WO2023210181A1 - Interference exposure apparatus and device manufacturing method - Google Patents

Interference exposure apparatus and device manufacturing method Download PDF

Info

Publication number
WO2023210181A1
WO2023210181A1 PCT/JP2023/009215 JP2023009215W WO2023210181A1 WO 2023210181 A1 WO2023210181 A1 WO 2023210181A1 JP 2023009215 W JP2023009215 W JP 2023009215W WO 2023210181 A1 WO2023210181 A1 WO 2023210181A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference
exposure
irradiation area
image sensor
exposure apparatus
Prior art date
Application number
PCT/JP2023/009215
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 那脇
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2023210181A1 publication Critical patent/WO2023210181A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present disclosure relates to an interference exposure apparatus.
  • Optical devices such as AR (augmented reality) glasses and smart windows are being developed. These optical devices include a diffraction grating, a polarizing plate, and the like having periodic patterning in the submicron region.
  • Two-beam interference exposure is known as a method for realizing patterning with a submicron period.
  • two-beam interference exposure also simply referred to as interference exposure
  • laser light is split into two light beams (two beams).
  • the two light beams are then adjusted to a beam diameter suitable for exposure and collimated, and then made to intersect on the surface of the object (workpiece) to be patterned.
  • Interference fringes for exposure are formed in the area where the two light waves intersect, and a workpiece whose surface is coated with a photosensitive agent is patterned by these interference fringes.
  • the size of the processing area is large in the direction in which the interference fringes extend (vertical direction), it is necessary to scan the workpiece along the longitudinal direction. For this purpose, it is necessary to accurately detect the direction in which the interference fringes extend and to make the feed angle of the stage that supports the work perfectly match the direction of the interference fringes. If this direction is misaligned, the contrast of the interference fringes will decrease, making it impossible to transfer them to the photoresist.
  • the stage that supports the workpiece needs to be moved in the horizontal direction (transverse feed). Specifically, it is necessary that an integral multiple of the period of the interference fringes and the width of the lateral movement of the stage match.
  • Patent Document 1 discloses a configuration in which a beam splitter and two photodiodes are arranged under a workpiece to detect the phase of interference fringes. During exposure, two photodiodes measure the variation in the phase of the interference fringes, and depending on the phase, a phase shifter (Pockels cell) installed on the arm through which one of the light waves propagates is controlled to stabilize the phase. do.
  • a phase shifter Pockels cell
  • Patent Document 2 discloses an interference fringe detector provided directly below the workpiece.
  • the interference fringe detector detects the phase, period, and intensity of the interference fringe.
  • the period information output from the interference fringe detector is used to control the right beam angle with an actuator, thereby controlling the period of the interference fringe.
  • Patent Document 2 does not disclose a specific configuration of the interference fringe detector, for example, if a two-dimensional image sensor is used, the resolution in that case is limited by the pixel size of the image sensor.
  • the pixel pitch of currently commercially available CMOS sensors is approximately 2.5 ⁇ m at the smallest, and the period of interference fringes can only be measured with an accuracy of 5 ⁇ m ⁇ 2.5 ⁇ m. Therefore, it cannot be used to measure fine interference fringes used in submicron patterning.
  • the present disclosure has been made in such a situation, and one exemplary objective of a certain aspect thereof is to be able to monitor the state of interference fringes in two-beam interference exposure, or to be able to adjust the state of interference fringes to a target state.
  • the purpose of the present invention is to provide an interference exposure device.
  • a certain aspect of the present disclosure relates to an interference exposure apparatus that patterns a workpiece using interference fringes for exposure.
  • the interference exposure apparatus includes an exposure splitting element that branches coherent light emitted from a laser light source into a first beam and a second beam, and an optical system that crosses the first beam and the second beam and irradiates the irradiation area.
  • a combining element that can be placed in the irradiation area and combines the first beam and the second beam, and in the calibration process, measuring the intensity distribution of the combined beam combined by the combining element. and an image sensor.
  • the manufacturing method includes the steps of branching coherent light emitted from a laser into a first beam and a second beam, and irradiating the irradiation area with the first and second beams intersecting. a step of multiplexing the first beam and the second beam by the multiplexing element, a step of measuring the intensity distribution of the combined beam multiplexed by the multiplexing element with an image sensor in the calibration process; In the step, the incident angles of the first beam and the second beam with respect to the irradiation area are adjusted based on the intensity distribution measured by the image sensor, and in the exposure process after the calibration process is completed, the workpiece is moved across the irradiation area. moving in a predetermined direction.
  • FIG. 1 is a diagram showing an interference exposure apparatus according to Embodiment 1.
  • FIG. It is a figure explaining the interference fringe for exposure formed in the irradiation area. It is a figure which shows the interference fringe for exposure.
  • FIG. 3 is a diagram showing an interference exposure apparatus in a calibration process. It is a figure which shows the measurement beam splitter in a calibration process. It is a figure explaining the multiplexing of the beam by a measurement beam splitter.
  • FIGS. 7A to 7D are diagrams illustrating alignment of the optical system based on interference fringes for monitoring.
  • FIG. 3 is a diagram illustrating measurement of pitch p x by shifting a measurement beam splitter.
  • FIG. 3 is a diagram showing an interference exposure apparatus according to a second embodiment.
  • FIG. 3 is a diagram showing a diffraction grating in a calibration process.
  • FIG. 3 is a diagram illustrating beam combination using a diffraction grating. It is a figure showing an interference exposure device concerning
  • An interference exposure apparatus patterns a workpiece using interference fringes for exposure.
  • the interference exposure apparatus includes an exposure splitting element that branches coherent light emitted from a laser light source into a first beam and a second beam, and an optical system that crosses the first beam and the second beam and irradiates the irradiation area.
  • a combining element that can be placed in the irradiation area and combines the first beam and the second beam, and in the calibration process, measuring the intensity distribution of the combined beam combined by the combining element. and an image sensor.
  • a combining element combines the first and second beams in the same direction, and the interference fringes for monitoring formed by the combined beam are measured. Measure. Since minute changes between the first beam and the second beam are amplified and appear in the monitoring interference fringes, the state of the exposure interference fringes can be indirectly and accurately monitored.
  • the interference exposure apparatus may further include a stage capable of moving the workpiece so as to pass through the irradiation area during the exposure process.
  • the multiplexing element may be provided on the stage at a position adjacent to the area where the work is placed.
  • the monitoring interference fringes are formed with the orientation of the multiplexing element as a reference. Therefore, by fixing the multiplexing element on the stage, accurate monitoring becomes possible.
  • the multiplexing element may be a measurement beam splitter that can be placed in the irradiation area with its split plane perpendicular to the surface of the workpiece in the calibration process.
  • a measurement beam splitter beam combiner
  • the multiplexing element may be a diffraction grating that can be placed in the irradiation area in the calibration process with its diffraction surface parallel to the surface of the workpiece.
  • the diffraction grating may have a period twice the pitch of the interference fringes for exposure.
  • One embodiment may further include an arithmetic processing device that adjusts the angle of incidence of the first beam onto the irradiation area and the angle of incidence of the second beam onto the irradiation area based on the intensity distribution measured by the image sensor. .
  • the processing unit adjusts the angle of incidence of the first beam onto the irradiation area and the angle of incidence of the second beam onto the irradiation area so that the intensity distribution measured by the image sensor becomes uniform. Good too.
  • the interference exposure apparatus includes a processing unit that adjusts the angle of incidence of the first beam onto the irradiation area and the angle of incidence of the second beam onto the irradiation area based on the intensity distribution measured by the image sensor. Further provision may be made.
  • the arithmetic processing unit calculates that the pitch in the y direction of the monitoring interference fringes measured by the image sensor becomes large. As such, the deviation angle ⁇ l of the first beam around the z-axis and the deviation angle ⁇ r of the second beam around the z-axis may be changed.
  • the arithmetic processing device may change the incident angle ⁇ l of the first beam and the incident angle ⁇ r of the second beam so that the pitch of the monitoring interference fringes in the x direction increases.
  • the processing unit calculates the pitch of the exposure interference fringes based on the change in intensity of the combined beam measured by the image sensor when the measurement beam splitter is moved in the x direction. It's okay.
  • the optical system may further include a first mirror that can control the irradiation direction of the first beam, and a second mirror that can control the irradiation direction of the second beam.
  • the interference exposure apparatus further includes a processing unit that calculates at least one of an incident angle deviation of the first beam and an incident angle deviation of the second beam based on the intensity distribution measured by the image sensor. You may prepare.
  • each member described in the drawings may be scaled up or down as appropriate for ease of understanding. Furthermore, the dimensions of multiple members do not necessarily represent their size relationship, and even if a member A is drawn thicker than another member B on a drawing, member A may be drawn thicker than member B. It may be thinner than that.
  • FIG. 1 is a diagram showing an interference exposure apparatus 100A according to the first embodiment.
  • the interference exposure apparatus 100A patterns the workpiece W using interference fringes for exposure.
  • the workpiece W is a substrate whose surface is coated with a photosensitive agent.
  • the material of the workpiece W is not particularly limited, but examples thereof include a glass substrate, a resin substrate, a semiconductor substrate, and the like.
  • the interference exposure apparatus 100A includes a laser light source 110, an optical system 120, and an interference fringe monitoring device 200A.
  • the laser light source 110 emits a coherent light beam BM 0 having a wavelength ⁇ .
  • a beam can be read as a light wave or a light flux.
  • the optical system 120 includes an exposure splitting element 122 that branches the beam BM 0 emitted from the laser light source 110 into a first beam BM 1 and a second beam BM 2 .
  • the beam splitter BS1 is used. In order to distinguish it from a measurement beam splitter which will be described later, the beam splitter BS1 of the exposure demultiplexing element 122 is also referred to as an exposure beam splitter.
  • the optical system 120 makes the branched first beam BM 1 and second beam BM 2 intersect and irradiates the irradiation area 132 on the stage 130 .
  • the first beam BM 1 heading from the optical system 120 toward the irradiation area 132 is called a left beam BM l
  • the second beam BM 2 heading from the optical system 120 toward the irradiation area 132 is called a right beam BM r .
  • the optical system 120 includes mirrors M1, M2, M3, and magnifying optical systems 124, 126 in addition to the exposure beam splitter BS1.
  • Mirror M3 turns beam BM0 from laser light source 110 and guides it to exposure beam splitter BS1 at an appropriate angle.
  • Beam BM 0 is split into two beams BM 1 and BM 2 by exposure beam splitter BS1.
  • the exposure beam splitter BS1 may be an intensity beam splitter or a polarizing beam splitter.
  • the first mirror M1 returns the first beam BM1 .
  • the second mirror M2 returns the second beam BM2 .
  • the first mirror M1 and the second mirror M2 can be rotated and translated by a control means such as an actuator.
  • the magnifying optical system 124 magnifies the beam BM1 reflected by the first mirror M1.
  • the expanded beam is guided to the irradiation area 132 as a left beam BM1 .
  • the magnifying optical system 126 magnifies the beam BM 2 reflected by the second mirror M2.
  • the expanded beam is guided to the irradiation area 132 as a right beam BMr .
  • exposure interference fringes are formed by the left beam BMl and the right beam BMr .
  • the workpiece W is supported on the stage 130.
  • the stage 130 moves the workpiece W in the vertical direction in which exposure interference fringes extend within the irradiation area 132 (scan exposure). This makes it possible to form a long pattern.
  • the stage 130 transports the workpiece W in the lateral direction of the interference fringes for exposure so that the fringes overlap each other in the previous scan exposure and the next scan exposure (overlapping). combination). This makes it possible to form a wide pattern.
  • the combination of vertical scan exposure and horizontal overlapping is called overlapping scan exposure.
  • a coordinate system will be introduced to facilitate understanding.
  • the surface of the workpiece W on which exposure interference fringes are to be formed is referred to as a reference surface S0 .
  • the introduced coordinate system has a z-axis in a direction perpendicular to the reference plane S0 .
  • the plane parallel to the reference plane S0 becomes the xy plane.
  • the left beam BM l and the right beam BM r are guided parallel to the xz plane.
  • the horizontal direction of the page is the x-axis
  • the height direction of the page is the z-axis
  • the depth direction of the page is the y-axis.
  • the origin of this coordinate system moves as appropriate.
  • FIG. 2 is a diagram illustrating exposure interference fringes formed in the irradiation area 132.
  • D l and D r indicate the ideal waveguiding directions of the left beam BM l and the right beam BM r , respectively.
  • D l and D r are straight lines in the xz plane, and ⁇ represents the ideal angle of incidence of the left beam BM l and the right beam BM R.
  • ⁇ l represents the deviation of the actual angle of incidence of the left beam BM l from the ideal angle of incidence ⁇ l .
  • ⁇ r represents the deviation of the actual angle of incidence of the right beam BM r from the ideal angle of incidence ⁇ r . That is, the actual angle of incidence ⁇ l of the left beam BM l is ⁇ + ⁇ l , and the actual angle of incidence ⁇ r of the right beam BM r is ⁇ + ⁇ r .
  • the left beam BM l and the right beam BM r are guided parallel to the xz plane in the ideal state.
  • the ideal incident directions D l and D r do not include the z component.
  • ⁇ l is the deviation angle of the left beam BM 1 around the z-axis
  • ⁇ r is the deviation angle of the right beam BM r around the z-axis.
  • the wave number vector k l of the light wave of the left beam BM l and the wave number vector k r of the light wave of the right beam BM r are expressed by equations (1) and (2).
  • k lz represents the z component of k l
  • k rz represents the z component of k r .
  • FIG. 3 is a diagram showing interference fringes for exposure.
  • the pitch of the interference fringes for exposure in the x direction is expressed by equation (7).
  • the angular deviation ⁇ of the exposure interference fringes from the y-axis is expressed by equation (8).
  • the process of accurately detecting the pitch p x and the angular deviation ⁇ or setting them as target states prior to the exposure process is referred to as a calibration process.
  • an interference fringe monitoring device 200A is provided to measure the state of exposure interference fringes.
  • the interference fringe monitoring device 200A does not directly measure the intensity distribution of the exposure interference fringe, but measures the intensity distribution of an interference fringe different from the exposure interference fringe (hereinafter referred to as monitor interference fringe).
  • the interference fringe monitoring device 200A includes a multiplexing element 210, an image sensor 220, and an arithmetic processing unit 230.
  • the combining element 210 can be placed in the irradiation area 132 during the calibration process, and combines the left beam BM l and the right beam BM r so as to guide them in the same direction.
  • FIG. 4 is a diagram showing the interference exposure apparatus 100A in the calibration process.
  • the multiplexing element 210 is a measurement beam splitter (beam combiner) 212.
  • the measurement beam splitter 212 may be an intensity beam splitter or a polarization beam splitter.
  • the measurement beam splitter 212 may be of a flat plate type or a prism type.
  • the measurement beam splitter 212 is provided on the stage 130 at a position adjacent to the area on which the workpiece W is placed. In the calibration process, the measurement beam splitter 212 is positioned in the irradiation area 132 by the stage 130. At this time, the split surface 214 of the measurement beam splitter 212 is arranged perpendicular to the reference plane S0 corresponding to the surface of the workpiece W.
  • FIG. 5 is a diagram showing the measurement beam splitter 212 in the calibration process.
  • the split surface 214 of the measurement beam splitter 212 is arranged parallel to the yz plane.
  • the left beam BM l is transmitted through the measurement beam splitter 212 , and the right beam BM r is reflected at the split surface 214 of the measurement beam splitter 212 .
  • the beam (combined beam) BM l+r multiplexed by the measurement beam splitter 212 is guided to the image sensor 220 .
  • the image sensor 220 measures the intensity distribution of the combined beam BM l+r . This intensity distribution is the monitoring interference fringe.
  • a CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge Coupled Device
  • FIG. 6 is a diagram illustrating beam combination by the measurement beam splitter 212.
  • k l '' represents the wave number vector of the left beam BM l transmitted through the measurement beam splitter 212
  • k r '' represents the wave number vector of the right beam BM r reflected by the measurement beam splitter 212.
  • the wave number vectors k l '' and k r '' are expressed by equations (9) and (10).
  • the measured intensity distribution I(x, y) depends on the deviations ⁇ l , ⁇ r , ⁇ l , ⁇ r of the beams BM l , BM r from the ideal waveguiding direction. Change.
  • This intensity distribution I(x,y) is an interference fringe with spatial regularity.
  • angular shift ⁇ ' is expressed by equation (13) using the spatial frequency ⁇ y in the y direction.
  • the pitch p x of the interference fringes for monitoring formed by the combined beam BM l+r measured by the image sensor 220 is much larger than the pitch p x of the interference fringes for exposure formed on the reference plane S0 . This is the point where it gets bigger. This is clear from a comparison of equation (15) and equation (7); in equation (15), the denominator is close to zero, so the pitch px becomes very large. It should be noted that this pitch p x is large enough to be measurable by a typical CMOS or CCD sensor.
  • the interference fringe monitoring device 200A does not directly monitor the exposure interference fringe, but generates a monitoring interference fringe containing information equivalent to the exposure interference fringe and measures its intensity distribution, thereby controlling the beams BM l , BM The state of r can be detected.
  • the intensity distribution I(x, y) of the interference fringes for monitoring measured by the image sensor 220 contains information regarding the deviations ⁇ l , ⁇ r , ⁇ l , ⁇ r from the ideal state of the beams BM l , BM r . Contains. Therefore, various processes can be performed based on the intensity distribution I(x,y) of the monitoring interference fringes.
  • the processing unit 230 may calculate the current state of the beams BM l and BM r based on the measured intensity distribution I(x,y). This state includes at least one of ⁇ l , ⁇ r , ⁇ l , and ⁇ r .
  • ⁇ l + ⁇ r can be calculated from equation (12).
  • the values of ( ⁇ + ⁇ l ) and ( ⁇ + ⁇ r ) can be calculated.
  • the arithmetic processing unit 230 can calculate the pitch p x ' of the exposure interference fringes from equation (7) using ( ⁇ + ⁇ l ) and ( ⁇ + ⁇ r ) . This makes it possible to accurately determine the width of the lateral feed in the exposure process.
  • the arithmetic processing unit 230 can calculate the angular deviation ⁇ ' from the y-axis from equation (8) using ( ⁇ + ⁇ l ), ( ⁇ + ⁇ r ), and ( ⁇ l + ⁇ r ). This makes it possible to accurately determine the scan direction in the exposure process.
  • the arithmetic processing unit 230 Based on the measured intensity distribution I(x, y), the arithmetic processing unit 230 adjusts the beams BM l and BM r to ideal states, that is, ⁇ l , ⁇ r , ⁇ l , and ⁇ r approach zero.
  • the alignment of the optical system 120 may be performed as follows.
  • the processing unit 230 can change ⁇ l and ⁇ l by controlling the first mirror M1 of the optical system 120, and can change ⁇ r and ⁇ l by controlling the second mirror M2 of the optical system 120.
  • ⁇ r can be varied.
  • FIGS. 7(a) to (d) are diagrams illustrating alignment of the optical system 120 based on monitoring interference fringes.
  • FIG. 7(a) shows interference fringes for monitoring in a state where rough alignment has been completed.
  • the angle of incidence deviation ⁇ r is adjusted. When all deviations approach zero, the interference fringes disappear and the intensity distribution becomes uniform.
  • the arithmetic processing unit 230 may control the states of the first mirror M1 and the second mirror M2 so that the intensity distribution of the image obtained by the image sensor 220 is uniform.
  • ⁇ l + ⁇ r ⁇ 0 and ⁇ l ⁇ r ⁇ 0 the arithmetic processing unit 230 does not necessarily need to calculate the deviation amounts ⁇ l , ⁇ r , ⁇ l , and ⁇ r .
  • the deviation angle ⁇ of the exposure interference fringes from the y-axis becomes zero. That is, in the exposure process, the workpiece W may be scanned in the y-axis direction.
  • the pitch p x of the interference fringes for exposure may be calculated from equation (7) as described in the first example of the calibration process, and the amount of lateral movement may be determined.
  • the pitch p x can be measured by beam splitter shift processing, which will be described below.
  • FIG. 8 is a diagram illustrating measurement of the pitch p x by shifting the measurement beam splitter 212.
  • ⁇ r ⁇ + ⁇ r .
  • the phase difference ⁇ (d') at this time is expressed by equation (16).
  • the stage 130 scans the measurement beam splitter 212 in the x-axis direction and measures the distance between the peaks of the intensity I(d'), thereby determining the pitch p It can be measured.
  • FIG. 9 is a diagram showing an interference exposure apparatus 100B according to the second embodiment.
  • the basic configuration of the interference exposure apparatus 100B is the same as that in FIG. 1, and the configuration of the interference fringe monitoring device 200B is different.
  • the interference fringe monitoring device 200B includes a diffraction grating 216 as a multiplexing element 210.
  • Diffraction grating 216 is provided on stage 130 at a position adjacent to the area where workpiece W is placed. In the calibration process, the stage 130 positions the diffraction grating 216 in the illumination area 132 . At this time, the grooves of the diffraction grating 216 are arranged to coincide with the y direction.
  • FIG. 10 is a diagram showing the diffraction grating 216 during the calibration process.
  • the diffraction grating 216 is of a reflective type, and reflects and combines the left beam BM l having an incident angle ⁇ l and the right beam BM r having an incident angle ⁇ r in the same direction.
  • the image sensor 220 measures the intensity distribution of the combined beam BM l+r combined by the diffraction grating 216 in the calibration process.
  • the diffraction grating 216 may be of a transmission type, in which case the image sensor 220 is provided below the diffraction grating 216.
  • FIG. 11 is a diagram illustrating beam combination by the diffraction grating 216.
  • the diffraction grating 216 has a grating interval (period) d that is twice the exposure pitch.
  • k l ' represents the wave number vector of the left beam BM l diffracted by the diffraction grating 216
  • k r ' represents the wave number vector of the right beam BM r diffracted by the diffraction grating 216.
  • the wave number vectors k l ′ and k r ′ are expressed by equations (21) and (22).
  • m is the diffraction order.
  • the measured intensity distribution I(x, y) varies depending on the deviations ⁇ l , ⁇ r , ⁇ l , ⁇ r of the beams BM l , BM r from the ideal waveguide direction. Change.
  • solutions for non-zero ⁇ l and ⁇ r may exist only when the incident angle ⁇ is close to 90 degrees, so the apparatus may be configured to exclude this solution.
  • FIG. 12 is a diagram showing an interference exposure apparatus 100Aa according to a modification.
  • This modification is a modification of the interference exposure apparatus 100A shown in FIG. 1, and an exposure diffraction grating G1 is used as the exposure demultiplexing element 122 instead of the beam splitter. The rest is the same as in the first embodiment.
  • the interference exposure apparatus 100B of FIG. 9 it is also possible to use the exposure diffraction grating G1 as the exposure demultiplexing element 122.
  • Interference exposure device 110 Laser light source 120 Optical system 122 Exposure splitting element BS1 Exposure beam splitter G1 Exposure diffraction grating 124 Enlargement optical system 126 Enlargement optical system 130 Stage 200 Interference fringe monitor device 210 Multiplexing element 212 Beam splitter 214 Split surface 216 Diffraction grating 220 Image sensor 230 Arithmetic processing unit

Abstract

Provided is an interference exposure apparatus capable of monitoring the state of interference fringes in two-beam interference exposure or adjusting the state of interference fringes to a target state. An interference exposure apparatus 100A patterns a workpiece W by using exposure interference fringes. An optical system 120 includes an exposure splitting element 122 that splits coherent light emitted from a laser light source 110 into a first beam and a second beam, and the first beam and the second beam are crossed to irradiate an irradiation area. A combining element 210 can be placed in the irradiation area in a calibration process to combine a left beam BMl and a right beam BMr. An image sensor 220 measures the intensity distribution of the combined beam BMl+r combined by the combining element 210 in the calibration process.

Description

干渉露光装置およびデバイスの製造方法Interference exposure apparatus and device manufacturing method
 本開示は、干渉露光装置に関する。 The present disclosure relates to an interference exposure apparatus.
 AR(拡張現実)グラスやスマートウインドウといった光学デバイスの開発が行われている。これらの光学デバイスは、サブミクロン領域の周期パターニングを有する回折格子や偏光板等を備える。 Optical devices such as AR (augmented reality) glasses and smart windows are being developed. These optical devices include a diffraction grating, a polarizing plate, and the like having periodic patterning in the submicron region.
 サブミクロン周期のパターニングを実現する手法として、二光束干渉露光(ホログラフィック露光)が知られている。二光束干渉露光(単に干渉露光ともいう)では、レーザ光が2光束(2ビーム)に分岐される。そして2つの光束を、露光に適したビーム径に調整してコリメートした後に、パターニングしたい対象物(ワーク)の表面で交差させる。2つの光波が交差する領域には、露光用の干渉縞が形成され、この干渉縞によって、表面に感光剤が塗布されたワークがパターニングされる。干渉縞のピッチpは、
 p=λ/(2n・sinθ)
で表される。λは、レーザ光の波長であり、θは、2つの光束が交わる角度の1/2である。
Two-beam interference exposure (holographic exposure) is known as a method for realizing patterning with a submicron period. In two-beam interference exposure (also simply referred to as interference exposure), laser light is split into two light beams (two beams). The two light beams are then adjusted to a beam diameter suitable for exposure and collimated, and then made to intersect on the surface of the object (workpiece) to be patterned. Interference fringes for exposure are formed in the area where the two light waves intersect, and a workpiece whose surface is coated with a photosensitive agent is patterned by these interference fringes. The pitch p of the interference fringes is
p=λ/(2n・sinθ)
It is expressed as λ is the wavelength of the laser beam, and θ is 1/2 of the angle at which the two light beams intersect.
 ワークに照射できるビーム径には限界がある。したがって、ワーク上にパターンを形成すべき加工領域のサイズがビーム径に比べて大きい場合、ワークとビームを相対的にスキャンし、露光する必要がある。これを重ね合わせスキャン方式という。 There is a limit to the beam diameter that can be irradiated onto the workpiece. Therefore, when the size of a processing area in which a pattern is to be formed on a workpiece is larger than the beam diameter, it is necessary to relatively scan the workpiece and the beam for exposure. This is called the overlapping scan method.
 加工領域のサイズが、干渉縞の縞の伸びる方向(縦方向)に大きい場合、縦方向に沿って、ワークをスキャンする必要がある。そのために、干渉縞が伸びる方向を正確に検出し、ワークを支持するステージの送り角度を、干渉縞の方向と完全に一致させる必要がある。この方向がずれていると、干渉縞のコントラストが低下し、フォトレジストへの転写ができなくなる。 If the size of the processing area is large in the direction in which the interference fringes extend (vertical direction), it is necessary to scan the workpiece along the longitudinal direction. For this purpose, it is necessary to accurately detect the direction in which the interference fringes extend and to make the feed angle of the stage that supports the work perfectly match the direction of the interference fringes. If this direction is misaligned, the contrast of the interference fringes will decrease, making it impossible to transfer them to the photoresist.
 また、加工領域のサイズが、干渉縞の縞の伸びる縦方向と垂直な方向(横方向)に大きい場合、ワークを支持するステージを、横方向に移動させる必要がある(横送り)。具体的には、干渉縞の周期の整数倍とステージの横送り幅が一致している必要がある。 Furthermore, if the size of the processing area is large in the direction (lateral direction) perpendicular to the vertical direction in which the interference fringes extend, the stage that supports the workpiece needs to be moved in the horizontal direction (transverse feed). Specifically, it is necessary that an integral multiple of the period of the interference fringes and the width of the lateral movement of the stage match.
 特許文献1には、ワークの下に、ビームスプリッタと2個のフォトダイオードを配置し、干渉縞の位相を検出する構成が開示される。露光中において、2個のフォトダイオードによって干渉縞の位相のばらつきを計測し、位相に応じて片方の光波が伝搬するアーム上に設けられた位相シフタ(ポッケルスセル)を制御し、位相を安定化する。 Patent Document 1 discloses a configuration in which a beam splitter and two photodiodes are arranged under a workpiece to detect the phase of interference fringes. During exposure, two photodiodes measure the variation in the phase of the interference fringes, and depending on the phase, a phase shifter (Pockels cell) installed on the arm through which one of the light waves propagates is controlled to stabilize the phase. do.
 特許文献2の技術では、ワークの直下に設けられた干渉縞検出器が開示されている。干渉縞検出器は、干渉縞の位相、周期および強度を検出する。干渉縞検出器から出力された周期情報を用いて、アクチュエータで右側ビーム角度を制御して、干渉縞周期が制御される。特許文献2は、干渉縞検出器の具体的な構成を開示しないが、たとえば2次元のイメージセンサを用いるとすると、その場合の分解能は、イメージセンサのピクセルサイズで制限される。現在商業的に利用可能なCMOSセンサの画素ピッチは、最も小さいもので2.5μm程度であり、干渉縞の周期を、5μm±2.5μmの精度でしか測定できない。したがって、サブミクロンのパターニングに利用される微細な干渉縞の測定には利用できない。 The technique of Patent Document 2 discloses an interference fringe detector provided directly below the workpiece. The interference fringe detector detects the phase, period, and intensity of the interference fringe. The period information output from the interference fringe detector is used to control the right beam angle with an actuator, thereby controlling the period of the interference fringe. Although Patent Document 2 does not disclose a specific configuration of the interference fringe detector, for example, if a two-dimensional image sensor is used, the resolution in that case is limited by the pixel size of the image sensor. The pixel pitch of currently commercially available CMOS sensors is approximately 2.5 μm at the smallest, and the period of interference fringes can only be measured with an accuracy of 5 μm±2.5 μm. Therefore, it cannot be used to measure fine interference fringes used in submicron patterning.
特表平5-502109号公報Special Publication No. 5-502109 特開2002-162750号公報Japanese Patent Application Publication No. 2002-162750 特許第4065468号公報Patent No. 4065468
 従来技術では、干渉縞が伸びる方向、すなわち干渉縞の状態を正確に検出することができない。そのため、製品の露光に先だって、露光の校正プロセスを実施する必要があった。具体的には校正プロセスでは、干渉縞の周期および角度(もしくは横送り幅および送り方向)をトライアンドエラーで最適化する必要があり、長い時間を要するという問題があった。 With the conventional technology, it is not possible to accurately detect the direction in which the interference fringes extend, that is, the state of the interference fringes. Therefore, it was necessary to perform an exposure calibration process prior to exposing the product. Specifically, in the calibration process, it is necessary to optimize the period and angle of the interference fringes (or the lateral feed width and feed direction) by trial and error, which poses a problem in that it takes a long time.
 本開示は係る状況においてなされたものであり、そのある態様の例示的な目的のひとつは、二光束干渉露光における干渉縞の状態をモニター可能な、もしくは干渉縞の状態を目標状態に調節可能な干渉露光装置の提供にある。 The present disclosure has been made in such a situation, and one exemplary objective of a certain aspect thereof is to be able to monitor the state of interference fringes in two-beam interference exposure, or to be able to adjust the state of interference fringes to a target state. The purpose of the present invention is to provide an interference exposure device.
 本開示のある態様は、ワークを露光用干渉縞によってパターニングする干渉露光装置に関する。干渉露光装置は、レーザ光源から出射したコヒーレント光を、第1ビームと第2ビームに分岐する露光用分波素子を含み、第1ビームおよび第2ビームを交差させて照射エリアに照射する光学系と、校正プロセスにおいて、照射エリアに配置可能であり、第1ビームと第2ビームを合波する合波素子と、校正プロセスにおいて、合波素子によって合波された合波ビームの強度分布を測定するイメージセンサと、を備える。 A certain aspect of the present disclosure relates to an interference exposure apparatus that patterns a workpiece using interference fringes for exposure. The interference exposure apparatus includes an exposure splitting element that branches coherent light emitted from a laser light source into a first beam and a second beam, and an optical system that crosses the first beam and the second beam and irradiates the irradiation area. In the calibration process, a combining element that can be placed in the irradiation area and combines the first beam and the second beam, and in the calibration process, measuring the intensity distribution of the combined beam combined by the combining element. and an image sensor.
 本開示の別の態様は、デバイスの製造方法に関する。製造方法は、レーザから出射したコヒーレント光を、第1ビームと第2ビームに分岐し、第1ビームおよび第2ビームを交差させて照射エリアに照射するステップと、校正プロセスにおいて、照射エリアに配置された合波素子によって、第1ビームと第2ビームを合波するステップと、校正プロセスにおいて、合波素子によって合波された合波ビームの強度分布をイメージセンサによって測定するステップと、校正プロセスにおいて、イメージセンサにより測定した強度分布にもとづいて、第1ビームと第2ビームの照射エリアに対する入射角を調節するステップと、校正プロセスの完了後の露光プロセスにおいて、ワークを、照射エリアを横切るように所定方向に移動するステップと、を備える。 Another aspect of the present disclosure relates to a method for manufacturing a device. The manufacturing method includes the steps of branching coherent light emitted from a laser into a first beam and a second beam, and irradiating the irradiation area with the first and second beams intersecting. a step of multiplexing the first beam and the second beam by the multiplexing element, a step of measuring the intensity distribution of the combined beam multiplexed by the multiplexing element with an image sensor in the calibration process; In the step, the incident angles of the first beam and the second beam with respect to the irradiation area are adjusted based on the intensity distribution measured by the image sensor, and in the exposure process after the calibration process is completed, the workpiece is moved across the irradiation area. moving in a predetermined direction.
 なお、以上の構成要素を任意に組み合わせたもの、構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明あるいは本開示の態様として有効である。さらに、この項目(課題を解決するための手段)の記載は、本発明の欠くべからざるすべての特徴を説明するものではなく、したがって、記載されるこれらの特徴のサブコンビネーションも、本発明たり得る。 Note that arbitrary combinations of the above components, and mutual substitution of components and expressions among methods, devices, systems, etc., are also effective as aspects of the present invention or the present disclosure. Furthermore, the description in this section (Means for Solving the Problems) does not describe all essential features of the present invention, and therefore, subcombinations of the described features may also constitute the present invention. .
 本開示のある態様によれば、二光束干渉露光における露光用干渉縞の状態を正確にモニターできる。 According to an aspect of the present disclosure, it is possible to accurately monitor the state of exposure interference fringes in two-beam interference exposure.
実施形態1に係る干渉露光装置を示す図である。1 is a diagram showing an interference exposure apparatus according to Embodiment 1. FIG. 照射エリアに形成される露光用干渉縞を説明する図である。It is a figure explaining the interference fringe for exposure formed in the irradiation area. 露光用干渉縞を示す図である。It is a figure which shows the interference fringe for exposure. 校正プロセスにおける干渉露光装置を示す図である。FIG. 3 is a diagram showing an interference exposure apparatus in a calibration process. 校正プロセスにおける計測用ビームスプリッタを示す図である。It is a figure which shows the measurement beam splitter in a calibration process. 計測用ビームスプリッタによるビームの合波を説明する図である。It is a figure explaining the multiplexing of the beam by a measurement beam splitter. 図7(a)~(d)は、モニター用干渉縞にもとづく光学系のアライメントを説明する図である。FIGS. 7A to 7D are diagrams illustrating alignment of the optical system based on interference fringes for monitoring. 計測用ビームスプリッタのシフトによるピッチpの測定を説明する図である。FIG. 3 is a diagram illustrating measurement of pitch p x by shifting a measurement beam splitter. 実施形態2に係る干渉露光装置を示す図である。FIG. 3 is a diagram showing an interference exposure apparatus according to a second embodiment. 校正プロセスにおける回折格子を示す図である。FIG. 3 is a diagram showing a diffraction grating in a calibration process. 回折格子によるビームの合波を説明する図である。FIG. 3 is a diagram illustrating beam combination using a diffraction grating. 変形例に係る干渉露光装置を示す図である。It is a figure showing an interference exposure device concerning a modification.
(実施形態の概要)
 本開示のいくつかの例示的な実施形態の概要を説明する。この概要は、後述する詳細な説明の前置きとして、実施形態の基本的な理解を目的として、1つまたは複数の実施形態のいくつかの概念を簡略化して説明するものであり、発明あるいは開示の広さを限定するものではない。またこの概要は、考えられるすべての実施形態の包括的な概要ではなく、実施形態の欠くべからざる構成要素を限定するものではない。便宜上、「一実施形態」は、本明細書に開示するひとつの実施形態(実施例や変形例)または複数の実施形態(実施例や変形例)を指すものとして用いる場合がある。
(Summary of embodiment)
1 provides an overview of some example embodiments of the present disclosure. This Summary is intended to provide a simplified description of some concepts of one or more embodiments in order to provide a basic understanding of the embodiments and as a prelude to the more detailed description that is presented later. It does not limit the size. Moreover, this summary is not an exhaustive overview of all possible embodiments, and is not limited to essential components of the embodiments. For convenience, "one embodiment" may be used to refer to one embodiment (example or modification) or multiple embodiments (examples or modifications) disclosed in this specification.
 一実施形態に係る干渉露光装置は、ワークを露光用干渉縞によってパターニングする。干渉露光装置は、レーザ光源から出射したコヒーレント光を、第1ビームと第2ビームに分岐する露光用分波素子を含み、第1ビームおよび第2ビームを交差させて照射エリアに照射する光学系と、校正プロセスにおいて、照射エリアに配置可能であり、第1ビームと第2ビームを合波する合波素子と、校正プロセスにおいて、合波素子によって合波された合波ビームの強度分布を測定するイメージセンサと、を備える。 An interference exposure apparatus according to an embodiment patterns a workpiece using interference fringes for exposure. The interference exposure apparatus includes an exposure splitting element that branches coherent light emitted from a laser light source into a first beam and a second beam, and an optical system that crosses the first beam and the second beam and irradiates the irradiation area. In the calibration process, a combining element that can be placed in the irradiation area and combines the first beam and the second beam, and in the calibration process, measuring the intensity distribution of the combined beam combined by the combining element. and an image sensor.
 この構成では、露光用干渉縞を直接測定するのではなく、合波素子によって、第1ビームと第2ビームを同じ向きとなるように合波し、合波ビームが形成するモニター用干渉縞を測定する。モニター用干渉縞には、第1ビームと第2ビームの微小な変化が、増幅されて現れるため、露光用干渉縞の様子を間接的に、正確にモニターできる。 In this configuration, rather than directly measuring interference fringes for exposure, a combining element combines the first and second beams in the same direction, and the interference fringes for monitoring formed by the combined beam are measured. Measure. Since minute changes between the first beam and the second beam are amplified and appear in the monitoring interference fringes, the state of the exposure interference fringes can be indirectly and accurately monitored.
 一実施形態において、干渉露光装置は、露光プロセスにおいて、照射エリアを通過するようにワークを移動させることが可能なステージをさらに備えてもよい。合波素子は、ステージ上の、ワークを載置する領域と隣接した位置に設けられてもよい。モニター用干渉縞は、合波素子の向きを基準として形成される。そこで、合波素子を、ステージ上に固定しておくことにより、正確なモニターが可能となる。 In one embodiment, the interference exposure apparatus may further include a stage capable of moving the workpiece so as to pass through the irradiation area during the exposure process. The multiplexing element may be provided on the stage at a position adjacent to the area where the work is placed. The monitoring interference fringes are formed with the orientation of the multiplexing element as a reference. Therefore, by fixing the multiplexing element on the stage, accurate monitoring becomes possible.
 一実施形態において、合波素子は、校正プロセスにおいて、照射エリアに、そのスプリット面がワークの表面と垂直な状態で配置可能な計測用ビームスプリッタであってもよい。計測用ビームスプリッタ(ビームコンバイナ)を用いることで、モニター用干渉縞の1方向のピッチを大きく拡大することが可能となる。 In one embodiment, the multiplexing element may be a measurement beam splitter that can be placed in the irradiation area with its split plane perpendicular to the surface of the workpiece in the calibration process. By using a measurement beam splitter (beam combiner), it is possible to greatly expand the pitch of the monitoring interference fringes in one direction.
 一実施形態において、合波素子は、校正プロセスにおいて、照射エリアに、その回折面がワークの表面と平行な状態で配置可能な回折格子であってもよい。 In one embodiment, the multiplexing element may be a diffraction grating that can be placed in the irradiation area in the calibration process with its diffraction surface parallel to the surface of the workpiece.
 一実施形態において、回折格子は、露光用干渉縞のピッチの2倍の周期を有してもよい。 In one embodiment, the diffraction grating may have a period twice the pitch of the interference fringes for exposure.
 一実施形態において、イメージセンサによって測定された強度分布にもとづいて、第1ビームの照射エリアへの入射角および第2ビームの照射エリアへの入射角を調節する演算処理装置をさらに備えてもよい。 One embodiment may further include an arithmetic processing device that adjusts the angle of incidence of the first beam onto the irradiation area and the angle of incidence of the second beam onto the irradiation area based on the intensity distribution measured by the image sensor. .
 一実施形態において、演算処理装置は、イメージセンサによって測定された強度分布が均一となるように、第1ビームの照射エリアへの入射角および第2ビームの照射エリアへの入射角を調節してもよい。 In one embodiment, the processing unit adjusts the angle of incidence of the first beam onto the irradiation area and the angle of incidence of the second beam onto the irradiation area so that the intensity distribution measured by the image sensor becomes uniform. Good too.
 一実施形態において、干渉露光装置は、イメージセンサによって測定された強度分布にもとづいて、第1ビームの照射エリアへの入射角および第2ビームの照射エリアへの入射角を調節する演算処理装置をさらに備えてもよい。ワークの表面をxy平面、計測用ビームスプリッタのスプリット面をyz平面とする座標系をとったときに、演算処理装置は、イメージセンサによって測定されたモニター用干渉縞のy方向のピッチが大きくなるように、第1ビームのz軸周りのずれ角Δφおよび第2ビームのz軸周りのずれ角Δφを変化させてもよい。 In one embodiment, the interference exposure apparatus includes a processing unit that adjusts the angle of incidence of the first beam onto the irradiation area and the angle of incidence of the second beam onto the irradiation area based on the intensity distribution measured by the image sensor. Further provision may be made. When taking a coordinate system in which the surface of the workpiece is the xy plane and the split plane of the measurement beam splitter is the yz plane, the arithmetic processing unit calculates that the pitch in the y direction of the monitoring interference fringes measured by the image sensor becomes large. As such, the deviation angle Δφ l of the first beam around the z-axis and the deviation angle Δφ r of the second beam around the z-axis may be changed.
 一実施形態において、演算処理装置は、モニター用干渉縞のx方向のピッチが大きくなるように、第1ビームの入射角θおよび第2ビームの入射角θを変化させてもよい。  In one embodiment, the arithmetic processing device may change the incident angle θ l of the first beam and the incident angle θ r of the second beam so that the pitch of the monitoring interference fringes in the x direction increases.
 一実施形態において、演算処理装置は、計測用ビームスプリッタをx方向に移動させたときの、イメージセンサによって測定される合波ビームの強度の変化にもとづいて、露光用干渉縞のピッチを計算してもよい。 In one embodiment, the processing unit calculates the pitch of the exposure interference fringes based on the change in intensity of the combined beam measured by the image sensor when the measurement beam splitter is moved in the x direction. It's okay.
 一実施形態において、光学系は、第1ビームの照射方向を制御可能な第1ミラーと、第2ビームの照射方向を制御可能な第2ミラーと、をさらに含んでもよい。 In one embodiment, the optical system may further include a first mirror that can control the irradiation direction of the first beam, and a second mirror that can control the irradiation direction of the second beam.
 一実施形態において、干渉露光装置は、イメージセンサによって測定された強度分布にもとづいて、第1ビームの入射角のずれおよび第2ビームの入射角のずれの少なくともひとつを計算する演算処理装置をさらに備えてもよい。 In one embodiment, the interference exposure apparatus further includes a processing unit that calculates at least one of an incident angle deviation of the first beam and an incident angle deviation of the second beam based on the intensity distribution measured by the image sensor. You may prepare.
(実施形態)
 以下、本開示を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、開示を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも開示の本質的なものであるとは限らない。
(Embodiment)
Hereinafter, the present disclosure will be described based on preferred embodiments with reference to the drawings. Identical or equivalent components, members, and processes shown in each drawing are designated by the same reference numerals, and redundant explanations will be omitted as appropriate. Further, the embodiments are illustrative rather than limiting the disclosure, and all features and combinations thereof described in the embodiments are not necessarily essential to the disclosure.
 図面に記載される各部材の寸法(厚み、長さ、幅など)は、理解の容易化のために適宜、拡大縮小されている場合がある。さらには複数の部材の寸法は、必ずしもそれらの大小関係を表しているとは限らず、図面上で、ある部材Aが、別の部材Bよりも厚く描かれていても、部材Aが部材Bよりも薄いこともあり得る。 The dimensions (thickness, length, width, etc.) of each member described in the drawings may be scaled up or down as appropriate for ease of understanding. Furthermore, the dimensions of multiple members do not necessarily represent their size relationship, and even if a member A is drawn thicker than another member B on a drawing, member A may be drawn thicker than member B. It may be thinner than that.
(実施形態1)
 図1は、実施形態1に係る干渉露光装置100Aを示す図である。干渉露光装置100Aは、ワークWを、露光用干渉縞によってパターニングする。ワークWは、その表面に感光剤が塗布された基板である。ワークWの材料は特に限定されないが、ガラス基板、樹脂基板、半導体基板などが例示される。
(Embodiment 1)
FIG. 1 is a diagram showing an interference exposure apparatus 100A according to the first embodiment. The interference exposure apparatus 100A patterns the workpiece W using interference fringes for exposure. The workpiece W is a substrate whose surface is coated with a photosensitive agent. The material of the workpiece W is not particularly limited, but examples thereof include a glass substrate, a resin substrate, a semiconductor substrate, and the like.
 干渉露光装置100Aは、レーザ光源110、光学系120および干渉縞モニター装置200Aを備える。 The interference exposure apparatus 100A includes a laser light source 110, an optical system 120, and an interference fringe monitoring device 200A.
 レーザ光源110は、波長λのコヒーレント光のビームBMを出射する。ビームは、光波あるいは光束と読み替えることができる。光学系120は、レーザ光源110から出射したビームBMを、第1ビームBMと第2ビームBMに分岐する露光用分波素子122を含む。露光用分波素子122としては、ビームスプリッタもしくは回折格子を用いることができるが、本実施形態では、ビームスプリッタBS1を用いることとする。後述する計測用ビームスプリッタと区別するため、露光用分波素子122のビームスプリッタBS1を露光用ビームスプリッタとも称する。光学系120は、分岐した第1ビームBMおよび第2ビームBMを交差させて、ステージ130上の照射エリア132に照射する。光学系120から照射エリア132に向かう第1ビームBMを左ビームBM、光学系120から照射エリア132に向かう第2ビームBMを右ビームBMと称する。 The laser light source 110 emits a coherent light beam BM 0 having a wavelength λ. A beam can be read as a light wave or a light flux. The optical system 120 includes an exposure splitting element 122 that branches the beam BM 0 emitted from the laser light source 110 into a first beam BM 1 and a second beam BM 2 . Although a beam splitter or a diffraction grating can be used as the exposure splitting element 122, in this embodiment, the beam splitter BS1 is used. In order to distinguish it from a measurement beam splitter which will be described later, the beam splitter BS1 of the exposure demultiplexing element 122 is also referred to as an exposure beam splitter. The optical system 120 makes the branched first beam BM 1 and second beam BM 2 intersect and irradiates the irradiation area 132 on the stage 130 . The first beam BM 1 heading from the optical system 120 toward the irradiation area 132 is called a left beam BM l , and the second beam BM 2 heading from the optical system 120 toward the irradiation area 132 is called a right beam BM r .
 たとえば光学系120は、露光用ビームスプリッタBS1に加えて、ミラーM1,M2,M3、拡大光学系124,126を含む。ミラーM3は、レーザ光源110からのビームBMを折り返し、適切な角度で露光用ビームスプリッタBS1に導く。ビームBMは、露光用ビームスプリッタBS1によって、2つのビームBM,BMに分割される。露光用ビームスプリッタBS1は、強度型ビームスプリッタでもよいし、偏光ビームスプリッタでもよい。 For example, the optical system 120 includes mirrors M1, M2, M3, and magnifying optical systems 124, 126 in addition to the exposure beam splitter BS1. Mirror M3 turns beam BM0 from laser light source 110 and guides it to exposure beam splitter BS1 at an appropriate angle. Beam BM 0 is split into two beams BM 1 and BM 2 by exposure beam splitter BS1. The exposure beam splitter BS1 may be an intensity beam splitter or a polarizing beam splitter.
 第1ミラーM1は、第1ビームBMを折り返す。第2ミラーM2は、第2ビームBMを折り返す。第1ミラーM1および第2ミラーM2は、アクチュエータなどの制御手段によって、回動および並進可能となっている。 The first mirror M1 returns the first beam BM1 . The second mirror M2 returns the second beam BM2 . The first mirror M1 and the second mirror M2 can be rotated and translated by a control means such as an actuator.
 拡大光学系124は、第1ミラーM1によって折り返されたビームBMを拡大する。拡大されたビームは、左ビームBMとして照射エリア132に導かれる。同様に拡大光学系126は、第2ミラーM2によって折り返されたビームBMを拡大する。拡大されたビームは、右ビームBMとして照射エリア132に導かれる。 The magnifying optical system 124 magnifies the beam BM1 reflected by the first mirror M1. The expanded beam is guided to the irradiation area 132 as a left beam BM1 . Similarly, the magnifying optical system 126 magnifies the beam BM 2 reflected by the second mirror M2. The expanded beam is guided to the irradiation area 132 as a right beam BMr .
 照射エリア132には、左ビームBMと右ビームBMによって露光用干渉縞が形成される。露光プロセス中において、ワークWは、ステージ130上に支持される。ステージ130は、ワークWを、照射エリア132内において露光用干渉縞の伸びる縦方向に移動させる(スキャン露光)。これにより長尺のパターンを形成することが可能となる。また、ステージ130は、スキャン露光とスキャン露光の間に、ワークWを、露光用干渉縞の横方向に、前のスキャン露光と次のスキャン露光において、縞同士が重なるように横送りする(重ね合わせ)。これにより、幅広のパターンを形成することが可能となる。縦方向のスキャン露光と横方向の重ね合わせの組み合わせを、重ね合わせスキャン露光と称する。 In the irradiation area 132, exposure interference fringes are formed by the left beam BMl and the right beam BMr . During the exposure process, the workpiece W is supported on the stage 130. The stage 130 moves the workpiece W in the vertical direction in which exposure interference fringes extend within the irradiation area 132 (scan exposure). This makes it possible to form a long pattern. Furthermore, between scan exposures, the stage 130 transports the workpiece W in the lateral direction of the interference fringes for exposure so that the fringes overlap each other in the previous scan exposure and the next scan exposure (overlapping). combination). This makes it possible to form a wide pattern. The combination of vertical scan exposure and horizontal overlapping is called overlapping scan exposure.
 理解の容易化のために、座標系を導入する。露光用干渉縞を形成すべきワークWの表面を基準面Sと称する。導入する座標系は、基準面Sと垂直な方向をz軸とする。つまり、基準面Sと平行な面がxy平面となる。また、理想状態において、左ビームBMと右ビームBMは、xz平面と平行に導波するものとする。つまり紙面、左右方向がx軸であり、紙面高さ方向がz軸であり、紙面奥行き方向がy軸である。この座標系の原点は、以下の説明では、適宜移動するものとする。 A coordinate system will be introduced to facilitate understanding. The surface of the workpiece W on which exposure interference fringes are to be formed is referred to as a reference surface S0 . The introduced coordinate system has a z-axis in a direction perpendicular to the reference plane S0 . In other words, the plane parallel to the reference plane S0 becomes the xy plane. Further, in an ideal state, it is assumed that the left beam BM l and the right beam BM r are guided parallel to the xz plane. In other words, the horizontal direction of the page is the x-axis, the height direction of the page is the z-axis, and the depth direction of the page is the y-axis. In the following explanation, it is assumed that the origin of this coordinate system moves as appropriate.
 図2は、照射エリア132に形成される露光用干渉縞を説明する図である。ここでは、露光用干渉縞が形成される基準面Sを、z=0のxy平面にとっている。 FIG. 2 is a diagram illustrating exposure interference fringes formed in the irradiation area 132. Here, the reference plane S 0 on which exposure interference fringes are formed is the xy plane of z=0.
 D、Dは、左ビームBMおよび右ビームBMそれぞれの理想的な導波方向を示す。DおよびDはxz平面内の直線であり、θは、左ビームBMおよび右ビームBMの理想入射角を表す。 D l and D r indicate the ideal waveguiding directions of the left beam BM l and the right beam BM r , respectively. D l and D r are straight lines in the xz plane, and θ represents the ideal angle of incidence of the left beam BM l and the right beam BM R.
 Δθは、左ビームBMの実際の入射角の理想入射角θからのずれを表す。Δθは、右ビームBMの実際の入射角の、理想入射角θからのずれを表す。つまり、左ビームBMの実際の入射角θは、θ+Δθであり、右ビームBMの実際の入射角θは、θ+Δθである。 Δθ l represents the deviation of the actual angle of incidence of the left beam BM l from the ideal angle of incidence θ l . Δθ r represents the deviation of the actual angle of incidence of the right beam BM r from the ideal angle of incidence θ r . That is, the actual angle of incidence θ l of the left beam BM l is θ+Δθ l , and the actual angle of incidence θ r of the right beam BM r is θ+Δθ r .
 上述のように、左ビームBMおよび右ビームBMは、理想状態においてxz平面と平行に導波する。つまり理想的な入射方向D,Dはz成分を含まない。Δφは、左ビームBMのz軸周りのずれ角であり、Δφは、右ビームBMのz軸周りのずれ角である。理想状態において、Δφ=Δφ=0である。 As mentioned above, the left beam BM l and the right beam BM r are guided parallel to the xz plane in the ideal state. In other words, the ideal incident directions D l and D r do not include the z component. Δφ l is the deviation angle of the left beam BM 1 around the z-axis, and Δφ r is the deviation angle of the right beam BM r around the z-axis. In the ideal state, Δφ l =Δφ r =0.
 左ビームBMの光波の波数ベクトルk、右ビームBMの光波の波数ベクトルkは、式(1)、(2)で表される。
Figure JPOXMLDOC01-appb-M000001

 ここでklzは、kのz成分を、krzは、kのz成分を表す。またΔφ≒0、Δφ≒0である。
The wave number vector k l of the light wave of the left beam BM l and the wave number vector k r of the light wave of the right beam BM r are expressed by equations (1) and (2).
Figure JPOXMLDOC01-appb-M000001

Here, k lz represents the z component of k l and k rz represents the z component of k r . Further, Δφ l ≒0 and Δφ r ≒0.
 左右のビームBM、BMの座標rにおける電場E,Eはそれぞれ、式(3)、(4)で表される。
Figure JPOXMLDOC01-appb-M000002
The electric fields E l and E r at the coordinate r of the left and right beams BM l and BM r are respectively expressed by equations (3) and (4).
Figure JPOXMLDOC01-appb-M000002
 座標rにおける2つのビームBM,BMの強度は式(5)で表される。
Figure JPOXMLDOC01-appb-M000003
The intensities of the two beams BM l and BM r at the coordinate r are expressed by equation (5).
Figure JPOXMLDOC01-appb-M000003
 露光用干渉縞が形成される基準面Sが、z=0のxy平面であるとする。このとき、基準面Sに形成される露光用干渉縞の強度分布IEXP(x,y)は、式(5)にz=0を代入して式(6)で表される。
Figure JPOXMLDOC01-appb-M000004
It is assumed that the reference plane S0 on which exposure interference fringes are formed is an xy plane with z=0. At this time, the intensity distribution I EXP (x, y) of the interference fringes for exposure formed on the reference plane S 0 is expressed by equation (6) by substituting z=0 into equation (5).
Figure JPOXMLDOC01-appb-M000004
 図3は、露光用干渉縞を示す図である。露光用干渉縞のx方向のピッチは、式(7)で表される。また露光用干渉縞のy軸からの角度ずれαは、式(8)で表される。
Figure JPOXMLDOC01-appb-M000005
FIG. 3 is a diagram showing interference fringes for exposure. The pitch of the interference fringes for exposure in the x direction is expressed by equation (7). Further, the angular deviation α of the exposure interference fringes from the y-axis is expressed by equation (8).
Figure JPOXMLDOC01-appb-M000005
 重ね合わせスキャン露光を行うためには、p’およびα’を正確に検出する、もしくは、p’およびα’の組み合わせ、つまり露光用干渉縞の状態を、所定の目標状態となるように、光学系120をアライメントする必要がある。 In order to perform overlapping scan exposure, it is necessary to accurately detect p x ' and α', or to adjust the combination of p x ' and α', that is, the state of the interference fringes for exposure, to a predetermined target state. , it is necessary to align the optical system 120.
 理想状態では、Δθ=Δθ=0、Δφ=Δφ=0である。このときの理想的な露光用干渉縞のピッチpと角度ずれαはそれぞれ、
 p=λ/(2sinθ)
 α=0
である。
In an ideal state, Δθ l =Δθ r =0, Δφ l =Δφ r =0. At this time, the ideal pitch p x and angular shift α of the interference fringes for exposure are as follows:
p x =λ/(2sinθ)
α=0
It is.
 露光プロセスに先立って、ピッチpおよび角度ずれαを正確に検出し、あるいは、それらを目標状態とする処理を、校正プロセスと称する。 The process of accurately detecting the pitch p x and the angular deviation α or setting them as target states prior to the exposure process is referred to as a calibration process.
 図1に戻る。校正プロセスにおいて、露光用干渉縞の状態を測定するために、干渉縞モニター装置200Aが設けられる。干渉縞モニター装置200Aは、露光用干渉縞の強度分布を直接測定するのではなく、露光用干渉縞とは異なる干渉縞(以下、モニター用干渉縞という)の強度分布を測定する。 Return to Figure 1. In the calibration process, an interference fringe monitoring device 200A is provided to measure the state of exposure interference fringes. The interference fringe monitoring device 200A does not directly measure the intensity distribution of the exposure interference fringe, but measures the intensity distribution of an interference fringe different from the exposure interference fringe (hereinafter referred to as monitor interference fringe).
 干渉縞モニター装置200Aは、合波素子210、イメージセンサ220、演算処理装置230を備える。 The interference fringe monitoring device 200A includes a multiplexing element 210, an image sensor 220, and an arithmetic processing unit 230.
 合波素子210は、校正プロセスにおいて、照射エリア132に配置可能であり、左ビームBMと右ビームBMを同一方向に導波するように合波する。 The combining element 210 can be placed in the irradiation area 132 during the calibration process, and combines the left beam BM l and the right beam BM r so as to guide them in the same direction.
 図4は、校正プロセスにおける干渉露光装置100Aを示す図である。本実施形態において、合波素子210は、計測用ビームスプリッタ(ビームコンバイナ)212である。計測用ビームスプリッタ212は、強度型ビームスプリッタでもよいし、偏光ビームスプリッタでもよい。計測用ビームスプリッタ212は、平面プレート型でもよいし、プリズム型でもよい。 FIG. 4 is a diagram showing the interference exposure apparatus 100A in the calibration process. In this embodiment, the multiplexing element 210 is a measurement beam splitter (beam combiner) 212. The measurement beam splitter 212 may be an intensity beam splitter or a polarization beam splitter. The measurement beam splitter 212 may be of a flat plate type or a prism type.
 計測用ビームスプリッタ212は、ステージ130上の、ワークWを載置する領域に隣接した位置に設けられる。校正プロセスでは、ステージ130によって計測用ビームスプリッタ212が照射エリア132に位置決めされる。このとき、計測用ビームスプリッタ212のスプリット面214は、ワークWの表面に相当する基準面Sと垂直な向きに配置される。 The measurement beam splitter 212 is provided on the stage 130 at a position adjacent to the area on which the workpiece W is placed. In the calibration process, the measurement beam splitter 212 is positioned in the irradiation area 132 by the stage 130. At this time, the split surface 214 of the measurement beam splitter 212 is arranged perpendicular to the reference plane S0 corresponding to the surface of the workpiece W.
 図5は、校正プロセスにおける計測用ビームスプリッタ212を示す図である。計測用ビームスプリッタ212のスプリット面214は、yz平面と平行となるように配置される。ここでは、スプリット面214が、x=0のyz平面と一致するように座標系を定める。 FIG. 5 is a diagram showing the measurement beam splitter 212 in the calibration process. The split surface 214 of the measurement beam splitter 212 is arranged parallel to the yz plane. Here, the coordinate system is determined so that the split plane 214 coincides with the yz plane where x=0.
 左ビームBMは計測用ビームスプリッタ212を透過し、右ビームBMは計測用ビームスプリッタ212のスプリット面214において反射される。計測用ビームスプリッタ212によって合波されたビーム(合波ビーム)BMl+rはイメージセンサ220に導かれる。イメージセンサ220は、合波ビームBMl+rの強度分布を測定する。この強度分布が、モニター用干渉縞である。イメージセンサ220は、CMOS(Complementary Metal Oxide Semiconductor)センサやCCD(Charge Coupled Device)カメラを用いることができる。 The left beam BM l is transmitted through the measurement beam splitter 212 , and the right beam BM r is reflected at the split surface 214 of the measurement beam splitter 212 . The beam (combined beam) BM l+r multiplexed by the measurement beam splitter 212 is guided to the image sensor 220 . The image sensor 220 measures the intensity distribution of the combined beam BM l+r . This intensity distribution is the monitoring interference fringe. As the image sensor 220, a CMOS (Complementary Metal Oxide Semiconductor) sensor or a CCD (Charge Coupled Device) camera can be used.
 校正プロセスにおいて、イメージセンサ220によって観測される強度分布について説明する。 In the calibration process, the intensity distribution observed by the image sensor 220 will be explained.
 図6は、計測用ビームスプリッタ212によるビームの合波を説明する図である。ここでも、スプリット面214が、x=0のyz平面と一致するように座標系を定める。 FIG. 6 is a diagram illustrating beam combination by the measurement beam splitter 212. Here, too, the coordinate system is determined so that the split plane 214 coincides with the yz plane where x=0.
 k''は、計測用ビームスプリッタ212を透過した左ビームBMの波数ベクトルを表し、k''は、計測用ビームスプリッタ212により反射された右ビームBMの波数ベクトルを表す。波数ベクトルk''、k''は、式(9),(10)で表される。
Figure JPOXMLDOC01-appb-M000006
k l '' represents the wave number vector of the left beam BM l transmitted through the measurement beam splitter 212, and k r '' represents the wave number vector of the right beam BM r reflected by the measurement beam splitter 212. The wave number vectors k l '' and k r '' are expressed by equations (9) and (10).
Figure JPOXMLDOC01-appb-M000006
 ビームスプリッタの後方に計測面をおくとき、測定される合波ビームBMl+rの強度分布I(x,y)は、式(11)で表される。
Figure JPOXMLDOC01-appb-M000007
When the measurement plane is placed behind the beam splitter, the intensity distribution I(x,y) of the combined beam BM l+r to be measured is expressed by equation (11).
Figure JPOXMLDOC01-appb-M000007
 式(11)から分かるように、測定される強度分布I(x,y)は、ビームBM,BMの理想導波方向からのずれΔθ,Δθ,Δφ,Δφに応じて変化する。この強度分布I(x,y)は、空間的な規則性を有する干渉縞である。 As can be seen from equation (11), the measured intensity distribution I(x, y) depends on the deviations Δθ l , Δθ r , Δφ l , Δφ r of the beams BM l , BM r from the ideal waveguiding direction. Change. This intensity distribution I(x,y) is an interference fringe with spatial regularity.
 式(11)から、計測面におけるy方向の空間周波数νは、式(12)で表される。
Figure JPOXMLDOC01-appb-M000008

 なお、空間周波数νとピッチpには、ν=2π/pの関係が成り立つ。
From equation (11), the spatial frequency ν y in the y direction on the measurement surface is expressed by equation (12).
Figure JPOXMLDOC01-appb-M000008

Note that the relationship ν=2π/p holds between the spatial frequency ν and the pitch p.
 また角度ずれα’は、y方向の空間周波数νを用いて、式(13)で表される。
Figure JPOXMLDOC01-appb-M000009
Further, the angular shift α' is expressed by equation (13) using the spatial frequency ν y in the y direction.
Figure JPOXMLDOC01-appb-M000009
 また、計測面におけるx方向の空間周波数νおよびピッチpはそれぞれ、式(14),(15)で表される。
Figure JPOXMLDOC01-appb-M000010
Furthermore, the spatial frequency ν x and pitch p x in the x direction on the measurement surface are expressed by equations (14) and (15), respectively.
Figure JPOXMLDOC01-appb-M000010
 特筆すべきは、イメージセンサ220によって測定する合波ビームBMl+rが形成するモニター用干渉縞のピッチpは、基準面Sに形成される露光用干渉縞のピッチpに比べてはるかに大きくなる点である。これは、式(15)と式(7)に比較から明らかであり、式(15)では、分母がゼロに近くなるため、ピッチpが非常に大きくなる。このピッチpは、通常のCMOSセンサやCCDセンサによって測定しうる程度に十分に大きいことに留意されたい。 It should be noted that the pitch p x of the interference fringes for monitoring formed by the combined beam BM l+r measured by the image sensor 220 is much larger than the pitch p x of the interference fringes for exposure formed on the reference plane S0 . This is the point where it gets bigger. This is clear from a comparison of equation (15) and equation (7); in equation (15), the denominator is close to zero, so the pitch px becomes very large. It should be noted that this pitch p x is large enough to be measurable by a typical CMOS or CCD sensor.
 このように、干渉縞モニター装置200Aでは、露光用干渉縞を直接モニターせずに、それと等価な情報を含むモニター用干渉縞を生成してその強度分布を測定することで、ビームBM、BMの状態を検出することができる。 In this way, the interference fringe monitoring device 200A does not directly monitor the exposure interference fringe, but generates a monitoring interference fringe containing information equivalent to the exposure interference fringe and measures its intensity distribution, thereby controlling the beams BM l , BM The state of r can be detected.
 このように、イメージセンサ220によって測定するモニター用干渉縞の強度分布I(x,y)は、ビームBM,BMの理想状態からズレΔθ,Δθ,Δφ,Δφに関する情報を含んでいる。そのため、モニター用干渉縞の強度分布I(x,y)にもとづいてさまざまな処理が可能となる。 In this way, the intensity distribution I(x, y) of the interference fringes for monitoring measured by the image sensor 220 contains information regarding the deviations Δθ l , Δθ r , Δφ l , Δφ r from the ideal state of the beams BM l , BM r . Contains. Therefore, various processes can be performed based on the intensity distribution I(x,y) of the monitoring interference fringes.
 なお本開示において、測定した強度I(x,y)をどのように利用して校正を行うかは特に限定されるものではないが、校正に関するいくつかの例を説明する。 Note that in the present disclosure, there are no particular limitations on how the measured intensity I(x, y) is used to perform the calibration, but some examples regarding the calibration will be described.
(校正処理例1)
 一実施例において、演算処理装置230は、測定した強度分布I(x,y)にもとづいて、ビームBM,BMの現在の状態を計算してもよい。この状態とは、Δθ,Δθ,Δφ,Δφの少なくともひとつを含む。
(Proofreading processing example 1)
In one embodiment, the processing unit 230 may calculate the current state of the beams BM l and BM r based on the measured intensity distribution I(x,y). This state includes at least one of Δθ l , Δθ r , Δφ l , and Δφ r .
 たとえば、モニター用干渉縞のy方向の空間周波数νを画像データから算出すれば、式(12)から、Δφ+Δφを計算することができる。 For example, if the spatial frequency ν y of the monitor interference fringe in the y direction is calculated from the image data, Δφ l +Δφ r can be calculated from equation (12).
 また、モニター用干渉縞の角度ずれα’とx方向の空間周波数νを画像データから算出すれば、(θ+Δθ)および(θ+Δθ)の値を計算することができる。 Further, by calculating the angular shift α' of the monitor interference fringe and the spatial frequency ν x in the x direction from the image data, the values of (θ+Δθ l ) and (θ+Δθ r ) can be calculated.
 さらに演算処理装置230は、(θ+Δθ)および(θ+Δθ)を利用して、式(7)から、露光用干渉縞のピッチp’を計算することができる。これにより、露光プロセスにおける横送りの幅を正確に決めることができる。 Further, the arithmetic processing unit 230 can calculate the pitch p x ' of the exposure interference fringes from equation (7) using (θ+Δθ l ) and (θ+Δθ r ) . This makes it possible to accurately determine the width of the lateral feed in the exposure process.
 また演算処理装置230は、(θ+Δθ),(θ+Δθ)および(Δφ+Δφ)を利用して、式(8)から、y軸からの角度ずれα’を計算することができる。これにより、露光プロセスにおけるスキャン方向を正確に決めることができる。 Further, the arithmetic processing unit 230 can calculate the angular deviation α' from the y-axis from equation (8) using (θ+Δθ l ), (θ+Δθ r ), and (Δφ l +Δφ r ). This makes it possible to accurately determine the scan direction in the exposure process.
(校正処理例2)
 演算処理装置230は、測定した強度分布I(x,y)にもとづいて、ビームBM,BMが理想状態となるように、つまりΔθ,Δθ,Δφ,Δφがゼロに近づくように、光学系120のアライメントを実施してもよい。たとえば演算処理装置230は、光学系120の第1ミラーM1を制御することにより、ΔθおよびΔφを変化させることができ、光学系120の第2ミラーM2を制御することにより、ΔθおよびΔφを変化させることができる。
(Proofreading processing example 2)
Based on the measured intensity distribution I(x, y), the arithmetic processing unit 230 adjusts the beams BM l and BM r to ideal states, that is, Δθ l , Δθ r , Δφ l , and Δφ r approach zero. The alignment of the optical system 120 may be performed as follows. For example, the processing unit 230 can change Δθ l and Δφ l by controlling the first mirror M1 of the optical system 120, and can change Δθ r and Δφ l by controlling the second mirror M2 of the optical system 120. Δφ r can be varied.
 図7(a)~(d)は、モニター用干渉縞にもとづく光学系120のアライメントを説明する図である。図7(a)は、粗いアライメントが完了した状態におけるモニター用干渉縞を示す。 FIGS. 7(a) to (d) are diagrams illustrating alignment of the optical system 120 based on monitoring interference fringes. FIG. 7(a) shows interference fringes for monitoring in a state where rough alignment has been completed.
 図7(b)に示すように、モニター用干渉縞のy方向の空間周波数νがゼロとなるように、第1ミラーM1および第2ミラーM2を制御して、ΔφおよびΔφを最適化する。これにより、Δφ+Δφ=0となる状態に光学系120を調節することができる。なお、Δφが0.001°のときに縞の周期はおおよそ20mm程度となる。したがって大型のイメージセンサ220を用いることで、0.001°まで測定することが可能である。 As shown in FIG. 7(b), the first mirror M1 and the second mirror M2 are controlled to optimize Δφ l and Δφ r so that the spatial frequency ν y of the monitor interference fringe in the y direction becomes zero. become Thereby, the optical system 120 can be adjusted to a state where Δφ l +Δφ r =0. Note that when Δφ is 0.001°, the period of the stripes is approximately 20 mm. Therefore, by using the large image sensor 220, it is possible to measure up to 0.001°.
 図7(c)および(d)に示すように、モニター用干渉縞のx方向の空間周波数νがゼロとなるように、左ビームBMの入射角のずれΔθおよび右ビームBMの入射角のずれΔθが調節される。すべてのずれがゼロに近づくと、干渉縞が消え、強度分布は均一となる。 As shown in FIGS. 7(c) and (d), the incident angle deviation Δθ l of the left beam BM l and the deviation of the right beam BM r so that the spatial frequency ν x of the monitoring interference fringe in the x direction becomes zero. The angle of incidence deviation Δθ r is adjusted. When all deviations approach zero, the interference fringes disappear and the intensity distribution becomes uniform.
 つまり演算処理装置230は、イメージセンサ220によって得られる画像の強度分布が均一となるように、第1ミラーM1および第2ミラーM2の状態を制御すればよい。このアライメントが完了した時点で、Δφ+Δφ≒0、Δθ≒Δθ≒0となっている。このアライメントに際しては、演算処理装置230は、必ずしも、ズレ量Δφ,Δφ,Δθ,Δθを計算する必要はない。 In other words, the arithmetic processing unit 230 may control the states of the first mirror M1 and the second mirror M2 so that the intensity distribution of the image obtained by the image sensor 220 is uniform. When this alignment is completed, Δφ l +Δφ r ≒0 and Δθ l ≒Δθ r ≒0. At the time of this alignment, the arithmetic processing unit 230 does not necessarily need to calculate the deviation amounts Δφ l , Δφ r , Δθ l , and Δθ r .
 またアライメントが完了した時点で、露光用干渉縞のy軸とのずれ角αはゼロとなる。つまり、露光プロセスにおいて、ワークWを、y軸方向にスキャンすればよい。 Furthermore, when alignment is completed, the deviation angle α of the exposure interference fringes from the y-axis becomes zero. That is, in the exposure process, the workpiece W may be scanned in the y-axis direction.
 露光用干渉縞のピッチpについては、校正処理例1で説明したように、式(7)から計算し、横送り量を決めてもよい。あるいは、以下で説明する、ビームスプリッタのシフト処理によってピッチpを計測することができる。 The pitch p x of the interference fringes for exposure may be calculated from equation (7) as described in the first example of the calibration process, and the amount of lateral movement may be determined. Alternatively, the pitch p x can be measured by beam splitter shift processing, which will be described below.
 図8は、計測用ビームスプリッタ212のシフトによるピッチpの測定を説明する図である。校正プロセスにおいて、ステージ130は、スプリット面214を、x=0からx=d’にシフトさせる。このシフトによって、左ビームBMと右ビームBMの経路差が発生し、その距離はΔL=2d’sinθとなる。ただし、θ=θ+Δθである。このときの位相差ψ(d’)は、式(16)で表される。
Figure JPOXMLDOC01-appb-M000011
FIG. 8 is a diagram illustrating measurement of the pitch p x by shifting the measurement beam splitter 212. In the calibration process, stage 130 shifts split plane 214 from x=0 to x=d'. This shift causes a path difference between the left beam BM l and the right beam BM r , and the distance becomes ΔL=2d'sinθ r . However, θ r =θ+Δθ r . The phase difference ψ(d') at this time is expressed by equation (16).
Figure JPOXMLDOC01-appb-M000011
 モニター用干渉縞の強度は、式(17)で表され、z=d’を代入すると、式(18)を得る。
Figure JPOXMLDOC01-appb-M000012
The intensity of the monitoring interference fringe is expressed by equation (17), and by substituting z=d', equation (18) is obtained.
Figure JPOXMLDOC01-appb-M000012
 左右のビームの入射角を理想状態(θ=θ,Δφ=Δφ=0)に調節したときの光の強度は、式(19)となる。
Figure JPOXMLDOC01-appb-M000013
The light intensity when the incident angles of the left and right beams are adjusted to the ideal state (θ lr , Δφ l =Δφ r =0) is expressed by equation (19).
Figure JPOXMLDOC01-appb-M000013
 したがって、d’がpの整数倍となるときに、強度I(d’)は干渉によって強めあう。そこで、光学系120のアライメントの完了後に、ステージ130によって、計測用ビームスプリッタ212をx軸方向にスキャンし、強度I(d’)のピークとピークの距離を測定することにより、ピッチpを計測することができる。 Therefore, when d' becomes an integer multiple of px , the intensities I(d') are reinforced by interference. Therefore, after completing the alignment of the optical system 120, the stage 130 scans the measurement beam splitter 212 in the x-axis direction and measures the distance between the peaks of the intensity I(d'), thereby determining the pitch p It can be measured.
(実施形態2)
 図9は、実施形態2に係る干渉露光装置100Bを示す図である。干渉露光装置100Bの基本構成は図1と同様であり、干渉縞モニター装置200Bの構成が異なる。
(Embodiment 2)
FIG. 9 is a diagram showing an interference exposure apparatus 100B according to the second embodiment. The basic configuration of the interference exposure apparatus 100B is the same as that in FIG. 1, and the configuration of the interference fringe monitoring device 200B is different.
 干渉縞モニター装置200Bは、合波素子210として、回折格子216を含む。回折格子216は、ステージ130上の、ワークWを載置する領域に隣接した位置に設けられる。校正プロセスでは、ステージ130によって回折格子216が照射エリア132に位置決めされる。このとき、回折格子216の溝は、y方向と一致するように配置される。 The interference fringe monitoring device 200B includes a diffraction grating 216 as a multiplexing element 210. Diffraction grating 216 is provided on stage 130 at a position adjacent to the area where workpiece W is placed. In the calibration process, the stage 130 positions the diffraction grating 216 in the illumination area 132 . At this time, the grooves of the diffraction grating 216 are arranged to coincide with the y direction.
 図10は、校正プロセスにおける回折格子216を示す図である。この例では、回折格子216は反射型であり、入射角θである左ビームBMと入射角θである右ビームBMを同じ方向に反射して合波する。イメージセンサ220は、校正プロセスにおいて、回折格子216によって合波された合波ビームBMl+rの強度分布を測定する。 FIG. 10 is a diagram showing the diffraction grating 216 during the calibration process. In this example, the diffraction grating 216 is of a reflective type, and reflects and combines the left beam BM l having an incident angle θ l and the right beam BM r having an incident angle θ r in the same direction. The image sensor 220 measures the intensity distribution of the combined beam BM l+r combined by the diffraction grating 216 in the calibration process.
 なお、回折格子216は透過型であってもよく、その場合、イメージセンサ220は、回折格子216よりも下側に設けられる。 Note that the diffraction grating 216 may be of a transmission type, in which case the image sensor 220 is provided below the diffraction grating 216.
 校正プロセスにおいて、イメージセンサ220によって観測される強度分布について説明する。 In the calibration process, the intensity distribution observed by the image sensor 220 will be explained.
 図11は、回折格子216によるビームの合波を説明する図である。回折格子216の表面218がz=0のxy平面と一致し、回折格子216の格子の方向が、y軸方向となるように、座標系を定める。回折格子216は、露光ピッチの2倍の格子間隔(周期)dを有する。グレーティングベクトルKは、式(20)で表される。
 K=2π/d(1,0,0)   …(20)
となる。
FIG. 11 is a diagram illustrating beam combination by the diffraction grating 216. A coordinate system is determined so that the surface 218 of the diffraction grating 216 coincides with the xy plane of z=0, and the grating direction of the diffraction grating 216 is in the y-axis direction. The diffraction grating 216 has a grating interval (period) d that is twice the exposure pitch. The grating vector K is expressed by equation (20).
K=2π/d(1,0,0)...(20)
becomes.
 k'は、回折格子216により回折された左ビームBMの波数ベクトルを表し、k'は、回折格子216により回折された右ビームBMの波数ベクトルを表す。波数ベクトルk'、k'は、式(21),(22)で表される。mは回折次数である。
Figure JPOXMLDOC01-appb-M000014
k l ' represents the wave number vector of the left beam BM l diffracted by the diffraction grating 216, and k r ' represents the wave number vector of the right beam BM r diffracted by the diffraction grating 216. The wave number vectors k l ′ and k r ′ are expressed by equations (21) and (22). m is the diffraction order.
Figure JPOXMLDOC01-appb-M000014
 左ビームBMに関して-1次光を、右ビームBMに関して+1次光を用いるとすると、波数ベクトルk'、k'は、式(23),(24)で表される。
Figure JPOXMLDOC01-appb-M000015
Assuming that −1st-order light is used for the left beam BM l and +1st-order light is used for the right beam BM r , the wave number vectors k l ′ and k r ′ are expressed by equations (23) and (24).
Figure JPOXMLDOC01-appb-M000015
 回折格子216の上側に置かれたイメージセンサ220の計測面を配置するとき、測定される合波ビームBMl+rの強度分布I(x,y)は、式(25)で表される。
Figure JPOXMLDOC01-appb-M000016
When the measurement surface of the image sensor 220 is placed above the diffraction grating 216, the intensity distribution I(x,y) of the combined beam BM l+r to be measured is expressed by equation (25).
Figure JPOXMLDOC01-appb-M000016
 式(25)から分かるように、測定される強度分布I(x,y)は、ビームBM,BMの理想導波方向からのずれΔθ,Δθ,Δφ,Δφに応じて変化する。 As can be seen from equation (25), the measured intensity distribution I(x, y) varies depending on the deviations Δθ l , Δθ r , Δφ l , Δφ r of the beams BM l , BM r from the ideal waveguide direction. Change.
 計測面のy方向の空間周波数νは、式(26)で表される。
Figure JPOXMLDOC01-appb-M000017
The spatial frequency ν y of the measurement surface in the y direction is expressed by equation (26).
Figure JPOXMLDOC01-appb-M000017
 また角度ずれα’は、Y方向の空間周波数νを用いて、式(27)で表される。ν=0のとき、α’=0となる。
Figure JPOXMLDOC01-appb-M000018
Further, the angular shift α' is expressed by equation (27) using the spatial frequency ν y in the Y direction. When ν y =0, α'=0.
Figure JPOXMLDOC01-appb-M000018
 計測面のx方向の空間周波数νは、式(28)で表される。
Figure JPOXMLDOC01-appb-M000019

 ν=0のとき、d=2p=λ/sinθを用いて式(28)を整理すると、式(29)を得る。
Figure JPOXMLDOC01-appb-M000020

 式(29)は、Δθ=Δθ=0のときに明示的に成り立つ。その他の解としては、入射角θが90度に近い場合にのみ、非ゼロのΔθ,Δθの解が存在しうるため、装置をこの解を除外するように構成すればよい。
The spatial frequency ν x in the x direction of the measurement surface is expressed by equation (28).
Figure JPOXMLDOC01-appb-M000019

When ν x =0, by rearranging equation (28) using d=2p x =λ/sin θ, equation (29) is obtained.
Figure JPOXMLDOC01-appb-M000020

Equation (29) explicitly holds true when Δθ l =Δθ r =0. As other solutions, solutions for non-zero Δθ l and Δθ r may exist only when the incident angle θ is close to 90 degrees, so the apparatus may be configured to exclude this solution.
 かくして、x方向の空間周波数νがゼロとなるように、つまりイメージセンサ220で測定される強度が均一となるように、光学系120をアライメントすれば、Δθ=Δθ=0となることが保証され、そのとき、θ=sin-1(λ/d)となる。 Thus, if the optical system 120 is aligned so that the spatial frequency ν x in the x direction is zero, that is, the intensity measured by the image sensor 220 is uniform, Δθ l =Δθ r =0. is guaranteed, and then θ=sin −1 (λ/d).
 モニター用干渉縞のピッチは、式(30)から計算できる。
Figure JPOXMLDOC01-appb-M000021

 ν=0となるようにアライメントした状態では、ピッチはpx’=d/2となる。
The pitch of the interference fringes for monitoring can be calculated from equation (30).
Figure JPOXMLDOC01-appb-M000021

When aligned so that ν x =0, the pitch is p x' = d/2.
(変形例)
 図12は、変形例に係る干渉露光装置100Aaを示す図である。この変形例は、図1の干渉露光装置100Aの変形であり、露光用分波素子122として、ビームスプリッタに代えて、露光用回折格子G1が使用される。その他は実施形態1と同様である。なお、同様にして図9の干渉露光装置100Bにおいて、露光用分波素子122として露光用回折格子G1を用いることも可能である。
(Modified example)
FIG. 12 is a diagram showing an interference exposure apparatus 100Aa according to a modification. This modification is a modification of the interference exposure apparatus 100A shown in FIG. 1, and an exposure diffraction grating G1 is used as the exposure demultiplexing element 122 instead of the beam splitter. The rest is the same as in the first embodiment. Similarly, in the interference exposure apparatus 100B of FIG. 9, it is also possible to use the exposure diffraction grating G1 as the exposure demultiplexing element 122.
 本開示に係る実施形態について、具体的な用語を用いて説明したが、この説明は、理解を助けるための例示に過ぎず、本開示あるいは請求の範囲を限定するものではない。本発明の範囲は、請求の範囲によって規定されるものであり、したがって、ここでは説明しない実施形態、実施例、変形例も、本発明の範囲に含まれる。 Although the embodiments of the present disclosure have been described using specific terms, this description is merely an example to aid understanding, and does not limit the scope of the present disclosure or claims. The scope of the present invention is defined by the claims, and therefore embodiments, examples, and modifications not described here are also included within the scope of the present invention.
 W ワーク
 100 干渉露光装置
 110 レーザ光源
 120 光学系
 122 露光用分波素子
 BS1 露光用ビームスプリッタ
 G1 露光用回折格子
 124 拡大光学系
 126 拡大光学系
 130 ステージ
 200 干渉縞モニター装置
 210 合波素子
 212 ビームスプリッタ
 214 スプリット面
 216 回折格子
 220 イメージセンサ
 230 演算処理装置
W Work 100 Interference exposure device 110 Laser light source 120 Optical system 122 Exposure splitting element BS1 Exposure beam splitter G1 Exposure diffraction grating 124 Enlargement optical system 126 Enlargement optical system 130 Stage 200 Interference fringe monitor device 210 Multiplexing element 212 Beam splitter 214 Split surface 216 Diffraction grating 220 Image sensor 230 Arithmetic processing unit

Claims (13)

  1.  ワークを露光用干渉縞によってパターニングする干渉露光装置であって、
     レーザ光源から出射したコヒーレント光を、第1ビームと第2ビームに分岐する分波素子を含み、前記第1ビームおよび前記第2ビームを交差させて照射エリアに照射する光学系と、
     校正プロセスにおいて、前記照射エリアに配置可能であり、前記第1ビームと前記第2ビームを合波する合波素子と、
     前記校正プロセスにおいて、前記合波素子によって合波された合波ビームの強度分布を測定するイメージセンサと、
     を備えることを特徴とする干渉露光装置。
    An interference exposure device that patterns a workpiece using interference fringes for exposure,
    an optical system that includes a splitting element that branches coherent light emitted from a laser light source into a first beam and a second beam, and that crosses the first beam and the second beam and irradiates the irradiation area;
    In the calibration process, a combining element that can be placed in the irradiation area and combines the first beam and the second beam;
    In the calibration process, an image sensor that measures the intensity distribution of the combined beam combined by the multiplexing element;
    An interference exposure apparatus comprising:
  2.  露光プロセスにおいて、前記照射エリアを通過するように前記ワークを移動させることが可能なステージをさらに備え、
     前記合波素子は、前記ステージ上の、前記ワークを載置する領域と隣接した位置に設けられることを特徴とする請求項1に記載の干渉露光装置。
    In the exposure process, further comprising a stage capable of moving the workpiece so as to pass through the irradiation area,
    2. The interference exposure apparatus according to claim 1, wherein the multiplexing element is provided on the stage at a position adjacent to an area where the workpiece is placed.
  3.  前記合波素子は、前記校正プロセスにおいて、前記照射エリアに、そのスプリット面が前記ワークの表面と垂直な状態で配置可能な計測用ビームスプリッタであることを特徴とする請求項1または2に記載の干渉露光装置。 3. The multiplexing element is a measurement beam splitter that can be placed in the irradiation area in the calibration process with its split surface perpendicular to the surface of the workpiece. interference exposure equipment.
  4.  前記合波素子は、前記校正プロセスにおいて、前記照射エリアに、その回折面がワークの表面と平行な状態で配置可能な回折格子であることを特徴とする請求項1または2に記載の干渉露光装置。 The interference exposure according to claim 1 or 2, wherein the multiplexing element is a diffraction grating that can be placed in the irradiation area in the calibration process with its diffraction surface parallel to the surface of the workpiece. Device.
  5.  前記回折格子は、前記露光用干渉縞のピッチの2倍の周期を有することを特徴とする請求項4に記載の干渉露光装置。 The interference exposure apparatus according to claim 4, wherein the diffraction grating has a period twice the pitch of the exposure interference fringes.
  6.  前記イメージセンサによって測定された強度分布にもとづいて、前記第1ビームの前記照射エリアへの入射角および前記第2ビームの前記照射エリアへの入射角を調節する演算処理装置をさらに備えることを特徴とする請求項1または2に記載の干渉露光装置。 The method further includes a calculation processing device that adjusts the angle of incidence of the first beam onto the irradiation area and the angle of incidence of the second beam onto the irradiation area based on the intensity distribution measured by the image sensor. The interference exposure apparatus according to claim 1 or 2.
  7.  前記演算処理装置は、前記イメージセンサによって測定された強度分布が均一となるように、前記第1ビームの前記照射エリアへの入射角および前記第2ビームの前記照射エリアへの入射角を調節することを特徴とする請求項6に記載の干渉露光装置。 The arithmetic processing unit adjusts the angle of incidence of the first beam onto the irradiation area and the angle of incidence of the second beam onto the irradiation area so that the intensity distribution measured by the image sensor becomes uniform. The interference exposure apparatus according to claim 6, characterized in that:
  8.  前記イメージセンサによって測定された強度分布にもとづいて、前記第1ビームの前記照射エリアへの入射角および前記第2ビームの前記照射エリアへの入射角を調節する演算処理装置をさらに備え、
     前記ワークの表面をxy平面、前記計測用ビームスプリッタの前記スプリット面をyz平面とする座標系をとったときに、前記演算処理装置は、前記イメージセンサによって測定されたモニター用干渉縞のy方向のピッチが大きくなるように、前記第1ビームのz軸周りのずれ角Δφおよび前記第2ビームのz軸周りのずれ角Δφを変化させることを特徴とする請求項3に記載の干渉露光装置。
    further comprising an arithmetic processing device that adjusts an incident angle of the first beam to the irradiation area and an incident angle of the second beam to the irradiation area based on the intensity distribution measured by the image sensor,
    When taking a coordinate system in which the surface of the workpiece is an xy plane and the split surface of the measurement beam splitter is a yz plane, the arithmetic processing unit is configured to calculate the y direction of the monitor interference fringe measured by the image sensor. The interference according to claim 3, characterized in that the deviation angle Δφ l of the first beam around the z-axis and the deviation angle Δφ r of the second beam around the z-axis are changed so that the pitch of the interference beam increases. Exposure equipment.
  9.  前記演算処理装置は、前記モニター用干渉縞のx方向のピッチが大きくなるように、前記第1ビームの入射角θおよび前記第2ビームの入射角θを変化させることを特徴とする請求項8に記載の干渉露光装置。 The arithmetic processing device changes the incident angle θ l of the first beam and the incident angle θ r of the second beam so that the pitch of the monitoring interference fringes in the x direction increases. Item 8. Interference exposure apparatus according to item 8.
  10.  前記演算処理装置は、前記計測用ビームスプリッタをx方向に移動させたときの、前記イメージセンサによって測定される前記合波ビームの強度の変化にもとづいて、前記露光用干渉縞のピッチを計算することを特徴とする請求項8に記載の干渉露光装置。 The arithmetic processing unit calculates the pitch of the exposure interference fringes based on a change in the intensity of the combined beam measured by the image sensor when the measurement beam splitter is moved in the x direction. The interference exposure apparatus according to claim 8, characterized in that:
  11.  前記イメージセンサによって測定された強度分布にもとづいて、前記第1ビームの入射角のずれおよび前記第2ビームの入射角のずれの少なくともひとつを計算する演算処理装置をさらに備えることを特徴とする請求項1または2に記載の干渉露光装置。 The method further comprises an arithmetic processing device that calculates at least one of an incident angle deviation of the first beam and an incident angle deviation of the second beam based on the intensity distribution measured by the image sensor. 3. The interference exposure apparatus according to item 1 or 2.
  12.  前記光学系は、
     前記第1ビームの照射方向を制御可能な第1ミラーと、
     前記第2ビームの照射方向を制御可能な第2ミラーと、
     をさらに含むことを特徴とする請求項1または2に記載の干渉露光装置。
    The optical system is
    a first mirror capable of controlling the irradiation direction of the first beam;
    a second mirror capable of controlling the irradiation direction of the second beam;
    The interference exposure apparatus according to claim 1 or 2, further comprising the following.
  13.  デバイスの製造方法であって、
     レーザから出射したコヒーレント光を、第1ビームと第2ビームに分岐し、前記第1ビームおよび前記第2ビームを交差させて照射エリアに照射するステップと、
     校正プロセスにおいて、前記照射エリアに配置された合波素子によって、前記第1ビームと前記第2ビームを合波するステップと、
     前記校正プロセスにおいて、前記合波素子によって合波された合波ビームの強度分布をイメージセンサによって測定するステップと、
     前記校正プロセスにおいて、前記イメージセンサにより測定した前記強度分布にもとづいて、前記第1ビームと前記第2ビームの前記照射エリアに対する入射角を調節するステップと、
     前記校正プロセスの完了後の露光プロセスにおいて、ワークを、前記照射エリアを通過するように所定方向に移動するステップと、
     を備えることを特徴とする製造方法。
    A method for manufacturing a device, the method comprising:
    branching the coherent light emitted from the laser into a first beam and a second beam, intersecting the first beam and the second beam and irradiating the irradiation area;
    In the calibration process, combining the first beam and the second beam by a combining element arranged in the irradiation area;
    In the calibration process, measuring the intensity distribution of the combined beam combined by the combining element using an image sensor;
    In the calibration process, adjusting the angle of incidence of the first beam and the second beam with respect to the irradiation area based on the intensity distribution measured by the image sensor;
    In an exposure process after completion of the calibration process, moving the workpiece in a predetermined direction so as to pass through the irradiation area;
    A manufacturing method characterized by comprising:
PCT/JP2023/009215 2022-04-28 2023-03-10 Interference exposure apparatus and device manufacturing method WO2023210181A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-074836 2022-04-28
JP2022074836A JP2023163737A (en) 2022-04-28 2022-04-28 Interference exposure device and method of manufacturing device

Publications (1)

Publication Number Publication Date
WO2023210181A1 true WO2023210181A1 (en) 2023-11-02

Family

ID=88518497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009215 WO2023210181A1 (en) 2022-04-28 2023-03-10 Interference exposure apparatus and device manufacturing method

Country Status (2)

Country Link
JP (1) JP2023163737A (en)
WO (1) WO2023210181A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398608A (en) * 1986-10-15 1988-04-30 Sony Corp Manufacture of diffraction grating
WO2001035168A1 (en) * 1999-11-10 2001-05-17 Massachusetts Institute Of Technology Interference lithography utilizing phase-locked scanning beams
US20010035991A1 (en) * 2000-03-03 2001-11-01 Hobbs Douglas S. Actively stabilized, single input beam, interference lithography system and method
JP2013145863A (en) * 2011-11-29 2013-07-25 Gigaphoton Inc Two-beam interference apparatus and two-beam interference exposure system
CN103698836A (en) * 2013-12-17 2014-04-02 中国科学院长春光学精密机械与物理研究所 Method for precisely regulating direction of interference fringes in scanning exposure light path

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398608A (en) * 1986-10-15 1988-04-30 Sony Corp Manufacture of diffraction grating
WO2001035168A1 (en) * 1999-11-10 2001-05-17 Massachusetts Institute Of Technology Interference lithography utilizing phase-locked scanning beams
US20010035991A1 (en) * 2000-03-03 2001-11-01 Hobbs Douglas S. Actively stabilized, single input beam, interference lithography system and method
JP2013145863A (en) * 2011-11-29 2013-07-25 Gigaphoton Inc Two-beam interference apparatus and two-beam interference exposure system
CN103698836A (en) * 2013-12-17 2014-04-02 中国科学院长春光学精密机械与物理研究所 Method for precisely regulating direction of interference fringes in scanning exposure light path

Also Published As

Publication number Publication date
JP2023163737A (en) 2023-11-10

Similar Documents

Publication Publication Date Title
TWI448844B (en) Optical apparatus, method of scanning, lithographic apparatus and device manufacturing method
JP4065468B2 (en) Exposure apparatus and device manufacturing method using the same
US5151754A (en) Method and an apparatus for measuring a displacement between two objects and a method and an apparatus for measuring a gap distance between two objects
JP5849103B2 (en) Interferometric heterodyne optical encoder system
Shimizu Laser interference lithography for fabrication of planar scale gratings for optical metrology
TWI489081B (en) Low coherence interferometry using encoder systems
JP3364382B2 (en) Sample surface position measuring device and measuring method
TW201708984A (en) Alignment system
JPH03216519A (en) Displacement detector
JP3713354B2 (en) Position measuring device
WO2023210181A1 (en) Interference exposure apparatus and device manufacturing method
KR20220122730A (en) Optical design of compact overlay measurement systems
JP2017040583A (en) Measurement device, lithographic device and article production method
TW202405586A (en) Interference exposure device and method of manufacturing the device
JP7471938B2 (en) Ellipsometer and semiconductor device inspection device
US10942461B2 (en) Alignment measurement system
JP7215719B2 (en) Method and apparatus for measuring out-of-plane displacement distribution and three-dimensional shape of measurement object
JPH083404B2 (en) Alignment method
JP2002013919A (en) Plane shape measuring method for phase-shift interference fringe simultaneous photographing device
CN116295038B (en) Nanoscale two-dimensional displacement measuring device and method based on super-surface grating
JP3195018B2 (en) Complex reflectance measurement method and apparatus
JP3302164B2 (en) Positioning device
JP2677662B2 (en) Relative alignment method and device
JP7319524B2 (en) Pattern measuring method and apparatus
JP2885454B2 (en) Relative positioning method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795928

Country of ref document: EP

Kind code of ref document: A1