JP2019031794A - Evaluation method of quality of stabilized soil in ground improvement method, and ground improvement device - Google Patents

Evaluation method of quality of stabilized soil in ground improvement method, and ground improvement device Download PDF

Info

Publication number
JP2019031794A
JP2019031794A JP2017152158A JP2017152158A JP2019031794A JP 2019031794 A JP2019031794 A JP 2019031794A JP 2017152158 A JP2017152158 A JP 2017152158A JP 2017152158 A JP2017152158 A JP 2017152158A JP 2019031794 A JP2019031794 A JP 2019031794A
Authority
JP
Japan
Prior art keywords
mixing
mixed state
soil
stabilized soil
ground improvement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017152158A
Other languages
Japanese (ja)
Other versions
JP6342557B1 (en
Inventor
勝紀 望月
Katsuki Mochizuki
勝紀 望月
森田 晃司
Koji Morita
晃司 森田
邦彦 浜井
Kunihiko Hamai
邦彦 浜井
牧野 昌己
Masaki Makino
昌己 牧野
浩邦 伊藤
Hirokuni Ito
浩邦 伊藤
貴哉 牧野
Takaya Makino
貴哉 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Kato Construction Co Ltd
Original Assignee
Obayashi Corp
Kato Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Kato Construction Co Ltd filed Critical Obayashi Corp
Priority to JP2017152158A priority Critical patent/JP6342557B1/en
Application granted granted Critical
Publication of JP6342557B1 publication Critical patent/JP6342557B1/en
Publication of JP2019031794A publication Critical patent/JP2019031794A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

To evaluate a mixed state of stabilized soil by a mixing and stirring device in real time, and to further improve reliability of evaluation precision and evaluation result of mixed state in a depth direction.SOLUTION: Mixed state of stabilized soil is separately measured at a predetermined sampling period by a plurality of electric conductivity sensors attached to different positions in a depth direction of a mixing and stirring head (step S1). A variation coefficient is obtained as a statistical variation in the depth direction of the mixed state of the stabilized soil by statistically processing the measurement results of each electric conductivity sensor (steps S2 to S4). A propriety determination of mixed state of the stabilized soil is carried out by comparing the obtained variation coefficient with a predetermined target value (step S5). The propriety determination result is visibly displayed on a monitor together with the obtained variation coefficient and the target value (step S6).SELECTED DRAWING: Figure 6

Description

本発明は、地盤改良工法における安定処理土の品質評価方法とその品質評価方法に用いる地盤改良装置に関する。   The present invention relates to a quality evaluation method for a stabilized soil in a ground improvement method and a ground improvement device used for the quality evaluation method.

この種の技術として、例えば特許文献1に記載されたものが提案されている。   As this type of technology, for example, one described in Patent Document 1 has been proposed.

この特許文献1に記載された技術では、いわゆるロータリー式またはトレンチャー式の混合撹拌装置の深度方向の複数箇所に比抵抗計測器を取り付けて、その比抵抗計測器による比抵抗実測値を監視することにより、混合撹拌装置での築造中のソイルセメント体(地盤土壌と改良材または固化材との混合体)の混合撹拌状態をリアルタイムで把握することができるとされている。特に、地盤土壌と固化材とが均質に混合撹拌された状態の電気比抵抗を基準電気比抵抗として設定しておき、上記の各比抵抗実測値が基準電気比抵抗を下回ったことを確認することで、対象地盤の深度方向全域に基準電気比抵抗を満足する均質なソイルセメント体を築造することが可能となるとされている。   In the technique described in Patent Document 1, specific resistance measuring instruments are attached to a plurality of locations in the depth direction of a so-called rotary type or trencher type mixing and agitating apparatus, and the measured specific resistance values by the specific resistance measuring instrument are monitored. Thus, it is said that the mixing and stirring state of the soil cement body (mixture of ground soil and improving material or solidifying material) being built by the mixing and stirring device can be grasped in real time. In particular, the electrical resistivity in a state where the ground soil and the solidified material are homogeneously mixed and stirred is set as the reference electrical resistivity, and it is confirmed that the measured values of the above specific resistances are lower than the reference electrical resistivity. Thus, it is said that it is possible to build a homogeneous soil cement body that satisfies the standard electrical resistivity in the entire depth direction of the target ground.

特開2017−89159号公報JP 2017-89159 A

しかしながら、特許文献にて電気的パラメータとして使用している築造中のソイルセメント体の比抵抗実測値は、原地盤の含水比、粒度分布、比重、物理特性等の土質性状によって異なる値を示す。特に、異なる土質性状を示す原土にて構成される互層地盤をトレンチャー式の混合撹拌翼による混合撹拌装置にて鉛直に混合撹拌するようなケースにおいては、原土のみを均質に混合撹拌した原土での比抵抗実測値は、混合撹拌装置が僅かに移動しただけで異なる結果を示す。   However, the specific resistance measurement value of the soil cement body under construction used as an electrical parameter in the patent literature shows different values depending on the soil properties such as the water content ratio, particle size distribution, specific gravity, and physical properties of the original ground. In particular, in the case of mixing and stirring vertically with a mixing stirrer using a trencher-type mixing stirring blade, the alternating layer ground composed of raw soils having different soil properties will be mixed and stirred. The measured values of resistivity in the soil show different results with only a slight movement of the mixing and stirring device.

例えば図13に示す表は、1日の施工量として約50m2程度(深度6m程度)のエリアにおいて採取したいくつかの試料土の性状及び導電率の結果を示したものであり、試料土1〜4までの導電率は大きく違う値を示した。なお、導電率は比抵抗の逆数である。 For example, the table shown in FIG. 13 shows the properties and conductivity results of several sample soils collected in an area of about 50 m 2 (depth of about 6 m) as a daily work amount. The conductivity up to -4 showed very different values. The conductivity is the reciprocal of the specific resistance.

よって、混合撹拌装置の移動と共に対象地盤(原土)が異なる数値を示す中で、築造されたソイルセメント体の比抵抗実測値を対象地盤の深度方向全域に基準電気比抵抗を満足させるように混合撹拌作業をした場合、未だ混合撹拌状態(地盤土壌と改良材または固化材との混ざり具合)が不十分であったり、十分過ぎる品質となっている可能性がある。なお、十分過ぎる混合撹拌は無駄で不経済な作業にほかならない。   Therefore, while the target ground (raw soil) shows different values with the movement of the mixing stirrer, the measured specific resistance value of the built soil cement body satisfies the standard electrical resistivity throughout the depth direction of the target ground When the mixing and stirring work is performed, there is still a possibility that the mixed stirring state (mixing condition between the ground soil and the improving material or the solidifying material) is insufficient or the quality is too high. Too much mixing and stirring is a wasteful and uneconomical work.

また、地盤改良前の比抵抗実測値が大きく異なる場合、改良材の添加量により比抵抗の変化量(変化率)も異なるため、必然的に改良材を添加した後の比抵抗実測値の値も大きく異なってくる可能性が高い。図14は図13の示した試料土1〜4に定量の改良材を添加した場合の導電率の変化を示している。この図14においても上記の傾向が顕著に表れている。   In addition, when the measured resistivity value before ground improvement is significantly different, the amount of change (rate of change) in resistivity depends on the added amount of the improved material. Therefore, the measured resistivity value after adding the improved material inevitably. Are likely to be very different. FIG. 14 shows a change in conductivity when a quantitative improvement material is added to the sample soils 1 to 4 shown in FIG. In FIG. 14 as well, the above tendency appears remarkably.

したがって、上記特許文献1に開示された技術では、予め定めた基準比抵抗とソイルセメント体の深度方向での各比抵抗実測値との個別比較による絶対評価とも言うべき評価であって、上述したように少し土質が違うだけで、改良材を添加する前の比抵抗実測値や改良材を添加した場合の変化率が異なるため、特に深度方向での評価精度や評価結果の信頼性の面でなおも改善の余地を残している。   Therefore, the technique disclosed in Patent Document 1 is an evaluation that should be referred to as an absolute evaluation based on an individual comparison between a predetermined reference specific resistance and each measured specific resistance in the depth direction of the soil cement body. As described above, the measured resistivity value before the improvement material is added and the rate of change when the improvement material is added are different, so the evaluation accuracy in the depth direction and the reliability of the evaluation results are particularly significant. There is still room for improvement.

本発明はこのような課題に着目してなされたものであり、混合撹拌装置による混合状態をリアルタイムで監視しつつ、深度方向での混合状態の評価精度や評価結果のさらなる信頼性の向上を図った地盤改良工法における安定処理土の品質評価方法および地盤改良装置を提供するものである。   The present invention has been made paying attention to such a problem, and is intended to further improve the evaluation accuracy of the mixed state in the depth direction and the reliability of the evaluation result while monitoring the mixed state by the mixing and stirring device in real time. It is intended to provide a method for evaluating the quality of stabilized soil and a ground improvement device in the ground improvement method.

本発明は、上下方向に周回移動するトレンチャー式の混合撹拌翼を備えた混合撹拌ヘッドを地中に所定深度まで貫入したうえで、固化材の吐出のほか前記混合撹拌翼による原位置土の掘削およびその原位置土と固化材との混合撹拌を行い、地盤改良のための流動化した安定処理土を造成する過程にて、その安定処理土の混合状態をリアルタイムで評価する方法である。   The present invention penetrates a mixing agitation head having a trencher type mixing agitating blade moving around in the vertical direction into the ground to a predetermined depth, and in addition to discharging a solidified material, excavating the in-situ soil by the mixing agitating blade This is a method for evaluating the mixed state of the stabilized soil in real time in the process of creating a fluidized stabilized soil for ground improvement by mixing and stirring the in situ soil and the solidified material.

その上で、前記混合撹拌ヘッドのうち深度方向の異なる複数箇所に取り付けた混合状態計測手段により前記安定処理土の混合状態を所定のサンプリング周期で個別に計測し、前記各混合状態計測手段の計測結果を統計処理して前記安定処理土の混合状態の深度方向での統計的ばらつきを求め、この求めた統計的ばらつきに基づいて深度方向の異なる複数箇所の計測結果を相対比較して、前記安定処理土の混合状態を評価することを特徴とするものである。   Then, the mixed state of the stabilized soil is individually measured at a predetermined sampling period by means of mixed state measuring means attached to a plurality of locations in the depth direction of the mixing agitating head, and the measurement of each mixed state measuring means is performed. Statistically processing the results to determine the statistical variation in the depth direction of the mixed state of the stable treated soil, relative to the measurement results of a plurality of different locations in the depth direction based on the calculated statistical variation, the stable The mixed state of the treated soil is evaluated.

すなわち、本発明では、上記のように、複数の混合状態計測手段により計測された計測結果を統計処理して、安定処理土の混合状態の深度方向での統計的ばらつき(例えば変動係数や標準偏差)に置き換えて、安定処理土の混合状態の評価指標としており、結果としてそれぞれの混合状態計測手段での計測結果を相対的に比較していることから、このことを相対比較と称している。   That is, in the present invention, as described above, the measurement results measured by the plurality of mixed state measuring means are statistically processed, and statistical variations in the depth direction of the mixed state of the stabilized soil (for example, variation coefficients and standard deviations). ), And is used as an evaluation index for the mixed state of the stabilized soil, and as a result, the measurement results of the respective mixed state measuring means are relatively compared, and this is referred to as relative comparison.

この場合において、安定処理土の混合状態をより定量的に評価する上での望ましい態様としては、統計的ばらつきの目標値を予め定めておき、前記統計的ばらつきと目標値とを比較して安定処理土の混合状態の適否判定を行うものとする。   In this case, as a desirable mode for more quantitatively evaluating the mixed state of the stable treated soil, a target value of statistical variation is determined in advance, and the statistical variation and the target value are compared and stabilized. The suitability of the mixed state of the treated soil shall be determined.

より望ましい態様としては、統計的ばらつきは変動係数とする。   In a more desirable mode, the statistical variation is a coefficient of variation.

また、安定処理土の混合状態は、混合撹拌ヘッドを操作するオペレータに依存することになるので、望ましい態様としては、安定処理土の混合状態の適否判定結果を、混合撹拌ヘッドを操作するオペレータに告知するものとする。   In addition, since the mixing state of the stable treated soil depends on the operator who operates the mixing and stirring head, as a desirable mode, the suitability determination result of the mixed state of the stable processing soil is given to the operator who operates the mixing and stirring head. Shall be announced.

より望ましい態様としては、安定処理土の混合状態の適否判定結果は適または不適であって、適否判定結果が不適であるにもかかわらず、なおも混合撹拌ヘッドを掘進移動させようとした場合に、混合撹拌ヘッドを操作するオペレータに警告を発するものとする。   As a more desirable mode, when the suitability determination result of the mixed state of the stabilized soil is appropriate or inappropriate and the suitability determination result is inappropriate, the mixing agitation head is still intended to be moved forward. A warning is issued to an operator who operates the mixing and stirring head.

また、各混合状態計測手段による計測結果の向上を図る上で望ましい態様としては、前記安定処理土の混合撹拌直後の流動値をテーブルフロー値にて115mm以上とする。   Further, as a desirable mode for improving the measurement result by each mixed state measuring means, the flow value immediately after mixing and stirring of the stabilized soil is set to 115 mm or more as a table flow value.

上記の安定処理土の品質評価方法に用いる好ましい地盤改良装置としては、上記の混合撹拌ヘッドと、各混合状態計測手段と、に加えて、各混合状態計測手段の計測結果を入力として統計処理を行って、安定処理土の混合状態の深度方向での統計的ばらつきを求める一方、この求めた統計的ばらつきに基づいて深度方向の異なる複数箇所の計測結果を相対比較して、安定処理土の混合状態を評価する品質管理装置をさらに備えていることが望ましい。   As a preferable ground improvement device used for the quality evaluation method of the above-mentioned stable treated soil, in addition to the above mixing agitation head and each mixing state measuring means, statistical processing is performed by inputting the measurement result of each mixing state measuring means. To obtain the statistical dispersion in the depth direction of the mixed state of the stable treated soil, and on the basis of the obtained statistical dispersion, the measurement results at different locations in the depth direction are relatively compared, and the stable treated soil is mixed. It is desirable to further include a quality control device for evaluating the state.

より望ましくは、品質管理装置は、統計処理で求めた統計的ばらつきと予め定めた目標値とを比較して安定処理土の混合状態の適否判定を行う機能を有していると共に、その品質管理装置に加えて、少なくとも統計処理で求めた統計的ばらつきと予め定めた目標値とを表示する表示手段をさらに備えているものとする。   More preferably, the quality control device has a function of comparing the statistical variation obtained by the statistical processing with a predetermined target value to determine the suitability of the mixed state of the stable treated soil, and the quality control thereof. In addition to the apparatus, it is further assumed that display means for displaying at least statistical variation obtained by statistical processing and a predetermined target value is further provided.

同様に、望ましくは、表示手段は、統計処理で求めた統計的ばらつきと予め定めた目標値とに加えて、安定処理土の混合状態の適否判定結果を表示するようになっているものとする。   Similarly, preferably, the display means is configured to display the result of determining whether or not the mixed state of the stable treated soil is appropriate, in addition to the statistical variation obtained by the statistical processing and the predetermined target value. .

さらに望ましくは、安定処理土の混合状態の適否判定結果は適または不適であって、品質管理装置は、適否判定結果が不適であるにもかかわらず、なおも前記混合撹拌ヘッドを掘進移動させようとした場合に、混合撹拌ヘッドのオペレータに警告を発するものとする。   More preferably, the result of determining the suitability of the mixed state of the stable treated soil is appropriate or inappropriate, and the quality control device still digs and moves the mixing agitation head even though the result of suitability determination is inappropriate. In this case, a warning is issued to the operator of the mixing and stirring head.

同様に、安定処理土の混合状態をより正確に計測する上での望ましい態様としては、混合撹拌ヘッドの主体となるポストの上下両端部に駆動輪と従動輪とが設けられていると共に、それらの駆動輪と従動輪との間に混合撹拌翼が巻き掛けられていて、各混合状態計測手段は、混合撹拌ヘッドの平面視において、張り側となる混合撹拌翼と緩み側となる混合撹拌翼とで挟まれた領域であって且つポストの側面に取り付けられているものとする。   Similarly, as a desirable mode for more accurately measuring the mixed state of the stabilized soil, driving wheels and driven wheels are provided at both upper and lower ends of the post which is the main body of the mixing and stirring head. The mixing stirring blades are wound between the driving wheel and the driven wheel of each of the mixing stirring blades, and each mixing state measuring means has a mixing stirring blade on the tension side and a mixing stirring blade on the loose side in the plan view of the mixing stirring head. And is attached to the side surface of the post.

本発明によれば、深度方向での取付位置が異なる複数の混合状態計測手段により造成中の安定処理土の混合状態をリアルタイムで計測し、それらの複数の混合状態計測手段の計測結果を統計処理して統計的ばらつきを求め、この統計的ばらつきを評価指標として造成中の安定処理土の混合状態を評価するようにしたため、従来の方式に比べて、安定処理土の深度方向での混合状態の評価精度が向上すると共に、その評価結果の信頼性も向上する。   According to the present invention, the mixed state of the stably treated soil being created is measured in real time by the plurality of mixed state measuring units having different mounting positions in the depth direction, and the measurement results of the plurality of mixed state measuring units are statistically processed As a result, the mixed state of the stabilized soil under construction was evaluated using this statistical variation as an evaluation index. The evaluation accuracy is improved and the reliability of the evaluation result is also improved.

本発明に係る安定処理土の品質評価方法に用いられる地盤改良装置の概略構造の一例を示す側面説明図。Side surface explanatory drawing which shows an example of schematic structure of the ground improvement apparatus used for the quality evaluation method of the stabilized soil concerning this invention. 図1に示した混合撹拌ヘッド5の右側面図。FIG. 2 is a right side view of the mixing and stirring head 5 shown in FIG. 1. 図2のa−a線に沿った拡大断面説明図。Explanatory sectional explanatory drawing along the aa line of FIG. 品質管路装置の機能ブロック図。The functional block diagram of a quality pipeline apparatus. 図3に示した混合状態計測器の拡大図。FIG. 4 is an enlarged view of the mixed state measuring device shown in FIG. 3. 図4に示した品質管理装置での処理手順の一例を示すフローチャート。The flowchart which shows an example of the process sequence in the quality control apparatus shown in FIG. 図1,4に示したモニターでの表示例を示す説明図。Explanatory drawing which shows the example of a display on the monitor shown to FIG. 図7に示したモニターでの表示例をグラフ化した説明図。FIG. 8 is an explanatory diagram illustrating a display example on the monitor illustrated in FIG. 深度方向で異なる位置での一軸圧縮強度と導電率との関係を示す図。The figure which shows the relationship between the uniaxial compressive strength and electrical conductivity in a position which is different in the depth direction. 図9の一軸圧縮強度と導電率をグラフ化した説明図。Explanatory drawing which graphed the uniaxial compressive strength and electrical conductivity of FIG. 図9の最下段の変動係数をグラフ化した説明図。Explanatory drawing which graphed the coefficient of variation of the lowest stage of FIG. 2極式の導電率(比抵抗)センサの原理を示す説明図。Explanatory drawing which shows the principle of a bipolar conductivity (specific resistance) sensor. いくつかの試料土の土質性状及び導電率の値を示す図。The figure which shows the soil property and the value of electrical conductivity of some sample soil. 図13の示した試料土1〜4に定量の改良材を添加した場合の導電率の変化を示すグラフ。The graph which shows the change of the electrical conductivity at the time of adding a fixed improvement material to the sample soil 1-4 shown in FIG.

図1以下の図面は本発明に係る安定処理土の品質評価方法を実施するためのより具体的な形態を示し、特に図1は上記安定処理土の品質評価方法に用いられる地盤改良装置の概略構造の一例を示している。また、図2は図1に示した混合撹拌ヘッド5の右側面説明図を、図3は図2のa−a線に沿った拡大断面説明図をそれぞれ示している。   1 and the following drawings show a more specific form for carrying out the quality evaluation method of the stabilized soil according to the present invention, and in particular, FIG. 1 is an outline of the ground improvement device used for the quality evaluation method of the stabilized soil. An example of the structure is shown. 2 is an explanatory diagram on the right side of the mixing and stirring head 5 shown in FIG. 1, and FIG. 3 is an enlarged sectional explanatory diagram along the line aa in FIG.

図1に示す地盤改良装置は、汎用型の建設機械の一つである無限軌道(履帯)式またはクローラ式のショベル系掘削機械、例えば履帯1aを有する油圧ショベルもしくはバックホウ等をベースマシン(母機)1としている。ベースマシン1の旋回ベース2には揺動式(起伏式または起倒式)のブーム3が搭載されており、そのブーム3の先端には同じく揺動式のアーム4が連結されている。そして、アーム4の先端には、アタッチメントとして地盤改良の対象となる原位置土の掘削と固化材(地盤改良材または添加材)との混合撹拌のための混合撹拌ヘッド5が着脱可能に装着されている。   The ground improvement device shown in FIG. 1 is an endless track (crawler) or crawler excavator excavating machine, which is one of general-purpose construction machines, such as a hydraulic excavator or backhoe having a crawler belt 1a as a base machine (base machine). 1 is assumed. The swing base 2 of the base machine 1 is equipped with a swinging (undulation or tilting) boom 3, and a swinging arm 4 is connected to the tip of the boom 3. The tip of the arm 4 is detachably mounted with a mixing agitation head 5 for excavation of the in-situ soil to be ground improved as an attachment and mixing agitation with the solidified material (ground improvement material or additive). ing.

図1のほか図2,3に示すように、混合撹拌ヘッド5は、剛性の高いフレーム6を母体としていて、このフレーム6は、幅広で且つ略二股状のヨーク部6aと、ヨーク部6aの下部に連結された真直で略角柱状のポスト6bとから構成されている。ヨーク部6aの上端のブラケット部6cはアーム4の先端に着脱可能に連結される。   As shown in FIGS. 2 and 3 in addition to FIG. 1, the mixing and agitation head 5 has a rigid frame 6 as a base body, and this frame 6 has a wide and substantially bifurcated yoke portion 6a and a yoke portion 6a. It is comprised from the straight and substantially prismatic post 6b connected with the lower part. The bracket portion 6c at the upper end of the yoke portion 6a is detachably connected to the tip of the arm 4.

そして、フレーム6の上部に設けた例えば油圧モータ7駆動のチェーンスプロケットタイプの駆動輪8と、同じくフレーム6の下部に設けた従動輪9との間に、エンドレス(無端状)のドライブチェーン10(図3参照。)を巻き掛けてある。また、ドライブチェーン10には当該ドライブチェーン10の長手方向とほぼ直交するように図3に示す複数の比較的幅広の混合撹拌翼11を略等ピッチで装着してあり、これらの複数の混合撹拌翼11がいわゆるトレンチャータイプのものとしてドライブチェーン10と共に上下方向に周回駆動されることになる。なお、混合撹拌翼11にはその長手方向に沿って複数の掘削刃であるカッタービット11aを設けてある。   For example, an endless drive chain 10 (endless) between a chain sprocket type drive wheel 8 driven by a hydraulic motor 7 provided at the upper part of the frame 6 and a driven wheel 9 provided at the lower part of the frame 6 is also provided. (See FIG. 3). Further, a plurality of relatively wide mixing and stirring blades 11 shown in FIG. 3 are mounted on the drive chain 10 at a substantially equal pitch so as to be substantially orthogonal to the longitudinal direction of the drive chain 10. The wings 11 are so-called trencher type and are driven around in the vertical direction together with the drive chain 10. The mixing agitating blade 11 is provided with a plurality of cutter bits 11a as excavating blades along the longitudinal direction thereof.

さらに、フレーム6の先端部(下端部)には吐出ノズル12を設けてあり、この吐出ノズル12には例えば水と固化材としての粉体状のセメントとを予め混ぜ合わせたスラリ状の固化材が圧送されるようになっている。これにより、吐出ノズル12から地中に向けてスラリ状の固化材を吐出・噴射することが可能となっている。   Further, a discharge nozzle 12 is provided at the front end (lower end) of the frame 6, and for example, a slurry-like solidifying material in which water and powdery cement as a solidifying material are mixed in advance. Is to be pumped. Thereby, it is possible to discharge and inject the slurry-like solidified material from the discharge nozzle 12 toward the ground.

なお、ドライブチェーン10は、フレーム6に設けた複数のガイドローラ13により所定の張力が付与された状態で案内・支持されている。なお、かかる構造の混合撹拌ヘッド5は、例えば特開2005−307675号公報等において公知の構造のものである。   The drive chain 10 is guided and supported in a state where a predetermined tension is applied by a plurality of guide rollers 13 provided on the frame 6. Note that the mixing and stirring head 5 having such a structure has a known structure, for example, in Japanese Patent Application Laid-Open No. 2005-307675.

このような構造の混合撹拌ヘッド5を用いて地盤改良のための安定処理土の造成を行う場合、一般的には、ドライブチェーン10とともに複数の混合撹拌翼11を上下方向に周回駆動させる一方で、図1に示すように混合撹拌ヘッド5全体を例えばブーム3やアーム4の揺動力(揺動動作方向の力)を利用して直立姿勢にて地中に貫入する。そして、吐出ノズル12からスラリ状の固化材を吐出しながら、いわゆる横行移動させるべく改良壁体の構築方向、すなわち図3に符号bで示す掘進方向に徐々に掘進させることになる。これにより、複数の混合撹拌翼11により掘削された原位置土が同じく複数の混合撹拌翼11によりスラリ状の固化材と混合撹拌されて、混合撹拌ヘッド5の掘進方向後方側に連続した安定処理土による改良壁体が構築されることになる。   When creating a stable soil for ground improvement using the mixing stirring head 5 having such a structure, in general, while driving a plurality of mixing stirring blades 11 in the vertical direction together with the drive chain 10, As shown in FIG. 1, the entire mixing and agitation head 5 penetrates into the ground in an upright posture using, for example, the swinging force of the boom 3 or arm 4 (force in the swinging operation direction). Then, while discharging the slurry-like solidified material from the discharge nozzle 12, the improved wall body is gradually digged in the so-called traversing direction, that is, the digging direction indicated by symbol b in FIG. As a result, the in-situ soil excavated by the plurality of mixing agitating blades 11 is also mixed and agitated with the slurry-like solidified material by the plurality of mixing agitating blades 11 and is continuously stabilized on the rear side in the digging direction of the mixing agitating head 5. An improved wall made of soil will be constructed.

この場合において、図3に示した混合撹拌ヘッド5におけるドライブチェーン10の張り側と緩み側に相当する部位であって複数の混合撹拌翼11による掘削と混合撹拌にあずかる部位、すなわち混合撹拌翼11の上下方向での周回移動面(改良壁体の構築方向前方側に面する周回移動面と構築方向後方側に面する周回移動面)は改良壁体の構築方向と直交したものとなる。そして、改良壁体の構築方向前方側に面する周回移動面を上向きとするか下向きとするかは、地盤の硬さや土質性状に応じて決定する。   In this case, the portion corresponding to the tension side and the loose side of the drive chain 10 in the mixing and agitation head 5 shown in FIG. The circumferential movement surface in the vertical direction (the circumferential movement surface facing the front side in the construction direction of the improved wall body and the circumferential movement surface facing the rear side in the construction direction) is orthogonal to the construction direction of the improved wall body. And it is determined according to the hardness and soil property of a ground whether the surrounding movement surface which faces the construction direction front side of an improved wall body is made upward or downward.

ここで、地盤改良のための造成中の安定処理土の混合撹拌状態(原土と添加された固化材との混ざり具合のことで、以下、単に混合状態と言う。)、特に深度方向での混合状態が可及的に均質なものとなるように管理することが重要である。そのために、混合撹拌ヘッド5におけるフレーム6のポスト6bには、地中貫入状態において深度が異なる複数箇所、図1,2の例ではポスト6bの上部、中間部および下部の三箇所に、それぞれ混合状態計測手段としての混合状態計測器14A,14B,14Cが設けられている。なお、これらの混合状態計測器14A〜14Cは、深度が異なる少なくとも二箇所に設置されていれば良いが、深度方向での混合撹拌状態が可及的に均質なものとなるように管理する上では、深度方向の三箇所以上に設置されていることが望ましい。   Here, the mixed and stirred state of the stabilized soil during construction for ground improvement (the mixing state of the raw soil and the added solidified material, hereinafter simply referred to as the mixed state), particularly in the depth direction It is important to manage the mixing state as homogeneous as possible. Therefore, the post 6b of the frame 6 in the mixing and agitation head 5 is mixed at a plurality of locations having different depths in the underground penetration state, and in the examples of FIGS. Mixed state measuring devices 14A, 14B, and 14C are provided as state measuring means. These mixed state measuring instruments 14A to 14C may be installed at least at two places having different depths. However, in order to manage the mixed stirring state in the depth direction as uniform as possible. Then, it is desirable to be installed at three or more locations in the depth direction.

さらに、図1に示したベースマシン1の旋回ベース2には施工管理装置を兼ねた品質管理装置15が搭載されていると共に、オペレータの操作による品質管理のために必要な情報を可視表示するための表示装置(表示手段)としてモニター16がキャビンに設置されている。そして、混合撹拌ヘッド5による安定処理土の造成中において、混合撹拌ヘッド5側の各混合状態計測器14A〜14Cの計測出力がリアルタイムで品質管理装置15に取り込まれるようになっている。   In addition, the turning base 2 of the base machine 1 shown in FIG. 1 is equipped with a quality control device 15 that also serves as a construction management device, and for visual display of information necessary for quality control by the operation of the operator. A monitor 16 is installed in the cabin as a display device (display means). During the creation of the stabilized soil by the mixing and stirring head 5, the measurement outputs of the mixed state measuring devices 14A to 14C on the mixing and stirring head 5 side are taken into the quality control device 15 in real time.

品質管理装置15は汎用のパーソナルコンピュータをもって構成されているものであり、例えば図4に示すように、制御機能部17と出力制御部18を備えている。制御機能部17は、データ蓄積部19、統計処理部20、目標値設定部21、比較判定部22、警報制御部23等を備えている。そして、制御機能部17には、後述する統計処理部20での各種統計処理等に必要なソフトウエアが予めインストールされていると共に、出力制御部18がモニター16での表示制御を司っている。なお、品質管理装置15はモニター16と一体化されたタイプのものであっても良く、その場合にはモニター16と一体化された品質管理装置15がキャビンに設置される。   The quality management device 15 is configured with a general-purpose personal computer, and includes a control function unit 17 and an output control unit 18, for example, as shown in FIG. The control function unit 17 includes a data storage unit 19, a statistical processing unit 20, a target value setting unit 21, a comparison determination unit 22, an alarm control unit 23, and the like. The control function unit 17 is preinstalled with software necessary for various statistical processes in the statistical processing unit 20 described later, and the output control unit 18 controls display on the monitor 16. . The quality control device 15 may be of a type integrated with the monitor 16, and in that case, the quality control device 15 integrated with the monitor 16 is installed in the cabin.

各混合状態計測器14A〜14Cはいずれも同じ構造のものであり、図5は図3に示した混合状態計測器14Bを上から見た拡大図を示している。各混合状態計測器14A〜14Cは、図5に示すように、略偏平角錐台形状の台座24の二面に導電率センサ25,26を装着したものであり、各導電率センサ25,26は絶縁性を有するホルダー27を介して二つで一組(一対)の電極28a,28bが露出するように埋設されているものである。そして、各混合状態計測器14A〜14Cは、各導電率センサ25,26の電極28a,28bの露出面が図3に示す掘進方向bを指向するように混合撹拌ヘッド5におけるフレーム6のポスト6bの側面に固定される。故に、各混合状態計測器14A〜14Cは、いわゆる二極式の導電率センサを二組備えたものと理解することができ、二つの導電率センサ25,26は図3に示した混合撹拌ヘッド5の掘進方向に応じて選択的に使い分けられる。   Each of the mixed state measuring instruments 14A to 14C has the same structure, and FIG. 5 shows an enlarged view of the mixed state measuring instrument 14B shown in FIG. As shown in FIG. 5, each of the mixed state measuring instruments 14 </ b> A to 14 </ b> C has conductivity sensors 25 and 26 mounted on two surfaces of a substantially flat truncated pyramid shaped pedestal 24. Two sets of electrodes 28a, 28b are embedded so as to be exposed through a holder 27 having an insulating property. Then, each of the mixed state measuring instruments 14A to 14C has the post 6b of the frame 6 in the mixed stirring head 5 so that the exposed surfaces of the electrodes 28a and 28b of the respective conductivity sensors 25 and 26 are directed in the digging direction b shown in FIG. Fixed to the side of the. Therefore, it can be understood that each of the mixed state measuring instruments 14A to 14C includes two sets of so-called two-pole conductivity sensors, and the two conductivity sensors 25 and 26 are mixed stirring heads shown in FIG. It can be selectively used according to the 5 digging directions.

地盤改良のための造成中の安定処理土は、所定の抵抗値を有する電気抵抗体とみなすことができ、各導電率センサ25,26では、実際には一対の電極28a,28b間の比抵抗を検出している。より具体的には、図5に示した導電率センサ25,26では、後述するように、安定処理土の中に臨ませた一対の電極28a,28b間に電流を流した時のその経路の電圧(電位差)を計測して抵抗値を求め、電流が流れた経路の長さや断面積を考慮した比抵抗ρ(Ω m)を電気的パラメータとして検出している。   The stabilized soil under construction for ground improvement can be regarded as an electric resistor having a predetermined resistance value. In each of the conductivity sensors 25 and 26, the specific resistance between the pair of electrodes 28a and 28b is actually used. Is detected. More specifically, in the conductivity sensors 25 and 26 shown in FIG. 5, as will be described later, the path of the current sensor when the current is passed between the pair of electrodes 28a and 28b facing the stabilized soil. A resistance value is obtained by measuring a voltage (potential difference), and a specific resistance ρ (Ωm) in consideration of the length and cross-sectional area of the path through which the current flows is detected as an electrical parameter.

そして、本実施の形態では、比抵抗実測値をそのまま使用することなく、比抵抗の逆数が導電率であることから、各導電率センサ25,26によって検出された実測値は、図示を省略した変換器を経由することで、比抵抗実測値の逆数である導電率に変換された上で品質管理装置15に取り込まれる。なお、比抵抗実測値の逆数である導電率への変換は品質管理装置15側で行うことも可能である。   In this embodiment, the measured value detected by each of the conductivity sensors 25 and 26 is not shown because the reciprocal of the specific resistance is the conductivity without using the measured value of the specific resistance as it is. By passing through the converter, it is converted into the conductivity which is the reciprocal of the specific resistance measurement value, and then taken into the quality control device 15. Note that the conversion to conductivity, which is the reciprocal of the measured specific resistance value, can be performed on the quality control device 15 side.

また、図3に示すように、混合撹拌ヘッド5におけるフレーム6のポスト6bの両側面に、そのポスト6bをはさんで対向するように二つの混合状態計測器14Bを取り付けておき、これらを選択的に使用するようにしても良い。さらに、必要に応じて、各混合状態計測器14A〜14Cを構成している二極式の導電率センサ25,26に代えて、三極式または四極式の導電率センサのほか、導電率計あるいは導電率センサ(例えば、電磁誘導式の導電率センサ)として一般に市販されており、導電率実測値をそのまま出力できるタイプのものを使用することも可能である。この導電率実測値をそのまま出力できるタイプの市販品の導電率計あるいは導電率センサを使用する場合には、上記の変換器は不要である。   Further, as shown in FIG. 3, two mixing state measuring devices 14B are attached to both sides of the post 6b of the frame 6 in the mixing and stirring head 5 so as to face each other with the post 6b therebetween, and these are selected. You may make it use it. Furthermore, if necessary, in place of the two-pole conductivity sensors 25 and 26 constituting the mixed state measuring instruments 14A to 14C, a conductivity meter in addition to a three-pole or four-pole conductivity sensor. Or it is generally marketed as a conductivity sensor (for example, an electromagnetic induction type conductivity sensor), and it is also possible to use a type that can output a measured conductivity value as it is. In the case of using a commercially available conductivity meter or conductivity sensor that can output the measured conductivity value as it is, the above converter is not necessary.

各混合状態計測器14A〜14Bの取付態様としては、造成中の安定処理土の混合状態の計測に際して、混合撹拌中の流動化状態となっている安定処理土と各導電率センサ25,26の電極28a,28bとの間に空隙が生じることなく、完全に密着させることが求められる。よって、各混合状態計測器14A〜14Cの取り付け位置は、図3に示すように、混合撹拌ヘッド5の平面視において、張り側となるトレンチャー式の混合撹拌翼11と緩み側となるトレンチャー式の混合撹拌翼11とで挟まれた領域であって、且つ混合撹拌ヘッド5の掘進方向と平行となるポスト6bの側面に取り付けることが望ましい。   As the mounting mode of each of the mixed state measuring devices 14A to 14B, when measuring the mixed state of the stable treated soil being created, the stable treated soil that is in the fluidized state during mixing and stirring and the conductivity sensors 25 and 26 are connected. It is required that the electrodes 28a and 28b are completely brought into close contact with each other without generating a gap. Therefore, as shown in FIG. 3, the mounting positions of the mixed state measuring instruments 14 </ b> A to 14 </ b> C are, as viewed in a plan view of the mixing and stirring head 5, the trencher-type mixing stirring blade 11 that is the tight side and the trencher type that is the loose side. It is desirable to attach to the side surface of the post 6b which is a region sandwiched between the mixing and stirring blades 11 and parallel to the digging direction of the mixing and stirring head 5.

さらに、上記のように、混合撹拌中の流動化状態となっている安定処理土と各導電率センサ25,26の電極28a,28bとの間に空隙が生じることなく、完全に密着させることが必要であることから、各混合状態計測器14A〜14Cの母体となる台座24は略偏平角錐台形状のものとし、その傾斜面に導電率センサ25,26の電極28a,28bが露出するように配置している。そして、例えば混合撹拌ヘッド5が図3の左方向に移動する場合には、一方の導電率センサ25が使用され、他方、混合撹拌ヘッド5が図3の右方向に移動する場合には、他方の導電率センサ26が使用される。この場合に、必要に応じて双方の導電率センサ25,26を同時使用することも可能である。   Further, as described above, it is possible to completely contact the stable treated soil in a fluidized state during mixing and stirring without any gap between the electrodes 28a and 28b of the conductivity sensors 25 and 26. Since it is necessary, the base 24 serving as a base of each of the mixed state measuring instruments 14A to 14C is formed in a substantially flat truncated pyramid shape so that the electrodes 28a and 28b of the conductivity sensors 25 and 26 are exposed on the inclined surfaces. It is arranged. For example, when the mixing and stirring head 5 moves in the left direction in FIG. 3, one conductivity sensor 25 is used. On the other hand, when the mixing and stirring head 5 moves in the right direction in FIG. The conductivity sensor 26 is used. In this case, both the conductivity sensors 25 and 26 can be used simultaneously as necessary.

一方、導電率センサ25,26と安定処理土の密着には、安定処理土の流動値を流動化させることが望ましく、その基準としては安定処理土の混合撹拌直後の流動値をテーブルフロー値にて115mm以上とすることが望ましい。導電率センサ25,26と安定処理土の密着性のみを考慮するならば、テーブルフロー値は高い方が望ましいが、セメントミルク等の固化材にて原位置土の強度増加を図るような地盤改良工事においては、同一添加量における安定処理土の発現強度と混合撹拌時のテーブルフロー値(流動値)とは反比例することが知られている。そこで、上記テーブルフロー値の115mmは、安定処理土の液性限界値をテーブルフロー値の下限値の目安としたものである。   On the other hand, for the close contact between the conductivity sensors 25 and 26 and the stable treated soil, it is desirable to fluidize the flow value of the stable treated soil. As a reference, the flow value immediately after mixing and stirring the stable treated soil is used as the table flow value. 115 mm or more is desirable. If only the adhesion between the conductivity sensors 25 and 26 and the stabilized soil is taken into consideration, it is desirable that the table flow value is high, but the ground improvement is intended to increase the strength of the in situ soil with a solidifying material such as cement milk. In construction, it is known that the expression strength of the stabilized soil at the same addition amount and the table flow value (flow value) at the time of mixing and stirring are inversely proportional. Therefore, the table flow value of 115 mm is obtained by using the liquid limit value of the stabilized soil as a guideline for the lower limit value of the table flow value.

先に述べた各混合状態計測器14A〜14Cの取り付け位置の具体例として、例えば深度10m、厚さ1mの土留め壁を造成する地盤改良に際して、長さ11m、幅1mの混合撹拌ヘッド5を使用するケースを想定してみる。この場合、上端部の混合状態計測器14Aは、混合撹拌ヘッド5の下端部より9.0m付近(GL−1.0m付近)の上層部相当位置に取り付ける。また、中間部の混合状態計測器14Bは、混合撹拌ヘッド5の下端部より5.0m付近(GL−5.0m付近)の中層部相当位置に取り付ける。同様に、下端部の混合状態計測器14Cは、混合撹拌ヘッド5の下端部より1.0m付近(GL−9.0m付近)の下層部相当位置に取り付ける。   As a specific example of the mounting position of each of the mixed state measuring devices 14A to 14C described above, for example, when the ground is improved to form a retaining wall having a depth of 10 m and a thickness of 1 m, a mixing stirring head 5 having a length of 11 m and a width of 1 m is provided. Let's assume the use case. In this case, the mixed state measuring instrument 14A at the upper end is attached to a position corresponding to the upper layer portion near 9.0 m (near GL-1.0 m) from the lower end portion of the mixing and stirring head 5. Moreover, the mixing state measuring instrument 14B in the middle part is attached to a position corresponding to the middle layer part near 5.0 m (near GL-5.0 m) from the lower end part of the mixing and stirring head 5. Similarly, the mixing state measuring device 14 </ b> C at the lower end is attached to a lower layer equivalent position near 1.0 m (near GL-9.0 m) from the lower end of the mixing and stirring head 5.

図4に示したように、混合撹拌ヘッド5による安定処理土の造成中において、各混合状態計測器14A〜14C導電率センサ25,26での計測出力である実測値が導電率に変換された上で品質管理装置15にリアルタイムで取り込まれて蓄積されることになる。この品質管理装置15では、当該品質管理装置15にリアルタイムで入力される導電率データを所定の周期でサンプリングして蓄積した上で必要な統計処理を行って、安定処理土の混合状態の品質評価の指標である統計的ばらつきを算出する。そして、算出した統計的ばらつきと目標値とを比較することで、その時点での安定処理土の品質評価として、混合状態の適否判定を行うものとする。   As shown in FIG. 4, during the creation of the stable treated soil by the mixing and stirring head 5, the actual measurement values, which are measurement outputs of the mixed state measuring instruments 14 </ b> A to 14 </ b> C, are converted into conductivity. The quality management device 15 takes in and stores the information in real time. In this quality control device 15, conductivity data input in real time to the quality control device 15 is sampled and accumulated at a predetermined cycle, and then necessary statistical processing is performed to evaluate the quality of the mixed state of the stable treated soil. Statistical dispersion, which is an index of Then, by comparing the calculated statistical variation with the target value, the suitability determination of the mixed state is performed as the quality evaluation of the stable treated soil at that time.

ここで、上記土留め壁を1時間当たり施工土量40m3として造成する場合の、1分間あたりにおける混合撹拌ヘッド5の掘進距離を以下にて求めてみる。 Here, the digging distance of the mixing and agitation head 5 per minute when the earth retaining wall is constructed with a construction soil volume of 40 m 3 per hour will be determined below.

掘進距離={時間あたり施工土量÷(土留め壁深度×厚さ)}÷(1時間)
={40÷(10×1)}÷60≒0.066m/分
造成中の安定処理土の混合状態の評価判定頻度は小さければ小さいほど好ましい。その一方、土留め壁の造成をしつつその安定処理土の混合状態の計測をリアルタイムで行い、その結果をもって当該安定処理土の混合状態を評価判定しつつ、その評価判定に従いながら混合撹拌ヘッド5の掘進操作を行うことを考慮すると、その評価判定頻度は1分〜5分に1回程度の頻度にて行われれば良い。少なくとも、1回/5分間の頻度にて評価判定されたとしても、概ね33cmに1回の割合(頻度)にて、混合撹拌中の安定処理土の混合状態を確認しつつ土留め壁の造成を行うこととなり、土留め壁としての品質は十分に確保されるものと推測される。
Digging distance = {construction volume per hour ÷ (depth of retaining wall × thickness)} ÷ (1 hour)
= {40 ÷ (10 × 1)} ÷ 60≈0.066 m / min It is preferable that the evaluation judgment frequency of the mixed state of the stably treated soil during creation is as small as possible. On the other hand, the mixing state of the stable treated soil is measured in real time while the earth retaining wall is being formed, and the mixed stirring head 5 is evaluated according to the evaluation determination while evaluating and determining the mixed state of the stable treated soil based on the result. In consideration of performing the excavation operation, the evaluation determination frequency may be performed at a frequency of about once every 1 to 5 minutes. Even if the evaluation is judged at a frequency of at least once every 5 minutes, the retaining wall is created while confirming the mixed state of the stable treated soil during mixing and stirring at a rate (frequency) of once every 33 cm. It is estimated that the quality of the retaining wall will be sufficiently secured.

本実施の形態では、先に述べた三箇所の混合状態計測器14A〜14Cにおける導電率センサ25,26の実測値に基づく導電率データのサンプリングを1秒ごとに行うものとし、図4に示した品質管理装置15ではサンプリングした1分間ごとの導電率データを蓄積した上で、その都度、図6に示すような手順で統計処理を行って統計的ばらつきである変動係数を求めた上で、目標値と比較することで、混合状態の適否判定までも行うものとする。なお、導電率データのサンプリング周期は任意に設定可能である。   In this embodiment, the conductivity data sampling based on the measured values of the conductivity sensors 25 and 26 in the three mixed state measuring instruments 14A to 14C described above is performed every second, as shown in FIG. In addition, the quality control device 15 accumulates the sampled conductivity data every one minute and then performs statistical processing according to the procedure shown in FIG. 6 to obtain a coefficient of variation that is statistical variation. By comparing with the target value, even the suitability determination of the mixed state is performed. In addition, the sampling period of conductivity data can be set arbitrarily.

図6のステップS1では、各混合状態計測器14A〜14Cごとに、導電率センサ25,26の計測出力を1秒ごとにサンプリングして、1分間分の60個のサンプリングデータである導電率データを蓄積・記憶する。   In step S1 of FIG. 6, the measurement output of the conductivity sensors 25 and 26 is sampled every second for each of the mixed state measuring devices 14A to 14C, and conductivity data which is 60 sampling data for one minute. Is stored and stored.

次のステップS2では、各混合状態計測器14A〜14Cごとに、1分間分の60個のサンプリングデータである導電率データを母集団として、その1分間の平均値を各混合状態計測器14A〜14Cごとに求める。   In the next step S2, for each of the mixed state measuring instruments 14A to 14C, conductivity data that is 60 sampling data for one minute is used as a population, and the average value for one minute is obtained for each of the mixed state measuring instruments 14A to 14A. Calculate every 14C.

ステップS3では、三つの混合状態計測器14A〜14C全体としての1分間分の180個(60個×3)のサンプリングデータである導電率データを母集団として、その1分間の平均値と標準偏差を求める。   In step S3, the average value and the standard deviation for 1 minute of the three mixed state measuring instruments 14A to 14C as a whole are obtained by using conductivity data that is 180 pieces (60 pieces × 3) of sampling data for one minute as a population. Ask for.

ステップS4では、先のステップS3で求めた平均値と標準偏差とに基づいて、三つの混合状態計測器14A〜14C全体としての総合的な統計的ばらつきである変動係数(%)を求める。なお、変動係数は、標準偏差を平均値で除した値である。   In step S4, based on the average value and the standard deviation obtained in the previous step S3, a variation coefficient (%) which is a comprehensive statistical variation as the whole of the three mixed state measuring instruments 14A to 14C is obtained. The coefficient of variation is a value obtained by dividing the standard deviation by the average value.

ここで、上記変動計数に関して、その目標値(しきい値または設定基準値)を、実験的且つ経験的に予め求めて、品質管理装置15の目標値設定部21に記憶・設定しておくものとする。   Here, regarding the variation count, the target value (threshold value or setting reference value) is obtained in advance experimentally and empirically, and stored and set in the target value setting unit 21 of the quality management device 15. And

その上で、図6のステップS5では、先に求めた変動計数と上記目標値とを比較して、造成中の安定処理土における混合状態の適否判定を行う。この適否判定は、適(OK)または不適(NG)をもって行う。   Then, in step S5 of FIG. 6, the variation count obtained previously is compared with the target value to determine whether or not the mixed state in the stable treated soil being created is appropriate. This suitability determination is performed with suitability (OK) or suitability (NG).

そして、次のステップS6では、先に求めた各混合状態計測器14A〜14Cごとの導電率データの平均値と、先に統計的ばらつきとして求めた変動係数、および上記目標値と共に、上記の適否判定結果を図1,4に示したモニター16に可視表示して、オペレータの操作による混合撹拌ヘッド5の掘進操作に供するものとする。   Then, in the next step S6, along with the average value of the conductivity data for each of the mixed state measuring instruments 14A to 14C previously determined, the coefficient of variation previously determined as statistical variation, and the target value, The determination result is visually displayed on the monitor 16 shown in FIGS. 1 and 4 and used for the excavation operation of the mixing and stirring head 5 by the operation of the operator.

図7の(A),(B)は上記モニター16での画面表示の一例を示している。同図(A)は、安定処理土の混合状態の評価指標である変動係数の目標値が例えば15%である場合に、各混合状態計測器14A〜14Cにおける導電率センサ25,26の導電率データに基づいて実際に求めた変動係数が45%である場合であって、その時点での混合状態の適否判定結果は不適(NO)と表示される。同図から明らかなように、深度位置が異なる三つの混合状態計測器14A〜14Cにおける導電率センサ25,26の導電率データの平均値が大きくばらついているために、それらの導電率データから総合的に求めた変動係数が目標値を大きく逸脱しているものと理解される。   7A and 7B show examples of screen display on the monitor 16. FIG. 6A shows the conductivity of the conductivity sensors 25 and 26 in each of the mixed state measuring instruments 14A to 14C when the target value of the coefficient of variation, which is an evaluation index of the mixed state of the stabilized soil, is 15%, for example. When the variation coefficient actually obtained based on the data is 45%, the appropriateness determination result of the mixed state at that time is displayed as inappropriate (NO). As is clear from the figure, since the average values of the conductivity data of the conductivity sensors 25 and 26 in the three mixed state measuring instruments 14A to 14C having different depth positions vary widely, it is comprehensive from the conductivity data. It can be understood that the coefficient of variation obtained from the target deviates greatly from the target value.

そこで、オペレータは、図1,4のモニター16での画面表示を確認しながら、変動係数が目標値を充足するまで、混合撹拌ヘッド5を掘進させることなく定位置にて混合撹拌処理を継続する。   Therefore, the operator continues the mixing and stirring process at a fixed position without digging the mixing and stirring head 5 until the coefficient of variation satisfies the target value while checking the screen display on the monitor 16 of FIGS. .

その一方、同図(B)は、安定処理土の混合状態の評価指標である変動係数の目標値が例えば15%である場合に、各混合状態計測器14A〜14Cにおける導電率センサ25,26の導電率データに基づいて実際に求めた変動係数が15%となった場合であって、その時点での混合状態の適否判定結果は適(OK)と表示される。同図から明らかなように、深度位置が異なる三つの混合状態計測器14A〜14Cにおける導電率センサ25,26の導電率データの平均値のばらつきが同図(A)に比べて小さくなっているために、それらの導電率データから総合的に求めた変動係数が目標値と一致しているものと理解される。   On the other hand, FIG. 7B shows the conductivity sensors 25 and 26 in the mixed state measuring instruments 14A to 14C when the target value of the coefficient of variation, which is an evaluation index of the mixed state of the stabilized soil, is 15%, for example. The variation coefficient actually obtained based on the conductivity data is 15%, and the result of determining whether the mixed state is appropriate at that time is displayed as appropriate (OK). As is clear from the figure, the variation in the average value of the conductivity data of the conductivity sensors 25 and 26 in the three mixed state measuring instruments 14A to 14C having different depth positions is smaller than that in FIG. Therefore, it is understood that the coefficient of variation obtained comprehensively from the conductivity data matches the target value.

こうして、造成中の安定処理土の混合状態の指標である変動係数の適否判定結果が適(OK)となったならば、オペレータは混合撹拌ヘッド5を所定量だけ横行させるように掘進移動させて、同様の作業を行うことになる。   In this way, when the result of determining whether the coefficient of variation, which is an indicator of the mixing state of the stabilized soil under construction, is appropriate (OK), the operator moves the mixing agitation head 5 so as to traverse a predetermined amount. Will do the same.

ここで、付加機能として、図4に示したモニター16の近くに、例えば赤色灯等の警報装置16aを設置してある。   Here, as an additional function, an alarm device 16a such as a red light is installed near the monitor 16 shown in FIG.

そして、例えば図7の(A)に示したように、混合状態の適否判定結果が不適(NG)であるにもかかわらず、オペレータが混合撹拌ヘッド5を掘進移動させようとした場合には、図6のステップS7に示すように、警告音と共に警報装置16aを点灯させて警告を発し、従前の位置での混合撹拌作業を継続して行うようにオペレータに促すものとする。なお、警告音と共に警報装置16aを点灯させて警告を発するか否かは、図1,4に示したように、ベースマシン1側の可動部位置情報、例えばベースマシン1の旋回ベース2やブーム3あるいはアーム4等の可動部の位置情報や、オペレータが操作するキャビン内の操作レバーの位置情報と、上記の適否判定結果を図4の警報制御部23で照合することで決定する。   And, for example, as shown in FIG. 7A, when the operator tries to move the mixing and agitating head 5 in spite of the inappropriateness determination result of the mixed state (NG), As shown in step S7 of FIG. 6, the warning device 16a is turned on together with a warning sound to issue a warning, and the operator is encouraged to continue the mixing and stirring operation at the previous position. As shown in FIGS. 1 and 4, whether or not to issue a warning by turning on the warning device 16a together with a warning sound indicates the position information of the movable part on the base machine 1 side, for example, the turning base 2 and boom of the base machine 1. 3 and the position information of the operating lever in the cabin operated by the operator and the above-described suitability determination result are collated by the alarm control unit 23 in FIG.

図8の(A)は、図7の(A)の画面表示での数値をグラフ化したものを示していて、同様に、図8の(B)は、図7の(B)の画面表示での数値をグラフ化したものを示している。これらの図8の(A),(B)から明らかなように、同図(A)に比べて同図(B)の方が導電率のばらつきが収束化する傾向にあることが容易に理解できる。   FIG. 8A shows a graph of the numerical values in the screen display of FIG. 7A. Similarly, FIG. 8B shows the screen display of FIG. 7B. It shows the graph of the numerical value at. As is clear from FIGS. 8A and 8B, it is easier to understand that the variation in conductivity tends to converge in FIG. 8B than in FIG. 8A. it can.

ここで、図7の(A),(B)での画面表示における三つの混合状態計測器14A〜14Cの導電率データの平均値の数値そのものはそれほど大きな意味を有していない。その理由は、造成中の安定処理土の品質(混合状態)としては、特に深度方向での差が少なく均質化さていることが重要であり、図7の(A),(B)での画面表示における三つの混合状態計測器14A〜14Cの導電率データの平均値が互いに一致しないまでも、それらの平均値が互いに近似したものとなるならば所期の目的を達成できるからである。そのために、本実施の形態では、造成中の安定処理土の混合状態の評価指標である統計的ばらつきとして、三つの混合状態計測器14A〜14Cでの導電率データの平均値同士の相対比較が考慮された変動係数を用いている。   Here, the numerical value itself of the average value of the conductivity data of the three mixed state measuring devices 14A to 14C in the screen display in FIGS. 7A and 7B does not have a great meaning. The reason for this is that, as the quality (mixed state) of the stabilized soil during creation, it is important that there is little difference in the depth direction and that it is homogenized, and the screens in FIGS. 7A and 7B This is because even if the average values of the conductivity data of the three mixed state measuring instruments 14A to 14C in the display do not coincide with each other, the intended purpose can be achieved if the average values are approximate to each other. Therefore, in this embodiment, as a statistical variation which is an evaluation index of the mixed state of the stable treated soil under creation, a relative comparison between the average values of the conductivity data in the three mixed state measuring instruments 14A to 14C is performed. Considered coefficient of variation.

なお、図7の(A),(B)共に、深度方向の最下層での混合状態計測器14Cの導電率データの平均値が最も大きく表示されるのは、混合撹拌ヘッド5の下部の吐出ノズル12(図1,2参照)から固化材を連続的に吐出している故に、下層ほど固化材の浸透が促進されやすいためで、この傾向は工法上、不可避とされる。   7A and 7B, the average value of the conductivity data of the mixed state measuring instrument 14C at the lowest layer in the depth direction is displayed with the largest value in the lower part of the mixing and stirring head 5. Since the solidification material is continuously discharged from the nozzle 12 (see FIGS. 1 and 2), the lower layer tends to promote the penetration of the solidification material, and this tendency is unavoidable in terms of construction method.

混合撹拌中の安定処理土の混合状態(混ざり具合)の良し悪しは、一般的には、安定処理地盤の全層(下層部、中層部、上層部)における一軸圧縮強さのばらつき(深度方向での強度差)にて評価判定する。その評価判定を、一軸圧縮強さのばらつきに代えて、上記導電率の統計的ばらつきである変動係数にて行うにあたり、三つの施工箇所(A、B、C)にて、原位置土(原土)とスラリ状の固化材とを混合撹拌して、その混合撹拌中の安定処理土の電気的パラメータである導電率と所定の養生後のコアーボーリングによる供試体での一軸圧縮強さとの比較調査を行ってみた。   The mixing condition (mixing condition) of the stabilized soil during mixing and stirring is generally determined by the variation in uniaxial compressive strength (depth direction) in all layers (lower layer, middle layer, upper layer) of the stabilized ground. The strength is determined by evaluation. In performing the evaluation judgment with the coefficient of variation, which is the statistical variation of the conductivity, instead of the variation of the uniaxial compressive strength, the three in-situ locations (A, B, C) Soil) and slurry solidified material are mixed and agitated, and the electrical conductivity of the stabilized soil during the mixing and agitation is compared with the uniaxial compressive strength of the specimen by core boring after predetermined curing. I conducted a survey.

それぞれの施工箇所(A、B、C)における固化材添加量(kg/m3)と時間あたり施工量(m3/h)を以下に示す。
・A:添加量100kg/m3、単位時間あたり施工量60m3/h
・B:添加量150kg/m3、単位時間あたり施工量50m3/h
・C:添加量200kg/m3、単位時間あたり施工量40m3/h
この場合において、上記条件下における混合撹拌中の安定処理土の導電率の計測結果とその深度に相当する位置(深度)での安定処理土の一軸圧縮強さの結果を図9の表に示す。なお、導電率の計測結果は、先に述べた三つの混合状態計測器14A〜14Cにおける各導電率センサ25,26にて計測したものである。
The solidification material addition amount (kg / m 3 ) and the construction amount per hour (m 3 / h) at each construction location (A, B, C) are shown below.
A: Addition amount 100 kg / m 3 , construction amount 60 m 3 / h per unit time
-B: Addition amount 150 kg / m 3 , construction amount per unit time 50 m 3 / h
C: Addition amount 200 kg / m 3 , construction amount 40 m 3 / h per unit time
In this case, the table of FIG. 9 shows the measurement results of the conductivity of the stabilized soil during mixing and stirring under the above conditions and the results of the uniaxial compressive strength of the stabilized soil at a position (depth) corresponding to the depth. . In addition, the measurement result of electrical conductivity is measured by the electrical conductivity sensors 25 and 26 in the three mixed state measuring devices 14A to 14C described above.

それぞれの施工箇所における導電率と一軸圧縮強さの平均値は、施工箇所Aの導電率は392.4mS/m、一軸圧縮強さは355.0kg/m2、施工箇所Bの導電率は434.7mS/m、一軸圧縮強さは538.7kg/m2、施工箇所Cの導電率は521.9mS/m、一軸圧縮強さは761.9kg/m2、との結果となった。 The average values of the electrical conductivity and uniaxial compressive strength at each construction location are as follows: the electrical conductivity at construction location A is 392.4 mS / m, the uniaxial compressive strength is 355.0 kg / m 2 , and the electrical conductivity at construction location B is 434. The result was 0.7 mS / m, the uniaxial compressive strength was 538.7 kg / m 2 , the conductivity of the construction site C was 521.9 mS / m, and the uniaxial compressive strength was 761.9 kg / m 2 .

これらの計測結果をグラフ化したものを図10に示す。また、計測結果の比較から把握できる相関の傾向を以下に示す。   A graph of these measurement results is shown in FIG. Moreover, the correlation tendency that can be grasped from the comparison of the measurement results is shown below.

・固化材添加量の変化:A<B<C
・単位時間あたり施工量の変化:A>B>C
・平均導電率の変化:A<B<C
・平均一軸圧縮強さの変化:A<B<C
・導電率の深度方向のばらつき(変動係数):A>B>C
・一軸圧縮強さの深度方向のばらつき(変動係数):A>B>C
すなわち、上記計測結果の比較より得られた特徴は以下の通りとなる。
・ Change in amount of solidification material added: A <B <C
・ Change in construction amount per unit time: A>B> C
・ Change in average conductivity: A <B <C
・ Change in average uniaxial compressive strength: A <B <C
・ Diffusion in conductivity in the depth direction (coefficient of variation): A>B> C
・ Diffusion in uniaxial compression strength in the depth direction (coefficient of variation): A>B> C
That is, the characteristics obtained from the comparison of the measurement results are as follows.

・固化材の添加量と平均導電率および一軸圧縮強さは正比例する。   -The amount of solidification material added, the average conductivity, and the uniaxial compressive strength are directly proportional.

・単位時間あたり施工量と平均導電率および一軸圧縮強さは反比例する。   -The construction amount per unit time, average conductivity and uniaxial compressive strength are inversely proportional.

・単位時間あたり施工量と導電率の深度方向のばらつきは正比例する。   ・ The amount of construction per unit time and the variation of conductivity in the depth direction are directly proportional.

・単位時間あたり施工量と一軸圧縮強さの深度方向のばらつきは正比例する。   ・ Diffusion in the depth direction of construction volume per unit time and uniaxial compressive strength is directly proportional.

・導電率の深度方向のばらつきと一軸圧縮強さの深度方向のばらつきは正比例する。   -The variation in the depth direction of the conductivity and the variation in the depth direction of the uniaxial compressive strength are directly proportional.

図9の表の最下段には、三つの混合状態計測器14A〜14Cの各導電率センサ25,26における計測結果より求めた変動係数(深度方向でのばらつき)が記されている。その変動係数を、グラフ化したものが図11である。このグラフからも、深度方向のばらつきを示す導電率(ec)と一軸圧縮強さ(qu)の変動係数は概ね正比例を示している。   At the bottom of the table in FIG. 9, the coefficient of variation (variation in the depth direction) obtained from the measurement results of the conductivity sensors 25 and 26 of the three mixed state measuring devices 14A to 14C is shown. FIG. 11 is a graph showing the variation coefficient. Also from this graph, the coefficient of variation of the conductivity (ec) indicating the variation in the depth direction and the uniaxial compressive strength (qu) is almost directly proportional.

つまり、先の実施の形態のように、安定処理土の電気的パラメータである導電率を計測して、その統計的ばらつきである変動係数により、混合撹拌中の安定処理土の品質である混ざり具合(混合状態)を評価判定することはきわめて有効であることが理解できる。   That is, as in the previous embodiment, the electrical conductivity of the stable treated soil is measured, and the degree of mixing, which is the quality of the stable treated soil during mixing and stirring, is determined by the coefficient of variation that is statistical variation. It can be understood that it is extremely effective to evaluate and judge (mixed state).

次に、先の実施の形態における統計的ばらつきである変動係数の目標値について検討してみる。   Next, let us consider the target value of the coefficient of variation, which is statistical variation in the previous embodiment.

上記のような導電率の統計的ばらつきである変動係数に関して、その目標値を予め定めた上で、統計処理により実際に求めた変動係数を予め定めた目標値と比較してその適否判定を行うならば、上記のように混合撹拌中の安定処理土の混合状態の評価を定量的に且つがスムーズに行うことが可能となる。   Regarding the coefficient of variation, which is a statistical variation of the conductivity as described above, a target value is determined in advance, and the coefficient of variation actually obtained through statistical processing is compared with a predetermined target value to determine suitability. Then, as described above, it is possible to quantitatively and smoothly evaluate the mixed state of the stabilized soil during mixing and stirring.

この目標値の設定には、経験的な数値を目標値として決定する方法と、地盤改良工事の着手前に試験施工を行って目標値を決定する方法がある。前者の方法は、通常の地盤改良工事における品質のばらつき(先に例示した一軸圧縮強さのばらつき)は、変動係数にて20%〜40%程度の範囲内に収まれば、良好であると言われている。混合撹拌中の安定処理土の導電率の統計的ばらつきである変動係数と、安定処理土の発現強度のばらつきの変動係数(一軸圧縮強さの変動係数)との間には概ね相関(正比例している)があることは先に述べた通りである。これらの経験的なバロメータより、当該安定処理土の変動係数の目標値として、一軸圧縮強さの変動係数を下回る20%以下とするならば、十分に良好な品質が得られることとなる。   There are two methods for setting the target value: a method of determining an empirical numerical value as the target value, and a method of determining the target value by performing a test work before starting the ground improvement work. The former method is said to be satisfactory if the variation in quality in normal ground improvement work (the variation in uniaxial compression strength exemplified above) falls within the range of about 20% to 40% in terms of the coefficient of variation. It has been broken. The coefficient of variation, which is the statistical variation in the conductivity of the stabilized soil during mixing, and the coefficient of variation in the variation in the strength of the stabilized soil (the coefficient of variation in uniaxial compressive strength) are generally correlated (in direct proportion). As mentioned above. From these empirical barometers, if the target value of the coefficient of variation of the stabilized soil is 20% or less below the coefficient of variation of uniaxial compressive strength, sufficiently good quality can be obtained.

後者による方法は、次の(1)〜(3)の通りとする。   The latter method is as follows (1) to (3).

(1)当該現場での代表的な地層と思われる地盤(原位置)にて、当該地盤における混合撹拌中の流動化状態となっている安定処理土の電気的パラメータとして導電率を計測する。   (1) The conductivity is measured as an electrical parameter of the stably treated soil in a fluidized state during mixing and stirring in the ground (original position) that is considered to be a representative formation in the field.

(2)試験施工では、事前試験にて決定したスラリ状の固化材(水/固化材比、添加量等)と原位置土との混合撹拌を行う。   (2) In the test construction, mixing and stirring of the slurry-like solidified material (water / solidified material ratio, added amount, etc.) determined in the preliminary test and in-situ soil is performed.

(3)試験施工にて得られた導電率を、実際の混合撹拌時における導電率の目標値(しきい値または設定基準値)とする。なお、試験施工にて得られた深度方向に異なる導電率のばらつき(例えば変動係数)を目標値としても良い。   (3) The conductivity obtained in the test construction is set as a target value (threshold value or set reference value) of the conductivity during actual mixing and stirring. In addition, it is good also considering the dispersion | variation (for example, variation coefficient) of the electrical conductivity which differs in the depth direction obtained by test construction as a target value.

さらに、上記以外の方法として、当該地盤改良工事の目的(品質レベル)に応じて変動係数の目標値を予め定めておく方法もある。例えば、要求品質レベルに応じた安定処理土の発現強度(一軸圧縮強さ)の変動係数として、品質ランク1(トップレベルの品質)の変動係数は20%以下、品質ランク2(中位程度の品質)の変動係数は30%以下、品質ランク3(必要な性能の最低限を確保する品質)の変動係数は40%以下、と定めることがある。   Furthermore, as a method other than the above, there is also a method in which a target value of the coefficient of variation is determined in advance according to the purpose (quality level) of the ground improvement work. For example, as a coefficient of variation of the expression strength (uniaxial compressive strength) of the stabilized soil according to the required quality level, the coefficient of variation of quality rank 1 (top-level quality) is 20% or less, and quality rank 2 (medium level) The coefficient of variation for quality may be 30% or less, and the coefficient of variation for quality rank 3 (quality that ensures the minimum required performance) may be 40% or less.

この場合において、先にも述べたように、上記安定処理土の発現強度(一軸圧縮強さ)の変動係数と導電率の変動係数との間には相関があることから、上記品質ランクに対して、安定処理土の発現強度(一軸圧縮強さ)の変動係数に応じて導電率の変動係数の目標値を定めるものとする。ただし、導電率の変動係数は当該原土の土質性状によっても敏感に変動するものであることを考慮して、導電率の変動係数の目標値としては、上記発現強度(一軸圧縮強さ)の変動係数を下回る値とすることが望ましい。例えば、品質ランク1の場合の導電率の変動係数の目標値は15%以下、品質ランク2の場合の導電率の変動係数の目標値は25%以下、品質ランク3の場合の導電率の変動係数の目標値は35%以下、の如くである。   In this case, as described above, since there is a correlation between the coefficient of variation of the expression strength (uniaxial compressive strength) of the stabilized soil and the coefficient of variation of conductivity, Thus, the target value of the coefficient of variation of conductivity is determined according to the coefficient of variation of the expression strength (uniaxial compressive strength) of the stabilized soil. However, considering that the coefficient of variation of conductivity varies sensitively depending on the soil properties of the raw soil, the target value of the coefficient of variation of conductivity is the expression strength (uniaxial compressive strength). It is desirable that the value be less than the coefficient of variation. For example, the target value of the coefficient of variation of conductivity in the case of quality rank 1 is 15% or less, the target value of the coefficient of variation of conductivity in the case of quality rank 2 is 25% or less, and the fluctuation of conductivity in the case of quality rank 3 The target value of the coefficient is 35% or less.

このように本実施の形態によれば、造成中の安定処理土の品質である混合状態の評価指標として、深度方向で異なる位置に設けた三つの混合状態計測器14A〜14Cの導電率センサ25,26で収集した導電率データの変動係数を求めて、この求めた変動係数と目標値とを比較することで、混合状態の適否判定を行うようにしている。そのため、造成中の安定処理土の品質である混合状態の評価結果、ひいては適否判定結果の精度および信頼性が従来に比べて高いものとなり、混合状態の過不足の発生を抑制することができる。その結果として、コスト的にも有利な施工を行えることになる。   As described above, according to the present embodiment, the conductivity sensor 25 of the three mixed state measuring instruments 14A to 14C provided at different positions in the depth direction as an evaluation index of the mixed state which is the quality of the stable treated soil being created. 26, the coefficient of variation of the conductivity data collected at 26 is obtained, and the suitability determination of the mixed state is performed by comparing the obtained coefficient of variation with the target value. Therefore, the accuracy and reliability of the mixed state evaluation result, which is the quality of the stable treated soil being created, and thus the suitability determination result are higher than in the past, and the occurrence of excess or deficiency in the mixed state can be suppressed. As a result, cost-effective construction can be performed.

ここで、図7に示したモニター16での画面表示項目の全ては必ずしも必須ではなく、少なくとも適否判定結果である不適(NG)または適(NO)の表示だけでも所期の目的を達成することができるほか、適否判定結果の表示も、色の切り替え表示やランプの点灯・不点灯、あるいはブザーやアラームによる音での告知であっても良い。   Here, all of the screen display items on the monitor 16 shown in FIG. 7 are not necessarily required, and at least the display of inappropriateness (NG) or appropriateness (NO), which is the determination result of appropriateness, achieves the intended purpose. In addition, the display of the suitability determination result may be a color switching display, lamp lighting / non-lighting, or a sound notification by a buzzer or an alarm.

また、本実施の形態では、各混合状態計測器14A〜14Cにおける2極式の各導電率センサ25,26は、実際には図5に示した一対の電極28a,28b間の比抵抗を検出していて、その比抵抗実測値を比抵抗の逆数である導電率に変換した上で品質管理装置15に取り込んでいることは先に述べた。   In the present embodiment, the bipolar conductivity sensors 25 and 26 in the mixed state measuring instruments 14A to 14C actually detect the specific resistance between the pair of electrodes 28a and 28b shown in FIG. As described above, the measured value of specific resistance is converted into the conductivity which is the reciprocal of the specific resistance and then taken into the quality control device 15.

本実施の形態で計測対象としている造成中の安定処理土は、図12にも示すように、電気抵抗Rの電気抵抗体とみなすことができ、この電気抵抗の計測は、安定処理土の中に臨ませた一対の電極28a,28b間に電流を流し、その電流が流れた経路の電圧(電位差)を計測して抵抗Rを求めることになる。この抵抗Rは、電流が流れた経路の長さや断面積によって変わるので、断面積1m2、長さ1mの単位寸法にそろえたとき、その物体の抵抗を比抵抗ρ(Ω m)として検出している。そして、この比抵抗ρをその逆数である導電率(mS/m)に変換した上で先の統計的ばらつきの算出に必要な電気的パラメータとして使用している。 As shown in FIG. 12, the stable treated soil that is being measured in the present embodiment can be regarded as an electric resistor of electric resistance R, and the measurement of the electric resistance is performed in the stable treated soil. A current is caused to flow between the pair of electrodes 28a and 28b facing the electrode, and the resistance (R) is obtained by measuring the voltage (potential difference) of the path through which the current flows. This resistance R varies depending on the length and cross-sectional area of the path through which the current flows. Therefore, the resistance of the object is detected as a specific resistance ρ (Ω m) when the unit dimensions are 1 m 2 and 1 m in length. ing. The specific resistance ρ is converted into conductivity (mS / m) which is the reciprocal of the specific resistance ρ and used as an electrical parameter necessary for the calculation of the statistical variation.

その一方で、図7の(A),(B)での画面表示における三つの混合状態計測器14A〜14Cにおいて、それらの個々の導電率センサ25,26の導電率データの平均値の数値そのものはそれほど大きな意味を有しておらず、造成中の安定処理土の品質(混合状態)としては、特に深度方向での差が少なく均質化さていることが重要であり、図7の(A),(B)での画面表示における三つの混合状態計測器14A〜14Cの導電率データの平均値が互いに一致しないまでも、それらの平均値が互いに近似したものとなれば良いこともまた先に述べた。   On the other hand, in the three mixed state measuring devices 14A to 14C in the screen display in FIGS. 7A and 7B, the numerical value of the average value of the conductivity data of the individual conductivity sensors 25 and 26 itself. Is not so significant, and as the quality (mixed state) of the stably treated soil during creation, it is particularly important that the difference in the depth direction is small and homogenized. First, it is sufficient that the average values of the conductivity data of the three mixed state measuring instruments 14A to 14C in the screen display in FIGS. Stated.

要するに、図7の(A),(B)での画面表示における三つの混合状態計測器14A〜14Cの電気的パラメータの平均値同士を相対的に比較して、それらの差が可及的に小さいものとなれば所期の目的は達成できることになる。   In short, the average values of the electrical parameters of the three mixed state measuring instruments 14A to 14C in the screen display in FIGS. 7A and 7B are relatively compared, and the difference between them is as much as possible. If it is small, the intended purpose can be achieved.

言い換えるならば、先に述べた導電率や比抵抗といった電気的パラメータに代えて、例えば先に述べた比抵抗を求める前の一対の電極28a,28b間の抵抗値や、定電流下での一対の電極28a,28b間の電圧、あるいは定電圧印加時の一対の電極28a,28b間の電流の大きさを電気的パラメータとしても所期の目的を達成することが可能である。つまり、先の実施の形態における混合状態計測器14A〜14Cとして、導電率センサ25,26に代えて、抵抗、電流、電圧等の他の電気的パラメータを計測する手段を用いることも可能である。   In other words, instead of the electrical parameters such as conductivity and specific resistance described above, for example, the resistance value between the pair of electrodes 28a and 28b before obtaining the specific resistance described above, or a pair under a constant current. The intended purpose can be achieved even if the voltage between the electrodes 28a and 28b or the magnitude of the current between the pair of electrodes 28a and 28b when a constant voltage is applied is used as an electrical parameter. That is, as the mixed state measuring instruments 14A to 14C in the previous embodiment, it is possible to use means for measuring other electrical parameters such as resistance, current, voltage, etc., instead of the conductivity sensors 25, 26. .

また、本実施の形態では、導電率に代表される電気的パラメータの統計的ばらつきとして変動係数を用いているが、他の統計的ばらつきとして、標準偏差や、範囲、平均差、平均絶対偏差等を用いることももちろん可能である。   In this embodiment, a coefficient of variation is used as a statistical variation of electrical parameters represented by conductivity. However, as other statistical variations, standard deviation, range, average difference, average absolute deviation, etc. Of course, it is also possible to use.

さらに、本実施の形態では、地盤改良工法における安定処理土の造成を例にとって説明したが、必要に応じて、本発明は、例えば重金属や油等による汚染土壌と還元剤や浄化剤を混合撹拌して、汚染土壌の浄化を図る工法にも適用することができる。   Furthermore, in the present embodiment, the description has been given by taking as an example the creation of a stabilized soil in the ground improvement method, but if necessary, the present invention can mix and agitate, for example, soil contaminated with heavy metal or oil, a reducing agent, and a purifying agent. Thus, it can be applied to a method for purifying contaminated soil.

1…ベースマシン
5…混合撹拌ヘッド
6…フレーム
6b…ボスト
10…ドライブチェーン
11…混合撹拌翼
14A〜14C…混合状態計測器
15…品質管理装置
16…モニター(表示手段)
16a…警報装置
25,26…導電率センサ
28a,28b…電極
DESCRIPTION OF SYMBOLS 1 ... Base machine 5 ... Mixing stirring head 6 ... Frame 6b ... Bost 10 ... Drive chain 11 ... Mixing stirring blade 14A-14C ... Mixing state measuring device 15 ... Quality control apparatus 16 ... Monitor (display means)
16a ... Alarm device 25, 26 ... Conductivity sensor 28a, 28b ... Electrode

本発明は、上下方向に周回移動するトレンチャー式の混合撹拌翼を備えた混合撹拌ヘッドを地中に所定深度まで貫入したうえで、固化材の吐出のほか前記混合撹拌翼による原位置土の掘削およびその原位置土と固化材との混合撹拌を行い、地盤改良のための流動化した安定処理土を造成する過程にて、その安定処理土の混合状態を計測してリアルタイムで評価する方法である。 The present invention penetrates a mixing agitation head having a trencher type mixing agitating blade moving around in the vertical direction into the ground to a predetermined depth, and in addition to discharging a solidified material, excavating the in-situ soil by the mixing agitating blade In the process of mixing and stirring the in situ soil and solidified material, and creating a fluidized stabilized soil for ground improvement, the mixed state of the stabilized soil is measured and evaluated in real time. is there.

その上で、前記混合撹拌ヘッドのうち深度方向の異なる複数箇所に取り付けた混合状態計測手段により前記安定処理土の混合状態を特定の電気的パラメータとして所定のサンプリング周期で個別に計測するとともに、その計測結果を蓄積し、前記計測と並行して、前記蓄積した所定時間分前記計測結果を統計処理して前記安定処理土の混合状態の深度方向でのばらつきを前記特定の電気的パラメータの統計的ばらつきとして求め、この求めた統計的ばらつきと予め定めておいた前記統計的ばらつきの目標値とを比較して、前記安定処理土の混合状態の適否判定を行うことを特徴とするものである。 On top of that, with measured separately at a predetermined sampling period the mixed state of the treated soil as a specific electrical parameters by mixed state measuring means attached to the plurality of locations of different depths direction of the mixing and stirring head, its accumulating the measurement result, in parallel with the measurement, and statistical processing of the measurement results of the predetermined time that the storage of electrical parameters variations of the particular in the depth direction of the mixed state of the treated soil It is obtained as a statistical variation, and the obtained statistical variation is compared with a predetermined target value of the statistical variation to determine whether or not the mixed state of the stabilized soil is appropriate. is there.

すなわち、本発明では、上記のように、複数の混合状態計測手段により計測された計測結果を統計処理して、安定処理土の混合状態の深度方向での統計的ばらつき(例えば変動係数や標準偏差)に置き換えて、安定処理土の混合状態の評価指標としている。 That is, in the present invention, as described above, the measurement results measured by the plurality of mixed state measuring means are statistically processed, and statistical variations in the depth direction of the mixed state of the stabilized soil (for example, variation coefficients and standard deviations). replaced by a), Ru Tei as an evaluation indicator of the mixed state of the treated soil.

上記の安定処理土の品質評価方法に用いる好ましい地盤改良装置としては、前記混合撹拌ヘッドと、前記各混合状態計測手段と、に加えて、前記各混合状態計測手段の計測結果を蓄積した上で統計処理を行って、前記安定処理土の混合状態の深度方向でのばらつきを前記特定の電気的パラメータの統計的ばらつきとして求める一方、この求めた統計的ばらつきと予め定めておいた前記統計的ばらつきの目標値とを比較して、前記安定処理土の混合状態の適否判定を行う品質管理装置をさらに備えているものとするPreferred soil modifying apparatus used in the quality evaluation method of the treated soil, and the mixture stirred for head, wherein each mixed state measuring means, in addition, after accumulating the measurement results of the respective mixed state measuring means While performing statistical processing to determine the variation in the depth direction of the mixed state of the stabilized soil as the statistical variation of the specific electrical parameter, the calculated statistical variation and the predetermined statistical variation and compared with the target values, it is to further comprises a quality control device for performing the suitability judgment of mixed state of the treated soil.

より望ましくは、前記品質管理装置に加えて、少なくとも前記統計処理で求めた前記統計的ばらつきと前記目標値とを表示する表示手段をさらに備えているものとする。
More preferably, in addition to the quality control apparatus, it is assumed that further comprising a display means for displaying said target value and said statistical dispersion obtained in at least the statistical processing.

Claims (11)

上下方向に周回移動するトレンチャー式の混合撹拌翼を備えた混合撹拌ヘッドを地中に所定深度まで貫入したうえで、固化材の吐出のほか前記混合撹拌翼による原位置土の掘削およびその原位置土と固化材との混合撹拌を行い、地盤改良のための流動化した安定処理土を造成する過程にて、その安定処理土の混合状態をリアルタイムで評価する方法であって、
前記混合撹拌ヘッドのうち深度方向の異なる複数箇所に取り付けた混合状態計測手段により前記安定処理土の混合状態を所定のサンプリング周期で個別に計測し、
前記各混合状態計測手段の計測結果を統計処理して前記安定処理土の混合状態の深度方向での統計的ばらつきを求め、
この求めた統計的ばらつきに基づいて深度方向の異なる複数箇所の計測結果を相対比較して、前記安定処理土の混合状態を評価することを特徴とする地盤改良工法における安定処理土の品質評価方法。
After a mixing stirrer head equipped with a trencher-type mixing stirrer that moves around in the vertical direction penetrates the ground to a predetermined depth, in addition to discharging the solidified material, excavation of the original soil by the mixed stirrer and its original position A method of evaluating the mixed state of the stabilized soil in real time in the process of creating a fluidized stabilized soil for ground improvement by mixing and stirring the soil and solidified material,
The mixed state of the stable treated soil is individually measured at a predetermined sampling period by a mixed state measuring unit attached to a plurality of different positions in the depth direction of the mixing and stirring head,
Statistical processing of the measurement results of each mixed state measuring means to obtain the statistical variation in the depth direction of the mixed state of the stable treated soil,
Relative comparison of measurement results at a plurality of different locations in the depth direction based on the obtained statistical variation, and evaluating the mixed state of the stabilized soil, a method for evaluating the quality of the stabilized soil in the ground improvement method .
前記統計的ばらつきの目標値を予め定めておき、前記統計的ばらつきと前記目標値とを比較して前記安定処理土の混合状態の適否判定を行うことを特徴とする請求項1に記載の地盤改良工法における安定処理土の品質評価方法。   The ground according to claim 1, wherein a target value for the statistical variation is determined in advance, and the statistical variation is compared with the target value to determine whether the mixed state of the stable soil is appropriate. Quality evaluation method of the stabilized soil in the improved construction method. 前記統計的ばらつきが変動係数であることを特徴とする請求項1または2に記載の地盤改良工法における安定処理土の品質評価方法。   The method for evaluating the quality of a stabilized soil in a ground improvement method according to claim 1 or 2, wherein the statistical variation is a coefficient of variation. 前記安定処理土の混合状態の適否判定結果を、前記混合撹拌ヘッドを操作するオペレータに告知することを特徴とする請求項1〜3のいずれか一項に記載の地盤改良工法における安定処理土の品質評価方法。   The result of determining the suitability of the mixed state of the stabilized soil is notified to an operator who operates the mixing and agitating head. The stabilized soil in the ground improvement method according to any one of claims 1 to 3, Quality evaluation method. 前記安定処理土の混合状態の適否判定結果は適または不適であって、
前記適否判定結果が不適であるにもかかわらず、なおも前記混合撹拌ヘッドを掘進移動させようとした場合に、前記混合撹拌ヘッドを操作するオペレータに警告を発することを特徴とする請求項4に記載の地盤改良工法における安定処理土の品質評価方法。
The result of determining the adequacy of the mixed state of the stabilized soil is appropriate or inappropriate,
5. The operator operating the mixing and stirring head is warned even when the mixing and stirring head is to be moved forward even though the suitability determination result is unsuitable. Quality evaluation method of stabilized soil in the described ground improvement method.
前記安定処理土の混合撹拌直後の流動値をテーブルフロー値にて115mm以上とすることを特徴とする請求項1〜5のいずれか一項に記載の地盤改良工法における安定処理土の品質評価方法。   The flow evaluation value immediately after mixing and stirring of the stabilized soil is a table flow value of 115 mm or more, and the quality evaluation method of the stabilized soil in the ground improvement method according to any one of claims 1 to 5 . 請求項1〜6のいずれか一項に記載の地盤改良工法における安定処理土の品質評価方法に用いる地盤改良装置であって、
前記混合撹拌ヘッドと、前記各混合状態計測手段と、に加えて、
前記各混合状態計測手段の計測結果を入力として統計処理を行って、前記安定処理土の混合状態の深度方向での統計的ばらつきを求める一方、この求めた統計的ばらつきに基づいて深度方向の異なる複数箇所の計測結果を相対比較して、前記安定処理土の混合状態を評価する品質管理装置をさらに備えていることを特徴とする地盤改良装置。
A ground improvement device used for a quality evaluation method of the stabilized soil in the ground improvement method according to any one of claims 1 to 6,
In addition to the mixing agitation head and the mixing state measuring means,
Statistical processing is performed using the measurement results of the mixed state measuring means as inputs, and the statistical variation in the depth direction of the mixed state of the stabilized soil is obtained, while the depth direction differs based on the obtained statistical variation. A ground improvement device further comprising a quality control device for comparing the measurement results at a plurality of locations and evaluating the mixed state of the stabilized soil.
前記品質管理装置は、前記統計処理で求めた統計的ばらつきと予め定めた目標値とを比較して前記安定処理土の混合状態の適否判定を行う機能を有していると共に、
前記品質管理装置に加えて、少なくとも前記統計処理で求めた統計的ばらつきと予め定めた目標値とを表示する表示手段をさらに備えていることを特徴とする請求項7に記載の地盤改良装置。
The quality control device has a function of comparing the statistical variation obtained by the statistical processing with a predetermined target value to determine the suitability of the mixed state of the stable treated soil,
8. The ground improvement device according to claim 7, further comprising display means for displaying at least a statistical variation obtained by the statistical processing and a predetermined target value in addition to the quality control device.
前記表示手段は、前記統計処理で求めた統計的ばらつきと予め定めた目標値とに加えて、前記安定処理土の混合状態の適否判定結果を表示するようになっていることを特徴とする請求項8に記載の地盤改良装置。   The display means is configured to display a result of determining whether or not the mixed state of the stable treated soil is appropriate, in addition to the statistical variation obtained by the statistical processing and a predetermined target value. Item 9. The ground improvement device according to item 8. 前記安定処理土の混合状態の適否判定結果は適または不適であって、
前記品質管理装置は、前記適否判定結果が不適であるにもかかわらず、なおも前記混合撹拌ヘッドを掘進移動させようとした場合に、前記混合撹拌ヘッドのオペレータに警告を発する機能を有していることを特徴とする請求項8に記載の地盤改良装置。
The result of determining the adequacy of the mixed state of the stabilized soil is appropriate or inappropriate,
The quality control device has a function of issuing a warning to an operator of the mixing and agitating head even when the mixing and agitating head is to be moved forward even though the suitability determination result is inappropriate. The ground improvement device according to claim 8, wherein the ground improvement device is provided.
前記混合撹拌ヘッドの主体となるポストの上下両端部に駆動輪と従動輪とが設けられていると共に、
それらの駆動輪と従動輪との間に前記混合撹拌翼が巻き掛けられていて、
前記各混合状態計測手段は、前記混合撹拌ヘッドの平面視において、張り側となる前記混合撹拌翼と緩み側となる前記混合撹拌翼とで挟まれた領域であって且つ前記ポストの側面に取り付けられていることを特徴とする請求項7〜10のいずれか一項に記載の地盤改良装置。
A driving wheel and a driven wheel are provided at the upper and lower ends of the post which is the main body of the mixing and stirring head, and
The mixing stirring blade is wound between the driving wheel and the driven wheel,
Each of the mixed state measuring means is a region sandwiched between the mixing stirring blade on the tight side and the mixing stirring blade on the loose side in a plan view of the mixing stirring head, and is attached to the side surface of the post The ground improvement apparatus as described in any one of Claims 7-10 characterized by the above-mentioned.
JP2017152158A 2017-08-07 2017-08-07 Quality evaluation method and ground improvement device for stabilized soil in ground improvement method Active JP6342557B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017152158A JP6342557B1 (en) 2017-08-07 2017-08-07 Quality evaluation method and ground improvement device for stabilized soil in ground improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017152158A JP6342557B1 (en) 2017-08-07 2017-08-07 Quality evaluation method and ground improvement device for stabilized soil in ground improvement method

Publications (2)

Publication Number Publication Date
JP6342557B1 JP6342557B1 (en) 2018-06-13
JP2019031794A true JP2019031794A (en) 2019-02-28

Family

ID=62556008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017152158A Active JP6342557B1 (en) 2017-08-07 2017-08-07 Quality evaluation method and ground improvement device for stabilized soil in ground improvement method

Country Status (1)

Country Link
JP (1) JP6342557B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021036103A (en) * 2019-08-30 2021-03-04 小野田ケミコ株式会社 Quality prediction method of improvement body
WO2023210029A1 (en) * 2022-04-27 2023-11-02 株式会社テノックス九州 Method for checking mixing state of soil improving body
JP7477088B2 (en) 2021-01-18 2024-05-01 成幸利根株式会社 Methods for constructing and testing underground impermeable walls

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06193044A (en) * 1992-12-28 1994-07-12 Kajima Corp Execution control method for original position soil stirring method
JP2001288749A (en) * 2000-04-04 2001-10-19 Dai Nippon Construction Control method and controller for banking execution
JP2002266343A (en) * 2002-01-30 2002-09-18 Tenox Corp Method for controlling soil improving method, and apparatus for controlling soil improving machine
JP2006002457A (en) * 2004-06-18 2006-01-05 Toto Denki Kogyo Kk Grout injection control device
JP2006063786A (en) * 2004-01-19 2006-03-09 Kato Construction Co Ltd Soil improvement method
JP2006144536A (en) * 2004-10-19 2006-06-08 Onoda Chemico Co Ltd Ground improving machine and improving method
JP2007016586A (en) * 2005-06-10 2007-01-25 Kato Construction Co Ltd Bottoming control method in foundation improvement and foundation improving device
JP2011063936A (en) * 2009-09-15 2011-03-31 Fukuda Corp Device and method for soil improvement
JP2012036604A (en) * 2010-08-05 2012-02-23 Yahagi Construction Co Ltd Agitating and mixing machine in soil improving machine
JP2016011353A (en) * 2014-06-27 2016-01-21 株式会社竹中工務店 Composition for foundation improvement, foundation improved body, foundation improvement method and foundation recovery method
JP2017089159A (en) * 2015-11-05 2017-05-25 株式会社大林組 Electric specific resistance detector and quality management method for soil cement body

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06193044A (en) * 1992-12-28 1994-07-12 Kajima Corp Execution control method for original position soil stirring method
JP2001288749A (en) * 2000-04-04 2001-10-19 Dai Nippon Construction Control method and controller for banking execution
JP2002266343A (en) * 2002-01-30 2002-09-18 Tenox Corp Method for controlling soil improving method, and apparatus for controlling soil improving machine
JP2006063786A (en) * 2004-01-19 2006-03-09 Kato Construction Co Ltd Soil improvement method
JP2006002457A (en) * 2004-06-18 2006-01-05 Toto Denki Kogyo Kk Grout injection control device
JP2006144536A (en) * 2004-10-19 2006-06-08 Onoda Chemico Co Ltd Ground improving machine and improving method
JP2007016586A (en) * 2005-06-10 2007-01-25 Kato Construction Co Ltd Bottoming control method in foundation improvement and foundation improving device
JP2011063936A (en) * 2009-09-15 2011-03-31 Fukuda Corp Device and method for soil improvement
JP2012036604A (en) * 2010-08-05 2012-02-23 Yahagi Construction Co Ltd Agitating and mixing machine in soil improving machine
JP2016011353A (en) * 2014-06-27 2016-01-21 株式会社竹中工務店 Composition for foundation improvement, foundation improved body, foundation improvement method and foundation recovery method
JP2017089159A (en) * 2015-11-05 2017-05-25 株式会社大林組 Electric specific resistance detector and quality management method for soil cement body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021036103A (en) * 2019-08-30 2021-03-04 小野田ケミコ株式会社 Quality prediction method of improvement body
JP7269137B2 (en) 2019-08-30 2023-05-08 小野田ケミコ株式会社 Quality prediction method of improved body
JP7477088B2 (en) 2021-01-18 2024-05-01 成幸利根株式会社 Methods for constructing and testing underground impermeable walls
WO2023210029A1 (en) * 2022-04-27 2023-11-02 株式会社テノックス九州 Method for checking mixing state of soil improving body
JP7474522B2 (en) 2022-04-27 2024-04-25 株式会社テノックス九州 How to check the mixed condition of ground improvement material

Also Published As

Publication number Publication date
JP6342557B1 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
JP6342557B1 (en) Quality evaluation method and ground improvement device for stabilized soil in ground improvement method
JP6293352B1 (en) Ground improvement method and ground improvement device
AU2021203036B2 (en) Wear part monitoring
JP4478187B2 (en) Ground improvement machine
US20130049935A1 (en) Metal tooth detection and locating
KR102326548B1 (en) Device for Sensing Crack of Concrete Structure
JP6699135B2 (en) Electric resistivity detector and quality control method for soil cement body
JPH0514224B2 (en)
JP5913603B2 (en) Self-propelled mining machine operation management device
JP2014006184A (en) Operation verification system for electromagnetic flow meter
CN111395423A (en) Bucket health state monitoring device and method and excavator
JP2017203739A (en) Evaluation method and system of trafficability
JPH0841860A (en) Improvement examining method of soil improvement work and device used therefor
JP2019031839A (en) Method for determining arrival at support layer and determination support system
CN212052926U (en) Bucket health state monitoring device and excavator
JP4113933B2 (en) Electric discharge crushing method
JP3788728B2 (en) Device that displays the construction status of the ground improvement method
JP2009052257A (en) Management system for ground agitating apparatus
DE202013011499U1 (en) Excavator depth control system, lifting height limitation, swivel angle limitation, quick release by bucket decoupler, 2nd laser eye on a stick, CAN bus based system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180516

R150 Certificate of patent or registration of utility model

Ref document number: 6342557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250