에 형성된 규칙적인 홀(hole) 패턴에 의해 직선 형태로 유도되고,The crack surface is guided in a straight shape by a regular hole pattern formed in the flexible support,
    외부 물리적 자극에 따라 상기 크랙면이 이동하면서 접촉면적이 변화하거나 단락 혹은 재접촉에 의해 발생되는 전기적 변화의 측정에 의한 외부자극을 측정하는 고감도 센서.A high sensitivity sensor for measuring an external stimulus by measuring the electrical change caused by a change in contact area or a short circuit or re-contact as the crack surface moves in response to an external physical stimulus.
  2. 제1항에 있어서,The method of claim 1,
    상기 크랙면은 인접하는 홀 사이에 외력에 의한 응력이 집중 발생되어, 홀 패턴을 따라 크랙이 직선 형태로 유도되는 것인 고감도 센서.The crack surface is a high-sensitivity sensor is a stress caused by the external force is concentrated between the adjacent holes, the crack is induced in a straight line along the hole pattern.
  3. 제1항에 있어서,The method of claim 1,
    상기 크랙면은 인접하는 홀과 홀 사이에 구비되며, 상기 크랙면의 길이(G)는, 상기 크랙면이 위치하는 인접하는 홀과 홀의 중심을 연결하는 직선(P)에 대해 60% 이상의 길이를 갖는 것인 고감도 센서.The crack surface is provided between adjacent holes and holes, and the length G of the crack surface is 60% or more with respect to the straight line P connecting the center of the hole and the adjacent hole where the crack surface is located. High sensitivity sensor having.
  4. 제1항에 있어서,The method of claim 1,
    상기 크랙면에 가해지는 외력의 각도가 상기 크랙면에 대해 90°또는 45°를 이루는 방향으로 가해지는 것인 고감도 센서.And a sensitivity of the external force applied to the crack surface is applied in a direction of 90 ° or 45 ° with respect to the crack surface.
  5. 제1항에 있어서,The method of claim 1,
    7 내지 10kPa 범위의 압력에서 2x104 이상의 민감도를 갖는 고감도 센서.High sensitivity sensor with a sensitivity of 2x10 4 or greater at pressures in the range of 7 to 10 kPa.
  6. 제1항에 있어서,The method of claim 1,
    상기 홀 패턴의 모양은 4개의 호(arc)가 결합되어 4개의 꼭지점을 갖는 십자 형태 또는 곡선으로 이루어진 마름모 형상으로 이루어진 것인 고감도 센서.The shape of the hole pattern is a high sensitivity sensor that is formed of a rhombus shape consisting of a cross shape or a curve having four vertices coupled to four arcs (arc).
  7. 제1항에 있어서,The method of claim 1,
    상기 유연 지지체는 폴리우레탄아크릴레이트 (PUA), 폴리디메틸실록세인 (PDMS), 폴리에틸렌테레프탈레이트(PET), 폴리프로필렌(PP) 및 폴리에틸렌(PE) 으로 이루어지는 그룹으로부터 선택되는 어느 하나 또는 이들의 조합인 것인 고감도 센서.The flexible support is any one selected from the group consisting of polyurethane acrylate (PUA), polydimethylsiloxane (PDMS), polyethylene terephthalate (PET), polypropylene (PP) and polyethylene (PE), or a combination thereof. High sensitivity sensor.
  8. 제1항에 있어서,The method of claim 1,
    상기 전도성 박막은 Au, Ag, Pt, Cu, Cr, Pt 등으로 이루어지는 그룹으로부터 선택되는 어느 하나 또는 이들의 조합인 것인 고감도 센서.The conductive thin film is any one or a combination thereof selected from the group consisting of Au, Ag, Pt, Cu, Cr, Pt and the like.
  9. 제1항에 있어서,The method of claim 1,
    상기 크랙은 나노 수준의 미세 크랙인 것인 고감도 센서.The crack is a high sensitivity sensor that is nano-level fine cracks.
  10. 제1항에 있어서,The method of claim 1,
    외부자극에 의해 상기 크랙의 전기적 단락 또는 개방이 발생하여 상기 전도성 박막의 전기적 저항값이 변화되는 것을 특징으로 하는 고감도 센서.The high sensitivity sensor, characterized in that the electrical short-circuit or opening of the crack is caused by an external stimulus to change the electrical resistance value of the conductive thin film.
  11. 제1항에 있어서,The method of claim 1,
    상기 외부자극이 인장(stretch) 및 압력(press) 중 어느 하나 또는 이들의 조합인 것인 고감도 센서.And wherein the external stimulus is one of a stretch and a press or a combination thereof.
  12. 제1항에 있어서,The method of claim 1,
    상기 전도성 박막의 두께가 0.1 nm 내지 1 ㎛ 인 것인 고감도 센서.High sensitivity sensor that the thickness of the conductive thin film is 0.1 nm to 1 ㎛.
  13. 제1항에 있어서,The method of claim 1,
    0 내지 10%의 변형률에서 게이지 팩터(gauge factor)가 1 내지 2x106 인 것인 고감도 센서.High sensitivity sensor having a gauge factor of 1 to 2 × 10 6 at a strain of 0 to 10%.
  14. 제 1항에 있어서,The method of claim 1,
    상기 고감도 센서의 유연성은 최소 반지름 1 mm 이상으로 구부릴 수 있는 것인 고감도 센서.The high sensitivity sensor is a flexible sensor that can be bent to a minimum radius of 1 mm or more.
  15. 제1항 내지 제14항 중 어느 한 항에 따른 고감도 센서를 구비하는 압력센서.A pressure sensor comprising the high sensitivity sensor according to any one of claims 1 to 14.
  16. 제1항 내지 제14항 중 어느 한 항에 따른 고감도 센서를 구비하는 인장센서.A tension sensor comprising the high sensitivity sensor according to any one of claims 1 to 14.
  17. 제1항 내지 제14항 중 어느 한 항에 따른 고감도 센서를 구비하는 압력 및 인장센서.A pressure and tension sensor comprising a high sensitivity sensor according to any one of claims 1 to 14.
  18. 제1항 내지 제14항 중 어느 한 항에 따른 고감도 센서를 구비하는 인공 피부.An artificial skin comprising the high sensitivity sensor according to any one of claims 1 to 14.
  19. 유연 지지체에 규칙적 홀 패턴을 형성하는 단계;Forming a regular hole pattern in the flexible support;
    상기 유연 지지체의 적어도 일면 상에 전도성 박막을 형성하는 단계; 및 Forming a conductive thin film on at least one surface of the flexible support; And
    상기 전도성 박막을 인장하여 직선상의 크랙을 유도하는 단계;를 포함하는 제1항의 고감도 센서의 제조방법.The method of manufacturing the high-sensitivity sensor of claim 1, further comprising: inducing linear cracks by stretching the conductive thin film.
PCT/KR2016/013789 2015-11-30 2016-11-28 High-sensitivity sensor containing linearly induced cracks and method for manufacturing same WO2017095097A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680069974.2A CN108291797B (en) 2015-11-30 2016-11-28 High sensitivity sensor containing linear induced cracking and method of making same
US15/779,202 US20200240859A1 (en) 2015-11-30 2016-11-28 High-sensitivity sensor containing linearly induced cracks and method for manufacturing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150169195 2015-11-30
KR10-2015-0169195 2015-11-30
KR10-2016-0097970 2016-08-01
KR1020160097970A KR101898604B1 (en) 2015-11-30 2016-08-01 Highly sensitive sensor comprising linear crack pattern and process for preparing same

Publications (1)

Publication Number Publication Date
WO2017095097A1 true WO2017095097A1 (en) 2017-06-08

Family

ID=58797176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013789 WO2017095097A1 (en) 2015-11-30 2016-11-28 High-sensitivity sensor containing linearly induced cracks and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2017095097A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110327026A (en) * 2019-05-16 2019-10-15 杨松 Breathe heartbeat detection device and method
CN114878034A (en) * 2022-04-27 2022-08-09 厦门大学 Determination method for designing hemispherical hyperelastic microstructure of linear sensitivity sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110075256A (en) * 2009-12-28 2011-07-06 재단법인 포항산업과학연구원 Pressure sensor having metal thin film type strain gauge
KR101151662B1 (en) * 2010-08-23 2012-06-11 연세대학교 산학협력단 Hydrogen sensor and method of manufacturing the same
KR20150064707A (en) * 2013-12-03 2015-06-11 재단법인 멀티스케일 에너지시스템 연구단 Highly sensitive sensor comprising cracked conductive thin film and process for preparing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110075256A (en) * 2009-12-28 2011-07-06 재단법인 포항산업과학연구원 Pressure sensor having metal thin film type strain gauge
KR101151662B1 (en) * 2010-08-23 2012-06-11 연세대학교 산학협력단 Hydrogen sensor and method of manufacturing the same
KR20150064707A (en) * 2013-12-03 2015-06-11 재단법인 멀티스케일 에너지시스템 연구단 Highly sensitive sensor comprising cracked conductive thin film and process for preparing same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Ultra-Sensitive Pressure Sensor ...", 2015 MRS FALL MEETING & EXHIBIT GUIDE, 29 November 2015 (2015-11-29), Boston, Massachusetts *
BIO-INSPIRED DESIGN AND FABRICATION FOR HIGH SENSITIVE RECOGNITION SYSTEM, vol. 1 -127, August 2014 (2014-08-01), pages 34 - 82 *
KANG DAE SIK: "Bio-inspired Design and Fabrication for High Sensitive Recognition System", DOCTORAL THESIS, August 2014 (2014-08-01), pages 1 - 127 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110327026A (en) * 2019-05-16 2019-10-15 杨松 Breathe heartbeat detection device and method
CN110327026B (en) * 2019-05-16 2023-08-08 杨松 Respiratory heartbeat detection device and method
CN114878034A (en) * 2022-04-27 2022-08-09 厦门大学 Determination method for designing hemispherical hyperelastic microstructure of linear sensitivity sensor
CN114878034B (en) * 2022-04-27 2023-02-14 厦门大学 Determination method for designing hemispherical hyperelastic microstructure of linear sensitivity sensor

Similar Documents

Publication Publication Date Title
CN108291797B (en) High sensitivity sensor containing linear induced cracking and method of making same
WO2018038367A1 (en) Touch input device including display panel having strain gauge, and method for manufacturing display panel having strain gauge
WO2016060372A1 (en) Biomimetic multiple sensory skin sensor
US11541550B2 (en) Robot skin apparatus, method of fabricating a robot skin apparatus, and a system including a robot skin apparatus
Emamian et al. Fully printed and flexible piezoelectric based touch sensitive skin
WO2017095097A1 (en) High-sensitivity sensor containing linearly induced cracks and method for manufacturing same
KR101259782B1 (en) Flexible force or pressure sensor array using semi-conductor strain gauge which is adapting cmos circuit, fabrication method thereof and measurement method therof
WO2016197841A1 (en) Interdigitated y-axis magnetoresistive sensor
KR100959005B1 (en) A pressure measuring sensor and manufacturing process
Emamian et al. Fabrication and characterization of piezoelectric paper based device for touch and force sensing applications
WO2012165839A2 (en) Reversible electrical connector using interlocking of a fine cilium, a multi functional sensor using same, and method of manufacturing same
KR20110049593A (en) Sensor including graphene, and method for manufacturing the sensor
WO2019143019A1 (en) Soft sensor and manufacturing method therefor, and hand-wearable device having soft sensor and manufacturing method therefor
WO2015178607A1 (en) Graphene touch sensor, method for operating same, and method for manufacturing same
US9063036B2 (en) Sample for electron microscopy and method of manufacturing the same
KR20080023398A (en) Force sensor using the si nanowire and method for manufacturing the same
WO2018203658A1 (en) Strain measurement sensor, data processing system using strain measurement sensor applied to body, and data processing method using same
WO2010140719A1 (en) Micro calorimeter device with improved accuracy
Sakuma et al. Flexible Piezoresistive Sensors Fabricated by Spalling Technique
Chen et al. Mechanical and electrical characteristics of screen printed stretchable circuits on thermoplastic polyurethane
WO2016128918A1 (en) Piezoelectric thin-film based flexible sensing device, method for fabrication thereof and method for operating the same
Liu et al. Optimization of the discrete structure in a pressure sensor based on a multiple-contact mechanism to improve sensitivity and nonlinearity
TWI676025B (en) System and method for measuring a thermal expansion coefficient
WO2018117581A1 (en) Pressure sensing unit for detecting plurality of electric characteristics and touch input device including same
WO2023038197A1 (en) Method for manufacturing flexible micro supercapacitor element by using transfer of large-scale mxene electrode pattern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870993

Country of ref document: EP

Kind code of ref document: A1