WO2023210503A1 - ブラスト状態評価装置、ブラスト状態評価システム、ブラスト状態評価方法、及び、ブラスト状態評価プログラム - Google Patents

ブラスト状態評価装置、ブラスト状態評価システム、ブラスト状態評価方法、及び、ブラスト状態評価プログラム Download PDF

Info

Publication number
WO2023210503A1
WO2023210503A1 PCT/JP2023/015801 JP2023015801W WO2023210503A1 WO 2023210503 A1 WO2023210503 A1 WO 2023210503A1 JP 2023015801 W JP2023015801 W JP 2023015801W WO 2023210503 A1 WO2023210503 A1 WO 2023210503A1
Authority
WO
WIPO (PCT)
Prior art keywords
blasting
target surface
light
rate
blast
Prior art date
Application number
PCT/JP2023/015801
Other languages
English (en)
French (fr)
Inventor
岳思 篠田
太氏 田中
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Publication of WO2023210503A1 publication Critical patent/WO2023210503A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration

Definitions

  • the present disclosure relates to a blast condition evaluation device, a blast condition evaluation system, a blast condition evaluation method, and a blast condition evaluation program.
  • evaluation of the condition after blasting treatment is generally performed visually, and evaluations may vary depending on the evaluator.
  • the present disclosure has been made in view of the above problems, and provides a technique that can appropriately evaluate the blasting state.
  • a blasting condition evaluation device is a blasting condition evaluation device that evaluates a blasting rate after blasting on a target surface of a structure, and includes an irradiation unit that irradiates measurement light to the target surface. , a detection unit that detects reflected light from the target surface irradiated with the measurement light; and a blast blast on the target surface based on the intensity of light of a specific wavelength included in the reflected light detected by the detection unit. and an analysis section that estimates the rate.
  • the irradiation section irradiates the target surface with the measurement light, and the detection section acquires the reflected light therefrom. Then, the blast rate on the target surface is estimated based on the intensity of light of a specific wavelength included in the reflected light detected by the detection unit. With such a configuration, it becomes possible to evaluate the blasting state more appropriately than when evaluating visually.
  • the apparatus further includes a storage section that stores correspondence information that is information relating to a correspondence relationship between the intensity of light of the specific wavelength and the blast rate, and the analysis section is configured to analyze the target object based on the correspondence information. It may also be an aspect of estimating the blast rate on the surface.
  • the blast rate is estimated based on information regarding the correspondence between the intensity of light of a specific wavelength and the blast rate.
  • the storage unit further stores grade information that is information related to the relationship between the blast rate and the blast grade, and the analysis unit determines the blast grade corresponding to the estimated blast rate based on the grade information. It may be a specific aspect.
  • a blasting condition evaluation device is a blasting condition evaluation device that evaluates a blasting rate after blasting on a target surface of a structure, and includes a detection unit that acquires an image of the target surface; , an analysis unit that estimates a blast rate on the target surface from the image acquired by the detection unit.
  • an image of the target surface is acquired by the detection unit. Then, the blast rate on the target surface is estimated based on the image of the target surface acquired by the detection unit. With such a configuration, it becomes possible to evaluate the blasting state more appropriately than when evaluating visually.
  • a blasting condition evaluation system is a blasting condition evaluation system that includes a detection device and a terminal device and evaluates a blasting rate after blasting on a target surface of a structure
  • the detection device includes an irradiation unit that irradiates measurement light onto the target surface, a detection unit that detects reflected light from the target surface irradiated with the measurement light, and a detection result by the detection unit that is transmitted to the terminal device.
  • a transmitting unit that transmits data to the target surface, and the terminal device determines the blast rate on the target surface based on the intensity of light of a specific wavelength included in the reflected light transmitted from the detection device. It has an analysis section that performs estimation, and a display section that displays the result of the estimation by the analysis section on a screen.
  • the measurement light is irradiated onto the target surface by the irradiation section of the detection device, and the reflected light therefrom is acquired by the detection section and sent to the terminal device.
  • the analysis unit estimates the blast rate on the target surface based on the intensity of light of a specific wavelength included in the reflected light, and the result is displayed on the display unit.
  • a blasting condition evaluation method is a blasting condition evaluation method for evaluating a blasting rate after blasting on a target surface of a structure, the method comprising: The method includes an acquisition step of acquiring information indicating the intensity of light of a specific wavelength included in the light, and an estimation step of estimating the blast rate on the target surface based on the information obtained in the acquisition step.
  • the blasting condition evaluation method information indicating the intensity of light of a specific wavelength included in the reflected light from the target surface irradiated with the measurement light is acquired, and based on that information, the blasting rate on the target surface is determined. Presumed. As a result, it becomes possible to evaluate the blasting state more appropriately than in the case of visual evaluation.
  • a blasting condition evaluation program is a blasting condition evaluation program for evaluating a blasting rate after blasting on a target surface of a structure, and includes a blasting condition evaluation program for evaluating a blasting rate after blasting on a target surface of a structure, and includes an acquisition step of acquiring information indicating the intensity of light of a specific wavelength contained in the light; and an estimation step of estimating the blast rate on the target surface based on the information obtained in the acquisition step. Let it run.
  • the blasting condition evaluation program information indicating the intensity of light of a specific wavelength included in the reflected light from the target surface irradiated with the measurement light is acquired, and based on that information, the blasting rate on the target surface is determined. Presumed. As a result, it becomes possible to evaluate the blasting state more appropriately than in the case of visual evaluation.
  • FIG. 1 is a diagram illustrating an example of the functional configuration of a blast condition evaluation system.
  • FIGS. 2(a) and 2(b) are diagrams illustrating an example of the device configuration of the blast condition evaluation system.
  • FIG. 3 is a diagram showing an example of the hardware configuration of the detection device and the terminal device.
  • FIG. 4 is a flow diagram illustrating a blast state evaluation method.
  • FIG. 5 is a diagram showing the relationship between the blasting rate and the deposition rate of Zn and Si.
  • FIGS. 6(a) and 6(b) are diagrams showing changes in the spectra of reflected light with respect to the blasting rate.
  • FIGS. 7(a) and 7(b) are diagrams showing changes in the peak intensity of reflected light with respect to the blasting rate.
  • FIGS. 1 is a diagram illustrating an example of the functional configuration of a blast condition evaluation system.
  • FIGS. 2(a) and 2(b) are diagrams illustrating an example of the device configuration of the blast condition evaluation
  • FIGS. 8A and 8B are diagrams showing the relationship between the adhesion rate of Zn and Si and the peak intensity of reflected light.
  • FIGS. 9(a) to 9(f) are diagrams showing examples of analysis of images taken of a target surface.
  • FIGS. 10(a) to 10(f) are diagrams showing examples of analysis of images taken of a target surface.
  • FIG. 1 is a diagram illustrating the functional configuration of a blast condition evaluation system according to an embodiment. Further, FIG. 2 is a diagram illustrating the device configuration of the blast condition evaluation system 1.
  • the blasting condition evaluation system 1 according to the present embodiment is, for example, a system for evaluating the condition of the surface of a structure such as a ship after blasting treatment.
  • the structure having the target surface to be subjected to the blasting process to be evaluated may be a ship, a bridge, or the like, and is not particularly limited, but in the following embodiments, a case where the structure is a ship will be described.
  • Blasting is a process that is carried out before painting a target surface such as a ship's wall, and removes particles that have adhered to the surface of the target object (target surface) through the preceding steel plate cutting process and assembly process. This process removes fumes, dirt, etc.
  • Various types of blasting are known, such as dry blasting, wet blasting, and vacuum blasting, but all of these methods involve spraying small particles (blasting material) onto the target surface and causing them to collide. By doing this, the target surface is processed.
  • the extent to which blasting has been performed is usually determined by visual inspection by an inspector. For example, depending on the surface condition, the condition of the object is evaluated using a blast grade. Furthermore, if the blasting grade is not in the desired state, the target surface may be subjected to blasting again. As described above, the blasting condition is usually evaluated visually by an inspector, but the evaluation may vary depending on the inspector. Further, when the target structure is a ship, the surface area to be subjected to blasting is large, and visual confirmation and recording of the results may be complicated. On the other hand, the blasting condition evaluation system 1 described in the following embodiments prevents variations in evaluation among inspectors and makes it possible to evaluate the blasting condition more easily.
  • the blast condition evaluation system 1 includes a detection device 10 and a terminal device 20.
  • the detection device 10 is a device that has a function of irradiating measurement light onto a target surface and detecting reflected light from the target surface. That is, the detection device 10 has a part of the function as a blast condition evaluation device.
  • the terminal device 20 is a device that can acquire the detection results from the detection device 10, evaluate the blasting state of the target surface, and display the results. That is, the terminal device 20 has a part of the function as a blast state evaluation device.
  • the terminal device 20 is, for example, a device such as a smartphone or a tablet that can be carried by a user. Note that the "reflected light" described in this embodiment may also include diffusely reflected light from the target surface.
  • the detection device 10 is configured to include an irradiation section 11, a detection section 12, an intensity information acquisition section 13, a transmission section 14, and a storage section 15 as a functional configuration.
  • the irradiation unit 11 has a function of irradiating measurement light of a predetermined wavelength onto the target surface whose blasting state is to be evaluated.
  • the detection unit 12 has a function of detecting information related to the intensity of light reflected from the target surface by irradiating the target surface with light from the irradiation unit 11.
  • the intensity information acquisition unit 13 extracts information used for evaluating the blast rate from information related to the intensity of the reflected light detected by the detection unit 12. For example, the intensity information acquisition unit 13 extracts only information related to the light intensity of a pre-designated wavelength band, or extracts a numerical value that is the peak value of the light intensity in a specific wavelength band. Note that when all the information detected by the detection unit 12 is sent as is to the terminal device 20, the intensity information acquisition unit 13 may not perform the process of extracting specific information.
  • the "blasting rate" in this embodiment is a numerical value indicating how much the surface has been blasted as a result of blasting, and is determined by the ratio of the blasted area to the surface area of the target surface.
  • the original material of the target surface e.g., steel plate, etc.
  • the blasting condition evaluation system 1 of the present embodiment by irradiating light onto the target surface and detecting the reflected light, changes in the properties of the target surface (ratio of material exposed on the surface) are detected, and the trends thereof are detected. Estimate the blast rate from Therefore, although the details will be described later, the light irradiated onto the target surface can be selected depending on the characteristics of the substance exposed on the target surface.
  • the transmitting unit 14 has a function of transmitting, to the terminal device 20, the analysis result in the intensity information acquiring unit 13, that is, the information used for evaluating the blast rate among the information related to the intensity of reflected light.
  • the storage unit 15 has a function of holding information used for information extraction in the intensity information acquisition unit 13. Specifically, the storage unit 15 stores information specifying information to be transmitted to the terminal device 20 (for example, information specifying a wavelength band, information regarding a method for selecting reflected light intensity information to be transmitted, etc.) Keep it. Note that the storage unit 15 may hold the intensity of the reflected light detected by the detection unit 12.
  • the detection device 10 is configured to include a cylindrical housing 30.
  • the housing 30 includes an opening 32 in the center of one end in which a light source section 31 is arranged.
  • the aperture 32 serves both as an optical path for emitting light from the light source section 31 toward the target surface and as an optical path for receiving reflected light.
  • a light shielding gasket 33 formed in an annular shape so as to surround the periphery of the opening 32 is provided.
  • the diameter of the opening 32 may be, for example, about 7 mm.
  • the diameter of the opening 32 may be, for example, 5 mm or more.
  • the area of the opening 32 can be 78.5 mm 2 or more. When the area of the opening 32 is set to 70 mm 2 or more, the accuracy of calculating the blast rate can be increased.
  • the light source section 31 (light source unit) is formed in a cylindrical shape so as to surround the opening 32 on the center side of the housing 30 (the side farther from one end) than the light shielding gasket 33 .
  • the light source section 31 is provided with a plurality of light sources 31 a that emit light into the opening 32 .
  • the light source 31a for example, an LED light source that emits light in a predetermined wavelength range is used.
  • an LED light source that emits light in the vicinity of 550 nm to 650 nm can be used as the light source 31a.
  • the type of light source 31a may be changed as appropriate based on the wavelength and intensity of the light used to evaluate the blasting state.
  • the light source 31a is not limited to a light source that emits light of a single wavelength, but may be a light source that emits light of a plurality of wavelengths.
  • the light source 31a may be provided on the inner surface of the opening 32, as shown in FIG. 2(b).
  • the plurality of light sources 31a may be arranged in an annular shape so as to be equally spaced from each other.
  • the light source 31a emits light toward the end of the opening 32.
  • the direction in which the light from the light source 31a is emitted is not limited to one direction, and for example, the light from the light source 31a may be emitted so as to illuminate the entire end of the opening 32 (surfacewise).
  • the inner surface (wall surface) of the opening 32 may be configured to be black and capable of absorbing light, for example. In this case, noise light is prevented from entering the light receiving optical system.
  • the inner surface (wall surface) of the opening 32 may be processed to have a mirror surface, for example, to suppress the loss of light within the opening 32. The configuration of this part is changed as appropriate depending on the intensity of light from the light source 31a, the proportion of noise light, and the like.
  • the spectroscopic element 34 When the light L1 emitted toward the target surface O is irradiated onto the target surface O, a part of the light is reflected on the target surface O. A portion of the reflected light L2 propagates within the aperture 32 and enters the spectroscopic element 34. In the spectroscopic element 34, the incident reflected light L2 is separated into wavelengths and output. The light separated by the spectroscopic element 34 is received by the light receiving element 35. For example, a plurality of light receiving elements 35 are arranged so as to be able to individually receive light separated into wavelengths. When the light receiving element 35 receives light, a current flows depending on the intensity of the light. This current is detected by a detector 36. Further, the detector 36 extracts information to be transmitted to the terminal device 20 from the intensity of the light detected by the detector 36 based on the information stored in the storage unit 15. Further, the communication device 37 transmits the result detected by the detector 36 to the terminal device 20.
  • the light source section 31 in the detection device 10 shown in FIG. 2 has a function corresponding to the irradiation section 11 shown in FIG. 1.
  • the spectroscopic element 34, the light receiving element 35, and the detector 36 shown in FIG. 2 have functions corresponding to the detection section 12 shown in FIG.
  • the detector 36 shown in FIG. 2 has a function corresponding to the intensity information acquisition section 13 shown in FIG. 1.
  • the communication device 37 shown in FIG. 2 has a function corresponding to the transmitter 14 shown in FIG.
  • the target surface O after the blasting process includes a region where deposits have been removed by the blasting material and a region where the blasting material has not been sprayed. Therefore, by ensuring the size of the aperture 32 to a certain extent and detecting the reflected light L2 on the target surface O within that area, it becomes possible to evaluate the blasting state on the target surface O without bias. .
  • the size of the casing 30 is such that a user can carry it with one hand (for example, the length in the axial direction of the cylinder is about 10 cm to 40 cm, and the diameter is about 3 cm to 15 cm), and The weight (for example, about several hundred grams to one kilogram). Therefore, it is easy for the user to handle, and the work related to evaluating the blasting state of the target surface O can be easily performed.
  • the terminal device 20 is configured to include a receiving section 21, an evaluation section 22, a display section 23, and a storage section 24 as a functional configuration.
  • the receiving unit 21 has a function of receiving the detection result transmitted from the detection device 10, that is, information regarding the intensity of reflected light.
  • the evaluation unit 22 has a function of calculating a blast rate based on the detection results received by the reception unit 21.
  • the evaluation unit 22 compares the information held in the storage unit 24 and the information related to the intensity of the reflected light received by the reception unit 21 to calculate the blast rate of the target surface.
  • the evaluation section 22 has a function as an analysis section that estimates the blast rate on the target surface.
  • the display unit 23 has a function of displaying the evaluation result by the evaluation unit 22, that is, information regarding the blast rate of the target surface.
  • the terminal device 20 has a monitor 25 as shown in FIG. 2(a).
  • the display unit 23 has a function of controlling the terminal device 20 so as to display the evaluation results by the evaluation unit 22 on the monitor 25.
  • the storage unit 24 has a function of storing information received by the reception unit 21.
  • the storage unit 24 also holds information (correspondence information) regarding the relationship between the intensity of the reflected light detected by the detection unit 12 and the blast rate or the classification set based on the blast rate. This information can be used for evaluation by the evaluation section 22.
  • the display unit 23 may be controlled to simultaneously display information stored in the storage unit 24, such as blast rate results calculated in the past, when displaying the evaluation results in the evaluation unit 22.
  • the evaluation unit 22 may make a determination regarding the classification etc. set based on the blast rate.
  • Classifications set based on blasting rates include, for example, blasting grades defined by JIS, ISO, SSPC, and the like. Blast grades are set by various organizations, and these can be said to be grades that can be correlated with blast rates. Therefore, instead of calculating the blast rate, the blast grade of the target surface may be specified.
  • the evaluation unit 22 may perform a process of specifying the blast grade from the obtained blast rate.
  • the storage unit 24 may be configured to hold information (grade information) regarding the correspondence between the blast rate and the blast grade.
  • the detection device 10 and the terminal device 20 are realized by any combination of hardware and/or software. Each function may be realized by one physically and/or logically coupled device, or two or more physically and/or logically separated devices may be directly and/or indirectly connected. However, it may be realized by a plurality of these devices.
  • FIG. 3 is a diagram showing an example of the hardware configuration of the detection device 10 and the terminal device 20.
  • the detection device 10 and the terminal device 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. good.
  • Each function in the detection device 10 and the terminal device 20 is achieved by loading predetermined software (programs) onto hardware such as the processor 1001 and memory 1002, so that the processor 1001 performs calculations, and the communication by the communication device 1004 and the memory This is achieved by controlling reading and/or writing of data in the storage 1002 and the storage 1003.
  • the processor 1001 operates an operating system to control the entire computer.
  • the processor 1001 may be configured with a central processing unit (CPU).
  • CPU central processing unit
  • various processes of the detection device 10 and the terminal device 20 may be implemented by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, and data from the storage 1003 and/or the communication device 1004 to the memory 1002, and executes various processes in accordance with these.
  • the functions of the detection device 10 and the terminal device 20 to execute various processes may be realized by a control program stored in the memory 1002 and operated by the processor 1001, or may be similarly realized by other functional blocks. Note that various processes in the detection device 10 and the terminal device 20 may be executed by one processor 1001, or may be executed by two or more processors 1001 simultaneously or sequentially.
  • the memory 1002 is a computer-readable recording medium, and includes at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be done.
  • ROM Read Only Memory
  • EPROM Erasable Programmable ROM
  • EEPROM Electrically Erasable Programmable ROM
  • RAM Random Access Memory
  • the storage 1003 is a computer-readable recording medium.
  • the storage 1003 may be configured with at least one of, for example, a hard disk drive, a flexible disk, a magneto-optical disk, an optical disk such as a CD-ROM (Compact Disc ROM), or the like.
  • the storage medium mentioned above may be, for example, a database including memory 1002 and/or storage 1003, a server, or other suitable medium.
  • the communication device 1004 is a device for communicating between computers via a wired and/or wireless network. For example, some of the various processes of the detection device 10 and the terminal device 20 may be implemented by the communication device 1004.
  • the input device 1005 is an input device (eg, a keyboard, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (eg, a display, etc.) that performs output to the outside.
  • Each of the above devices is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured as a single bus or may be configured as different buses between devices.
  • blasting condition evaluation method Next, a blasting condition evaluation method in the blasting condition evaluation system 1 will be described with reference to FIG. 4.
  • step S01 data for a calibration curve is collected for specifying the correspondence between the intensity of reflected light from a target surface with respect to a predetermined light and the blast rate on the target surface.
  • step S01 surfaces of different steel plates whose blast rates are known are set as target surfaces to be used for collecting calibration curve data.
  • the irradiation unit 11 irradiates the target surface with the measurement light L1
  • the detection unit 12 detects the reflected light L2 due to the irradiation.
  • the detection device 10 obtains information regarding the intensity of the reflected light L2 from the target surface.
  • Information regarding the intensity of the reflected light L2 detected by the detection device 10 is sent to the terminal device 20 by the transmitter 14 and received by the receiver 21 of the terminal device 20.
  • the intensity information acquisition unit 13 of the detection device 10 may perform a process of extracting information to be transmitted to the terminal device 20 from the result detected by the detection unit 12.
  • step S02 the evaluation unit 22 of the detection device 10 calculates the blast rate and the intensity of the reflected light L2 from the information regarding the intensity of the reflected light L2 reflected from the target surfaces having different blast rates, obtained in step S01. Create a calibration curve that defines the relationship between As described above, when the blast rate changes, the intensity of the reflected light L2 changes. Therefore, a calibration curve defining the correspondence is created from the data collected in step S01.
  • a known method can be adopted as a method for creating a calibration curve. For example, when the detection unit 12 of the detection device 10 has obtained the spectroscopic spectrum of the reflected light L2, the evaluation unit 22 of the terminal device 20 determines the reflection of a specific wavelength as part of the information included in the spectra.
  • a calibration curve may be created from the relationship between the intensity of the light L2 and the blasting rate. Further, if the precision of the calibration curve is higher by using the sum or average of the intensities of the reflected light L2 in a specific wavelength range, such statistical processing may be added.
  • step S02 Information related to the calibration curve created in step S02 is held in the storage unit 24 of the terminal device 20.
  • the calibration curve can be used when measuring a target surface with an unknown blast rate, that is, when performing steps S03 and subsequent steps.
  • steps S01 and S02 may be performed in advance. That is, the process related to creating the calibration curve may be performed in advance. In that case, by retaining information related to the created calibration curve in the storage unit 24 in advance, the subsequent steps from step S03 onwards can be executed.
  • step S03 the detection device 10 irradiates the measurement light L1 from the irradiation unit 11 onto the target surface O, which is a target for calculating the blast rate, and the detection unit 12 detects reflected light L2 due to the irradiation.
  • the detection device 10 irradiates the measurement light L1 from the irradiation unit 11 onto the target surface O, which is a target for calculating the blast rate, and the detection unit 12 detects reflected light L2 due to the irradiation.
  • the detection device 10 irradiates the measurement light L1 from the irradiation unit 11 onto the target surface O, which is a target for calculating the blast rate
  • the detection unit 12 detects reflected light L2 due to the irradiation.
  • information regarding the intensity of the reflected light L2 from the target surface O is obtained in the detection device 10.
  • the conditions for irradiating the measurement light L1 onto the target surface O are the same as those at the time of collecting data used to create a
  • step S04 the intensity information acquisition unit 13 of the detection device 10 extracts information to be transmitted to the terminal device 20 from the result detected by the detection unit 12. Then, the transmitting unit 14 of the detection device 10 transmits information regarding the intensity of the reflected light L2 prepared by the intensity information acquiring unit 13 to the terminal device 20.
  • step S05 the evaluation unit 22 of the terminal device 20 estimates the blast rate or blast grade using the information held in the storage unit 24.
  • the evaluation unit 22 uses this information to The blast rate of the target surface O is estimated from the intensity of the light L2.
  • the storage unit 24 holds information regarding the relationship between the intensity of the reflected light L2 and the blast grade
  • the blast grade of the target surface O may be estimated using this information. Note that by retaining information (grade information) regarding the correspondence between the blast rate and the blast grade in the storage unit 24, the blast grade may be estimated after the blast rate is estimated in the evaluation unit 22.
  • step S04 and step S05 may be repeatedly executed.
  • step S06 the terminal device 20 causes the monitor 25 or the like to display information regarding the blast rate and/or blast grade, which are the estimation results. This allows the user to check the results of the analysis by the detection device 10 and the terminal device 20 on the terminal device 20.
  • the above-described blasting state evaluation method includes at least the acquisition step of acquiring information indicating the intensity of light of a specific wavelength included in the reflected light L2 from the target surface O irradiated with the measurement light L1, and the acquisition step. and an estimating step of estimating the blast rate on the target surface O based on the above information (intensity of light of a specific wavelength) obtained in .
  • This blast state evaluation method may further include a display step of displaying the estimation result in the estimation step on a screen such as the monitor 25.
  • a blasting state evaluation program for evaluating the blasting state may be stored in a recording medium such as the storage 1003 of the terminal device 20.
  • This blasting state evaluation program includes at least an acquisition step of acquiring information indicating the intensity of light of a specific wavelength included in the reflected light L2 from the target surface O irradiated with the measurement light L1, and information obtained in the above acquisition step.
  • the computer is caused to perform an estimating step of estimating the blast rate on the target surface O based on the above information (intensity of light of a specific wavelength).
  • the blast state evaluation program may further cause the computer to execute a display step of displaying the estimation result in the estimation step on a screen such as the monitor 25.
  • the blast condition evaluation program may be provided after being permanently recorded on a non-temporary recording medium such as a CD-ROM, DVD-ROM, or semiconductor memory. Alternatively, the blast condition evaluation program may be provided via a communication network as a data signal superimposed on a carrier wave.
  • test pieces size 100 mm x 100 mm
  • blasting rates 0%, 30%, 70%, and 90% were prepared.
  • the central portion measuring 50 mm x 50 mm was divided into nine regions.
  • fluorescent X-rays generated when each region was irradiated with X-rays were measured, and the amount of Zn and Si deposited on the steel plate was analyzed based on the results.
  • FIG. 5 the amounts of Zn and Si deposited in each of the nine regions are plotted. Note that Zn and Si are components contained in a shop primer used for rust prevention treatment, and can be removed by blasting.
  • FIGS. 6(a) and 6(b) show the results of confirming how the spectroscopic spectrum changes when the reflected light from the light source is measured in the same manner as in this embodiment. Similar to the measurement shown in FIG. 5, test pieces (size 100 mm x 100 mm) with blasting rates of 0%, 30%, 70%, and 90% were prepared. Among these, the central portion measuring 50 mm x 50 mm was divided into nine regions, and each region was irradiated with measurement light to obtain a spectroscopic spectrum of the reflected light. A device having a similar shape to the detection device 10 was used for the measurement.
  • FIG. 6(a) shows the results when an LED that emits light with a wavelength of 590 nm is used as the light source 31a
  • FIG. 6(b) shows the results when an LED that emits light with a wavelength of 620 nm is used as the light source 31a. Showing results. Furthermore, under all conditions, the exposure time (irradiation time) was set to 35 ms.
  • FIGS. 7(a) and 7(b) are graphs in which the blast rate is plotted on the horizontal axis for the peak intensity of reflected light in the spectra shown in FIGS. 6(a) and 6(b), respectively.
  • the "peak intensity" is not the peak intensity at one wavelength, but the maximum intensity of the reflected light in a predetermined wavelength band.
  • the wavelength band is set to 615 nm to 660 nm, and the maximum value of the intensity of reflected light included in this wavelength range is defined as the peak intensity.
  • the method of setting the peak intensity described in this embodiment is an example, and can be changed as appropriate in consideration of the shape of the spectrum of the reflected light L2, the fluctuation range of the peak wavelength, and the like. In this way, when the intensity of light at the wavelength of the peak position is used to estimate the blast rate, it can also be said that the intensity of light at a specific wavelength is used to estimate the blast rate.
  • the blasting rate may be estimated using the spectroscopic spectrum of the reflected light, but a configuration in which only the peak intensity of the reflected light is acquired and the blasting rate is estimated using only the peak intensity It was confirmed that it is also possible to do this. This result suggests that it is possible to reduce the measurement data used when estimating the blast rate.
  • the intensity of the spectroscopic spectrum of the reflected light can also vary depending on the intensity of the light irradiating the target surface. Therefore, when creating a calibration curve, it is necessary to take into account the types of deposits that may remain on the target surface, which can vary depending on the type of steel plate being processed or the details of the treatment performed in the previous stage. Therefore, it may be necessary to adjust the type of wavelength of the measurement light and the intensity of the light.
  • FIGS. 8(a) and 8(b) are the adhesion amount of Zn and Si obtained by fluorescent X-ray analysis in each region of the test piece used in FIG. 7(a) and 7(b), the horizontal axis shows the peak intensity of the reflected light, and the vertical axis shows the amount of deposited Zn and Si. There is. From the results shown in FIG. 8, it was confirmed that the results shown in FIGS. 7(a) and 7(b) have a strong correlation with the adhesion amount of Zn and Si contained in the shop primer.
  • the wavelength of the measurement light is not limited to the above two types of light.
  • test pieces with blasting rates of 0%, 30%, 70%, and 90% are prepared, and images of the target surface (size: approximately 7 mm x approximately 5.3 mm) are shown (Fig. 9(a), FIG. 9(d), FIG. 10(a), FIG. 10(d)) and the results of RGB analysis for each pixel included in this image (FIG. 9(b), FIG. 9(e) ), Fig. 10(b), Fig. 10(e)) and the results of HSV analysis (Fig. 9(c), Fig. 9(f), Fig. 10(c), Fig. 10(f)). It shows. 9(a) to 9(c) show the results when the blasting rate is 0%, and FIGS.
  • FIGS. 10(a) to 10(c) show the results when the blasting rate is 70%
  • FIGS. 10(d) to 10(f) show the results when the blasting rate is 90%.
  • RGB analysis is an evaluation of the distribution of numerical values of each component when the color of each pixel is expressed by three components of red, blue, and green x 256 gradations.
  • HSV analysis is an evaluation of the distribution of numerical values of each component when the color of each pixel is expressed using three types of hue, saturation, and brightness x 256 gradations.
  • the saturation (S) is larger in the blast grade. It was confirmed that the mode shifted in the direction of increasing as the frequency increased, and the frequency of occurrence of the mode (Frequency (%)) tended to decrease. From this result, it is expected that the blast rate can be estimated by using these parameters. Note that since the mode related to brightness (V) also changes gradually, this information may also be utilized for estimating the blast rate.
  • the surface of the target surface is imaged with visible light irradiated, an image (for example, a color image) is obtained based on the distribution of reflected light, and the blast rate is estimated from the information contained in the image. It is also possible. In either case, information on the relationship between the parameters used to estimate the blast rate and the blast rate (correspondence information) is obtained in advance, and based on this information, the blast rate is estimated for the target surface whose blast rate is unknown. processing is performed. This point is similar to the case where the above-mentioned detection device 10 is used.
  • the measurement light L1 is irradiated onto the target surface O by the irradiation unit 11 of the detection device 10, and the detection unit 12 acquires the reflected light L2 therefrom. Further, information regarding the acquired reflected light L2 is sent to the terminal device 20.
  • the evaluation unit 22 functioning as an analysis unit estimates the blast rate on the target surface based on the intensity of light of a specific wavelength included in the reflected light, and the result is displayed on the display unit 23. be done. With such a configuration, it is possible to evaluate the blasting state more appropriately than in the case of visual evaluation, and it is also possible to appropriately confirm the evaluation result on the terminal device.
  • the blasting rate of the target surface O was generally confirmed visually by an inspector. In this case, there is room for improvement in terms of accuracy since there may be variations in evaluations by inspectors. On the other hand, with the above configuration, the blasting state can be evaluated without intervening in the judgment of the inspector, so the blasting rate can be estimated more appropriately.
  • the detection device 10 is capable of transmitting the detection result to the terminal device 20, and the terminal device 20 estimates the blast rate from the information related to the intensity of the reflected light, which is the detection result.
  • the results can be displayed on the screen. In this case, it becomes possible to check the analysis results on a terminal device 20 that is separate from the detection device 10, making it easier to check the results and handle the analysis results.
  • the blasting rate is estimated based on information regarding the correspondence between the intensity of light of a specific wavelength and the blasting rate, which is held in the storage unit 24 of the terminal device 20.
  • the blasting rate is estimated based on information regarding this correspondence relationship, it becomes possible to estimate the blast rate more accurately.
  • the blasting grade is specified based on the blasting rate using grade information, which is information related to the relationship between the blasting rate and the blasting grade, which is held in the storage unit 24 of the terminal device 20.
  • grade information which is information related to the relationship between the blasting rate and the blasting grade, which is held in the storage unit 24 of the terminal device 20.
  • This device also makes it possible to specify the blasting grade that can be used when evaluating the blasting condition.
  • the blast rate may be estimated by acquiring an image of the target surface O instead of the detection device 10 acquiring the intensity of the reflected light L2. That is, the blasting state evaluation device (as the detection device 10 and the terminal device 20) includes a detection unit that acquires an image of the target surface, and estimates the blast rate on the target surface from the image acquired by the detection unit. and an analysis section.
  • an image of the target surface is acquired by the detection unit. Then, the blast rate on the target surface is estimated based on the image of the target surface acquired by the detection unit. With such a configuration, it becomes possible to evaluate the blasting state more appropriately than when evaluating visually.
  • the detection device 10 realizes the function as a blast state evaluation device.
  • a configuration may be adopted in which the detection device 10 is entirely equipped with the function as a blast state evaluation device.
  • a configuration may be adopted in which the detection device 10 is provided with a function as an analysis section, and the detection device 10 transmits the analysis result, that is, information related to the blast rate estimation result to the terminal device 20.
  • the terminal device 20 may be configured to only display the results.
  • a configuration may be adopted in which a device different from the detection device 10 and the terminal device 20 performs processing corresponding to the analysis section. Further, instead of using two devices, the detection device 10 and the terminal device 20, a configuration may be adopted in which all the functions as the blast state evaluation device are provided in one device.

Abstract

構造物の対象面におけるブラスト処理後のブラスト率を評価するブラスト状態評価装置であって、対象面に対して測定光を照射する照射部11と、測定光を照射した前記対象面からの反射光を検出する検出部12と、検出部12において検出された反射光に含まれる特定の波長の光の強度に基づいて、対象面におけるブラスト率を推定する分析部としての評価部22と、を有する。

Description

ブラスト状態評価装置、ブラスト状態評価システム、ブラスト状態評価方法、及び、ブラスト状態評価プログラム
 本開示は、ブラスト状態評価装置、ブラスト状態評価システム、ブラスト状態評価方法、及び、ブラスト状態評価プログラムに関する。
 従来から、構造物等の造船工程等においてブラスト処理が行われている(例えば、特許文献1参照)。
特開2016-16493号公報
 しかしながら、ブラスト処理後の状態の評価は目視によって行われることが一般的であり、評価者によって評価がばらつくことがあった。
 本開示は、上記の問題を鑑みてなされたものであり、ブラスト状態を適切に評価することが可能な技術を提供する。
 本開示の一形態に係るブラスト状態評価装置は、構造物の対象面におけるブラスト処理後のブラスト率を評価するブラスト状態評価装置であって、前記対象面に対して測定光を照射する照射部と、前記測定光を照射した前記対象面からの反射光を検出する検出部と、前記検出部において検出された前記反射光に含まれる特定の波長の光の強度に基づいて、前記対象面におけるブラスト率を推定する分析部と、を有する。
 上記のブラスト状態評価装置によれば、照射部によって対象面に対して測定光が照射され、それに対する反射光が検出部によって取得される。そして、検出部において検出された反射光に含まれる特定の波長の光の強度に基づいて、対象面におけるブラスト率が推定される。このような構成とすることで、目視によって評価する場合と比較してブラスト状態を適切に評価することが可能となる。
 ここで、前記特定の波長の光の強度と前記ブラスト率との対応関係に係る情報である対応情報を保持する記憶部をさらに有し、前記分析部は、前記対応情報に基づいて、前記対象面におけるブラスト率を推定する態様であってもよい。
 上記の構成とすることによって、特定の波長の光の強度とブラスト率との対応関係に係る情報に基づいてブラスト率が推定される。この対応関係に係る情報を用いてブラスト率を推定することによって、ブラスト率をより精度よく推定することが可能となる。
 前記記憶部は、前記ブラスト率とブラストグレードとの関係に係る情報であるグレード情報をさらに保持し、前記分析部は、前記グレード情報に基づいて、推定された前記ブラスト率に対応するブラストグレードを特定する態様であってもよい。
 上記の構成とすることによって、ブラスト率に基づいてブラストグレードを特定することが可能となり、ブラスト状態を評価する際に使用され得るブラストグレードについても本装置によって特定することが可能となる。
 本開示の別の形態に係るブラスト状態評価装置は、構造物の対象面におけるブラスト処理後のブラスト率を評価するブラスト状態評価装置であって、前記対象面を撮像した画像を取得する検出部と、前記検出部において取得された前記画像から、前記対象面におけるブラスト率を推定する分析部と、を有する。
 上記のブラスト状態評価装置によれば、対象面を撮像した画像が検出部によって取得される。そして、検出部において取得された対象面を撮像した画像に基づいて、対象面におけるブラスト率が推定される。このような構成とすることで、目視によって評価する場合と比較してブラスト状態を適切に評価することが可能となる。
 本開示の一形態に係るブラスト状態評価システムは、検出装置と、端末装置とを含んで構成される、構造物の対象面におけるブラスト処理後のブラスト率を評価するブラスト状態評価システムであって、前記検出装置は、前記対象面に対して測定光を照射する照射部と、前記測定光を照射した前記対象面からの反射光を検出する検出部と、前記検出部による検出結果を前記端末装置に対して送信する送信部と、を有し、前記端末装置は、前記検出装置から送信される、前記反射光に含まれる特定の波長の光の強度に基づいて、前記対象面におけるブラスト率を推定する分析部と、前記分析部による前記推定の結果を画面表示する表示部と、を有する。
 上記のブラスト状態評価システムによれば、検出装置の照射部によって対象面に対して測定光が照射され、それに対する反射光が検出部によって取得されて、端末装置へ送られる。一方、端末装置では、分析部において、反射光に含まれる特定の波長の光の強度に基づいて、対象面におけるブラスト率が推定され、その結果が表示部において表示される。このような構成とすることで、目視によって評価する場合と比較してブラスト状態を適切に評価することが可能となるとともに、端末装置において評価結果を適切に確認することができる。
 本開示の一形態に係るブラスト状態評価方法は、構造物の対象面におけるブラスト処理後のブラスト率を評価するためのブラスト状態評価方法であって、測定光が照射された前記対象面からの反射光に含まれる特定の波長の光の強度を示す情報を取得する取得ステップと、前記取得ステップで得られた前記情報に基づいて、前記対象面におけるブラスト率を推定する推定ステップと、を含む。
 上記ブラスト状態評価方法によれば、測定光が照射された対象面からの反射光に含まれる特定の波長の光の強度を示す情報が取得され、その情報に基づいて、対象面におけるブラスト率が推定される。その結果、目視によって評価する場合と比較してブラスト状態を適切に評価することが可能となる。
 本開示の一形態に係るブラスト状態評価プログラムは、構造物の対象面におけるブラスト処理後のブラスト率を評価するためのブラスト状態評価プログラムであって、測定光が照射された前記対象面からの反射光に含まれる特定の波長の光の強度を示す情報を取得する取得ステップと、前記取得ステップで得られた前記情報に基づいて、前記対象面におけるブラスト率を推定する推定ステップと、をコンピュータに実行させる。
 上記ブラスト状態評価プログラムによれば、測定光が照射された対象面からの反射光に含まれる特定の波長の光の強度を示す情報が取得され、その情報に基づいて、対象面におけるブラスト率が推定される。その結果、目視によって評価する場合と比較してブラスト状態を適切に評価することが可能となる。
 本開示によれば、ブラスト状態を適切に評価することが可能な技術が提供される。
図1は、ブラスト状態評価システムの機能構成例を説明する図である。 図2(a)、図2(b)は、ブラスト状態評価システムの装置構成例を説明する図である。 図3は、検出装置及び端末装置のハードウェア構成例を示す図である。 図4は、ブラスト状態評価方法を説明するフロー図である。 図5は、ブラスト率とZn,Siの付着率との関係を示す図である。 図6(a)、図6(b)は、ブラスト率に対する反射光の分光スペクトルの変化を示す図である。 図7(a)、図7(b)は、ブラスト率に対する反射光のピーク強度の変化を示す図である。 図8(a)、図8(b)は、Zn,Siの付着率と反射光のピーク強度との関係を示す図である。 図9(a)~図9(f)は、対象面を撮像した画像の分析例を示す図である。 図10(a)~図10(f)は、対象面を撮像した画像の分析例を示す図である。
 以下、添付図面を参照して、本開示を実施するための形態を詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。
[ブラスト状態評価システム]
 図1は、一実施形態に係るブラスト状態評価システムの機能構成を説明する図である。また、図2は、ブラスト状態評価システム1の装置構成を説明する図である。本実施形態に係るブラスト状態評価システム1は、例えば、船舶等の構造物の表面のブラスト処理後の状態を評価するシステムである。評価対象となるブラスト処理が行われる対象面を有する構造物は、船舶、又は橋梁等であってもよく、特に限定されないが、以下の実施形態では構造物が船舶である場合について説明する。
 ブラスト処理とは、船舶の壁面等の対象面の塗装作業を行う前に実施される処理であり、前段の鋼板の切断工程、及び組み立て工程等を経て対象物の表面(対象面)に付着したヒューム、又は汚れ等を除去する処理である。ブラスト処理には、乾式ブラスト、湿式ブラスト、及びバキューム式ブラスト等の種々のものが知られているが、いずれの方法においても、小さな粒子(ブラスト材)を対象面に対して噴きつけて衝突させることによって、対象面の加工が行われる。
 ブラスト処理がどの程度行われたかは、通常、検査員による目視確認によって行われる。例えば、表面の状態に応じて、対象物の状態がブラストグレードを用いて評価される。また、ブラストグレードが所望の状態となっていない場合には、再び対象面のブラスト処理が行われる場合がある。このように通常は検査員の目視によりブラスト状態が評価されるが検査員によって評価がばらつくことがある。また、対象の構造物が船舶である場合、ブラスト処理を行う対象面の面積も大きく、目視確認及びその結果の記録も煩雑となる場合がある。これに対して、以下の実施形態で説明するブラスト状態評価システム1は、検査員毎の評価のばらつきを防ぎながら、且つ、ブラスト状態の評価をより簡便に行うことを実現する。
 図1に示すように、ブラスト状態評価システム1は、検出装置10と端末装置20とを含んで構成される。検出装置10は、対象面に対して測定光を照射し、対象面からの反射光を検出する機能を有する装置である。すなわち、検出装置10はブラスト状態評価装置としての機能の一部を有する。また、端末装置20は、検出装置10における検出結果を取得して対象面のブラスト状態を評価し、その結果を表示可能な装置である。すなわち、端末装置20はブラスト状態評価装置としての機能の一部を有する。端末装置20は、例えば、スマートフォン、又はタブレット等のユーザが持ち運び可能な装置である。なお、本実施形態で説明する「反射光」には、対象面からの拡散反射光も含まれ得る。
 検出装置10は、機能構成として照射部11、検出部12、強度情報取得部13、送信部14及び記憶部15を含んで構成される。
 照射部11は、ブラスト状態を評価する対象面に対して所定の波長の測定光を照射する機能を有する。検出部12は、照射部11から対象面に対して光を照射することによる対象面からの反射光の強度に係る情報を検出する機能を有する。また、強度情報取得部13は、検出部12で検出した反射光の強度に係る情報から、ブラスト率の評価に使用する情報を抽出する。一例としては、強度情報取得部13は、予め指定された波長帯域の光強度に係る情報のみを抽出する、あるいは、特定の波長帯域における光強度のうちそのピーク値となる数値を抽出する。なお、検出部12で検出した情報をそのまま全て端末装置20へ送る場合には、強度情報取得部13では特定の情報を抽出する処理は行わないこととしてもよい。
 なお、本実施形態における「ブラスト率」とは、ブラスト処理を行った結果表面がどの程度ブラスト加工されているかを示す数値であり、対象面の表面積に対するブラスト加工された面積の割合によって求められる。ブラスト処理を行うことで、対象面に付着していたヒューム等が除去される本来の対象面の材質(例えば、鋼板等)が露出することになるため、ブラスト処理によって対象面に露出している物質が変化し得る。そのため、本実施形態のブラスト状態評価システム1では、対象面に光を照射しその反射光を検出することで、対象面の性状(表面に露出する物質の割合)の変化を検出し、その傾向からブラスト率を推定する。そのため、詳細は後述するが、対象面に対して照射する光は、対象面に露出する物質の特性等に応じて選択され得る。
 送信部14は、強度情報取得部13における分析結果、すなわち、反射光の強度に係る情報のうち、ブラスト率の評価に使用する情報を端末装置20に対して送信する機能を有する。
 また、記憶部15は、強度情報取得部13における情報の抽出に使用される情報を保持する機能を有する。具体的には、記憶部15では、端末装置20に対して送信すべき情報を特定する情報(例えば、波長帯域を指定する情報、送信すべき反射光強度の情報を選定する方法に関する情報等)を保持しておく。なお、記憶部15では、検出部12において検出された反射光の強度を保持していてもよい。
 検出装置10の具体的な構成の一例に関して、図2を参照しながら説明する。
 検出装置10は、円筒状の筐体30を含んで構成される。筐体30は一端の中央部に光源部31が配置される開口32を含んで構成される。開口32は光源部31からの光を対象面に向けて出射するための光路と、反射光を入射するための光路と、を兼ねている。開口32が形成される筐体30の一端には、開口32の周囲を囲うように円環状に形成された遮光ガスケット33が設けられる。なお、開口32の直径は、例えば、7mm程度とされ得る。開口32の直径は、例えば、5mm以上とされ得る。この場合、開口32の面積は、78.5mm以上とすることができる。開口32の面積を70mm以上とした場合、ブラスト率の算出精度を高くすることができる。
 光源部31(光源ユニット)は、遮光ガスケット33よりも筐体30の中央側(一端から離れる側)において、開口32を囲むような筒状に形成される。光源部31には、開口32内へ光を出射する光源31aが複数設けられる。光源31aとしては、例えば、所定の波長範囲の光を出射するLED光源が用いられる。一例として、例えば、550nm~650nm付近の光を出射するLED光源を光源31aとして使用することができる。ただし、光源31aの種類は、ブラスト状態の評価に使用する光の波長及びその強度等に基づいて適宜変更されてもよい。また、光源31aは、単一波長の光を出射する光源に限定されず、複数の波長の光を出射する光源であってもよい。
 光源31aは、図2(b)に示すように、開口32の内面に設けられていてもよい。一例として、複数の光源31aは互いに等間隔となるように円環状に配置されていてもよい。光源31aは、開口32の端部へ向けて光を出射する。これにより、図2(a)に示すように開口32を対象面Oに対して押し当てたときに、開口32内を進む光源31aからの光L1が測定光として対象面Oへ照射される。なお、光源31aからの光の出射方向は1方向に限定されず、例えば、開口32の端部を全体的に(面的に)照射するように光源31aからの光が出射されてもよい。また、開口32の内面(壁面)は、例えば、黒色として光を吸収可能な構成としてもよい。この場合、ノイズ光が受光光学系に入射することが防がれる。一方、開口32の内面(壁面)を、例えば、鏡面状に加工することによって、開口32内での光の損失を抑制する構成としてもよい。この部分の構成は、光源31aからの光の強度、ノイズ光の割合等によって適宜変更される。
 対象面Oに向けて出射された光L1が対象面Oに照射されることで、対象面Oにおいて一部の光が反射する。反射光L2の一部は、開口32内を伝播し、分光素子34へ入射する。分光素子34では、入射した反射光L2が波長毎に分光されて出射される。分光素子34で分光された光は、受光素子35にて受光される。受光素子35は、例えば、波長毎に分光した光を個別に受光することが可能となるように複数配置される。受光素子35が光を受光すると、光の強度に応じた電流が流れる。この電流は検出器36で検出される。さらに、検出器36では、記憶部15に記憶された情報に基づいて、検出器36で検出された光の強度のうち、端末装置20へ送信すべき情報を抽出する。さらに、通信器37は、検出器36において検出された結果を端末装置20に対して送信する。
 このように、図2に示す検出装置10における光源部31は、図1に示す照射部11に対応する機能を有する。また、図2に示す分光素子34、受光素子35及び検出器36は、図1に示す検出部12に対応する機能を有する。また、図2に示す検出器36は、図1に示す強度情報取得部13に対応する機能を有する。そして、図2に示す通信器37は、図1に示す送信部14に対応する機能を有する。
 上記の検出装置10では、ブラスト処理後の対象面Oは、ブラスト材によって付着物が除去された領域と、ブラスト材が噴きつけられていない領域とが分散して存在することが想定される。そのため、開口32の大きさをある程度確保しておき、その領域内の対象面Oにおける反射光L2を検出する構成とすることで、対象面Oにおけるブラスト状態を偏りなく評価することが可能となる。
 また、上記の検出装置10は、筐体30の大きさは使用者が片手で持ち運べる程度の大きさ(例えば、円筒の軸線方向の長さが10cm~40cm程度、直径が3cm~15cm程度)及び重さ(例えば、数100g~1kg程度)とされる。そのため、使用者による取扱性が高く、対象面Oのブラスト状態の評価に係る作業を簡単に行うことができる。
 図1に戻り、端末装置20は、機能構成として受信部21、評価部22、表示部23及び記憶部24を含んで構成される。
 受信部21は、検出装置10から送信される検出結果、すなわち、反射光の強度に係る情報を受信する機能を有する。
 評価部22は、受信部21において受信された検出結果に基づいて、ブラスト率を算出する機能を有する。評価部22は、記憶部24において保持される情報と、受信部21で受信された反射光の強度に係る情報と、を比較して、対象面のブラスト率を算出する。このように、評価部22は、対象面におけるブラスト率を推定する分析部としての機能を有する。
 表示部23は、評価部22による評価結果、すなわち、対象面のブラスト率に係る情報を表示させる機能を有する。端末装置20は、図2(a)に示されるようにモニタ25を有する。表示部23は、評価部22による評価結果をモニタ25に表示させるように、端末装置20を制御する機能を有する。
 記憶部24は、受信部21において受信された情報を記憶する機能を有する。また、記憶部24では、検出部12で検出された反射光の強度と、ブラスト率またはブラスト率に基づいて設定される分類等と、の関係に係る情報(対応情報)を保持しておく。この情報は、評価部22における評価に使用され得る。
 表示部23は、評価部22における評価結果を表示する際に、記憶部24において記憶される情報、例えば、過去に算出されたブラスト率の結果等を同時に表示するように制御してもよい。
 なお、評価部22では、ブラスト率を算出することに代えてブラスト率に基づいて設定される分類等に係る判定を行ってもよい。ブラスト率に基づいて設定される分類としては、例えば、JIS、ISO、SSPC等で定められるブラストグレードが挙げられる。ブラストグレードは各種団体によって設定されているが、これらはブラスト率との対応付けを行うことが可能なグレードであるといえる。したがって、ブラスト率を算出することに代えて、対象面のブラストグレードを特定することを行ってもよい。さらに、評価部22は、ブラスト率を推定した後に、得られたブラスト率からブラストグレードを特定する処理を行ってもよい。この場合、記憶部24は、ブラスト率とブラストグレードとの対応関係に係る情報(グレード情報)を保持する構成としてもよい。ただし、以下の実施形態では、基本的にはブラスト率のみを算出する場合について説明する。
[ハードウェア構成]
 検出装置10及び端末装置20は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。各機能は、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に接続し、これら複数の装置により実現されてもよい。
 図3は、検出装置10及び端末装置20のハードウェア構成の一例を示す図である。検出装置10及び端末装置20は、物理的には、それぞれ、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、及びバス1007などを含むコンピュータ装置として構成されてもよい。
 検出装置10及び端末装置20における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信や、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、検出装置10及び端末装置20の各種処理等は、プロセッサ1001で実現されてもよい。また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュールやデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。検出装置10及び端末装置20の各種処理を実行する機能は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。なお、検出装置10及び端末装置20における各種処理は、1つのプロセッサ1001で実行されてもよいが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体である。ストレージ1003は、例えば、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク、CD-ROM(Compact Disc ROM)などの光ディスク等の少なくとも1つで構成されてもよい。上述の記憶媒体は、例えば、メモリ1002及び/又はストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのデバイスである。例えば、検出装置10及び端末装置20の各種処理の一部は、通信装置1004で実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ等)である。
 上記の各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
[ブラスト状態評価方法]
 次に、図4を参照しながら、ブラスト状態評価システム1におけるブラスト状態評価方法について説明する。
 まず、検出装置10は、ステップS01を実行する。ステップS01では、所定の光に対する対象面からの反射光の強度と当該対象面におけるブラスト率との対応関係を特定するための検量線用データを収集する。この時点では、ブラスト率が既知である互いに異なる鋼板の表面を、検量線用データの収集に利用する対象面として設定する。
 その上で、検出装置10では、照射部11から対象面に対して測定光L1を照射し、照射による反射光L2を検出部12において検出する。この結果、検出装置10において対象面からの反射光L2の強度に係る情報が得られる。なお、ブラスト率が既知の複数の対象面への測定光L1の照射条件は、当然ながら同一とされる。検出装置10において検出された反射光L2の強度に係る情報は、送信部14によって端末装置20へ送られ、端末装置20の受信部21において受信される。このとき、検出装置10の強度情報取得部13が、検出部12において検出された結果から、端末装置20へ送信する情報を抽出する処理を行ってもよい。
 次に、端末装置20は、ステップS02を実行する。ステップS02では、検出装置10の評価部22において、ステップS01で得られた、互いに異なるブラスト率を有する対象面からそれぞれ反射した反射光L2の強度に係る情報から、ブラスト率と反射光L2の強度の関係を規定した検量線を作成する。上述したように、ブラスト率が変わると反射光L2の強度が変化する。そこで、その対応関係を規定した検量線を、ステップS01で収集したデータから作成する。
 検量線の作成の手法としては既知の手法を採用することができる。例えば、検出装置10の検出部12において、反射光L2の分光スペクトルが得られている場合には、端末装置20の評価部22において分光スペクトルに含まれる情報の一部として、特定の波長の反射光L2の強度とブラスト率との関係から検量線を作成してもよい。また、特定の波長範囲の反射光L2の強度の合計または平均等を用いたほうが検量線の精度が高くなる場合には、そのような統計処理を加えてもよい。
 ステップS02で作成された検量線に係る情報は、端末装置20の記憶部24に保持される。これにより、ブラスト率が未知の対象面の測定を行う際、すなわち、ステップS03以降を実行する際に、検量線が使用可能となる。なお、上記のステップS01,S02は、事前に行われていてもよい。すなわち、検量線の作成に係る処理は事前に行われていてもよい。その場合、作成した検量線に係る情報を事前に記憶部24に保持しておくことで、後段のステップS03以降の手順を実行することができる。
 次に、検出装置10は、ステップS03を実行する。ステップS03では、検出装置10は、照射部11からブラスト率の算出対象となる対象面Oに対して測定光L1を照射し、照射による反射光L2を検出部12において検出する。この結果、検出装置10において対象面Oからの反射光L2の強度に係る情報が得られる。なお、対象面Oへの測定光L1の照射条件は、検量線の作成に使用されるデータの収集時(S01)と同一とされる。
 次に、検出装置10は、ステップS04を実行する。ステップS04では、検出装置10の強度情報取得部13が、検出部12において検出された結果から、端末装置20へ送信する情報を抽出する。その上で、検出装置10の送信部14が、強度情報取得部13によって準備された反射光L2の強度に係る情報を端末装置20に対して送信する。
 次に、端末装置20は、ステップS05を実行する。ステップS05では、端末装置20の評価部22が、記憶部24に保持される情報を利用して、ブラスト率またはブラストグレードを推定する。本実施形態で説明しているように検量線に係る情報として反射光L2の強度とブラスト率との関係に係る情報を保持している場合には、評価部22はこの情報を利用して反射光L2の強度から対象面Oのブラスト率を推定する。また、記憶部24において反射光L2の強度とブラストグレードとの関係に係る情報を保持している場合には、この情報を利用して対象面Oのブラストグレードを推定してもよい。なお、記憶部24においてブラスト率とブラストグレードとの対応関係に係る情報(グレード情報)を保持しておくことによって、評価部22においてブラスト率を推定した後にブラストグレードを推定する構成としてもよい。
 なお、ブラスト率を推定する対象となる対象面Oが複数ある場合には、ステップS04とステップS05とが繰り返し実行されてもよい。
 次に、端末装置20は、ステップS06を実行する。ステップS06では、端末装置20が、推定結果であるブラスト率及び/またはブラストグレードに係る情報をモニタ25等に表示させる。これによって、ユーザは、検出装置10及び端末装置20よる分析の結果を端末装置20において確認することが可能となる。
 以上に説明したブラスト状態評価方法は、少なくとも、測定光L1が照射された対象面Oからの反射光L2に含まれる特定の波長の光の強度を示す情報を取得する取得ステップと、上記取得ステップで得られた上記情報(特定の波長の光の強度)に基づいて、対象面Oにおけるブラスト率を推定する推定ステップと、を含む。このブラスト状態評価方法は、上記推定ステップでの推定の結果をモニタ25等の画面に表示させる表示ステップを更に含んでもよい。
 端末装置20のストレージ1003等の記録媒体には、ブラスト状態を評価するためのブラスト状態評価プログラムが記憶されてもよい。このブラスト状態評価プログラムは、少なくとも、測定光L1が照射された対象面Oからの反射光L2に含まれる特定の波長の光の強度を示す情報を取得する取得ステップと、上記取得ステップで得られた上記情報(特定の波長の光の強度)に基づいて、対象面Oにおけるブラスト率を推定する推定ステップと、をコンピュータに実行させる。
 上記ブラスト状態評価プログラムは、推定ステップでの推定の結果をモニタ25等の画面に表示させる表示ステップを更にコンピュータに実行させてもよい。ブラスト状態評価プログラムは、例えば、CD-ROM、DVD-ROM、半導体メモリなどの非一時的な記録媒体に固定的に記録された上で提供されてもよい。あるいは、ブラスト状態評価プログラムは、搬送波に重畳されたデータ信号として通信ネットワークを介して提供されてもよい。
[ブラスト率の推定に使用する反射光の強度情報に係る評価]
 図5~図10を参照しながら、ブラスト率の推定に使用することが可能な反射光の強度情報に係る検討を行った結果を示す。上述のように、ブラスト処理の対象となる鋼板、及びブラスト処理の前に行った処理の内容等によって、ブラスト率の推定に適した反射光の条件等は変更され得る。ここでは、鋼板に対して防錆処理としてのショッププライマー塗装工程を行った後に、鋼板に対してアセチレン等によるガス切断工程を行い、溶接によって組み立てる組み立て工程を実施したことを想定する。このような条件の鋼板に関してブラスト率を評価する場合に適切な条件に係る検討を行った。
 前提として、ブラスト処理によって除去される成分が各ブラスト率でどの程度残存しているかを蛍光X線分析で評価した結果を図5に示す。具体的には、ブラスト率が0%、30%、70%、90%の試験片(大きさ100mm×100mm)を準備した。このうち、中央部の大きさ50mm×50mmの部分を9つの領域に分割した。その上で、各領域に対してX線を照射したときに発生する蛍光X線を計測し、この結果からZn及びSiの鋼板への付着量を分析した。図5では、9つの領域のそれぞれにおけるZn,Siの付着量をプロットしている。なお、Zn及びSiは、防錆処理に使用されるショッププライマーに含まれる成分であり、ブラスト処理によって除去され得る。
 図5に示されるように、ブラスト率(図5ではブラストグレードと記載している。単位:%)が上昇するにつれて、各領域におけるZn,Siの付着量(単位:mg/cm)が低下していることが確認された。一方で、70%と90%とでは蛍光X線分析の結果では区別をすることが困難であることが確認された。この結果から、ブラスト率が高くなると、蛍光X線分析を用いたとしても区別ができないことが分かった。
 次に、本実施形態と同様に光源からの光に対する反射光を計測した場合に、分光スペクトルがどのように変化するかを確認した結果を図6(a)、図6(b)に示す。図5に示した測定と同様に、ブラスト率が0%、30%、70%、90%の試験片(大きさ100mm×100mm)を準備した。このうち、中央部の大きさ50mm×50mmの部分を9つの領域に分割し、各領域に対して測定光を照射することで反射光の分光スペクトルを取得した。測定に使用したのは、検出装置10と同様の形状の装置である。図6(a)は、光源31aとして波長590nmの光を出射するLEDを使用した際の結果を示し、図6(b)は、光源31aとして波長620nmの光を出射するLEDを使用した際の結果を示している。また、いずれの条件においても、露光時間(照射時間)を35msに設定した。
 図6(a)に示す結果では、ブラスト率が0%、30%、70%、及び90%の順に、分光スペクトルが徐々に大きくなることが確認された。特に、分光スペクトルのピーク波長(589nm付近)では、その違いが大きくなることが確認された。このことから、反射光の強度の違いを利用して、ブラスト率を識別することが確認できた。
 一方、図6(b)に示す結果では、ブラスト率が0%、30%、70%、及び90%の順に、分光スペクトルが徐々に大きくなることが確認されたが、ブラスト率70%,90%では分光スペクトルのピーク波長(630nm)近傍において光の強度が飽和してしまったため、両者を明確に区別することが困難であった。
 図7(a)、図7(b)は、それぞれ、図6(a)、図6(b)に示す分光スペクトルにおける反射光のピーク強度について、ブラスト率を横軸としてプロットしたグラフである。ここでは、一の波長におけるピーク強度ではなく、所定の波長帯域における反射光の強度のうち最大値となるものを「ピーク強度」としている。一例として、本実施形態では、波長帯域を615nm~660nmとし、この波長範囲に含まれる反射光の強度の最大値をピーク強度とした。なお、本実施形態で説明したピーク強度の設定の仕方は一例であり、反射光L2の分光スペクトルの形状やピーク波長の変動範囲等を考慮して適宜変更することができる。このようにピーク位置の波長の光の強度をブラスト率の推定に使用する場合も、特定の波長の光の強度をブラスト率の推定に使用する、といえる。
 図7(a)、図7(b)の両方において、ブラスト率が上昇すると反射光のピーク強度が大きくなることが確認された。ただし、図6(b)に示した条件では、ブラスト率70%,90%では光の強度が飽和してしまったため、図7(b)においてもその結果が反映されている。
 これらの結果から、波長590nmまたは波長620nmの光を出射するLEDを光源31aとして用いた場合に、反射光の強度からブラスト率を識別することが可能であること、また、波長によって反射光の強度が変動するため、光量を調整することが必要であることが確認された。また、上記の結果によれば、反射光の分光スペクトルを用いてブラスト率の推定を行ってよいが、そのうち反射光のピーク強度のみを取得し、ピーク強度のみを用いてブラスト率を推定する構成とすることも可能であることが確認された。この結果は、ブラスト率を推定する際に使用する計測データを減らすことが可能であることを示唆している。
 このように、反射光の分光スペクトルの強度は、対象面に対して照射する光の強度によっても変動し得る。そのため、検量線を作成する際には、対象となる鋼板の種類、または、前段階で行われている処理の内容に応じて変化し得る、対象面に残存し得る付着物の種類等に応じて、測定光の波長の種類及び光の強度を調整することが求められ得る。
 図8(a)、図8(b)に示す結果は、図5で使用した、試験片の各領域における、蛍光X線分析によって得られたZn,Siの付着量と、当該領域における図7(a)、図7(b)で示した反射光のピーク強度との相関を示した図であり、横軸に反射光のピーク強度を示し、縦軸にZn,Siの付着量を示している。図8に示す結果から、図7(a)、図7(b)に示す結果は、ショッププライマーに含まれるZn,Siの付着量との相関が強い結果であることが確認された。
 上記の結果から、波長590nmまたは波長620nmのLED光源からの光を対象面に照射し、その反射光のピーク強度を用いてブラスト率を推定することが有効であることが確認された。なお、上記では2種類の波長の光を光源からの光とする場合について説明した。ただし、これらの波長とは異なる波長の光を光源からの光として用いた場合でも、反射光L2から、ブラスト処理で除去される成分、または、ブラスト処理を行う対象面の成分等の割合に係る情報が得られると推定される。したがって、測定光の波長は上記の2種類の光に限定されない。
 次に、図9及び図10を参照しながら、その他の条件でもブラスト率の推定が可能であるか確認した結果を示す。
 図9及び図10では、ブラスト率が0%、30%、70%、90%の試験片を準備し、対象面(大きさ:約7mm×約5.3mm)を撮像した場合の画像(図9(a)、図9(d)、図10(a)、図10(d))と、この画像に含まれる各画素についてRGB分析を行った結果(図9(b)、図9(e)、図10(b)、図10(e))と、HSV分析を行った結果(図9(c)、図9(f)、図10(c)、図10(f))と、を示している。図9(a)~(c)は、ブラスト率0%の場合の結果であり、図9(d)~(f)は、ブラスト率30%の場合の結果である。また、図10(a)~(c)は、ブラスト率70%の場合の結果であり、図10(d)~(f)は、ブラスト率90%の場合の結果である。なお、RGB分析とは、各画素の色を赤・青・緑の3成分×256階調で表現した場合の各成分の数値の分布を評価したものである。また、HSV分析とは、各画素の色を色相・彩度・明度の3種類×256階調で表現した場合の各成分の数値の分布を評価したものである。
 図9(a)、図9(d)、図10(a)、図10(d)に示される画像同士を比較すると、ブラスト率が大きくなると表面の白黒の領域の混合の程度がより細かくなることが確認された。このことから、可視光を照射した状態で対象面の表面を撮像し、反射光の分布に基づいて得られる画像を取得し、当該画像における白い領域と黒い領域との分布に係る数値を算出することで、ブラスト率を推定することができることが示唆される。
 また、図9(b)、図9(e)、図10(b)、図10(e)に示されるRGB分析の結果を比較すると、ブラスト率が高くなることによって、RGBのいずれにおいても、最頻値(曲線のピーク位置)が、RGB値が小さくなる方向にシフトしている。つまり、RGBのいずれにおいても、最頻値とブラスト率とが関係することが示唆されている。したがって、最頻値を利用することでブラスト率を推定することも期待される。
 さらに、図9(c)、図9(f)、図10(c)、図10(f)に示されるHSV分析の結果を比較すると、例えば、彩度(S)は、ブラストグレードが大きくなるにつれて最頻値が大きくなる方向にシフトし、且つ、最頻値の発生率(Frequencty(%))が小さくなる傾向が確認された。この結果から、これらのパラメータを用いることでブラスト率を推定することも期待される。なお、明度(V)に係る最頻値も徐々に変化しているため、この情報もブラスト率の推定に活用できる可能性がある。
 このように、可視光を照射した状態で対象面の表面を撮像し、反射光の分布に基づいて得られる画像(例えばカラー画像)を取得し、当該画像に含まれる情報からブラスト率を推定することも考えられる。いずれの場合でも、事前にブラスト率の推定に使用するパラメータとブラスト率との関係に係る情報(対応情報)を取得し、この情報に基づいて、ブラスト率が未知の対象面についてブラスト率を推定する処理が行われる。この点は、上述の検出装置10を用いた場合と同様である。
[作用]
 上記のブラスト状態評価システム1によれば、検出装置10の照射部11によって対象面Oに対して測定光L1が照射され、それに対する反射光L2が検出部12によって取得される。また、取得された反射光L2に係る情報が端末装置20へ送られる。一方、端末装置20では、分析部として機能する評価部22において、反射光に含まれる特定の波長の光の強度に基づいて、対象面におけるブラスト率が推定され、その結果が表示部23において表示される。このような構成とすることで、目視によって評価する場合と比較してブラスト状態を適切に評価することが可能となるとともに、端末装置において評価結果を適切に確認することができる。
 上述したように、従来は対象面Oのブラスト率は検査員によって目視で確認されることが一般的であった。この場合、検査員による評価のバラつきが発生し得るため、精度の面で改良の余地があった。これに対して、上記の構成とすることで、検査員の判定を介入することなくブラスト状態を評価することができるため、ブラスト率をより適切に推定することができる。
 また、上述したように検出装置10は検出結果を端末装置20に対して送信可能とされていて、端末装置20は、検出結果である反射光の強度に係る情報から、ブラスト率に係る推定を行い、その結果を画面表示可能とされている。この場合、分析結果を検出装置10とは別の端末装置20で確認することが可能となるため、結果の確認や分析結果の取り扱いも容易になる。
 また、上記のブラスト状態評価システム1では、端末装置20の記憶部24において保持される、特定の波長の光の強度とブラスト率との対応関係に係る情報に基づいてブラスト率が推定される。この対応関係に係る情報を用いてブラスト率を推定することによって、ブラスト率をより精度よく推定することが可能となる。
 さらに、上記のブラスト状態評価システム1では、端末装置20の記憶部24において保持されるブラスト率とブラストグレードとの関係に係る情報であるグレード情報を用いて、ブラスト率に基づいてブラストグレードを特定することが可能となり、ブラスト状態を評価する際に使用され得るブラストグレードについても本装置によって特定することが可能となる。
 さらに、上記の評価の検討から、検出装置10が反射光L2の強度を取得することに代えて、対象面Oを撮像した画像を取得することによって、ブラスト率の推定を行うこととしてもよい。すなわち、ブラスト状態評価装置(としての検出装置10及び端末装置20)は、対象面を撮像した画像を取得する検出部と、検出部において取得された画像から、前記対象面におけるブラスト率を推定する分析部と、を有していてもよい。
 上記の構成によれば、対象面を撮像した画像が検出部によって取得される。そして、検出部において取得された対象面を撮像した画像に基づいて、対象面におけるブラスト率が推定される。このような構成とすることで、目視によって評価する場合と比較してブラスト状態を適切に評価することが可能となる。
[変形例]
 以上、実施形態について説明したが、本発明は必ずしも例示した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で適宜変更可能である。
 例えば、上記のブラスト状態評価システム1では、検出装置10及び端末装置20の両方によって、ブラスト状態評価装置としての機能が実現されている場合について説明した。しかしながら、ブラスト状態評価装置としての機能を、例えば、検出装置10に全て搭載させる構成としてもよい。例えば、分析部としての機能を検出装置10に設けて、検出装置10からは分析結果、すなわち、ブラスト率の推定結果に係る情報を端末装置20に対して送信する構成としてもよい。このとき、端末装置20ではその結果の表示のみを実行する構成としてもよい。
 さらに、検出装置10及び端末装置20とは異なる装置において、分析部に対応する処理を行う構成としてもよい。また、検出装置10及び端末装置20の2つの装置ではなく、1つの装置にブラスト状態評価装置としての機能を全て設ける構成としてもよい。
 1…ブラスト状態評価システム、10…検出装置(ブラスト状態評価装置)、11…照射部、12…検出部、13…強度情報取得部、14…送信部、15…記憶部、20…端末装置、21…受信部、22…評価部(分析部)、23…表示部、24…記憶部、25…モニタ、30…筐体、31…光源部、31a…光源、32…開口、33…遮光ガスケット、34…分光素子、35…受光素子、36…検出器、37…通信器。

Claims (7)

  1.  構造物の対象面におけるブラスト処理後のブラスト率を評価するブラスト状態評価装置であって、
     前記対象面に対して測定光を照射する照射部と、
     前記測定光を照射した前記対象面からの反射光を検出する検出部と、
     前記検出部において検出された前記反射光に含まれる特定の波長の光の強度に基づいて、前記対象面におけるブラスト率を推定する分析部と、を有する、ブラスト状態評価装置。
  2.  前記特定の波長の光の強度と前記ブラスト率との対応関係に係る情報である対応情報を保持する記憶部をさらに有し、
     前記分析部は、前記対応情報に基づいて、前記対象面におけるブラスト率を推定する、請求項1に記載のブラスト状態評価装置。
  3.  前記記憶部は、前記ブラスト率とブラストグレードとの関係に係る情報であるグレード情報をさらに保持し、
     前記分析部は、前記グレード情報に基づいて、推定された前記ブラスト率に対応するブラストグレードを特定する、請求項2に記載のブラスト状態評価装置。
  4.  構造物の対象面におけるブラスト処理後のブラスト率を評価するブラスト状態評価装置であって、
     前記対象面を撮像した画像を取得する検出部と、
     前記検出部において取得された前記画像から、前記対象面におけるブラスト率を推定する分析部と、を有する、ブラスト状態評価装置。
  5.  検出装置と、端末装置とを含んで構成される、構造物の対象面におけるブラスト処理後のブラスト率を評価するブラスト状態評価システムであって、
     前記検出装置は、
      前記対象面に対して測定光を照射する照射部と、
      前記測定光を照射した前記対象面からの反射光を検出する検出部と、
      前記検出部による検出結果を前記端末装置に対して送信する送信部と、
     を有し、
     前記端末装置は、
      前記検出装置から送信される、前記反射光に含まれる特定の波長の光の強度に基づいて、前記対象面におけるブラスト率を推定する分析部と、
      前記分析部による前記推定の結果を画面表示する表示部と、
     を有する、ブラスト状態評価システム。
  6.  構造物の対象面におけるブラスト処理後のブラスト率を評価するブラスト状態評価方法であって、
     測定光が照射された前記対象面からの反射光に含まれる特定の波長の光の強度を示す情報を取得する取得ステップと、
     前記取得ステップで得られた前記情報に基づいて、前記対象面におけるブラスト率を推定する推定ステップと、
     を含む、ブラスト状態評価方法。
  7.  構造物の対象面におけるブラスト処理後のブラスト率を評価するためのブラスト状態評価プログラムであって、
     測定光が照射された前記対象面からの反射光に含まれる特定の波長の光の強度を示す情報を取得する取得ステップと、
     前記取得ステップで得られた前記情報に基づいて、前記対象面におけるブラスト率を推定する推定ステップと、
     をコンピュータに実行させる、ブラスト状態評価プログラム。
PCT/JP2023/015801 2022-04-25 2023-04-20 ブラスト状態評価装置、ブラスト状態評価システム、ブラスト状態評価方法、及び、ブラスト状態評価プログラム WO2023210503A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-071573 2022-04-25
JP2022071573 2022-04-25

Publications (1)

Publication Number Publication Date
WO2023210503A1 true WO2023210503A1 (ja) 2023-11-02

Family

ID=88518716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015801 WO2023210503A1 (ja) 2022-04-25 2023-04-20 ブラスト状態評価装置、ブラスト状態評価システム、ブラスト状態評価方法、及び、ブラスト状態評価プログラム

Country Status (1)

Country Link
WO (1) WO2023210503A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128037A (ja) * 1993-11-04 1995-05-19 Toyota Motor Corp 面粗さ評価方法、面粗さ評価装置、ブラスト処理方法及びブラスト処理制御装置
JP2001205327A (ja) * 2000-01-28 2001-07-31 Sumitomo Metal Ind Ltd 表面性状判別装置
JP2002170123A (ja) * 2000-11-30 2002-06-14 Bridgestone Corp 面積測定方法
US20200058119A1 (en) * 2018-08-17 2020-02-20 The Boeing Company Apparatus and methods for shot peening evaluation
WO2022202198A1 (ja) * 2021-03-25 2022-09-29 ジャパンマリンユナイテッド株式会社 金属表面の粗面処理の評価方法および評価装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128037A (ja) * 1993-11-04 1995-05-19 Toyota Motor Corp 面粗さ評価方法、面粗さ評価装置、ブラスト処理方法及びブラスト処理制御装置
JP2001205327A (ja) * 2000-01-28 2001-07-31 Sumitomo Metal Ind Ltd 表面性状判別装置
JP2002170123A (ja) * 2000-11-30 2002-06-14 Bridgestone Corp 面積測定方法
US20200058119A1 (en) * 2018-08-17 2020-02-20 The Boeing Company Apparatus and methods for shot peening evaluation
WO2022202198A1 (ja) * 2021-03-25 2022-09-29 ジャパンマリンユナイテッド株式会社 金属表面の粗面処理の評価方法および評価装置

Similar Documents

Publication Publication Date Title
EP1416258B1 (en) Detecting natural gas pipeline failures
EP3311144B1 (en) Colour measurement of gemstones
US20100006760A1 (en) Ultraviolet lidar for detection of biological warfare agents
US20110261355A1 (en) Portable device and method for spectroscopic analysis
JP5808519B2 (ja) 2つの測定ユニットを有する表面測定装置
US9689788B2 (en) Method for measuring fine particulates and fine particulate sensor for determining the particle size of fine particulates
US8891086B2 (en) Optical scanning systems and methods for measuring a sealed container with a layer for reducing diffusive scattering
US7135683B2 (en) Infrared imaging for evaluation of corrosion test coupons
Bueno et al. Raman microspectroscopic mapping as a tool for detection of gunshot residue on adhesive tape
US5497407A (en) Contaminating-element analyzing method
CN109313143B (zh) 检查装置及生产管理方法
JP6896906B2 (ja) 分光画像データ処理装置および2次元分光装置
EP3531112B1 (en) Raman spectroscopy detection device and sample safety detection method for use in raman spectroscopy detection
US11475555B2 (en) Mobile ingredient analysis system, and method for true-to-sample measurement and user guidance by means of same
WO2023210503A1 (ja) ブラスト状態評価装置、ブラスト状態評価システム、ブラスト状態評価方法、及び、ブラスト状態評価プログラム
JP6408354B2 (ja) 検査装置及び生産管理方法
JP2015040818A (ja) 穀物分類方法及び穀物分類装置
JPH05232042A (ja) 表面検査方法およびその装置
JP2016090476A (ja) 異物検出方法
US11719627B2 (en) Calibration curve setting method used for drug analysis
JP2022527633A (ja) 産業生産ラインで品質管理を操作するための装置、対応する方法及びコンピュータプログラム製品
US10823676B2 (en) Non-contact type security inspection system and method
US7502108B2 (en) Assembly and method for identifying coatings lying on the surface of components and for determining their characteristics
JP2017133953A (ja) 錠剤検査装置
Glover et al. Testing the image quality of cabinet x-ray systems for security screening: The revised ASTM F792 standard

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796245

Country of ref document: EP

Kind code of ref document: A1