WO2023210029A1 - Method for checking mixing state of soil improving body - Google Patents

Method for checking mixing state of soil improving body Download PDF

Info

Publication number
WO2023210029A1
WO2023210029A1 PCT/JP2022/023924 JP2022023924W WO2023210029A1 WO 2023210029 A1 WO2023210029 A1 WO 2023210029A1 JP 2022023924 W JP2022023924 W JP 2022023924W WO 2023210029 A1 WO2023210029 A1 WO 2023210029A1
Authority
WO
WIPO (PCT)
Prior art keywords
improvement body
ground improvement
excavation
checking
mixing state
Prior art date
Application number
PCT/JP2022/023924
Other languages
French (fr)
Japanese (ja)
Inventor
碓井博文
Original Assignee
株式会社テノックス九州
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社テノックス九州 filed Critical 株式会社テノックス九州
Publication of WO2023210029A1 publication Critical patent/WO2023210029A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil

Definitions

  • the present invention relates to a method for checking the mixing state of a soil improvement body that can accurately check the stirring and mixing status of the soil improvement body in real time in parallel with stirring and mixing when creating the soil improvement body in the ground.
  • ground improvement method there is a deep mixing method that creates a ground improvement body in the ground by discharging cement slurry into the ground and mixing it with mechanical agitation.
  • the ground improvement method creates a vertical columnar ground improvement body in the ground by stirring and mixing the earth and sand that make up the ground and cement slurry.
  • check boring is performed to collect samples of the soil improvement body from the ground using a boring machine to confirm the condition of the soil improvement body.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2009-102892 proposes that after a soil improvement body is created in the ground and before the improvement material hardens, a camera is attached to a pipe rod to take pictures of the inside of the ground. By inserting a rod with an attached camera and displaying the image of the ground taken by the camera on a monitor on the ground, workers can visually confirm whether or not there is improvement material. Suggest a method to check.
  • Patent Document 2 Patent No. 6,944,605 discloses methods for (1) comparing the brightness of images taken before the improvement with images taken after the improvement, or (2) comparing the brightness of images taken before the improvement of the ground. We propose a method to check the condition of a ground improvement body by comparing it with known images of the condition.
  • Non-Patent Document 1 Japanese Building Center "2018 Edition Improvement Ground Design and Quality Control Guidelines for Buildings" states that by spraying a phenolphthalein solution during a stirring condition test, an alkaline reaction (red-purple ) is described.
  • the discoloration of phenolphthalein is caused by alkaline conditions of pH > 10.0, and is based on the fact that phenolphthalein discolors in areas where cement is present, and indicates the state of cement mixing.
  • an object of the present invention is to provide a method for checking the mixing state of a soil improvement body, which can accurately check the stirring and mixing status of the soil improvement body in real time in parallel with the stirring and mixing.
  • the method for checking the mixing state of a soil improvement body according to the first invention is as follows: A first step of preparing a cement slurry to which a water-soluble fluorescent dye is added; A second step of discharging cement slurry from the base of the excavation blade, mixing the discharged cement slurry with surrounding earth and sand, and constructing an unhardened ground improvement body; a third step of irradiating the ground improvement body with black light from a light source provided on the excavation wing at a depth where the excavation wing is located within the uncured ground improvement body; and a fourth step of measuring the reflected light of the black light at a depth where the excavation blade is located in the unhardened ground improvement body using a measuring instrument provided on the excavation blade.
  • the mixing state is good or bad based on the reflected light of the black light measured by the measuring device while the ground improvement body is in an uncured state.
  • the water-soluble fluorescent dye emits light smoothly when exposed to black light, allowing accurate recognition of its condition.
  • the results will not become unstable due to complicated processing or disturbance elements.
  • the measuring instrument may be a sensor that captures reflected light from the soil improvement body, or a camera that captures an image of the soil improvement body.
  • the wavelength of the black light is preferably 365 to 405 nanometers. In this way, a light source can be easily secured.
  • the luminescence rate based on the output of the measuring instrument.
  • the light source and the measuring device rotate along a circular trajectory centered on the rotation axis that rotates the excavation blade.
  • the positions of the light source and the measuring device within the rotational plane of the excavation blade are determined only by the rotation angle of the rotation axis, and stable measurements can be performed.
  • a ground improvement body can be constructed while accurately checking the stirring and mixing status of an unhardened ground improvement body in real time in parallel with excavation and agitation in the ground where excavation and agitation is performed. Therefore, the condition of the ground improvement body can be checked at the current excavation location without being adversely affected by the photographing conditions, the color of the soil, the level of lighting, etc., and is highly effective in practical use.
  • FIG. 1 is a side view of a ground improvement device according to an embodiment of the present invention
  • FIG. 2(a) is a schematic block diagram of the same excavation agitation device
  • FIG. 2(b) is a partially enlarged view of the same excavation agitation device.
  • the cross-sectional view and FIG. 3 are plan views of the same excavation stirring device.
  • this ground improvement device includes a base machine 1 that runs on the ground G, a leader 2 that stands up vertically, and a leader 2 that is movable up and down.
  • a drive unit 10 that is instructed to include an actuator such as a motor, a rotating shaft 3 that is given rotational force by the drive unit 10 and rotates horizontally about a vertical axis underground, and a rotating shaft 3 that is attached to the lower end of the rotating shaft 3. and a stirring head 4.
  • control unit 20 that controls the drive unit 10 is housed within the base machine 1.
  • FIG. 2(a) shows a portion of the ground improvement device shown in FIG. 1 that corresponds to the excavation stirring device.
  • the control section 20 outputs a control signal S1 to the drive section 10 to control the operating state of the drive section 10. Further, the control unit 20 inputs a measurement signal S2 including a state quantity (for example, rotation speed, drive current, resistance value to rotation, etc.) indicating the operation of the drive unit 10, and grasps the operation state.
  • a state quantity for example, rotation speed, drive current, resistance value to rotation, etc.
  • the stirring head 4 attached to the tip of the rotating shaft 3 is equipped with the following elements.
  • an excavating blade 5 that has claws 5a for excavating underground and excavating earth and sand, and this excavating blade 5 is pivotally attached to the rotating shaft 3.
  • the excavating blade 5 A storage chamber 5c that opens upward is provided by drilling a part of the storage chamber 5c.
  • a pair of a light source 6 and a measuring instrument 7 are housed, each facing upward.
  • the storage chamber 5c may be configured to open downward.
  • the light source 6 may be any type of fluorescent lamp, incandescent lamp, mercury lamp, or LED that irradiates the ground improvement body with black light (wavelength: 365 to 405 nanometers) underground, but LEDs are small and easy to use.
  • the measuring device 7 may be a sensor such as a fluorometer or a camera equipped with an image sensor, which measures the ground improvement body irradiated with black light from the light source 6. Note that the luminescence rate will be described later using FIGS. 5 and 6.
  • a transparent or translucent protective cover 8 is attached to the opening of the storage chamber 5c, so that the storage chamber 5c is sealed and the light source 6 and the measuring device 7 are protected from surrounding dirt, slurry, etc. be protected as such.
  • the protective cover 8 can be suitably constructed from a resin plate such as acrylic or a tempered glass plate. Therefore, the light source 6 and the measuring device 7 move up and down integrally with the excavation blade 5.
  • the stirring head 4 is provided with a stirring blade 12 and a co-rotation prevention blade 11 above the excavation blade 5, but these are not essential and may be omitted.
  • the stirring head 4 descends (when pulled down)
  • the excavating blade 5 goes first, followed by the stirring blade 12 and the co-rotation prevention blade 11.
  • the stirring blades 12 and anti-rotation blades 11 go first, and the excavating blades 5 follow last.
  • FIG. 4 is a block diagram of a control unit in an embodiment of the present invention. First, the light source 6, measuring device 7, drive section 10, etc. are as already described.
  • the storage unit 24 includes a storage such as a memory or a hard disk for storing a control program for realizing operations according to the flowchart of FIG. 7 and various data to be temporarily stored.
  • the control unit main body 21 is composed of a processor and the like, and executes a control program stored in the storage unit 24 to control peripheral elements.
  • the monitor 23 is a display that displays the operating status to the user.
  • the state quantity measurement unit 25 measures predetermined state quantities (depth, rotation speed, rotation angle, drive current, resistance value to rotation, etc.) based on the measurement signal S2 received from the drive unit 10, and stores the measured state quantities in the storage unit 24. Store.
  • the control signal generation unit 27 generates a control signal S1 to be output to the drive unit 10, and stores it in the storage unit 24.
  • the interface 22 is controlled by the control unit main body 21 and inputs and outputs the control signal S1 and the measurement signal S2 to the drive unit 10, turns on/off the light source 6, and receives the measurement value (measurement signal) from the measuring device 7. input.
  • the accommodation chamber 5c that accommodates the light source 6 and the measuring device 7 is located at a distance of radius r from the center of the rotation axis 3, and its width is t.
  • the trajectory 15 of the storage chamber 5c is as shown in FIG. 6(a).
  • the center O coincides with the center of the rotating shaft 3.
  • FIG. 6(a) the center O coincides with the center of the rotating shaft 3.
  • the luminous rate is the ratio (%) of the area where light is reflected, with the area hit by the black light emitted by the light source 6 being 100 (%), and is determined based on the measured value of the measuring device 7.
  • Ru is an index expressing the degree of mixing of the slurry and the earth and sand. Of course, the closer the luminescence rate is to 100 (%), the better the mixing degree is.
  • Luminous rate (l/L)*100(%) (1)
  • Luminous rate ( ⁇ /2 ⁇ ) * 100 (%) (2)
  • the state will be as shown in FIG. 6(c).
  • the hatched state and the unhatched state are shown as being continuous.
  • the state in which the measuring instrument 7 captures the reflected light and the state in which the measuring instrument 7 does not capture the reflected light are usually interchanged at random. Therefore, it must be understood that even if a hatched state and a non-hatched state occur randomly, this falls within the scope of protection of the present invention.
  • this numerical value is only an example, and it should be understood that even if a higher threshold value is used, it still falls within the protection scope of the present invention.
  • cement slurry is prepared as usual.
  • the type of cement can be selected as usual, and there are no particular restrictions here.
  • a water-soluble fluorescent dye is attached to the slurry.
  • Water-soluble fluorescent dyes include strontium fluoroborate (SrB4O7F:Eu2+, peak wavelength is 368-371 nm) with a trace amount of europium added, and barium silicide (BaSi2O5:Pb+, peak wavelength is 350-371 nm) with a trace amount of lead added. 353 nanometers), florescen, quinine sulfate, etc. can be suitably used.
  • fluorescent leakage testing agent for example, Super Glow Fluorescent Leakage Testing Agent DF-300 (trademark) manufactured by Marktec Co., Ltd.
  • concentration may be 0.05 to 20 (%). Note that there is usually no need to change the water-soluble fluorescent dye depending on the type of cement.
  • step 3 of FIG. 7 and FIG. Rotate. In this way, the excavating blade 5 is brought to the initial depth H1.
  • step 4 of FIG. 7 and FIG. 8(b) the slurry is discharged from the root of the excavation blade 5 downward from the initial depth H1, and excavation mixing is performed by the stirring head 4.
  • the water-soluble fluorescent dye will be mixed in the ground improvement body to be constructed as well.
  • the light source 6 is turned on and measurement is performed using the measuring instrument 7.
  • the luminous rate R (%) calculated by the luminous rate calculation unit 26 and the threshold value TH (in this example, 80 (%)) stored in the storage unit 24 are calculated by the control unit main body. 21 compares.
  • either of the above-mentioned equations (1) and (2) may be used, and further, equations equivalent to these may be used.
  • step 8 of FIG. 7 if the luminescence rate R is less than the threshold TH, the control unit main body 21 determines that the step condition is not satisfied and maintains the current position without lifting the excavation head 4. In the prior art, it can be said that such a check did not work, and the drilling head 4 was moved carelessly even when mixing was inherently insufficient. According to the present invention, when mixing is insufficient, stopping the step and continuing mixing (this operation is rational) can contribute to improving the quality of the constructed soil improvement body. .
  • step 8 of FIG. 7 if the luminous rate R is equal to or greater than the threshold value TH, the controller main body 21 determines that the stepping condition is satisfied, and pulls up the excavation head 4 to move the current position forward.
  • the control unit main body 21 determines that the stepping condition is not satisfied, or if the luminous rate R exceeds the threshold TH, the control unit main body 21 determines that the stepping condition is not satisfied. It should be understood that even if comparisons and substitutions well known to those skilled in the art are made, such as when the following conditions are satisfied, the invention still falls within the protection scope of the present invention.
  • the ground improvement body when pulling up, the ground improvement body can be constructed while accurately confirming the fact that the mixing at the current position of the excavation head 4 is being performed well using the luminescence rate at the site itself.
  • the practical effects can be said to be great.
  • the lifting work will not be unnecessarily delayed due to measurement, comparison, etc. of luminous efficiency.
  • the conventional technology it is virtually impossible to guarantee the quality of the mixing level at the same time as the soil improvement work.
  • a side view of a ground improvement device in an embodiment of the present invention (a) Schematic block diagram of an excavation agitation device in an embodiment of the present invention (b) Partially enlarged sectional view of an excavation agitation device in an embodiment of the present invention A plan view of an excavation stirring device in an embodiment of the present invention Block diagram of a control unit in an embodiment of the present invention Graph showing the relationship between luminescence rate and coefficient of variation in an embodiment of the present invention (a) Graph showing trajectories of the light source and measuring device in one embodiment of the present invention (b) Development diagram showing 100% luminescence rate in one embodiment of the present invention (c) In one embodiment of the present invention Developed view showing a luminous rate of 50% (d) Developed diagram showing a luminous rate of 80% in an embodiment of the present invention Flowchart showing the operation management operation of the ground improvement device in one embodiment of the present invention (a) Process explanatory diagram using an excavation stirring device according to an embodiment of the present invention (

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Soil Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

This method involves: a first step for preparing cement slurry to which a water-soluble fluorescent dye is added; a second step for discharging the cement slurry from the base of a digging blade, digging surrounding dirt and mixing surrounding dirt and the discharged cement slurry, and forming an uncured soil improving body; a third step for irradiating, with black light from a light source provided to the digging blade, a soil improving body at a depth at which the digging blade is located inside the uncured soil improving body; and a fourth step for measuring, by a measuring device provided to the digging blade, the reflection of the black light at a depth at which the digging blade is located inside the uncured soil improving body.

Description

地盤改良体の混合状態確認方法How to check the mixing status of soil improvement bodies
 本発明は、地盤中に地盤改良体を造成する際に地盤改良体の撹拌混合状況を、撹拌混合と並行してリアルタイムで正確に確認できる地盤改良体の混合状態確認方法に関するものである。 The present invention relates to a method for checking the mixing state of a soil improvement body that can accurately check the stirring and mixing status of the soil improvement body in real time in parallel with stirring and mixing when creating the soil improvement body in the ground.
 地盤改良工法として、地盤中にセメントスラリーを吐出して機械撹拌にて撹拌混合し、地盤中に地盤改良体を造成する深層混合処理工法などが知られている。地盤改良工法は、地盤を構成する土砂とセメントスラリーとを撹拌混合することで、地盤中に縦向き円柱状の地盤改良体を造成する。 As a ground improvement method, there is a deep mixing method that creates a ground improvement body in the ground by discharging cement slurry into the ground and mixing it with mechanical agitation. The ground improvement method creates a vertical columnar ground improvement body in the ground by stirring and mixing the earth and sand that make up the ground and cement slurry.
 地盤改良工法では、地盤改良体の造成後に、改良材が正しく撹拌混合しているかどうか(特に、セメントスラリーの半径方向における分布状態)、造成した地盤改良体が設計通りの径になっているかどうかが問題となる。地盤改良体は、地中に存在するため、地上からその状態を確認するのは、容易ではない。 In the ground improvement method, after the soil improvement body is created, it is important to check whether the improvement material is stirred and mixed correctly (especially the distribution of cement slurry in the radial direction), and whether the created soil improvement body has the diameter as designed. becomes a problem. Since the ground improvement body exists underground, it is not easy to check its condition from the ground.
 通常は、造成した地盤改良体においてセメントスラリーが硬化した後、ボーリングマシンを使用して地上から地盤改良体のサンプルを採取するチェックボーリングで行い、地盤改良体の状態の確認が行われる。 Normally, after the cement slurry has hardened in the constructed soil improvement body, check boring is performed to collect samples of the soil improvement body from the ground using a boring machine to confirm the condition of the soil improvement body.
 しかしながら、このようにすると、ボーリングマシンとともにその他多数の装置が必要になり、装置が大掛かりとなる。したがって、作業コストが高くなり、非常に手間がかかり、多大な時間を要する。 However, in this case, a large number of other devices are required in addition to the boring machine, making the device large-scale. Therefore, the work cost is high, it is very laborious, and it takes a lot of time.
 このような状態に鑑み、特許文献1(特開2009-102892号公報)は、地盤中に地盤改良体を造成した後、改良材が硬化する前に、管ロッドに地盤中を撮影するカメラを取り付けたカメラ付きロッドを挿入し、カメラで撮影した地盤中の様子を地上のモニターに表示し、作業者がモニターを見て改良材があるか否かを目視で確認することで、地盤改良体を確認する方法を提案する。 In view of this situation, Patent Document 1 (Japanese Unexamined Patent Publication No. 2009-102892) proposes that after a soil improvement body is created in the ground and before the improvement material hardens, a camera is attached to a pipe rod to take pictures of the inside of the ground. By inserting a rod with an attached camera and displaying the image of the ground taken by the camera on a monitor on the ground, workers can visually confirm whether or not there is improvement material. Suggest a method to check.
 地中は暗く、モニターに表示される画像は、不鮮明となりやすく、作業者の判断が、正しく行えない場合が多い。 It is dark underground, and images displayed on monitors tend to be unclear, making it difficult for workers to make accurate judgments.
 一方、特許文献2(特許第6944605号公報)は、(1)改良前の地盤に改良前に撮影した映像と改良後に撮影した画像明度を比較する、もしくは、(2)過去に撮影した地盤の様子の既知の画像と比較することで、地盤改良体の状態を確認する方法を提案する。 On the other hand, Patent Document 2 (Patent No. 6,944,605) discloses methods for (1) comparing the brightness of images taken before the improvement with images taken after the improvement, or (2) comparing the brightness of images taken before the improvement of the ground. We propose a method to check the condition of a ground improvement body by comparing it with known images of the condition.
 この方法によると、2つ以上の画像群を比較処理する必要があり、撮影後直ちに地盤改良体の状態を確認することができず、土の色(暗色)や照明の度合いにより、正確な判断が困難となりやすい。特に、(2)では、比較位置の違いにより、明るさや色味が変化しやすく、比較の精度が問題となる。 According to this method, it is necessary to compare and process two or more image groups, and it is not possible to check the condition of the ground improvement body immediately after shooting, and accurate judgment depends on the color of the soil (dark color) and the degree of lighting. can be difficult. In particular, in (2), brightness and color tend to change due to differences in comparison positions, which poses a problem in comparison accuracy.
 更には、非特許文献1(日本建築センター「2018年版建築物のための改良地盤の設計及び品質管理指針」)には、撹拌状況検査においてフェノールフタレイン溶液を噴霧することでアルカリ反応(赤紫色)を観察する手法が記載されている。 Furthermore, Non-Patent Document 1 (Japan Building Center "2018 Edition Improvement Ground Design and Quality Control Guidelines for Buildings") states that by spraying a phenolphthalein solution during a stirring condition test, an alkaline reaction (red-purple ) is described.
 フェノールフタレインの変色は、pH>10.0のアルカリ性の条件からなり、セメントが入っている箇所において、フェノールフタレインが変色する点を原理として、セメントの混合状態を示すものである。 The discoloration of phenolphthalein is caused by alkaline conditions of pH > 10.0, and is based on the fact that phenolphthalein discolors in areas where cement is present, and indicates the state of cement mixing.
 しかしながら、地盤内において地盤改良体を構築する途中においてフェノールフタレインを噴霧し、観察することは、困難である。 However, it is difficult to spray and observe phenolphthalein during the construction of a soil improvement body in the ground.
 以上いずれの手法を用いても、地盤中に地盤改良体を造成する際に地盤改良体の撹拌混合状況を、撹拌混合と並行してリアルタイムで正確に確認することは困難である。
特開2009-102892号公報 特許第6944605号公報 日本建築センター「2018年版建築物のための改良地盤の設計及び品質管理指針」
No matter which method is used, it is difficult to accurately check the stirring and mixing status of the soil improvement body in real time in parallel with the stirring and mixing when the soil improvement body is created in the ground.
Japanese Patent Application Publication No. 2009-102892 Patent No. 6944605 Japan Building Center "2018 Edition Design and Quality Control Guidelines for Improved Ground for Buildings"
 そこで本発明は、地盤改良体の撹拌混合状況を、撹拌混合と並行してリアルタイムで正確に確認できる、地盤改良体の混合状態確認方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for checking the mixing state of a soil improvement body, which can accurately check the stirring and mixing status of the soil improvement body in real time in parallel with the stirring and mixing.
 第1の発明に係る地盤改良体の混合状態確認方法は、
 水溶性蛍光染料が添加されたセメントスラリーを用意する第1工程と、
 セメントスラリーを掘削翼の根元から吐出し、吐出されたセメントスラリーと周囲の土砂とを掘削混合し、未硬化の地盤改良体を構築する第2工程と、
 掘削翼に設けた光源から未硬化の地盤改良体内であって掘削翼が位置する深さにおいて、地盤改良体にブラックライトを照射する第3工程と、
 掘削翼に設けた計測器で未硬化の地盤改良体内であって掘削翼が位置する深さにおいて、ブラックライトの反射光を計測する第4工程とを含む。
The method for checking the mixing state of a soil improvement body according to the first invention is as follows:
A first step of preparing a cement slurry to which a water-soluble fluorescent dye is added;
A second step of discharging cement slurry from the base of the excavation blade, mixing the discharged cement slurry with surrounding earth and sand, and constructing an unhardened ground improvement body;
a third step of irradiating the ground improvement body with black light from a light source provided on the excavation wing at a depth where the excavation wing is located within the uncured ground improvement body;
and a fourth step of measuring the reflected light of the black light at a depth where the excavation blade is located in the unhardened ground improvement body using a measuring instrument provided on the excavation blade.
 ここで、以上の構成によれば、地盤改良体が未硬化の状態にある内に、計測器が計測するブラックライトの反射光に基づいて、混合状態の良否を決定できる。この際、ボーリングマシン等の大掛かりな装置を追加する必要はない。また、地中であっても、ブラックライトが照射された水溶性蛍光染料は円滑に発光し、状態を正しく認識できる。更には、複雑な処理や、外乱要素により、結果が不安定になることもない。 Here, according to the above configuration, it is possible to determine whether the mixing state is good or bad based on the reflected light of the black light measured by the measuring device while the ground improvement body is in an uncured state. At this time, there is no need to add large-scale equipment such as a boring machine. Moreover, even underground, the water-soluble fluorescent dye emits light smoothly when exposed to black light, allowing accurate recognition of its condition. Furthermore, the results will not become unstable due to complicated processing or disturbance elements.
 ここで、計測器は、地盤改良体からの反射光を捉えるセンサであっても良いし、地盤改良体の画像を撮影するカメラであっても良い。 Here, the measuring instrument may be a sensor that captures reflected light from the soil improvement body, or a camera that captures an image of the soil improvement body.
 ブラックライトの波長は、365乃至405ナノメートルであることが好ましい。こうすれば、光源を容易に確保できる。 The wavelength of the black light is preferably 365 to 405 nanometers. In this way, a light source can be easily secured.
 更に、計測器の出力に基づいて発光率を求めるのが好ましい。 Further, it is preferable to determine the luminescence rate based on the output of the measuring instrument.
 また、発光率と所定閾値とを比較して、混合状態の良否を決定すると更に好ましい。 Furthermore, it is more preferable to compare the luminescence rate with a predetermined threshold value to determine whether the mixed state is good or bad.
 光源及び計測器は、掘削翼を回転させる回転軸を中心とする円軌道に沿って回転するのが望ましい。 It is preferable that the light source and the measuring device rotate along a circular trajectory centered on the rotation axis that rotates the excavation blade.
 こうすると、回転軸の回転角のみで、掘削翼の回転面内における光源及び計測器の位置が定まり、安定した計測を行える。 In this way, the positions of the light source and the measuring device within the rotational plane of the excavation blade are determined only by the rotation angle of the rotation axis, and stable measurements can be performed.
 本発明によれば、掘削撹拌が行われる地中において、未硬化の地盤改良体の撹拌混合状況を、掘削撹拌と並行してリアルタイムで正確に確認しながら、地盤改良体を構築できる。よって、撮影状況の如何や、土の色、照明の度合い等による、悪影響を受けずに、地盤改良体の状況を掘削の現位置で実施でき、実用上の効果が高い。 According to the present invention, a ground improvement body can be constructed while accurately checking the stirring and mixing status of an unhardened ground improvement body in real time in parallel with excavation and agitation in the ground where excavation and agitation is performed. Therefore, the condition of the ground improvement body can be checked at the current excavation location without being adversely affected by the photographing conditions, the color of the soil, the level of lighting, etc., and is highly effective in practical use.
 以下図面を参照しながら、本発明の実施の形態を説明する。図1は、本発明の一実施の形態における地盤改良装置の側面図、図2(a)は、同掘削撹拌装置の概略ブロック図、図2(b)は、同掘削撹拌装置の一部拡大断面図、図3は、同掘削撹拌装置の平面図である。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a side view of a ground improvement device according to an embodiment of the present invention, FIG. 2(a) is a schematic block diagram of the same excavation agitation device, and FIG. 2(b) is a partially enlarged view of the same excavation agitation device. The cross-sectional view and FIG. 3 are plan views of the same excavation stirring device.
 図1に示すように、この地盤改良装置は、地面G上を走行するベースマシン1と、ベースマシン1の前方に配置され、作動時には、垂直に起立するリーダ2と、リーダ2に昇降自在に指示される、モータなどのアクチュエータを備える駆動部10と、駆動部10により回転力を付与され、地中において鉛直軸を中心に水平回転する回転軸3と、回転軸3の下端部に取り付けられる撹拌ヘッド4とを備える。 As shown in Fig. 1, this ground improvement device includes a base machine 1 that runs on the ground G, a leader 2 that stands up vertically, and a leader 2 that is movable up and down. A drive unit 10 that is instructed to include an actuator such as a motor, a rotating shaft 3 that is given rotational force by the drive unit 10 and rotates horizontally about a vertical axis underground, and a rotating shaft 3 that is attached to the lower end of the rotating shaft 3. and a stirring head 4.
 また、駆動部10を制御する制御部20は、ベースマシン1内に収納されている。 Furthermore, a control unit 20 that controls the drive unit 10 is housed within the base machine 1.
 図2(a)は、図1に示した地盤改良装置のうち、掘削撹拌装置に該当する部分を取り出して表記したものである。制御部20は、駆動部10へ制御信号S1を出力し、駆動部10の動作状態を制御する。また、制御部20は、駆動部10の動作を示す状態量(例えば、回転速度、駆動電流、回転への抵抗値等)を含む計測信号S2を入力し動作状態を把握する。 FIG. 2(a) shows a portion of the ground improvement device shown in FIG. 1 that corresponds to the excavation stirring device. The control section 20 outputs a control signal S1 to the drive section 10 to control the operating state of the drive section 10. Further, the control unit 20 inputs a measurement signal S2 including a state quantity (for example, rotation speed, drive current, resistance value to rotation, etc.) indicating the operation of the drive unit 10, and grasps the operation state.
 回転軸3の先端部に取り付けられる撹拌ヘッド4には、次の要素が備えられる。まず、撹拌ヘッド4の下端部には、地中を掘削する爪5aを有し、土砂を掘削する掘削翼5が設けられ、この掘削翼5は、回転軸3に軸着される。また、図2(b)に拡大して示すように、掘削翼5の上面5bであって、回転軸3の中心から半径rだけ離れた位置(図3も参照。)には、掘削翼5の一部を穿設して、上方に開口する収容室5cが開設されている。 The stirring head 4 attached to the tip of the rotating shaft 3 is equipped with the following elements. First, at the lower end of the stirring head 4, there is provided an excavating blade 5 that has claws 5a for excavating underground and excavating earth and sand, and this excavating blade 5 is pivotally attached to the rotating shaft 3. Further, as shown in an enlarged view in FIG. 2(b), on the upper surface 5b of the excavating blade 5, at a position away from the center of the rotating shaft 3 by a radius r (see also FIG. 3), the excavating blade 5 A storage chamber 5c that opens upward is provided by drilling a part of the storage chamber 5c.
 収容室5cの内部には、それぞれ上向きに、光源6と計測器7とのペアが収納される。なお、収納室5cは、下向きに開口するように構成しても良い。光源6は、地中において地盤改良体にブラックライト(波長:365乃至405ナノメートル)を照射する蛍光灯、白熱電球、水銀灯、LEDのいずれのタイプでも良いが、LEDが小型で使用しやすい。計測器7は、光源6によりブラックライトが照射される地盤改良体を計測する、蛍光光度計などのセンサ又は撮像素子を備えるカメラのいずれであっても良い。なお、発光率については、図5、図6を用いて後述する。 Inside the accommodation chamber 5c, a pair of a light source 6 and a measuring instrument 7 are housed, each facing upward. Note that the storage chamber 5c may be configured to open downward. The light source 6 may be any type of fluorescent lamp, incandescent lamp, mercury lamp, or LED that irradiates the ground improvement body with black light (wavelength: 365 to 405 nanometers) underground, but LEDs are small and easy to use. The measuring device 7 may be a sensor such as a fluorometer or a camera equipped with an image sensor, which measures the ground improvement body irradiated with black light from the light source 6. Note that the luminescence rate will be described later using FIGS. 5 and 6.
 更に、収容室5cの開口部には、透明又は半透明の保護カバー8が取り付けられることにより、収納室5cは封止され、光源6及び計測器7は、周囲の土砂やスラリーなどが付着しないように保護される。保護カバー8は、アクリル等の樹脂板又は強化ガラスの板により好適に構成できる。したがって、光源6と計測器7とは、掘削翼5と一体的に昇降する。 Furthermore, a transparent or translucent protective cover 8 is attached to the opening of the storage chamber 5c, so that the storage chamber 5c is sealed and the light source 6 and the measuring device 7 are protected from surrounding dirt, slurry, etc. be protected as such. The protective cover 8 can be suitably constructed from a resin plate such as acrylic or a tempered glass plate. Therefore, the light source 6 and the measuring device 7 move up and down integrally with the excavation blade 5.
 図2(a)に示すように、撹拌ヘッド4には、掘削翼5の上方に、撹拌翼12や供回り防止翼11を設けるのが望ましいが、これらは必須ではなく、省略してもよい。ここで、撹拌ヘッド4が下降する際(引き下げ時)には、掘削翼5が先行し、その後に撹拌翼12や供回り防止翼11が続くことになる。逆に、撹拌ヘッド4が上昇する際(引き上げ時)には、撹拌翼12や供回り防止翼11が先行し、最後に掘削翼5が続くことになる。 As shown in FIG. 2(a), it is desirable that the stirring head 4 is provided with a stirring blade 12 and a co-rotation prevention blade 11 above the excavation blade 5, but these are not essential and may be omitted. . Here, when the stirring head 4 descends (when pulled down), the excavating blade 5 goes first, followed by the stirring blade 12 and the co-rotation prevention blade 11. Conversely, when the stirring head 4 moves up (when pulled up), the stirring blades 12 and anti-rotation blades 11 go first, and the excavating blades 5 follow last.
 次に、図4を参照しながら、制御部20の詳細を説明する。図4は、本発明の一実施の形態における制御部のブロックである。まず、光源6、計測器7、駆動部10等については、既に述べたとおりである。 Next, details of the control section 20 will be explained with reference to FIG. 4. FIG. 4 is a block diagram of a control unit in an embodiment of the present invention. First, the light source 6, measuring device 7, drive section 10, etc. are as already described.
 制御部20のうち、記憶部24は、図7のフローチャートに沿った動作を実現するための制御プログラムや、一時的に記憶すべき各データを保存するためのメモリやハードディスク等のストレージからなる。 Of the control unit 20, the storage unit 24 includes a storage such as a memory or a hard disk for storing a control program for realizing operations according to the flowchart of FIG. 7 and various data to be temporarily stored.
 制御部本体21は、プロセッサ等からなり、記憶部24に記憶された制御プログラムを実行し、周辺要素を制御する。 The control unit main body 21 is composed of a processor and the like, and executes a control program stored in the storage unit 24 to control peripheral elements.
 モニタ23は、動作状態をユーザに表示するディスプレイである。 The monitor 23 is a display that displays the operating status to the user.
 状態量計測部25は、駆動部10から受信する計測信号S2に基づき、所定の状態量(深度、回転速度、回転角、駆動電流、回転への抵抗値等)を計測し、記憶部24に格納する。 The state quantity measurement unit 25 measures predetermined state quantities (depth, rotation speed, rotation angle, drive current, resistance value to rotation, etc.) based on the measurement signal S2 received from the drive unit 10, and stores the measured state quantities in the storage unit 24. Store.
 制御信号生成部27は、駆動部10に出力すべき制御信号S1を生成し、記憶部24に格納する。 The control signal generation unit 27 generates a control signal S1 to be output to the drive unit 10, and stores it in the storage unit 24.
 インターフェイス22は、制御部本体21に制御されて、制御信号S1、計測信号S2を駆動部10へ入出力し、また、光源6を点灯/消灯させ、計測器7から計測値(計測信号)を入力する。 The interface 22 is controlled by the control unit main body 21 and inputs and outputs the control signal S1 and the measurement signal S2 to the drive unit 10, turns on/off the light source 6, and receives the measurement value (measurement signal) from the measuring device 7. input.
 次に、発光率演算部26が演算する発光率について、図5及び図6を参照しながら、説明する。 Next, the luminescence rate calculated by the luminescence rate calculation unit 26 will be explained with reference to FIGS. 5 and 6.
 既に、図3を参照しながら、説明したように、光源6及び計測器7を収容する収容室5cは、回転軸3の中心から半径rだけ離れた位置にあり、その幅をtとすると、収納室5cの軌跡15は、図6(a)に示すようになる。図6(a)において、中心Oは、回転軸3の中心と一致する。 As already explained with reference to FIG. 3, the accommodation chamber 5c that accommodates the light source 6 and the measuring device 7 is located at a distance of radius r from the center of the rotation axis 3, and its width is t. The trajectory 15 of the storage chamber 5c is as shown in FIG. 6(a). In FIG. 6(a), the center O coincides with the center of the rotating shaft 3. In FIG.
 ここで、発光率とは、光源6により照射されるブラックライトが当たる面積を100(%)として、光が反射する面積の割合(%)であり、計測器7の計測値に基づいて決定される。本形態において、発光率は、スラリーと土砂との混合度合いを表現する指標である。勿論、発光率が100(%)に近いほど、良好な混合度合いとなっていることが示される。 Here, the luminous rate is the ratio (%) of the area where light is reflected, with the area hit by the black light emitted by the light source 6 being 100 (%), and is determined based on the measured value of the measuring device 7. Ru. In this embodiment, the luminescence rate is an index expressing the degree of mixing of the slurry and the earth and sand. Of course, the closer the luminescence rate is to 100 (%), the better the mixing degree is.
 収容室5cが一周する距離L(=2πr)に対して、計測器7が反射光を捉えた距離をlとすると、
 発光率=(l/L)*100(%)    (1)
If the distance at which the measuring device 7 captures the reflected light is l with respect to the distance L (=2πr) that the storage chamber 5c goes around once, then
Luminous rate=(l/L)*100(%) (1)
 収容室5cが一周する角度(2πラジアン)に対して、計測器7が反射光を捉えた角度をθ(ラジアン)とすると、
 発光率=(θ/2π)*100(%)    (2)
If the angle at which the measuring device 7 captures the reflected light is θ (radian) with respect to the angle at which the storage chamber 5c makes one revolution (2π radian), then
Luminous rate = (θ/2π) * 100 (%) (2)
 以上の式(1)、(2)のうち、いずれを使用しても良いし、更には、これらと等価な他の式を使用しても良い。 Either of the above equations (1) and (2) may be used, or other equations equivalent to these may be used.
 いずれの式を使用するとしても、図6(a)の状態を直線に展開し、計測器7が反射光を捉えた状態にはハッチングを付し、計測器7が反射光を捉えなかった状態にはハッチングを付さないようにすると、発光率が100(%)であれば、図6(b)に示すように、全長にハッチングを付した状態となる。 Regardless of which formula is used, the state in Figure 6(a) is expanded linearly, the state where the measuring instrument 7 captures the reflected light is hatched, and the state where the measuring instrument 7 does not capture the reflected light If no hatching is applied to the area, if the luminance rate is 100 (%), the entire length will be hatched as shown in FIG. 6(b).
 一方、発光率が50(%)であれば、図6(c)に示すような状態となる。ここでは、理解を容易にするために、ハッチングを付した状態とハッチングを付していない状態とが、それぞれ連続するように示してある。しかしながら、計測器7が反射光を捉えた状態と計測器7が反射光を捉えなかった状態とは、通常ランダムに入れ替わるものと考えられる。よって、このように、ハッチングを付した状態とハッチングを付していない状態とがランダムに発生する場合であっても、本願発明の保護範囲に属すると言う点が理解されねばならない。 On the other hand, if the luminescence rate is 50(%), the state will be as shown in FIG. 6(c). Here, in order to facilitate understanding, the hatched state and the unhatched state are shown as being continuous. However, it is thought that the state in which the measuring instrument 7 captures the reflected light and the state in which the measuring instrument 7 does not capture the reflected light are usually interchanged at random. Therefore, it must be understood that even if a hatched state and a non-hatched state occur randomly, this falls within the scope of protection of the present invention.
 図5に示すように、針貫入による強度の変動係数(=標準偏差/平均値)を縦軸に取り、発光率(%)を横軸に取ると、発光率(%)が最大値(100(%))に近づくにつれ、変動係数が低下するという関係がある。 As shown in Figure 5, when the coefficient of variation (=standard deviation/average value) of intensity due to needle penetration is taken on the vertical axis and the luminescence rate (%) is taken on the horizontal axis, the luminescence rate (%) is the maximum value (100 (%)), the coefficient of variation decreases.
 本実施の形態では、発光率(%)の良否を決定する閾値として、TH=80(%)を採用する。言うまでもなく、この数値は、単なる例にすぎず、より高い閾値を用いる場合であっても、本願発明の保護範囲に属する点が理解されねばならない。 In this embodiment, TH=80(%) is adopted as the threshold value for determining the quality of the luminescence rate (%). Needless to say, this numerical value is only an example, and it should be understood that even if a higher threshold value is used, it still falls within the protection scope of the present invention.
 因みに、発光率がこの閾値TH=80(%)と一致する場合を図6(c)と同じ要領で図示すると、図6(d)に示すようになる。ここでも上述したのと同様に、ハッチングを付した状態とハッチングを付していない状態とがランダムに発生する場合であっても、本願発明の保護範囲に属すると言う点が理解されねばならない。 Incidentally, if the case where the luminous efficiency matches this threshold value TH=80 (%) is illustrated in the same manner as FIG. 6(c), the result will be as shown in FIG. 6(d). Here as well, as described above, it must be understood that even if a hatched state and a non-hatched state occur randomly, this falls within the protection scope of the present invention.
 次に、図7及び図8を参照しながら、本実施の形態における掘削撹拌装置の動作や、同装置の運転管理方法について、説明する。 Next, with reference to FIGS. 7 and 8, the operation of the excavation stirring device and the operation management method of the device in this embodiment will be explained.
 まず、図7のステップ1に示すように、セメントスラリーを、通常通り用意する。セメントの種類の選択も通常通り行って差し支えなく、ここでは特段の制限はない。 First, as shown in step 1 of FIG. 7, cement slurry is prepared as usual. The type of cement can be selected as usual, and there are no particular restrictions here.
 次に、図7のステップ2に示すように、スラリーに水溶性蛍光染料を添付する。この点は、常法とは異なる。水溶性蛍光染料としては、ユウロピウムを微量添加したフッ化ホウ素酸ストロンチウム(SrB4O7F:Eu2+、ピーク波長は368-371ナノメートル)、鉛を微量添加したケイ化バリウム(BaSi2O5:Pb+、ピーク波長は350-353ナノメートル)、フローレッセン、硫酸キニーネ等が、好適に使用できる。 Next, as shown in step 2 of FIG. 7, a water-soluble fluorescent dye is attached to the slurry. This point differs from the conventional method. Water-soluble fluorescent dyes include strontium fluoroborate (SrB4O7F:Eu2+, peak wavelength is 368-371 nm) with a trace amount of europium added, and barium silicide (BaSi2O5:Pb+, peak wavelength is 350-371 nm) with a trace amount of lead added. 353 nanometers), florescen, quinine sulfate, etc. can be suitably used.
 より具体的には、蛍光漏洩検査剤として市販されているもの(例えば、マークテック株式会社製、スーパーグロー蛍光漏洩検査剤DF-300(商標)等)を使用すれば足り、水に対する蛍光染料の濃度は、0.05~20(%)とすればよい。なお、セメントの種類によって、水溶性蛍光染料を変更する必要は、通常ない。 More specifically, it is sufficient to use a commercially available fluorescent leakage testing agent (for example, Super Glow Fluorescent Leakage Testing Agent DF-300 (trademark) manufactured by Marktec Co., Ltd.), and it is sufficient to use fluorescent dyes against water. The concentration may be 0.05 to 20 (%). Note that there is usually no need to change the water-soluble fluorescent dye depending on the type of cement.
 次に、図7ステップ3及び図8(a)に示すように、掘削撹拌装置の撹拌ヘッド4を地面Gに近い、初期位置にセットし、駆動部10の作動を開始し、回転軸3を回転させる。こうして、初期深さH1まで掘削翼5を至らせる。 Next, as shown in step 3 of FIG. 7 and FIG. Rotate. In this way, the excavating blade 5 is brought to the initial depth H1.
 次に、図7のステップ4及び図8(b)に示すように、初期深さH1から下方において、スラリーを掘削翼5の根元から吐出すると共に、撹拌ヘッド4による、掘削混合を行う。ここで、上述したように、通常と異なり、スラリーには、水溶性蛍光染料が添加されているから、構築される地盤改良体にも、同様に、水溶性蛍光染料が混合することとなる。 Next, as shown in step 4 of FIG. 7 and FIG. 8(b), the slurry is discharged from the root of the excavation blade 5 downward from the initial depth H1, and excavation mixing is performed by the stirring head 4. Here, as mentioned above, unlike usual, since a water-soluble fluorescent dye is added to the slurry, the water-soluble fluorescent dye will be mixed in the ground improvement body to be constructed as well.
 この状態を、図7のステップ5及び図8(c)に示すように、目的深さH2(構築すべき地盤改良体の最低部)に至るまで、継続する。 This state continues until the target depth H2 (the lowest part of the ground improvement body to be constructed) is reached, as shown in step 5 of FIG. 7 and FIG. 8(c).
 掘削翼5が目的深さH2まで至ったら、図7のステップ6及び図8(d)に示すように、回転軸3の昇降動作を、「引き下げ」から「引き上げ」に切り替える。 When the excavating blade 5 reaches the target depth H2, as shown in step 6 of FIG. 7 and FIG. 8(d), the vertical movement of the rotary shaft 3 is switched from "lowering" to "raising".
 そうして、現位置において、光源6を点灯させ、計測器7による計測を行う。回転軸3が一周した際、発光率演算部26が求めた発光率R(%)と、記憶部24に記憶されている閾値TH(本例では、80(%))とを、制御部本体21が比較する。この際、上述した式(1)、(2)のいずれを用いても良く、更には、これらと等価な式を用いても良い。 Then, at the current position, the light source 6 is turned on and measurement is performed using the measuring instrument 7. When the rotating shaft 3 makes one revolution, the luminous rate R (%) calculated by the luminous rate calculation unit 26 and the threshold value TH (in this example, 80 (%)) stored in the storage unit 24 are calculated by the control unit main body. 21 compares. At this time, either of the above-mentioned equations (1) and (2) may be used, and further, equations equivalent to these may be used.
 図7のステップ8において、発光率Rが閾値THより下回れば、制御部本体21は、歩進条件が満たされないとして、掘削ヘッド4を引き上げず現位置を維持する。従来技術では、このようなチェックが働いておらず、混合が本来的には不十分な場合にも、漫然と掘削ヘッド4を歩進させていたと言うことができる。本発明によれば、混合が不十分な場合に、歩進を停止し混合を更に継続すること(この操作は合理的である)により、構築される地盤改良体の品質向上に資することができる。 In step 8 of FIG. 7, if the luminescence rate R is less than the threshold TH, the control unit main body 21 determines that the step condition is not satisfied and maintains the current position without lifting the excavation head 4. In the prior art, it can be said that such a check did not work, and the drilling head 4 was moved carelessly even when mixing was inherently insufficient. According to the present invention, when mixing is insufficient, stopping the step and continuing mixing (this operation is rational) can contribute to improving the quality of the constructed soil improvement body. .
 図7のステップ8において、発光率Rが閾値TH以上であれば、制御部本体21は、歩進条件が満たされるとして、掘削ヘッド4を引き上げ現位置を歩進させる。 In step 8 of FIG. 7, if the luminous rate R is equal to or greater than the threshold value TH, the controller main body 21 determines that the stepping condition is satisfied, and pulls up the excavation head 4 to move the current position forward.
 勿論、以上において、発光率Rが閾値TH以下であれば、制御部本体21は、歩進条件が満たされないとする場合や、発光率Rが閾値THを超えれば、制御部本体21は、歩進条件が満たされるとする場合など、当業者に周知な比較の置換を行っても、本願発明の保護範囲に属する点が理解されねばならない。 Of course, in the above, if the luminous rate R is equal to or less than the threshold TH, the control unit main body 21 determines that the stepping condition is not satisfied, or if the luminous rate R exceeds the threshold TH, the control unit main body 21 determines that the stepping condition is not satisfied. It should be understood that even if comparisons and substitutions well known to those skilled in the art are made, such as when the following conditions are satisfied, the invention still falls within the protection scope of the present invention.
 このように引き上げ時において、掘削ヘッド4の現位置における混合が良好に行えているという事実を、現場そのものにおいて、発光率を用いて正確に確認しながら、地盤改良体を構築でき、本願発明の実用上の効果は、大なるものと言うことができる。加えて、発光率の計測、比較等により、引き上げ作業がいたずらに遅延することもない。一方、従来技術では、地盤改良の作業と同時並行的に、混合度合いの品質保証を行うことは、事実上不可能と言わざるを得ない。 In this way, when pulling up, the ground improvement body can be constructed while accurately confirming the fact that the mixing at the current position of the excavation head 4 is being performed well using the luminescence rate at the site itself. The practical effects can be said to be great. In addition, the lifting work will not be unnecessarily delayed due to measurement, comparison, etc. of luminous efficiency. On the other hand, with the conventional technology, it is virtually impossible to guarantee the quality of the mixing level at the same time as the soil improvement work.
 この状態を、図8(e)~図8(g)に示すように、初期深さH1まで継続し(図7のステップ9、10)、最終的には、図7のステップ11及び図8(h)に示すように、地上復帰動作を行う。 This state continues to the initial depth H1 (steps 9 and 10 in FIG. 7), as shown in FIGS. 8(e) to 8(g), and finally reaches step 11 in FIG. As shown in (h), the ground return operation is performed.
[規則91に基づく訂正 21.06.2022] 
本発明の一実施の形態における地盤改良装置の側面図 (a)本発明の一実施の形態における掘削撹拌装置の概略ブロック図 (b)本発明の一実施の形態における掘削撹拌装置の一部拡大断面図 本発明の一実施の形態における掘削撹拌装置の平面図 本発明の一実施の形態における制御部のブロック図 本発明の一実施の形態における発光率と変動係数の関係を示すグラフ (a)本発明の一実施の形態における光源及び計測器の軌道を示すグラフ (b)本発明の一実施の形態における発光率100%を示す展開図 (c)本発明の一実施の形態における発光率50%を示す展開図 (d)本発明の一実施の形態における発光率80%を示す展開図 本発明の一実施の形態における地盤改良装置の運転管理動作を示すフローチャート (a)本発明の一実施の形態における掘削撹拌装置による工程説明図 (b)本発明の一実施の形態における掘削撹拌装置による工程説明図 (c)本発明の一実施の形態における掘削撹拌装置による工程説明図 (d)本発明の一実施の形態における掘削撹拌装置による工程説明図 (e)本発明の一実施の形態における掘削撹拌装置による工程説明図 (f)本発明の一実施の形態における掘削撹拌装置による工程説明図 (g)本発明の一実施の形態における掘削撹拌装置による工程説明図 (h)本発明の一実施の形態における掘削撹拌装置による工程説明図
[Amendment under Rule 91 21.06.2022]
A side view of a ground improvement device in an embodiment of the present invention (a) Schematic block diagram of an excavation agitation device in an embodiment of the present invention (b) Partially enlarged sectional view of an excavation agitation device in an embodiment of the present invention A plan view of an excavation stirring device in an embodiment of the present invention Block diagram of a control unit in an embodiment of the present invention Graph showing the relationship between luminescence rate and coefficient of variation in an embodiment of the present invention (a) Graph showing trajectories of the light source and measuring device in one embodiment of the present invention (b) Development diagram showing 100% luminescence rate in one embodiment of the present invention (c) In one embodiment of the present invention Developed view showing a luminous rate of 50% (d) Developed diagram showing a luminous rate of 80% in an embodiment of the present invention Flowchart showing the operation management operation of the ground improvement device in one embodiment of the present invention (a) Process explanatory diagram using an excavation stirring device according to an embodiment of the present invention (b) Process explanatory diagram using an excavation stirring device according to an embodiment of the present invention (c) Explanatory diagram of a process using an excavation stirring device according to an embodiment of the present invention (d) Process explanatory diagram using an excavation stirring device according to an embodiment of the present invention (e) Process explanatory diagram using an excavation stirring device according to an embodiment of the present invention (f) Process explanatory diagram using an excavation stirring device according to an embodiment of the present invention (g) An explanatory diagram of the process using the excavation agitation device in an embodiment of the present invention. (h) An explanatory diagram of the process using the excavation agitation device in an embodiment of the present invention.
1 ベースマシン
2 リーダ
3 回転軸
4 撹拌ヘッド
5 掘削翼
5a 爪
5b 上面
5c 収容室
6 光源
7 計測器
8 保護カバー
10 駆動部
11 供回り防止翼
12 撹拌翼
15 軌道
20 制御部
21 制御部本体
22 インターフェイス
23 モニタ
24 記憶部
25 状態量計測部
26 発光率演算部
27 制御信号生成部
G 地面
S1 制御信号
S2 計測信号
t 幅
r 半径
θ 角
H1 初期深さ
H2 目的深さ
1 Base machine 2 Reader 3 Rotating shaft 4 Stirring head 5 Excavation blade 5a Claw 5b Upper surface 5c Storage chamber 6 Light source 7 Measuring device 8 Protective cover 10 Drive unit 11 Co-rotation prevention blade 12 Stirring blade 15 Orbit 20 Control unit 21 Control unit main body 22 Interface 23 Monitor 24 Storage unit 25 State quantity measurement unit 26 Luminous rate calculation unit 27 Control signal generation unit G Ground surface S1 Control signal S2 Measurement signal t Width r Radius θ Angle H1 Initial depth H2 Target depth

Claims (7)

  1. 水溶性蛍光染料が添加されたセメントスラリーを用意する第1工程と、
     前記セメントスラリーを掘削翼の根元から吐出し、吐出された前記セメントスラリーと周囲の土砂とを掘削混合し、未硬化の地盤改良体を構築する第2工程と、
     前記掘削翼に設けた光源から前記未硬化の地盤改良体内であって前記掘削翼が位置する深さにおいて、前記地盤改良体にブラックライトを照射する第3工程と、
     前記掘削翼に設けた計測器で前記未硬化の地盤改良体内であって前記掘削翼が位置する深さにおいて、前記ブラックライトの反射光を計測する第4工程とを含む地盤改良体の混合状態確認方法。
    A first step of preparing a cement slurry to which a water-soluble fluorescent dye is added;
    a second step of discharging the cement slurry from the root of the excavation blade, excavating and mixing the discharged cement slurry with surrounding earth and sand to construct an unhardened ground improvement body;
    a third step of irradiating the ground improvement body with a black light from a light source provided on the excavation wing at a depth within the unhardened ground improvement body where the excavation wing is located;
    a fourth step of measuring the reflected light of the black light at a depth where the excavation blade is located within the unhardened ground improvement body using a measuring instrument provided on the excavation blade; and a mixed state of the ground improvement body. Confirmation method.
  2. 前記計測器は、前記地盤改良体からの反射光を捉えるセンサである請求項1記載の地盤改良体の混合状態確認方法。 2. The method for checking the mixing state of a soil improvement body according to claim 1, wherein the measuring device is a sensor that captures reflected light from the soil improvement body.
  3. 前記計測器は、前記地盤改良体の画像を撮影するカメラである請求項1記載の地盤改良体の混合状態確認方法。 The method for checking the mixing state of a soil improvement body according to claim 1, wherein the measuring device is a camera that takes an image of the soil improvement body.
  4. 前記ブラックライトの波長は、365乃至405ナノメートルである請求項1に記載の地盤改良体の混合状態確認方法。 The method for checking the mixing state of a ground improvement body according to claim 1, wherein the wavelength of the black light is 365 to 405 nanometers.
  5. 前記計測器の出力に基づいて発光率を求める第5工程をさらに含む請求項1に記載の地盤改良体の混合状態確認方法。 The method for checking the mixing state of a ground improvement body according to claim 1, further comprising a fifth step of determining a luminescence rate based on the output of the measuring device.
  6. 前記発光率と所定閾値とを比較して、混合状態の良否を決定する第6工程をさらに含む請求項5に記載の地盤改良体の混合状態確認方法。 The method for checking the mixing state of a ground improvement body according to claim 5, further comprising a sixth step of comparing the luminescence rate with a predetermined threshold value to determine whether the mixing state is good or bad.
  7. 前記光源及び前記計測器は、前記掘削翼を回転させる回転軸を中心とする円軌道に沿って回転する請求項6に記載の地盤改良体の混合状態確認方法。 The method for checking the mixing state of a ground improvement body according to claim 6, wherein the light source and the measuring device rotate along a circular orbit centered on a rotation axis that rotates the excavation blade.
PCT/JP2022/023924 2022-04-27 2022-06-15 Method for checking mixing state of soil improving body WO2023210029A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-073424 2022-04-27
JP2022073424A JP7474522B2 (en) 2022-04-27 2022-04-27 How to check the mixed condition of ground improvement material

Publications (1)

Publication Number Publication Date
WO2023210029A1 true WO2023210029A1 (en) 2023-11-02

Family

ID=88518213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023924 WO2023210029A1 (en) 2022-04-27 2022-06-15 Method for checking mixing state of soil improving body

Country Status (2)

Country Link
JP (1) JP7474522B2 (en)
WO (1) WO2023210029A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833081B1 (en) * 1969-09-11 1973-10-11
JPH0995936A (en) * 1995-09-29 1997-04-08 Takashi Nishiyama Grout material and grout estimating method
JPH09318543A (en) * 1996-05-28 1997-12-12 Taisei Corp Quality control method and apparatus for bentonite mixed soil
JP2001090058A (en) * 1999-09-17 2001-04-03 Ohbayashi Corp Mixing-degree inspection method for stabilized soil
JP2005337747A (en) * 2004-05-24 2005-12-08 Kunimine Industries Co Ltd Bentonite for composite soil and method for discriminating bentonite composite soil using same
JP2010018989A (en) * 2008-07-10 2010-01-28 Okumura Corp Method of evaluating cracking in ground by grout
JP2019031794A (en) * 2017-08-07 2019-02-28 株式会社大林組 Evaluation method of quality of stabilized soil in ground improvement method, and ground improvement device
JP2022001727A (en) * 2020-06-19 2022-01-06 Ksコンサルタント株式会社 Ground improving stirring device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833081B1 (en) * 1969-09-11 1973-10-11
JPH0995936A (en) * 1995-09-29 1997-04-08 Takashi Nishiyama Grout material and grout estimating method
JPH09318543A (en) * 1996-05-28 1997-12-12 Taisei Corp Quality control method and apparatus for bentonite mixed soil
JP2001090058A (en) * 1999-09-17 2001-04-03 Ohbayashi Corp Mixing-degree inspection method for stabilized soil
JP2005337747A (en) * 2004-05-24 2005-12-08 Kunimine Industries Co Ltd Bentonite for composite soil and method for discriminating bentonite composite soil using same
JP2010018989A (en) * 2008-07-10 2010-01-28 Okumura Corp Method of evaluating cracking in ground by grout
JP2019031794A (en) * 2017-08-07 2019-02-28 株式会社大林組 Evaluation method of quality of stabilized soil in ground improvement method, and ground improvement device
JP2022001727A (en) * 2020-06-19 2022-01-06 Ksコンサルタント株式会社 Ground improving stirring device

Also Published As

Publication number Publication date
JP2023162786A (en) 2023-11-09
JP7474522B2 (en) 2024-04-25

Similar Documents

Publication Publication Date Title
JP4886921B2 (en) Effective diameter confirmation method of ground improvement body
RU2439315C1 (en) Integrated display of drive sub position and alignment of tool face
BR112012009225B1 (en) SCAN TOOL TO SCAN A WELL BACKGROUND OBJECT, TOOL HAVING A LONGITUDINAL GEOMETRIC SHAFT, SYSTEM FOR CREATING A CONDITION IMAGE WITHIN A WELL, AND METHOD
WO2023210029A1 (en) Method for checking mixing state of soil improving body
WO2023218677A1 (en) Excavation and agitation device and excavation and agitation method
CN106286082B (en) A kind of system of model francis turbine runner inside vortex tape test
JP5312890B2 (en) Excavation management method for invert section
DE102007010532B3 (en) Soil substance density determining method for e.g. hardening survey in earthwork, involves determining wet and dry density of substance from pit capacity, mass of substance and humidity ratio
JP2001256576A (en) Fire monitoring system
CN104373041A (en) Drilling deviation rectification method for 60-meter-long hole drilling of tunnel large pipe shed
CN110240074A (en) Tower crane equipment, tower crane equipment hanging object area projection reminding method and device
WO2021118416A1 (en) Drilling rig training simulator
CN109238254A (en) A kind of hole stake cultellation method
KR102187015B1 (en) Strike device for safety diagnosis of structures
JP2010121375A (en) Excavation device and excavation method
CN214427614U (en) Auxiliary device for detecting collision of peripheral pipelines of foundation pit and anchor cable based on BIM
CN104563080B (en) Optics inclination measurement device
WO2023233674A1 (en) Ground improvement method
JP2010018989A (en) Method of evaluating cracking in ground by grout
US20180146166A1 (en) Optical hazard detection
CN214149018U (en) Accurate control auxiliary device of tunnel blasting big gun hole angle
KR102136783B1 (en) distribution case
CN202614375U (en) Rotary luminosity measuring integrating sphere apparatus
CN113597492B (en) Soil removal device and method for opening holes in the ground
CN113503834A (en) Measuring device for blast hole inclination angle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940300

Country of ref document: EP

Kind code of ref document: A1